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Abstract This paper extends recent results on ageing in mean field spin glasses on
short time scales, obtained by Ben Arous and Gün (Commun Pure Appl Math 65:77–
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252 A. Bovier et al.

1 Introduction and main results

Spin glasses have, for the last decades, presented some of the most interesting chal-
lenges to probability theory. Even mean-field models have prompted a 1,000 page
monograph [16,17] by one of the most eminent probabilists of our time. Despite these
efforts and remarkable and unexpected progress, a full understanding of the equilib-
rium problem, i.e. a full description of the asymptotic geometry of the Gibbs measures,
is still outstanding. In this situation it is somewhat surprising that certain properties of
their dynamics have been prone to rigorous analysis, at least for some limited choices
of the dynamics. The reason for this is that interesting aspects of the dynamics occur
on time-scales that are far shorter than those of equilibration, and experiments made
with spin glasses usually test the behaviour of the probe on such time scales. Indeed,
equilibration is expected to take so long as to become inaccessible to real experiments.
The physically interesting issue is thus that of ageing [4,5], a property of time–time
correlation functions that characterizes the slow decay to equilibrium characteristic
for these systems.

The mathematical analysis has revealed an universal mechanism behind this phe-
nomenon: the convergence of the clock-process, that relates the physical time to the
number of “moves” of the process, to an α-stable subordinator (increasing Lévy
process) under proper rescaling. The parameter α can be thought of as an effective
temperature, that depends both on the physical temperature and the time scale con-
sidered. This has been proven for p-spin Sherrington-Kirkpatrick (SK) models for
time scales of the order exp(βγ n) (where n is the number of sites in the system) with
0 < γ < min

(
β, ζ(p)

)
, where ζ(p) is an increasing function of p such that ζ(3) > 0

and lim p↑∞ ζ(p) = 2 ln 2. Such a result was obtained first in [1] in law with respect
to the random environment, and was later extended in [6] to almost sure (resp. in
probability, p=3,4) results. The progress in the latter paper was possible to a fresh
view on the convergence of clock processes, introduced and illustrated in two papers
[8,9]. They view the clock process as a sum of dependent random variables with a
random distribution, and then employ convenient convergence criteria, obtained by
Durrett and Resnick [7] a long time ago, to prove convergence. This is explained in
more detail below.

The conditions on the admissible time scales in these results have two reasons.
First, it emerges that α = γ /β, so one of the conditions is simply that α ∈ (0, 1). The
upper bound γ < ζ(p) ensures that there will be no strong long-distance correlations,
meaning that the systems has not had time to discover the full correlation structure
of the random environment. This condition is thus the stricter the smaller p is, since
correlations become weaker as p increases.

A natural questions to ask is what happens on time-scales that are sub-exponential
in the volume n? This question was first addressed in a recent paper by Ben Arous
and Gün [2]. This situation would correspond formally to α = 0, but 0-stable sub-
ordinators do not exist, so some new phenomenon has to appear. Indeed, Ben Arous
and Gün showed that the limiting objects appearing here are the so-called extremal
processes. In the theory of sums of heavy tailed random variables this idea goes back to
Kasahara [10] who showed that by applying non-linear transformations to the sums of
αn-stable r.v.’s with αn ↓ 0, extremal processes arise as limit processes. This program
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Convergence to extremal processes 253

was implemented for clock processes by Ben Arous and Gün using the approach of
[1] to handle the problems of dependence of the random variables involved. As a con-
sequence, their results are again in law with respect to the random environment. An
interesting aspect of this work was that, due to the very short time scales considered,
the case p = 2, i.e. the original SK model, is also covered, whereas this is not the case
for exponential times scales.

In the present paper we show that by proceeding along the line of [6], one can
extend the results of Ben Arous and Gün to quenched results, holding for given random
environments almost surely (if p > 4) resp. in probability (if 2 ≤ p ≤ 4). In fact, the
result we present for the SK models is an application of an abstract result we establish,
and that can be applied presumably to all models where ageing was analysed, on the
approriate time scales.

Before stating our results, we begin by a concise description of the class of models
we consider.

1.1 Markov jump processes in random environments

Let us describe the general setting of Markov jump processes in random environ-
ments that we consider here. Let Gn(Vn,Ln) be a sequence of loop-free graphs
with set of vertices Vn and set of edges Ln . The random environment is a family
of positive random variables, τn(x), x ∈ Vn , defined on a common probability space
(�,F , P). Note that in the most interesting situations the τn’s are correlated random
variables.

On Vn we consider a discrete time Markov chain Jn with initial distribution μn ,
transition probabilities pn(x, y), and transition graph Gn(Vn,Ln). The law of Jn is
a priori random on the probability space of the environment. We assume that Jn is
reversible and admits a unique invariant measure πn .

The process we are interested in, Xn , is defined as a time change of Jn . To this end
we set

λn(x) ≡ Cπn(x)/τn(x), (1.1)

where C > 0 is a model dependent constant, and define the clock process

S̃n(k) =
k−1∑

i=0

λ−1
n (Jn(i))en,i , k ∈ N, (1.2)

where {en,i : i ∈ N0, n ∈ N} is an i.i.d. array of mean 1 exponential random variables,
independent of Jn and the random environment. The continuous time process Xn is
then given by

Xn(t) = Jn(k), if S̃n(k) ≤ t < S̃n(k + 1) for some k ∈ N, t > 0. (1.3)

One verifies readily that Xn is a continuous time Markov jump process with infinites-
imal generator
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λn(x, y) ≡ λn(x)pn(x, y), (1.4)

and invariant measure that assigns to x ∈ Vn the mass τn(x).
To fix notation we denote by F J and F X the σ -algebras generated by the variables

Jn and Xn , respectively. We write Pπn for the law of the process Jn , conditional on F ,
i.e. for fixed realizations of the random environment. Likewise we call Pμn the law of
Xn conditional on F .

In [8,9] and [6], the main aim was to find criteria when there are constants, an, cn ,
satisfying an, cn ↑ ∞, as n → ∞, and such that the process

Sn(t) ≡ c−1
n S̃n(	ant
) = c−1

n

	ant
−1∑

i=0

λ−1
n (Jn(i))en,i , t > 0, (1.5)

converges in a suitable sense to a stable subordinator. The constants cn are the time scale
on which we observe the continuous time Markov process Xn , while an is the number
of steps the jump chain Jn makes during that time. In order to get convergence to an
α-stable subordinator, for α ∈ (0, 1), one typically requires that the λ−1’s observed
on the time scales cn have a regularly varying tail distribution with index −α. In this
paper we ask when there are constants, an, cn, αn , satisfying an, cn ↑ ∞ and αn ↓ 0
respectively, as n → ∞, and such that the process (Sn)αn converges in a suitable sense
to an extremal process.

1.2 Main theorems

We now state three theorems, beginning with an abstract one that we next specialize
to the setting of Sect. 1.1. Specifically, consider a triangular array of positive random
variables, Zn,i , defined on a probability space (�,F ,P). Let αn and an be sequences
such that αn ↓ 0 and an ↑ ∞ as n → ∞, respectively. Our first theorem gives
conditions that ensure that the sequence of processes (Sn)αn , where Sn(0) = 0 and

Sn(t) ≡
	ant
∑

i=1

Zn,i , t > 0, (1.6)

converges to an extremal process. Recall that an extremal process, M , is a continuous
time process whose finite-dimensional distributions are given as follows: for any k ∈
N, t1, . . . , tk > 0, and x1 ≤ · · · ≤ xk ∈ R,

P (M(t1) ≤ x1, . . . , M(tk) ≤ xk) = Ft1 (x1) Ft2−t1 (x2) · · · Ftk−tk−1 (xk), (1.7)

where F is a distribution function on R.

Theorem 1.1 Let ν be a sigma-finite measure on (R+,B(R+)) such that ν(0,∞) =
∞. Assume that there exist sequences an, αn such that for all continuity points x of
the distribution function of ν, for all t > 0, in P-probability,
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Convergence to extremal processes 255

lim
n→∞

	ant
∑

i=1

P
(

Zαn
n,i > x |Fn,i−1

)
= tν(x,∞), (1.8)

and

lim
n→∞

	ant
∑

i=1

[
P
(

Zαn
n,i > x |Fn,i−1

)]2 = 0, (1.9)

where Fn,i denotes the σ -algebra generated by the random variables Zn, j , j ≤ i . If,
moreover, for all t > 0

lim sup
n→∞

⎛

⎝
	ant
∑

i=1

E1Zn,i ≤δ1/αn δ−1/αn Zn,i

⎞

⎠

αn

< ∞, ∀δ > 0, (1.10)

then, as n → ∞,

(Sn)αn J1�⇒ Mν, (1.11)

where Mν is an extremal process with one-dimensional distribution function F(x) =
exp(−ν(x,∞)). Convergence holds weakly on the space D([0,∞)) equipped with
the Skorokhod J1-topology.

In the sequel we denote by
J1�⇒ weak convergence in D([0,∞)) equipped with the

Skorokhod J1-topology.
In order to use Theorem 1.1 in the Markov jump process setting of Sect. 1.1, we

specify Zn,i . In doing this we will be guided by the knowledge acquired in earlier
works [6,8,9]: introducing a new scale θn we take Zn,i to be a block sum of length θn ,
i.e. we set

Zn,i ≡
iθn∑

j=(i−1)θn+1

c−1
n λ−1

n (Jn( j))en, j . (1.12)

The rôle of θn is to de-correlate the variables Zn,i under the law Pμn . In models with
uncorrelated environments and where the probability of revisiting points is small, one
may hope to take θn = 1. When the environment is correlated and the chain Jn is
rapidly mixing, one may try to choose θn � an in such a way that, the variables
Zn,i are close to independent. These two situations were encountered in the random
hopping dynamics of the Random Energy Model in [8], and the p-spin models in [6]
respectively. Theorem 1.2 below specializes Theorem 1.1 to these Zn,i ’s.

For y ∈ Vn and u > 0 let

Qu
n(y) ≡ Py

⎛

⎝
θn∑

j=1

λ−1
n (Jn( j))en, j > cnu1/αn

⎞

⎠ (1.13)
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be the tail distribution of the blocked jumps of Xn , when Xn starts in y. Furthermore,
for kn(t) ≡ 		ant
/θn
, t > 0, and u > 0 define

ν J,t
n (u,∞) ≡

kn(t)∑

i=1

∑

y∈Vn

pn(Jn(θni), y)Qu
n(y), (1.14)

(
σ J,t

n

)2
(u,∞) ≡

kn(t)∑

i=1

⎡

⎣
∑

y∈Vn

pn(Jn(θni), y)Qu
n(y)

⎤

⎦

2

. (1.15)

Using this notation, we rewrite Conditions (1.8)–(1.10). Note that Qu
n(y) is a ran-

dom variable on the probability space (�,F , P), and so are the quantities ν
J,t
n (u,∞)

and σ
J,t

n (u,∞). The conditions below are stated for fixed realization of the random
environment as well as for given sequences an , cn , θn , and αn such that an, cn ↑ ∞,
and αn ↓ 0 as n → ∞.
Condition (1) Let ν be a σ -finite measure on (0,∞) with ν(0,∞) = ∞ and such
that for all t > 0 and all u > 0

lim
n→∞ Pμn

(∣∣∣ν J,t
n (u,∞) − tν(u,∞)

∣∣∣ > ε
)

= 0 , ∀ε > 0. (1.16)

Condition (2) For all u > 0 and all t > 0,

lim
n→∞ Pμn

((
σ J,t

n

)2
(u,∞) > ε

)
= 0, ∀ε > 0. (1.17)

Condition (3) For all t > 0 and all δ > 0

lim sup
n→∞

⎛

⎝
	ant
∑

i=1

Eμn 1{λ−1
n (Jn(i))en,i ≤δ1/αn cn}(cnδ1/αn )−1λ−1

n (Jn(i))en,i

⎞

⎠

αn

<∞.

(1.18)

Condition (0) For all v > 0,

lim
n→∞

∑

x∈Vn

μn(x)e−v1/αn cnλn(x) = 0. (1.19)

For t > 0 set

(
Sb

n (t)
)αn ≡

⎛

⎝
kn(t)∑

i=1

⎛

⎝
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn( j))en, j

⎞

⎠+c−1
n λ−1

n (Jn(0))en,0

⎞

⎠

αn

.(1.20)
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Theorem 1.2 If for a given initial distribution μn and given sequences an, cn, θn, and
αn, Conditions (0)-(3) are satisfied P-a.s., respectively in P-probability, then

(
Sb

n

)αn J1�⇒ Mν, (1.21)

where convergence holds P-a.s., respectively in P-probability.

Remark Theorem 1.2 tells us that the blocked clock process (Sb
n )αn converges to Mν

weakly in D([0,∞)) equipped with the Skorokhod J1-topology. This implies that the
clock process (Sn)αn converges to the same limit in the weaker M1-topology (see [6]
for further discussion).

Remark The extra Condition (0) serves to guarantee that the last term in (1.20) is
asymptotically negligible.

Finally, following [6], we specialize Conditions (1)–(3) under the assumption that
the chain Jn obeys a mixing condition [(see Condition (2-1) below]. Conditions (1)–
(2) of Theorem 1.2 are then reduced to laws of large numbers for the random variables
Qu

n(y). Again we state these conditions for fixed realization of the random environment
and given sequences an , cn , θn , and αn .

Condition (1-1) Let Jn be a periodic Markov chain with period q. There exists a
positive decreasing sequence ρn , satisfying ρn ↓ 0 as n → ∞, such that, for all pairs
x, y ∈ Vn , and all i ≥ 0,

q−1∑

k=0

Pπn (Jn(i + θn + k) = y, Jn(0) = x) ≤ (1 + ρn)πn(x)πn(y). (1.22)

Condition (2-1) There exists a σ -finite measure ν with ν(0,∞) = ∞ and such that

νt
n(u,∞) ≡ kn(t)

∑

x∈Vn

πn(x)Qu
n(x) → tν(u,∞), (1.23)

and

(
σ t

n

)2
(u,∞) ≡ kn(t)

∑

x∈Vn

∑

x ′∈Vn

πn(x)p(2)
n (x, x ′)Qu

n(x)Qu
n(x ′) → 0, (1.24)

where p(2)
n (x, x ′) =∑y∈Vn

pn(x, y)pn(y, x ′) are the 2-step transition probabilities.

Condition (3-1) For all t > 0 and δ > 0

lim sup
n→∞

(
	ant
Eπn1{λ−1

n (Jn(1))en,1≤cnδ1/αn }c
−1
n δ−1/αn λ−1

n (Jn(1))en,1

)αn
< ∞.

(1.25)
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Theorem 1.3 Let μn = πn. If for given sequences an, cn, θn � an, and αn, Conditions

(1-1)–(3-1) and (0) are satisfied P-a.s., respectively in P-probability, then (Sb
n )αn

J1�⇒
Mν , P-a.s., respectively in P-probability.

1.3 Application to the p-spin SK model

In this section we illustrate the power of Theorem 1.3 by applying it to the p-spin
SK models, including the SK model itself, i.e. p ≥ 2. The underlying graph Vn is the
hypercube

∑
n = {−1, 1}n . The Hamiltonian of the p-spin SK model is a Gaussian

process, Hn , on
∑

n with zero mean and covariance

EHn(x)Hn(x ′) = n Rn(x, x ′)p, (1.26)

where Rn(x, x ′) ≡ 1 − 2dist(x,x ′)
n and dist(·, ·) is the graph distance on

∑
n ,

dist(x, x ′) ≡ 1

2

n∑

i=1

|xi − x ′
i |. (1.27)

The random environment, τn(x), is defined in terms of Hn through

τn(x) ≡ exp(βHn(x)), (1.28)

where β > 0 is the inverse temperature. The Markov chain, Jn , is chosen as the simple
random walk on

∑
n , i.e.

pn(x, x ′) =
{

1
n , if dist(x, x ′) = 1,

0, else.
(1.29)

This chain has unique invariant measure πn(x) = 2−n . Finally, choosing C = 2n in
(1.1), the mean holding times, λ−1

n (x), reduce to λ−1
n (x) = τn(x). This defines the

so-called random hopping dynamics.
In the theorem below the inverse temperature β is to be chosen as a sequence

(βn)n∈N that either diverges or converges to a strictly positive limit.

Theorem 1.4 Let ν be given by ν(u,∞) ≡ K pu−1 for u ∈ (0,∞) and K p = 2p.
Let γn, βn be such that γn = n−c for c ∈ (0, 1

2

)
, βn ≥ β0 for some β0 > 0, and

γnβn ≤ O(1). Set αn ≡ γn/βn. Let θn = 3n2 be the block length and define the jump
scales an and time scales cn via

an ≡ √
2πn γ −1

n e
1
2 γ 2

n n, (1.30)

cn ≡ eγnβnn . (1.31)

Then
(
Sb

n

)αn J1�⇒ Mν . Convergence holds P-a.s. for p > 5 and in P-probability for
p = 2, 3, 4. For p = 5 it holds P-a.s. if c ∈ (0, 1

4

)
and in P-probability else.
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Remark Theorem 1.4 immediately implies that (Sn)αn
M1�⇒ Mν on D([0,∞))

equipped with the weaker M1- topology.

In [2] an analogous result is proven in law with respect to the environment for
similar conditions on the sequence γn and fixed β.

Let us comment on the conditions on γn and βn in Theorem 1.4. They guarantee
that αn ↓ 0 as n → ∞, and that both sequences an and cn diverge as n → ∞.
Note here that different choices of the sequence βn correspond to different time scales
cn . If βn → β > 0, as n → ∞, then cn is sub-exponential in n, while in the case
of diverging βn , cn can be as large as exponential in O(n). Finally these conditions
guarantee that the rescaled tail distribution of the τn’s, on time scale cn , is regularly
varying with index −αn .

We use Theorem 1.4 to derive the limiting behavior of the time correlation function
Cε

n(t, s) which, for t > 0, s > 0, and ε ∈ (0, 1) is given by

Cε
n(t, s) ≡ Pπn

(
Aε

n(t, s)
)
, (1.32)

where Aε
n(t, s) ≡ {Rn

(
Xn(t1/αn cn), Xn((t + s)1/αn cn)

) ≥ 1 − ε
}
.

Theorem 1.5 Under the assumptions of Theorem 1.4,

lim
n→∞ Cε

n(t, s) = t

t + s
, ∀ε ∈ (0, 1), t, s > 0. (1.33)

Convergence holds P-a.s. for p > 5 and in P-probability for p = 2, 3, 4. For p = 5
it holds P-a.s. if c ∈ (0, 1

4

)
and in P-probability else.

Theorem 1.5 establishes extremal ageing as defined in [2]. Here, de-correlation
takes place on time intervals of the form [t1/αn , (t + s)1/αn ], while in normal ageing
it takes place on time intervals of the form [t, t + s].

The remainder of the paper is organized as follows. We prove the results of Sect. 1.2
in Sect. 2. Section 3 is devoted to the proofs of the statements of Sect. 1.3. Finally, an
additional lemma is proven in the Appendix.

2 Proofs of the main theorems

Now we come to the proofs of the theorems of Sect. 1.2. The proof of Theorem 1.1
hinges on the property that extremal processes can be constructed from Poisson point
processes. Namely, if ξ ′ =∑k∈N

δ{t ′k ,x ′
k } is a Poisson point process on (0,∞)×(0,∞)

with mean measure dt × dν′, where ν′ is a σ -finite measure such that ν′(0,∞) = ∞,
then

M(t) ≡ sup{x ′
k : t ′k ≤ t}, t > 0, (2.1)

is an extremal process with 1-dimensional marginal

Ft (u) = e−tν′(u,∞). (2.2)
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(See e.g. [15], Chapter 4.3.). This was used in [7] to derive convergence of maxima
of random variables to extremal processes from an underlying Poisson point process
convergence. Our proof exploits similar ideas and the key fact that the 1/αn-norm
converges to the sup norm as αn ↓ 0.

Proof of Theorem 1.1 Consider the sequence of point processes defined on (0,∞) ×
(0,∞) through

ξn ≡
∑

k∈N

δ{
k/an ,Zαn

n,k

}. (2.3)

By Theorem 3.1 of [7], Conditions (1.8) and (1.9) immediately imply that ξn
n→∞⇒ ξ ,

where ξ is a Poisson point process with intensity measure dt × dν.
The remainder of the proof can be summarized as follows. In the first step we

construct (Sn(t))αn from ξn by taking the αth
n power of the sum over all points Zn,k up

to time 	ant
. To this end we introduce a truncation threshold δ and split the ordinates
of ξn into

Zαn
n,k = Zαn

n,k1Zαn
n,k≤δ + Zαn

n,k1Zαn
n,k>δ. (2.4)

Applying a summation mapping to Zαn
n,k1Zαn

n,k>δ , we show that the resulting process
converges to the supremum mapping of a truncated version of ξ . More precisely, let
δ > 0. Denote by Mp the space of point measures on (0,∞) × (0,∞). For n ∈ N

let T δ
n be the functional on Mp, whose value at m =∑k∈N

δ{tk , jk } is

(T δ
n m)(t) =

(
∑

tk≤t

j1/αn
k 1{ jk>δ}

)αn

, t > 0. (2.5)

Let T δ be the functional on Mp given by

(T δm)(t) = sup
{

jk1{ jk>δ} : tk ≤ t
}
, t > 0. (2.6)

We show that T δ
n ξn

J1�⇒ T δξ as n → ∞.
In the second step we prove that the small terms, as δ → 0 and n → ∞, do not

contribute to (Sn)αn , i.e. that for ε > 0

lim
δ→0

lim sup
n→∞

P (ρ∞
(
T δ

n ξn, Sαn
n

)
> ε
) = 0, (2.7)

where ρ∞ denotes the Skorokhod metric on D([0,∞)). Moreover, observe that

T δξ
J1�⇒ M as δ → 0. Then, by Theorem 4.2 from [3], the assertion of Theorem

1.1 follows.
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Convergence to extremal processes 261

Step 1: To prove that T δ
n ξn

J1�⇒ T δξ as n → ∞ we use a continuous mapping
theorem, namely Theorem 5.5 from [3]. Since the mappings T δ

n and T δ are
measurable, it is sufficient to show that the set

E =
{

m ∈ Mp : ∃ (mn)n∈N s.t. mn
v→ m, but T δ

n mn�
�J1�⇒ T δm

}
, (2.8)

where
v→ denotes vague convergence in Mp, is a null set with respect to the

distribution of ξ . For the Poisson point process ξ it is enough to show that
Pξ (Ec ∩ D) = 1, where

D ≡ {m ∈ Mp : m ((0, t] × [ j,∞)) < ∞ ∀t, j > 0
}
. (2.9)

Let CT δ ≡ {t > 0 : Pξ

({
m : T δm (t) = T δm (t−)

}) = 1
}

be the set of con-
tinuity points of ξ . By definition of the Skorokhod metric, we consider m ∈ D,
a, b ∈ CT δ , and (mn)n∈N such that mn

v→ m and show that

lim
n→∞ ρ[a,b]

(
T δ

n mn, T δm
) = 0, (2.10)

where ρ[a,b] denotes the Skorokhod metric on [a, b]. Since m ∈ D, there
exist continuity points x, y of m such that m((a, b) × (δ,∞)) = m((a, b) ×
(x, y)) < ∞. Then, Lemma 2.1 from [13] yields that mn also has this property
for large enough n. Moreover, the points of mn in (a, b) × (x, y) converge to
the ones of m (cf. Lemma I.14 in [14]). Finally, we use that αn ↓ 0 as n → ∞
and thus T δ

n can be viewed as the 1/αn-norm, which converges as n → ∞ to

the sup-norm T δ . Therefore, T δ
n ξn

J1�⇒ T δξ as n → ∞.
Step 2: We prove (2.7) by showing that the assertion holds true for the Skorokhod

metric on D([0, k]) for every k ∈ N. Assume without loss of generality that
k = 1. Let ε > 0. We have that

P
(

sup
0≤t≤1

∣∣T δ
n ξn (t) − Sαn

n (t)
∣∣ > ε

)

= P
⎛

⎝ sup
0≤t≤1

∣
∣∣∣∣∣

⎛

⎝
	ant
∑

i=1

Zn,i1Zn,i >δ1/αn

⎞

⎠

αn

−
⎛

⎝
	ant
∑

i=1

Zn,i

⎞

⎠

αn
∣
∣∣∣∣∣
> ε

⎞

⎠ . (2.11)

Since for n large enough αn < 1, we know by Jensen inequality that

∣∣∣∣∣∣

⎛

⎝
	ant
∑

i=1

Zn,i1Zn,i >δ1/αn

⎞

⎠

αn

−
⎛

⎝
	ant
∑

i=1

Zn,i

⎞

⎠

αn
∣∣∣∣∣∣
≤
∣∣∣∣∣∣

	ant
∑

i=1

Zn,i1Zn,i ≤δ1/αn

∣∣∣∣∣∣

αn

,

(2.12)
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and therefore

(2.11) ≤ P
⎛

⎝ sup
0≤t≤1

∣∣∣
∣∣∣

	ant
∑

i=1

Zn,i1Zn,i ≤δ1/αn

∣∣∣
∣∣∣

αn

> ε

⎞

⎠ . (2.13)

All summands are non-negative. Hence the supremum is attained for t = 1.
Applying a first order Chebychev and Jensen inequality, we obtain that (2.13)
is bounded above by

ε−1

( an∑

i=1

E1Zn,i ≤δ1/αn Zn,i

)αn

= δ

ε

( an∑

i=1

E1Zn,i ≤δ1/αn δ−1/αn Zn,i

)αn

. (2.14)

By (1.10) the sum is bounded in n and hence, as δ → 0, (2.14) tends to zero.
This concludes the proof of Theorem 1.1. ��

Proof of Theorem 1.2 Throughout we fix a realisation ω ∈ � of the random environ-
ment but do not make this explicit in the notation. We set

Ŝb
n (t) ≡ Sb

n (t) − c−1
n λ−1

n (Jn(0))en,0, t > 0. (2.15)

(Sb
n (t))αn differs from (Ŝb

n (t))αn by one term. All terms in (Sb
n (t))αn are non-negative

and therefore we conclude by Jensen inequality that, for n large enough,

Ŝb
n (t)αn ≤ Sb

n (t)αn ≤ Ŝb
n (t)αn +

(
c−1

n λ−1
n (Jn(0))en,0

)αn
. (2.16)

By Condition (0) the contribution of the term
(
c−1

n λ−1
n (Jn(0))en,0

)αn is negligible.

Thus we must show that under Conditions (1)–(3), (Ŝb
n )αn

J1�⇒ Mν . Recall that kn(t) ≡
		ant
/θn
 and that for i ≥ 1,

Zn,i ≡
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn( j))en, j . (2.17)

We apply Theorem 1.1 to the Zn,i ’s. It is shown in the proof of Theorem 1.2 in [6]
that Conditions (1) and (2) imply (1.8) and (1.9). It remains to prove that Condition
(3) yields (1.10). Note that for all i ≥ 1 and all (i − 1)θn + 1 ≤ j ≤ iθn ,

1⎧⎨

⎩

iθn∑

j=(i−1)θn+1

λ−1
n (Jn( j))en, j ≤ cnδ1/αn

⎫
⎬

⎭

≤ 1{
λ−1

n (Jn( j))en, j ≤cnδ1/αn
}. (2.18)
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Using (2.18), we observe that (1.10) is in particular satisfied if for all δ > 0 and t > 0

lim sup
n→∞

⎛

⎝
	ant
∑

i=1

Eμn1{λ−1
n (Jn( j))en, j ≤cnδ1/αn }δ

−1/αn c−1
n λ−1

n (Jn( j))en, j

⎞

⎠

αn

< ∞,

(2.19)

which is nothing but Condition (3). This concludes the proof of Theorem 1.2. ��
Finally, having Theorem 1.2 and the results from [6], Theorem 1.3 is deduced

readily.

Proof of Theorem 1.3 Let μn be the invariant measure πn of the jump chain Jn . By
Proposition 2.1 of [6] we know that Conditions (0), (1-1), and (2-1) imply Conditions
(0)–(2) of Theorem 1.2. Moreover, since μn = πn , Condition (3-1) is Condition (3).
Thus, the conditions of Theorem 1.2 are satisfied under the assumptions of Theorem
1.3 and this yields the claim. ��

3 Application to the p spin SK model

This section is devoted to the proof of Theorem 1.4. We show that the conditions of
Theorem 1.3 are satisfied for the particular choices of the sequences an , cn , θn , and
αn .

The following lemma from [8] (Proposition 3.1) implies that Condition (1-1) holds
true for θn = 3n2.

Lemma 3.1 Let Pπn be the law of the simple random walk on
∑

n started in the
uniform distribution. Let θn = 3n2. Then, for any x, y ∈∑n, and any i ≥ 0,

∣∣∣
∣∣

1∑

k=0

Pπn (Jn(θn + i + k) = y, Jn(0) = x) − 2πn(x)πn(y)

∣∣∣
∣∣
≤ 2−3n+1. (3.1)

The proof of Condition (2-1) comes in three parts. We first show that Eνt
n(u,∞) con-

verges to tν(u,∞). Next we prove that P-almost surely, respectively in P-probability,
the limit of νt

n(u,∞) concentrates for all u > 0 and all t > 0 around its expecta-
tion. Lastly we verify that the second part of Condition (2-1) is satisfied in the same
convergence mode with respect to the random environment.

3.1 Convergence of Eνt
n(u,∞)

Proposition 3.2 For all u > 0 and t > 0

lim
n→∞ Eνt

n(u,∞) = νt (u,∞) ≡ K ptu−1. (3.2)

The proof of Proposition 3.2 centers on the following key proposition.
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Proposition 3.3 Let for t > 0 and an arbitrary sequence un,

ν̄t
n(un,∞) = kn(t) Pπn

(
max

i=1,...,θn
λ−1

n (Jn(i))en,i > u1/αn
n cn

)
. (3.3)

Then, for all u > 0 and t > 0,

lim
n→∞ E ν̄t

n(u,∞) = νt (u,∞). (3.4)

The same holds true when u is replaced by un = u θ
−αn
n .

Proof of Proposition 3.2 By definition, νt
n(u,∞) is given by

νt
n(u,∞) = kn(t) Pπn

(
θn∑

i=1

λ−1
n (Jn(i))en,i > u1/αn cn

)

. (3.5)

The assertion of Proposition 3.2 is then deduced from Proposition 3.3 using the upper
and lower bounds

ν̄t
n(u,∞) ≤ νt

n(u,∞) ≤ ν̄t
n(uθ−αn

n ,∞). (3.6)

��
The proof of Proposition 3.3, which is postponed to the end of this section, relies

on three Lemmata. In Lemma 3.4 we show that (3.4) holds true if we replace the
underlying Gaussian process by a simpler Gaussian process H1. Lemma 3.5 yields
(3.4) for the maximum over a properly chosen random subset of indices of H1. We
use Lemma 3.7 to conclude the proof of Proposition 3.3.

We start by introducing the Gaussian process H1. Let vn be a sequence of integers,
where each member is of order nω for ω ∈ (c + 1

2 , 1
)
. Then, H1 is a centered Gaussian

process defined on the probability space (�,F , P) with covariance structure

�1
i, j =

{
1 − 2pn−1|i − j |, if 	i/vn
 = 	 j/vn
,
0, else.

(3.7)

For a given process U = {Ui , i ∈ N} on (�,F , P) and an index set I define

Fn(un, U, I ) ≡ P

(
maxi∈I e

√
nβnUi > u1/αn

n cn

)
, (3.8)

and for a process Ũ = {Ũi , i ∈ N} on (�,F , P) that may also be dependent on F J

Gn(un, Ũ , I ) ≡ Pπn

(
max
i∈I

e
√

nβnŨi en,i > u1/αn
n cn

∣
∣∣∣F J

)
. (3.9)
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Lemma 3.4 For all u > 0 and t > 0

lim
n→∞ kn(t)EGn(u, H1, [θn]) = νt (u,∞), (3.10)

where [k] ≡ {1, . . . , k} for k ∈ N. The same holds true when u is replaced by
un = u θ

−αn
n .

We prove Proposition 3.3 and Lemmata 3.4, 3.5, and 3.7 for fixed u > 0 only. To
show that the claims also hold for un = uθ

−αn
n , it is a simple rerun of their proofs,

using θ
−αn
n ↑ 1 as n → ∞.

Proof It is shown in Proposition 2.1 of [2] that, by setting the exponentially distributed
random variables to 1 in (3.9) and taking expectation with respect to the random
environment, we get for all u > 0 that

lim
n→∞ anv−1

n Fn(u, H1, [vn]) = ν(u,∞). (3.11)

Assume for simplicity that θn is a multiple of vn . Note that blocks of H1 of length vn

are independent and identically distributed. Thus,

kn(t)Fn(u, H1, [θn]) = kn(t)

(
1 −

(
1 − Fn(u, H1, [vn])

)θn/vn
)

∼ kn(t)θnv−1
n Fn(u, H1, [vn])

n→∞−→ νt (u,∞). (3.12)

To show that kn(t)EGn(u, H1, [θn]) also converges to νt (u,∞) as n → ∞ we use
same arguments as in (3.12) and prove that anv−1

n EGn(u, H1, [vn]) → ν(u,∞) as
n → ∞. Using Fubini we have that

an

vn
EGn(u, H1, [vn]) = an

vn

∞∫

cnu1/αn

dz

∞∫

0

dy
fmaxi∈[vn ] en,i (y)

y
f
maxi∈[vn ] eβn

√
nH1(i) (

z
y )

= an

vn

∞∫

0

dy fmaxi∈[vn ] en,i (y)Fn(u y−αn , H1, [vn]), (3.13)

where fZ (·) denotes the density function of Z . Since we want to use computations
from the proof of Proposition 2.1 in [2], it is essential that the integration area over y
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is bounded from below and above. We bound (3.13) from above by

(3.13) ≤ anv−1
n P

(
max

i=1,...,vn
en,i ≤ e−nv−1−δ

n

)
(3.14)

+ anv−1
n

env
−1/2−δ
n∫

e−nv
−1−δ
n

dy fmaxi∈[vn ] en,i (y)Fn(u y−αn , H1, [vn]) (3.15)

+ anv−1
n P

(
max

i=1,...,vn
en,i > env

−1/2−δ
n

)
, (3.16)

where δ > 0 is chosen in such a way that nv−1−δ
n diverges and vδ

nγ 2
n ↓ 0 as n → ∞,

i.e. δ < min
{
2c, 1−ω

ω

}
. Then,

(3.14) = anv−1
n

(
1 − exp

(
−e−nv−1−δ

n

))vn ≤ ane−nv−δ
n = o

(
e−nv−δ

n (1−γ 2
n vδ

n)
)

,

(3.17)

i.e. (3.14) vanishes as n → ∞. Similarly,

(3.16) = anv−1
n

(
1 −

(
1 − exp

(
−e−nv

−1/2−δ
n

))vn
)

= o

(
eγ 2

n n−env
−1/2−δ
n

)
n→∞−→ 0.

(3.18)

As in equation (2.31) in [2] we see that (3.15) is given by

env
−1/2−δ
n∫

e−nv
−1−δ
n

dy
fmaxi∈[vn ] en,i (y)

γ 2
n vn

vn∑

k=1

∫

D
′′
k

da2 · · · davn

∞∫

log(uy−αn )

da1
e−hk (a1,...,avn )

(2π)
vn−1

2

,

(3.19)

where for k ∈ {1, . . . , vn}

hk(a1, . . . , avn )=a1 − a2
1C1

γ 2
n n

− 1

2

vn∑

i=2

a2
i + (a2 + · · · + ak − ak+1 − · · · − avn )a1C2

γnn
,

(3.20)

for some constants C1, C2 > 0 and a sequence of sets D
′′
k ⊆ R

vn−1 such that

γ −2
n v−1

n

vn∑

k=1

∫

D
′′
k

da2 · · · davn (2π)−vn/2−1/2e− 1
2

∑vn
i=2 a2

i
n→∞−→ K p. (3.21)
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The aim is to separate a1 from a2, . . . , avn in (3.20). We bound the mixed terms in
e−hk up to an exponentially small error by 1. This can be done using a large deviation
argument for |a2 +· · ·+avn | together with the fact that | log y| ∈ [nv−1−δ

n , nv
−1/2−δ
n ].

Computations yield together with the bounds in (3.19)–(3.21) that, up to a multiplica-
tive error that tends to 1 as n → ∞ exponentially fast, (3.15) is bounded from above
by

∞∫

e−nv
−1−δ
n

dy fmaxi∈[vn ] en,i (y)yαn u−1 K p ≤ ν(u,∞)

∞∫

0

dy fmaxi∈[vn ] en,i (y)yαn . (3.22)

Moreover by Jensen inequality,

(3.22) ≤ ν(u,∞)

(
Eπn max

i∈[vn ] en,i

)αn

= ν(u,∞)

⎛

⎝
∞∫

0

dy P
(

max
i∈[vn ] en,i > y

)⎞

⎠

αn

= ν(u,∞)

⎛

⎝
∞∫

0

dy
(
1 − (1 − e−y)vn

)
⎞

⎠

αn

≤ ν(u,∞)vαn
n , (3.23)

which, as n → ∞, converges to ν(u,∞).
To conclude the proof of (3.10), we bound (3.13) from below by

(3.13) ≥ an

vn

∞∫

0

dy fen,1(y)Fn(u y−αn , H1, [vn]). (3.24)

To show that the right hand side of (3.24) is greater than or equal to ν(u,∞), one
proceeds as before. ��

In the following we form a random subset of [θn] in such a way that on the one
hand, with high probability, it contains the maximum of eβn

√
nH1(i) over all i ∈ [θn].

On the other hand it should be a sparse enough subset of [θn] so that we are able to
de-correlate the random landscape and deal with the SK model. This dilution idea is
taken from [2].

If the maximum of eβn
√

nH1(i) crosses the level cnu1/αn , then it will typically be
much larger than cnu1/αn so that, due to strong correlation, at least γ −2

n of its direct
neighbors will be above the same level. To see this, we consider Laplace transforms.
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Set for v > 0

F̂n(v, H1, θn) ≡
∞∫

0

dz e−zv
P

(

δn

θn∑

i=1

1
eβ

√
nH1(i)>cnu1/αn > z

)

, (3.25)

where δn ∈ [0, 1] for every n ∈ N. We have that

F̂n(v, H1, θn) =1

v

(

1 − E exp

(

−δn

θn∑

i=1

1
eβn

√
nH1(i)>cnu1/αn

))

=1

v

⎛

⎝1 −
(

E exp

(

−δn

vn∑

i=1

1
eβn

√
nH1(i)>cnu1/αn

))θn/vn
⎞

⎠. (3.26)

From [2], Proposition 1.3, we deduce that for the choice δn = γ 2
n ρn , where ρn is any

diverging sequence of order O(log n),

lim
n→∞ anv−1

n

(

1 − E exp

(

−δn

vn∑

i=1

1
eβn

√
nH1(i)>cnu1/αn

))

= ν(u,∞). (3.27)

Therefore we have for the same choice of δn that

kn(t)F̂n(v, H1, θn) → tv−1ν(u,∞). (3.28)

From this we conclude that if the maximum is above the level cnu1/αn then immediately
O(γ −2

n ) are above this level. More precisely, we obtain

Lemma 3.5 Let ρn be as described above. Let {ξn,i : i ∈ N, n ∈ N} be an array
of row-wise independent and identically distributed Bernoulli random variables such
that P(ξn,i = 1) = 1 − P(ξn,i = 0) = γ 2

n ρn, and such that {ξn,i : i ∈ N, n ∈ N} is
independent of everything else. Set

Ik = {i ∈ {1, . . . , k} : ξn,i = 1}. (3.29)

Then, for all u > 0 and t > 0

lim
n→∞ kn(t)EGn(u, H1, Iθn ) = νt (u,∞). (3.30)

The same holds true when u is replaced by un = u θ
−αn
n .

Proof It is shown in Lemma 2.3 of [2] that

lim
n→∞ anv−1

n Fn(u, H1, Ivn ) = ν(u,∞). (3.31)

Since the random variables ξn,i are independent, the claim of Lemma 3.5 is deduced
by the same arguments as in (3.12). ��
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To conclude the proof of Proposition 3.3, we use a Gaussian comparison result.
The following lemma is an adaptation of Theorem 4.2.1 of [11].

Lemma 3.6 Let H0 and H1 be Gaussian processes with mean 0 and covari-
ance matrix �0 = (�0

i j ) and �1 = (�1
i j ), respectively. Set �m ≡ (�m

i j ) =
(max{�0

i j ,�
1
i j }) and �h ≡ h�0 + (1 − h)�1, for h ∈ [0, 1]. Then, for s ∈ R,

P(maxi∈I H0(i) ≤ s) − P(maxi∈I H1(i) ≤ s)

≤
∑

i, j∈I

(�0
i j − �1

i j )
+ exp

(

− s2

1 + �m
i j

) 1∫

0

dh(1 − (�h
i j )

2)−
1
2 , (3.32)

where (x)+ ≡ max{0, x}.
We use Lemma 3.6 to prove that

Lemma 3.7 Let H0 be given by H0(i) ≡ n−1/2 Hn(Jn(i)), i ∈ N. For all u > 0 and
t > 0

lim
n→∞ kn(t)Eπn |EGn(u, H0, θn) − EGn(u, H1, θn)| = 0. (3.33)

The same holds true when u is replaced by un = uθ−α
n .

Proof The proof is in the same spirit as that of Proposition 3.1 in [2]. Together with
Lemma 3.5, it is sufficient to show that

kn(t)Eπn (EGn(u, H1, [θn]) − EGn(u, H0, [θn]))+ → 0 (3.34)

and

kn(t)Eπn |EGn(u, H1, Iθn ) − EGn(u, H0, Iθn )| → 0. (3.35)

We do this by an application of Lemma 3.6. Let ŝn be given by

ŝn = 1√
nβn

(
log cn + βn

γn
log u − maxi∈[θn ] log en,i

)
. (3.36)

Then we obtain by Lemma 3.6 that

(3.34)

= kn(t)Eπn

(
EEπn

[
1maxi∈[θn ] H1(i)≤ŝn

− 1maxi∈[θn ] H0(i)≤ŝn
| F J

])+

≤ kn(t)Eπn

∑

i, j∈[θn ]
(�1

i j − �0
i j )

+Eπn e−ŝ2
n (1+�m

i j )
−1

1∫

0

dh(1 − (�h
i j )

2)−
1
2 .

(3.37)
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To remove the exponentially distributed random variables en,i in (3.37), let Bn = {1 ≤
maxi∈[θn ] ei ≤ n}. We have for sn = (n1/2βn)−1(log cn + βn

γn
log u − log n) that

Eπn

(
1Bn exp

(
−ŝ2

n (1 + �m
i j )

−1
))

≤ exp
(
−s2

n (1 + �m
i j )

−1
)

. (3.38)

One can check that kn(t)P(Bc
n) ↓ 0. Moreover, by definition of sn , there exists for all

u > 0 a constant C < ∞ such that for n large enough

(3.34) ≤ Ckn(t)Eπn

∑

i, j∈[θn ]
(�1

i j − �0
i j )

+e−γ 2
n n(1+�m

i j )
−1

1∫

0

dh(1 − (�h
i j )

2)−
1
2 .

(3.39)

Likewise we deal with (3.35). The terms in (3.35) are non-zero if and only if i, j ∈ Iθn .
By assumption, the probability of this event is (γ 2

n ρn)2. Hence, (3.35) is bounded above
by

Ckn(t)(γ 2
n ρn)2 Eπn

∑

i, j∈[θn ]
|�0

i j − �1
i j |e−γ 2

n n(1+�m
i j )

−1
1∫

0

dh(1 − (�h
i j )

2)−
1
2 . (3.40)

We divide the summands in (3.39) and (3.40) respectively into two parts: pairs of i, j
such that 	i/vn
 �= 	 j/vn
 and those such that 	i/vn
 = 	 j/vn
. If 	i/vn
 �= 	 j/vn

then we have by definition of H1 that �1

i j = 0. For i, j such that 	i/vn
 = 	 j/vn
,

we have �1
i j ≤ �0

i j . In view of this, we get after some computations that

(3.39) ≤ Ckn(t)Eπn

⎡

⎣
θn∑

	i/vn
�=	 j/vn

(�0

i j )
−e−γ 2

n n

⎤

⎦ , (3.41)

and

(3.40) ≤ Ckn(t)γ
4
n ρ2

n Eπn

⎡

⎣
θn∑

	i/vn
�=	 j/vn

|�0

i j |e−γ 2
n n(1+�0

i j )
−1

+
θn∑

	i/vn
=	 j/vn

|�0

i j − �1
i j |e−γ 2n(1+�0

i j )
−1

(1 − (�0
i j )

2)−
1
2

⎤

⎦ . (3.42)

Since (�0
i j )

− = O(n) we know by definition of an and θn that

(3.41) ≤ Cθnn3/2α−1
n e− 1

2 γ 2
n n, (3.43)

which tends to zero as n → ∞. Thus (3.34) holds true.
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To conclude the proof of (3.35) we use Lemma 4.1 from the appendix. We get that
(3.40) is bounded above by

C̄tan

n∑

d=0

e−γ 2
n n(1+d)−1

(
d2

vnn1d≤vn + exp(ηγ 2
n min{d,n−d})
vnγ 2

n

)
, (3.44)

for some C̄ < ∞ and η < ∞. With the same arguments as in the proof of (3.3) in [2],
we obtain that (3.44) tends to zero as n → ∞. ��
Proof of Proposition 3.3 Observe that

∣∣Eν̄t
n(u,∞) − νt (u,∞)

∣∣ =
∣∣∣kn(t)Eπn EGn(u, H0, [θn]) − νt (u,∞)

∣∣∣ , (3.45)

which is bounded above by

∣
∣kn(t)Eπn EGn(u, H0, [θn])−EGn(u, H1, [θn])∣∣+∣∣kn(t)EGn(u, H1, [θn]) − νt (u,∞)

∣
∣ .

(3.46)

By Lemma 3.4 and Lemma 3.7, both terms vanish as n → ∞ and Proposition 3.3
follows. ��

3.2 Concentration of νt
n(u,∞)

To verify the first part of Condition (2-1) we control the fluctuation of νt
n(u,∞) around

its mean.

Proposition 3.8 For all u > 0 and t > 0 there exists C = C(p, t, u) < ∞, such that

E
(
ν̄t

n(u,∞) − Eν̄t
n(u,∞)

)2 ≤ Cγ −2
n n1−p/2. (3.47)

The same holds true when u is replaced by un = uθ
−αn
n . In particular, for p > 5 and

c ∈ (0, 1
2 ) or p = 5 and c < 1

4 , the first part of Condition (2-1) holds for all u > 0
and t > 0, P-a.s.

Proof Let {e′
n,i : i ∈ N, n ∈ N} and J ′

n be independent copies of
{
en,i : i ∈ N, n ∈ N

}

and Jn respectively. Writing πn for the initial distribution of Jn and π ′
n for that of J ′

n ,
we define

Ḡn(u, H0, [θn]) ≡ Pπn

(
maxi∈[θn ] eβn Hn(Jn(i))en,i ≤ cnu1/αn

∣∣F J
)

Ḡn(u, H0′
, [θn]) ≡ Pπ ′

n

(
maxi∈[θn ] eβn Hn(J ′

n(i))e′
n,i ≤ cnu1/αn

∣∣
∣F J ′)

.
(3.48)

Then, as in (3.21) in [6],

E

(
Eπn Ḡn(u, H0, [θn])

)2 = EEπn Ḡn(u, H0, [θn])Eπ ′
n
Ḡn(u, H0′

, [θn])
= Eπn Eπ ′

n
EḠn(u, V 0, [2θn]), (3.49)
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where V 0 is a Gaussian process defined by

V 0(i) =
{

n−1/2 Hn(Jn(i)), if 1 ≤ i ≤ θn,

n−1/2 Hn(J ′
n(i)), if θn + 1 ≤ i ≤ 2θn .

(3.50)

To further express
(
EEπn Ḡn(u, H0, [θn]))2, let V 1 be a centered Gaussian process

with covariance matrix

�1
i j =

{
�0

i j , if max{i, j} ≤ θn, or min{i, j} ≥ θn,

0, else,
(3.51)

where �0 = (�0
i j ) denotes the covariance matrix of V 0. Then, as in (3.23) in [6],

(
EEπn Ḡn(u, H0, [θn])

)2 = Eπn Eπ ′
n
EḠn(u, V 1, [2θn]). (3.52)

As in the proof of Lemma 3.7 we use Lemma 3.6 to obtain that

k2
n(t)E

(
Eπn Ḡn(u, H0, [θn]) − EEπn Ḡn(u, H0, [θn])

)2

≤ 2k2
n(t)

∑

1≤i≤θn
θn+1≤ j≤2θn

Eπn Eπ ′
n
�0

i j e
−γ 2

n n(1+�0
i j )

−1
. (3.53)

It is shown in (3.29) of [6] that

Eπn Eπ ′
n
1�0

i j =(m
n )

p = 2−n
(

n

(n − m)/2

)
, for m ∈ {0, . . . , n}. (3.54)

From this, and with the definition of an , we have that

(3.52) ≤ 2t2a2
n

n∑

m=0

2−n
(

n

(n − m)/2

)(m

n

)p
exp

(
− γ 2

n n

1 + (m
n )p

)

≤ 2t2γ −2
n

n∑

m=0

2−nn

(
n

(n − m)/2

)(m

n

)p
exp

(
γ 2

n n
(m

n )p

1 + (m
n )p

)

= 2t2γ −2
n

n∑

d=0

2−nn

(
n

d

)(
1 − 2d

n

)p

exp

(

γ 2
n n

(1 − 2d
n )p

1 + (1 − 2d
n )p

)

≤ 2t2γ −2
n

n∑

d=0

n1/2
(

1 − 2d

n

)p

+
exp

(
nϒn,p

( d
n

))
Jn
( d

n

)
, (3.55)

where for u ∈ (0, 1) we set ϒn,p(u) = γ 2
n − I (u) − γ 2

n (1 + |1 − 2u|p)−1 and
Jn(u) = 2−n

( n
	nu

)√

πnenI (u) for I (u) = u log u + (1 − u) log(1 − u) + log 2. Note
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that (3.55) has the same form as (3.28) in [1]. Following the strategy of [1], we show
that there exist δ, δ′ > 0 and c > 0 such that

ϒn,p ≤
{

−c
(
u − 1

2

)2
, if u ∈ ( 1

2 − δ, 1
2 + δ),

−δ′, else.
(3.56)

Since γn = n−c this can be done, independently of p, as in [2] (cf. (3.19) and (3.20)).
Finally, together with the calculations from (3.28) in [1] we obtain that

E
(
ν̄t

n(u,∞) − Eν̄t
n(u,∞)

)2 ≤ Cγ −2
n n1−p/2. (3.57)

The same arguments and calculations are used to prove that (3.47) also holds when
u is replaced by un = uθ

−αn
n . Let p > 5 and c ∈ (0, 1

2 ) or p = 5 and c < 1
4 . Then,

by Borel-Cantelli Lemma, for all u > 0 and t > 0 there exists a set �(u, t) with
P(�(u, t)) = 1 such that on �(u, t), for all ε > 0 and n large enough, we have that
|ν̄t

n(u,∞) − νt (u,∞)| < ε and |ν̄t
n(un,∞) − νt (u,∞)| < ε. From this we conclude

together with (3.6) that, on �(u, t) and for n large enough,

νt (u,∞) − ε ≤ νt
n(u,∞) ≤ νt (un,∞) + ε, (3.58)

i.e. Condition (2-1) is satisfied, for all u > 0 and t > 0, P-a.s. ��
Proposition 3.9 Let p = 2, 3, 4 and c ∈ (0, 1

2 ) or p = 5 and c > 1
4 . Then, the first

part of Condition (2-1) holds in P-probability for all u > 0 and t > 0.

Proof For all ε > 0, we bound P
(|νt

n(u,∞) − E(νt
n(u,∞))| > ε

)
from above by

P

(
|νt

n(u,∞) − kn(t)Eπn Gn(u, H0, Iθn )| > ε/3
)

(3.59)

+ P

(
kn(t)|Eπn Gn(u, H0, Iθn ) − EEπn Gn(u, H0, Iθn )| > ε/3

)
(3.60)

+ 1{|E(νt
n(u,∞))−kn(t)EEπn Gn(u,H0,Iθn )|>ε/3}. (3.61)

Observe that by a first order Chebychev inequality,

(3.59) ≤ |Eνt
n(u,∞) − kn(t)EEπn Gn(u, H0, Iθn )|. (3.62)

By Lemmata 3.4, 3.5, and 3.7, (3.62) tends to zero as n → ∞. For the same reason,
(3.61) is equal to zero for large enough n. To bound (3.60), we calculate the variance
of kn(t)Eπn Gn(u, H0, Iθn ). As in the proof of Proposition 3.8 we use Lemma 3.6, but
take into account that there can only be contributions to the left hand side of (3.32)
if i, j ∈ Iθn . This gives us the additional factor

(
γ 2

n ρn
)2

in (3.53). Therefore the
variance of kn(t)Eπn Gn(u, H0, Iθn ) is bounded above by C(γnρn)2n1−p/2 which, for
all p ≥ 2, vanishes as n → ∞. Hence, we have proved Proposition 3.9. ��
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3.3 Second part of condition (2-1)

We proceed as in Sect. 3.4 in [6] to verify the second part of Condition (2-1). With the
same notation as in (1.13), we define for u > 0 and t > 0

η̃t
n(u) ≡ kn(t)n

−1
∑

x∈∑n

(
Qu

n(x)
)2

, (3.63)

ηt
n(u) ≡ kn(t)

∑

x∈∑n

∑

x ′∈∑n

μn(x, x ′)Qu
n(x)Qu

n(x ′), (3.64)

where μn(·, ·) is the uniform distribution on pairs (x, x ′) ∈∑2
n that are at distance 2

apart, i.e.

μn(x, x ′) =
{

2−n 2
n(n−1)

, if dist(x, x ′) = 2,

0, else.
(3.65)

We prove that the expectations of both (3.63) and (3.64) tend to zero. First and second
order Chebychev inequalities then yield that the second part of Condition (2-1) holds
in P-probability, respectively P-a.s.

Lemma 3.10 For all u > 0 and t > 0

lim
n→∞ Eη̃t

n(u) = lim
n→∞ Eηt

n(u) = 0. (3.66)

Proof We show that limn→∞ Eηt
n(u) = 0. The assertion for η̃t

n(u) is proved similarly.
Let

Q̄u
n(x) ≡ Px

⎛

⎝
θn∑

j=1

λ−1
n (Jn( j))en, j ≤ cnu1/αn

⎞

⎠ . (3.67)

Rewrite (3.64) in the following way

kn(t)
∑

x∈∑n

∑

x ′∈∑n

μn(x, x ′)
(
1 − Q̄u

n(x)
) (

1 − Q̄u
n(x ′)

)

= kn(t)

⎡

⎢
⎣1 −

∑

(x,x ′)∈∑2
n

μn(x, x ′)
(
Q̄u

n(x) + Q̄u
n(x ′) − Q̄u

n(x)Q̄u
n(x ′)

)

⎤

⎥
⎦

= kn(t)

⎡

⎢
⎣1 − 2

∑

x∈∑n

πn(x)Q̄u
n(x) +

∑

(x,x ′)∈∑2
n

μn(x, x ′)Q̄u
n(x)Q̄u

n(x ′)

⎤

⎥
⎦. (3.68)
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To shorten notation, write

K u
n ≡ Pπn

(

max
i∈{θn ,...,θn}

e
√

nβn H0(i)en,i > cnu1/αn

∣
∣∣∣∣
F J

)

=
∑

x∈∑n

2−n K u
n (x), (3.69)

where θn ≡ 2n log n and

K u
n (x) ≡ Px

(
maxi∈{θn ,...,θn} e

√
nβn H0(i)en,i > cnu1/αn

∣∣∣F J
)
. (3.70)

Using the bound Q̄u
n(x) ≤ Ex (1 − K u

n (x)) ≡ Ex K̄ u
n (x), x ∈∑n , and taking expecta-

tion with respect to the random environment we obtain that

Eηt
n(u) ≤ kn(t) − 2

(
kn(t) − Eνt

n(u,∞)
)

(3.71)

+ kn(t)
∑

(x,x ′)∈∑2
n

μn(x, x ′)E
[Ex K̄ u

n (x)Ex ′ K̄ u
n (x ′)

]
. (3.72)

For Ḡu
n ≡ Pπn

(
maxi∈[θn ] e

√
nβn H0(i)en,i ≤ cnu1/αn

)
observe that

(3.71) ≤ kn(t) − 2kn(t)EḠu
n . (3.73)

We add and subtract EEπn (1 − K u
n ) ≡ EEπn K̄ u

n as well as

∑

(x,x ′)∈∑2
n

μn(x, x ′)EEx K̄ u
n (x)Ex ′ K̄ u

n (x ′). (3.74)

Re-arranging the terms and using the bound from (3.73) we see that Eηt
n(u) is bounded

from above by

2kn(t)
(
EK̄ u

n − EḠu
n

)
(3.75)

+kn(t)
∑

x,x ′
μn(x, x ′)EEx K u

n (x)EEx ′ K u
n (x ′) (3.76)

+kn(t)
∑

x,x ′
μn(x, x ′)

(
E
[Ex K̄ u

n (x)Ex ′ K̄ u
n (x ′)

]− EEx K̄ u
n (x)EEx ′ K̄ u

n (x ′)
)
. (3.77)

From Proposition 3.3 we conclude that (3.75) and (3.76) are of order O
(

log n
n

)
and

O
(
θna−1

n

)
respectively. To control (3.77) we use the normal comparison theorem

(Lemma 3.6) for the processes V 0 and V 1 as in Proposition 3.8. However, due to the
fact that we are looking at the chain after θ̄n steps, the comparison is simplified. More
precisely, let An ≡ {∀θ̄n ≤ i ≤ θn : dist(Jn(i), J ′

n(i)) > n(1 − ρ(n))
}⊂ F J ×F J ′

,

where ρ(n) is of the order of
√

n−1 log n. Then, on An , by Lemma 3.6 and the estimates
from (3.35),
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E
[
K̄ u

n (x)K̄ u
n (x ′)

]−EK̄ u
n (x)EK̄ u

n (x ′)≤2γ −2
n

∑

1≤i≤θn
θn+1≤ j≤2θn

�0
i j e−γ 2

n n(1+�0
i j )

−1 ≤ O(θ2
n a−2

n ).

(3.78)

Moreover, on Ac
n ,

E
[
K̄ u

n (x)K̄ u
n (x ′)

]− EK̄ u
n (x)EK̄ u

n (x ′) ≤ O(a−1
n ). (3.79)

But in Lemma 3.7 from [6] it is shown that for a specific choice of ρ(n) and every
x ∈∑n

P
(An|dist(Jn(0), J ′

n(0)) = 2
) ≥ 1 − n−8

Px
(Ac

n

) ≤ n−4. (3.80)

Therefore we obtain that limn→∞ Eηt
n(u) = 0. ��

Remark Lemma 3.10 immediately implies that the second part of Condition (2-1)
holds in P-probability. To show that it is satisfied P-almost surely for p > 5 and
c ∈ (0, 1

2 ) or p = 5 and c < 1
4 it suffices to control the variance of (3.75). We

use the same concentration results as in Proposition 3.8 to obtain that the variance of
kn(t)(K̄ u

n − Ḡu
n), which is given by

k2
n(t)

[
E
(
K̄ u

n − EK̄ u
n

)2 + E
(
Ḡu

n − EḠu
n

)2 − 2
(
EḠu

n K̄ u
n − EḠu

nEK̄ u
n

)]
, (3.81)

is bounded from above by Cγ −2
n n1−p/2.

3.4 Condition (3-1)

We show that Condition (3-1) is P- a.s. satisfied for all δ > 0.

Lemma 3.11 We have P-a.s. that

lim sup
n→∞

(
an

(
cnδ1/αn

)−1 Eπn λ
−1
n (Jn(1))en,11λ−1

n (Jn(1))en,1≤cnδ1/αn

)αn

<∞, ∀δ>0.

(3.82)

Proof We begin by proving that for all δ > 0, for n large enough,

an
cnδ1/αn Eπn Eλ−1

n (Jn(1))en,11λ−1
n (Jn(1))en,1≤cnδ1/αn =

∑

x∈∑n

2−n
EYn,δ(x)

≤ 4(δγnβn)−1, (3.83)

where Yn,δ(x) ≡ an
(
cnδ1/αn

)−1
λ−1

n (x)en,11λ−1
n (x)en,1≤cnδ1/αn , for x ∈∑n .
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For x ∈∑n we have that

EYn,δ(x) = an(cnδ1/αn )−1(2π)−1/2

∞∫

0

dy

yn∫

−∞
dz ye−y− z2

2 +βn
√

nz

= an(cnδ1/αn )−1(2π)−1/2

∞∫

0

dy

∞∫

βn
√

n−yn

dz ye−y+ β2
n n
2 − z2

2 , (3.84)

where yn ≡ (
√

nβn)−1
(

log cn + βn
γn

log δ − log y
)

for y > 0. In order to use estimates

on Gaussian integrals, we divide the integration area over y into y ≤ n2 and y > n2.
For y > n2, there exists a constant C ′ > 0 such that

(2π)−1/2an(cnδ1/αn )−1

∞∫

n2

dy

yn∫

−∞
dz ye−y− z2

2 +βn
√

nz ≤ C ′ann4e−n2
, (3.85)

which vanishes as n → ∞.
Let y ≤ n2. By definition of cn we have βn

√
n − yn = √

nβn(1 − γn
βn

− log δ
γnβnn

+ log y
β2

n n
). Since αn ↓ 0 as n → ∞, it follows that for n large enough βn

√
n − yn > 0.

But then, since P(Z > z) ≤ (
√

2π)−1z−1e−z2/2 for any z > 0 and Z being a standard
Gaussian,

n2∫

0

dy

∞∫

−yn+βn
√

n

dz ye−y+ β2
n n
2 − z2

2 ≤
n2∫

0

dy
ye−y

βn
√

n − yn
e

β2
n n
2 − (βn

√
n−yn )2

2 . (3.86)

Plugging in the definition of an and cn , (3.85) and (3.86) yield that, for n large enough,
up to a multiplicative error that tends to 1 as n → ∞ exponentially fast,

(3.84) ≤
n2∫

0

dy yαn e−y(γnβnδ)−1
(

1 − γn

βn
− log δ

nγnβn
+ log y

β2
n n

)−1

e2 log δ log n(nγnβn)−1

≤ 2

n2∫

0

dy yαn e−y(γnβnδ)−1

≤ 2�
(

1 + γn
βn

)
(γnβnδ)−1 , (3.87)

where �(·) denotes the gamma function. Since �(1 + αn) ≤ 1 for αn ≤ 1, the claim
of (3.83) holds true for all δ > 0 for n large enough.
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Lemma 3.10 from [6] yields that for all δ > 0 there exists κ > 0 such that

E
(Eπn Yn,δ

)2 − (EEπn Yn,δ

)2 ≤ a2
n

(
cnδ1/αn

)−2
n1−p/2 ≤ e−nκ

, (3.88)

where Eπn Yn,δ ≡ ∑
x∈∑n

2−nYn,δ(x). For all δ > 0 there exists by Borel-Cantelli
Lemma a set �(δ) with P(�(δ)) = 1 such that on �(δ), for all ε > 0 there exists
n′ ∈ N such that

Eπn Yn,δ ≤ 4 (γnβnδ)−1 + ε, ∀n ≥ n′. (3.89)

Setting �τ ≡⋂δ∈Q∩(0,∞)) �(δ), we have P(�τ ) = 1.
Let δ > 0 and ε > 0. We can always find δ′ ∈ Q such that δ ≤ δ′ ≤ 2δ. Note that

Yn,δ is increasing in δ. Moreover, by (3.89) there exists n′ = n′(δ′, ε) such that on �τ

and for n ≥ n′

(Eπn Yn,δ

)αn ≤ (Eπn Yn,δ′
)αn ≤

(
4
(
γnβnδ′)−1 + ε

)αn ≤ 4
(
γnβnδ′)−αn . (3.90)

Since (γnβn)−αn ↓ 1 as n → ∞, we obtain the assertion of Lemma 3.11. ��

3.5 Proof of Theorem 1.4

We are now ready to conclude the proof of Theorem 1.4.
First let p > 5 and γn = n−c for c ∈ (0, 1

2

)
, or p = 5 and c > 1

4 . Then we know by
Propositions 3.3 and 3.8 that for all u > 0 there exists a set �(u) with P(�(u)) = 1,
such that on �(u)

lim
n→∞ νt

n(u,∞) = K ptu−1, ∀t > 0. (3.91)

The mapping that maps u to νt
n(u,∞) is decreasing on (0,∞) and its limit, u−1, is

continuous on the same interval. Therefore, setting �τ
1 =⋂u∈(0,∞)∩Q

�(u), we have
P(�τ

1) = 1 and (3.91) holds true for all u > 0 on �τ
1. By the same arguments and the

results in Sect. 3.3 there also exists a subset �τ
2 with full measure and such that the

second part of Condition (2-1) holds on �τ
2.

Condition (3-1) holds P-a.s. by Lemma 3.11. Finally, we are left with the verification
of Condition (0) for the invariant measure πn(x) = 2−n , x ∈∑n . For v > 0, we have
that

∑

x∈∑n

2−ne−vαn cnλn(x) =
∑

x∈∑n

2−nPπn

(
λ−1

n (x)en,1 > cnvαn
)
. (3.92)

By similar calculations as in (3.87), we see that, for n large enough and x ∈∑n ,

EPπn

(
λ−1

n (x)en,1 > cnvαn
)

∼ a−1
n γ 2

n v−1, (3.93)
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which tends to zero as n → ∞. By a first order Chebychev inequality we conclude
that for all v > 0 Condition (0) is satisfied P-a.s. As before, by monotonicity and
continuity, this implies that Condition (0) holds P-a.s. for all v > 0. This proves
Theorem 1.4 in this case.

For p = 2, 3, 4 and c ∈ (0, 1
2

)
or p = 5 and c ≥ 1

4 , we know from Propositions 3.3,
3.8, and Sect. 3.3 that Condition (2-1) is satisfied in P-probability, whereas Condition
(0) and (3-1) hold P-a.s. This concludes the proof of Theorem 1.4.

3.6 Proof of Theorem 1.5

We use Theorem 1.4 to prove the claim of Theorem 1.5. By the same arguments
as in the proof of Theorem 1.5 in [6], we obtain that for t > 0, s > 0, and ε ∈
(0, 1) the correlation function Cε

n(t, s) can, with very high probability and P- a.s., be
approximated by

Cε
n(t, s) = (1 − o(1)) Pπn (Rn ∩ (tαn , (t + s)αn ) = ∅)

= (1 − o(1)) Pπn (Rαn ∩ (t, t + s) = ∅), (3.94)

where Rn is the range of the blocked clock process Sb
n and Rαn is the range of

(
Sb

n

)αn .

By Theorem 1.4 we know that
(
Sb

n

)αn J1�⇒ Mν , P-a.s. for p > 5 if c ∈ (0, 1
2 ),

p = 5 if c < 1
4 , and in P-probability else. By Proposition 4.8 in [15] we know that

the range of Mν is the range of a Poisson point process ξ ′ with intensity measure
ν′(u,∞) = log u − log K p. Thus, writing RM for the range of Mν , we get that

P(RM ∩ (t, t + s) = ∅) = P(ξ ′(t, t + s) = 0) = e−ν′(t,t+s) = t
t+s . (3.95)

The claim of Theorem 1.5 follows.

4 Appendix

In the appendix we state and prove a lemma that is needed in the proof of Lemma 3.7.

Lemma 4.1 Let Di j = dist(Jn(i), Jn( j)) and �0
d = (1 − 2dn−1)p. For any η > 0

there exists a constant C̄ < ∞ such that, for n large enough and d ∈ {0, . . . , n},

kn(t)
θn∑

	i/vn
=	 j/vn

Eπn1Di j =d |�0

d − �1
i j | ≤ C̄tan

d2

vnn
1d≤vn , (4.1)

kn(t)
θn∑

	i/vn
�=	 j/vn

Eπn1Di j =d ≤ C̄t

an exp
(
ηγ 2

n min{d, n − d})
vnγ 2

n
. (4.2)

Proof We use ideas from Sect. 3 in [1] and Sect. 4 in [2] and write the distance
process Di j = dist(Jn(i), Jn( j)) as the Ehrenfest chain Qn = {Qn(k) : k ∈ N},
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which is a birth–death process with state space {0, . . . , n} and transition probabilities
pk,k−1 = 1 − pk,k+1 = k

n for k ∈ {0, . . . , n}. Denote by Pk the law and Ek the
expectation of Qn starting in k. Let moreover Td = inf{k ∈ N : Qn(k) = d}. By the
Markov property of Jn , we have under P0, in distribution, that

dist(Jn(0), Jn(k))
d= dist(Jn( j), Jn( j + k))

d= Qn(k), ∀ j, k ≥ 0. (4.3)

Recall for the proof of (4.1) that if 	i/vn
 = 	 j/vn
, we have that �1
i j ≤ �0

i, j .
Moreover, since for such i, j necessarily |i − j | ≤ vn we have that Di j ≤ vn . Thus, let
d ∈ {1, . . . , vn}. By Lemma 4.2 in [1] we deduce that there exists a constant C < ∞,
independent of d, such that

kn(t)
θn∑

	i/vn
=	 j/vn

Eπn1Di j =d ≤ Ctan . (4.4)

Moreover,

(
�0

d − �1
i j

)
=
(

1 − 2d

n

)p

−
(

1 − 2p|i − j |
n

)
= 2p

n
(|i − j | − d) + O

(
d2

n2

)
.

(4.5)

Therefore the main contributions in (4.1) are of the form

θn∑

	i/vn
=	 j/vn

(|i − j | − d) Eπn1Di j =d = vn

	θn/vn
∑

i=1

i+vn∑

j=i+1

( j − i − d) Eπn1Di j =d

= vn

	θn/vn
∑

i=1

vn∑

j=1

E01Qn( j)=d ( j − d). (4.6)

Setting Z ≡ ∑vn
j=1 1Qn( j)=d ( j − d), (4.6) is nothing but θn E0 Z . It is shown in [2]

(page 107–108) that there exists a constant C < ∞, independent of d, such that

E0 Z ≤ C E0 (Td − d)1Td<vn

≤ C (E0Td − d P0 (Td < vn)) ≤ C
(

E0Td − d
(

1 − v−1
n E0Td

))
, (4.7)

where the last inequality is obtained by a first order Chebychev inequality. To calculate
E0Td we use the following classical formulas (see e.g. [12], Chapter 2.5)

E0Td =
d∑

l=1

El−1Tl , where (4.8)

El−1Tl = 1

pl,l−1

l∏

i=1

pi,i−1

pi−1,i

⎛

⎝1 +
l−1∑

j=1

j∏

k=1

pk,k−1

pk−1,k

⎞

⎠. (4.9)
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Plugging in the transition probabilities, we obtain for all l ≤ d,

El−1Tl = n

l

⎛

⎝
l∏

i=1

i

n − i + 1
+

l−1∑

j=1

l∏

k= j+1

k

n − k + 1

⎞

⎠

= n

l

l−1∑

j=0

l∏

k= j+1

k

n − k + 1
. (4.10)

For any l ≤ d and 0 ≤ j ≤ l − 1 we have that

n

l

l∏

k= j+1

k

n − k + 1
≤ n

d

l∏

k= j+1

d

n − d
. (4.11)

In view of (4.8) we get that

E0Td ≤
d∑

l=1

1

1 − 2dn−1

(

1 −
(

d

n − d

)l
)

≤ d

(1 − 2dn−1)
. (4.12)

But then, since d
n ↓ 0 as n → ∞ and d ≤ vn , there exists a constant C ′ < ∞,

independent of d, such that

E0 Z ≤ C ′ d2

vn
. (4.13)

Together with (4.4) and (4.5) this concludes the proof of (4.1).
For the proof of (4.2) we distinguish several cases. If ‖d‖ ≡ min{d, n − d} >

(log n)1+εγ −2
n for some fixed ε > 0 then the claim of (4.2) is deduced from the bound

kn(t)
θn∑

	i/vn
�=	 j/vn

Eπn1Di j =d ≤ antθn � ant

eη‖d‖γ 2
n

vnγ 2
n

. (4.14)

Assume next that ‖d‖ ≤ (log n)1+εγ −2
n . It is shown in [2], (page 111–112), that in

this case one can neglect values of d such that d ≥ n
2 . Thus, let d ≤ (log n)1+εγ −2

n .
Note that

kn(t)
θn∑

	i/vn
�=	 j/vn

Eπn1Di j =d ≤ kn(t)

θn∑

k=0

θn∑

m= jk

Eπn1Dk,k+m=d , (4.15)

where jk = inf{i ∈ N : 	k/vn
 �= 	(k + i)/vn
}.
We further distinguish the cases jk ≤ 2d and jk > 2d. If jk ≤ 2d then, setting

Z jk (d) ≡∑θn
m= jk

1Dk,k+m=d , we have Z jk (d) ≤ Z0(d). It is shown on page 685 in [1]
that there exists C < ∞, independent of d, such that E0 Z0(d) ≤ C . Since moreover
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|{k ∈ {1, . . . , θn} : jk ≤ 2d}| ≤ 2 dθn
vn

, we know that for all η > 0 there exists C ′ < ∞
such that

kn(t)
θn∑

k=0

θn∑

m= jk

Eπn1Di j =d ≤ Ct
and

vn
≤ C ′t aneηγ 2

n ‖d‖

vnγ 2
n

. (4.16)

Let jk > 2d, i.e. in particular Z jk (d) ≤ Z2d(d). By the Markov property and by
Lemma 4.2 in [1] we obtain that there exists C < ∞ such that

E0 Z2d(d) ≤ P0(Td ∈ (2d, θn))

(

1 + Ed

(
θn∑

k=1

1Qn(k)=d

))

≤ C P0(Td ∈ (2d, θn)).

(4.17)

The probability that Q gets from 0 to d after 2d steps is bounded by the probability
that it takes at least d steps to the left, i.e.

P0(Td ∈ (2d, θn)) ≤
(

2d

d

)(
d

n

)d

≤ 2d

(
4d

n

)d

� d

vn
. (4.18)

The claim follows as in (4.16). This finishes the proof of (4.2). ��
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