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Abstract This paper extends recent results on ageing in mean field spin glasses on
short time scales, obtained by Ben Arous and Giin (Commun Pure Appl Math 65:77—
127, 2012) in law with respect to the environment, to results that hold almost surely,
respectively in probability, with respect to the environment. It is based on the methods
put forward in (Gayrard in Aging in reversible dynamics of disordered systems. II.
Emergence of the arcsine law in the random hopping time dynamics of the REM,
2010; Electron J Probab 17(58): 1-33, 2012) and naturally complements (Bovier and
Gayrard in Ann Probab, 2012).
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252 A. Bovier et al.

1 Introduction and main results

Spin glasses have, for the last decades, presented some of the most interesting chal-
lenges to probability theory. Even mean-field models have prompted a 1,000 page
monograph [16, 17] by one of the most eminent probabilists of our time. Despite these
efforts and remarkable and unexpected progress, a full understanding of the equilib-
rium problem, i.e. a full description of the asymptotic geometry of the Gibbs measures,
is still outstanding. In this situation it is somewhat surprising that certain properties of
their dynamics have been prone to rigorous analysis, at least for some limited choices
of the dynamics. The reason for this is that interesting aspects of the dynamics occur
on time-scales that are far shorter than those of equilibration, and experiments made
with spin glasses usually test the behaviour of the probe on such time scales. Indeed,
equilibration is expected to take so long as to become inaccessible to real experiments.
The physically interesting issue is thus that of ageing [4,5], a property of time—time
correlation functions that characterizes the slow decay to equilibrium characteristic
for these systems.

The mathematical analysis has revealed an universal mechanism behind this phe-
nomenon: the convergence of the clock-process, that relates the physical time to the
number of “moves” of the process, to an «-stable subordinator (increasing Lévy
process) under proper rescaling. The parameter « can be thought of as an effective
temperature, that depends both on the physical temperature and the time scale con-
sidered. This has been proven for p-spin Sherrington-Kirkpatrick (SK) models for
time scales of the order exp(Syn) (where n is the number of sites in the system) with
O0<y< min(,B, §(p)), where ¢ (p) is an increasing function of p such that £(3) > 0
and lim 400 ¢ (p) = 21n2. Such a result was obtained first in [1] in law with respect
to the random environment, and was later extended in [6] to almost sure (resp. in
probability, p=3,4) results. The progress in the latter paper was possible to a fresh
view on the convergence of clock processes, introduced and illustrated in two papers
[8,9]. They view the clock process as a sum of dependent random variables with a
random distribution, and then employ convenient convergence criteria, obtained by
Durrett and Resnick [7] a long time ago, to prove convergence. This is explained in
more detail below.

The conditions on the admissible time scales in these results have two reasons.
First, it emerges that « = y /8, so one of the conditions is simply that @ € (0, 1). The
upper bound y < ¢(p) ensures that there will be no strong long-distance correlations,
meaning that the systems has not had time to discover the full correlation structure
of the random environment. This condition is thus the stricter the smaller p is, since
correlations become weaker as p increases.

A natural questions to ask is what happens on time-scales that are sub-exponential
in the volume n? This question was first addressed in a recent paper by Ben Arous
and Giin [2]. This situation would correspond formally to @ = 0, but O-stable sub-
ordinators do not exist, so some new phenomenon has to appear. Indeed, Ben Arous
and Giin showed that the limiting objects appearing here are the so-called extremal
processes. In the theory of sums of heavy tailed random variables this idea goes back to
Kasahara [10] who showed that by applying non-linear transformations to the sums of
ay-stable r.v.’s with o, | 0, extremal processes arise as limit processes. This program
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Convergence to extremal processes 253

was implemented for clock processes by Ben Arous and Giin using the approach of
[1] to handle the problems of dependence of the random variables involved. As a con-
sequence, their results are again in law with respect to the random environment. An
interesting aspect of this work was that, due to the very short time scales considered,
the case p = 2, i.e. the original SK model, is also covered, whereas this is not the case
for exponential times scales.

In the present paper we show that by proceeding along the line of [6], one can
extend the results of Ben Arous and Giin to quenched results, holding for given random
environments almost surely (if p > 4) resp. in probability (if 2 < p < 4). In fact, the
result we present for the S K models is an application of an abstract result we establish,
and that can be applied presumably to all models where ageing was analysed, on the
approriate time scales.

Before stating our results, we begin by a concise description of the class of models
we consider.

1.1 Markov jump processes in random environments

Let us describe the general setting of Markov jump processes in random environ-
ments that we consider here. Let G, (V,, £,) be a sequence of loop-free graphs
with set of vertices V), and set of edges L,. The random environment is a family
of positive random variables, t,(x), x € V,, defined on a common probability space
(2, F, P). Note that in the most interesting situations the t,,’s are correlated random
variables.

On V, we consider a discrete time Markov chain J,, with initial distribution w,,
transition probabilities p, (x, y), and transition graph G, (V,, L,). The law of J, is
a priori random on the probability space of the environment. We assume that J, is
reversible and admits a unique invariant measure 7,,.

The process we are interested in, X, is defined as a time change of J,,. To this end
we set

A (x) = Crrp(x) /70 (%), (1.1
where C > 0 is a model dependent constant, and define the clock process

k—1

Suk) =" 1, (Un(@)eni. k€N, (1.2)
i=0

where {e,,; : i € No, n € N}isani.i.d. array of mean 1 exponential random variables,
independent of J, and the random environment. The continuous time process X, is
then given by

X, () = J,(k), if §n(k) <t< §n(k + 1) forsome keN, r>0. (1.3)

One verifies readily that X, is a continuous time Markov jump process with infinites-
imal generator
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254 A. Bovier et al.

A (X, y) = A (X) pu(x, y), (1.4)

and invariant measure that assigns to x € V), the mass 7, (x).

To fix notation we denote by 7/ and FX the o -algebras generated by the variables
J, and X, respectively. We write Py, for the law of the process J,,, conditional on F,
i.e. for fixed realizations of the random environment. Likewise we call P,,, the law of
X, conditional on F.

In [8,9] and [6], the main aim was to find criteria when there are constants, a,, ¢,
satisfying a,, ¢, 1 00, as n — 00, and such that the process

lant]—1
Se®) = ¢, ' Sp(lant) = ;' D" A (Ta@eni. >0, (1.5)
i=0

converges in a suitable sense to a stable subordinator. The constants ¢, are the time scale
on which we observe the continuous time Markov process X,,, while a;, is the number
of steps the jump chain J, makes during that time. In order to get convergence to an
a-stable subordinator, for & € (0, 1), one typically requires that the 2 ~!"s observed
on the time scales ¢, have a regularly varying tail distribution with index —c. In this
paper we ask when there are constants, a,, ¢, oy, satisfying a,,, ¢, $ coand o, | O
respectively, as n — o0, and such that the process (.S,)*" converges in a suitable sense
to an extremal process.

1.2 Main theorems

We now state three theorems, beginning with an abstract one that we next specialize
to the setting of Sect. 1.1. Specifically, consider a triangular array of positive random
variables, Z, ;, defined on a probability space (2, F, P). Let «,, and a,, be sequences
such that o, | 0 and @, 1t oo as n — o0, respectively. Our first theorem gives
conditions that ensure that the sequence of processes (S,)*", where S, (0) = 0 and

lant]

Sut) = D Zniy 1>0, (1.6)

i=1

converges to an extremal process. Recall that an extremal process, M, is a continuous
time process whose finite-dimensional distributions are given as follows: for any k €
N, t1,....,ty >0,and x; <--- <x; € R,

P(M(t) < x1,..., M(1) < xx) = F'" (x1) F?71 (xo) - FRT1(xg), (17)

where F is a distribution function on R.

Theorem 1.1 Let v be a sigma-finite measure on (R4, B(R.)) such that v(0, o0) =
0o. Assume that there exist sequences ay, o, such that for all continuity points x of
the distribution function of v, for all t > 0, in ‘P-probability,
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Convergence to extremal processes 255

Lant]

Tim > P (Z,‘jj;. > x|7-‘,,,,~_1) — tv(x, 00), (1.8)
i=l1
and
LantJ 2
. (677}
Tim > [P (zn’,. > x|fn,,-_1)] —0, (1.9)

i=1

where F, ; denotes the o-algebra generated by the random variables Z, j, j <i.If,
moreover, for all t > 0

lant ] on
limsup [ D" €1, 518 /" Z,; | < o0, V80, (1.10)
n—o00 im1 T
then, as n — 00,
(S =L M,, (1.11)

where M, is an extremal process with one-dimensional distribution function F (x) =
exp(—v(x, 00)). Convergence holds weakly on the space D([0, 00)) equipped with
the Skorokhod Ji-topology.

In the sequel we denote by é weak convergence in D([0, 00)) equipped with the
Skorokhod J;-topology.

In order to use Theorem 1.1 in the Markov jump process setting of Sect. 1.1, we
specify Z, ;. In doing this we will be guided by the knowledge acquired in earlier
works [6,8,9]: introducing a new scale 6,, we take Z, ; to be a block sum of length 6,,,
i.e. we set

0y
Zni= D 0 aG)en. - (1.12)
j=(i—1)6,+1

The rdle of 6, is to de-correlate the variables Z, ; under the law P,,,. In models with
uncorrelated environments and where the probability of revisiting points is small, one
may hope to take 6, = 1. When the environment is correlated and the chain J, is
rapidly mixing, one may try to choose 6, < a, in such a way that, the variables
Z,.; are close to independent. These two situations were encountered in the random
hopping dynamics of the Random Energy Model in [8], and the p-spin models in [6]
respectively. Theorem 1.2 below specializes Theorem 1.1 to these Z, ;’s.
Fory € V, andu > 0 let

0}1
QU =Py [ D2 Un(ienj > cou (1.13)
j=1
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be the tail distribution of the blocked jumps of X,,, when X, starts in y. Furthermore,
for k,, (t) = ||lant]/6n], t > 0,and u > 0 define

kn (1)

v, 00) = D7 D" palda(Bai), ) Q5 (1), (1.14)
i=1 yeV,
5 k() 2
(o) ooy = D | 3 pun@it WOEGY | . (115
i=1 | yeV,

Using this notation, we rewrite Conditions (1.8)—(1.10). Note that Q% (y) is a ran-
dom variable on the probability space (2, F, P), and so are the quantities v,{ ! (u, 00)
and onj’l(u, 00). The conditions below are stated for fixed realization of the random
environment as well as for given sequences ay, ¢y, 05, and o, such that a,, ¢, 1 oo,
and o, | Oasn — oo.

Condition (1) Let v be a o-finite measure on (0, co) with v(0, o0) = oo and such
that forallz > Oand allu > 0

lim P,Ln( v (u, 00) — 1v(u, oo)( > 5) =0, Ve>0. (1.16)
n— 00

Condition (2) For all u > O and all 7 > 0,
71\2
lim P, ((an ”) (1, 50) > g) =0, Ve>0. (1.17)
n—o0
Condition (3) Forallt > Oandall§ > 0

o
lant] "

limsup (D Eu, Lt (e <stfonen) @08 ™ 2 n@ensi | <oe.
i=1

n—oo
(1.18)
Condition (0) For all v > 0,
. _yl/an
Jim > (e ek < o, (1.19)
xeV,
Fort > 0 set
kn (1) Oni Oin

(s00) = (2 2 a'm Uaens |+ GaODeno | (120)

i=1 \j=0,(i—1)+1
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Theorem 1.2 [ffor a given initial distribution ., and given sequences ay,, ¢y, 6, and
oy, Conditions (0)-(3) are satisfied P-a.s., respectively in P-probability, then

(s0)" = m,, (1.21)

where convergence holds P-a.s., respectively in P-probability.

Remark Theorem 1.2 tells us that the blocked clock process (Sfj )¥rconverges to M,
weakly in D([0, 00)) equipped with the Skorokhod Ji-topology. This implies that the
clock process (S,)*" converges to the same limit in the weaker M|-topology (see [6]
for further discussion).

Remark The extra Condition (0) serves to guarantee that the last term in (1.20) is
asymptotically negligible.

Finally, following [6], we specialize Conditions (1)—(3) under the assumption that
the chain J,, obeys a mixing condition [(see Condition (2-1) below]. Conditions (1)—
(2) of Theorem 1.2 are then reduced to laws of large numbers for the random variables
Q1 (y). Again we state these conditions for fixed realization of the random environment
and given sequences ay, ¢,,, 6y, and o,.

Condition (1-1) Let J,, be a periodic Markov chain with period ¢. There exists a
positive decreasing sequence p,,, satisfying p,, | 0 as n — oo, such that, for all pairs
x,y € Vy,andalli > 0,

g—1
Z Pr, (Jn(i + 60, + k) =y, Ju(0) =x) = (1 + p)wn ()me(y).  (1.22)
k=0

Condition (2-1) There exists a o -finite measure v with v(0, c0) = oo and such that

v,g(u, 00) = k(1) Z 7T (X) Q5 (X) = tv(u, 00), (1.23)

x€V,

and

2
(00)" (. 00) = kn(®) D D" (@) piP (x. x) Qh(x) Qi (x') - 0. (1.24)
xeV, x'eV,
where p,(,2) (x,x) = ZyGVn Pu(x, ¥) pu(y, x) are the 2-step transition probabilities.
Condition (3-1) Forallt > 0and § > 0

lim sup ( lat|Ex

n— o0

on
sy 87 (U (D)enn) < o
(1.25)

LG ))en s <en
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Theorem 1.3 Let i, = m,. Iffor given sequences ay,, ¢y, 6,, < an, and oy, Conditions

(1-1)—(3-1) and (0) are satisfied P-a.s., respectively in P-probability, then (Sfl’ )Gn é
M,, P-a.s., respectively in P-probability.

1.3 Application to the p-spin SK model

In this section we illustrate the power of Theorem 1.3 by applying it to the p-spin
SK models, including the SK model itself, i.e. p > 2. The underlying graph V), is the
hypercube >, = {—1, 1}". The Hamiltonian of the p-spin SK model is a Gaussian
process, Hy, on », with zero mean and covariance

EH,(x)H,(x") = nR,(x, x")?, (1.26)

where R, (x,x) =1 — w and dist(-, -) is the graph distance on ),

1 n
dist(x, x') = 3 Z i — x]]. (1.27)
i=1

The random environment, t,(x), is defined in terms of H,, through

Tn(x) = exp(BH,(x)), (1.28)

where 8 > 0 is the inverse temperature. The Markov chain, J,,, is chosen as the simple
random walk on >, i.e.

1 LT /
=, ifdist(x, =1,

pulr,xy = | IS (1.29)
0, else.

This chain has unique invariant measure , (x) = 27". Finally, choosing C = 2" in
(1.1), the mean holding times, A;l(x), reduce to A;l(x) = 1,(x). This defines the
so-called random hopping dynamics.

In the theorem below the inverse temperature § is to be chosen as a sequence
(Bn)nen that either diverges or converges to a strictly positive limit.

Theorem 1.4 Let v be given by v(u, 0c0) = Kpu’l foru € (0,00) and K, = 2p.
Let y,, By be such that y, = n=€ for c € (O, %), Bn = Bo for some By > 0, and
VP < O(1). Set oy, = v,/ B Let 6, = 3n2 be the block length and define the jump
scales a, and time scales c,, via

ap, = ~2mn )/n_l e%y"z”, (1.30)
ey = eV P, (1.31)

Then (S,l;)a" é M,,. Convergence holds P-a.s. for p > 5 and in P-probability for
p=2,3,4 For p =15 itholds P-a.s. ifc € (0, i) and in P-probability else.
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Remark Theorem 1.4 immediately implies that (S,)%" é M, on D([0, c0))
equipped with the weaker M- topology.

In [2] an analogous result is proven in law with respect to the environment for
similar conditions on the sequence y;, and fixed S.

Let us comment on the conditions on y,, and B, in Theorem 1.4. They guarantee
that o, | 0 as n — o0, and that both sequences a, and ¢, diverge as n — oo.
Note here that different choices of the sequence 8, correspond to different time scales
cp. If By — B > 0,as n — oo, then ¢, is sub-exponential in n, while in the case
of diverging f,, ¢, can be as large as exponential in O (n). Finally these conditions
guarantee that the rescaled tail distribution of the t,,’s, on time scale ¢, is regularly
varying with index —o,.

We use Theorem 1.4 to derive the limiting behavior of the time correlation function
C:(t, s) which, fort > 0, s > 0, and ¢ € (0, 1) is given by

CE(t,5) = P, (AL(1, 9)), (1.32)

where A% (1, 5) = {Ry (Xn(t"/%cp), Xu((t +5)%1cy)) = 1 — ¢}

Theorem 1.5 Under the assumptions of Theorem 1.4,
. t
nlggoc,ﬁ(t,s) =Ty Ve € (0,1), t,s > 0. (1.33)

Convergence holds P-a.s. for p > 5 and in P-probability for p = 2,3,4. For p =5
it holds P-a.s. if c € (0, %) and in P-probability else.

Theorem 1.5 establishes extremal ageing as defined in [2]. Here, de-correlation
takes place on time intervals of the form [11/en (¢ 4+ s)1/2], while in normal ageing
it takes place on time intervals of the form [z, # + s].

The remainder of the paper is organized as follows. We prove the results of Sect. 1.2
in Sect. 2. Section 3 is devoted to the proofs of the statements of Sect. 1.3. Finally, an
additional lemma is proven in the Appendix.

2 Proofs of the main theorems

Now we come to the proofs of the theorems of Sect. 1.2. The proof of Theorem 1.1
hinges on the property that extremal processes can be constructed from Poisson point
processes. Namely, if§" = >, . 8{,127)6]/(} is a Poisson point process on (0, o) x (0, co)
with mean measure dr x dv’, where v’ is a o -finite measure such that v’ (0, c0) = oo,
then

/

M(t) =sup{x; : 1, <t}, t>0, 2.1
is an extremal process with 1-dimensional marginal

F(u) = e~V (09 (2.2)
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(See e.g. [15], Chapter 4.3.). This was used in [7] to derive convergence of maxima
of random variables to extremal processes from an underlying Poisson point process
convergence. Our proof exploits similar ideas and the key fact that the 1/a,-norm
converges to the sup norm as «;, |, 0.

Proof of Theorem 1.1 Consider the sequence of point processes defined on (0, 0o) x
(0, o0) through

bn = Zé{k/amzm}. 2.3)

keN

By Theorem 3.1 of [7], Conditions (1.8) and (1.9) immediately imply that &, "=,
where & is a Poisson point process with intensity measure dt x dv.

The remainder of the proof can be summarized as follows. In the first step we
construct (S, (¢))* from &, by taking the aﬁlh power of the sum over all points Z,, ; up
to time |ayt]. To this end we introduce a truncation threshold é and split the ordinates
of &, into

o, o, o
Zyy = Zyhlzm <5 + 2y Lz s 24)

Applying a summation mapping to Z:f"k 1 70n =55 WE show that the resulting process

converges to the supremum mapping of a truncated version of £. More precisely, let
8 > 0. Denote by M, the space of point measures on (0, 00) x (0, 00). Forn € N
let T be the functional on M ,, whose value at m = > . 81, ji} 1S

(ij)(z):(zj',j/“"]l{jk>5}) , 1>0. (2.5)

<t
Let T be the functional on M p given by
(T°m)(t) = sup {jel(j=s) : tk <1}, > 0. (2.6)

J
We show that T,fén =L T asn — oo.
In the second step we prove that the small terms, as § — 0 and n — o0, do not
contribute to (S,)%", i.e. that for ¢ > 0

lim lim sup P (poo (T, &n, S) > &) = 0, 2.7)

=0 n—oo

where o~ denotes the Skorokhod metric on D([0, c0)). Moreover, observe that

T‘SS é M as § — 0. Then, by Theorem 4.2 from [3], the assertion of Theorem
1.1 follows.
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Step 1:

Step 2:

J . .
To prove that T,fén =L T%& as n — oo we use a continuous mapping
theorem, namely Theorem 5.5 from [3]. Since the mappings T,f and T? are
measurable, it is sufficient to show that the set

&= [m e My i3 (my)pen St.my 5 m, but T,fmmgT‘sm] , (2.8)

v . . .
where — denotes vague convergence in M ,, is a null set with respect to the
distribution of &£. For the Poisson point process £ it is enough to show that
Pe (£ND) =1, where

D={meM,:m(0,1] x [j,o00) <ooVt, j>0}. (2.9)

LetCrs ={t > 0: Pz ({m: T°m (1) = T°m (t—)}) = 1} be the set of con-
tinuity points of §. By definition of the Skorokhod metric, we considerm € D,
a,b € Crps, and (my), N such that m, -~ m and show that

lim ppa.p) (T, my, TPm) =0, (2.10)

n—o00

where pj4,) denotes the Skorokhod metric on [a, b]. Since m € D, there
exist continuity points x, y of m such that m((a, b) x (8§, 00)) = m((a, b) x
(x,y)) < oo.Then, Lemma 2.1 from [13] yields that m,, also has this property
for large enough n. Moreover, the points of m, in (a, b) x (x, y) converge to
the ones of m (cf. Lemma I.14 in [14]). Finally, we use that«;, | Oasn — o0
and thus Tn’S can be viewed as the 1/a,-norm, which converges as n — 0o to

the sup-norm 7°°. Therefore, Tjén é Tt asn — oo.

We prove (2.7) by showing that the assertion holds true for the Skorokhod
metric on D([0, k]) for every k € N. Assume without loss of generality that
k =1.Lete > 0. We have that

P( sup |T2&, (1) — S (1)| > s)

0<t<l1

on on

Lant] Lant]

=P sup [| D Zuily s | — | D Zni >e|. (@11
i=1 i=1

0<r<l

Since for n large enough «,, < 1, we know by Jensen inequality that

Up Op An

Lant] Lant] Lant]

E Znily o s1/a - E Zy.i < Zzn,i]lzn’igal/dn ,
i=1 i=1 i=1

(2.12)
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262 A. Bovier et al.

and therefore
Lant] n

QI <P sup | D Zuily, ,cprim| >¢|. (2.13)

0=r=1|;2

All summands are non-negative. Hence the supremum is attained for r = 1.
Applying a first order Chebychev and Jensen inequality, we obtain that (2.13)
is bounded above by

on

a on a,

AL 5 (& _

e I(E 5]12,,,,'551/0"‘2’%[) ZE(E S]IZ'lyisal/an(S l/OénZn’i) . (2.14)
i=1 i=1

By (1.10) the sum is bounded in »n and hence, as § — 0, (2.14) tends to zero.

This concludes the proof of Theorem 1.1.
(]

Proof of Theorem 1.2 Throughout we fix a realisation w € 2 of the random environ-
ment but do not make this explicit in the notation. We set

Sty = SP() — ¢ 'A T (1 (0))eno, 1> 0. (2.15)

(S,l: (t))% differs from (g,b, (t))*" by one term. All terms in (S,li (t))* are non-negative
and therefore we conclude by Jensen inequality that, for n large enough,

o~ o~ ap
SP (1) < §P(r)* < SP(r)% + (c;‘x;I(Jn (0))e,,,0) ) (2.16)

By Condition (0) the contribution of the term (c;, 'A;1(J,(0))en0)™ is negligible.

Thus we must show that under Conditions (1)—(3), (§,f )%n é M, .Recall thatk,(t) =
| lant]/6,] and that for i > 1,

O i

Zui= Y. ¢ n(Den, (2.17)
j=0,G—1)+1

We apply Theorem 1.1 to the Z, ;’s. It is shown in the proof of Theorem 1.2 in [6]
that Conditions (1) and (2) imply (1.8) and (1.9). It remains to prove that Condition
(3) yields (1.10). Note that foralli > l andall ¢ — 16, + 1 < j < i6,,

1 . (218
}( )

0, = ]l{x,ﬂun(j))en,jsensl/an
Dk Un()en < s
j=(—1)6,+1
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Using (2.18), we observe that (1.10) is in particular satisfied if forall § > Oand ¢ > 0

Lant) on

lim sup Z gﬂnﬂ{x;l(J,l(j))en,jscnal/an}5_1/“”%—1)\;1 (Jn(j)en, < 00,
i=1

n—o0

(2.19)

which is nothing but Condition (3). This concludes the proof of Theorem 1.2. O

Finally, having Theorem 1.2 and the results from [6], Theorem 1.3 is deduced
readily.

Proof of Theorem 1.3 Let [, be the invariant measure ,, of the jump chain J,. By
Proposition 2.1 of [6] we know that Conditions (0), (1-1), and (2-1) imply Conditions
(0)—(2) of Theorem 1.2. Moreover, since u, = m,, Condition (3-1) is Condition (3).
Thus, the conditions of Theorem 1.2 are satisfied under the assumptions of Theorem
1.3 and this yields the claim. O

3 Application to the p spin SK model

This section is devoted to the proof of Theorem 1.4. We show that the conditions of
Theorem 1.3 are satisfied for the particular choices of the sequences ay, ¢;, 6, and
o.

The following lemma from [8] (Proposition 3.1) implies that Condition (1-1) holds
true for 6, = 3n2.

Lemma 3.1 Let Py, be the law of the simple random walk on 3, started in the
uniform distribution. Let 6, = 3n>. Then, for any x, y € > ., andanyi >0,

n’

1
D Pry (Jn(On +i+k) =y, J,(0) = x) = 2m, (), (y)| <27 (3.1)
k=0

The proof of Condition (2-1) comes in three parts. We first show that Ev/, (u, o) con-
verges to tv(u, 00). Next we prove that P-almost surely, respectively in P-probability,
the limit of v,’, (u, 0o) concentrates for all u > 0 and all + > 0 around its expecta-

tion. Lastly we verify that the second part of Condition (2-1) is satisfied in the same
convergence mode with respect to the random environment.

3.1 Convergence of Evfl (u, 00)

Proposition 3.2 Forallu > Oandt > 0
lim Ev! (4, 00) = v/ (u, 00) = K ptu~'. (3.2)
n—oo

The proof of Proposition 3.2 centers on the following key proposition.
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Proposition 3.3 Let for t > 0 and an arbitrary sequence uy,

B! (1, 00) = kn(t) Pr, (l_:rlnaxe A T@)en: > u}/“"cn). (3.3)

.....

Then, forallu > 0 andt > 0,

lim E v} (u, 00) = v'(u, 00). (3.4)
n—o0

The same holds true when u is replaced by u, = u 6, “".

Proof of Proposition 3.2 By definition, v/, (u, 00) is given by

9)1
V! (1, 00) = ky () P, (Z A (n())eni > ul/“”c,,). (3.5)

i=1

The assertion of Proposition 3.2 is then deduced from Proposition 3.3 using the upper
and lower bounds

V! (u, 00) < v} (u, 00) <} (ub, %", 00). (3.6)
O

The proof of Proposition 3.3, which is postponed to the end of this section, relies
on three Lemmata. In Lemma 3.4 we show that (3.4) holds true if we replace the
underlying Gaussian process by a simpler Gaussian process H'. Lemma 3.5 yields
(3.4) for the maximum over a properly chosen random subset of indices of H'. We
use Lemma 3.7 to conclude the proof of Proposition 3.3.

We start by introducing the Gaussian process H'. Let v, be a sequence of integers,
where each member is of order n® forw € (c + %, 1). Then, H' is a centered Gaussian
process defined on the probability space (€2, F, IP) with covariance structure

l _ 2 _1 P , .f . — . ,
Ailj _ pn~ i — jl, if i/v,] Lj/vn] (.7
0, else.
For a given process U = {U;, i € N} on (2, F, P) and an index set I define
F,(u,, U, I) =P (max,-eI VUi o u,lz/a”cn), (3.8)

and for a process U= {ﬁi, i € N} on (€2, F, P) that may also be dependent on FI

=~ U: 1
Gn(un, U, I) = Py, (mealx VUi, o > up/® e,
13

]—'J). (3.9)
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Lemma 3.4 Forallu > Qandt > 0

li)néokn(t)EG,,(u, H', [6,]) = V' (u, 00), (3.10)

where [k] = {1,...,k} for k € N. The same holds true when u is replaced by
up, = u 0, .

We prove Proposition 3.3 and Lemmata 3.4, 3.5, and 3.7 for fixed u > 0 only. To
show that the claims also hold for u, = uf, “, it is a simple rerun of their proofs,
using 6, ** 4+ 1asn — oc.

Proof Itis shown in Proposition 2.1 of [2] that, by setting the exponentially distributed
random variables to 1 in (3.9) and taking expectation with respect to the random
environment, we get for all # > 0 that

lim a,v, ' F,(u, H', [v,]) = v(u, 00). (3.11)
n—oo

Assume for simplicity that 6, is a multiple of v,. Note that blocks of H'! of length v,
are independent and identically distributed. Thus,

kn (1) Fy (u, Hl, [6,D) = k,(t) (1 — (1 — F,(u, Hl, [vn]))gn/vn)

~ ke ()00, Fy(u, HY, [0,])

5, 00). (3.12)

To show that k, (1)EG,,(u, H', [6,]) also converges to v (i, 00) as n — 00 we use
same arguments as in (3.12) and prove that a,,vn_lEG,, (u, H, [v,]) = v(u, o0) as
n — oo. Using Fubini we have that

o0 )

ay 1 __ ln fmaxiglvnje,,_,- ) z
;EGn(l'h H [v,]) = o / dZ/@ffmaxieweﬂnﬁfﬂ(n(})

cpul/an 0
o0
an — 1
= v_ dyfmax,'gh,n]e,,,; W) Fu(u y™™, H", [v,]), (3.13)
n

0

where fz(-) denotes the density function of Z. Since we want to use computations
from the proof of Proposition 2.1 in [2], it is essential that the integration area over y
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is bounded from below and above. We bound (3.13) from above by

(3.13) < anv;177 (i_rlnaxv eni < e"”rz_l_s) (3.14)

enu,jl/z’5

+anv, ! / Ay frvaxictuny ens ) FaC y™ HY  [v,]) - (3.15)

e—rwn_l_5

-1 noy 1278
+ayv, P\ I{laX eni >e'rn , (3.16)
1=

where 8 > 0 is chosen in such a way that nv, ' =% diverges and v3y2 | 0 asn — oo,
i.e. § < min {2c, I_T“’} Then,

(3.14) = ayv; ! (1 —exp (—e*"vi"‘s))v” < e = o (efnv,:@(l—y,%vﬁ)) ,
(3.17)

i.e. (3.14) vanishes as n — oo. Similarly,

—1/2—-8 nvn—l/2—8 N
(3.16) = a,,vn_1 (1 — (1 — exp( —hUn )) ) =0 (e)’nzn—e ) "Z0.

(3.18)
As in equation (2.31) in [2] we see that (3.15) is given by
)1v71/275
n o
—hi(ai,....av,)
/ dy fmaxte[vn] €n,i ()’) Z / da2 davn / da1 e _ ’
Vn Un k=1 n2
om0 D! log(uy=on)
(3.19)
where fork € {1, ..., v,}
2 Uy
a;Cy (a2 + - +ar —apy1 — -~-—a,,)a1Cz
hi(ay, ..., ay)=a; — 12 Z 24 + i
Ypn VYnh
(3.20)

for some constants C1, C» > 0 and a sequence of sets D,: C R% ! such that

Un
y,;zv;‘Z/daz---davn(zn)*”n/2*1/2 XL 2 g (321)
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The aim is to separate a; from ay, ..., ay, in (3.20). We bound the mixed terms in
e~ up to an exponentially small error by 1. This can be done using a large deviation
argument for |az + - - - +ay, | together with the fact that | log y| € [nvn_l_‘s, nvn_l/z_a].
Computations yield together with the bounds in (3.19)—(3.21) that, up to a multiplica-
tive error that tends to 1 as n — oo exponentially fast, (3.15) is bounded from above
by

(9]

o
d)’fmaxie[vn]en_i (y)ya" M_IK]J S V(Lt, OO)/demaxie[vn]en,,- ()’)ya" (322)
0

e—nvn_l_s

Moreover by Jensen inequality,

Ay
(3.22) < v(u, 00) (Enn max en,[)
ielvy]
00 on
= v(u, 00) /dy P (max eni > y)
i€[vn]
0
oo Un
— (1, 00) /dy (1—(1—e)™)
0
< v(u, co)vy", (3.23)

which, as n — oo, converges to v(u, 00).
To conclude the proof of (3.10), we bound (3.13) from below by

o0

/d)’fe,l_l () Fa(u y=, H', [v,]). (3.24)
0

G.13) = &

n

To show that the right hand side of (3.24) is greater than or equal to v(u, 00), one
proceeds as before. O

In the following we form a random subset of [6,] in such a way that on the one
hand, with high probability, it contains the maximum of ePnv/nH @ overalli € [6,].
On the other hand it should be a sparse enough subset of [6,] so that we are able to
de-correlate the random landscape and deal with the SK model. This dilution idea is
taken from [2].

If the maximum of efv1H' ) crogses the level cuu/% then it will typically be
much larger than c,u!/* so that, due to strong correlation, at least yn_2 of its direct
neighbors will be above the same level. To see this, we consider Laplace transforms.
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Set forv > 0

00 6,
Fo(v, H',6,) = /dz e—zv]p(a,,Z]lew,,l(ibcwlm > z), (3.25)

0 i=1

where §, € [0, 1] for every n € N. We have that

0,
~ 1 X
F,(v, H',6,) = (l — Eexp(—S,, Z]leﬁnﬁﬂl<f>>cnu1/an ))

i=1

1 Un elz/vn
== 1—(Eexp(—snZneﬁnﬁmu)>wwn)) . (3.26)

i=1

From [2], Proposition 1.3, we deduce that for the choice 4, = yn2 pn, Where p, is any
diverging sequence of order O (logn),

Un
lim_ayv,! (1 — Eexp (—5n D i 02 gt fom )) =v(u,00). (3.27)
i=1
Therefore we have for the same choice of §,, that
kn() Fn(v, H', 0,) — tv""v(u, 00). (3.28)

From this we conclude that if the maximum is above the level ¢, /%" then immediately
0 (V{z) are above this level. More precisely, we obtain

Lemma 3.5 Let p, be as described above. Let {&,; : i € N, n € N} be an array
of row-wise independent and identically distributed Bernoulli random variables such
that P&, =1)=1-P¢,; =0) = ynz,on, and such that {§,; :i € N, n € N} is
independent of everything else. Set
Irk=1{ief{l,....k}: &; =1} (3.29)

Then, for allu > 0 andt > 0

lim k,(1)EG,(u, H', Ty,) = v' (u, 00). (3.30)

n—od

The same holds true when u is replaced by u, = u 6, *".

Proof 1Tt is shown in Lemma 2.3 of [2] that

urgoanv;an(u, H',T,) = v(u, o). (3.31)
n—

Since the random variables &, ; are independent, the claim of Lemma 3.5 is deduced
by the same arguments as in (3.12). O
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To conclude the proof of Proposition 3.3, we use a Gaussian comparison result.
The following lemma is an adaptation of Theorem 4.2.1 of [11].

Lemma 3.6 Let H° and H' be Gaussian processes with mean 0 and covari-
ance matrix A = (A?j) and A' = (Al.lj), respectively. Set A™ = (A;’}.) =
(max{A?j, A}j}) and A" = hA + (1 — h) A, for h € [0, 1]. Then, for s € R,
P(maxie; H(i) < 5) — P(max;jes H' (i) < s)
1

2
< D (A —A),-)*exp(—ljm)/dha —@d7I (32
ij

i,jel 0

where (x)* = max{0, x}.
We use Lemma 3.6 to prove that

Lemma 3.7 Let HO be given by H(i) = n= Y2 H,(J,(i)), i € N. Forall u > 0 and
t>0

lim k(1) Ex, |EG,(u, H®, 6,) —EG,(u, H', 6,)| = 0. (3.33)
n—o0

The same holds true when u is replaced by u,, = u6,“.

Proof The proof is in the same spirit as that of Proposition 3.1 in [2]. Together with
Lemma 3.5, it is sufficient to show that

kn(t)Er, (EG,(u, H', [6,]) — EG,(u, H, [6,1)" — 0 (3.34)
and
kn(t)Ex, |EG,(u, H', Ty,) —EG,(u, H°, Ty, )| — 0. (3.35)

We do this by an application of Lemma 3.6. Let §,, be given by

Sp = ﬁ (log cn + ﬁ—: logu — max,¢pp,] log en,,-) . (3.36)
Then we obtain by Lemma 3.6 that

(3.34)

+
= kn ([)Enn (]Egnn I:]lmax,-el(.)nj Hl(l')an - ]lmax,-el(.;nj Ho(i)ff‘n Ifjjl)
1

_ 2 my—1 _1
<kn(DEn, > (A — Al) e ITAD /dh(l—(Afj)z) 1,
i,j€lOn] 0
(3.37)
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To remove the exponentially distributed random variables e, ; in (3.37),let B, = {1 <
max;eg,] €; < n}. We have for s, = (n'/2g,)"! (logc, + % logu — logn) that

& (113,1 exp (-@3(1 + A;?;.)—l)) < exp (—s,%(l + A;';)—l) . (33%)

One can check that k, (1) P(B5;) | 0. Moreover, by definition of s,, there exists for all
u > 0 aconstant C < oo such that for n large enough

1
(334) < Cka(DEx, D (A}, — Agﬁe—ﬂ?"(lﬂ?})“ /dh(l NAL S
i,jE[@,l] 0
(3.39)

Likewise we deal with (3.35). The terms in (3.35) are non-zero if and only if i, j € Zg,.
By assumption, the probability of this event is (yn2 on)?. Hence, (3.35) is bounded above
by

1

—y} my=l _1
Chn () (v pu) By D 1A = Aljle 78D / dh(1 = (A})H)72. (3.40)
i, j€lbn] 0

We divide the summands in (3.39) and (3.40) respectively into two parts: pairs of 7, j

such that |i/v,| # | j/v,] and those such that i /v, | = |j/v,]. If [i/v,] # Lj/vnl
then we have by definition of H'! that Ailj = 0. For i, j such that [i/v,] = |j/val,

we have Ailj < A?j. In view of this, we get after some computations that

On
(3.39) < Chy(DEx, | >, (AN ~eim |, (3.41)
Li/vnl#Lj/vnl

and

On
2 0y—1
(340) = Cha(y, opEn, | D |Af e IFAD
Li/vnl#Lj/vnl
On 2 0 1 1
— 14+AY)H)™ — 2
2 A=Al A — @ | G4
Li/vnl=Lij/vn]

Since (A?j)’ = O(n) we know by definition of @, and 6, that

2

(3.41) < COm a2, (3.43)

which tends to zero as n — o0. Thus (3.34) holds true.
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To conclude the proof of (3.35) we use Lemma 4.1 from the appendix. We get that
(3.40) is bounded above by

n
éta,, Zefynzn(]‘l’d)il (d_z]ldfvn + EXP(U%% min{d,n—d}) )’ (344)

Unh Un Vnz
d=0

for some C < oo and i < co. With the same arguments as in the proof of (3.3) in [2],
we obtain that (3.44) tends to zero as n — o0. O

Proof of Proposition 3.3 Observe that

kn(1)Ex, G, (u, HY, [6,]) — V' (u, 00)

|ED, (u, 00) — v (u, 00)| = ., (3.45)

which is bounded above by

|kn (1) E, EGy (u, H°, [6,1))—EGy (u, H', [0,1)|+|kn OEG, (u, H', [6,]) — V' (u, 00)] .
(3.46)

By Lemma 3.4 and Lemma 3.7, both terms vanish as n — oo and Proposition 3.3
follows. o

3.2 Concentration of v/ (u, 00)

To verify the first part of Condition (2-1) we control the fluctuation of v,’1 (u, 00) around
its mean.

Proposition 3.8 Forallu > 0andt > 0 there exists C = C(p, t, u) < oo, such that
E (v} (u, 00) — Eb, (1, 00))> < Cy, 2n' =P/, (3.47)

The same holds true when u is replaced by u, = u6, *". In particular, for p > 5 and
c e (0, %) orp=5andc < 4—1‘, the first part of Condition (2-1) holds for all u > 0
andt > 0, P-a.s.

Proof Let{e, ; : i € N,n € N}and J; be independent copies of {e,; : i € N, n € N}

and J, respectively. Writing 7, for the initial distribution of J, and 7, for that of J,
we define

Gn(bt, HO, [6,]) = Pﬂn (maxie[b‘n] e'BnH"(J"(i))en,i < Cnul/Dtn ]_‘J)
- , » N (348)
Gn(u, H” ,[6,]) = P (max,-e[gn] eﬁ"H"(Jn(’))e;lJ < coullon| FI ) .
Then, as in (3.21) in [6],
_ 2 _ _ ’
E (&x, G, HO,1021)) " = E&x, Gulut, HO, [6,)Ex, Gulut, HO', [6,))
= En, En EG,(u, VO, [26,]), (3.49)
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where V0 is a Gaussian process defined by

—1/2 . . .
YOG = In Hy (@), i1 <6, (350,

n~V2H,(J @), if6, +1<i<26,.

= 2 .
To further express (E&,n G,(u, H 0 [9,,])) ,let V1 be a centered Gaussian process
with covariance matrix

Al = A?j, if max{i, j} <6,, or min{i, j} > 6,, 351)
4 0, else,

where A0 = (A?j) denotes the covariance matrix of V0. Then, as in (3.23) in [6],

- 2 -
(BEr, G, HO.101D))” = €x, £ EG (. V!, 126,). (3.52)

As in the proof of Lemma 3.7 we use Lemma 3.6 to obtain that

2 ~ 0 ~ 0 2

KAOE (€, G, HO, [6,]) — EEr, G H, [61]))

<UD D En Bl DT (3.53)
1<i<6,
On+1<j <20,

It is shown in (3.29) of [6] that

n

__A—n
Ern B Lag=(ayr =2 ((n —m)/2

), form € {0, ..., n}. (3.54)

From this, and with the definition of a,,, we have that

o~ n my»p _i
(3.52) < 2 aanZE)Z ((n_m)/z)(n) eXp( 1+(%)”)
22N " AN i
< 2%y, mZ::gz n((n—m)/Z) (%) eXp(y""W)
22N (M _ 2\’ 2 ﬂ
=2t 3on(3) (1-2) (i L

- 2d\?
<27y, 2> nl2 (1 - 7) exp (1Y (4)) Jn (4), (3.55)

d=0 +

where for u € (0,1) we set T, ,(u) = y2 — I(w) — y>(1 + |1 — 2u|P)~! and
Jo(u) =27" (LH"MJ) wne™ ® for I (u) = ulogu + (1 — u)log(1 — u) + log 2. Note
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that (3.55) has the same form as (3.28) in [1]. Following the strategy of [1], we show
that there exist §, 8’ > 0 and ¢ > 0 such that

—elu—1? 1_s1
Ty, < c/(u 2) , ifue (3 96,5 +9), (3.56)
-4, else.

Since y;,, = n~¢ this can be done, independently of p, as in [2] (cf. (3.19) and (3.20)).
Finally, together with the calculations from (3.28) in [1] we obtain that

E (v, (u, 00) — ¥} (u, 00))” < Cy,72n' P2, (3.57)

n

The same arguments and calculations are used to prove that (3.47) also holds when
u is replaced by u,, = u6, *". Let p > 5and ¢ € (0, %) orp=>5andc < %. Then,
by Borel-Cantelli Lemma, for all # > 0 and r > O there exists a set Q(u, t) with
P(Q2(u, t)) = 1 such that on Q(u, t), for all ¢ > 0 and n large enough, we have that
V! (u, 00) — V' (u, 00)| < & and |V}, (uy, 00) — V' (u, 00)| < ¢. From this we conclude
together with (3.6) that, on 2(u, ¢) and for n large enough,

Vi (u, 00) — & < vl (u, 00) < V' (uy, 00) + &, (3.58)

i.e. Condition (2-1) is satisfied, for all u > 0 and ¢t > 0, P-a.s. O

Proposition 3.9 Let p = 2,3,4 and c € (0, %) orp=>5andc > JT Then, the first

part of Condition (2-1) holds in P-probability for allu > 0 and t > 0.

Proof For all ¢ > 0, we bound P (|v,’, (u, 00) — E(] (u, 00))| > 5) from above by

P (|u;(u, 00) — kn(1)Ex, G (. H, Ty, )| > 8/3) (3.59)

+P (k,,(t)|5,,ncn(u, H°, 7p) — &, G,(u, H®, Tp,)| > 8/3) (3.60)

F LYW (14,00)—kn (1)EExy G, HO Ty )| ¢ /3) (3.61)

Observe that by a first order Chebychev inequality,
(3.59) < |EV (1, 00) — kn(1)EEx, G (u, H°, Zo,)|. (3.62)

By Lemmata 3.4, 3.5, and 3.7, (3.62) tends to zero as n — oo. For the same reason,
(3.61) is equal to zero for large enough n. To bound (3.60), we calculate the variance
of ky (1) &7, G (u, HO, Zg,). As in the proof of Proposition 3.8 we use Lemma 3.6, but
take into account that there can only be contributions to the left hand side of (3.32)
if i, j € Ty,. This gives us the additional factor ()/,12,0,1)2 in (3.53). Therefore the
variance of k, (1)Ex, G, (u, HO, T4, is bounded above by C (y;, on)2n'=P/% which, for
all p > 2, vanishes as n — oo. Hence, we have proved Proposition 3.9. |
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3.3 Second part of condition (2-1)

We proceed as in Sect. 3.4 in [6] to verify the second part of Condition (2-1). With the
same notation as in (1.13), we define foru > O and ¢ > 0

) = ka0~ D (04(0)%, (3.63)
ey,
M) =ka(t) D D pa(x, x)Q4(x) QU(x), (3.64)
XEan/GZn

where 4, (-, -) is the uniform distribution on pairs (x, x’) € Zi that are at distance 2
apart, i.e.

27n— 2 ifdist(x, x') = 2,
pn, 5y = 2wy S 20 (3.65)
0, else.

We prove that the expectations of both (3.63) and (3.64) tend to zero. First and second
order Chebychev inequalities then yield that the second part of Condition (2-1) holds
in P-probability, respectively P-a.s.

Lemma 3.10 Forallu > Qandt > 0
lim E7! (1) = lim En(u) = 0. (3.66)
n—o0 n—o0
Proof We show that lim,,_, En,ﬁ (u) = 0. The assertion for ', (u) is proved similarly.
Let
On
Qu(x) =Py | D2 Un(i)enj < cuu'’®r ] . (3.67)
j=1

Rewrite (3.64) in the following way

kn () D D e x) (1= Qk) (1 — Qu(x))
xey , x'e>,

=ke() | 1= D" e, x) (040 + Qs (x) — 0s(x) Qs (x"))
(x,x’)ezz

=ke() | 1=2 D" @O+ D palx, XN 0EX) O (x) |. (3.68)

xex, (x,x’)ezz
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To shorten notation, write

O/:
K! = 737,”( max VP Dg s oyl

ff)= D 2TKN (), (3.69)
ern

where 6,, = 2nlogn and

K;lf:(x) = Px (maxie{gn,u.ﬂn} e\/ﬁﬁnHo(i)en’l. > Cnul/otn

F/ ) (3.70)

Using the bound QZ x) <& —-KEx) =&y 12,’1‘ (x), x € X, and taking expecta-
tion with respect to the random environment we obtain that

En',(u) < kn(t) — 2 (kn (1) — Ev!, (1, 00)) (3.71)
Fha) D uax XE[EKY(D)ECK (). (3.72)
(x,x’)eZi

For G = Py, (max,-e[gn] eﬁﬂnﬂo(")en,i < c,,u]/"‘") observe that

(3.71) < kn(t) — 2k, (1)EGY. (3.73)

We add and subtract EE,, (1 — K*) = E&E,, K as well as

D e, XEEKY (0)EC K (x). (3.74)
(x,x’)eZﬁ

Re-arranging the terms and using the bound from (3.73) we see that En’, (1) is bounded
from above by

2kn(1) (EK) — EGY) (3.75)
o () D (x, xVEE K ()EE K2 (x') (3.76)
+k, (1) Z pn(x, X (E[EcKE (0)Ev KY (x")] — EE KLY (OEE K (X)) . (3.77)

From Proposition 3.3 we conclude that (3.75) and (3.76) are of order O (log"> and

n
0 (9,, a, 1) respectively. To control (3.77) we use the normal comparison theorem
(Lemma 3.6) for the processes V° and Vl_ as in Proposition 3.8. However, due to the
fact that we are looking at the chain after 6, steps, the comparison is simplified. More
precisely, let A, = {¥6, <i <6, : dist(J, (i), J, () > n(1 — p())} € F/ x F/',
where p(n) is of the order of /n—! log n. Then, on A,,, by Lemma 3.6 and the estimates
from (3.35),
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_ _ _ _ .2 0—1
E[KY K] -EREMERE D <2y, > Abe AT < 0(024,2).

1

1<i<6,
On+1<j <20,
(3.78)
Moreover, on Aj,
E[KY(x)K}(x")] — EKY(0)EKY(x)) < O(a; ). (3.79)

But in Lemma 3.7 from [6] it is shown that for a specific choice of p(n) and every

xey,
P (A, ldist(J,(0), J,(0)) =2) > 1 —n~®
P (AS) <n™. (3.80)
Therefore we obtain that lim,_, oo En/,(u) = 0. O

Remark Lemma 3.10 immediately implies that the second part of Condition (2-1)

holds in P-probability. To show that it is satisfied P-almost surely for p > 5 and

c € (0, %) or p =5and ¢ < }1 it suffices to control the variance of (3.75). We

use the same concentration results as in Proposition 3.8 to obtain that the variance of
kn(t)(K}} — GU), which is given by

K2(r) [E (K* — EKY)’ + E (G" — EG")” —2 (EG K" — EGZEIE;;)] . (3.81)
is bounded from above by Cy, 2n'~7/2.
3.4 Condition (3-1)
We show that Condition (3-1) is IP- a.s. satisfied for all § > 0.

Lemma 3.11 We have P-a.s. that

-1 On
limsup(an (cno'Ver) snnx;l(Jn(1)>en,1nkgl(,n(l))enf%al,%) <00, ¥3>0.

n— 00

(3.82)
Proof We begin by proving that for all § > 0, for n large enough,
b En B (et Tt (o <enstlon = D 2 "BV 5(x)
xey,
< 4GB, (3.83)

-1, _
where Y, 5(x) = ay (Cnal/a") A 1(x)e"’lﬂ)u;l(x)envlScnﬁl/"‘" ,forx € Zn'
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Forx € >, we have that

o0 Yn
2
EY"*‘S(X):an(Cnal/a")_l(Zn)_l/z/dy / dz ye_y_~7+/3m/ﬁz
0 —00

2

o0
X ﬁ,%n
= ay(c, 8"y~ 2m) 12 / dy / dzye™ T 77, (3.84)
0 ﬁn\/ﬁ_%t

where y, = (V/np,) ™! (log cn + % log s — log y) fory > 0.Inorder touse estimates

on Gaussian integrals, we divide the integration area over y into y < n% and y > n?.

For y > n2, there exists a constant C’ > 0 such that

o0
2
Q)" 2a, (c, 817! / dy / dz ye " TPV < Clgpte ™ (3.85)

n2 —00

which Vanishes asn — 00.

Let y < n?. By definition of ¢, we have B,/n — y, = /npp(l — E - %

%). Since a,, | 0 asn — oo, it follows that for n large enough B,+/n — y, > 0.
But then, since P(Z > z) < (/ 277)’1z’1e’12/2 for any z > 0 and Z being a standard
Gaussian,

n2 o0

<2 -y ﬁ%" (ffnﬁ—Yn)z
/dy / dz ye g </ e2 T . (386)
8 f—y
0 7yn+ﬁn«/; ! !

Plugging in the definition of a,, and ¢,,, (3.85) and (3.86) yield that, for n large enough,
up to a multiplicative error that tends to 1 as n — oo exponentially fast,

n?

-1
SO FT AT\ S
N ) Bn nyuBn ﬂr%n

n2

<2 / dy e ()™

0
<2r (14 1) ubud) ™", (3.87)

where I'(-) denotes the gamma function. Since I'(1 + o) < 1 for o, < 1, the claim
of (3.83) holds true for all § > O for n large enough.
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Lemma 3.10 from [6] yields that for all 6 > O there exists k > 0 such that
) p
E (Ex, Yns)” — (BEx, Yus)’ < a? (c,,Sl/a”) nl =P <o (3.88)

where £, Y, 5 = erz 27"Y, s(x). For all § > 0 there exists by Borel-Cantelli
Lemma a set 2(8) with P(2(5)) = 1 such that on Q(§), for all & > 0 there exists
n’ € N such that

En Yns <4 (nPud) ' +&, Vn=n'. (3.89)

Setting QF = nse(@m(o,oo)) Q(8), we have P(Q7) = 1.

Let § > 0 and ¢ > 0. We can always find §’ € Q such that § < §’ < 26. Note that
Yy.s is increasing in 8. Moreover, by (3.89) there exists n’ = n’(8’, €) such that on Q°
and forn > n’

(S Yns)™ = (En,Yus)™ = (4 (0Bud) " +2) ™" =4 (1Bu8) ™. 3.90)

Since (y,8,)"% | 1 asn — 0o, we obtain the assertion of Lemma 3.11. O

3.5 Proof of Theorem 1.4

We are now ready to conclude the proof of Theorem 1.4.

Firstlet p > Sand y, = n"“forc € (0, %), orp=>5andc > 41'1‘ Then we know by
Propositions 3.3 and 3.8 that for all # > 0 there exists a set Q (u) with P(Q2(«)) = 1,
such that on €2 («)

lim v/ (u, 00) = Kptu™", Vi > 0. (3.91)
n—oo

The mapping that maps u to v/ (u, 0o) is decreasing on (0, o) and its limit, u=l,is
continuous on the same interval. Therefore, setting Qf = 1e(0,00NQ Q(u), we have
P(22]) = 1 and (3.91) holds true for all u > 0 on Q]. By the same arguments and the
results in Sect. 3.3 there also exists a subset 25 with full measure and such that the
second part of Condition (2-1) holds on Q;

Condition (3-1) holds P-a.s. by Lemma 3.11. Finally, we are left with the verification
of Condition (0) for the invariant measure 7, (x) = 27", x € . For v > 0, we have
that

S otk = 3 gorp, (,\;l(x)en,l > cnv“"). (3.92)
xezn xez”

By similar calculations as in (3.87), we see that, for n large enough and x € Zn,

EPx, (k;l(x)en,l > c,,v“") ~a;lyrol, (3.93)
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which tends to zero as n — oo. By a first order Chebychev inequality we conclude
that for all v > 0 Condition (0) is satisfied P-a.s. As before, by monotonicity and
continuity, this implies that Condition (0) holds P-a.s. for all v > 0. This proves
Theorem 1.4 in this case.

Forp =2,3,4andc € (0, %) orp=>5andc > 4—1‘, we know from Propositions 3.3,
3.8, and Sect. 3.3 that Condition (2-1) is satisfied in P-probability, whereas Condition
(0) and (3-1) hold P-a.s. This concludes the proof of Theorem 1.4.

3.6 Proof of Theorem 1.5

We use Theorem 1.4 to prove the claim of Theorem 1.5. By the same arguments
as in the proof of Theorem 1.5 in [6], we obtain that for # > 0, s > 0, and ¢ €
(0, 1) the correlation function C (¢, s) can, with very high probability and IP- a.s., be
approximated by

Cht,s) = (1 = o(1) Pr,(Rn 0 (", (1 + 5)*") = 1)
=1 —0() Pr,(Rg, N (2, +5) =), (3.94)
where R, is the range of the blocked clock process S? and Ry, is the range of (S,l: )a".

By Theorem 1.4 we know that (S,’;)an é M,, P-as. for p > 5if ¢ € (0, %),
p=>5ifc < }t, and in P-probability else. By Proposition 4.8 in [15] we know that

the range of M, is the range of a Poisson point process &’ with intensity measure
V' (u, 00) = logu —log K. Thus, writing R s for the range of M,, we get that
PRu Nt t+s)=0)=PE .1 +5)=0) =) = L (395)

The claim of Theorem 1.5 follows.

4 Appendix

In the appendix we state and prove a lemma that is needed in the proof of Lemma 3.7.

Lemma 4.1 Let D;; = dist(J, (i), J,(j)) and AS = (1 —2dn=YY?. For any n > 0

there exists a constant C < oo such that, for n large enough and d € {0, ..., n},
& 0 1 ~ d2
kn) D Exdp,—alA] = Alj| < Ctay—14<y,, “.1)
. , Upn
Li/vnl=Lj/vn]
O 2 .
- ap€ex min{d,n — d
@) > Enlpymg <t (7 min )3 4.2)

2
Li /o 1 #Lj/vn) Un¥n

Proof We use ideas from Sect. 3 in [1] and Sect. 4 in [2] and write the distance
process D;; = dist(J, (i), J,(j)) as the Ehrenfest chain Q, = {Q,(k) : k € N},
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which is a birth—death process with state space {0, . .., n} and transition probabilities
DPkk—1 = 1 — priy1 = % for k € {0,...,n}. Denote by P, the law and Ej the
expectation of Q,, starting in k. Let moreover T; = inf{k € N: Q, (k) = d}. By the
Markov property of J,,, we have under Py, in distribution, that

dist(J,(0), J, (K)) £ dist(Jy (), Ju(G + ) £ Quk), Vjk=0. (43)

Recall for the proof of (4.1) that if |i/v,| = [j/vn], we have that Alj AOJ

Moreover, since for such i, j necessarily |i — j| < v, we have that D;; < v,. Thus, let
de{l,...,v,}. By Lemma 4.2 in [1] we deduce that there exists a constant C < 0o,

independent of d, such that

9)1
kn(t) D Exdp,—q < Ctay. (4.4)
Li/vnl=Lj/vn]
Moreover,
2d\” 2pli — j 2 a?
(Ag—A}j) - (1——) —(1—M) =—p(|i—j|—d)+0(—2).
n n n n
4.5)
Therefore the main contributions in (4.1) are of the form
On Iﬂn/an i+v,
> i—jl=dExdp—a=va >, > (j—i—d) Exrlp,—
Li/vnl=Lj/vnl i=1 j=i+l
[6n/vn] vn

=v, > D Eolg,(y=d (j —d). (4.6)

i=1 j=1

Setting Z = Z'j{"zl 19, (j)=a (j — d), (4.6) is nothing but 8, EoZ. It is shown in [2]
(page 107-108) that there exists a constant C < 0o, independent of d, such that

EoZ < CEy(Ty —d) 11,<y,
< C(EoTy —dPy(Ty < vy)) <C (Eon —d (1 - v;‘EOTd)), 4.7

where the last inequality is obtained by a first order Chebychev inequality. To calculate
EyT,; we use the following classical formulas (see e.g. [12], Chapter 2.5)

d
EogT,; = Z E;_1T;, where 4.8)
=1

-1
Ej_\T) = lel 1 1+ZHpkk 1 ) (4.9)

Plll Plu jlklpklk

@ Springer



Convergence to extremal processes 281

Plugging in the transition probabilities, we obtain for all/ < d,

1

~| 3

! ! !
l_[n k+1

H —
n—i+ j=lk=j+1

=‘Z H n_k+] (4.10)

j=0k=j+1

E T =

Forany! <dand 0 < j <[ — 1 we have that

nof k n ! d

Z - - < . 4.11

) H n—k+1~"d H n—d ( )
In view of (4.8) we get that

ET<i; (¢ ) - d (4.12)
Od_l:11—2dn—1 n—d) )= a=2dan-1y :

But then, since % J 0asn — ooand d < vy, there exists a constant C' < 00,
independent of d, such that

EoZ < c’;f—j. (4.13)

Together with (4.4) and (4.5) this concludes the proof of (4.1).
For the proof of (4.2) we distinguish several cases. If ||d|| = min{d,n — d} >
(logn)'*¢ yn_z for some fixed ¢ > 0 then the claim of (4.2) is deduced from the bound

On enldlly?
kn) D Exlpj=a < anify < anl = (4.14)
non

Li/vn)#Lj/vn)

Assume next that ||d] < (10gn)1+8 —2 Ttis shown in [2], (page 111-112), that in
this case one can neglect values of d such that d > 7. Thus, let d < (log n)1+8 —2,
Note that

6, 6, 6y
kn() D Exdpy—a <kn®) D D Exdpg=a. (415
Li/val#Li/vnl k=0 m=jj

where jr, = inf{i e N: [k/v,] # |[(k+i)/v,]}.

We further distinguish the cases jx < 2d and jiz > 2d. If jix < 2d then, setting
Zj(d) = ngzjk 1 p; yim=d> Wwehave Z; (d) < Zo(d). Itis shown on page 685 in [1]
that there exists C < oo, independent of d, such that EyZy(d) < C. Since moreover
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Hke{l,...,0,}: jx <2d}| < 2”{2",Weknowthatf0ralln > 0 there exists C’ < 00
such that

a el

6, 6,
n n d
kn@) D D" Ex,Ipj=a < CtavL <Ct (4.16)
n

2
k=0 m=j Un¥i
Let jr > 2d, i.e. in particular Z; (d) < Z»4(d). By the Markov property and by
Lemma 4.2 in [1] we obtain that there exists C < oo such that

On
EoZ2a(d) < Po(Tg € Qd,0))\ 1+ Ea| D Ng,a=a | | < CPo(Tu € 2d.6,)).
k=1
4.17)

The probability that Q gets from O to d after 2d steps is bounded by the probability
that it takes at least d steps to the left, i.e.

2d\ (d\* 4d\? d
Py(Ty € (2d, 6,)) < —-) <2d|—) «—. (4.18)
d n n U,
The claim follows as in (4.16). This finishes the proof of (4.2). |
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