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Abstract Elek and Lippner (Proc. Am. Math. Soc. 138(8), 2939–2947, 2010) showed
that the convergence of a sequence of bounded-degree graphs implies the existence
of a limit for the proportion of vertices covered by a maximum matching. We provide
a characterization of the limiting parameter via a local recursion defined directly on
the limit of the graph sequence. Interestingly, the recursion may admit multiple solu-
tions, implying non-trivial long-range dependencies between the covered vertices.
We overcome this lack of correlation decay by introducing a perturbative parameter
(temperature), which we let progressively go to zero. This allows us to uniquely iden-
tify the correct solution. In the important case where the graph limit is a unimodular
Galton–Watson tree, the recursion simplifies into a distributional equation that can be
solved explicitly, leading to a new asymptotic formula that considerably extends the
well-known one by Karp and Sipser for Erdős-Rényi random graphs.
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184 C. Bordenave et al.

1 Introduction

A matching on a finite graph G = (V, E) is a subset of pairwise non-adjacent edges
M ⊆ E . The |V | − 2|M | isolated vertices of (V, M) are said to be exposed by M . We
let M(G) denote the set of all possible matchings on G. The matching number of G
is defined as

ν(G) = max
M∈M(G)

|M |, (1)

and those M which achieve this maximum—or equivalently, have the fewest exposed
vertices—are called maximum matchings. The normalized matching number of G is
simply ν(G)/|V |.

Our results belong to the theory of convergent graph sequences. Convergence of
bounded degree graph sequences was defined by Benjamini and Schramm [7], Aldous
and Steele [2], see also Aldous and Lyons [1]. The notion of local weak convergence
has then inspired a lot of work [8,11,13,16,26]. In [17], it is shown that the convergence
of a sequence of bounded-degree graphs guarantees the existence of a limit for their
normalized matching numbers. We provide a characterization of the limiting parameter
via a local recursion defined directly on the limit of the graph sequence. In the important
case where the graph limit is a unimodular Galton–Watson tree, the recursion simplifies
into a distributional equation that can be solved explicitly, leading to a new asymptotic
formula.

A classical example in this context is the Erdős-Rényi random graph with average
degree c on n vertices, denoted by G(n, c/n) : as n → ∞, G(n, c/n) converges in
the local weak sense to a Galton–Watson tree with degree distribution Poisson with
parameter c. In this case, Karp and Sipser [22] showed that

ν(G(n, c/n))

n
−−−→
n→∞ 1 − tc + e−ctc + ctce−ctc

2
, (2)

where tc ∈ (0, 1) is the smallest root of t = e−ce−ct
(we will see in the sequel that

the convergence is almost sure). The explicit formula (2) rests on the analysis of
a heuristic algorithm now called Karp-Sipser algorithm. The latter is based on the
following observation : if e ∈ E is a pendant edge (i.e. an edge incident to a vertex of
degree one) in G = (V, E), then there is always a maximum matching that contains e,
so all edges that are adjacent to e may be deleted without affecting ν(G). The first stage
of the algorithm consists in iterating this until no more pendant edge is present. This
is the leaf-removal process. G is thus simplified into a sub-graph with only isolated
vertices, matched pairs, and a so-called core with minimum degree at least two. As
long as that core is non-empty, one of its edges is selected uniformly at random, the
adjacent edges are deleted, and the whole process starts again. When the algorithm
stops, the remaining edges clearly form a matching on G, but its size may be far below
ν(G) due to the sub-optimal removals on the core.

On G(n, c/n), the dynamics of the deletion process can be approximated in the
n → ∞ limit by differential equations which can be explicitly solved. In particular,

123



Matchings on infinite graphs 185

the asymptotic size of both the optimal part constructed in the first stage, and the
sub-optimal part constructed on the core can be evaluated up to an o(n) correcting
term (which has been later refined, see [4]). Moreover, the second part happens to
be almost perfect, in the sense that only o(n) vertices are exposed in the core. This
guarantees that the overall construction is asymptotically optimal, and the asymptotic
formula for ν(Gn) follows. More recently, the same technique has been applied to
another class of random graphs with a fixed log-concave degree profile [10], resulting
in the asymptotical existence of an almost perfect matching on these graphs:

ν(Gn)

|Vn| −−−→
n→∞

1

2
. (3)

In both cases, the proof of optimality—and hence the asymptotic formula for ν(Gn)—
relies on the fact that the second stage exposes only o(n) vertices, which is bound to fail
as soon as one considers more general graph ensembles where the core does not neces-
sarily admits an almost-perfect matching. We give simple examples in the Appendix.
By using a completely different approach—namely establishing and solving an appro-
priate recursive distributional equation (a usual ingredient of the objective method,
see [3])—we manage to obtain a general formula that considerably extends the above
results.

The rest of our paper is organized as follows: we state our main results in Sect. 2.
In Sect. 3, we extend the Boltzmann-Gibbs distribution over matchings on a finite
graph to infinite graphs. This will allow us to derive our Theorem 1 in Sect. 4. We
deal with the specific cases of trees (and random graphs) in Sect. 5. We end the paper
with an Appendix presenting simple examples of graphs for which the limiting local
recursion admit multiple solutions.

2 Results

Let us start with a brief recall on local weak convergence (see [2,7] for details). A rooted
graph (G, ◦) is a graph G = (V, E) together with the specification of a particular
vertex ◦ ∈ V , called the root. We let G denote the set of all locally finite connected
rooted graphs considered up to rooted isomorphism, i.e. (G1, ◦1) ≡ (G2, ◦2) if there
exists a bijection γ : V1 → V2 that preserves roots (γ (◦1) = ◦2) and adjacency
(uv ∈ E1 ⇐⇒ γ (u)γ (v) ∈ E2). In the space G, a sequence {(Gn, ◦n); n ∈ N}
converges locally to (G, ◦) if for every radius k ∈ N, there is nk ∈ N such that

n ≥ nk �⇒ [Gn, ◦n]k ≡ [G, ◦]k .

Here, [G, ◦]k denotes the finite rooted subgraph induced by the vertices lying at graph-
distance at most k from ◦. It is not hard to construct a distance which metrizes this
notion of convergence and turns G into a complete separable metric space. We can thus
import the usual machinery of weak convergence of probability measures on Polish
spaces (see e.g. [9]). We define P(G) as the set of probability measure on G. There is
a natural procedure for turning a finite deterministic graph G = (V, E) into a random
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element of G : one simply chooses uniformly at random a vertex ◦ ∈ V to be the root,
and then restrains G to the connected component of ◦. The resulting law is denoted by
U(G) ∈ P(G). If (Gn)n∈N is a sequence of finite graphs such that (U(Gn))n∈N admits
a weak limit ρ ∈ P(G), we call ρ the random weak limit of the sequence (Gn)n∈N.
Finally, for any d ≥ 0, we define Gd as the space of all rooted connected graphs with
maximal degree no more than d.

Rather than just graphs G = (V, E), it will be sometimes convenient to work with
discrete networks G = (V, E,M), in which the additional specification of a mark
map M : E → N allows to attach useful local information to edges, such as their
absence/presence in a certain matching. We then simply require the isomorphisms in
the above definition to preserve these marks.

The first main implication of our work is that the local weak convergence of a
sequence of graphs is enough to guarantee the convergence of their normalized match-
ing numbers to a quantity that can be described directly on the random weak limit of
the graph sequence.

Theorem 1 Let Gn = (Vn, En), n ∈ N, be a sequence of finite graphs admitting a
random weak limit ρ. Then,

ν(Gn)

|Vn| −−−→
n→∞ γ, (4)

where γ ∈ [0, 1
2 ] is defined by a recursion defined directly on the random weak

limit ρ.

We refer to Sect. 3.1 for a description of the recursion defining γ .
Since the work of Heilmann and Lieb [21], it is known that the thermodynamic

limit for monomer-dimer systems exists and basic properties of this limit are derived
for lattices. In particular, [21, Lemma 8.7] shows the convergence of the normalized
matching number when the underlying graph is a lattice. More recently, Elek and
Lippner [17] extended this result by using the framework of local weak convergence
for bounded degree graphs. Here we remove the bounded degree assumption. More
importantly, the approach in [17] is non-constructive. In contrast, we provide a charac-
terization of γ in terms of a local recursion defined directly on the random weak limit
ρ. We postpone the discussion on how to actually compute γ from ρ to Subsect. 3.1.
Our approach starts as in [21] with the introduction of a natural family of probability
distributions on the set of matchings parametrized by a single parameter z > 0 called
the Boltzmann-Gibbs distribution. The analysis in [21] concentrates on the properties
of the partition function, also known as the matching polynomial, from which a result
like (4) can be deduced. Our analysis differs from this approach and concentrates on
the analysis of the local marginals of the Boltzmann-Gibbs distribution, in a similar
spirit as in the (non-rigorous) work of Zdeborová and Mézard [27]. As in [27] and
[20], we start from an elementary formal recursion satisfied by the matching polyno-
mials, and deduce an exact recursion for the local marginals of the Boltzmann-Gibbs
distribution on any finite graph. A careful analysis of the contractivity properties of
this recursion allows us to define the monomer-dimer model on infinite graphs (see
Theorem 6), and to define their “normalized matching number” (see Theorem 10).
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We should stress that the analysis of the marginal probabilities is essential for our sec-
ond main result, namely the explicit computation of the matching number when the
local weak limit is a Galton–Watson tree. Although simple adaptations of the argument
in [21] would yield a result like Theorem 1, the limit would be given in an implicit
way which would not be sufficient to get our second main result.

As many other classical graph sequences, Erdős-Rényi graphs and random graphs
with a prescribed degree profile admit almost surely a particularly simple random
weak limit, namely a unimodular Galton–Watson (UGW) tree (see Example 1.1 in [1]).
This random rooted tree is parametrized by a probability distribution π ∈ P(N) with
finite mean, called its degree distribution. It is obtained by a Galton–Watson branching
process where the root has offspring distribution π and all other genitors have offspring
distribution π̂ ∈ P(N) defined by

∀n ∈ N, π̂n = (n + 1)πn+1
∑

k kπk
. (5)

Thanks to the markovian nature of the branching process, the recursion defining γ

simplifies into a recursive distributional equation, which has been explicitly solved
by the authors in a different context [12].

Theorem 2 With the notation of Theorem 1, if the random weak limit ρ is a UGW
tree with degree distribution π , we have the explicit formula

γ = 1 − maxt∈[0,1] F(t)

2
,

where

F(t) = tφ′(1 − t) + φ(1 − t) + φ

(

1 − φ′(1 − t)

φ′(1)

)

− 1,

and φ(t) = ∑

n πntn is the moment generating function of the degree distribution π .

Differentiating the above expression, we see that any t achieving the maximum
must satisfy

φ′(1)t = φ′
(

1 − φ′(1 − t)

φ′(1)

)

. (6)

For Erdős-Rényi random graphs with connectivity c, the degree of the limiting UGW
tree is Poisson with parameter c (i.e. φ(t) = exp(ct − c)), so that (6) becomes
t = e−ce−ct

. We thus recover precisely Karp and Sipser’s formula (2). Similarly, for
random graphs with a prescribed degree sequence, the log-concave assumption made
by Bohmann and Frieze guarantees that the above maximum is achieved at t = 0 with
F(0) = 0, hence (3) follows automatically.

A classical area of combinatorial optimization is formed by bipartite matching
[25]. We end this section, with a specialization of our results to bipartite graphs
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G = (V = V a ∪ V b, E). The natural limit for a sequence of bipartite graphs is
the following hierarchal Galton–Watson tree parameterized by two distributions on N

with finite first moment, πa and πb and a parameter λ ∈ [0, 1]. We denote π̂a and π̂b

the corresponding distributions given by the transformation (5). We also denote φa

and φb the generating functions of πa and πb. The hierarchal Galton–Watson tree is
then defined as follows: with probability λ, the root has offspring distribution πa , all
odd generation genitors have offspring distribution π̂b and all even generation genitors
have offspring distribution π̂a ; similarly with probability 1 −λ, the root has offspring
distribution πb, all odd generation genitors have offspring distribution π̂a and all even
generation genitors have offspring distribution π̂b. In the first (resp. second) case, we
say that the root and all even generations are of type a (resp. b) and all the odd genera-
tions are of type b (resp. a). To get a unimodular hierarchal Galton–Watson (UHGW)
tree with degree distributions πa and πb, we need to have: λφa ′(1) = (1 − λ)φb ′(1),
so that

λ = φb ′(1)

φa ′(1) + φb ′(1)
. (7)

Theorem 3 With the notation of Theorem 1, assume that the random weak limit ρ is
a UHGW tree with degree distributions πa, πb. If πa and πb have finite first moment,
then

γ = φb ′(1)

φa ′(1) + φb ′(1)

(

1 − max
t∈[0,1] Fa(t)

)

, (8)

where Fa is defined by:

Fa(t) = φa
(

1 − φb ′(1 − t)

φb ′(1)

)

− φa ′(1)

φb ′(1)

(

1 − φb(1 − t) − tφb ′(1 − t)
)

.

Note that if φa(x) = φb(x), we find the same limit as in Theorem 2. Note that it is
not obvious from formula (8) that our expression for γ is symmetric in a and b as it
should. In the forthcoming Sect. 5.2, Eq. (30) gives an alternative symmetric formula
for γ which simplifies to (8) thanks to (7).

Note also that our Theorem 3 computes the independence number of random bipar-
tite graphs. Recall that a set of vertices in a graph G is said to be independent if no two
of them are adjacent. The cardinality of any largest independent set of points in G is
known as the independence number of G or the stability number of G and is denoted
by α(G). By Kőnig’s theorem, we know that for any bipartite graph G with vertex
set V, α(G) + ν(G) = |V |. The fact that a limit for α(Gn)

|Vn | exists, has been proved
recently in [5] for Erdős-Rényi and random regular graphs. The actual value for this
limit is unknown except for Erdős-Rényi graphs with mean degree c < e. In this case,
the leaf-removal algorithm allows to compute explicitly the limit which agrees with
(8) with φa(x) = φb(x) = exp(cx − x).

Motivated by some applications for Cuckoo Hashing [15,18], recent results have
been obtained in the particular case where πa(k) = 1 for some k ≥ 3 and πb is a
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Poisson distribution with parameter αk. These degree distributions arise if one consider
a sequence of bipartite graphs with �αm� nodes of type a (called the items), m nodes
of type b (called the locations) and each node of type a is connected with k nodes of
type b chosen uniformly at random (corresponding to the assigned locations the item
can be stored in). The result in this domain, obtained in [19] follows (see Sect. 5.3)
from our Theorem 3, namely:

Corollary 4 Under the assumption of Theorem 3 and with πa(k) = 1 for some k ≥ 3
and πb is a Poisson distribution with parameter αk. Let ξ be the unique solution of
the equation:

k = ξ(1 − e−ξ )

1 − e−ξ − ξe−ξ
, and, αc = ξ

k(1 − e−ξ )k−1 .

• for α ≤ αc, all (except op(n)) vertices of type a are covered, i.e. ν(Gn)
|V a

n | −−−→
n→∞ 1.

• for α > αc, we have:

ν(Gn)

|V a
n | −−−→

n→∞ 1 − 1

α

(

e−ξ∗ + ξ∗e−ξ∗ + ξ∗

k
(1 − e−ξ∗

) − 1

)

, (9)

where ξ∗ = kαx∗ and x∗ is the largest solution of x = (

1 − e−kαx
)k−1

.

In words, αc is the load threshold: if α ≤ αc, there is an assignment of the �αm�
items to a table with m locations that respects the choices of all items, whereas for
α > αc, such an assignement does not exist and (9) gives the maximal number of
items assigned without collision. Note that results in [15,18] are slightly different in
the sense that for the specific sequence of random graphs described above (i.e. uniform
hypergraphs), they show that for α < αc all vertices of type a are covered with high
probability. It is shown in [23] how to get such results from Corollary 4 under the
additional assumption that the sequence of graphs are uniform hypergraphs.

3 The monomer-dimer model

We start with the case of a finite graph G = (V, E). Consider a natural family of
probability distributions on the set of matchings M(G), parameterized by a single
parameter z > 0 called the temperature (note that the standard temperature T in
physics would correspond to z = e−1/T but this will not be important here): for any
M ∈ M(G),

μz
G(M) = z|V |−2|M|

PG(z)
, (10)

where PG is the matching polynomial, PG(z) = ∑

M∈M(G) z|V |−2|M|. In statistical
physics, this is called the monomer-dimer model at temperature z on G (see [21] for a
complete treatment). We let Mz

G denote a random element of M(G) with law μz
G , and
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we call it a Boltzmann random matching at temperature z on G. Note that the lowest
degree coefficient of PG is precisely the number of largest matchings on G. Therefore,
Mz

G converges in law to a uniform largest matching as the temperature z tends to zero.
We define the root-exposure probability (REP) of the rooted graph (G, ◦) as

Rz[G, ◦] = μz
G (◦ is exposed). (11)

3.1 Local recursions to compute γ

Before starting with the proof, we explain (whithout proofs) how to compute γ in
(4). For a finite graph, our computation of γ follows exactly the approach of Godsil
[20]. We recall Godsil’s notion of the path-tree associated with a rooted graph G: if
G is any rooted graph with root ◦, we define its path-tree TG as the rooted tree whose
vertex-set consists of all finite simple paths starting at the root ◦; whose edges are the
pairs {P, P ′} of the form P = v1 . . . vn, P ′ = v1 . . . vnvn+1(n ≥ 1); whose root is
the single-vertex path ◦. By a finite simple path, we mean here a finite sequence of
distinct vertices v1 . . . vn (n ≥ 1) such that vivi+1 ∈ E for all 1 ≤ i < n.

It is well-known since Godsil’s result [20] that path-trees capture considerable
information about matchings in general graph and are easier to work with than the
graph itself. For a rooted graph [G, ◦], let T[G,◦] be the associated path-tree and consider
the corresponding system of equations (where u � v if u is a child of v):

∀v ∈ T[G,◦], xv = 1

1 + ∑

u�v

(∑

w�u xw

)−1 . (12)

For any finite rooted graph [G, ◦], (12) has a unique solution in [0, 1]T[G,◦] and we
denote the value taken at the root by x◦(G). Then x◦(G) is exactly the probability for
the root ◦ of being exposed in a uniform maximal matching. In particular, we have

ν(G) =
∑

v∈V

1 − xv(G)

2
.

This argument follows from [20] and will be a special case of our analysis.
For an infinite graph with bounded degree, it turns out that it is not always possible

to make sense of the local recursions (12). However, our analysis will show that for
any z > 0, the infinite set of equations:

∀v ∈ T[G,◦], xv(z) = 1

1 + ∑

u�v

(

z2 + ∑

w�u xw(z)
)−1 ,

has a unique solution in [0, 1]T[G,◦] and the value taken by the root is exactly Rz[G, ◦]
(which is the probability for the root ◦ of being exposed in a Boltzmann random
matching at temperature z when the graph G is finite). Then our Theorem 11 will imply
that for any sequence of finite graphs (Gn = (Vn, En))n∈N satisfying |En| = O(|Vn|)
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and having ρ as a random weak limit,

ν(Gn)

|Vn| −−−→
n→∞

1 − Eρ

[

limz→0 Rz
]

2
,

and limz→0 Rz[G, ◦] is actually the largest solution to (12). From a practical point
of view, it is possible to compute an approximation of Rz[G, ◦] by looking at a
sufficient large ball centered at the root ◦, see [24]. Moreover our analysis will show
that the quantity Eρ

[Rz
]

is a good approximation of Eρ

[

limz→0 Rz
]

as soon as
|En| = O(|Vn|) (see Lemma 12).

3.2 Extension of the model on infinite graphs with bounded degree

Let G − ◦ be the graph obtained from G by removing its root ◦. Since the matchings
of G that expose ◦ are exactly the matchings of G − ◦, we have the identity

Rz[G, ◦] = z PG−◦(z)
PG(z)

, (13)

which already shows that the REP is an analytic function of the temperature. The
remarkable fact that its domain of analyticity contains the right complex half-plane

H+ = {z ∈ C; �(z) > 0}

is a consequence of the powerful Heilmann-Lieb theorem [21, Theorem 4.2] (see [14]
for generalizations). The key to the study of the REP is the following elementary but
fundamental local recursion:

Rz[G, ◦] = z2

(

z2 +
∑

v∼◦
Rz[G − ◦, v]

)−1

. (14)

Clearly, this recursion determines uniquely the functional Rz on the class of finite
rooted graphs, and may thus be viewed as an inductive definition of the REP. Remark-
ably enough, this alternative characterization allows for a continuous extension to
infinite graphs with bounded degree, even though the above recursion never ends. We
let H denote the space of analytic functions on H+, equipped with its usual topology
of uniform convergence on compact sets. Our fundamental lemma is as follows:

Theorem 5 (The fundamental local lemma)

1. For every fixed z ∈ H+, the local recursion (14) determines a unique Rz : Gd →
zH+.

2. For every fixed [G, ◦] ∈ Gd , z �→ Rz[G, ◦] is analytic.
3. The resulting mapping [G, ◦] ∈ Gd �−→ R(·)[G, ◦] ∈ H is continuous.
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This local lemma has strong implications for the monomer-dimer model, which
we now list. The first one is the existence of an infinite volume limit for the Gibbs-
Boltzmann distribution.

Theorem 6 (Monomer-dimer model on infinite graphs) Consider a graph G ∈ Gd

and a temperature z > 0. For any finite matching M of G, the cylinder-event marginals
defined by

μz
G(M ⊆ M) = z−2|M|

2|M|
∏

k=1

Rz[G − {v1, . . . , vk−1}, vk],

are consistent and independent of the ordering v1, . . . v2|M| of the vertices spanned by
M. They thus determine a unique probability distribution μz

G over the matchings of
G. It coincides with the former definition in the case where G is finite, and extends it
continuously in the following sense : for any ◦ ∈ V and any sequence ([Gn, ◦n])n∈N ∈
Gd

N converging to [G, ◦],

[Gn, ◦n,Mn] d−−−→
n→∞ [G, ◦,M],

in the local weak sense for random networks, where Mn has law μz
Gn

and M has law
μz

G.

Although it is not our concern here, we obtain as a by-product the strong con-
vergence of the logarithm of the matching polynomial, also called free energy in the
monomer-dimer model:

Corollary 7 Let (Gn)n∈N be a sequence of finite graphs with bounded degree admit-
ting a random weak limit [G, ◦]. The following convergence holds in the analytic sense
on H+,

1

|Vn| log
PGn (z)

PGn (1)
−−−→
n→∞

z
∫

1

Eρ[Rs[G, ◦]]
s

ds,

where Eρ[Rs[G, ◦]] denotes the expectation under the measure ρ of the variable
Rs[G, ◦].

A similar result was established in [21] for the lattice case, and in [6] under a
restrictive large girth assumption.

3.3 Proof of Theorem 5: the fundamental lemma

The local recursion (14) involves mappings of the form:

φz,d : (x1, . . . , xd) �→ z2

(

z2 +
d

∑

i=1

xi

)−1

,
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where d ∈ N. In the following lemma, we gather a few elementary properties of this
transformation, which are immediate to check but will be of constant use throughout
the paper.

Lemma 8 (Elementary properties) For any d ∈ N and z ∈ H+,

1. φz,d maps analytically zH+ × · · · × zH+ into zH+
2. |φz,d | is uniformly bounded by |z|/�(z) on zH+ × · · · × zH+.

From part 1, it follows that the REP of a finite rooted graph belongs to H, when
viewed as a function of the temperature z. Part 2 and Montel’s theorem guarantee that
the family of all those REPs is relatively compact in H. Note that relative compactness
also plays a central role in [21]. Combined with the following uniqueness property at
high temperature, it will quickly lead to the proof of Theorem 5.

The local recursion (14) also involves graph transformations of the form [G, ◦] �→
[G − ◦, v], where v ∼ ◦. Starting from a given [G, ◦] ∈ Gd , we let Succ∗[G, ◦] ⊆ Gd

denote the (denumerable) set of all rooted graphs that can be obtained by successively
applying finitely many such transformations.

Lemma 9 (Uniqueness at high temperature) Let [G, ◦] ∈ Gd and z ∈ H+ such that
�(z) >

√
d. If

R1
z ,R2

z : Succ∗[G, ◦] → zH+

both satisfy the local recursion (14) then R1
z = R2

z .

Proof Set α = 2|z|/�(z) and β = �(z)−2. From (14) and part two of Lemma 8 it is
clear that the absolute difference � = |R1

z − R2
z | must satisfy

�[G, ◦] ≤ α and �[G, ◦] ≤ β
∑

v∼◦
�[G − ◦, v].

In turn, each�[G−◦, v] appearing in the second upper-bound may be further expanded
into β

∑

w∼v,w �=◦ �[G − ◦ − v,w]. Iterating this procedure k times, one obtains

�[G, ◦] ≤ βkdkα. Taking the infimum over all k yields �[G, ◦] = 0, since the
assumption �(z) >

√
d means precisely βd < 1. ��

Proof of Theorem 5 For clarity, we divide the proof in three parts : we first define a
specific solution which satisfies (14) and is analytic. We will then prove this solution
is unique and continuous. This will prove parts one–three of Theorem 5.

Analytic existence. Fix [G, ◦] ∈ Gd , and consider an arbitrary collection of H+ →
zH+ analytic functions z �→ R0

z [H, i], indexed by the elements [H, i] ∈ Succ∗[G, ◦].
For every n ≥ 1, define recursively

Rn
z [H, i] = z2

⎛

⎝z2 +
∑

j∼i

Rn−1
z [H − i, j]

⎞

⎠

−1

, (15)
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for all z ∈ H+ and [H, i] ∈ Succ∗[G, ◦]. By Lemma 8, each sequence
(

z �→ Rn
z [H, i])n∈N

is relatively compact in H. Consequently, their joint collec-
tion as [H, i] varies in the denumerable set Succ∗[G, ◦] is relatively compact in
the product space HSucc∗[G,◦]. Passing to the limit in (15), we see that any pre-limit
Rz : Succ∗[G, ◦] → zH+ must automatically satisfy (14) for each z ∈ H+. By
Lemma 9, this determines uniquely the value of Rz[G, ◦] for z with sufficiently large
real part, and hence everywhere in H+ by analyticity. To sum up, we have just proved
the following : for every [G, ◦] ∈ Gd , the limit

Rz[G, ◦] := lim
n→∞ Rn

z [G, ◦] (16)

exists in H, satisfies the recursion (14), and does not depend upon the choice of the
initial condition R0

z : Succ∗[G, ◦] → zH+ (provided that the latter is analytic in
z ∈ H+).

Pointwise uniqueness. Let us now show that any S : Succ∗[G, ◦] → zH+ satisfy-
ing the recursion (14) at a fixed value z = z0 ∈ H+ must coincide with the z = z0 spe-
cialization of the analytic solution constructed above. For each [H, i] ∈ Succ∗[G, ◦],
the constant initial function R0

z [H, i] := S[H, i] is trivially analytic from H+ to zH+,
so the iteration (15) must converge to the analytic solution Rz . Since Rn

z0
= S for all

n ∈ N, we obtain Rz0 = S, as desired.
Continuity. Finally, assume that ([Gn, ◦])n≥1 ∈ Gd

N converges locally to [G, ◦],
and let us show that

Rz[Gn, ◦] H−−−→
n→∞ Rz[G, ◦]. (17)

It is routine that, up to rooted isomorphisms, G, G1, G2, . . . may be represented on a
common vertex set, in such a way that for each fixed k ∈ N, [Gn, ◦]k = [G, ◦]k for
all n ≥ nk . By construction, any simple path v1 . . . vk starting from the root in G is
now also a simple path starting from the root in each Gn, n ≥ nk , so the H−valued
sequence (z �→ Rz[Gn − {v1, . . . , vk−1}, vk])n≥nk

is well defined, and relatively com-
pact (Lemma 8). Again, the denumerable collection of all sequences obtained by letting
the simple path v1 . . . vk vary in [G, ◦] is relatively compact for the product topology,
and any pre-limit must by construction satisfy (14). By pointwise uniqueness, the
convergence (17) must hold. ��

3.4 Proof of Theorem 6: convergence of the Boltzmann distribution

Consider an infinite [G, ◦] ∈ Gd , and let ([Gn, ◦])n≥1 be a sequence of finite rooted
connected graphs converging locally to [G, ◦]. As above, represent G, G1, G2, . . . on
a common vertex set, in such a way that for each k ∈ N, [Gn, ◦]k = [G, ◦]k for all
n ≥ nk . Now fix an arbitrary finite matching M in G, and denote by v1, . . . , v2|M| the
vertices spanned by M , in any order. By construction, M is also a matching of Gn for
large enough n. But the matchings of Gn that contain M are in 1 − 1 correspondence
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with the matchings of Gn − {v1, . . . , v2|M|}, and hence

μz
Gn

(M ⊆ M) = PGn−{v1,...,v2|M|}(z)
PGn (z)

= z−2M
2M
∏

k=1

Rz[Gn − {v1, . . . , vk−1}, vk].

But [Gn − {v1, . . . , vk−1}, vk] converges locally to [G − {v1, . . . , vk−1}, vk], so by
continuity of Rz ,

μz
Gn

(M ⊆ M) −−−→
n→∞ z−2M

2M
∏

k=1

Rz[G − {v1, . . . , vk−1}, vk].

Proof of Corollary 7 Analytic convergence of the free energy follows from Theorem 6
and Lebesgue dominated convergence Theorem, since for any finite graph G = (V, E)

we have

(log PG)′(z) = P ′
G(z)

PG(z)
= 1

|V |
∑

◦∈V

Rz[G, ◦]
z

= ρ[Rz[G, ◦]]
z

.

The uniform domination
∣

∣

∣

ρ[Rz [G,◦]]
z

∣

∣

∣ ≤ 1
R(z) is provided by Lemma 8. ��

4 The zero-temperature limit

Motivated by the asymptotic study of maximum matchings, we now let the temperature
z → 0.

4.1 The case of bounded degree

We first use the results from the previous section to prove a version of Theorem 1 for
graphs with bounded degree.

Theorem 10 (The zero temperature limit in graphs with bounded degree) For any
[G, ◦] ∈ Gd , the zero temperature limit

R∗[G, ◦] = lim
z→0

↓ Rz[G, ◦]

exists. Moreover, R∗ : Gd → [0, 1] is the largest solution to the recursion

R∗[G, ◦] =
⎛

⎝1 +
∑

v∼◦

(

∑

w∼v

R∗[G − ◦ − v,w]
)−1

⎞

⎠

−1

, (18)

with the conventions 0−1 = ∞,∞−1 = 0. When G is finite, R∗[G, ◦] is the probability
that ◦ is exposed in a uniform maximum matching.
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Proof Fix [G, ◦] ∈ Gd . First, we claim that z �→ Rz[G, ◦] is non-decreasing on R+.
Indeed, this is obvious if G is reduced to ◦, since in that case the REP is simply one. It
then inductively extends to any finite graph [G, ◦], because iterating twice (14) gives

Rz[G, ◦] =
⎛

⎝1 +
∑

v∼◦

(

z2 +
∑

w∼v

Rz[G − ◦ − v,w]
)−1

⎞

⎠

−1

. (19)

For the infinite case, [G, ◦] is the local limit of the sequence of finite truncations
([G, ◦]n)n∈N, where, for n ≥ 1, [G, ◦]n denotes the finite rooted subgraph induced
by the vertices lying at graph-distance at most n from ◦. So by continuity of the REP,
Rz[G, ◦] = limn→∞ Rz[G, ◦]n must be non-decreasing in z as well. This guarantees
the existence of the [0, 1]−valued limit

R∗[G, ◦] = lim
z→0

↓ Rz[G, ◦].

Moreover, taking the z → 0 limit in (19) guarantees the recursive formula (18).
Finally, consider S∗ : Succ∗[G, ◦] → [0, 1] satisfying the recursion (18). Let us

show by induction over n ∈ N that for every [H, i] ∈ Succ∗[G, ◦] and z > 0,

S∗[H, i] ≤ Rz[H, i]2n . (20)

The statement is trivial when n = 0 (Rz[H, i]0 = 1), and is preserved from n to n +1
because

Rz[H, i]2n+2 =
⎛

⎜

⎝1 +
∑

j∼i

⎛

⎝z2 +
∑

k∼ j

Rz[H − i − j, k]2n

⎞

⎠

−1
⎞

⎟

⎠

−1

≥
⎛

⎜

⎝1 +
∑

j∼i

⎛

⎝

∑

k∼ j

S∗[H − i − j, k]
⎞

⎠

−1
⎞

⎟

⎠

−1

= S∗[H − i, j].

Letting n → ∞ and then z → 0 in (20) yields S∗ ≤ R∗, which completes the proof
��

This naturally raises the following question : may the zero temperature limit be
interchanged with the infinite volume limit, as suggested by the diagram below?

123



Matchings on infinite graphs 197

Unfortunately, the recursion (18) may admit several distinct solutions, and this
translates as follows : in the limit of zero temperature, correlation decay breaks for
the monomer–dimer model, in the precise sense that the functional R∗ : Gd → [0, 1]
is no longer continuous with respect to local convergence. For example, one can easily
construct an infinite rooted tree [T, ◦] with bounded degree such that

lim
n→∞ ↓ R∗[T, ◦]2n �= lim

n→∞ ↑ R∗[T, ◦]2n+1.

Indeed, consider the case of T being the graph on N rooted at 0 = ◦, where two
integers share an edge if they differ by one. Then, a straightforward computation gives
R∗[T, ◦]2n = 1/2 while R∗[T, ◦]2n+1 = 0. Despite this lack of correlation decay,
the interchange of limits turns out to be valid “on average”, i.e. when looking at a
uniformly chosen vertex ◦.

Theorem 11 (The limiting matching number of bounded-degree graph sequences)
Let ρ be a probability distribution over Gd . For any sequence of finite graphs (Gn =
(Vn, En))n∈N satisfying |En| = O(|Vn|) and having ρ as a random weak limit,

ν(Gn)

|Vn| −−−→
n→∞

1 − Eρ [R∗]

2
.

In order to get our Theorem 1, we need to remove the bounded degree assumption.
This is done below. In the case where the limit ρ is a (two-level) Galton–Watson
tree, the recursion (18) simplifies into a recursive distributional equation (RDE). The
computations for these cases are done in Sect. 5.

Proof of Theorem 11 Let G = (V, E) be a finite graph and M be any maximal match-
ing of G. Then

∑

v∈V

1(v is exposed in M) = |V | − 2
∑

e∈E

1(e ∈ M).

In particular, if ρ = U(G), we have the elementary identity

Eρ [R∗] = 1 − 2ν(G)

|V | . (21)

The proof of Theorem 11 will easily follow from the following uniform control:

Lemma 12 (Uniform continuity around the zero-temperature point) Let G = (V, E)

be a finite graph. For any 0 < z < 1,

Eρ

[Rz
] + |E |

|V |
log 2

log z
≤ Eρ [R∗] ≤ Eρ

[Rz
]

. (22)

Indeed, let ρ be a probability distribution on Gd , and let (Gn = (Vn, En))n∈N be
a sequence of finite graphs with |Vn| = O(|En|), whose random weak limit is ρ. For
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each n ∈ N, set ρn = U(Gn). With these notations, proving Theorem 11 amounts to
establish:

Eρn [R∗] −−−→
n→∞ Eρ [R∗] . (23)

However, since ρn �⇒ ρ, and since each Rz, z > 0 is continuous and bounded, we
have for every z > 0,

Eρn [Rz] −−−→
n→∞ Eρ[Rz].

Thus, setting C = supn∈N

|En |
|Vn | and letting n → ∞ in (22), we see that for any z < 1,

Eρ

[Rz
] + C

log 2

log z
≤ lim inf

n→∞ Eρn [R∗] ≤ lim sup
n→∞

Eρn [R∗] ≤ Eρ

[Rz
]

.

Letting finally z → 0, we obtain exactly (23), and it only remains to show Lemma 12.

Proof of Theorem 12 Fix 0 < z < 1. Since z �→ Eρ

[Rz
]

is non-decreasing, we have

Eρ [R∗] ≤ Eρ

[Rz
] ≤ −1

log z

1
∫

z

s−1
Eρ [Rs] ds.

Use Eρ [Rs] = s P ′
G (s)

|V |PG (s) to rewrite this as

Eρ [R∗] ≤ Eρ

[Rz
] ≤ 1

|V | log z
log

PG(z)

PG(1)
.

Now, PG(1) is the total number of matchings and is thus clearly at most 2|E |, while
PG(z) is at least z|V |−2ν(G). Using (21), these two bounds yield to

Eρ [R∗] ≤ Eρ

[Rz
] ≤ 1

|V | log z

(|V |Eρ [R∗] log z − |E | log 2
)

.

This gives (22). ��

4.2 The case of unbounded degree

In this section, we establish Theorem 1 in full generality, removing the restriction of
bounded degree from Theorem 11. To this end, we introduce the d-truncation Gd

(d ∈ N) of a graph G = (V, E), obtained from G by isolating all vertices with degree
more than d, i.e. removing any edge incident to them. This transformation is clearly
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continuous with respect to local convergence. Moreover, its effect on the matching
number can be easily controlled:

ν(Gd) ≤ ν(G) ≤ ν(Gd) + #{v ∈ V ; degG(v) > d}. (24)

Now, consider a sequence of finite graphs (Gn)n∈N admitting a random weak limit
(G, ◦). First, fixing d ∈ N, we may apply Theorem 11 to the sequence (Gd

n)n∈N to
obtain:

ν(Gd
n)

|Vn| −−−→
n→∞

1 − Eρd [R∗]

2
,

where ρd is the d-truncation of ρ. Second, we may rewrite (24) as

∣

∣

∣

∣

ν(Gd
n)

|Vn| − ν(Gn)

|Vn|
∣

∣

∣

∣

≤ #{v ∈ Vn; degGn
(v) > d}

|Vn| .

Letting n → ∞, we obtain

lim sup
n→∞

∣

∣

∣

∣

1 − ρd [R∗]

2
− ν(Gn)

|Vn|
∣

∣

∣

∣

≤ ρ (deg(◦) > d),

This last line is, by an elementary application of Cauchy criterion, enough to guarantee
the convergence promised by Theorem 1, i.e.

ν(Gn)

|Vn| −−−→
n→∞ γ, where γ := lim

d→∞
1 − Eρd [R∗]

2
. (25)

Note that because of the possible absence of correlation decay, the largest solution
R∗[G, ◦] is not a continuous function of (G, ◦) ∈ G. In particular, we do not know
whether it is always the case that

γ = 1 − Eρ[R∗]
2

, (26)

as established in Theorem 11 for graphs with bounded degree. However, (26) holds
in the particular cases where we have an explicit formula for Eρ[R∗] which depends
continuously upon the degree distribution as will be the case in Sect. 5.

5 Computations on (hierarchal) Galton–Watson trees

5.1 The case of Galton–Watson trees

We now investigate the special case where the limiting random graph is a UGW tree T .
Specifically, we fix a distribution π ∈ P(N) with finite support (we will relax this
assumption in the sequel) and we consider a UGW tree T with degree distribution π as
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defined in Sect. 2. The random matchings Mz
T , z ≥ 0 are perfectly well-defined, and

all the previously established results for graphs with bounded degree hold almost
surely. However, the self-similar recursive structure of T gives to the fixed-point
characterizations (14) and (18) a very special form that is worth making explicit.

Before we start, let us insist on the fact that Rz[T ] (z > 0) is random: it is the
quenched probability that the root is exposed at temperature z, given the random tree
T . In light of Theorem 1, it becomes important to ask for its distribution. Let P ([0, 1])
denote the space of Borel probability measures on [0, 1]. Given z > 0, ν ∈ P (N) and
μ ∈ P ([0, 1]), we denote by �ν,z(μ) the law of the [0, 1]−valued r.v.

Y= z2

z2 + ∑N
i=1 Xi

,

where N ∼ ν and X1, X2, . . . ∼ μ, all of them being independent. This defines an
operator �ν,z on P ([0, 1]). The corresponding fixed point equation μ = �ν,z(μ)

belongs to the general class of recursive distributional equations, or RDE. Equiva-
lently, it can be rewritten as

X
d= z2

z2 + ∑N
i=1 Xi

,

where X1, X2, . . . are i.i.d. copies of the unknown random variable X . Note that the
same RDE appears in the analysis of the spectrum and rank of adjacency matrices of
random graphs [11,12]. With this notations in hands, the infinite system of equations
(14) defining Rz[T ] clearly leads to the following distributional characterization:

Lemma 13 For any z > 0,Rz[T ] has distribution �π,z(μz), where μz is a solution
to the RDE μz = �π̂,z(μz).

The same program can be carried out in the zero temperature limit. Specifically,
given ν, ν′ ∈ P(N) and μ ∈ P ([0, 1]), we define �ν,ν′(μ) as the law of the [0, 1]-
valued r.v.

Y = 1

1 + ∑N
i=1

(

∑Ni
′

j=1 Xi j

)−1 , (27)

where N ∼ ν,Ni
′ ∼ ν′, and Xi j ∼ μ, all of them being independent. This defines an

operator �ν,ν′ on P ([0, 1]) whose fixed points will play a crucial role in our study.
Then, Theorem 10 implies:

Lemma 14 The random variable R∗[T ] has law �π,π̂ (μ∗), where μ∗ is the largest
solution to the RDE μ∗ = �π̂,π̂ (μ∗).

Recall that the mean of �π,π̂ (μ∗) gives precisely the asymptotic size of a maximum
matching for any sequence of finite random graphs whose random weak limit is T
(Theorem 11). We will solve this RDE in the next section in the more general set-up of
UHGW trees. Combined with Theorem 1 and a simple continuity argument to remove
the bounded degree assumption, this will prove Theorem 2.
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5.2 The case of hierarchal Galton–Watson trees

As in previous section, we first assume that both πa and πb have a finite support.
We can define a RDE but with some care about the types a and b. The corresponding
results read as follows:

Lemma 15 For any z > 0, conditionally on the root being of type b (resp. a), Rz[T ]
has distribution �πb,z(μ

a
z ) (resp. �πb,z(μ

b
z )), where μa

z is a solution to the RDE:

μa
z = �π̂a ,z ◦ �π̂b,z(μ

a
z ),

and μb
z = �π̂b,z(μ

a
z ).

For z = 0: conditionally on the root being of type a (resp. b), the random variable
R∗[T ] has law �πa ,π̂b (μa∗) (resp. �πb,π̂a (μb∗)), where μa∗ is the largest solution to
the RDE

μa∗ = �π̂a ,π̂b (μ
a∗), (28)

and μb∗ is the largest solution to the RDE μb∗ = �π̂b,π̂a (μb∗).

We now analyze the RDE (28). We define:

Fa(x) = φa
(

1 − ̂φb(1 − x)
)

− φa ′(1)

φb ′(1)

(

1 − φb(1 − x) − xφb ′(1 − x)
)

. (29)

Observe that

Fa ′(x) = φa ′(1)

φb ′(1)
φb ′′(1 − x)

(

̂φa(1 − ̂φb(1 − x)) − x
)

.

Hence any x where Fa admits a local maximum must satisfy x = ̂φa(1 −̂φb(1 − x)).
We define the historical records of Fa as the set of x ∈ [0, 1] such that x = ̂φa(1 −
̂φb(1 − x)) and for any 0 ≤ y < x, Fa(x) > Fa(y) (the latter condition being empty
if x = 0).

Theorem 16 If p1 < · · · < pr are the locations of the historical records of Fa, then
the RDE (28) admits exactly r solutions; moreover, these solutions can be stochasti-
cally ordered, say μ1< · · · <μr , and for any i ∈ {1, . . . , r},
• μi ((0, 1]) = pi ;
• �πa ,π̂b (μi ) has mean Fa(pi ).

The proof of Theorem 16 relies on two lemmas.

Lemma 17 The operators �πa ,π̂b and �π̂a ,π̂b are continuous (with respect to weak
convergence) and strictly increasing (with respect to stochastic ordering) on P ([0, 1]).
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Proof of Lemma 17 It follows directly from the fact that, for any n ≥ 0 and any
n1, . . . , nn ≥ 0, the mapping

x �→ 1

1 + ∑n
i=1

(

∑ni
j=1 xi j

)−1

is continuous and increasing from [0, 1]n1+...+nn to [0, 1]. ��
Lemma 18 For any μ ∈ P ([0, 1]), letting p = μ ((0, 1]), we have

1. �π̂a ,π̂b (μ) ((0, 1]) = ̂φa(1 − ̂φb(1 − p)),
2. if �π̂a ,π̂b (μ) ≤ μ, then the mean of �πa ,π̂b (μ) is at least Fa(p),
3. if �π̂a ,π̂b (μ) ≥ μ, then the mean of �πa ,π̂b (μ) is at most Fa(p);

In particular, if μ is a fixed point of �π̂a ,π̂b , then p = ̂φa(1−̂φb(1−p)) and �πa ,π̂b (μ)

has mean Fa(p).

Proof of Lemma 18 In Eq. (27) it is clear that Y > 0 if and only if for any
i ∈ {1, . . . ,N }, there exists j ∈ {1, . . . ,Ni

′} such that Xi j > 0. With the nota-
tion introduced above, this rewrites:

�π̂a ,π̂b (μ) ((0, 1]) = ̂φa
(

1 − ̂φb (1 − μ ((0, 1]))
)

,

hence the first result follows.
Now let X ∼ μ, Y ∼ �π̂a ,π̂b (μ),N a ∼ πa, ̂N a ∼ π̂a , and let S, S1, . . . have

the distribution of the sum of a π̂b-distributed number of i.i.d. copies of X , all these
variables being independent. Observe that

1

1+∑N a

i=1 Si
−1

=
(

1 −
∑N a

i=1 Si
−1

1 + ∑N a

i=1 Si
−1

)

1{∀i=1...N a ,Si >0}

= 1{∀i=1...N a ,Si >0}−
N a
∑

j=1

S j
−1

1+S−1
j +∑

1≤i≤N a ,i �= j Si
−1

1{∀i=1...N a ,Si >0}

Then, �πa ,π̂b (μ) has mean

E

[

1

1 + ∑N a

i=1 Si
−1

]

= P
(∀i = 1 . . . N a, Si > 0

)

−
∞
∑

k=1

kπa
k E

[

S−1

S−1 + 1 + ∑k−1
i=1 Si

−1
1{S>0,∀i=1...k−1,Si >0}

]

= φa(1 − ̂φb(1 − p)) − φa ′(1)

×E

[

S−1

S−1 + 1 + ∑
̂N a

i=1 Si
−1

1{

S>0,∀i=1... ̂N a ,Si >0
}

]

= φa(1 − ̂φb(1 − p)) − φa ′(1)E

[

Y

Y + S
1{S>0}

]

,
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where the second and last lines follow from (5) and Y ∼ �π̂a ,π̂b (μ), respectively.
Now, for any s > 0, x �→ x/(x + s) is increasing and hence, depending on whether
�π̂,π̂ (μ) ≥ μ or �π̂a ,π̂b (μ) ≤ μ,�πa ,π̂b (μ) has mean at most/least:

φa(1 − ̂φb(1 − p)) − φa ′(1)E

[

X

X + S
1{S>0}

]

= φa(1 − ̂φb(1 − p)) − φa ′(1)

×E

[

X

X + ∑
̂N b

i=1 Xi

1{N ∗≥1}

]

,

with Xi are i.i.d. copies of X independent of ̂N b ∼ π̂b and N ∗ = ∑
̂N b

i=1 1{Xi >0}.
Now if X ′ is the law of X conditioned on {X > 0}, and X ′

i are i.i.d. copies of X ′, by
exchangeability, we find

E

[

X

X + ∑
̂N b

i=1 Xi

1{N ∗≥1}

]

= pE

[

X ′

X ′ + ∑N ∗
i=1 X ′

i

1{N ∗≥1}

]

= pE

[

1

1 + N ∗ 1{N ∗≥1}
]

.

Hence finally, depending on whether �π̂,π̂ (μ) ≥ μ or �π̂a ,π̂b (μ) ≤ μ,�πa ,π̂bμ,

�πa ,π̂b (μ) has mean at most/least:

φa(1 − ̂φb(1 − p)) − pφa ′(1)E

[

1

1 + N ∗ 1{N ∗≥1}
]

But using the definition (5) and the combinatorial identity (n + 1)
(n

d

) = (d + 1)
(n+1

d+1

)

,
one easily derive:

φa (1 − ̂φb(1 − p)) − pφa ′(1)E

[

1

1 + N ∗ 1{N ∗≥1}
]

= φa(1 − ̂φb(1 − p)) − pφa ′(1)
∑

n≥1

π̂n
b

n
∑

d=1

(

n

d

)

pd(1 − p)n−d

d + 1

= Fa(p).

Proof of Theorem 16 Let p ∈ [0, 1] such that ̂φa(1 − ̂φb(1 − p)) = p, and define
μ0 = Bernoulli(p). From Lemma 18 we know that �π̂a ,π̂b (μ0) ((0, 1]) = p, and
since Bernoulli((p)) is the largest element of P([0, 1]) putting mass p on (0, 1], we
have �π̂a ,π̂b (μ0) ≤ μ0. Immediately, Lemma 17 guarantees that the limit

μ∞ = lim
k→∞ ↘ �k

π̂a ,π̂b (μ0)

exists in P ([0, 1]) and is a fixed point of �π̂a ,π̂b . Moreover, by Fatou’s lemma, the
number p∞ = μ∞ ((0, 1]) must satisfy p∞ ≤ p. But then the mean of �πa ,π̂b (μ∞)

must be both

• equal to Fa(p∞) by Lemma 18 with μ = μ∞;
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• at least Fa(p) since this holds for all �πa ,π̂b ◦ �k
π̂a ,π̂b (μ0), k ≥ 1 (Lemma 18

with μ = �k
π̂a ,π̂b (μ0)).

We have just shown both Fa(p) ≤ Fa(p∞) and p∞ ≤ p. From this, we now deduce
the one-to-one correspondence between historical records of Fa and fixed points of
�π̂a ,π̂b . We treat each inclusion separately:

1. If Fa admits an historical record at p, then clearly p∞ = p, so μ∞ is a fixed point
satisfying μ∞ ((0, 1]) = p.

2. Conversely, considering a fixed point μ with μ ((0, 1]) = p, we want to deduce
that Fa admits an historical record at p. We first claim that μ is the above defined
limit μ∞. Indeed, μ ≤ Bernoulli(p) implies μ ≤ μ∞ (�π̂a ,π̂b is increasing), and
in particular p ≤ p∞. Therefore, p = p∞ and Fa(p) = Fa(p∞). In other words,
the two ordered distributions �πa ,π̂b (μ) ≤ �πa ,π̂b (μ∞) share the same mean,
hence are equal. This ensures μ = μ∞. Now, if q < p is any historical record
location, we know from part 1 that

ν∞ = lim
k→∞ ↘ �k

π̂a ,π̂b (Bernoulli(q))

is a fixed point of �π̂a ,π̂b satisfying ν∞ ((0, 1]) = q. But q < p, so Bernoulli(q) <

Bernoulli(p), hence ν∞ ≤ μ∞. Moreover, this limit inequality is strict because
ν∞ ((0, 1]) = q < p = μ∞ ((0, 1]). Consequently, �πa ,π̂b (ν∞) < �πa ,π̂b (μ∞)

and taking expectations, Fa(q) < Fa(p). Thus, Fa admits an historical record
at p. ��

We may now finish the proof of Theorem 3.

Proof of Theorem 3: case of bounded degrees We assume that πa and πb have bounded

support. Recall (7), so that we have λ = φb ′(1)

φa ′(1)+φb ′(1)
, where λ is the probability that

the root is of type a. Theorems 11, 16 and Lemma 15 give:

ν(Gn)

|Vn| −−−→
n→∞

λ(1 − maxx∈[0,1] Fa(x)) + (1 − λ)(1 − maxx∈[0,1] Fb(x))

2
, (30)

where Fa is defined in (29) and Fb is defined similarly by

Fb(x) = φb (

1 − ̂φa(1 − x)
) − φb ′(1)

φa ′(1)

(

1 − φa(1 − x) − xφa ′(1 − x)
)

. (31)

For any x which is an historical record of Fa , we define y = ̂φb(1 − x) so that
̂φa(1 − y) = x . Then we have:

λ(1−Fa(x)) = λ

(

1−φa(1−y)+φa ′(1)

(

1

φb ′(1)
− φb(1−̂φa(1−y))

φb ′(1)
−ŷφa(1−y)

))

= (1 − λ)(1 − Fb(y)).
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By symmetry, this directly implies that λ(1 − maxx∈[0,1] Fa(x)) = (1 − λ)(1 −
maxx∈[0,1] Fb(x)) so that (30) is equivalent to (8). This proves Theorems 2 and 3 for
distributions with bounded support.

Proof of Theorem 3: general case To keep notation simple, we only prove Theorem
2. The following proof clearly extends to the case of UHGW trees. Let G1, G2, . . . be
finite random graphs whose local weak limit is a Galton–Watson tree T , and assume
that the degree distribution π of T (with generating function φ) has a finite mean :
φ′(1) = ∑

n nπn < ∞. For any rooted graph G and any fixed integer d ≥ 1, recall
that Gd is the graph obtained from G by deleting all edges adjacent to a vertex v

whenever deg(v) > d. Hence T d is a Galton–Watson tree whose degree distribution
πd is defined by

∀i ≥ 0, πd
i = πi 1i≤d + 1i=0

∑

k≥d+1

πk .

By Theorem 1, Eq. (25) and our weaker version of Theorem 2 for distributions with
bounded support,

ν(Gn)

|Vn| −−−→
n→∞ lim

d→∞ min
x∈[0,1] gd(x), (32)

with φd(x) = ∑d
k=0 πk xk and

gd(x) = 1 − 1

2
(1 − x)φ′

d(x) − 1

2
φd(x) − 1

2
φd

(

1 − φ′
d(x)

φ′
d(1)

)

.

Also, as d → ∞, we have φd → φ and φ′
d → φ′ uniformly on [0, 1], so

min
x∈[0,1] gd(x) −−−→

n→∞ min
x∈[0,1] g(x), (33)

with g(x) = 1 − 1
2 (1 − x)φ′(x) − 1

2φ(x) − 1
2φ

(

1 − φ′(x)
φ′(1)

)

. Finally, combining (32)

and (33), we easily obtain the desired

ν(Gn)

|Vn| −−−→
n→∞ min

x∈[0,1] g(x). ��

5.3 Proof of Corollary 4

Note that in Corollary 4, we divide ν(Gn) by |V a
n | = �αm� instead of |V a

n | + |V b
n | =

�αm�+m, so that by Theorem 3, we have ν(Gn)
|V a

n | −−−→
n→∞ mint∈[0,1] 1− Fa(t). We have
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φa(x) = xk, φb(x) = eαk(x−1) so that we have:

Fa(x) =
(

1 − e−kαx
)k − 1

α

(

1 − e−kαx − kαxe−kαx
)

Fa ′(x) = k2αe−kαx
(

(

1 − e−kαx
)k−1 − x

)

.

Let x∗ be defined as in Corollary 4 as the largest solution to x = (

1 − e−kαx
)k−1

. It
is easy to check (see Section 6 in [23] for a more general analysis) that

min
t∈[0,1] 1 − Fa(t) = min{1, 1 − Fa(x∗)}.

Setting ξ∗ = kαx∗, we have ξ∗
kα

= (1 − e−ξ∗
)k−1, so that

min
t∈[0,1] 1 − Fa(t) = min

{

1, 1 − 1

α

(

e−ξ∗ + ξ∗e−ξ∗ + ξ∗

k
(1 − e−ξ∗

) − 1

)}

.

Since z �→ z(1−e−z)
1−e−z−ze−z is increasing in z, we see that ξ∗ ≥ ξ if and only if α ≥ αc and

we get

min
t∈[0,1] 1 − Fa(t) = 1 − 1(α ≥ αc)

1

α

(

e−ξ∗ + ξ∗e−ξ∗ + ξ∗

k
(1 − e−ξ∗

) − 1

)

.
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Appendix: uniqueness and non-uniqueness at zero temperature

Consider a sequence (Gn = (Vn, En))n∈N of finite graphs whose local weak limit
under uniform rooting is a UGW tree T . Let φ(t) = ∑

πntn be the generating function
of the degree distribution π of T , and for t ∈ [0, 1] set

F(t) = tφ′(1 − t) + φ(1 − t) + φ

(

1 − φ′(1 − t)

φ′(1)

)

− 1.

From Theorem 16, we know that there is a.s. a unique solution to the local recursion
at temperature z = 0 on T (correlation decay) if and only if the first local extremum
of F is a global maximum. In that case, the convergence

ν(Gn)

|Vn| −−−→
n→∞

1 − maxt∈[0,1] F(t)

2
(34)
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Fig. 1 From left to right : plot of F for c = 2, c = e and c = 3

Fig. 2 Plots of F for φ(t) = 3
4 t3 + 1

4 t15 (left) and φ(t) = 50
101 t3 + 50

101 t20 + 1
101 t700 (right)

can be obtained by a fairly standard compactness–uniqueness argument, without any
need for a detour through the positive temperature regime. As it is not hard to check,
a sufficient condition for the first local extremum of F to be a global maximum
is that φ′′ is log-concave. This is in particular true in the Erdős-Rényi case, where
φ(t) = exp(ct − 1), (c > 0). The corresponding function F is given in Fig. 1 for
various values of c.

However, there are simple examples of degree distributions π for which the function
F has more than one historical record, implying the coexistence of multiple solutions
to the local recursion (lack of correlation decay). In that case, a detour through the
positive temperature regime is needed in order to establish the convergence (34).
Fig. 2 shows two examples where t = 0 is the first local extremum of F but not a global
maximum.
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