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Abstract We present a simple method to decompose the Green forms corresponding
to a large class of interesting symmetric Dirichlet forms into integrals over symmetric
positive semi-definite and finite range (properly supported) forms that are smoother
than the original Green form. This result gives rise to multiscale decompositions of
the associated Gaussian free fields into sums of independent smoother Gaussian fields
with spatially localized correlations. Our method makes use of the finite propagation
speed of the wave equation and Chebyshev polynomials. It improves several existing
results and also gives simpler proofs.
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1 Introduction and main result

1.1 The Newtonian potential

Let us place the result of this paper into context through an example. Consider the
Newtonian potential, the Green’s function of the Laplace operator on R

d given by

Φ(x) = Cd

{
|x |−(d−2) (d ≥ 3)

log 1/|x | (d = 2)
for all x ∈ R

d , x �= 0. (1.1)
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818 R. Bauerschmidt

For d ≥ 3 and any measurable function ϕ : R → R such that td−3ϕ(t) is integrable,
the Newtonian potential can be written, up to a constant, as

|x |−(d−2) =
∞∫

0

t−(d−2) ϕ(|x |/t)
dt

t
for all x ∈ R

d , x �= 0. (1.2)

This is true because both sides are radially symmetric and homogeneous of degree
−(d − 2), where homogeneity of the right-hand side simply follows from the change
of variables formula. In particular, ϕ can be chosen smooth with compact support and
such that ϕ(|x |) is a positive semi-definite function on R

d . The last condition means
that ϕ(|x |) is positive as a quadratic form: for any f ∈ C∞

c (R
d), that is, f : R

d → R

smooth with compact support,

Φt ( f, f ) :=
∫

Rd×Rd

ϕ(|x − y|/t) f (x) f (y) dx dy ≥ 0. (1.3)

Similarly, if d = 2, and ϕ : R → R is any absolutely continuous function with
ϕ(0) = 1 and such that ϕ′(t) is integrable, then

log 1/|x | =
∞∫

0

(ϕ(|x |/t)− ϕ(1/t))
dt

t
for all x ∈ R

2, x �= 0. (1.4)

Indeed, for x �= 0,

log 1/|x | = ϕ(0) log 1/|x | = −
∞∫

0

ϕ′(s) log 1/|x | ds =
∞∫

0

ϕ′(s)
s∫

s/|x |

dt

t
ds, (1.5)

and thus, since ϕ′ is integrable, by Fubini’s theorem,

log 1/|x | =
∞∫

0

t |x |∫
t

ϕ′(s) ds
dt

t
=

∞∫
0

(ϕ(t |x |)− ϕ(t))
dt

t
, (1.6)

showing (1.4) after the change of variables t �→ 1/t . Now suppose again that ϕ is
chosen such that ϕ(|x |) is a positive semi-definite function on R

2. Then the function
R

2 	 x �→ ϕ(|x |/t)−ϕ(1/t) is positive as a quadratic form on the domain of smooth
and compactly supported functions with vanishing integral:
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Finite range decompositions of Gaussian fields 819

Φt ( f, f ) :=
∫

R2×R2

(ϕ(|x − y|/t)− ϕ(1/t)) f (x) f (y) dx dy

=
∫

R2×R2

ϕ(|x − y|/t) f (x) f (y) dx dy ≥ 0 (1.7)

for all f ∈ C∞
c (R

2) with
∫

f dx = 0.
The above shows that the Newtonian potentials (1.1) admit decompositions into

integrals of compactly supported and positive semi-definite functions, with the appro-
priate restriction of the domain for d = 2.

Let us only remark at this point that the positivity of a quadratic form has the
important implication that it entails the existence of a corresponding Gaussian process,
discussed briefly in Sect. 1.4. It is however also of interest in mathematical physics
for different reasons [22].

1.2 Finite range decompositions of quadratic forms

It is an open problem to characterize the class of positive quadratic forms, S : D(S)×
D(S) → R, that admit decompositions into integrals (or sums) of positive quadratic
forms of finite range: for all f, g ∈ D(S), t > 0,

⎧⎪⎪⎨
⎪⎪⎩

S( f, g) = ∫ ∞
0 St ( f, g) dt

t ,

St : D(S)× D(S) → R,

St ( f, f ) ≥ 0,
St ( f, g) = 0 if d(supp( f ), supp(g)) > θ(t),

(1.8)

where θ : (0,∞) → (0,∞) is increasing and d is a distance function. The condition
of finite range, the last condition in (1.8), generalizes the property of compact support
of the function ϕ in (1.3) to quadratic forms that are not defined by a convolution
kernel. The difficulty in decomposing quadratic forms in such a way is to achieve the
two conditions of positivity and finite range simultaneously. Note that by splitting up
the integral, one can obtain a decomposition into a sum from (1.8), and conversely, a
decomposition into a sum can be written as an integral (without regularity in t).

For applications, not only the existence, but also the regularity of the decomposition
(1.8) is important. Let (X, μ) be a metric measure space, i.e., a locally compact com-
plete separable metric space X with a Radon measure μ on X with full support (i.e.,
μ is strictly positive), Cc(X) the space of continuous functions on X with compact
support, and Cb(X) the space of bounded and continuous functions on X . Let us say
that the decomposition (1.8) is regular if Cc(X) ∩ D(S) is S-dense in D(S) and if
every St has a bounded continuous kernel st ∈ Cb(X × X):

St ( f, g) =
∫

st (x, y) f (x)g(y) dμ(x) dμ(y) for all f, g ∈ Cc(X) ∩ D(S).

(1.9)
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820 R. Bauerschmidt

For the decompositions (1.2), (1.4), the kernels are of course given in terms of the
smooth function ϕ by the explicit formula

φt (x, y) = t−(d−2)ϕ(|x − y|/t) for all x, y ∈ R
d , t > 0. (1.10)

Note that for d = 2 the second term in (1.4) could be omitted by (1.7), with the
understanding that the quadratic form is restricted to functions with vanishing integral.
It follows in particular that

|φt (x, y)| ≤ Ct−(d−2) uniformly in all x, y ∈ R
d . (1.11)

This reflects the decay of the Newtonian potential. Moreover, for all integers lx , ly ≥ 0,
the derivatives of the kernel φt decay according to

|Dlx
x D

ly
y φt (x, y)| ≤ Clt

−(d−2)t−lx −ly , (1.12)

reflecting that |DlΦ(x)| ≤ Cl |x |−(d−2−l) for all x ∈ R
d , x �= 0.

The main result of this paper is a rather simple construction of decompositions (1.8)
with estimates like (1.11) for quadratic forms that arise by duality with Dirichlet forms
in a large class. Let us call such forms as Green forms motivated by the Newtonian
potential, or Green’s function, that is a special case. This is explained in Sect. 1.3.

The main idea of our method is that (1.8) can be achieved by applying formulae
like (1.2) to the spectral representation of the Green form, and then exploiting finite
propagation speed properties of appropriate wave flows. These are generalizations of
the fact that if u(t, x) is a solution to

∂2
t u −�u = 0, u(0, x) = u0(x), ∂t u(0, x) = 0 (1.13)

with compactly supported initial data u0 then

supp(u(t, ·)) ⊆ Nt (supp(u0)) (1.14)

where Nt (U ) = {x ∈ X : d(x,U ) ≤ t} for any U ⊂ X .
The idea of exploiting properties of the wave equation in the context of probability

theory is not new. For example, Varopoulos [34] has used the finite propagation speed
of the wave equation to obtain Gaussian bounds on the heat kernel of Markov chains,
by decomposing it into compactly supported pieces. Our objective is slightly different
in that we are interested in the constraint of positive definite decompositions.

Decompositions of singular functions into sums or integrals of smooth and com-
pactly supported functions have a history in analysis. For example, Fefferman’s cel-
ebrated proof of pointwise almost everywhere convergence of the Fourier series
[17] uses a decomposition of 1/x on R like (1.2), albeit without using positive
semi-definiteness. Hainzl and Seiringer [22], motivated by applications to quantum
mechanics such as Ref. [18], decompose general radially symmetric functions, with-
out assuming a priori that they are positive definite, into weighted integrals over tent
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Finite range decompositions of Gaussian fields 821

functions. These, like ϕ(|x |) in (1.2), are positive semi-definite. They state sufficient
conditions for the weight to be non-negative, and thus obtain decompositions like (1.2)
for a class of radially symmetric potentials including e−m|x |/|x | on R

3. Special cases
and similar results have also appeared in earlier works of Pólya [27] and of Gneiting
[20,21].

These results, like (1.2), make essential use of radial symmetry. One example of
particular interest for probability theory—where radial symmetry is not given—is the
Green’s function of the discrete Laplace operator:

�Zd u(x) =
∑

e∈Zd :|e|1=1

(u(x + e)− u(x)) for any u : Z
d → R, x ∈ Z

d . (1.15)

Brydges et al. [6] showed that also in this discrete case, the corresponding Green’s
function, or more generally the resolvent, admits a decomposition like (1.8) into a
sum (instead of an integral) of positive semi-definite lattice functions with estimates
analogous to (1.12). Brydges and Talaczyck [10] gave a related construction which
applies to quite general elliptic operators on domains in R

d , but estimates on the
kernels of this decomposition are only known when the coefficients are constant.
Their construction was adapted by Adams et al. [1] to show that the Green’s functions
of constant coefficient discrete elliptic systems on Z

d admit decompositions with
estimates analogous to (1.12) and that the decomposition obtained this way is analytic
as a function of the (constant) coefficients. These results are all based on a constructions
that average Poisson kernels.

Our method, as briefly sketched earlier, is different from that of [1,6,8,10] and
yields simpler proofs of their results about constant coefficient elliptic operators—
both in discrete and continuous context. It furthermore naturally yields a decom-
position into an integral instead of a sum (with integrand smooth in t), and gives
effective estimates for decompositions of Green’s functions of variable coefficient
operators.

1.3 Duality and spectral representation of the Green form

Let us now introduce the general set-up in which our result is framed more precisely.
For motivation, we first return to the quadratic forms defined by the Newtonian poten-
tials (1.1):

Φ( f, g) :=
∫

Rd×Rd

Φ(x − y) f (x)g(y) dx dy, f, g ∈ D(Φ) (1.16)

where

{
D(Φ) = C∞

c (R
d) (d ≥ 3)

D(Φ) = { f ∈ C∞
c (R

2) : ∫
R2 f dx = 0} (d = 2).

(1.17)
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822 R. Bauerschmidt

These quadratic forms are not bounded on L2(Rd), as is most apparent when d = 2.
They are closely related to the Dirichlet forms given by

E(u, v) :=
∫
Rd

∇u · ∇v dx, u, v ∈ C∞
c (R

d). (1.18)

The correspondence between the two is duality: for all f ∈ D(Φ),

Φ( f, f ) = sup

⎧⎪⎨
⎪⎩

∫
Rd

f u dx : u ∈ C∞
c (R

d), E(u, u) ≤ 1

⎫⎪⎬
⎪⎭ . (1.19)

This set-up admits the following natural generalization: Let (X, μ) always be a metric
measure space and L2(X) be the Hilbert space of equivalence classes of real-valued
square μ-integrable functions on X with inner product (u, v) = (u, v)L2 . Let E :
D(E)×D(E) → R be a closed positive quadratic form on L2(X)with D(E) ⊆ L2(X)
a dense linear subspace. It is sometimes convenient to assume that E is regular, i.e.,
Cc(X) ∩ D(E) is E-dense in D(E). E is closed means that D(E) is a Hilbert space
with inner product E(u, v)+ m2(u, v)L2 for any m2 > 0. For the example (1.18), the
domain of the form closure D(E) of C∞

c (R
d) is the usual Sobolev space H1(Rd) and

(u, v)H1 = E(u, v)+ (u, v)L2 is the usual Sobolev inner product.
It follows [29] from closedness that E is the quadratic form associated to a unique

self-adjoint operator L : D(L) → L2(X),

E(u, v) = (u, Lv) for u ∈ D(E), v ∈ D(L), (1.20)

where D(L) ⊆ D(E) is a dense linear subspace in L2(X). Moreover, self-adjointness
of L gives rise to a spectral family and functional calculus. This means in particular that
for any Borel measurable F : [0,∞) → R, there is a self-adjoint operator, denoted
F(L) : D(F(L)) → L2(X), where

F(L) :=
∞∫

0

F(λ) dPλ, (1.21)

D(F(L)) :=
⎧⎨
⎩u ∈ L2(X) :

∞∫
0

F(λ)2 d(u, Pλu) < ∞
⎫⎬
⎭ (1.22)

with Pλ the spectral family associated to L , and (u, Pλu) is the spectral measure
associated to L and u ∈ L2(X). In these terms, E has the representation

E(u, u) = ‖L
1
2 u‖L2(X) =

∫
spec(L)

λ d(u, Pλu), u ∈ D(E) = D(L
1
2 ), (1.23)
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Finite range decompositions of Gaussian fields 823

where E(u, v) for u �= v is defined by the polarization identity. Similarly, the corre-
sponding Green form can be defined by polarization and

Φ( f, f ) = ‖L− 1
2 f ‖L2(X) =

∫
spec(L)

λ−1 d(u, Pλu), f ∈ D(Φ) = D(L− 1
2 ).

(1.24)

This representation will be our starting point for the decomposition of the Green form.
Before stating the result and its proof, let us sketch how the decomposition problem
arises in probability theory.

1.4 Gaussian fields and statistical mechanics

Even though the linear space D(E) is complete under the metric induced by the inner
product E(u, v)+m2(u, v)L2 for any m2 > 0, it is generally not complete for m2 = 0.
It may however be completed to a Hilbert space abstractly; we denote this Hilbert space
by (HE , (·, ·)E ). Similarly, we can complete the domain D(Φ) to a Hilbert space under
the quadratic form Φ; this Hilbert space is denoted by (HΦ, (·, ·)Φ). HE and HΦ are
dual in the following sense: The L2 inner product can be restricted to

〈·, ·〉 : D(Φ)× D(E) → R, 〈 f, u〉 = ( f, u) = (L− 1
2 f, L

1
2 u) (1.25)

which extends to a bounded bilinear form on HΦ × HE . L acts by definition isometric
from D(E) to D(Φ), with respect to the norms of HE and HΦ , and it extends to an
isometric isometry from HE to HΦ . Thus, HΦ is identified with the dual space of HE

naturally, via the extension of the L2 pairing 〈·, ·〉.
Remark 1.1 To give some insight into the interpretation of the spaces HE and HΦ , let
us mention how HE can be characterized in the case of the Newtonian potential [13]:

HE ∼= { f : R
d → R measurable :

there exists an E–Cauchy sequence fn ∈ D(E)with fn → f a.e.}/ ∼d

(1.26)

where ∼d is the usual identification of functions that are equal almost everywhere when
d ≥ 3. For d = 2,∼d in contrast identifies functions that may differ by a constant
almost everywhere. (It is therefore sometimes said that the massless free field does
not exist in two dimensions, but that its gradient does. The massless free field is the
free field corresponding toΦ in the terminology explained below.) To understand this
distinction, take a smooth cut-off function ϕ1 on R

2, e.g., with ϕ1 ≡ 1 on B1(0) and
ϕ1 ≡ 0 on B2(0)c, set ϕn(x) = ϕ1(x/n), and note that E(ϕn, ϕn) = nd−2 E(ϕ1, ϕ1).
Thus, (ϕn) is bounded in HE whenever d ≤ 2, and then (by the Banach–Alaoglu
theorem) there is ψ ∈ HE such that ϕn → ψ weakly along a subsequence in HE ;
however, ϕn → 1 pointwise, so that ψ ≡ 1 ∈ HE . Now E(1, 1) = 0 implies that the
constant functions must be in the same equivalence class as the zero function.
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824 R. Bauerschmidt

It is well known that any separable real Hilbert space (H, (·, ·)H ) defines a Gaussian
process indexed by H [32]. This is a probability space (Ω, P) and a unitary map
f ∈ H → 〈 f, φ〉 ∈ L2(P) such that the random variables 〈 f, φ〉 are Gaussian
with variance ( f, f )H . Note that 〈 f, φ〉 is merely a symbolic notation for the random
variable on L2(P) that corresponds to f ∈ H . It cannot in general be interpreted as
the pairing of f ∈ H with a random element φ(ω) ∈ H defined for ω ∈ Ω; see
e.g. [30].

In particular, if (H, (·, ·)H ) is the Hilbert space (HΦ, (·, ·)HΦ ), this process is called
the free field or the Gaussian free field (corresponding to Dirichlet form E or Green’s
function Φ). The importance of free fields in statistical mechanics, and probability
theory in a wider sense, is well recognized. For instance, observables of many models
of statistical mechanics are intricately related to them, by relations such as the the Kac–
Siegert transform [4]. These models include spin models such as the Ising model, as
well as Coulomb and dipole systems. In a different direction, if E is a Markovian form
that satisfies some regularity conditions, there exists an associated Markov process
[19], and it turns out that there are strong connections between the distributions of the
local times of this Markov process and the free field associated to the same Dirichlet
form; see e.g. [5,14–16,33]. In particular, in a generalized “non-commutative” notion
of Gaussian processes that are supersymmetric, this correspondence becomes espe-
cially striking; see e.g. the review [7]. The last-mentioned correspondence is the point
of departure for an analysis of the critical behavior of models of self-avoiding walks
in dimension four [9].

For typical applications to statistical mechanics, the measure space (X, μ) of
Sect. 1.3 is endowed with additional structure such as a distance function, a notion of
smoothness, etc., as is the case for the Newtonian potential. The global properties of
the free field are of special interest for statistical mechanics. An example of such a
global property is, if X is an infinite graph and Xn ↑ X is an increasing sequence of
finite graphs approximating X , in an appropriate sense, the behavior of

∫ ∏
x∈Xn

e−V (φx ) dP(φ), as n → ∞ (1.27)

for some V : R → R. The covariance Φ is typically long-range as in (1.1). This
makes the analysis of the global properties of free fields difficult.

Decompositions like (1.16) give rise to notions of scale and corresponding mul-
tiscale decompositions of the Gaussian free field and therefore provide a point of
departure for multiscale analysis. One instance of such an application is the renormal-
ization group method; see e.g. [4] and references therein.

1.5 Main result

Let (X, μ) be a metric measure space. In addition, let d : X × X → [0,∞] be
an extended pseudometric on X . (Extended means that d(x, y) may be infinite and
pseudo that d(x, y) = 0 for x �= y is allowed. Example 1.2 below gives an example
of interest where d is not the metric of X .)
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Finite range decompositions of Gaussian fields 825

Let E : D(E) × D(E) → R be a regular closed symmetric form on L2(X)
as in Sect. 1.3 and denote by L : D(L) → L2(X) its self-adjoint generator.
Theorem 1.1 assumes that (X, μ, d, E) satisfies one of the following two finite prop-
agation speed conditions that we now introduce: for γ > 0, B > 0, and an increasing
function θ : (0,∞) → (0,∞), let us say that (X, μ, d, E) satisfies (Pγ,θ ) respectively
(P∗
θ,B) if:

supp(cos(L
1
2 γ t)u) ⊆ Nθ(t)(supp(u)) for all u ∈ Cc(X), t > 0, (Pγ,θ )

respectively

E(u, u) ≤ B‖u‖L2(X) for all u ∈ L2(X),

supp(Lnu) ⊆ Nθ(n)(supp(u)) for all u ∈ Cc(X), n ∈ N, (P∗
θ,B)

where as before Nt (U ) = {x ∈ X : d(x,U ) ≤ t} for any U ⊂ X . The left-hand side
of (Pγ,θ ) is defined in terms of functional calculus for the self-adjoint operator L .

Note that if L = −�Rd is the Laplace operator of R
d , then u(t, x) =

[cos(L1/2t)u0](x) is a solution to the standard wave equation (1.13), and the con-
dition (Pγ,θ ) with γ = 1 and θ(t) = t is the finite propagation speed property (1.14).
The property holds for more general elliptic operators and elliptic systems (not nec-
essarily of second order), however; see Example 1.2 below. Similarly, if L = −�Zd

is the discrete Laplace operator (1.15), then (P∗
θ,B) holds with B = 2 and θ(n) = n,

since Lu(x) only depends on u(y) when x and y are nearest neighbors. As for the
property (Pγ,θ ), the condition (P∗

θ,B) remains true for more general discrete Dirichlet
forms; see Examples 1.2–1.3.

Let us introduce a further condition: the heat kernel bound (Hα,ω) holds when the
heat semigroup (e−t L)t>0 has continuous kernels pt for all t > 0 and there is α > 0
and a bounded function ω : X → R+ such that

pt (x, x) ≤ ω(x)t−α/2 for all x ∈ X. (Hα,ω)

Criteria for (Hα,ω) are classic; see e.g. [26] for second-order elliptic operators and also
the discussion in the examples below.

Theorem 1.1 Suppose (X, μ, d, E) satisfies (Pγ,θ )or (P∗
θ,B). Then the corresponding

Green form (1.24) admits a finite range decomposition (1.8) with S = Φ and St = Φt

such that the Φt are bounded quadratic forms with

|Φt ( f, g)| ≤ Cγ,Bt2/γ ‖ f ‖L2(X)‖g‖L2(X) for all f, g ∈ L2(X). (1.28)

Moreover, (Hα,ω) implies that the Φt have continuous kernels φt that satisfy

|φt (x, y)| ≤ Cα,γ,B
√
ω(x)ω(y)t−(α−2)/γ . (1.29)
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826 R. Bauerschmidt

1.6 Examples

Example 1.1 (Elliptic operators with constant coefficients) Let a = (ai j )i, j=1,...,d be
a strictly positive definite matrix in R

d×d and

Ea(u, v) =
d∑

i, j=1

∫
Rd

(Di u(x))ai j (D jv(x)) dx, u, v ∈ C∞
c (R

d), (1.30)

E∗
a (u, v) =

d∑
i, j=1

∑
x∈Zd

(∇i u(x))ai j (∇ jv(x)), u, v ∈ Cc(Z
d), (1.31)

where Di u(x) is the partial derivative of u(x) in direction i = 1, . . . , d,

∇i u(x) = u(x + ei )− u(x) (1.32)

with ei the unit vector in the positive i th direction, and Cc(Z
d) is the space of functions

u : Z
d → R with finite support. For m2 ≥ 0, further set

Ea,m2(u, v) = Ea(u, v)+ m2
∫
Rd

u(x)v(x) dx (1.33)

and define E∗
a,m2 analogously. Assume that the eigenvalues of a are contained in the

interval [B2−, B2+], and in the discrete case also that m2 ∈ [0,M2+], for B2−, B2+,M2+ >
0; these assumptions are only important for uniformity in the constants below.

In the continuous context, let d be the Euclidean distance on X = R
d and μ

be the Lebesgue measure. It follows that (X, μ, d, E) satisfies (Pγ,θ ) with γ = 1,
θ(t) = B+t ; see Example 1.2 for more details. In the discrete context, let d be the
infinity distance on X = Z

d , i.e., d(x, y) = maxi=1,...,d |xi − yi |, and μ be the
counting measure. Then (P∗

θ,B) holds with B = B+ + M2+ and θ(n) = n.
Theorem 1.1 thus implies that the Green’s functions associated to Ea,m2 and E∗

a,m2

admit finite range decompositions. Let us denote their kernels by φt (x, y; a,m2) and
φ∗

t (x, y; a,m2). In addition to (1.29), it is not difficult to obtain estimates on the
decay of the derivatives of φt and φ∗

t , like (1.12), in this situation of constant coef-
ficients. Since these estimates are of interest for applications, we provide the details
in Sect. 3.2 (in a slightly more general context). We show that there are constants
Cl,k > 0 depending only on B− and B+, and in the discrete case also on M+, such
that

|Dla
a Dlm2

m2 Dly
y Dlx

x φt (x, y; a,m2)| ≤ Cl,k t−(d−2)−lx −ly+2lm2
(1 + m2t2)−k (1.34)

and

|Dla
a Dlm2

m2 ∇ly
y ∇lx

x φ
∗
t (x, y, t; a,m2)| ≤ Cl,k t−(d−2)−lx −ly+2lm2

(1 + m2t2)−k

(1.35)
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Finite range decompositions of Gaussian fields 827

for all integers la, lm2 , lx , ly , and k such that

lm2 <
1

2
(d + lx + ly), (1.36)

and that the following approximation result holds: there is c > 0 such that

∇lx
x ∇ly

y φ
∗
t (x, y; a,m2) = Dlx

x D
ly
y φt (cx, cy; a,m2)

+O(t−(d−2)−lx −ly−1(1 + m2t2)−k). (1.37)

This reproduces and generalizes many results of [1,6]. More precisely, we verify that
there exists a smooth function φ̄ : R

d × [B2−, B2+] × [0,∞) → R supported in
|x | ≤ B+ such that

φt (x, y; a,m2) = t−(d−2)φ̄

(
x − y

t
; a,m2t2

)
(1.38)

which has the same structure as (1.10) when m2 = 0; this is scale invariance. Moreover,
by (1.37), the discrete Green’s function has a scaling limit and the error is of the order
of the rescaled lattice spacing O(t−1). This result improves [8].

Example 1.2 (Elliptic operators and systems with variable coefficients) Let M ∈ N

and ai j : R
d → R

M×M , i, j = 1, . . . , d, be the smooth coefficients of a uniformly
elliptic system (or in particular, if M = 1, of a uniformly elliptic operator):

B2−|ξ |2 ≤
M∑

k,l=1

d∑
i, j=1

akl
i j (x)ξ

k
i ξ

l
j ≤ B2+|ξ |2 for all ξ ∈ R

d M , x ∈ R
d , (1.39)

with B−, B+ > 0. Let us write u = (u1, . . . ,uM ) ∈ R
d M with ui ∈ R

d , i =
1, . . . ,M . Let

E(u, v) =
d∑

i, j=1

∫
Rd

(Di uk(x))akl
i j (x)(D j ul(x)) dx, u, v ∈ C∞

c (R
d ,RM ) (1.40)

and analogously in the discrete case (as in (1.30), (1.31)).
To apply Theorem 1.1, (X, μ, d) is defined by X = R

d × {1, . . . ,M}, μ is the
product of the Lebesgue measure on R

d and the counting measure on {1, . . . ,M},
and the distance is given by d((x, i), (y, j)) = d(x, y). In particular, d is only a
pseudometric on X . We may use the identification of u : R

d → R
M and u : X → R

by u(x, i) = ui (x).
It suffices to verify the condition (P1,B+t ) for smooth, compactly supported u0 :

R
d → R

M . For such a u0, set, by using spectral theory for self-adjoint operators:

u(t) := cos((L + m2)
1
2 t)u0. (1.41)
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Then, since u0 is smooth, u(t, x) : R × R
d → R

M is smooth jointly in (t, x), and

∂2
t u + Lu + m2u = 0, ∂t u(0) = 0, u(0) = u0 (1.42)

holds in the classical sense. If M = 1,m2 = 0, and a is the d × d identity matrix,
(P1,t ) is the finite propagation speed of the wave equation.

Similarly, in the general situation, the property (P1,B+t ) can be deduced from the
finite propagation speed of first-order hyperbolic systems. This is well known, but the
explicit reduction for the case of (1.42) with (1.40) is difficult to find in the literature.
Let us therefore sketch how to convert (1.42) to a hyperbolic system for readers
interested in this case. For example, one can define v : R × R

d → R
(d+2)M by

vk
0 = ∂t uk, vk

i =
d∑

j=1

M∑
l=1

akl
i j ∂x j u

l , vk
d+1 = muk, i = 1, . . . , d, k = 1, . . . ,M.

(1.43)

It follows that v satisfies

S∂t v +
d∑

j=1

A j∂x j v + Bv = 0, v(0) = (0, (aDu0)
1, . . . , (aDu0)

d ,mu0) (1.44)

where S,A j ,B : R
d → R(d+2)M×(d+2)M are defined as the block matrices

S =
⎛
⎝ 1M×M 0d M×M 0M×M

0M×d M a−1 0M×d M

0M×M 0d M×M 1M×M

⎞
⎠ , B =

⎛
⎝01×1 0d×1 m

01×d 0d×d 01×d

−m 0d×1 01×1

⎞
⎠ ⊗ 1M×M ,

(1.45)

and

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 −δ1i · · · −δdi 0
−δ1i 0 · · · 0 0
...

...
. . .

... 0
−δdi 0 · · · 0 0

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 1M×M , i = 1, . . . , d. (1.46)

It is immediate that this system is symmetric uniformly hyperbolic, by the symmetry
and uniform ellipticity of the matrix a. The property (P1,B+t ) now follows from the
finite propagation speed of linear hyperbolic systems; see e.g. [3,25].

Nash showed [26] that (Hd,ω) holds when M = 1. In [23,24], conditions are given
for (Hd,ω) to hold when M > 1. In particular, this includes the constant coefficient
case. The latter case can be treated using the Fourier transform; see Sect. 3.2.
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Example 1.3 (Random walk on graphs) Let (X, E) be a (locally finite) graph, with
vertex set X and edge set E ⊂ P2(X), where X is a countable (or finite) set and P2(X)
are the subsets of X with two elements. Let d : X × X → [0,∞] be the graph distance
on (X, E), i.e., d(x, y) is the (unweighted) length of the shortest path from x to y.

Suppose that edge weights μxy = μyx ≥ 0, x, y ∈ X are given. These induce a
natural measure, also denoted μ, on X by

μx =
∑
y∈X

μxy, μ(A) =
∑
x∈A

μx for all A ⊆ X. (1.47)

The associated Dirichlet form is

E(u, u) = 1

2

∑
xy∈E

μxy(u(x)− u(y))2 for all u ∈ D(E) = L2(μ) (1.48)

and its generator is given by

Lu(x) = μ−1
x

∑
y∈X

μxy(u(x)− u(y)) for all finitely supported u : X → R.

(1.49)

L is called the probabilistic Laplace operator associated to the simple random walk
on the weighted graph (X, μ)with transition probabilities μxy/μx . Let us remark that
a probabilistic interpretation (or a maximum principle) does not hold in general for
Examples 1.1–1.2 (when a is non-diagonal or vector-valued).

The Dirichlet form (1.48) is bounded on L2(μ) with operator norm 2 so that the
property (P∗

θ,B) holds with θ(n) = n and B = 2, and Theorem 1.1 is applicable.
For applications, it is often useful to add a killing rate to the random walk. The

probabilistic Green density with killing rate κ ∈ (0, 1) is defined by:

Gκ(x, y) =
∑
n≥0

pn(x, y)κn = (κL + (1 − κ))−1(x, y) = (Lκ)−1(x, y) (1.50)

where pn(x, y) is the kernel of the operator Pn on L2(μ). Note that (1.50) only
converges for κ = 0 when the random walk is transient, but that L−1 still makes sense
as a quadratic form on its appropriate domain when the random walk is recurrent, as
in (1.16), (1.17) for d = 2. Note further that spec(Lκ) ⊆ [0, 2] for all κ ∈ [0, 1], so
that Theorem 1.1 is applicable uniformly in κ ∈ [0, 1].

Closely related to the killed Green’s function Gκ is the resolvent kernel of L . The
resolvent of L is defined on L2(μ) by Gm2 = (L + m2)−1 for m2 > 0. It is related to
the killed Green’s density by

Gκ = κ−1G(1−κ)/κ . (1.51)

123



830 R. Bauerschmidt

One difference compared with the killed Green’s function is that L+m2 is not bounded
uniformly in m2 ≥ 0. To achieve the condition (P∗

θ,B) for fixed B > 0, it is therefore

necessary to restrict to m2 ≤ M2+ with M2+ = B − 2.

Remark 1.2 Other examples which Theorem 1.1 is applicable to include Dirichlet
spaces that satisfy a Davies-Gaffney estimate [31] such as weighted manifolds and
quadratic forms corresponding to powers of elliptic operators like �2.

1.7 Remarks

Remark 1.3 Theorem 1.1 also gives the decomposition into sums as in [10,6,1]: sup-
pose that the assumptions of Theorem 1.1 are satisfied and, for notational simplicity,
that the resulting decomposition has a kernel. Then, for any L > 1,

Φ(x, y) =
∑
j∈Z

C j (x, y) for all x, y ∈ X × X (1.52)

where the functions C j : X × X → [0,∞), j ∈ Z are given by

C j (x, y) :=
L j∫

L j−1

φt (x, y)
dt

t
for all x, y ∈ X. (1.53)

They satisfy the following properties:

C j is the kernel of a positive semi-definite form, (1.54)

C j (x, y) = 0 for all x, y ∈ Xwith d(x, y) ≥ L j , (1.55)

and, if (Hα,ω) holds,

|C j (x, y)| ≤ cα(x, y)

⎧⎪⎨
⎪⎩

L−(α−2)( j−1) (α > 2)

L(2−α) j (α < 2)

log(L) (α = 2)

(1.56)

with cα(x, y) is independent of L . Thus, (C j ) j∈Z is a finite range decomposition into
discrete scales of the Green’s functionΦ. Similarly, gradient estimates such as (1.34),
(1.35), (1.37) in Example 1.1 have obvious discrete versions.

Remark 1.4 More generally than in Theorem 1.1, we may consider a family of sym-
metric forms, Es, s ∈ Y , where Y is a domain in a Banach space, with generators Ls .
Let us assume that Es is smooth in s, in the following sense: there exists a projection-
valued measure P on a measurable space M and a function V : M × Y → (0,∞),
smooth in Y , such that
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F(Ls) =
∫

spec(Ls )

F(λ) dPs
λ =

∫
M

F(V (s, τ )) dPτ . (1.57)

An example of this condition is Es( f, f ) = E( f, f )+s( f, f ) in which case V (s, λ) =
λ + s and (Ls)−1 is the resolvent of L; similarly, the killed Green’s function of
Example 1.3 can be expressed in this way. Then the family of kernels φs is continuous
in s, and if (Hα,ω) holds for s = 0, and V (λ, s) ≥ z2(s)V (λ, 0)+ m2(s), then

|φs
t (x, y)| ≤ Cα,γ,l

√
ω(x)ω(y)(z(s)t)−(α−2)/γ (1 + tm(s))−l . (1.58)

This can be verified by a straightforward adaption of the proof of Theorem 1.1.

2 Proof of Theorem 1.1

2.1 Spectral decomposition

The starting point for the proof is the spectral representation of the Green form (1.24):

Φ( f, f ) =
∫

spec(L)

λ−1 d( f, Pλ f ) for all f ∈ D(Φ), (2.1)

where f ∈ D(Φ) implies that the integral can be restricted to spec(L) \ 0. The main
result follows by decomposition of the function λ−1 : spec(L) \ 0 → R+. Different
decompositions are needed under the two conditions (Pγ,θ ), (P∗

θ,B). The main idea of
the proof is that decompositions with good properties exist. The result that we prove
after using it to deduce Theorem 1.1 is summarized in the following lemma.

Lemma 2.1 (Spectral decomposition) Suppose that L satisfies (Pγ,θ ) or (P∗
θ,B); in

the second case, we assume that γ = 1. Then there exists a smooth family of functions
Wt ∈ C∞(R), t > 0, such that for all λ ∈ spec(L) \ 0, t > 0, and all integers l,

λ−1 =
∞∫

0

t
2
γ Wt (λ)

dt

t
, (2.2)

Wt (λ) ≥ 0, (2.3)

(1 + t
2
γ λ)l Wt (λ) ≤ Cl , (2.4)

and that for all u ∈ Cc(X),

supp(Wt (L)u) ⊆ Nθ(t)(supp(u)). (2.5)
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Remark 2.1 More precisely, we will give explicit formulae for Wt that imply

(1 + t2λ)lλm
∣∣∣∣ ∂m

∂λm
Wt (λ)

∣∣∣∣ ≤ Cl,m (2.6)

for all m and l, improving (2.4). This improvement is used in Sect. 3.2.

Proof (Theorem 1.1) It follows from (2.2) that, for any f ∈ D(Φ),

Φ( f, f ) =
∫

spec(L)

⎛
⎝ ∞∫

0

t
2
γ Wt (λ)

dt

t

⎞
⎠ d( f, Pλ f )

=
∞∫

0

t
2
γ

⎛
⎜⎝ ∫

spec(L)

Wt (λ) d( f, Pλ f )

⎞
⎟⎠ dt

t

=
∞∫

0

t
2
γ ( f,Wt (L) f )

dt

t
. (2.7)

The exchange of the order of the two integrals in the equation above is justified by non-
negativity of the integrand, by (2.3). The latter also implies that ( f,Wt (L) f ) ≥ 0 for all
f ∈ L2(X). The polarization identity allows to recover Φ( f, g) for all f, g ∈ D(Φ).
Finally, (2.5) completes the verification of (1.8) for Φt defined by

Φt ( f, g) = t
2
γ ( f,Wt (L)g). (2.8)

It remains to prove that (Hα,ω) implies (1.29).
The semigroup property and the continuity of pt imply that pt ∈ Cb(X, L2(X))

with

‖pt (x, ·)‖L2(X) =
∫
X

pt (x, y)pt (y, x) dμ(y) = p2t (x, x), (2.9)

‖pt (x, ·)− pt (y, ·)‖L2(X) = p2t (x, x)+ p2t (y, y)− 2p2t (x, y) → 0 as x → y.

(2.10)

This implies that e−t L : L2(X) → Cb(X) is a continuous linear operator (since
e−t L f (x) = (pt (x, ·), f )). Duality then implies continuity of e−t L : Cb(X)∗ →
L2(X) (with respect to the strong topology on Cb(X)∗). Let M(X) ⊆ Cb(X)∗ be
the space of signed finite Radon measures on X equipped with the weak-* topology.
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Let mi ∈ M(X) with mi → 0. Then

‖e−t L mi‖L2(X) =
⎛
⎝∫

X

(∫
X

pt (x, y) dmi (y)

)2

dμ(x)

⎞
⎠

1
2

=
⎛
⎝∫

X

∫
X

(pt (y, ·), pt (z, ·)) dmi (y) dmi (z)

⎞
⎠

1
2

→ 0 (2.11)

which means that e−t L : M(X) → L2(X) is continuous (because X is separable and
therefore the weak-* topology of M(X) is metrizable). This implies that (1+t2/γ L)−l :
M(X) → L2(X) is likewise continuous for all l > α/4. To see this, we use the relation

(1 + t2/γ λ)−l = Γ (l)−1

∞∫
0

e−ssl−1e−st2/γ λ ds (2.12)

which holds by the change of variables formula and the definition of Euler’s gamma
function. The spectral theorem thus implies that, for any u ∈ L2(X),

‖(1 + t2/γ L)−lu‖L2(X) ≤ Γ (l)−1

∞∫
0

e−ssl−1‖e−st2/γ Lu‖L2(X) ds. (2.13)

Since μ has full support, L2(X) ∩ M(X) is dense in M(X) (where L p(X) is always
with respect to μ), and the claimed continuity of (1 + t2/γ L)−l : M(X) → L2(X)
follows from (2.11). In particular, the pointwise bound for pt implies that for l > α/4,

‖(1 + t2/γ L)−lδx‖L2(X) ≤ Γ (l)−1

∞∫
0

e−ssl−1‖e−st2/γ Lδx‖L2(X) ds

≤ Γ (l)−1
√
ω(x)t−α/2γ

∞∫
0

e−ssl−1−α/4 ds

= C
√
ω(x)t−α/2γ (2.14)

Let κt (λ) = Wt (λ)
1/2. Then (2.4) and the spectral theorem also imply that

‖κt (L)(1 + t2/γ L)l‖L2(X)→L2(X) = sup
λ>0

κt (λ)(1 + t2/γ λ)l ≤ Cl , (2.15)

uniformly in t > 0. It follows from (2.14) that κt (L) : M(X) → L2(X) with

‖κt (L)δx‖L2 ≤ C
√
ω(x)t−α/2γ . (2.16)
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Finally, by the Cauchy-Schwarz inequality,

|φt (x, y)| = t2/γ (κt (L)δy, κt (L)δx ) ≤ t2/γ ‖κt (L)δy‖L2(X)‖κt (L)δx‖L2(X)

(2.17)

which, with (2.16), proves (1.29). The continuity of φt is implied by the continuity of
κt (L) : M(X) → L2(X) and of δx in x ∈ X (in the weak-* topology). ��
Remark 2.2 The decay for φs claimed in (1.58) can be obtained by a straightforward
generalization of the above argument, replacing (2.12) by

(1 + t2/γ z2λ+ t2/γm2)−l = Γ (l)−1

∞∫
0

e−ssl−1e−st2/γm2
e−sz2t2/γ λ ds. (2.18)

Remark 2.3 Furthermore, by (2.4), the operators Wt (L) are smoothing for t > 0, in
the general sense that, for any t > 0,

Wt (L) : L2(X) → C∞(L), where C∞(L) :=
∞⋂

n=0

D(Ln) ⊂ L2(X) (2.19)

is the set of C∞-vectors for L; see [28]. Standard elliptic regularity estimates imply,
e.g., that C∞(L) = C∞(X) when E is the quadratic form associated to an elliptic
operator with smooth coefficients.

2.2 Proof of Lemma 2.1

To complete the proof of Theorem 1.1, it remains to demonstrate Lemma 2.1. We first
prove it under condition (Pγ,θ ) in Lemma 2.2 below; this proof is quite straightforward
using the assumption and (1.2). Subsequently, we prove Lemma 2.1 in the situation
of condition (P∗

θ,B) in Lemma 2.3; here additional ideas are required.
To fix conventions, let us define the Fourier transform of an integrable function

ϕ : R → R by

ϕ̂(k) = (2π)−1
∫
R

ϕ(x)e−ikx dx for all k ∈ R. (2.20)

Lemma 2.2 (Lemma 2.1 under (Pγ,θ )) For anyϕ : R → [0,∞) such that ϕ̂ is smooth
and symmetric with supp(ϕ̂) ⊆ [−1, 1], and for any γ > 0, there is C > 0 such that

Wt (λ) := Cϕ(λ
1
2 γ t) (2.21)

satisfies (2.2), (2.3), (2.4), and also (2.6), for all λ > 0, t > 0; and if (Pγ,θ ) holds,
then (Wt ) also satisfies (2.5).
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Remark 2.4 It is not difficult to see that such ϕ exist. For example, if κ̂ is a smooth
real-valued function with support in [− 1

2 ,
1
2 ], then ϕ = |κ|2 satisfies the assumptions.

For simplicity, let us assume sometimes in the following that ϕ is chosen such that
C = 1 when Lemma 2.1 is applied.

Proof Note that for any ϕ : [0,∞) → R with tϕ(t) integrable, there is C > 0 such
that

λ−1 = C

∞∫
0

t
2
γ ϕ(λ

1
2 γ t)

dt

t
for all λ > 0. (2.22)

This simply follows (as in (1.2)) because the right-hand side is homogeneous in
λ of degree −1, which is immediate by rescaling of the integration variable. This
shows (2.2); (2.3) is obvious by assumption; and (2.4) follows since ϕ̂ is smooth. The
improved estimate (2.6) follows from the chain rule (or Faà di Bruno’s formula) and

λm− 1
2 γ

∣∣∣∣ ∂m

∂λm
λ

1
2 γ

∣∣∣∣ ≤ Cγ,m (2.23)

for non-negative integers m, using that supp(ϕ̂) ⊆ [−1, 1] implies that ϕ is smooth.
Moreover, since supp(ϕ̂) ⊂ [−1, 1], and since ϕ̂ is smooth,

Wt (L)u = C

1∫
−1

ϕ̂(s) cos(L
1
2 γ ts)u ds for all u ∈ L2(X), (2.24)

where the integral is the Riemann integral, i.e., the strong limit of its Riemann sums
(with values in L2). Therefore (2.5) follows from (Pγ,θ ). ��

The previous proof makes essential use of the finite propagation speed of the wave
equation (Pγ,θ ) to prove (2.5). This property fails for discrete Dirichlet forms such as
(1.31) where we instead know the property (P∗

θ,B) that polynomials of degree n of the
generator have finite range θ(n).

This leads to the following problem. Find polynomials W ∗
t , t > 0, of degree at

most t satisfying the properties (2.3), (2.4), (2.6) such that the decomposition formula
(2.2) for 1/λ holds. In the proof of Lemma 2.2, the verification of (2.4) (and (2.6))
and of the decomposition formula (2.2) are directly linked to the “ballistic” scaling
of the wave equation: Wt (λ) = W1(λt2). To construct polynomials satisfying such
“ballistic” estimates, we are led by the following remarkable discovery of Carne [11].
The Chebyshev polynomials Tk, k ∈ Z, defined by

Tk(θ) = cos(k arccos(θ)) for all θ ∈ [−1, 1], k ∈ Z, (2.25)

are solutions to the discrete (in space and time) wave equation in the following sense.
Let ∇+ f (n) = f (n + 1) − f (n) and ∇− f (n) = f (n − 1) − f (n) be the discrete
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(forward and backward) time differences. Then, as polynomials in X ,

∇−∇+Tn(X) = ∇+∇−Tn(X) = 2(X − 1)Tn(X). (2.26)

In particular, when 2(X − 1) = −L or equivalently X = 1 − 1
2 L , then v(n, x) =

[Tn(1− 1
2 L)u](x) solves the following “Cauchy problem” for the discrete wave equa-

tion:

− ∇+∇−v + Lv = 0, v(0) = u, (∇+v − ∇−v)(0) = 0. (2.27)

The analogy between the discrete- and the continuous-time wave equations is like
that between the discrete- and the continuous-time random walk. It turns out that the
structure of Chebyshev polynomials allows to prove the following lemma.

Lemma 2.3 (Lemma 2.1 under (P∗
θ,B)) Let ϕ : R → [0,∞) satisfy the assumptions

of Lemma 2.2. Then W ∗
t : [0, 4] → [0,∞), defined by

W ∗
t (λ) :=

∑
n∈Z

ϕ(arccos(1 − 1

2
λ)t − 2πnt) for all λ ∈ [0, 4], t > 0, (2.28)

is the restriction of a polynomial in λ of degree at most t to [0, 4], with coefficients
smooth in t, and, for any ε > 0, (2.2), (2.3), (2.4), (2.5), and (2.6) hold for all
λ ∈ (0, 4 − ε], t > 0.

Proof The proof verifies that W ∗
t as defined in (2.28) has the asserted properties. Let

ϕ∗
t (x) :=

∑
n∈Z

ϕ(xt − 2πnt) =
∑
k∈Z

t−1ϕ̂(k/t) cos(kx) (2.29)

where the second equality follows by symmetry of ϕ̂, the change of variables formula,
and a version of the Poisson summation formula which is easily verified, for sufficiently
nice ϕ. Then the claim (2.2) can be expressed as

λ−1 =
∞∫

0

t2ϕ∗
t (arccos(1 − 1

2
λ))

dt

t
for all λ ∈ (0, 4]. (2.30)

Let x = arccos(1 − 1
2λ) or equivalently λ = 2(1 − cos x) = 4 sin2( 1

2 x). In terms of
this change of variables, (2.30) and thus the claim (2.28) are then equivalent to

1

4
sin−2

(
1

2
x

)
=

∞∫
0

t2ϕ∗
t (x)

dt

t
for all x ∈ (0, π ]. (2.31)
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The left-hand side defines a meromorphic function on C with poles at 2πZ. Its devel-
opment into partial fractions is (see e.g. [2, page 204])

1

4
sin−2

(
1

2
x

)
=

∑
n∈Z

(x − 2πn)−2 for all x ∈ C \ 2πZ. (2.32)

It follows, by (2.22) with γ = 1 and λ = (x − 2πn)2, assuming C = 1, that

1

4
sin−2

(
1

2
x

)
=

∑
n∈Z

∞∫
0

t2ϕ((x − 2πn)t)
dt

t
for all x ∈ (0, π ]. (2.33)

The order of the sum and the integral can be exchanged, by non-negativity of the
integrand, thus showing (2.31) and therefore (2.2).

To verify that W ∗
t is the restriction of a polynomial, we note that by (2.28), (2.29),

and supp(ϕ̂) ⊆ [−1, 1],

W ∗
t (λ) = ϕ∗

t

(
arccos

(
1 − 1

2
λ

))
=

∑
k∈Z

t−1ϕ̂(k/t) cos

(
k arccos

(
1 − 1

2
λ

))

=
∑

k∈Z∩[−t,t]
t−1ϕ̂(k/t)Tk

(
1 − 1

2
λ

)
(2.34)

where Tk, k ∈ Z, are the Chebyshev polynomials defined by (2.25). This shows that
W ∗

t (λ) is indeed the restriction of a polynomial in λ of degree at most t to the interval
λ ∈ [0, 4]. In particular, (2.5) is a trivial consequence of (P∗

θ,B) which states that
polynomials in L of degree n have range at most θ(n).

Finally, we verify the estimate (2.6) and thus in particular (2.4). To this end, we
note that, in analogy to (2.23), for λ ∈ [0, 4 − ε] and non-negative integers m,

λm− 1
2

∣∣∣∣ ∂m

∂λm
arccos

(
1 − 1

2
λ

)∣∣∣∣ ≤ Cε,m . (2.35)

For example, for m = 1,

∂

∂λ
arccos

(
1 − 1

2
λ

)
= 1

2

(
λ− 1

4
λ2

)− 1
2 ≤ ε−

1
2 λ− 1

2 for λ ∈ [0, 4 − ε]. (2.36)

Therefore (2.6) follows, by the chain rule (or Faà di Bruno’s formula), from

(1 + t2(1 − cos(x))l t−m
∣∣∣∣ ∂m

∂xm
ϕ∗

t (x)

∣∣∣∣ ≤ Cl,m (2.37)

which we will now show. The argument is essentially a discrete version of the classic
fact that the Fourier transform acts continuously on the Schwartz space of smooth and
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rapidly decaying functions on R. To show (2.37), first note that

(1 − cos(x))eikx = eikx − 1

2
ei(k+1)x − 1

2
ei(k−1)x =: �keikx (2.38)

and thus by induction, for any l ∈ N,

(1 − cos(x))l eikx = (1 − cos(x))l−1�keikx = �k(1 − cos(x))l−1eikx = �l
keikx .

(2.39)

It follows by (2.29) and summation by parts that

(1 + t2(1 − cos(x))l t−m ∂m

∂xm
ϕ∗

t (x) =
∑
k∈Z

t−1ϕ̂(k/t)(ik/t)m[(1 + t2�k)
l eikx ]

=
∑
k∈Z

[(1 + t2�k)
l t−1ϕ̂(k/t)(ik/t)m]eikx .

(2.40)

Let h(s) = 1

2
(|s| − 1)1|s|≤1 for s ∈ R. Then, for any smooth f : R → R,

�n
k f (k) = (h∗n ∗ D2n f )(k), (2.41)

where ∗ denotes convolution of two functions on R, h∗n = h ∗ h ∗ · · · ∗ h, and D f is
the derivative of f . Indeed,

�k f (k) = −1

2

1∫
0

[D f (k + t)− D f (k − t)] dt

= −1

2

1∫
0

t∫
−t

D2 f (k + s) ds dt =
∫
R

D2 f (s)h(s − k) ds = (h ∗ D2 f )(k)

(2.42)

and (2.41) then follows by induction:

�n+1
k f = �(h∗n ∗ D2n f ) = h ∗ D2(h∗n ∗ D2n f ) = h ∗ h∗n ∗ D2 D2n f. (2.43)

It then follows using the facts that
∑

k∈Z
|h∗n(k − s)| ≤ Cn , uniformly in s ∈ R, and

that ϕ̂ is smooth and of rapid decay,
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t−1
∑
k∈Z

∣∣∣(1 + t2Δ2
k)

l [ϕ̂(k/t)(ik/t)m]
∣∣∣

=
l∑

n=0

Cl,nt−1
∑
k∈Z

∫
R

|h∗n(k − s)| |[D2n((·)m ϕ̂)](s/t)| ds

≤
l∑

n=0

Cl,nt−1
∫
R

|[D2n((·)m ϕ̂)](s/t)| ds

=
l∑

n=0

Cl,n

∫
R

|[D2n((·)m ϕ̂)](s)| ds ≤ Cm,l (2.44)

and thus (2.37), and therefore (2.6), follow from this inequality and (2.40). ��
Proof (Lemma 2.1) Lemma 2.1 under (Pγ , θ) follows immediately from Lemma 2.2;
under (P∗

θ,B), it follows from Lemma 2.3 by setting Wt (λ) = W ∗
t (

3
B λ). ��

3 Extensions

3.1 Discrete approximation

In view of the discussion about Chebyshev polynomials before Lemma 2.3, it is not
surprising that the functions W ∗

t of Lemma 2.3 approximate the Wt of Lemma 2.2. In
Proposition 3.1 below, we show that this is indeed the case with natural error O(t−1)

as t → ∞. This result is used in Sect. 3.2 to prove (1.37).

Proposition 3.1 (Discrete approximation) Let ϕ be as in Lemma 2.2 and 2.3, with
associated functions Wt and W ∗

t for γ = 1. Then, for any integer l,

|W ∗
t (λ)− Wt (λ)| ≤ Cl(1 ∨ t)−1(1 + t2λ)−l for all λ ∈ [0, 4]. (3.1)

In particular, W ∗
t (λ/t2) → Cϕ(λ

1
2 ) as t → ∞.

Proof Note that it suffices to restrict to t ≥ 1, since for t ≤ 1, the claim follows from
(2.4). The left-hand side of (3.1) is then proportional to the absolute value of

ϕ

(
arccos

(
1 − 1

2
λ

)
t

)
− ϕ(λ

1
2 t)+

∑
n∈Z\{0}

ϕ

(
arccos

(
1 − 1

2
λ

)
t + 2πnt

)
(3.2)

We estimate the difference of the first two terms in (3.2) and the sum separately, and
show that each of them satisfies (3.1). The first two terms can be written as

ϕ

(
arccos

(
1 − 1

2
λ

)
t

)
− ϕ(λ

1
2 t) =

(
arccos

(
1 − 1

2
λ

)
− λ

1
2

)
tζt (λ) (3.3)
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with

ζt (λ) =
1∫

0

ϕ′(s arccos

(
1 − 1

2
λ

)
t + (1 − s)λ

1
2 t) ds. (3.4)

The bounds

√
2λ = arccos(1 − λ)+ O(λ) as λ → 0+, (3.5)√
2λ ≤ arccos(1 − λ) ≤ π

2

√
2λ for all λ ∈ [0, 2], (3.6)

and the rapid decay of ϕ′ therefore imply that

|ζt (λ)| ≤ Cl(1 + λt2)−l (3.7)

and

ϕ

(
arccos

(
1 − 1

2
λ

)
t

)
− ϕ(λ

1
2 t) ≤ Clt

−1(1 + t2λ)−l . (3.8)

To estimate the sum in (3.2), we can use the rapid decay of ϕ with the inequality
x + y ≥ 2(xy)1/2 to obtain that

∑
n∈Z\{0}

ϕ(xt + 2πnt) ≤ Cl

∑
n∈Z\{0}

(1 + xt + 2πnt)−l

≤ Cl(1 + xt)−l/2t−l/2
∑
n>0

n−l/2 ≤ Cl(1 + xt)−l/2t−l/2

(3.9)

for any l > 2, with the constant changing from line to line. In particular, upon substi-
tuting x = arccos

(
1 − 1

2λ
)
, this bound and (3.5) imply

∑
n∈Z\{0}

ϕ

(
arccos

(
1 − 1

2
λ

)
t + 2πnt

)
≤ Clt

−2l(1 + t2λ)−l . (3.10)

The claim then follows by adding (3.8) and (3.10). ��

3.2 Estimates for systems with constant coefficients

In this section, we verify the assertions of Example 1.1. We work in the slightly more
general context of second-order elliptic systems (instead of operators) with constant
coefficients. These are defined as in Example 1.2, and the claims of Example 1.1 hold
mutadis mutandis. The analysis is straightforward, with aid of the Fourier transform.
It reproduces results of [1].
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3.2.1 Spectral measures

The spectral measures corresponding to the vector-valued case of (1.30) are given in
terms of the Fourier transform as follows. For F : [0,∞) → R,

(v, F(L)u) =
M∑

k,l=1

∫
Rd

⎡
⎣F

⎛
⎝ d∑

i, j=1

ai jξiξ j

⎞
⎠

⎤
⎦

kl

v̂k(ξ)ûl(ξ) dξ (3.11)

where û = (û1, . . . , ûM ) is the component-wise Fourier transform of u =
(u1, . . . , uM ),

a(ξ) :=
d∑

i, j=1

ai jξiξ j =
⎛
⎝ d∑

i, j=1

akl
i j ξiξ j

⎞
⎠

k,l=1,...,M

(3.12)

are symmetric positive definite M × M matrices, for all ξ ∈ R
d , and the matrices

F(a(ξ)) are defined in terms of the spectral decomposition of a(ξ). Similarly, for the
(vector-valued case of the) discrete Dirichlet form (1.31),

(v, F(L)u) =
M∑

k,l=1

∫
[−π,π ]d

⎡
⎣F

⎛
⎝ d∑

i, j=1

ai j (1 − eiξi )(1 − e−iξ j )

⎞
⎠

⎤
⎦

kl

v̂k(ξ)ûl(ξ) dξ

(3.13)

where here û is the component-wise discrete Fourier transform. Let us also write

a∗(ξ) :=
d∑

i, j=1

ai j (1 − eiξi )(1 − e−iξ j )

=
⎛
⎝ d∑

i, j=1

akl
i j (1 − eiξi )(1 − e−iξ j )

⎞
⎠

k,l=1,...,M

. (3.14)

We will often use, without mentioning this further, that the spectra of a(ξ) and a∗(ξ)
are bounded from above and from below by multiples of |ξ |2.

3.2.2 Estimates

Let us introduce the following notation for derivatives: for a function u : R
d → R, we

regard the lth derivative, Dlu(x), as an l-linear form, and |Dlu(x)| is a norm of the
form Dlu(x). In terms of the Fourier transform, we denote by D̂l(ξ) the correspond-
ing “multiplier” operator from functions to l-linear forms, and by |D̂l(ξ)| its norm.
Similarly, for a discrete function u : Z

d → R, the lth order discrete difference in
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842 R. Bauerschmidt

positive coordinate direction is denoted by ∇lu(x) and has Fourier multiplier ∇̂l(ξ).
In particular, when l = 1,

D̂(ξ) ∼= (iξ1, . . . , iξd), ∇̂(ξ) ∼= (eiξ1 − 1, . . . , eiξd − 1). (3.15)

Furthermore, k and p will denote integers that may be chosen arbitrarily, and C
constants that can change from instance to instance and may depend on k and p, as
well as l = (lx , ly, la, lm2), B+, B−, and M+, but not on x , ξ , and m.

Proof ((1.38),(1.34),(1.35)) It follows by the change of variables ξ �→ tξ , from the
fact that a(ξ) is homogeneous of degree 2, and from Wt (λ) = W1(λt2) that

φt (x, y; a,m2) = t2
∫
Rd

Wt (a(ξ)+ m2)ei(x−y)·ξ dξ

= t−(d−2)φ̄(
x − y

t
; a,m2t2) (3.16)

with

φ̄(x; a,m2) :=
∫
Rd

W1(a(ξ)+ m2)ei(x−y)·ξ dξ (3.17)

which is supported in |x | ≤ B+. This verifies (1.38). Furthermore, (1.34) is a straight-
forward consequence of (3.16) by differentiation and (2.6). Let us omit the details
and only verify them explicitly in the discrete case (1.35). The (derivatives of the)
decomposition kernel φ∗

t can here be expressed as

Dla
a Dlm2

m2 ∇lx
x ∇ly

y φ
∗
t (x, y; a,m2) = t−(d−2)−lx −ly+2lm2

φ̄∗
t;l(x − y; a,m2)

(3.18)

with

φ̄∗
t;l(x; a,m2) = td+lx +ly−2lm2

∫
[−π,π ]d

Dla
a Dlm2

m2 W ∗
t (a

∗(ξ)+ m2)∇̂ly ∇̂lx ei x ·ξ dξ.

(3.19)

Thus (2.6), |∇̂(ξ)| ≤ C |ξ |, and η · a∗(ξ)η ≥ C |ξ |2|η|2 for η ∈ R
M imply

|φ̄∗
t;l(x; a,m2)| ≤ C

∫
[−π,π ]d

(1 + C |ξ |2t2 + m2t2)−k−p(t |ξ |)lx +ly−2lm2 tddξ

≤ C(1 + m2t2)−k
∫
Rd

(1 + C |ξ |2)−p|ξ |lx +ly−2lm2 dξ (3.20)
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and therefore that the integral converges if 1
2 (d + lx + ly) > lm2 and p is chosen

sufficiently large. It follows that

|φ̄∗
t;l(x; a,m2)| ≤ C(1 + m2t2)−k (3.21)

verifying the claim. ��
Proof (1.37) Let us assume that B = 3. Then

∇lx
x ∇y

lyφ∗
t (x, y)− Dlx

x Dly
y φt (x, y) = t2

∫
[−π,π ]d

W ∗
t (a

∗(ξ))∇̂lx ∇̂ly eiξ ·(x−y) dξ

−t2
∫
Rd

Wt (a(ξ))D̂
lx D̂ly eiξ ·(x−y) dξ.

(3.22)

To simplify notation, we will write D̂l = D̂lx D̂ly = D̂lx ⊗ D̂ly if l = (lx , ly), and
similarly for ∇. Then the difference (3.22) may be estimated as follows. Proposition 3.1
implies∫

[−π,π ]d

|W ∗
t (a

∗(ξ)+ m2)− Wt (a
∗(ξ)+ m2)||D̂l(ξ)| dξ

≤ Ct−1
∫
Rd

(1 + C |ξ |2t2 + m2t2)−p−k |ξ |l dξ ≤ Ct−d−l−1(1 + m2t2)−k (3.23)

where we have assumed in the second inequality above that p was chosen sufficiently
large so that the integral is convergent. Similarly, we may proceed for the other differ-
ences, always choosing p large enough in the estimates. Using (2.6) with m = 1 and
|a∗(ξ)− a(ξ)| = O(|ξ |3), which follows from Taylor’s theorem, we obtain∫

[−π,π ]d

|Wt (a
∗(ξ)+ m2)− Wt (a(ξ)+ m2)||D̂l(ξ)| dξ

≤ C
∫
Rd

|ξ |(1 + C |ξ |2t2 + m2t2)−p−k |ξ |l dξ ≤ Ct−d−l−1(1 + m2t2)−k . (3.24)

Taylor’s theorem similarly implies that |∇̂l(ξ)− D̂l(ξ)| ≤ C |ξ |l+1 so that, by (2.4),∫
[−π,π ]d

|W ∗
t (a

∗(ξ)+ m2)||∇̂l(ξ)− D̂l(ξ)| dξ

≤ C
∫
Rd

(1 + C |ξ |2t2 + m2t)−p−k |ξ |l+1 dξ ≤ Ct−d−l−1(1 + m2t2)−k . (3.25)
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844 R. Bauerschmidt

Finally, we obtain by (2.4) that

∫
Rd\[−π,π ]d

|Wt (a(ξ)+ m2)||D̂l(ξ)| dξ

≤ C
∫

Rd\[−π,π ]d

(1 + C |ξ |2t2 + m2t2)−p−k |ξ |l dξ ≤ Ct−2p(1 + m2t2)−k .

(3.26)

The combination of the previous four inequalities gives (1.37). ��
Acknowledgments The author thanks David Brydges and Gordon Slade for many helpful discussions,
advice, and careful proofreading. He also thanks Martin Barlow for helpful discussions.
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