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Abstract We give meaning to linear and semi-linear (possibly degenerate) parabolic
partial differential equations with (affine) linear rough path noise and establish sta-
bility in a rough path metric. In the case of enhanced Brownian motion (Brownian
motion with its Lévy area) as rough path noise the solution coincides with the standard
variational solution of the SPDE.

Keywords Rough paths · Viscosity solutions · SPDEs · Zakai equation

Mathematics Subject Classification 60H15 · 35K58 · 60G35

1 Introduction

Given a continuous, d-dimensional semimartingale Z = (Z1, . . . , Zd) consider the
SPDE

du + L(t, x, u, Du, D2u)dt =
d∑

k=1

�k(t, x, u, Du) ◦ d Zk
t , (1.1)

with scalar initial data u(0, ·) = u0(·) on R
n, L a (semi-)linear second order operator

of the form
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402 P. Friz, H. Oberhauser

L (t, x, r, p, X) = −Tr [A (t, x) · X ] + b (t, x) · p + c (t, x, r)

and � a collection of first order different operators �k = �k(t, x, r, p) which are
affine linear in r, p, that is,

�k (t, x, r, p) = p · σk (t, x)+ r νk (t, x)+ gk (t, x) , k = 1, . . . , d. (1.2)

The contribution of this article is to give meaning to Eq. (1.1) when Z(ω) is replaced
by a rough path z (this is carried out in Sects. 2, 3 and 4). Our main result as stated and
proven in Sect. 4 (in Sect. 2 we recall Lipγ -regularity, rough paths and their metrics and
the BUC space of continuous, bounded uniformly continuous real-valued functions
that appear in the theorem below) is the following

Theorem 1 Let p ≥ 1. Assume L fulfills Assumption 1 and the coefficients of � =
(�1, . . . , �d1+d2+d3) fulfill Assumption 2 for some γ > p + 2 (Assumption 1 and
2 are given in Sect. 4). Let u0 ∈ BUC(Rn) and let z be a geometric p-rough path.
Then there exists a unique u = uz ∈ BUC([0, T ] × R

n) such that for any sequence
(zε)ε ⊂ C1([0, T ],Rd) such that zε → z in p-rough path sense, the viscosity solutions
(uε) ⊂ BUC([0, T ] × R

n) of

u̇ε + L(t, x, uε, Duε, D2uε) =
d∑

k=1

�k(t, x, uε, Duε)żk;ε
t , uε (0, ·) = u0 (·),

converge locally uniformly on [0, T ] × R
n to uz. We write formally,

du + L(t, x, u, Du, D2u)dt = �(t, x, u, Du) dzt , u (0, ·) = u0 (·).

Moreover, we have the contraction property

sup
(t,x)∈Rn×[0,T ]

∣∣uz (t, x)− ûz (t, x)
∣∣ ≤ eCT sup

x∈Rn

∣∣u0 (x)− û0 (x)
∣∣

(C given by (4.2)) and continuity of the solution map

C0,p-var
(

[0, T ] ,G[p]
(
R

d
))

× BUC
(
R

n) → BUC
(
[0, T ] × R

n)

(z, u0) �→ uz.

The resulting theory of rough PDEs can then be used (in a “rough-pathwise” fash-
ion) to give meaning (and then existence, uniqueness, stability, etc.) to large classes of
stochastic partial differential equations which has numerous benefits as discussed in
Sect. 6. By combining well-known Wong–Zakai type results of the L2-theory of SPDEs
[3,29,44,45] with convergence of piecewise linear approximations to “enhanced”
Brownian motion (EBM) in rough path sense, e.g. [22, Chapter 13 and 14], we show
that the solutions provided by above theorem when applied with EBM as rough path
are in fact the usual L2-solutions of the variational approach [31,39,41]. This “inter-
section” of RPDE/SPDE theory is made precise in Sect. 5. However, let us emphasize
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Rough path stability of (semi-)linear SPDEs 403

that neither theory is “contained” in the other, even in the case of Brownian driving
noise. An appealing feature of our RPDE approach is that it can handle degenerate situ-
ations (including pure first order SPDEs) and automatically yields continuous versions
of SPDE solutions without requiring dimension-dependent regularity assumptions on
the coefficients (as pointed out by Krylov [30], a disadvantage of the L2-theory of
SPDEs). On the other hand, our regularity assumption on the coefficients (in particu-
lar in the noise terms) are more stringent than what is needed to ensure existence and
uniqueness in the L2-theory of SPDEs. Below we sketch our approach and the outline
of this article.

1.1 Robustification

In fact, it is part of folklore that the Eq. (1.1) can be given a pathwise meaning in the
case when there is no gradient noise [σ = 0 in (1.2)].

Classical robustification: if σ = 0 in (1.2) and also (for simplicity of presentation
only) ν = ν(x) (i.e. no time dependence) one can take a smooth path z and solve the
auxiliary differential equation φ̇ = φ

∑
j ν j (x)dz j ≡ φ ν · dz. The solution is given

by

φt = φ0 exp

⎛

⎝
t∫

0

ν(x) · dz

⎞

⎠ = φ0 exp(ν(x) · zt )

and induces the flow map φ(t, φ0) := φ0 exp(ν(x) · zt ); observe that these expressions
can be extended by continuity to any continuous path z such as a typical realization
of Z ·(ω). The point is that this transform allows to transform the SPDE into a random
PDE (sometimes called the Zakai equation in robust form): it suffices to introduce v
via the “outer transform” u(t, x) = φ(t, v(t, x)) which leads immediately to

v (t, x) = exp (−ν (x) · zt ) u (t, x).

An elementary computation then shows that v solves a linear PDE given by an affine
linear operator φL in v, Dv, D2v with coefficients that will depend on z resp. Zt (ω),

dv + φL
(

t, x, v, Dv, D2v
)

dt = 0.

Moreover, one can conclude from this representation that u = u(z) is continuous with
respect to the uniform metric |z− z̃|∞;[0,T ] = supr∈[0,T ] |zr − z̃r |. This provides a fully
pathwise “robust” approach (the extension to vector field ν = ν(t, x)with sufficiently
smooth time-dependence is easy).

Rough path robustification: The classical robustification does not work in pres-
ence of general gradient noise. In fact, we can not expect PDE solutions to

du + L(t, x, u, Du, D2u)dt =
d∑

k=1

�k (t, x, u, Du) dzk
t ,
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(which are well-defined for smooth z : [0, T ] → R
d ) to depend continuously on z

in uniform topology (cf. the “twisted approximations” of Sect. 6). Our main result
is that u = u(z) is continuous with respect to rough path metric.1 That is, if (zn) ⊂
C1([0, T ],Rd) is Cauchy in rough path metric then (un) will converge to a limit
which will be seen to depend only on the (rough path) limit of zn (and not on the
approximating sequence). As a consequence, it is meaningful to replace z above by an
abstract (geometric) rough path z and the analogue of Lyons’ universal limit theorem
[37] holds.

1.2 Structure and outline

We shall prefer to write the right hand side of (1.1) in the equivalent form

d1∑

i=1

(Du · σi (t, x)) ◦ d Z1;i
t + u

d2∑

j=1

ν j (t, x) ◦ d Z2; j +
d3∑

k=1

gk (t, x) ◦ d Z3;k

where Z ≡ (Z1, Z2, Z3) and Zi is a di -dimensional, continuous semimartingale. Our
approach is based on a pointwise (viscosity) interpretation of (1.1): we successively
transform away the noise terms such as to transform the SPDE, ultimately, into a
random PDE. The big scheme of the paper is

u
Transformation 1�→ u1 where u1 has the (gradient) noise driven by Z1 removed;

u1 Transformation 2�→ u12 where u12 has the remaining noise driven by Z2 removed;

u12 Transformation 3�→ ũ where ũ has the remaining noise driven by Z3 removed.

None of these transformations is new on its own. The first is an example of Kunita’s
stochastic characteristics method; the second is known as robustification (also know
as Doss–Sussman transform); the third amounts to change u12 additively by a random
amount and has been used in virtually every SPDE context with additive noise.2 What
is new is that the combined transformation can be managed and is compatible with
rough path convergence; for this we have to remove all probability from the problem:
In fact, we will transform an RPDE (rough PDE) solution u into a classical PDE
solution ũ in which the coefficients depend on various rough flows (i.e. the solution
flows to rough differential equations) and their derivatives. Stability results of rough
path theory and viscosity theory, in the spirit of [5,6], then play together to yield the
desired result. Upon using the canonical rough path lift of the observation process in
this RPDE one has constructed a robust version of the SPDE solution of Eq. (1.1).
We note that the viscosity/Stratonovich approach allows us to avoid any ellipticity

1 Two (smooth) paths z, z̃ are close in rough path metric iff z is close to z̃ AND sufficiently many iterated
integrals of z are close to those of z̃. More details are given later in this article as needed.
2 Transformation 2 and 3 could actually be performed in 1 step; however, the separation leads to a simpler
analytic tractability of the transformed equations.
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Rough path stability of (semi-)linear SPDEs 405

assumption on L; we can even handle the fully degenerate first order case. In turn, we
only obtain BUC (bounded, uniformly continuous) solutions. Stronger assumptions
would allow to discuss all this in a classical context (i.e. ũ would be a C1,2 solution)
and the SPDE solution can then be seen to have certain spatial regularity, etc.

We should remark that the usual way to deal with (1.1), which goes back to Par-
doux, Krylov, Rozovskii, and others, [3,29,44,45], is to find solutions in a suitable
functional analytic setting; e.g. such that solutions evolve in suitable Sobolev spaces.
The equivalence of this solution concept with the RPDE approach as presented in
Sects. 2–4 is then discussed in Sect. 5. Interestingly, there has been no success until
now (despite the advances by Deya–Gubinelli–Tindel [12,23] and Teichmann [43]) to
include (1.1) in a setting of abstract rough evolution equations on infinite-dimensional
spaces.

2 Background on viscosity theory and rough paths

Let us recall some basic ideas of (second order) viscosity theory [9,15] and rough path
theory [37,38]. As for viscosity theory, consider a real-valued function u = u(t, x)
with t ∈ [0, T ], x ∈ R

n and assume u ∈ C2 is a classical subsolution,

∂t u + F
(

t, x, u, Du, D2u
)

≤ 0,

where F is a (continuous) function, degenerate elliptic in the sense that

F (t, x, r, p, A + B) ≤ F (t, x, r, p, A)

whenever B ≥ 0 in the sense of symmetric matrices (cf. [9]). The idea is to consider
a (smooth) test function ϕ and look at a local maxima (t̂, x̂) of u − ϕ. Basic calcu-
lus implies that Du(t̂, x̂) = Dϕ(t̂, x̂), D2u(t̂, x̂) ≤ Dϕ(t̂, x̂) and, from degenerate
ellipticity,

∂tϕ + F
(

t̂, x̂, u, Dϕ, D2ϕ
)

≤ 0. (2.1)

This suggests to define a viscosity supersolution (at the point (x̂, t̂)) to ∂t + F = 0
as a continuous function u with the property that (2.1) holds for any test function.
Similarly, viscosity subsolutions are defined by reversing inequality in (2.1); viscosity
solutions are both super- and subsolutions. A different point of view is to note that
u(t, x) ≤ u(t̂, x̂)− ϕ(t̂, x̂)+ ϕ(t, x) for (t, x) near (t̂, x̂). A simple Taylor expansion
then implies

u (t, x) ≤ u
(
t̂, x̂

) + a
(
t − t̂

) + p · (x − x̂
) + 1

2

(
x − x̂

)T · X · (x − x̂
)

+o
(∣∣x̂ − x

∣∣2 + ∣∣t̂ − t
∣∣
)

(2.2)
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406 P. Friz, H. Oberhauser

as |x̂−x |2+|t̂−t | → 0 with a = ∂tϕ(t̂, x̂), p = Dϕ(t̂, x̂), X = D2ϕ(t̂, x̂). Moreover,
if (2.2) holds for some (a, p, X) and u is differentiable, then a = ∂t u(t̂, x̂), p =
Du(t̂, x̂), X ≤ D2u(t̂, x̂), hence by degenerate ellipticity

∂tϕ + F
(
t̂, x̂, u, p, X

) ≤ 0.

Pushing this idea further leads to a definition of viscosity solutions based on a gen-
eralized notion of “(∂t u, Du, D2u)” for non-differentiable u, the so-called parabolic
semijets, and it is a simple exercise to show that both definitions are equivalent. The
resulting theory (existence, uniqueness, stability, . . .) is without doubt one of the most
important recent developments in the field of partial differential equations. As a typ-
ical result,3 the initial value problem (∂t + F)u = 0, u(0, ·) = u0 ∈ BUC(Rn)

has a unique solution in BUC([0, T ] × R
n) provided F = F(t, x, u, Du, D2u) is

continuous, degenerate elliptic, proper (i.e. increasing in the u variable) and satis-
fies a (well-known) technical condition.4 In fact, uniqueness follows from a stronger
property known as comparison: assume u (resp. v) is a supersolution (resp. subsolu-
tion) and u0 ≥ v0; then u ≥ v on [0, T ] × R

n . A key feature of viscosity theory is
what workers in the field simply call stability properties. For instance, it is relatively
straightforward to study (∂t + F)u = 0 via a sequence of approximate problems, say
(∂t + Fn)un = 0, provided Fn → F locally uniformly and some apriori information
on the un (e.g. locally uniform convergence, or locally uniform boundedness).5 Note
the stark contrast to the classical theory where one has to control the actual derivatives
of un .

The idea of stability is also central to rough path theory. Given a collection
(V1, . . . , Vd) of (sufficiently nice) vector fields on R

n and z ∈ C1([0, T ],Rd) one
considers the (unique) solution y to the ordinary differential equation

ẏ (t) =
d∑

i=1

Vi (y) żi (t), y (0) = y0 ∈ R
n . (2.3)

The question is, if the output signal y depends in a stable way on the driving signal z
(one handles time-dependent vector fields V = V (t, y) by considering the (d + 1)-
dimensional driving signal t �→ (t, zt )). The answer, of course, depends strongly on
how to measure distance between input signals. If one uses the supremums norm, so
that the distance between driving signals z, z̃ is given by |z− z̃|;[0,T ] = supr∈[0,T ] |zr −
z̃r |, then the solution will in general not depend continuously on the input.

Example 2 Take n = 1, d = 2, V = (V1, V2) = (sin(·), cos(·)) and y0 = 0. Obvi-
ously,

zn (t) =
(

1

n
cos

(
2πn2t

)
,

1

n
sin

(
2πn2t

))

3 BUC(. . . ) denotes the space of bounded, uniformly continuous functions.
4 (3.14) of the User’s Guide [9].
5 What we have in mind here is the Barles–Perthame method of semi-relaxed limits [15].
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Rough path stability of (semi-)linear SPDEs 407

converges to 0 in ∞-norm whereas the solutions to ẏn = V (yn)żn, yn
0 = 0, do not

converge to zero (the solution to the limiting equation ẏ = 0).

If |z − z̃|∞;[0,T ] is replaced by the (much) stronger distance

|z − z̃|1-var;[0,T ] = sup
(ti )⊂[0,T ]

∑∣∣zti ,ti+1 − z̃ti ,ti+1

∣∣ ,

(using the notation zs,t := zt − zs) it is elementary to see that now the solution map is
continuous (in fact, locally Lipschitz); however, this continuity does not lend itself to
push the meaning of (2.3): the closure of C1 (or smooth) paths in variation is precisely
W 1,1, the set of absolutely continuous paths (and thus still far from a typical Brown-
ian path). Lyons’ theory of rough paths exhibits an entire cascade of (p-variation or
1/p-Hölder type rough path) metrics, for each p ∈ [1,∞), on path-space under which
such ODE solutions are continuous (and even locally Lipschitz) functions of their
driving signal. For instance, the “rough path” p-variation distance between two smooth
R

d -valued paths z, z̃ is given by

max
j=1,...,[p]

(
sup

(ti )⊂[0,T ]

∑∣∣∣z( j)
ti ,ti+1

− z̃( j)
ti ,ti+1

∣∣∣
p
)1/p

where z( j)
s,t = ∫

dzr1 ⊗ · · · ⊗ dzr j with integration over the j-dimensional simplex
{s < r1 < · · · < r j < t}. This allows to extend the very meaning of (2.3), in a unique
and continuous fashion, to driving signals which live in the abstract completion of
smooth R

d -valued paths (with respect to rough path p-variation or a similarly defined
1/p-Hölder metric). The space of so-called p-rough paths6 is precisely this abstract
completion. In fact, this space can be realized as genuine path space, where G[p](Rd) is
the free step-[p] nilpotent group over R

d , equipped with Carnot–Caratheodory metric;
realized as a subset of 1 + t[p](Rd) where

t[p]
(
R

d
)

= R
d ⊕

(
R

d
)⊗2 ⊕ · · · ⊕

(
R

d
)⊗[p]

is the natural space for (up to [p]) iterated integrals of a smooth R
d -valued path. For

instance, almost every realization of d-dimensional Brownian motion B enhanced
with its iterated stochastic integrals in the sense of Stratonovich, i.e. the matrix-valued
process given by

B(2) :=
⎛

⎝
·∫

0

Bi ◦ d B j

⎞

⎠

i, j∈{1,...,d}
(2.4)

yields a path B(ω) in G2(Rd) with finite 1/p-Hölder (and hence finite p-variation)
regularity, for any p > 2. (B is known as Brownian rough path.) We remark that

6 In the strict terminology of rough path theory: geometric p-rough paths.
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B(2) = 1
2 B ⊗ B + A where the anti-symmetric part of the matrix, A :=Anti(B(2)),

is known as Lévy’s stochastic area; in other words B(ω) is determined by (B, A), i.e.
Brownian motion enhanced with Lévy’s area. A similar construction works when B is
replaced by a generic multi-dimensional continuous semimartingale; see [22, Chapter
14] and the references therein.

3 Transformations

3.1 Inner and outer transforms

Throughout, F = F(t, x, r, p, X) is a continuous scalar-valued function on [0, T ] ×
R

n × R × R
n × S(n),S(n) denotes the space of symmetric n × n-matrices, and F

is assumed to be non-increasing in X (degenerate elliptic) and proper in the sense
of (7.1). Time derivatives of functions are denoted by upper dots, spatial derivatives
(with respect to x) by D, D2, etc. Further, we use, 〈., .〉 to denote tensor contraction,7

i.e. 〈p, q〉 j1,..., jn ≡ ∑
i1,...,im

pi1,...,im
qi1,...,im

j1,..., jn
, p ∈ (Rl)⊗m, q ∈ (Rl)⊗n ⊗ ((Rl)′)⊗m .

Lemma 3 (Inner transform) Let z ∈ C1([0, T ],Rd), σ = (σ1, . . . , σd) ⊂
C2

b ([0, T ]×R
n,Rn) (the space of continuous and twice differentiable, bounded func-

tions with bounded derivatives) and ψ = ψ(t, x) the ODE flow of dy = σ(y)dz,
i.e.

ψ̇ (t, x) =
d∑

i=1

σi (t, ψ (t, x)) żi
t , ψ̇ (0, x) = x ∈ R

n .

Then u is a viscosity subsolution (always assumed BUC) of

∂t u + F
(

t, x, r, Du, D2u
)

−
d∑

i=1

(Du · σi (t, x)) żi
t = 0; u (0, .) = u0 (.) (3.1)

iff w(t, x) := u(t, ψ(t, x)) is a viscosity subsolution of

∂tw + Fψ
(

t, x, w, Dw, D2w
)

= 0; w (0, .) = u0 (.) (3.2)

where

Fψ (t, x, r, p, X) = F
(

t, ψt (x) , r,
〈
p, Dψ−1

t |ψt (x)

〉
,

〈
X, Dψ−1

t |ψt (x) ⊗ Dψ−1
t |ψt (x)

〉
+

〈
p, D2ψ−1

t |ψt (x)

〉)

7 We also use · to denote contraction over only index or to denote matrix multiplication.
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Rough path stability of (semi-)linear SPDEs 409

and

Dψ−1
t |x =

⎛

⎜⎝
∂
(
ψ−1

t (t, x)
)k

∂xi

⎞

⎟⎠

k=1,...,n

i=1,...,n

and D2ψ−1
t |x =

(
∂
(
ψ−1 (t, x)

)k

∂xi x j

)k=1,...,n

i, j=1,...,n

.

The same statement holds if one replaces the word subsolution by supersolution
throughout.

Remark 4 The regularity assumptions on σ with respect to t can be obviously relaxed
here. Treating time and space variable similarly will be convenient in the rough path
framework where sharp results on time-dependent vector fields are hard to find in the
literature (but see [4]).

If we specialize from general F to a semilinear L : [0, T ]×R
n×R×R

n×S(n) → R

we get transformation 1 as a corollary.

Corollary 5 (Transformation 1) Letψ = ψ(t, x) be the ODE flow of dy = σ(t, y)dz,
as above. Define L = L(t, x, r, p, X) by

L = −T r [A (t, x) · X ] + b (t, x) · p + c (t, x, r);

define also the transform

Lψ = −T r
[
Aψ (t, x) · X

] + bψ (t, x) · p + cψ (t, x, r)

where

Aψ (t, x) =
〈
A (t, ψt (x)) , Dψ−1

t |ψt (x) ⊗ Dψ−1
t |ψt (x)

〉
,

bψ (t, x) · p = b (t, ψt (x)) ·
〈
p, Dψ−1

t |ψt (x)

〉
− Tr

(
A (t, ψt ) ·

〈
p, D2ψ−1

t |ψt (x)

〉)
,

cψ (t, x, r) = c (t, ψt (x) , r).

Then u is a solution (always assumed BUC) of

∂t u + L
(

t, x, u, Du, D2u
)

=
d∑

i=1

(Du · σi (t, x)) żi
t ; u (0, .) = u0 (.)

if and only if u1(t, x) := u(t, ψ(t, x)) is a solution of

∂t + Lψ = 0; u1 (0, .) = u0 (.). (3.3)

Proof of lemma 4 Set y = ψt (x). When u is a classical sub-solution, it suffices to use
the chain rule and definition of Fψ to see that
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410 P. Friz, H. Oberhauser

ẇ (t, x) = u̇ (t, y)+ Du (t, y) · ψ̇t (x) = u̇ (t, y)+ Du (t, y) · σ (y) żt

≤ F
(

t, y, u (t, y) , Du (t, y) , D2u (t, y)
)

= Fψ
(

t, x, w (t, x) , Dw (t, x) , D2w (t, x)
)
.

The case when u is a viscosity sub-solution of (3.1) is not much harder: suppose
that (t̄, x̄) is a maximum of w − ξ , where ξ ∈ C2([0, T ] × R

n) and define ϕ ∈
C2((0, T )× R

n) by ϕ(t, y) = ξ(t, ψ−1
t (y)). Set ȳ = ψt̄ (x̄) so that

F
(
t̄, ȳ, u

(
t̄, ȳ

)
, Dϕ

(
t̄, ȳ

)
, D2ϕ

(
t̄, ȳ

)) = Fψ
(
t̄, x̄, w

(
t̄, x̄

)
, Dξ

(
t̄, x̄

)
, D2ξ

(
t̄, x̄

))
.

Obviously, (t̄, ȳ) is a maximum of u − ϕ, and since u is a viscosity sub-solution of
(3.1) we have

ϕ̇
(
t̄, ȳ

) + Dϕ
(
t̄, ȳ

)
σ
(
t̄, ȳ

)
ż
(
t̄
) ≤ F

(
t̄, ȳ, u

(
t̄, ȳ

)
, Dϕ

(
t̄, ȳ

)
, D2ϕ

(
t̄, ȳ

))
.

On the other hand, ξ(t, x)=ϕ(t, ψt (x)) implies ξ̇ (t̄, x̄)= ϕ̇(t̄, ȳ)+Dϕ(t̄, ȳ)σ (t̄, ȳ)ż(t̄)
and putting things together we see that

ξ̇
(
t̄, x̄

) ≤ Fψ
(

t̄, x̄, w
(
t̄, x̄

)
, Dξ

(
t̄, x̄

)
, D2ξ

(
t̄, x̄

))

which says precisely that w is a viscosity sub-solution of (3.2). Replacing maximum
by minimum and ≤ by ≥ in the preceding argument, we see that if u is a super-solution
of (3.1), then w is a super-solution of (3.2).
Conversely, the same arguments show that if v is a viscosity sub- (resp. super-) solution
for (3.2), then u(t, y) = w(t, ψ−1(y)) is a sub- (resp. super-) solution for (3.1). ��

We prepare the next lemma by agreeing that for a sufficiently smooth function
φ = φ(t, r, x) : [0, T ] × R × R

n → R we shall write

φ̇ = ∂φ (t, r, x)

∂t
, φ′ = ∂φ (t, r, x)

∂r
,

Dφ =
(
∂φ (t, r, x)

∂xi

)

i=1,...,n
and D2φ =

(
∂2φ (t, r, x)

∂xi∂x j

)

i, j=1,...,n
.

Lemma 6 [Outer transform] Let φ = φ(t, r, x) ∈ C1,2,2 and assume that
∀(t, x), r �→ φ(t, r, x) is an increasing diffeomorphism on the real line. Then u is
a subsolution of ∂t u + F(t, x, u, Du, D2u) = 0, u(0, .) = u0(.) if and only if

v (t, x) = φ−1 (t, u (t, x) , x)
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is a subsolution of ∂tv +φ F(t, x, v, Dv, D2v) = 0, v(0, .) = φ−1(0, u0(x), x) with

φF (t, x, r, p, X) = φ̇

φ′ + 1

φ′ F
(
t, x, φ, Dφ + φ′ p,

φ′′ p ⊗ p + Dφ′ ⊗ p + p ⊗ Dφ′ + D2φ + φ′ X
)

(3.4)

where φ and all derivatives are evaluated at (t, r, x). The same statement holds if one
replaces the word subsolution by supersolution throughout.

Proof (�⇒)We show the first implication, i.e. assume u is a subsolution of ∂t u+ F =
0 and set v(t, x) = φ−1(t, u(t, x), x). By definition, (a, p, X) ∈ P2;+v(s, z) (the
parabolic superjet, cf. [9, Section 8]) iff

v (t, x) ≤ v (s, z)+ a (t − s)+ p · (x − z)+ 1

2
(x − z)T · X · (x − z)

+o
(
|t − s| + |x − z|2

)

as (t, x) → (s, z). Since φ(t, ., x) is increasing,

φ (t, v (t, x) , x) ≤ φ (t, ∗, x)

with

∗=v (s, z)+a (t − s)+ p · (x − z)+ 1

2
(x − z)T · X · (x − z)+o

(
|t−s|+|x − z|2

)

and using a Taylor expansion on φ in all three arguments we see that the right hand
side equals

φ (s, v (s, z) , z)+ φ̇s,v(s,z),z (t − s)+ φ′
s,v(s,z),za (t − s)+ φ′

s,v(s,z),z p · (x − z)

+1

2
φ′

s,v(s,z),z (x − z)T · X · (x − z)+ Dφs,v(s,z),z · (x − z)

+1

2
(x − z)T · D2φs,v(s,z),z · (x − z)

+ (x − z)T · (D
(
φ′))

s,v(s,z),z ⊗ p · (x − z)

+ (x − z)T · p ⊗ (Dφ)′s,v(s,z),z · (x − z)

+ (x − z)T · φ′′
s,v(s,z),z p ⊗ p · (x − z)+o

(
|t − s|+|x − z|2

)
as (s, z) → (t, x)

Hence,

(
φ̇s,v(s,z),z +φ′

s,v(s,z),za, Dφs,v(s,z),z +φ′
s,v(s,z),z p, φ′′

s,v(s,z),z p ⊗ p + D
(
φ′)

s,v(s,z),z

⊗p + p ⊗ (Dφ)′s,v(s,z),z + D2φs,v(s,z),z + φ′
s,v(s,z),z X

)
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belongs to P2;+u(s, z) and since u is a subsolution this immediately shows

φ̇s,v(s,z),z + φ′
(s,v(s,z),z)a + F

(
s, z, φ(s,v(s,z),z), Dφs,v(s,z),z + φ′

s,v(s,z),z p,

φ′′
s,v(s,z),z p ⊗ p + D

(
φ′)

s,v(s,z),z ⊗ p + p ⊗ (Dφ)′s,v(s,z),z + D2φs,v(s,z),z + φ′
s,v(s,z),z X

)
≤ 0.

Dividing by φ′ (> 0) shows that v is a subsolution of ∂tv + Fφ = 0.
(⇐�) Assume v is a subsolution of ∂tv +φ F = 0,φ F defined as in (3.4 for some

F . Set u(t, x) := φ(t, v(t, x), x). By above argument we know that v is a subsolution
of φ

−1
(φF)(t, x, r, p, X). For brevity write ψ(t, ., x) = φ−1(t, ., x). Then

φ−1 (φF
)
(t, x, r, p, X)

= ψt,r,x

ψ ′
t,r,x

+ 1

ψ ′
t,r,x

φF
(
t, x, ψ(t,r,x), Dψt,r,x + ψ ′

t,r,x p,

ψ ′′
t,r,x p ⊗ p + D

(
ψ ′)

t,r,x ⊗ p + p ⊗ (Dψ)′t,r,x + D2ψt,r,x + ψ ′
t,r,x X

)

= ψt,r,x

ψ ′
t,r,x

+ 1

ψ ′
t,r,x

[
φ̇t,ψt,r,x ,x

φ′
t,ψt,r,x ,x

+ 1

φ′
t,ψt,r,x ,x

F
(
t, x, φ

(
t, ψt,r,x , x

)
,

Dφt,ψt,r,x ,x + φ′
t,ψt,r,x ,x

{
Dψt,r,x + ψ ′

t,r,x p
}
,

φ′′
t,ψt,r,x ,x p ⊗ p + D

(
φ′)

t,ψt,r,x ,x
⊗ p + p ⊗ (Dφ)′t,ψt,r,x ,x + D2φt,ψt,r,x ,x

+φ′
t,ψt,r,x ,x

{
ψ ′′

t,r,x p ⊗ p + D
(
ψ ′)

t,r,x ⊗ p + p ⊗ (Dψ)′t,r,x + D2ψt,r,x + ψ ′
t,r,x X

})]
.

Using several times equalities of the type ( f ◦ f −1)′ = f ′
f −1( f −1)′ = id cancels the

terms involving φ,ψ and their derivatives and we are left with F , i.e.

φ−1 (φF
) = F.

This finishes the proof. ��
Corollary 7 (Transformation 2) Assume ν = (ν1, . . . , νd) ⊂ C0,2

b ([0, T ] × R
n)

(i.e. continuous, bounded and twice differentiable in the second variable with bounded
derivatives). Assume φ = φ(t, x, r) is determined by the ODE

φ̇ = φ

d∑

j=1

ν j (t, x) ż j
t ≡ φ ν (t, x) · żt , φ (0, x, r) = r.

Define L = L(t, x, r, p, X) by

L = −Tr [A (t, x) · X ] + b (t, x) · p + c (t, x, r);

define also

φL (t, x, r, X) = −Tr [A (t, x) · X ] + φb (t, x) · p + φc (t, x, r) (3.5)
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where

φb (t, x) · p ≡ b (t, x) · p − 2

φ′ Tr
[
A (t, x) · Dφ′ ⊗ p

]

φc (t, x, r) ≡ − 1

φ′ Tr
[

A (t, x) · (D2φ)
]

+ 1

φ′ b (t, x) · (Dφ)+ 1

φ′ c (t, x, φ)

with φ and all its derivatives evaluated at (t, r, x). Then

∂tw + L
(

t, x, w, Dw, D2w
)

− w ν (t, x) · ż (t) = 0

if and only if v(t, x) = φ−1(t, w(t, x), x) satisfies

∂tv +φ L
(

t, x, v, Dv, D2v
)

= 0.

Proof Obviously,

φ (t, x, r) = r exp

⎛

⎝
t∫

0

d∑

j=1

ν j (s, x) ż j
s

⎞

⎠ .

This implies that φ′ = φ/r and Dφ′ do not depend on r so that indeed φb(t, x) defined
above has no r dependence. Also note thatφ′′ = 0 and φ̇/φ = d ·ż ≡ ∑d

j=1 d j (t, x)ż j
t .

It follows, for general F , that

φF (t, x, r, p, X) = r d · ż + 1

φ′ F
(
t, x, φ, Dφ + φ′ p,

Dφ′ ⊗ p + p ⊗ Dφ′ + D2φ + φ′ X
)

and specializing to F = L − wν · ż, of the assumed (semi-)linear form, we see that

φL = − 1

φ′ Tr
[

A (t, x) · (Dφ′ ⊗ p + p ⊗ Dφ′ + D2φ + φ′ X)
]

+ 1

φ′ b (t, x) · (Dφ + φ′ p
) + 1

φ′ c (t, x, φ)

where φ and all derivatives are evaluated at (t, r, x). Observe that φL is again linear
in X and p. It now suffices to collect the corresponding terms to obtain (3.5). ��

We shall need another (outer)transform to remove additive noise.
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Lemma 8 (Transformation 3) Let g ∈ C([0, T ] × R
n,Rd) and set ϕ(t, x) =∫ t

0 g(s, x)dzs = ∑d
i=1

∫ t
0 gi (s, x)dzi

s . Define

L (t, x, r, p, X) = −Tr [A (t, x) · X ] + b (t, x) · p + c (t, x, r) ;
Lϕ (t, x, r, p, X) = −Tr [A (t, x) · X ] + b (t, x) · p + cϕ (t, x, r)

with cϕ (t, x, r) = Tr
[

A (t, x) · D2ϕ (t, x)
]

− b (t, x) · Dϕ (t, x)

+c (t, x, r − ϕ (t, x))

Then v solves

∂tv + L
(

t, x, v, Dv, D2v
)

− g (t, x) · ż (t) = 0

if and only if ṽ(t, x) = v(t, x)+ ϕ(t, x) solves

∂t ṽ + Lϕ
(

t, x, ṽ, Dṽ, D2ṽ
)

= 0.

Proof Left to reader. ��

3.2 The full transformation

As before, let

L (t, x, r, p, X) := −Tr [A (t, x) X ] + b (t, x) · p + c (t, x, r)

where A : [0, T ] × R
n → S

n , b : [0, T ] × R
n → R

n , f : [0, T ] × R
n × R → R. Let

us also define the following (linear, first order) differential operators,

Mk (t, x, u, Du) = σk (t, x) · Du for k = 1, . . . , d1

Md1+k (t, x, u, Du) = u νk (t, x) for k = 1, . . . , d2 (3.6)

Md1+d2+k (t, x, u, Du) = gk (t, x) for k = 1, . . . , d3.

The combination of transformations 1,2 and 3 leads to the following

Proposition 9 Let z1 ∈ C1([0, T ],Rd1), σ = (σ1, . . . , σd1) ⊂ C2
b ([0, T ] × R

n,Rn)

and denote the ODE flow of dy = σ(t, y)dz withψ, i.e.ψ : [0, T ]×R
n→ R

n satisfies

ψ̇ (t, x) = σ (t, ψ (t, x)) ż1
t , ψ (0, x) = x ∈ R

n . (3.7)

Further, let z2 ∈ C1([0, T ],Rd2) and let ν = (ν1, . . . , νd2) be a collection of
C0,2

b ([0, T ] × R
n,R) functions and define φ = φ(t, r, x) as solution to the linear

ODE

φ̇ = φ ν (t, ψt (x))︸ ︷︷ ︸
≡dψ(t,x)

ż2
t , φ (0, r, x) = r ∈ R. (3.8)
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Further, let z3 ∈ C1([0, T ],Rd3) and define for given g = (g1, . . . , gd3) ∈ C([0, T ]×
R

n,Rd3), ϕ(t, x) as the integral8

ϕ (t, x) =
t∫

0

φgψ (s, x) dż3
s , (3.9)

where φgψ (t, x) = 1

φ′ (t, x)
g (t, ψt (x)).

At last, set zt := (z1
t , z2

t , z3
t ) ∈ R

d1 ⊕ R
d2 ⊕ R

d3 ∼= R
d . Then u is a viscosity solution

of

∂t u + L
(

t, x, u, Du, D2u
)

= �(t, x, u, Du) żt , (3.10)

u (0, x) = u0 (x), (3.11)

iff ũ(t, x) = φ−1(t, u(t, ψ(t, x)), x)+ ϕ(t, x) is a viscosity solution of

∂t ũ + L̃
(

t, x, ũ, Dũ, D2ũ
)

= 0 (3.12)

ũ (0, x) = u0 (x) (3.13)

where L̃ = [φ(Lψ)]ϕ is obtained via transformations 1, 2 and 3 (in the given order).

Remark 10 Transformation 2 and 3 could have been performed in one step, by con-
sidering

φ̇ = φ νψ (t, x) · ż2
t + gψ (t, x) · ż3

t , φ (t, r, x) |t=0 = r.

Indeed, the usual variation of constants formula gives immediately

φ (t, x) = r exp

⎛

⎝
t∫

0

νψ (s, x) dz2
s

⎞

⎠ +
t∫

0

e

(∫ t
s ν

ψ (·,x)dz2
)

gψ (s, x) · dz3
s

and one easily sees that transformations 2 and 3 just split above expression in two
terms with the benefit of keeping the algebra somewhat simpler (after all, we want
explicit understandings of the transformed equations).

Remark 11 Related to the last remark, generic noise of the form H(t, x, u)dz can
be removed with this technique. The issue is that the transformed equations quickly
falls beyond available viscosity theory (e.g. standard comparison results do no longer
apply) cf. [13,35].

8 Since φ is linear in r , there is no r dependence in its derivative φ′.
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Proof We first remove the terms driven by z1: to this end we apply transformation
1 with L(t, x, r, p, X) replaced by L − rν · ż2 − g · ż3. The transformed solution,
u1(t, x) = u(t, ψt (x)), satisfies the equation

(
∂t + Lψ

)
u1 − u1ν (t, ψt (x))︸ ︷︷ ︸

=dψ(t,x)

· ż2
t − g (t, ψt (x))︸ ︷︷ ︸

=cψ(t,x)

· ż3
t = 0

We then remove the terms driven by z2 by applying transformation 2 with Lψ−cψ · ż3.
The transformed solution u12(t, x) = φ−1(t, u1(t, x), x) satisfies the equation with
operator

(
∂t + φ

(
Lψ − gψ · ż3

))

i.e.

∂t u
12 + φ(Lψ)u12 − 1

φ′ gψ

︸ ︷︷ ︸
·ż3

= φcψ

= 0.

It now remains to apply transformation 3 to remove the remaining terms driven by z3.
The transformed solution is precisely ũ, as given in the statement of this proposition,
and satisfies the equation

(
∂t + [

φ
(
Lψ

)]
ϕ

)
ũ = 0.

The proof is now finished. ��

3.3 Rough transformation

We need to understand transformations 1,2,3 when (z1, z2, z3) becomes a rough path,
say z. There is some “tri-diagonal” structure: (3.7) can be solved as function of z1

alone;

dψt (x) = σ (t, ψt (x)) dz1
t with ψ0 (x) = x . (3.14)

(3.8) is tantamount to

φ (t, r, x) = r exp

⎡

⎣
t∫

0

ν (s, ψs (x)) dz2
s

⎤

⎦ . (3.15)

As for ϕ = ϕ(t, x), note that
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1/φ′ (t, r, x) = φ̃ (t, x) ≡ exp

⎡

⎣−
t∫

0

ν (s, ψs (x)) dz2
s

⎤

⎦

so that

ϕ (t, x) =
t∫

0

φ̃ (s, x) g (s, ψs (x)) dz3
s . (3.16)

Lemma 12 Let z be a geometric p-rough path; that is, an element in C0,p-var([0, T ],
G[p](Rd)). Let γ > p ≥ 1. Assume

σ = (
σ1, . . . , σd1

) ⊂ Lipγ
(
[0, T ] × R

n,Rn),
ν = (

ν1, . . . , νd2

) ⊂ Lipγ−1 ([0, T ] × R
n,R

)
,

g = (
g1, . . . , gd3

) ⊂ Lipγ−1 ([0, T ] × R
n,R

)
.

Thenψ, φ and ϕ depend (in local uniform sense) continuously on (z1, z2, z3) in rough
path sense. Under the stronger regularity assumption γ > p+2; this also holds for the
first and second derivatives (with respect to x) ofψ,ψ−1, φ, φ̃ and ϕ. In particular, we
can define ψ, φ and ϕ when (z1, z2, z3) is replaced by a genuine geometric p-rough
path z and write ψz, φz, ϕz to indicate this dependence.

Proof Given z one can build a “time-space” rough path (t, z) of (t, z1, z2, z3) since
the additionally needed iterated integrals against t are just Young integrals, cf. [22,
Chapter 12]. Define

W1 =

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠
, W2 =

⎛

⎜⎜⎜⎜⎝

0
σ (t, ψ)
0
0
0

⎞

⎟⎟⎟⎟⎠
, W4 =

⎛

⎜⎜⎜⎜⎝

0
0
r.φ.ν (t, ψ)
−φ̃.ν (t, ψ)
0

⎞

⎟⎟⎟⎟⎠
, W4 =

⎛

⎜⎜⎜⎜⎝

0
0
0
0
φ̃.g (t, ψ)

⎞

⎟⎟⎟⎟⎠
.

The assumptions on σ, ν and g guarantee that

W = (W1, . . . ,W4) : R
1+d1+2d2+d3 → L

(
R

1+d ,R1+d1+2d2+d3
)

is Lipγ (we work with R for the time coordinate instead of the closed subset [0, T ] ⊂ R

since by the classic Whitney–Stein extension theorem (see e.g. [42]) we can always
find Lipγ resp. Lipγ−1 extensions ofσ, ν and g). Hence, the “full RDE” (parametrized
by x ∈ R

n and r ∈ R) reads as
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d

⎛

⎜⎜⎜⎜⎝

t
ψ

φ

φ̃

ϕ

⎞

⎟⎟⎟⎟⎠
= W

⎛

⎜⎜⎜⎜⎝

t
ψ

φ

φ̃

ϕ

⎞

⎟⎟⎟⎟⎠
d (t, z) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 σ (t, ψ) 0 0
0 0 φ.ν (t, ψ) 0
0 0 −φ̃.ν (t, ψ) 0
0 0 0 φ̃g (t, ψ)

⎞

⎟⎟⎟⎟⎠
d (t, z)

and has a unique global solution9 (with obvious initial condition that the flowsψ, φ, ϕ
evaluated at t = 0 are the identity maps). Further, every additional degree of Lipschitz
regularity allows for one further degree of differentiability of the solution flow with
corresponding stability in rough path sense, see [22,36,37]. ��

4 Semirelaxed limits and rough PDEs

The goal is to understand

∂t u + L
(

t, x, u, Du, D2u
)

=
d1∑

i=1

(σi (t, x) · Du) ż1;i
t + u

d2∑

j=1

ν j (t, x) ż2; j
t

+
d3∑

k=1

gk (t, x) ż3;k
t

in the case when
(
z1, z2, z3

)
becomes a rough path. To this end we first give the

assumptions on L .

Assumption 1 Assume L : [0, T ] × R
n × R × R

n × S
n → R is of the form

L (t, x, r, p, X) = −Tr [A(t, x)X ] + b (t, x) · p + c (t, x, r) (4.1)

with

(1) A = a · aT for some a : [0, T ] × R
n → R

n×n′

(2) a : [0, T ] × R
n → R

n×n′
and b : [0, T ] × R

n → R
n are bounded, continuous in

t and Lipschitz continuous in x , uniformly in t ∈ [0, T ]
(3) c : [0, T ] × R

n × R → R is continuous, bounded whenever r remains bounded,
and with a lower Lipschitz bound, i.e. ∃C < 0 s.t.

c (t, x, r)− c (t, x, s) ≥ C (r − s) for all r ≥ s, (t, x) ∈ [0, T ] × R
n .

(4.2)

9 Although W fails to be bounded, the particular structure of the system where one can first solve for ψ
and then construct the other quantities by rough integration makes it clear that no explosion can happen.
The same situtation is discussed in detail in [22, Chapter 11].
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Assumption 1 guarantees that a comparison result holds for ∂t +L; see the appendix
and [15, Section V, Lemma 7.1] or [6] for details. Further we need the assumptions
on the coefficients in �.

Assumption 2 Assume that10

σ = (
σ1, . . . , σd1

) ⊂ Lipγ
(
[0, T ] × R

n,Rn),
ν = (

ν1, . . . , νd2

) ⊂ Lipγ−1 ([0, T ] × R
n,R

)
,

g = (
g1, . . . , gd3

) ⊂ Lipγ−1 ([0, T ] × R
n,R

)
.

Let us now replace the (smooth) driving signals of the earlier sections by a d =
(d1 + d2 + d3)-dimensional driving signal zε and impose convergence to a genuine
geometric p-rough path z, that is, in the notation of [22, Chapter 14]

z ∈ C0,p-var
(

[0, T ] ,G[p]
(
R

d1+d2+d3
))
.

We can now prove our main result.

Theorem 13 Let p ≥ 1. Assume L fulfills Assumption 1 and the coefficients of � =
(�1, . . . , �d1+d2+d3) fulfill Assumption 2 for some γ > p+2. Let u0 ∈ BUC(Rn) and
z ∈ C0,p-var([0, T ],G[p](Rd)). Then there exists a unique u = uz ∈ BUC([0, T ] ×
R

n) such that for any sequence (zε)ε ⊂ C1([0, T ],Rd) such that zε → z in p-rough
path sense, the viscosity solutions (uε) ⊂ BUC([0, T ] × R

n) of

u̇ε + L
(

t, x, uε, Duε, D2uε
)

=
d∑

k=1

�k
(
t, x, uε, Duε

)
żk;ε uε (0, ·) = u0 (.),

converge locally uniformly to uz. We write formally,11

du + L
(

t, x, u, Du, D2u
)

dt = �(t, x, u, Du) dz u (0, ·) = u0 (.) (4.3)

Moreover, we have the contraction property

∣∣uz − ûz∣∣∞;Rn×[0,T ] ≤ eCT
∣∣u0 − û0

∣∣∞;Rn

(C given by (4.2)) and continuity of the solution map

C0,p-var
(

[0, T ] ,G[p]
(
R

d
))

× BUC
(
R

n) → BUC
(
[0, T ] × R

n)

(z, u0) �→ uz.

10 The regularity assumptions on the vector fields with respect to t could be relaxed here, cf. Remark 4.
11 The intrinsic meaning of this “rough” PDE is discussed in Definition 14 below.
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Proof We shall write ψz, φz, ϕz for the objects (solutions of rough differential
equations and integrals) built upon z, as discussed in the last section (Lemma 12)
and also write ψε, φε, ϕε when the driving signal is zε. Recall from (3.6) that
� = (�1, . . . , �d) is a collection of linear, first order differential operators. We
use the same technique of “rough semi-relaxed limits” as in [6]: the key remark being
that

[
φε

(
Lψ

ε
)]

ϕε
→

[
φz

(
Lψ

z
)]

ϕz

holds locally uniformly, as function of (t, x, r, p, X). Secondly, applying the transfor-
mations, the (classical) viscosity solutions uε can be used to define a new function ũε

by setting

ũε (t, x) = (
φε

)−1 (
t, uε

(
t, ψε (t, x)

)
, x

) + ϕε (t, x);

and Proposition 9 in Sect. 3 show that ũε is a (classical) viscosity solution of

dũε +
[
φε

(
Lψ

ε
)]

ϕε

(
t, x, ũε, Dũε, D2ũε

)
= 0.

Now one uses the comparison result for parabolic viscosity solutions (as given in the
“Appendix”) to conclude that there exists a constant C > 0 such that

sup
ε∈(0,1]
t∈[0,T ]
x∈R

n

∣∣ũε (t, x)
∣∣ < (1 + |u0|∞) eCT ;

This in turn implies (thanks to the uniform control on ϕε, φε, ψε as ε → 0) by using
the rough path representations discussed in Sect. 3.3 that ũε remains locally uniform
bounded (as ε → 0). Together with the stability of (classical) viscosity solutions
(c.f. [6]) the proof is finished. ��

The reader may wonder if u is the solution in a sense beyond the “formal” equation

du + L
(

t, x, u, Du, D2u
)

dt = �(t, x, u, Du) dz u (0, ·) ≡ u0 (·).

Inspired by the definition given by Lions–Souganidis in [35] we give

Definition 14 u is a solution to the rough partial differential equation (4.3) if and
only if ũ(t, x) = (φ z)−1(t, u(t, ψ z(t, x)), x)+ ϕ z(t, x)

dũ + L̃
(

t, x, ũ, Dũ, D2ũ
)

= 0, ũ (0, ·) = u0 (·)

in viscosity sense where

L̃ =
[
φz

(
Lψ

z
)]

ϕz
.
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Corollary 15 Under the assumptions of Theorem 13 there exists a unique solution in
BUC([0, T ] × R

n) to the RPDE (4.3).

Proof Existence is clear from Theorem 13. Uniqueness is inherited from uniqueness
to the Cauchy problem for (∂t + L̃) = 0 which follows from a comparison theorem
for parabolic viscosity solution (c.f. Theorem 27 in the “Appendix”). ��

5 RPDEs and Variational Solutions of SPDEs

A classic approach to second order parabolic SPDEs (especially the Zakai equa-
tion from nonlinear filtering) is the so-called L2-theory for SPDEs, due to Pardoux,
Rozovskii, Krylov et. al., cf. [31,39,40]. Sufficient conditions for existence, unique-
ness in this setting are classical (brief recalls are given below). On the other hand,
our main theorem on RPDEs driven by rough paths, Theorem 13, can be applied
with almost every realization of Enhanced Brownian motion, B(ω), that is Brownian
motion enhanced with Lévy’s stochastic area, the standard example of a (random)
rough path. The aim of this section is to show that, whenever the (not too far from
optimal) assumptions of both theories are met, the resulting solutions coincide. We
focus on the model case of linear SPDEs; i.e.

L (t, x, r, p, X) = −Tr [A(t, x)X ] + b (t, x) · p + c (t, x) r + f (t, x). (5.1)

5.1 L2 solutions

Given is a filtered probability space (�,F , (Ft ),P), which satisfies the usual con-
ditions and carries a d-dimensional Brownian motion B. Denote with Hm(Rn)

the usual Sobolev space, i.e. the subspace of L p(Rn) consisting of functions
whose generalized derivatives up to order m are in L p(Rn). Equipped with the
norm

| f |Hm (Rn) =
⎛

⎝
∑

0≤k≤m

∣∣∂i1 , . . . , ∂ik f
∣∣p
L2(Rn)

⎞

⎠
1/2

Hm(Rn) becomes a separable Hilbert space and the variational approach makes use
of the triple

(
Hm (

R
n)) ↪→ L2 (

R
n) �

(
L2 (

R
n))� ↪→ (

Hm (
R

n))� .

We make the following assumptions on the coefficients of L and �.

Assumption 3 For i, j ∈ {1, . . . , n}, k ∈ {1, . . . , d}
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(1) ai j , bi , c, f as well asσ i
k , ν

i
k, g are elements of12 Cb([0, T ]×R

n,R) andσ i
k , ν

i
k, g

have one and ai j , σ i
k have two, bounded (uniformly in t) continuous derivatives

in space,
(2) f, g ∈ L2([0, T ] × R

n),
(3) A = a · aT , and ∃λ > 0 such that ∀t ∈ [0, T ]

zT · A (t, x) · z ≥ λ |z|2 ∀x, z ∈ R
n .

A L2-solution is then defined as follows

Definition 16 Let u0 ∈ L2(Rn) and assume L and � fulfill assumption 3. We say
that a L2(Rn)-valued, strongly continuous and (Ft )-adapted process u = (ut )t∈[0,T ]
is a L2-solution of

du = Ludt +�u ◦ d Bt

u (0, .) = u0 (.)
(5.2)

if

(1) we have P-a.s. that ut ∈ H1(Rn) for a.e. t ∈ [0, T ] and P(
∫ T

0 |ur |2H1(Rn)
dr <

∞) = 1,
(2) ∀ϕ ∈ C∞

0 (R
n) we have13

〈u., ϕ〉 − 〈u0, ϕ〉=
.∫

0

〈
ur , L̃�ϕ

〉
dr +

d∑

k=1

.∫

0

〈
ur ,�

�
kϕ

〉
d Bk

r (dλ⊗ dP)− a.s.,

(5.3)

here L̃ϕ := Lϕ + 1
2

∑d
k=1�k�kϕ.

Remark 17 The difference with the standard definition, cf. [41, Chapter IV, p130],
is that we additionally assume enough regularity on the coefficients for the exis-
tence of the adjoint of L̃ and to switch between divergence and non-divergence
form.14

Theorem 18 Under Assumption 3 there exists a unique L2-solution of (5.2).

Proof The standard variational approach as for example presented in [41, Chapter
4, Theorem 1] (see also [31,39,40]) guarantees the existence of an L2(Rn)-valued,
strongly continuous in t, (Ft )-adapted process (ut )which fulfills part (2) of Definition

12 Cb denotes the bounded continuous functions and C0 the subset of compactly supported functions.
13 L̃� and �� denote the formal adjoint operators of L̃ and �, the stochastic integral is understood in the
Itô sense and 〈., .〉 denotes the scalar product on L2(Rn).
14 In the classic variational approach this can be avoided by working throughout with L in divergence form
(resulting in no smoothness requirement on the coefficients in space instead of the existence of one derivative;
in fact, except for the free terms, only boundedness and measurability of coefficients in combination with
superparabolicity is sufficient, cf. [41, Chapter IV]).
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16 as well as that ∀ϕ ∈ C∞
0 (R

n) we have P-a.s (using the Einstein summation con-
vention)15

〈ut , ϕ〉 − 〈u0, ϕ〉 =
t∫

0

(
−

〈
ãi j∂ j ur , ∂iϕ

〉
+

〈
b

i
r∂i ur + c̃r ur + f̃r , ϕ

〉)
dr

+
t∫

0

〈
σ

j
k (r) ∂ j ur + νk (r) ur + gk (r) , ϕ

〉
d Bk

r

where

ãi j = ai j + 1

2

d∑

k=1

σ i
kσ

j
k

b̃i = bi + 1

2

d∑

k=1

(
σ

j
k

(
∂ jσ

i
k

)
+ 2νkσ

i
k

)

c̃ = c + 1

2

d∑

k=1

(
σ i

k (∂iνk)+ ν2
k

)

f̃ = f + 1

2

d∑

k=1

(
σ i

k∂i g + νk gk + g
)

and

b
i = b̃i −

(
∂ j ã

i j
)

(i.e. ã and b̃ are the coefficients that appear in L̃ due to the switch from Itô to
Stratonovich integration and b results from the switch to divergence form). Now using
integration by parts we can rewrite the above divergence form into the adjoint formu-
lation (5.3) as required by Definition 16. ��

We can now prove the main result of this section which identifies the RPDE solution
with the classic L2-solution whenever both exist.

Proposition 19 Assume that L and� fulfill Assumption 3 as well as the assumptions
of Theorem 13. If we denote with u B the RPDE solution given in Theorem 13 driven by
Enhanced Brownian motion B then (u B

t )t≥0 is a (and hence a version of the unique)
L2-solution.

Proof Step 1. Assume additionally to Assumption 3 that all coefficients appearing in
L and� are in C∞

0 ((0, T )× R
n) (in step 2 we get rid of this assumption). Define the

adapted, piecewise linear approximation Bn to B as

15 For i, j ∈ {1, . . . , n} and k ∈ {1, . . . , d1, . . . , d1 + d2, . . . , d1 + d2 + d3} and setting σk = 0 for
k > d1,νk = 0 for k ≤ d1 or k > d1 + d2 and gk = 0 for k ≤ d1 + d2.
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Bn
t = Btk−1 + n

(t − tk−1)

T

(
Btk − Btk−1

)

for t ∈ [tk, tk+1) with tk = k T
n . For every n ∈ N we denote with u(Bn) the

L2-solutions of (5.2) where B is replaced by Bn and with u the unique L2-solution of
Theorem 18. Further, denote with Bn = S2(Bn) the rough path lift of Bn and with u Bn

resp. u B the viscosity solution for the random rough path Bn resp. B given in theorem
13. For ε > 0 and n ∈ N the regularity of the coefficients allows to identify u Bn(ω)

with u(Bn(ω)) (both are the unique, bounded, smooth solutions of a parabolic PDE
with smooth coefficients which depend onω). The Wong–Zakai result in [29, Theorem
2.1] (all coefficients are smooth and additionally f (t, .), g(t, .) have compact support,
hence are H5(Rn)-valued), tells us that

u (Bn) → u (B) ∈ L2
(

[0, T ] , H1
)

a.s.

where the convergence takes place in L2([0, T ], H1) and hence also in L2([0, T ]×R
n)

(much more is true here of course). On the other hand, we know that a.s. Bn converges
to B in rough path metric (see [21]) and from 13 we conclude that

u Bn → uB a.s.

locally uniformly on [0, T ] × R
n . It is an now easy matter to identify the L2 and

loc. uniform limit,

u (B) = uB a.s

(viewing u(B) a.s. C([0, T ], L2(Rn))-valued, this means that for a.e. ω,∀t ∈
[0, T ], ut (B(ω)) = uB(ω)

t as equality in L2(Rn); in particular, uB(ω) constitutes a
continuous version in t, x ; once more much more is true here). Further we know
that u(B) ∈ L2 ([0, T ], H1 (Rn)) P-a.s. and hence fulfills Definition 16. Hence, we
conclude that (uB

t ) is the unique L2-solution of (5.2) (strictly speaking, a continuous
function in the equivalence class).

Step 2. For every ε > 0 truncate all coefficients outside a ball of radius ε−1 and
smooth by convolution with a mollifier mε (viz. mε(t, x) = ε−n+1m( t

ε
, x
ε
) where m

has compact support, is non-negative and has total mass one)16 to arrive at the new
operators Lε and �ε . It is easy to see that Lε,�ε again fulfill Assumption 3, hence
Theorem 18 applies and gives existence and uniqueness of the associated L2-solution.
Denote with uε;B the associated RPDE solution17 (with random rough path B) and
note that by step 1, uε;B coincides with the L2-solution. We now claim that

uε,B → u B a.s.

16 The mollification uses values of the coefficients for t outside [0, T ] therefore we simply define the
coefficients for t ∈ R\[0, T ] by constant continuation.
17 With abuse of notation we identify the operators Lε , L (and similarly�,�ε ) with functions on [0, T ]×
R

n × R × R
n × S

n → R as required in the viscosity setting in the obvious way.
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uniformly on compacts. To see this, note that by the construction given in Theorem
13, u B is the composition of a viscosity solution ũε with rough path flows and ũε itself
is a solution of a linear PDE

∂vεt + L
ε
(

t, x, vε, Dvε, D2vε
)

= 0;

the precise form of L
ε

is as in Theorem 13 given by the transformation via rough path
flows, that is

L
ε =

[
φB,ε

((
Lε

)ψ B,ε)]

ϕB,ε
.

(where φB,ε, ψ B,ε and ϕB,ε denote the rough flows associated with the truncated
and mollified vector fields). Further we claim that the truncated and mollified Lipγ -
vector fields (appearing in�ε) converge locally uniformly with locally uniform Lipγ

bounds: given V ∈ Lipγ denote V ε as the vector field given by truncation out-
side radius ε−1 and convolution of V with mε . Of course, V ε converges locally
uniformly to V and (cf. [42, pp. 123, 159]) locally uniform Lipγ bounds are read-
ily seen to hold true for every V ε, ε > 0. An interpolation argument then shows,
locally, convergence in Lipγ

′
for γ ′ < γ (we only need γ ′ = γ − 1). Given a

geometric p-rough path z with p < γ it then follows from [22, Corollary 10.39]
(together with the remark that the |.|Lipγ−1 -norm can be replaced by the local Lip-
schitz norm, restricted to a big enough ball in which both RDE solutions live) that
the (unique) RDE solutions (started at a fixed point) to dyε = V ε(yε)d z converge
as ε → 0 to the (unique) RDE solution of dy = V (y)d z. As in [22, Theorems
11.12 and 11.13] this convergence can be raised to the level of Ck–diffeomorphisms,
provided V is assumed to be Lipγ+k−1 for k ∈ N – the case of interest to us is
given by γ > 4 and p ∈ (2, γ − 2) which results in stability of the flow seen as
C2–diffeomorphism. This shows that L

ε → [φB
(Lψ

B
)]ϕB as ε → 0 uniformly on

compacts and the stability properties of viscosity solutions guarantee (the same argu-
ment as given in Theorem 13) that vε → v, hence u B,ε → u B (loc. uniformly on
[0, T )× R

n) a.s. From the first step it follows that u B,ε is the unique L2-solution, i.e.
∀t ∈ [0, T ]

〈
u B,ε

t , ϕ
〉
− 〈u0, ϕ〉 =

t∫

0

〈
u B,ε

t ,
(
L̃ε

)�
ϕ
〉

dr +
d∑

k=1

t∫

0

〈
u B,ε

r ,
(
�εk

)�
ϕ
〉

d Bk
r

Sending ε → 0 in above equality shows that point (2) of Definition 16 is fulfilled.
Now for every ε > 0, classic variational arguments, see [41, Chapter 4, Theo-
rem 1, p131], show that there exists a constant Cε > 0 which depends only on
T, n, d and supt,x,i, j,k(|ãε;i j |, |bε;i |, |σε;ik |, |νε;ik |) (which is finite by Assumption 3)
s.t.
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E

⎡

⎣ sup
t∈[0,T ]

∣∣∣uε,Br

∣∣∣
2

L2(Rn)
+

T∫

0

∣∣∣uε,Br

∣∣∣
2

H1(Rn)
dr

⎤

⎦

≤ Cε .

⎡

⎣|u0|2L2(Rn)
+ E

T∫

0

⎛

⎝∣∣ f εr
∣∣2

H−1(Rn)
+

d=d1+d2+d3∑

k=d1+d2+1

∣∣∣
(
gεr

)k
∣∣∣
2

L2(Rn)

⎞

⎠ dr

⎤

⎦ .

By the estimate

∣∣ f εr
∣∣

H−1(Rn)
�

∣∣ f εr
∣∣
L2(Rn)

= ∣∣( f (.) 1|.|<ε−1
)
� mε

∣∣
L2(Rn)

≤ ∣∣ f (.) 1|.|<ε−1

∣∣
L2(Rn)

≤ | f |L2(Rn)

(and similarly for gε), the right-hand side can be uniformly bounded in ε, leading to
the desired regularity properties of u B (as required by point (2) in Definition 16). ��
Remark 20 Classical L2-theory of SPDEs gives, with probability one, u(t, ., ω) ∈
L2(Rn) for all t ∈ [0, T ] and then in the Sobolev space H1(Rn) for a.e. t ∈ [0, T ].
It is not clear, in general, if a continuous (in t, x) version of u exists. Under further
regularity assumptions one finds that u(t, ., ω) takes values in higher Sobolev spaces
Hl(Rn), l = 1, 2 . . .. Since Sobolev embedding theorems are dimension-dependent
(recall Hl(Rn) ⊂ C(Rn) when l > n/2) the regularity required for a continu-
ous version will grow with the dimension n. In contrast, our approach effectively
gives sufficient conditions, without dimension dependence, under which L2-solutions
admit continuous versions. We note that such considerations also motivated Krylov’s
L p-theory [32, p. 185].

5.2 A L1
loc-solution

Theorem 13 applied with enhanced Brownian motion provides the unique RPDE
viscosity solution even if

(1) L is degenerate elliptic,
(2) u0 ∈ BUC(Rn).

Under such conditions one can not hope for the existence of a L2-solution: the degen-
eracy of L does not lead to H1-regularity in space and the initial data u0 does not fit
into a L2-theory (in fact L p for 1 ≤ p < ∞, e.g. by taking u0 ≡ 1; however one
could consider weighted Sobolev spaces). Hence, our new assumptions read,

Assumption 4 For i, j ∈ {1, . . . , n}, k ∈ {1, . . . , d},
(1) ai j , bi , c, f as well as σ i

k , νk, gk are in Cb([0, T ] × R
n) and σ i

k , ν
i
k, g have one

and ai j , σ i
k have two, continuous, bounded (uniformly in t) derivatives in space,

(2) f, g ∈ L2([0, T ] × R
n),

(3) A = a · aT .

Motivated by above remarks we give the following definition.
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Definition 21 By an L1
loc-solution we mean a L1

loc(R
n)-valued strongly continuous

(Ft )-adapted process u = (ut )t∈[0,T ] such that ∀ϕ ∈ C∞
0 (R

n) we have

〈u., ϕ〉−〈u0, ϕ〉=
.∫

0

〈
ur ,

(
L̃
)�
ϕ
〉

dr +
d∑

k=1

.∫

0

(
u, (�k)

� ϕ
)

r d Bk
r (dλ⊗ dP)− a.s.

where L̃ϕ := Lϕ + 1
2

∑d
k=1�k�kϕ.

Remark 22 Above definition comes of course with a caveat: L1
loc is not a Banach

space and the standard uniqueness results do not apply. However, note that we could
have given a more restrictive definition of a weak solution by using weighted L p or
Orlicz-spaces instead of L1

loc. Either way, we are not aware of a uniqueness theory for
degenerate SPDEs in either such a setup which seems to be a challenging question in
its own right. Below we only give the existence for L1

loc-weak solutions by showing
that the viscosity RPDE solution is a L1

loc-solution.

Proposition 23 Let B be a d-dimensional Brownian motion, u0 ∈ BUC and assume
L ,� fulfill the conditions of Theorem 13. Then (u B

t )t∈[0,T ] is a L1
loc-solution.

Proof For ε > 0 consider the elliptic operator Lε := L + ε∑d
i=1 ∂

2
i and truncate and

mollify u0 to get uε0 ∈ C∞
c s.t. uε0 → u0 uniformly on compacts in R

n . Proposition
19 shows for ε > 0 that the RPDE solution uε ∈ BUC([0, T ] × R

n) associated with
(Lε,�ε, uε0, B) is (in the equivalence class of) the unique L2-solution; especially uε

is a L1
loc-solution and therefore fulfills (dλ⊗ dP)− a.s. that

〈
uε. , ϕ

〉−〈
uε0, ϕ

〉=
.∫

0

〈
uεr ,

(
L̃ε

)�
ϕ
〉

dr +ε
.∫

0

〈
uεr ,

d∑

i=1

∂2
i ϕ

〉
dr +

d∑

k=1

.∫

0

〈
uεr ,�

�
i ϕ

〉
d Bk

r

Conclude by noting that the locally uniform converge uε → u on [0, T ]×R
n follows

from the stability properties of standard viscosity solutions (uε is given by a transfor-
mation with RDE flows as a standard viscosity solution with an extra term including
a Hessian which vanishes as ε → 0). ��

6 Applications to stochastic partial differential equations

We now discuss some further applications of Theorem 13 when applied to a stochastic
driving signal, i.e. by taking z to be a realization of a continuous semi-martingale
Z and its stochastic area, say Z(ω) = (Z,A); the most prominent example being
Brownian motion and Lévy’s area.

Remark 24 (Itô versus Stratonovich) Note that similar SPDEs in Itô-form need not
be, in general, well-posed. Consider the following (well-known) linear example

du = ux d B + λuxx dt, λ ≥ 0.
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A simple computation shows that v(x, t) := u(x − Bt , t) solves the (determinis-
tic) PDE v̇ = (λ − 1/2)vxx . From elementary facts about the heat equation we
recognize that, for λ < 1/2, this equation, with given initial data v0 = u0, is not
well-posed. In the (Itô-) SPDE literature, starting with [39], this has led to coerciv-
ity conditions, also known as super-parabolicity assumptions, in order to guarantee
well-posedness.

Remark 25 (Regularity of noise coefficients) Applied in the semimartingale context
(finite p-variation for any p > 2) the regularity assumption of Theorem 13 reads
Lip4+ε, ε > 0. While our arguments do not appear to leave much room for improve-
ment we insist that working directly with Stratonovich flows (rather than rough flows)
will not bring much gain: the regularity requirements are essentially the same. It flows,
on the other hand, require one degree less in regularity. In turn, there is a potential
loss of well-posedness and the resulting SPDE is not robust as a function of its driving
noise (similar to classical Itô stochastic differential equations).

Remark 26 (Space-time regularity of SPDE solutions) Since u(t, x) is the image of a
(classical) PDE solution under various (inner and outer) flows of diffeomorphisms, it
suffices to impose conditions on the coefficients on L which guarantee that existence
of nice solutions to ∂t + [φz

(Lψ
z
)]αz . For instance, if the driving rough path z has

1/p-Hölder regularity, it is not hard to formulate conditions that guarantee that the
rough PDE solutions is an element of C1/p,2+δ for suitable δ > 0. Indeed, it is sheer
matter of conditions-book-keeping to solve ∂t + [φz

(Lψ
z
)]αz under (known and sharp)

conditions in Hölder spaces, cf. [33, Section 9, p 140], with C1+δ/2,2+δ regularity.
Unwrapping the change of variables will not destroy spatial regularity (thanks to
sufficient smoothness of our diffeomorphisms for fixed t) but will most definitely
reduce time regularity to 1/p-Hölder.

We now turn to the applications. Throughout we prefer to explain the main point
rather than spelling out theorems under obvious conditions; the reader with familiarity
with rough path theory will realize that formulating and proving such statements
follows easily from well-known results once continuous dependence in rough path
norm is established (which is done in Theorem 13).

(Approximations) Any approximation result to a Brownian motion B (or more
generally, a continuous semimartingale) in rough path topology implies a correspond-
ing (weak or strong) limit theorem for such SPDEs: it suffices that an approximation
to B converges in rough path topology; as is well known (e.g. [22, Chapter 13] and the
references therein) examples include piecewise linear, mollifier, and Karhunen-Loeve
approximations, as well as (weak) Donsker type random walk approximations [2].
The point being made, we shall not spell out more details here.

(Support results) In conjunction with known support properties of B (e.g. [34] in
p-variation rough path topology or [16] for a conditional statement in Hölder rough
path topology) continuity of the SPDE solution as a function of B immediately implies
Stroock–Varadhan type support descriptions for such SPDEs. In the linear, Brownian
noise case, approximations and support of SPDEs have been studied in great detail
[24–28].

(Large deviation results) Another application of our continuity result is the ability
to obtain large deviation estimates when B is replaced by εB with ε → 0; indeed,

123



Rough path stability of (semi-)linear SPDEs 429

given the known large deviation behaviour of (εB, ε2 A) in rough path topology (e.g.
[34] in p-variation and [19] in Hölder rough path topology) it suffices to recall that
large deviation principles are stable under continuous maps.

(SPDEs with non-Brownian noise) Yet another benefit of our approach is the
ability to deal with SPDEs with non-Brownian and even non-semimartingale noise.
For instance, one can take z as (the rough path lift of) fractional Brownian motion with
Hurst parameter 1/4 < H < 1/2 , cf. [8] or [17], a regime which is “rougher” than
Brownian and notoriously difficult to handle, or a diffusion with uniformly elliptic
generator in divergence form with measurable coefficients; see [20]. Much of the
above (approximations, support, large deviation) results also extend, as is clear from
the respective results in the above-cited literature.

(SPDEs with higher level rough paths without extra effort) In contrast to the
approach by Gubinelli–Tindel [23], no extra effort is necessary when z is a higher
level rough path (the prominent example being fractional Brownian motion with H ∈
(1/4, 1/3]).

(Approximation of Wong-Zakai type with modified drift term) For brevity let us
write L ,� and�k instead of L(t, x, u, Du, D2u),�(t, x, u, Du) and�k(t, x, u, Du)
in this section and consider the SPDE

du + Ldt =
∑

k

�k ◦ d Zk .

Equivalently, we write

du + Ldt = �dZ

where Z denotes the Stratonovich lift of (Z1, . . . , Zd). Recall that log Z takes values
in R

d ⊕ so(d). Define Z̃ by perturbing the Lévy area as follows

log Z̃ := log Z + (0, �t)

where � ∈ C1-var([0, T ], so(d)). Then the solution to

dũ + Ldt = �dZ̃

is identified with

dũ + Ldt = �dZ̃ +
∑

i, j∈{1,...,d}

[
�i ,� j

]
d�i, j .

The practical relevance is that one can construct approximations (Zn) to Z , each
Zn only dependent on finitely many points, which converge uniformly to Z with the
“wrong” area (cf. [18]); that is,

(
Zn,

∫
Znd Zn

)
→ Z̃
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in p-variation rough path sense, p ∈ (2, 3). The solutions to the resulting approxima-
tions will then converge to the solution of the “wrong” limiting equation

dũ + Ldt =
d∑

k=1

�k ◦ d Zk+
∑

i, j∈{1,...,d}

[
�i ,� j

]
d�i, j .

The formal proof is easy; it suffices to analyze the equations (rough) differential
equations for (ψ, φ, α) in presence of area perturbation; see [18], and then identify
the corresponding operators [φ[Lψ ]]α . Actually, one can pick any multi-index γ =
(γ1, . . . , γN ) ∈ {1, . . . , d}N and find (uniform) approximations such as to make the
higher iterated Lie brackets �γ = [�γ1 , . . . , [�γN−1 ,�γN ] . . .], or even any linear
combination of them, appear by perturbing the higher order iterated integrals.

(SPDEs with delayed Brownian input) A interesting concrete example of the
previous discussion arises when the 2-dimensional driving signal is Brownian motion
with its ε-delay; say

duε + Ldt = �1 ◦ d Bε·−ε +�2 ◦ d B·

where Bεt−ε := Bt−ε. Observe that in the classical setting this can be solved (as flow)
on [0, ε], then on [ε, 2ε] and so on. As ε → 0, (Bεt , Bt ) converges in rough path sense
to (Bt , Bt ) with non-trivial area −t/2 (see [22, Chapter 14]). In other words, uε → u
in probability and locally uniformly where

du + Ldt = (�1 +�2) ◦ d B + [�1,�2] dt

(Robustness of the Zakai SPDE in nonlinear filtering) Nonlinear filtering is con-
cerned with the estimation of the conditional law of a Markov process; to be precise
consider

d Xt = μ (Xt ) dt + V (Xt ) d Bt + σ (Xt ) d B̃t

dYt = h (Xt ) dt + d B̃t
(6.1)

where B and B̃ are independent, multidimensional Brownian motions. The goal is to
compute for a given real-valued function ϕ

πt (ϕ) = E [ϕ (Xt ) |σ (Yr , r ≤ t)]

and from basic principles it follows that there exists a map φϕt : C([0, T ],RdY ) → R

such that

φ
ϕ
t
(
Y |[0,t]

) = πt (ϕ) P − a.s. (6.2)

As pointed out by Clark [7], this classic formulation is not justified in practice since
only discrete observations of Y are available and the functional φϕt is only defined up
to nullsets on pathspace (which includes the in practice observed, bounded variation
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path). He showed that in the case of uncorrelated noise [σ ≡ 0 in (6.1)] there exists
a unique φ

ϕ

t : C([0, T ],Rn) → R which is continuous in uniform norm and fulfills
(6.2), thus providing a version of the conditional expecation πt (ϕ) which is robust
under approximations in uniform norm of the observation Y . Unfortunately in the
correlated noise case this is no longer true!18 In [10] it was recently shown that in this
case robustness still holds in a rough path sense. Now recall that under well-known
conditions [1,39,41], πt can be written in the form

πt (ϕ) =
∫

RdX

ϕ (x)
ut (x)∫
ut (x̃) dx̃

dx (6.3)

where ut ∈ L1(Rn) a.s. and (ut ) is the L2-solution of the (dual) Zakai SPDE

dut = G�dt +
∑

k

Nkut dY k
t

=
(

G� + 1

2

∑

k

Nk Nk

)
ut dt +

∑

k

Nkut ◦ dY k
t (6.4)

with G denoting the generator of the diffusion X,Y a Brownian motion under a
measure change and

(Nku) (t, x) = σ i
k (x) ∂i ut (x)+ h (x) .ut (x) . (6.5)

Using Theorem (13) in combination with Proposition 19 one can now construct a
solution of (6.4) which depends continuously on the observation in rough path metric.
The results in [10] (where one works directly with Kallianpur–Striebel functional)
suggest that one can use the representation (6.3) to establish robustness. However,
to this end it is necessary to show that u z

t ∈ L1 (i.e. a rough pathwise version of
the discussion in [41, Chapter 5]) which we hope to discuss in the future in detail.
Finally, let us note that the gradient term in the noise Nku explains rather intuitively
why in the general, correlated noise case rough path metrics are required: as pointed
out above, correction terms are picked up by the brackets [Ni , N j ] but if σ = 0 then
[Ni , N j ] = 0, hence no extra terms appear. In fact, solving (6.4) for the case of σ ≡ 0
reduces via the method of characteristics to solving an SDE with commuting vector
fields which is well-known to be robust under approximations of the driving signal
(i.e. the observation Y ) in uniform norm.

18 We quote Mark Davis [11]

“It must, regretfully, be pointed out that the results for correlated noise cannot, unlike those for the
independence case, be extended to vector observations. This is because the corresponding operators
(...) do not in general commute whereas with no noise correlation they are multiplication operators
which automatically commute”.

See also the counterexample given in [10].
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Appendix: comparison for parabolic equations

Let u ∈ BUC([0, T ] × R
n) be a subsolution to ∂t + F ; that is,

∂t u + F
(

t, x, u, Du, D2u
)

≤ 0

if u is smooth and with the usual viscosity definition otherwise. Similarly, let v ∈
BUC([0, T ] × R

n) be a supersolution.

Theorem 27 Assume condition (3.14) of the User’s Guide [9], uniformly in t , together
with uniform continuity of F = F(t, x, r, p, X) whenever r, p, X remain bounded.
Assume also a (weak form of) properness: there exists C such that

F (t, x, r, p, X)− F (t, x, s, p, X) ≥ C (r − s) ∀r ≤ s, (7.1)

and for all t ∈ [0, T ] and all x, p, X. Then comparison holds. That is,

u (0, ·)− v (0, ·) �⇒ u ≤ v on [0, T ] × R
n .

Proof It is easy to see that ũ = e−Ct u is a subsolution to a problem which is proper
in the usual sense; that is (7.1) holds with C = 0 which is tantamount to require that
F is non-decreasing in r . The standard arguments (e.g. [9] or the Appendix of [6] or
also [14]) then apply with minimal adaptations. ��
Corollary 28 Under the assumptions of the theorem above let u, v be two solutions,
with initial data u0, v0 respectively. Then

|u − v|∞;Rn×[0,T ] ≤ eCT |u0 − v0|∞;Rn

with C being the constant from (7.1).

Proof Use again the transformation ũ = e−Ct u, ṽ = e−Ctv. Then ṽ+ |u0 − v0|∞;Rn

is a supersolution of a problem to which standard comparison arguments apply; hence,

ũ ≤ ṽ + |u0 − v0|∞;Rn .

Applying the same reasoning to ũ + |u0 − v0|∞;Rn and finally undoing the transfor-
mation gives the result. ��
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