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Abstract We study upper estimates of the martingale dimension dm of diffusion
processes associated with strong local Dirichlet forms. By applying a general strategy
to self-similar Dirichlet forms on self-similar fractals, we prove that dm = 1 for natu-
ral diffusions on post-critically finite self-similar sets and that dm is dominated by the
spectral dimension for the Brownian motion on Sierpinski carpets.
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740 M. Hino

1 Introduction

Studies on the structure of stochastic processes through the space of martingales
associated with them date back to the 1960s. As seen from Meyer’s decomposition
theorem for example, martingales are one of the suitable concepts for understanding
the randomness of stochastic processes. In the framework of general Markov pro-
cesses, Motoo and Watanabe [30] proved that, for a class M of martingale additive
functionals, there exists a kind of basis {xn} of M such that every element in M
can be represented as a sum of stochastic integrals based on {xn} and a purely dis-
continuous part. This is a generalization of the study by Ventcel’ [34], wherein the
Brownian motion on R

d was considered. We term the cardinality of the basis as the
martingale dimension. (The precise definition is discussed in Sect. 2.) Related general
theories are found in some articles such as those by Kunita and Watanabe [24] and
Cramér [8]. Later, Davis and Varaiya [9] introduced the concept of multiplicity of
filtration on filtered probability spaces as an abstract generalization. A vast amount of
literature is now available on the study of filtrations from various directions by M. Yor,
M. Émery, M. T. Barlow, E. A. Perkins, B. Tsirelson, and many others. In this article, we
focus on the quantitative estimate of martingale dimensions associated with symmetric
diffusion processes on state spaces that do not necessarily have smooth structures, in
particular, on self-similar fractals.

The martingale dimension of typical examples, such as the Brownian motion on a
d-dimensional complete Riemannian manifold, is d. This number can be informally
interpreted as the number of “independent noises” included in the process. When the
underlying space does not have a differential structure, it is not easy to determine or
even to provide estimates of the martingale dimension. The first result in this direction
is due to Kusuoka [25], who considered the martingale dimension dm with respect
to additive functionals (AF-martingale dimension) and proved that dm = 1 for the
Brownian motion on the d-dimensional standard Sierpinski gasket SGd (see Fig. 1)
for every d. This was an unexpected result because the Hausdorff dimension of SGd

is log(d + 1)/ log 2, which is arbitrarily large when d becomes larger. This result
was generalized in [17,18] to natural self-similar symmetric diffusion processes on
post-critically finite (p. c. f.) self-similar sets (see Fig. 1) satisfying certain technical
conditions, with the same conclusion. The proofs heavily rely on the facts that the
fractal sets under consideration are finitely ramified (that is, they can be disconnected
by removing finitely many points) and that the Dirichlet form associated with the
diffusion is described by infinite random products of a finite number of matrices. No
further results have yet been obtained in this direction. Thus, the following questions
naturally arise:

Fig. 1 SG2, SG3, and some other p.c.f. self-similar sets
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Upper estimate of martingale dimension for self-similar fractals 741

Fig. 2 Examples of (generalized) Sierpinski carpets

• What about the martingale dimensions of infinitely ramified fractals such as
Sierpinski carpets?

• In general, are there any relations between dm and other kinds of dimensions?

In this paper, we provide partial answers to these questions; we prove that the
AF-martingale dimension dm of the Brownian motion on (generalized) Sierpinski car-
pets (Fig. 2) are dominated by the spectral dimension ds. In particular, if the process
is point recurrent (that is, if ds < 2), then dm = 1. This is the first time that nontrivial
estimates of martingale dimensions for infinitely ramified fractals have been obtained.
The proof is based on the analytic characterization of dm in terms of the index of
the associated Dirichlet form that was developed in [18], and new arguments for the
estimate of the index in general frameworks, in which some harmonic maps play the
crucial roles. This method is also applicable to p. c. f. self-similar sets, which enables
us to remove the technical assumptions in [17] and conclude that dm = 1. In [17], we
had to exclude Hata’s tree-like set (the rightmost figure of Fig. 1) because of some
technical restrictions such as the condition that every “boundary point” had to be a
fixed point of one of the maps defining the self-similar set; this example was discussed
individually in [18].

One of the main ingredients of the proof is the construction of a special harmonic
map from the fractal to the Euclidean space R

d , which makes it possible to use certain
properties of the classical energy form on R

d . For this purpose, we use a method anal-
ogous to the blowup argument in geometric measure theory. Although we presently
require the self-similar structure of the state space for this argument, we expect the
relation 1 ≤ dm ≤ ds to be true for more general metric measure spaces as well.

This article is organized as follows. In Sect. 2, we review the concepts of the index
of strong local regular Dirichlet forms and the AF-martingale dimension dm of the
associated diffusion processes under a general setting. In Sect. 3, we develop some
tools for the estimation of dm in the general framework. In Sect. 4.1, we discuss self-
similar Dirichlet forms on self-similar fractals and study some properties on the energy
measures as a preparation for the proof of the main results. In Sect. 4.2, we treat p. c. f.
self-similar sets and prove that dm = 1 with respect to natural self-similar diffusions.
This subsection is also regarded as a warm-up for the analysis on Sierpinski carpets,
which is technically more involved. In Sect. 4.3, we consider Sierpinski carpets and
prove the inequality 1 ≤ dm ≤ ds, putting forth two technical propositions. These
propositions are proved in Sect. 5.
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742 M. Hino

Hereafter, ci. j denotes a positive constant appearing in Section i that does not play
important roles in the arguments.

2 Martingale dimension of the diffusion processes associated with strong local
Dirichlet forms

In this section, we review a part of the theory of Dirichlet forms and the concept of
martingale dimensions, following [12,17,18]. We assume that the state space K is a
locally compact, separable, and metrizable space. We denote the Borel σ -field of K
by B(K ). Let C(K ) denote the set of all continuous real-valued functions on K , and
Cc(K ), the set of all functions in C(K ) with compact support. Let μ be a positive
Radon measure on K with full support. For 1 ≤ p ≤ ∞, L p(K , μ) denotes the real
L p-space on the measure space (K ,B(K ), μ)with norm ‖·‖L p(K ,μ). The inner prod-
uct of L2(K , μ) is denoted by (·, ·)L2(K ,μ). Suppose that we are given a symmetric
regular Dirichlet form (E ,F ) on L2(K , μ). For α ∈ R and f, g ∈ F , we define
Eα( f, g) = E ( f, g) + α( f, g)L2(K ,μ). The space F becomes a Hilbert space under
inner product ( f, g)F := E1( f, g). Hereafter, the topology of F is always considered
as that derived from norm ‖ · ‖F := (·, ·)1/2F . We write E ( f ) and Eα( f ) instead of
E ( f, f ) and Eα( f, f ) for simplicity. The set of all bounded functions in F is denoted
by Fb. The following is a basic fact.

Proposition 2.1 (cf. [12, Theorem 1.4.2]) Let f, g ∈ Fb. Then, f g ∈ Fb and

E ( f g)1/2 ≤ E ( f )1/2‖g‖L∞(K ,μ) + E (g)1/2‖ f ‖L∞(K ,μ).

Let us review the theory of additive functionals associated with (E ,F ), following
[12, Chapter 5]. The capacity Cap associated with (E ,F ) is defined as

Cap(U ) = inf{E1( f ) | f ∈ F and f ≥ 1 μ-a.e. on U }

if U is an open subset of K , and

Cap(B) = inf{Cap(U ) | U is open and U ⊃ B}

for general subsets B of K . A subset B of K with Cap(B) = 0 is called an excep-
tional set. A statement depending on x ∈ K is said to hold for q.e. (quasi-every) x
if the set of x for which the statement is not true is an exceptional set. A real valued
function u defined q.e. on K is called quasi-continuous if for any ε > 0, there exists
an open subset U of K such that Cap(U ) < ε and u|K\U is continuous. From [12,
Theorem 2.1.3], every f ∈ F has a quasi-continuous modification f̃ in the sense that
f = f̃ μ-a.e. and f̃ is quasi-continuous.

For a μ-measurable function u, the support of the measure |u| · μ is denoted by
Supp[u]. Hereafter, we consider only the case that (E ,F ) is strong local, that is, the
following property holds:
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Upper estimate of martingale dimension for self-similar fractals 743

If u, v ∈ F ,Supp[u] and Supp[v] are compact, and v is constant on a neigh-
borhood of Supp[u], then E (u, v) = 0.

From the general theory of regular Dirichlet forms, we can construct a diffusion process
{Xt }on KΔ defined on a filtered probability space (Ω,F∞, P, {Px }x∈KΔ, {Ft }t∈[0,∞))
associated with (E ,F ). Here, KΔ = K ∪ {Δ} is a one-point compactification of K
and {Ft }t∈[0,∞) is the minimum completed admissible filtration. Any numerical func-
tion f on K extends to KΔ by letting f (Δ) = 0. We denote by Ex the expectation
with respect to Px for x ∈ K . The relationship between {Xt } and (E ,F ) is explained
in such a way that the operator f 	→ E·[ f (Xt )] produces the semigroup associated
with (E ,F ). We may assume that for each t ∈ [0,∞), there exists a shift operator
θt : Ω → Ω that satisfies Xs ◦ θt = Xs+t for all s ≥ 0. We denote the life time of
{Xt (ω)}t∈[0,∞) by ζ(ω). A [−∞,+∞]-valued function At (ω), t ∈ [0,∞), ω ∈ Ω ,
is referred to as an additive functional if the following conditions hold:

• At (·) is Ft -measurable for each t ≥ 0;
• There exist a set Λ ∈ F∞ and an exceptional set N ⊂ K such that Px (Λ) = 1

for all x ∈ K \ N and θtΛ ⊂ Λ for all t > 0; moreover, for each ω ∈ Λ, A·(ω) is
right continuous and has the left limit on [0, ζ(ω)), A0(ω) = 0, |At (ω)| <∞ for
all t < ζ(ω), At (ω) = Aζ(ω)(ω) for t ≥ ζ(ω), and

At+s(ω) = As(ω)+ At (θsω) for every t, s ≥ 0.

The sets Λ and N referred to above are called a defining set and an exceptional set of
the additive functional A, respectively. A finite (resp. continuous) additive functional
is defined as an additive functional such that |A·(ω)| <∞ (resp. A·(ω) is continuous)
on [0,∞) for ω ∈ Λ. A [0,+∞]-valued continuous additive functional is referred
to as a positive continuous additive functional. From [12, Theorems 5.1.3 and 5.1.4],
for each positive continuous additive functional A, there exists a unique measure μA

on K (termed the Revuz measure of A) such that the following identity holds for any
t > 0 and nonnegative Borel functions f and h on K :

∫

K

Ex

⎡
⎣

t∫

0

f (Xs) d As

⎤
⎦ h(x) μ(dx) =

t∫

0

∫

K

Ex [h(Xs)] f (x) μA(dx) ds.

Further, if two positive continuous additive functionals A(1) and A(2) have the
same Revuz measures, then A(1) and A(2) coincide in the sense that, for any
t > 0, Px (A

(1)
t = A(2)t ) = 1 for q.e. x ∈ K . Let Pμ be a measure on Ω defined

as Pμ(·) =
∫

K Px (·) μ(dx). Let Eμ denote the integration with respect to Pμ. We
define the energy e(A) of additive functional A as e(A) = limt→0(2t)−1 Eμ[A2

t ] if
the limit exists.

Let M be the space of martingale additive functionals of {Xt } that is defined as

M =
⎧⎨
⎩M

M is a finite additive functional such that M·(ω) is right continuous
and has a left limit on [0,∞) for ω in a defining set of M , and for
each t > 0, Ex [M2

t ] <∞ and Ex [Mt ] = 0 for q.e. x ∈ K

⎫⎬
⎭ .
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744 M. Hino

Due to the assumption that (E ,F ) is strong local, every M ∈ M is in fact a contin-
uous additive functional (cf. [12, Lemma 5.5.1 (ii)]). Each M ∈M admits a positive
continuous additive functional 〈M〉 referred to as the quadratic variation associated
with M , which satisfies Ex [〈M〉t ] = Ex [M2

t ], t > 0 for q.e. x ∈ K , and the following

equation holds: e(M) = μ〈M〉(K )/2. We set
◦

M = {M ∈M | e(M) <∞}. Then,
◦

M
is a Hilbert space with inner product e(M, L) := (e(M + L)− e(M)− e(L))/2 (see

[12, Theorem 5.2.1]). For M, L ∈ ◦
M , we set μ〈M,L〉 = (μ〈M+L〉 − μ〈M〉 − μ〈L〉)/2.

For M ∈ ◦
M and f ∈ L2(K , μ〈M〉), we can define the stochastic integral f • M

(cf. [12, Theorem 5.6.1]), which is a unique element of
◦

M such that e( f • M, L) =
(1/2)

∫
K f (x) μ〈M,L〉(dx) for all L ∈ ◦

M . If f ∈ Cc(K ), we may write
∫ ·

0 f (Xt ) d Mt

for f • M since ( f • M)t =
∫ t

0 f (Xs) d Ms, t > 0, Px -a.e. for q.e. x ∈ K (cf. [12,
Lemma 5.6.2]).

Let Z+ denote the set of all nonnegative integers.

Definition 2.2 (cf. [17]) The AF-martingale dimension of {Xt } (or of (E ,F )) is
defined as the smallest number p in Z+ satisfying the following: There exists a

sequence {M (k)}p
k=1 in

◦
M such that every M ∈ ◦

M has a stochastic integral rep-
resentation

Mt =
p∑

k=1

(hk • M (k))t , t > 0, Px -a.e. for q.e. x,

where hk ∈ L2(K , μ〈M(k)〉) for each k = 1, . . . , p. If such p does not exist, the
AF-martingale dimension is defined as +∞.

Remark 2.3 In the definition above, AF is an abbreviation of “additive functional.”
We can also consider another version of martingale dimensions for general (not nec-
essarily symmetric) diffusion processes as follows. Let

M =
{

M = {Mt }t∈[0,∞) M0 = 0 and M is a square-integrable martingale
with respect to Px for all x ∈ K

}
.

For M ∈ M, denote its quadratic variation process by 〈M〉 and define the space
L(〈M〉) as the family of all progressively measurable processes ϕ(t, ω) such that

Ex

[∫ t
0 ϕ(s)

2 d〈M〉s
]
< ∞ for all t > 0 and x ∈ K . The martingale dimen-

sion of M is defined as the smallest number q satisfying the following: There
exists M (1), . . . ,M (q) ∈ M such that every M ∈ M can be expressed as Mt =∑q

k=1

∫ t
0 ϕk(s) d M (k)

s Px -a.e. x for all x ∈ K , where ϕk ∈ L(〈M (k)〉), k = 1, . . . , q,
and the integral above is interpreted as the usual stochastic integral with respect to
martingales. Let us observe the relation between these two concepts. Suppose that {Xt }
with (Ω,F∞, P, {Px }x∈KΔ, {Ft }t∈[0,∞)) is a diffusion process on K with symme-
trizing measure μ and has an associated regular Dirichlet form (E ,F ) on L2(K , μ).
For α > 0 and a bounded Borel measurable function f in L2(K , μ), denote the
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Upper estimate of martingale dimension for self-similar fractals 745

α-order resolvent E .
[∫∞

0 e−αt f (Xt ) dt
]

by Gα f , and set

M f,α
t = (Gα f )(Xt )− (Gα f )(X0)−

t∫

0

(α(Gα f )(Xs)− f (Xs)) ds, t > 0.

Then, M f,α· belongs to
◦

M ∩M. Moreover, concerning the space

M̂ = {M f,α· | α > 0, f is a bounded Borel measurable function in L2(K , μ)},

the linear span of {h•M | M ∈ M̂, h ∈ Cc(K )} is dense in
◦

M from [12, Lemma 5.6.3]

and the linear span of
{∫ ·

0 ϕ(s) d Ms M ∈ M̂, ϕ ∈ L(〈M〉)
}

is dense in M with

respect to the natural topology from [24, Theorem 4.2]. These facts strongly suggest
that the two martingale dimensions coincide, although the author does not have a proof.
In this article, we consider only AF-martingale dimensions and often omit “AF” from
the terminology hereafter.

We review the analytic representation of the AF-martingale dimension. First, we
introduce the concept of energy measures of functions in F , which is defined for (not
necessarily strong local) regular Dirichlet forms. For each f ∈ F , a positive finite
Borel measure ν f on K is defined as follows (cf. [12, Section 3.2]).*1 When f is
bounded, ν f is characterized by the identity

∫

K

ϕ dν f = 2E ( f ϕ, f )− E (ϕ, f 2) for all ϕ ∈ F ∩ Cc(K ).

By using the inequality

∣∣∣
√
ν f (B)−

√
νg(B)

∣∣∣2 ≤ ν f−g(B) ≤ 2E ( f − g), B ∈ B(K ), f, g ∈ Fb (2.1)

(cf. [12, p. 111, and (3.2.13) and (3.2.14) in p. 110]), for any f ∈ F , we can define a
finite Borel measure ν f by ν f (B) = limn→∞ ν fn (B) for B ∈ B(K ), where { fn}∞n=1
is a sequence in Fb such that fn converges to f in F . Then, Eq. (2.1) still holds true
for any f, g ∈ F . The measure ν f is called the energy measure of f . For f, g ∈ F ,
the mutual energy measure ν f,g , which is a signed Borel measure on K , is defined as
ν f,g = (ν f+g − ν f − νg)/2. Then, ν f, f = ν f and ν f,g is bilinear in f and g (cf. [12,
p. 111]). We also have the following inequalities: for f, g ∈ F and B ∈ B(K ),

|ν f,g(B)| ≤
√
ν f (B)

√
νg(B), (2.2)√

ν f+g(B) ≤
√
ν f (B)+

√
νg(B). (2.3)

*1 In [12], symbol μ〈 f 〉 is used in place of ν f .
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746 M. Hino

Moreover, for f, g ∈ F and Borel measurable functions h1, h2 on K ,

∣∣∣∣∣∣
∫

K

h1h2 dν f,g

∣∣∣∣∣∣ ≤
⎛
⎝
∫

K

h2
1 dν f

⎞
⎠

1/2 ⎛
⎝
∫

K

h2
2 dνg

⎞
⎠

1/2

(2.4)

as long as the integral on the left-hand side makes sense. This is proved as follows: If
h1 and h2 are simple functions, (2.4) follows from (2.2) and the Schwarz inequality.
By the limiting argument, (2.4) holds for general h1 and h2.

Under the assumption that (E ,F ) is strong local, we have an identity

E ( f ) = ν f (K )/2, f ∈ F (2.5)

(cf. [12, Lemma 3.2.3]) and the following derivation property.

Theorem 2.4 (cf. [12, Theorem 3.2.2]) Let f1, . . . , fm, and g be elements in F , and
ϕ ∈ C1

b(R
m) satisfy ϕ(0, . . . , 0) = 0. Then, u := ϕ( f1, . . . , fm) belongs to F and

dνu,g =
m∑

i=1

∂ϕ

∂xi
( f̃1, . . . , f̃m) dν fi ,g.

Here, C1
b(R

m) denotes the set of all bounded C1-functions on R
m with bounded deriv-

atives, and f̃i denotes a quasi-continuous modification of fi .

We note that the underlying measure μ does not play an important role with regard to
energy measures.

For two σ -finite (or signed) Borel measures μ1 and μ2 on K , we write μ1 � μ2
if μ1 is absolutely continuous with respect to μ2.

Definition 2.5 (cf. [18]) A σ -finite Borel measure ν on K is called a minimal energy-
dominant measure of (E ,F ) if the following two conditions are satisfied.

(i) (Domination) For every f ∈ F , ν f � ν.
(ii) (Minimality) If another σ -finite Borel measure ν′ on K satisfies condition (i)

with ν replaced by ν′, then ν � ν′.

By definition, two minimal energy-dominant measures are mutually absolutely con-
tinuous. In fact, a minimal energy-dominant measure is realized by an energy measure
as follows.

Proposition 2.6 (see [18, Proposition 2.7]) The set of all functions g ∈ F such that
νg is a minimal energy-dominant measure of (E ,F ) is dense in F .

Fix a minimal energy-dominant measure ν of (E ,F ). From (2.2), ν f,g � ν for
f, g ∈ F , so that we can consider the Radon–Nikodym derivative dν f,g/dν.

Let d ∈ N. We denote F × · · · ×F︸ ︷︷ ︸
d

by F d and equip it with the product topology.
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Upper estimate of martingale dimension for self-similar fractals 747

Definition 2.7 For f = ( f1, . . . , fd) ∈ F d , we define

E (f ) = 1

d

d∑
i=1

E ( fi ), νf = 1

d

d∑
i=1

ν fi (2.6)

and

Φf =

⎧⎪⎪⎨
⎪⎪⎩

(
dν fi , f j

dν

/
dνf
dν

)d

i, j=1
on

{
dνf
dν

> 0

}
,

O on

{
dνf
dν

= 0

}
.

(2.7)

Note thatΦf is a function defined ν-a.e. on K , taking values in the set of all symmetric
and nonnegative-definite matrices of order d.

Lemma 2.8 For f ∈ F d , Φf =
(
dν fi , f j

/
dνf

)d
i, j=1

νf -a.e.

Proof This is evident from the definition of Φf , by taking into account that ν fi , f j �
νf from (2.2). ��
Lemma 2.9 (i) Let { f (n)}∞n=1 and {g(n)}∞n=1 be sequences in F and f (n) → f

and g(n)→ g in F as n →∞. Then, dν f (n),g(n)/dν converges to dν f,g/dν in

L1(K , ν).
(ii) Suppose that a sequence {f (n)}∞n=1 in F d converges to f in F d . Then,

there exists a subsequence {f (n′)} such that Φ
f (n

′) (x) converges to Φf (x) for
νf -a.e. x.

Proof Assertion (i) is proved in [18, Lemma 2.5]. We prove (ii). From (i), we can take
a subsequence {f (n′)} such thatΦ

f (n
′) converges toΦf ν-a.e. on

{
dνf /dν > 0

}
. This

implies the assertion. ��
The following definition is taken from [18], which is a natural generalization of the
concept due to Kusuoka [25,26].

Definition 2.10 The index p of (E ,F ) is defined as the smallest number satisfying
the following: For any N ∈ N and any f1, . . . , fN ∈ F ,

rank

(
dν fi , f j

dν
(x)

)N

i, j=1
≤ p for ν-a.e. x .

If such a number does not exist, the index is defined as +∞.

It is evident that this definition is independent of the choice of ν.

Proposition 2.11 (cf. [18, Proposition 2.10]) Let { fi }∞i=1 be a sequence of functions
in F such that the linear span of { fi }∞i=1 is dense in F . Denote the Radon–Nikodym
derivative dν fi , f j /dν by Zi, j for i, j ∈ N. Then, the index of (E ,F ) is described as

ν-ess supx∈K supN∈N rank
(
Zi, j (x)

)N
i, j=1.

We remark the following fact.
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748 M. Hino

Proposition 2.12 (cf. [18, Proposition 2.11]) The index is 0 if and only if E ( f ) = 0
for every f ∈ F .

The following theorem is a natural generalization of [26, Theorem 6.12] and under-
lies the estimate of martingale dimensions from the next section.

Theorem 2.13 (see [18, Theorem 3.4]) The index of (E ,F ) coincides with the
AF-martingale dimension of {Xt }.

3 Strategy for upper estimate of martingale dimension

In this section, we develop some tools for the estimation of AF-martingale dimensions
under a general framework. We keep the notations in the previous section.

First, we introduce the concept of harmonic functions. We fix a closed subset K ∂

of K . This set is regarded as a boundary of K . We define

F0 = { f ∈ F | Supp[ f ] ∩ K ∂ = ∅} and FD = { f ∈ F | f̃ = 0 q.e. on K ∂},
(3.1)

where f̃ is a quasi-continuous modification of f . We remark the following:

Proposition 3.1 (cf. [12, Corollary 2.3.1]) The closure of F0 in F is equal to FD.

An element h ∈ F is called harmonic if E (h) ≤ E (h + f ) for all f ∈ FD. The set
of all harmonic functions are denoted by H . The following is a standard fact and its
proof is omitted (cf. [16, Lemma 3.6]).

Lemma 3.2 For h ∈ F , the following are equivalent.

(i) h ∈H .
(ii) For every f ∈ FD,E (h, f ) = 0.

(iii) For every f ∈ F0,E (h, f ) = 0.

Moreover, H is a closed subspace of F .

Let d ∈ N. We denote H × · · · ×H︸ ︷︷ ︸
d

by H d , which is considered as a closed sub-

space of F d . The Lebesgue measure on R
d is denoted by L d . The symbol “dx” is

also used if there is no ambiguity. For r ∈ N and p ≥ 1,W r,p(Rd) denotes the classi-
cal (r, p)-Sobolev space on R

d . Hereafter, for f ∈ F , f̃ denotes a quasi-continuous
Borel modification of f . The symbol f̃ corresponding to f ∈ F d is similarly inter-
preted. In general, for a measurable map F : X → Y and a measure m X on X,F ∗m X

denotes the induced measure of m X by F .
Given d ∈ N, we consider the following conditions.

(U)d There exists h = (h1, . . . , hd) ∈H d such that the following hold:
(a) νh(K ) > 0;
(b) Φh(x) is the identity matrix for νh-a.e. x ∈ K ;
(c) h̃∗νh � L d .
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(U’)d There exists h = (h1, . . . , hd) ∈H d such that the following hold:
(a) νh(K ) > 0;
(b) Φh(x) is the identity matrix for νh-a.e. x ∈ K ;
(c) h̃∗νh � L d , and the density ρ = d(h̃∗νh)/dL d is dominated by a cer-

tain nonnegative function ξ with
√
ξ ∈ W 1,2(Rd), in that ρ ≤ ξ L d -a.e.

Note that h̃∗νh does not depend on the choice of h̃ since νh does not charge any sets
of zero capacity.

The following three claims are crucial for the estimate of the martingale dimension,
the proofs of which are provided later.

Lemma 3.3 Let h = (h1, . . . , hd) ∈ H d . Suppose that νh(K ) > 0 and Φh(x) = L
for νh-a.e. x for some symmetric and positive-definite matrix L of order d that is
independent of x. Then, there exists h′ = (h′1, . . . , h′d) ∈ H d such that νh′(K ) > 0
and Φh′(x) is the identity matrix for νh′ -a.e. x. In particular, νh′i = νh′ for every
i = 1, . . . , d.

Proposition 3.4 Assume that h = (h1, . . . , hd) ∈ H d and Φh(x) is the identity
matrix for νh-a.e. x. Take a bounded function f from FD. Then, the induced measure
of f̃ 2νh by h̃ : K → R

d , denoted by h̃∗( f̃ 2νh), is absolutely continuous with respect
to L d , and its density ξ := d(h̃∗( f̃ 2νh))/dL d satisfies

√
ξ ∈ W 1,2(Rd).

Theorem 3.5 We assume that μ(K ) < ∞ and 1 ∈ F . Then, the following hold for
d ∈ N.

(i) Assume condition (U)d . Moreover, if Cap({x}) > 0 for every x ∈ K , then d = 1.
(ii) Assume condition (U’)d . Moreover, suppose that the Sobolev inequality holds

for some ds > 2 and c3.1 > 0:

‖ f ‖2
L2ds/(ds−2)(K ,μ) ≤ c3.1E1( f ), f ∈ F . (3.2)

Then, d ≤ ds.

In virtue of these results, the strategy to provide upper estimates of martingale dimen-
sions is summarized as follows.

Strategy 3.6 The following is a strategy for upper estimates of the AF-martingale
dimensions dm.

Step 0: Take an arbitrary d ∈ N such that d ≤ dm.
Step 1: Find h ∈ H d such that νh(K ) > 0 and Φh(x) = L for νh-a.e. x for some

symmetric positive-definite matrix L of order d. We may assume that L is the
identity matrix as seen from Lemma 3.3.

Step 2: By using the result of Step 1 and Proposition 3.4 if necessary, find (possibly
different) h ∈H d such that condition (U)d or (U’)d holds true in addition.

Step 3: Then, under the assumptions of Theorem 3.5, we obtain an estimate of dm.

In Sects. 4 and 5, we consider self-similar fractals as K and show that the above
procedure can be realized. In the remainder of this section, we prove Lemma 3.3,
Proposition 3.4, and Theorem 3.5.
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Proof of Lemma 3.3 There exists an orthogonal matrix U = (ui j )
d
i, j=1 such that

tU LU =
⎛
⎜⎝
λ1 0
. . .

0 λd

⎞
⎟⎠ with λi > 0, i = 1, . . . , d.

Define ĥ=(ĥ1, . . . , ĥd) ∈H d by ĥi =∑d
k=1 uki hk for i = 1, . . . , d. Then, νĥi ,ĥ j

=
∑d

k,l=1 uki ul j νhk ,hl for i, j = 1, . . . , d, which implies that
( dνĥi ,ĥ j

dνh
(x)

)d

i, j=1
= t U LU

for νh-a.e. x . In particular, νĥi
= λiνh for i = 1, . . . , d. Define h′ = (h′1, . . . , h′d) ∈

H d as h′i = λ
−1/2
i ĥi for i = 1, . . . , d. Then, νh′i = νh for all i , which implies that

νh′ = νh. Moreover, for i, j = 1, . . . , d,

dνh′i ,h′j
dνh′

(x) =
dνh′i ,h′j

dνh
(x) = δi j for νh′ -a.e. x,

where δi j denotes the Kronecker delta. Therefore, Φh′(x) is the identity matrix for
νh′ -a.e. x . ��
Remark 3.7 As seen from the proof, two H d ’s in the statement of Lemma 3.3 can be
replaced by F d .

Before proving Proposition 3.4, we remark the following result.

Proposition 3.8 (Energy image density property) For f ∈ F , the measure f̃∗ν f on
R is absolutely continuous with respect to L 1. In particular, ν f has no atoms.

This proposition is proved in [6, Theorem I.7.1.1] when the strong local Dirichlet form
is given by the integration of the carré du champ operator. The proof of Proposition 3.8
is provided along the same way, which has been mentioned already, e.g., in [17,20].
See also [7, Theorem 4.3.8] for the short proof.

For f ∈ F d with d ≥ 2, the absolute continuity of the measure f̃ ∗νf on R
d

is not expected in general. Some studies on sufficient conditions are found in [6]. In
Proposition 3.4, we consider a rather special situation that implies a better smoothness.
How to find functions that meet this situation is the main problem that is discussed in
the next section.

Proof of Proposition 3.4 Take an arbitrary ϕ ∈ C1
b(R

d) with ϕ(0, . . . , 0) = 0 and

define g = ϕ ◦ h̃. From Lemma 3.2 and Theorem 2.4, for each i = 1, . . . , d, we have

0 = 2E (g f 2, hi ) (since g f 2 ∈ FD and hi ∈H )

=
∫

K

dνg f 2,hi
=

∫

K

g dν f 2,hi
+

∫

K

f̃ 2 dνg,hi

=
∫

K

g dν f 2,hi
+

∫

K

f̃ 2 ∂ϕ

∂xi
(h̃) dνhi (since νhi ,h j = 0 if i �= j)
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Upper estimate of martingale dimension for self-similar fractals 751

=
∫

Rd

ϕ d(h̃∗ν f 2,hi
)+

∫

Rd

∂ϕ

∂xi
d(h̃∗( f̃ 2νh)). (3.3)

The last equality follows from the change of variable formula and νhi = νh.
Let κ = h̃∗( f̃ 2νh) and κi = h̃∗ν f 2,hi

for i = 1, . . . , d. From (3.3),

∫

Rd

∂ϕ

∂xi
dκ = −

∫

Rd

ϕ dκi , i = 1, . . . , d, (3.4)

for ϕ ∈ C1
b(R

d)with ϕ(0, . . . , 0) = 0. Since κi (R
d) = ν f 2,hi

(K ) = 2E ( f 2, hi ) = 0,

identity (3.4) holds for all ϕ ∈ C1
b(R

d). Therefore, in the distribution sense, ∂
∂xi
κ = κi

for i = 1, . . . , d. This implies that κ � L d , e.g., from [29, pp. 196–197] or [6,
Lemma I.7.2.2.1]. Denote the Radon–Nikodym derivative dκ/dL d by ξ . Then, (3.4)
can be interpreted as ∂ξ/∂xi = κi in the distribution sense for i = 1, . . . , d.

Now, for any B ∈ B(Rd), from Theorem 2.4 and (2.4),

|κi (B)| =

∣∣∣∣∣∣∣∣

∫

h̃
−1
(B)

2 f̃ dν f,hi

∣∣∣∣∣∣∣∣
≤ 2

⎛
⎜⎜⎝

∫

h̃
−1
(B)

f̃ 2 dνhi

⎞
⎟⎟⎠

1/2 ⎛
⎜⎜⎝

∫

h̃
−1
(B)

dν f

⎞
⎟⎟⎠

1/2

= 2κ(B)1/2(h̃∗ν f )(B)
1/2. (3.5)

Therefore, κi � κ , in particular, κi � L d . This implies that ξ belongs to the Sobolev
space W 1,1(Rd). Let dκi/dL d be denoted by ξi . From (3.5) and Theorems 1 and 3
in [11, Section 1.6], we have

|ξi | ≤ 2ξ1/2

(
d(h̃∗ν f )ac

dL d

)1/2

L d -a.e.,

where (h̃∗ν f )ac denotes the absolutely continuous part in the Lebesgue decomposition
of h̃∗ν f . For ε > 0, let γε(t) = √t + ε −√ε, t ≥ 0. Then,

(
∂(γε(ξ))

∂xi

)2

=
(

1

2
√
ξ + ε

∂ξ

∂xi

)2

= ξ2
i

4(ξ + ε) ≤
d(h̃∗ν f )ac

dL d
,

which implies that

∫

Rd

(
∂(γε(ξ))

∂xi

)2

dx ≤ (h̃∗ν f )ac(R
d) ≤ ν f (K ) = 2E ( f ) <∞.

Since γε(t) ↗ √
t as ε ↘ 0, ∂

√
ξ
/
∂xi belongs to L2(Rd , dx). This implies that√

ξ ∈ W 1,2(Rd). ��
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For the proof of Theorem 3.5, we need several claims. Let ρ and ξ be Lebesgue
measurable functions on R

d such that 0 ≤ ρ ≤ ξ L d -a.e. and
√
ξ ∈ W 1,2(Rd).

Define a bilinear form Qρ on L2(Rd , (ρ + 1) dx) by

Qρ(u, v) =
∫

Rd

(∇u,∇v)Rd (ρ + 1) dx, u, v ∈ C1
c (R

d),

where (·, ·)Rd denotes the standard inner product on R
d and C1

c (R
d) = C1(Rd) ∩

Cc(R
d). It is easy to see that (Qρ,C1

c (R
d)) is closable in L2(Rd , (ρ + 1) dx), and its

closure, denoted by (Qρ,Dom(Qρ)), is a regular Dirichlet form on L2(Rd , (ρ +
1) dx). We also define the standard regular Dirichlet form (Q,W 1,2(Rd)) on
L2(Rd , dx) as

Q(u, v) =
∫

Rd

(∇u,∇v)Rd dx, u, v ∈ W 1,2(Rd).

The capacities associated with Qρ and Q are denoted by Capρ and Cap1,2, respectively.
For x ∈ R

d and r > 0, we define

B(x, r) = {y ∈ R
d | |x − y|Rd < r} and B̄(x, r) = {y ∈ R

d | |x − y|Rd ≤ r},

where | · |Rd denotes the Euclidean norm on R
d . In general, for a measure space (X, λ)

and a subset E with λ(E) <∞, the normalized integral λ(E)−1
∫

E · · · dλ is denoted
by

∫
E · · · dλ.

Lemma 3.9 For Cap1,2-q.e. x ∈ R
d , supr>0

∫
B(x,r) ρ(y) dy <∞.

Proof Take a quasi-continuous modification of
√
ξ with respect to Cap1,2, which is

denoted by the same symbol. We may assume that 0 ≤ ξ(x) <∞ for every x ∈ R
d .

From [1, Theorem 6.2.1], there exists a Cap1,2-null set B of R
d such that, for every

x ∈ R
d \ B,

lim
r→0

∫

B(x,r)

—
∣∣∣√ξ(y)−√

ξ(x)
∣∣∣2 dy = 0.

For x ∈ R
d \ B, take r0 > 0 such that sup0<r<r0

∫
B(x,r)

∣∣√ξ(y) − √ξ(x)∣∣2dy ≤ 1.
Then, for r ∈ (0, r0),

⎛
⎜⎝

∫

B(x,r)

— ξ(y) dy

⎞
⎟⎠

1/2

≤
⎛
⎜⎝

∫

B(x,r)

—
∣∣∣√ξ(y)−√

ξ(x)
∣∣∣2 dy

⎞
⎟⎠

1/2

+
⎛
⎜⎝

∫

B(x,r)

— ξ(x) dy

⎞
⎟⎠

1/2

≤ 1+√
ξ(x).
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Since 0 ≤ ρ ≤ ξL d -a.e., we obtain that sup0<r<r0

∫
B(x,r) ρ(y) dy < ∞. We also

have

sup
r≥r0

∫

B(x,r)

— ρ(y) dy ≤ L d(B(x, r0))
−1

∫

Rd

ρ(y) dy <∞. ��

Proposition 3.10 Let B ⊂ R
d . Then, Capρ(B) = 0 if and only if Cap1,2(B) = 0.

Proof We define a Dirichlet form (Qξ ,Dom(Qξ )) on L2(Rd , (ξ + 1)dx) and its
capacity Capξ , just as (Qρ,Dom(Qρ)) and Capρ , with ρ replaced by ξ . Then, from
the result in [32] (see also Theorem 3.3, Theorem 3.6, and the subsequent Remark (iv)
in [10]), Dom(Qξ ) is characterized as follows:

Dom(Qξ ) =
{

u u ∈ L2(Rd , (ξ + 1) dx), and for every

i = 1, . . . , d, ∂u/∂xi exists in the distribution sense and ∂u/∂xi

∈ L2(Rd , (ξ + 1) dx)
}
.

Since Cap1,2(B) ≤ Capρ(B) ≤ Capξ (B) for B ⊂ R
d , it suffices to show that any

Cap1,2-null set B satisfies Capξ (B) = 0. Let g(x) = log(
√
ξ(x) + 1). Since

√
ξ ∈

W 1,2(Rd), ξ ∈ L1(Rd , dx) ∩ L1+δ(Rd , dx) for some δ ∈ (0, 2] from the Sobolev
imbedding theorem. There exists c3.2 > 0 such that log(t+1) ≤ c3.2tδ/2∧ t for t ≥ 0.
Then,

∫

Rd

g2(ξ + 1) dx ≤
∫

Rd

(c2
3.2ξ

δ ∧ ξ)(ξ + 1) dx ≤
∫

Rd

(c2
3.2ξ

1+δ + ξ) dx <∞

and

∫

Rd

|∇g|2
Rd (ξ + 1) dx ≤

∫

Rd

∣∣∇√ξ ∣∣2
Rd

(
√
ξ + 1)2

· (ξ + 1) dx ≤
∫

Rd

∣∣∇√
ξ
∣∣2
Rd dx <∞.

Thus, g belongs to Dom(Qξ ). We denote by g̃ the quasi-continuous modification of
g with respect to (Qξ ,Dom(Qξ )). Let ε > 0. There exist some b > 0 and an open
set U1 of R

d such that U1 ⊃ {g̃ > b} and Capξ (U1) < ε. Note that {g̃ > b} =
{ξ > (eb − 1)2} up to L d -null set. Take an open set U2 of R

d such that U2 ⊃ B
and Cap1,2(U2) < e−2bε. We denote the 1-equilibrium potential of U1 with respect
to (Qξ ,Dom(Qξ )) by e1, and that of U2 with respect to (Q,W 1,2(Rd)) by e2.

Define f (x) = e1(x) ∨ e2(x) for x ∈ R
d . Then, f ∈ W 1,2(Rd) and f = 1 on

U2 (⊃ B). Since {e1 ≥ e2} ⊃ U1 ⊃ {ξ > (eb − 1)2} up to L d -null set, we have

∫

Rd

(|∇ f |2
Rd + f 2)(ξ + 1) dx
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=
∫

{e1≥e2}
(|∇e1|2Rd + e2

1)(ξ + 1) dx +
∫

{e1<e2}
(|∇e2|2Rd + e2

2)(ξ + 1) dx

(e.g., from [6, Proposition I.7.1.4])

≤ ε +
∫

{ξ≤(eb−1)2}
(|∇e2|2Rd + e2

2)(ξ + 1) dx

≤ ε + {(eb − 1)2 + 1}e−2bε ≤ 2ε.

Therefore, f ∈ Dom(Qξ ) and Capξ (B) ≤ 2ε. Since ε > 0 is arbitrary, we obtain that
Capξ (B) = 0. ��
Lemma 3.11 Let κ be a positive Radon measure on R

d . Then, κ(A) = 0 with

A =
{

x ∈ R
d
∣∣∣ lim inf

r↘0

κ(B̄(x, r))

rd
= 0

}
.

We remark that the set A above is Borel measurable. Indeed,

2−d · κ(B̄(x, 2−k))

(2−k)d
≤ κ(B̄(x, r))

rd
≤ 2d · κ(B̄(x, 2−k+1))

(2−k+1)d
if 2−k ≤ r < 2−k+1,

which implies A = {x ∈ R
d | lim infk→∞, k∈N κ(B̄(x, 2−k))/(2−k)d = 0}. It is easy

to see that the right-hand side is a Borel set.

Proof of Lemma 3.11 For n ∈ N, let An = A ∩ B(0, n) ∈ B(Rd). From Lemma 1
in [11, Section 1.6], for any α > 0, κ(An) ≤ αL d(An). By letting α → 0, we have
κ(An) = 0. This implies the assertion. ��

For the proof of the next lemma, let us recall the definition of the Hausdorff (outer)
measure on R

d . Let A ⊂ R
d and s > 0. For δ > 0, define

H s
δ (A) = inf

⎧⎨
⎩
∞∑
j=1

vs

(
diam C j

2

)s

A ⊂
∞⋃
j=1

C j , diam C j ≤ δ
⎫⎬
⎭ ,

where vs = π s/2/�(s/2 + 1). Then, the s-dimensional Hausdorff measure of A,
denoted by H s(A), is defined as H s(A) = limδ→0 H s

δ (A).

Lemma 3.12 Suppose that d ≥ 2 and κ is a positive Radon measure on R
d . Then,

lim
r↘0

κ(B̄(x, r))

rd−2 = 0 for Cap1,2-q.e. x ∈ R
d . (3.6)

Proof When d=2, (3.6) is equivalent to the statement that the set {x ∈R
2 | κ({x})>0}

is Cap1,2-null, which is true because the cardinality of this set is at most countable.
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We suppose d ≥ 3. Let n ∈ N and set

An =
{

x ∈ R
d
∣∣∣∣ lim sup

r↘0

κ(B̄(x, r))

rd−2 >
1

n

}
∩ B(0, n).

For δ > 0, set

Gδ =
{

B

∣∣∣∣ B = B̄(x, r), x ∈ An, 0 < r < δ, B ⊂ B(0, n),
κ(B)

rd−2 >
1

n

}
.

Then, for each x ∈ An, inf{r | B̄(x, r) ∈ Gδ} = 0. From Vitali’s covering lemma,
there exists an at most countable family {B̄(x j , r j )} j of disjoint balls in Gδ such that
(An ⊂)⋃B∈Gδ B ⊂⋃

j B̄(x j , 5r j ). Then,

H d−2
10δ (An) ≤

∑
j

vd−2(5r j )
d−2 ≤ vd−25d−2

∑
j

nκ(B̄(x j , r j ))

≤ vd−25d−2nκ(B(0, n)).

Letting δ → 0, we obtain that H d−2(An) ≤ vd−25d−2nκ(B(0, n)) < ∞. From
Theorem 3 in [11, Section 4.7], Cap1,2(An) = 0. (Here, we used the relation d > 2.)
Therefore, Cap1,2

(⋃∞
n=1 An

) = 0, which implies (3.6). ��
Proposition 3.13 Suppose that condition (U’)d holds for some d ∈ N. Then, for
h ∈ H d in (U’)d , the measure h∗μ does not concentrate on Cap1,2-null set. More
precisely stated, if B ∈ B(Rd) satisfies Cap1,2(B) = 0, then (h∗μ)(Rd \ B) > 0.

Proof Although the claim might be deduced from the results of [13], we provide a
direct proof. Take ζ ∈ L1(K , μ) such that 0 < ζ ≤ 1 on K . We denote the measure ζ ·μ
byμζ . Then,μζ is a finite measure on K and (E ,F ) is closable in L2(K , μζ ) (cf. [12,
Corollary 4.6.1], Eq. (6.2.22) in [12] and the description around there.) From Propo-
sition 3.10, it is sufficient to prove that (h∗μζ )(Rd \ B) > 0 for any Borel subset B of
R

d with Capρ(B) = 0. Assume that this claim is false. Then, there exists B ∈ B(Rd)

such that Capρ(B) = 0 and (h∗μζ )(Rd \ B) = 0. Since (h∗μζ )(Rd) < ∞, we
can take a sequence of compact sets {Bk}∞k=1 such that B1 ⊂ B2 ⊂ · · · ⊂ B and
(h∗μζ )(Rd \ Bk) ↘ 0 as k → ∞. Note that Capρ(Bk) = 0 for all k. From [12,
Lemma 2.2.7], there exists fk ∈ C1

c (R
d), k = 1, 2, . . ., such that

1 ≤ fk ≤ 1+ 1/k on Bk, 0 ≤ fk ≤ 1+ 1/k on R
d

(in particular, limk→∞ fk(x) = 1 for h∗μζ -a.e. x on B),

and

lim
k→∞

∫

Rd

(|∇ fk |2Rd + f 2
k

)
(ρ + 1) dx = 0.

By taking a subsequence if necessary, we may also assume that limk→∞ fk(x) = 0
for L d -a.e. x on R

d . Define gk = 1− fk ∈ C1(Rd) for k ∈ N.

123



756 M. Hino

Now, fix u ∈ C1
c (R

d) such that u(0, . . . , 0) = 0 and
∫
Rd |∇u|2

Rdρ dx �= 0. Then,

for each k ∈ N, ugk ∈ C1
c (R

d), u(h)gk(h) ∈ F , and the following estimates hold:

E (u(h)gk(h)− u(h)gl(h))

= 1

2

d∑
i, j=1

∫

K

(
∂

∂xi
{u(gk − gl)}

)
(h)

(
∂

∂xi
{u(gk − gl)}

)
(h) dνhi ,h j

= 1

2

∫

Rd

|∇(u(gk − gl))|2Rdρ dx (from (U’)d (b) and (c))

≤
∫

Rd

|∇u|2
Rd (gk − gl)

2ρ dx +
∫

Rd

u2|∇(gk − gl)|2Rdρ dx

≤ ‖∇u‖2
L∞(Rd ,dx)

∫

Rd

( fk − fl)
2ρ dx + ‖u‖2

L∞(Rd ,dx)

∫

Rd

|∇( fk − fl)|2Rdρ dx

→ 0 (k, l →∞)

and

∫

K

{u(h)gk(h)}2 dμζ =
∫

Rd

(ugk)
2 d(h∗μζ ) ≤ ‖u‖2

L∞(Rd ,h∗μζ )

∫

B

g2
k d(h∗μζ )

(since (h∗μζ )(Rd \ B) = 0)

→ 0 (k →∞),

while

E (u(h)gk(h))

= 1

2

∫

Rd

|∇(ugk)|2Rdρ dx

= 1

2

∫

Rd

|∇u|2
Rd g2

kρ dx +
∫

Rd

ugk(∇u,∇gk)Rdρ dx + 1

2

∫

Rd

u2|∇gk |2Rdρ dx

= 1

2

∫

Rd

|∇u|2
Rd g2

kρ dx +
∫

Rd

ugk(∇u,∇ fk)Rdρ dx + 1

2

∫

Rd

u2|∇ fk |2Rdρ dx

→ 1

2

∫

Rd

|∇u|2
Rdρ dx + 0+ 0 �= 0 (k →∞).

These estimates contradict the closability of (E ,F ) on L2(K , μζ ). ��
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Proof of Theorem 3.5 (i) Since condition (U)d ′ implies (U)d if d ′ > d, it suffices to
deduce a contradiction by assuming d = 2. Take h = (h1, h2) ∈ H 2 in condition
(U)2. Then, there exists x0 ∈ h̃(K ) ⊂ R

2 such that

(a) supr>0

∫
B(x0,r)

ρ(x) dx =: b <∞;
(b) (h∗μ)({x0}) = 0.

This is because L 2(h̃(K )) > 0, the set of x0 ∈ h̃(K ) that does not satisfy (a) is an
L 2-null set from the Hardy–Littlewood maximal inequality, and the points in h̃(K )
that do not satisfy (b) are at most countable. By considering h(·) − x0 instead of h,
we may assume x0 = 0 without loss of generality.

Let ε > 0. Take a smooth function g on [0,∞) such that

g(t) =

⎧⎪⎨
⎪⎩

1 t ∈ [0, e−2/ε],
−3ε log t − 4 t ∈ [e−14/(9ε), e−13/(9ε)],
0 t ∈ [e−1/ε,∞),

and −3ε/t ≤ g′(t) ≤ 0 for all t > 0. We write |h̃|(x) =
√

h̃1(x)2 + h̃2(x)2 and

define f (x) := g
(|h̃|(x)). Then, f is quasi-continuous and f = 1 on h̃

−1
({0}). We

have

2E ( f ) = ν f (K )

=
∫

K

g′(|h̃|)2
(

h̃1

|h̃|

)2

dνh1 +
∫

K

g′(|h̃|)2
(

h̃2

|h̃|

)2

dνh2 (since νh1,h2 = 0)

=
∫

K

g′(|h̃|)2dνh (since νh1 = νh2 = νh)

=
∞∫

0

g′(r)2 (|h̃|∗νh)(dr) ≤
e−1/ε∫

e−2/ε

9ε2r−2 (|h̃|∗νh)(dr).

Define Θ(r) = (|h̃|∗νh)
([0, r ]) for r > 0. Then,

0 ≤ Θ(r) = νh({|h̃| ≤ r}) =
∫

B̄(0,r)

ρ(x) dx ≤ bL 2 (B(0, r)) = bπr2
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and

2

9
E ( f ) ≤

e−1/ε∫

e−2/ε

ε2r−2 dΘ(r) = ε2

⎛
⎜⎝
[
r−2Θ(r)

]e−1/ε

e−2/ε
+

e−1/ε∫

e−2/ε

2r−3Θ(r) dr

⎞
⎟⎠

≤ ε2

⎛
⎜⎝bπ + 2bπ

e−1/ε∫

e−2/ε

r−1dr

⎞
⎟⎠ = bπ(ε2 + 2ε)→ 0 (ε→ 0).

Also, we have

∫

K

f 2 dμ ≤ μ({|h| < e−1/ε}) = (h∗μ)
(
B(0, e−1/ε)

)→ (h∗μ)({0}) = 0 (ε→ 0).

Therefore, Cap
(
h̃
−1
({0})) = 0 from [12, Theorem 2.1.5]. This contradicts the assump-

tion.
(ii) Since inequality d ≤ ds is evident if d ≤ 2, we may assume d ≥ 3. Take

h = (h1, . . . , hd) ∈ H d in condition (U’)d . First, we will prove that there exists
x0 ∈ h̃(K ) such that

(a) supr>0

∫
B(x0,r)

ρ(y) dy =: b <∞;

(b) (h∗μ)(B̄(x0, r)) = o(rd−2) as r → 0;
(c) there exist a > 0 and r0 > 0 such that (h∗μ)(B̄(x0, r)) ≥ ard for every

r ∈ (0, r0].

Indeed, the set of x0 ∈ h̃(K ) that fails to satisfy both (a) and (b) is Cap1,2-null from
Lemmas 3.9 and 3.12. The set of x0 ∈ h̃(K ) that does not satisfy (c) is h∗μ-null from
Lemma 3.11. Therefore, Proposition 3.13 assures the existence of x0 that satisfies (a),
(b), and (c). By considering h(·) − x0 instead of h, we may assume x0 = 0 without
loss of generality.

It is sufficient to deduce the contradiction by assuming d > ds. We write |h̃(x)| =√
h̃1(x)2 + · · · + h̃d(x)2 for x ∈ K . Take a smooth function g on [0,∞) such that

g(t) =

⎧⎪⎨
⎪⎩

1 t ∈ [0, 1],
t2−d t ∈ [2, 3],
0 t ∈ [4,∞),

and −c3.3 ≤ g′(t) ≤ 0 for all t > 0, where c3.3 is a positive constant. For δ ∈ (0, r0],
define gδ(t) = δ1−(d/2)g(t/δ) for t ≥ 0, and fδ(x) = gδ(|h̃(x)|) for x ∈ K . Then, as
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Upper estimate of martingale dimension for self-similar fractals 759

in the calculation in the proof of (i), we have

2E ( fδ) =
∫

K

g′δ(|h̃|)2 dνh =
4δ∫

δ

g′δ(r)2
(|h̃|∗νh)(dr)

≤ c2
3.3δ

−d(|h̃|∗νh)([δ, 4δ]) ≤ c2
3.3δ

−d(h̃∗νh)(B̄(0, 4δ))

≤ c2
3.3δ

−dbvd(4δ)
d = O(1) (δ→ 0),

where vd = L d(B̄(0, 1)), and

‖ fδ‖2
L2(K ,μ) =

4δ∫

0

gδ(r)
2 (|h|∗μ)(dr)

≤ δ2−d(h∗μ)(B̄(0, 4δ)) = δ2−do((4δ)d−2) = o(1) (δ→ 0).

On the other hand, we have

‖ fδ‖2
L2ds/(ds−2)(K ,μ) ≥

⎛
⎝

δ∫

0

gδ(r)
2ds/(ds−2) (|h|∗μ)(dr)

⎞
⎠
(ds−2)/ds

≥ δ2−daδd(ds−2)/ds = aδ−2(d−ds)/ds →+∞ (δ→ 0).

Therefore, the Sobolev inequality (3.2) does not hold, which is a contradiction. ��

4 Estimation in the case of self-similar sets

In this section, we consider self-similar Dirichlet forms on self-similar sets such as
p. c. f. fractals and Sierpinski carpets and show that Strategy 3.6 can be realized to
deduce the estimates of the martingale dimensions.

4.1 Self-similar Dirichlet forms on self-similar sets

We follow [16,22] to set up a framework. Let K be a compact and metrizable topolog-
ical space, and S, a finite set with #S ≥ 2. We suppose that we are given continuous
injective maps ψi : K → K for i ∈ S. Set Σ = SN. For i ∈ S, we define a shift
operator σi : Σ → Σ by σi (ω1ω2 · · · ) = iω1ω2 · · ·. Suppose that there exists a con-
tinuous surjective map π : Σ → K such that ψi ◦ π = π ◦ σi for every i ∈ S. We
term (K , S, {ψi }i∈S) a self-similar structure.

We also define W0 = {∅},Wm = Sm for m ∈ N, and denote
⋃

m≥0 Wm by W∗. For
w = w1w2 · · ·wm ∈ Wm , we define ψw = ψw1 ◦ψw2 ◦ · · · ◦ψwm and Kw = ψw(K ).
By convention, ψ∅ is the identity map from K to K . For w ∈ W∗ and a function f on
K , ψ∗w f denotes the pullback of f by ψw, that is, ψ∗w f = f ◦ ψw.
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760 M. Hino

Definition 4.1 For w = w1w2 · · ·wm ∈ Wm and w′ = w′1w′2 · · ·w′m′ ∈ Wm′ , ww′
(or w · w′) denotes w1w2 · · ·wmw

′
1w

′
2 · · ·w′m′ ∈ Wm+m′ . For A ⊂ Wm and A′ ⊂

Wm′ , A · A′ denotes {ww′ ∈ Wm+m′ | w ∈ A, w′ ∈ A′}. If A = {w}, we denote A · A′
by w · A′.

Take θ = {θi }i∈S ∈ R
S such that θi > 0 for every i ∈ S and

∑
i∈S θi = 1. We set

θw = θw1θw2 · · · θwm for w = w1w2 · · ·wm ∈ Wm , and θ∅ = 1. Let λθ denote the
Bernoulli measure onΣ with weight θ . That is, λθ is a unique Borel probability mea-
sure such that λθ (Σw) = θw for every w ∈ W∗. Define a Borel measure μθ on K by
μθ = π∗λθ , that is, μθ(B) = λθ (π−1(B)) for B ∈ B(K ). It is called the self-similar
measure on K with weight θ .

We impose the following assumption.

(A1) For every x ∈ K , π−1({x}) is a finite set.

Then, according to Theorem 1.4.5 and Lemma 1.4.7 in [22], μθ(K b) = 0 with K b =
{x ∈ K | #(π−1({x})) > 1}, and μθ(Kw) = θw for all w ∈ W∗. For any x ∈
K \ K b, there exists a unique element ω = ω1ω2 · · · ∈ Σ such that π(ω) = x .
We denote ω1ω2 · · ·ωm ∈ Wm by [x]m for each m ∈ N, and define [x]0 = ∅.
The sequence {K[x]m }∞m=0 is a fundamental system of neighborhoods of x from [22,
Proposition 1.3.6].

Fix a self-similar measure μ on K .

Definition 4.2 For w ∈ W∗ and f ∈ L2(K , μ), we define Ψw f ∈ L2(K , μ) by

Ψw f (x) =
{

f (ψ−1
w (x)) if x ∈ Kw,

0 otherwise.

Since μ(K b) = 0, ψ∗
w′Ψw f := (Ψw f ) ◦ ψw′ = 0 μ-a.e. if w and w′ are different

elements of some Wm .

We set P = ⋃∞
m=1 σ

m
(
π−1

(⋃
i, j∈S, i �= j (Ki ∩ K j )

))
and V0 = π(P), where

σm : Σ → Σ is a shift operator that is defined by σm(ω1ω2 · · · ) = ωm+1ωm+2 · · ·.
The set P is referred to as the post-critical set.

We consider a regular Dirichlet form (E ,F ) defined on L2(K , μ). Take a closed
subset K ∂ of K such that V0 ⊂ K ∂

� K . In concrete examples discussed later, we
always take V0 as K ∂ . Recall F0 and FD that were introduced in (3.1). We assume
the following.

(A2) 1 ∈ F and E (1) = 0.
(A3) (Self-similarity) ψ∗i f ∈ F for every f ∈ F and i ∈ S, and there exists

r = {ri }i∈S with ri > 0 for all i ∈ S such that

E ( f ) =
∑
i∈S

1

ri
E (ψ∗i f ), f ∈ F .
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(A4) (Spectral gap) There exists a constant c4.1 > 0 such that

∥∥∥∥∥∥ f −
∫

K

f dμ

∥∥∥∥∥∥
2

L2(K ,μ)

≤ c4.1E ( f ) for all f ∈ F . (4.1)

(A5) Ψi f ∈ F0 for any f ∈ F0 and i ∈ S ⊂ W∗.
(A6) For any f ∈ F and w ∈ W∗, there exists f̂ ∈ F such that ψ∗w f̂ = f .

We remark that, for any f, g ∈ F and m ∈ N, it holds that

E ( f, g) =
∑
w∈Wm

1

rw
E (ψ∗w f, ψ∗wg) (4.2)

from the polarization argument and repeated use of (A3), where rw denotes
rw1rw2 · · · rwm for w = w1w2 · · ·wm and r∅ = 1. The Dirichlet form (E ,F ) is
inevitably strong local, e.g., from [16, Lemma 3.12] and (A2). Typical examples are
self-similar Dirichlet forms on post-critically finite self-similar sets and Sierpinski
carpets, which we discuss in Sects. 4.2 and 4.3. Readers who are not familiar with
these objects are recommended to read the definitions described in these subsections
before proceeding to the subsequent arguments.

The following is a basic property of harmonic functions.

Lemma 4.3 For any h ∈H and w ∈ W∗, ψ∗wh belongs to H .

Proof Take any g ∈ F0. From condition (A5), Ψwg ∈ F0. Then, by Lemma 3.2 and
(4.2),

0 = E (h, Ψwg) =
∑
w′∈Wm

r−mE (ψ∗w′h, ψ
∗
w′Ψwg) = r−mE (ψ∗wh, g).

Therefore, E (ψ∗wh, g) = 0. This implies that ψ∗wh ∈H . ��
The energy measures associated with (E ,F ) have the following properties.

Lemma 4.4 (cf. [16, Lemma 3.11]) Let f ∈ F . Then, the following hold.

(i) Let w ∈ W∗. For any exceptional set N of K , ψ−1
w (N ) is also an exceptional set.

In particular, if we denote a quasi-continuous modification of f ∈ F by f̃ , then
ψ∗w f̃ is a quasi-continuous modification of ψ∗w f .

(ii) For m ∈ Z+ and a Borel subset B of K ,

ν f (B) =
∑
w∈Wm

1

rw
νψ∗w f (ψ

−1
w (B)).

For d ∈ N,f = ( f1, . . . , fd) ∈ F d , and a map ψ : K → K , we denote the
R

d -valued function (ψ∗ f1, . . . , ψ
∗ fd) on K by ψ∗f . We also recall the terminology

in Definition 2.7.
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Lemma 4.5 Let d ∈ N,f = ( f1, . . . , fd) ∈ F d , and w ∈ W∗. Take a quasi-contin-
uous nonnegative function g on K such that g ≥ 1 q.e. on Kw. Then,

(ψ∗wf̃ )∗νψ∗wf ≤ rwf̃ ∗(g · νf ) (4.3)

as measures on R
d , that is, νψ∗wf ((ψ

∗
wf̃ )−1(B)) ≤ rw

∫
f̃
−1
(B)

g dνf for any B ∈
B(Rd).

Proof Let B ∈ B(Rd) and denote f̃
−1
(B) by B ′. From Lemma 4.4 (ii), for i =

1, . . . , d,

r−1
w νψ∗w fi ((ψ

∗
wf̃ )−1(B)) = r−1

w νψ∗w fi (ψ
−1
w (B ′)) = r−1

w νψ∗w fi (ψ
−1
w (B ′ ∩ Kw))

≤ ν fi (B
′ ∩ Kw) ≤ (g · ν fi )(f̃

−1
(B)).

Therefore, νψ∗w fi ((ψ
∗
wf̃ )−1(B)) ≤ rw

∫
f̃
−1
(B)

g dν fi . This implies (4.3). ��

We note that condition (A7) mentioned below is not required for Lemmas 4.4 and 4.5.
We fix a minimal energy-dominant measure ν with ν(K ) <∞, and further assume

the following.

(A7) ν(K ∂ ) = 0.

Let K ∂∗ =
⋃

w∈W∗
ψw(K ∂ ) and V∗ = ⋃

w∈W∗
ψw(V0). Clearly, K ∂∗ ⊃ V∗.

Lemma 4.6 Let f ∈ F . Then, the following hold.

(i) ν f (K ∂∗ ) = 0.
(ii) For w ∈ W∗ and a Borel subset B of Kw,

ν f (B) = 1

rw
νψ∗w f (ψ

−1
w (B)).

Proof (i): For m ∈ N and w′ ∈ Wm , from Lemma 4.4 (ii) and (A7),

ν f (ψw′(K
∂ )) =

∑
w∈Wm

1

rw
νψ∗w f (ψ

−1
w (ψw′(K

∂ ))) ≤
∑
w∈Wm

1

rw
νψ∗w f (K

∂ ) = 0,

where in the second line, we used the relation

ψ−1
w (ψw′(K

∂ ))

{
= K ∂ if w = w′,
⊂ V0 ⊂ K ∂ otherwise.

Therefore, ν f (ψw′(K ∂ )) = 0. This implies (i). Item (ii) follows from (i),
Lemma 4.4 (ii), and the fact K ∂∗ ⊃ V∗. ��
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For the proof of the next proposition, let Bm be a σ -field on K generated by
{Kw | w ∈ Wm} for m ≥ 0. Then, {Bm}∞m=0 is a filtration on K and the σ -field gen-
erated by {Bm | m ≥ 0} is equal to B(K ) (from the result of [22, Proposition 1.3.6],
for example).

Proposition 4.7 Let m ∈ Z+. Define ν′m =
∑
w∈Wm

r−1
w (ψw)∗ν. That is,

ν′m(B) :=
∑
w∈Wm

1

rw
ν(ψ−1

w (B)), B ∈ B(K ).

Then, ν and ν′m are mutually absolutely continuous. Moreover, for any f, g ∈ F and
w ∈ Wm,

dν f,g

dν′m
(x) = dνψ∗w f,ψ∗wg

dν
(ψ−1

w (x)) for ν-a.e. x ∈ Kw. (4.4)

Proof This is proved as in [18, Proposition 4.3]. From Proposition 2.6, there exists f ∈
F such that ν f and ν are mutually absolutely continuous. Let B be a Borel set of K .
Supposeν′m(B) = 0. Then, forw ∈ Wm, 0 = ((ψw)∗ν)(B) = ν(ψ−1

w (B∩Kw)). Since
νψ∗w f � ν, we have 0 = νψ∗w f (ψ

−1
w (B∩Kw)) = rwν f (B∩Kw) from Lemma 4.6 (ii).

Since w ∈ Wm is arbitrary, ν f (B) = 0, that is, ν(B) = 0. Therefore, ν � ν′m .
Next, suppose ν(B) = 0. Let w ∈ Wm . From (A6), there exists f̂ ∈ F such

that ψ∗w f̂ = f . From Lemma 4.4 (ii), 0 = ν f̂ (B) ≥ r−1
w ν f (ψ

−1
w (B)). Thus, 0 =

ν(ψ−1
w (B)) = ((ψw)∗ν)(B). Therefore, ν′m(B) = 0. This implies ν′m � ν.

For the proof of (4.4), let n ≥ m. From Lemma 4.6, for x ∈ Kw \ V∗,

ν f,g(K[x]n )
ν′m(K[x]n )

= r−1
w νψ∗w f,ψ∗wg(ψ

−1
w (K[x]n ))

r−1
w ν(ψ−1

w (K[x]n ))
=
νψ∗w f,ψ∗wg(K[ψ−1

w (x)]n−m
)

ν(K[ψ−1
w (x)]n−m

)
. (4.5)

If ν′m is a probability measure, the first term is given by the conditional expectation
Eν

′
m [dν f,g/dν′m | Bn](x). From the martingale convergence theorem, this term con-

verges to (dν f,g/dν′m)(x) for ν′m-a.e. x as n →∞. It is evident that this convergence
holds true for general ν′m . By the same reasoning, the last term of (4.5) converges
(dνψ∗w f,ψ∗wg/dν)(ψ−1

w (x)) for (ψw)∗ν-a.e. x as n →∞. Since ν, ν′m , and (ψw)∗ν are
mutually absolutely continuous on Kw from the first claim, we obtain (4.4). ��
Corollary 4.8 For d ∈ N,f = ( f1, . . . , fd) ∈ F d and w ∈ W∗,

Φf (ψw(y)) = Φψ∗wf (y) for ν-a.e. y ∈ K ,

where Φ. is defined in (2.7).

Proof Let m = |w|. From Proposition 4.7, for i, j = 1, . . . , d,

dν

dν′m
(ψw(y))

dν fi , f j

dν
(ψw(y)) =

dνψ∗w fi ,ψ
∗
w f j

dν
(y) for ν-a.e. y ∈ K .

This implies the assertion. ��
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For m ≥ 0, let Hm denote the set of all functions f in F such that ψ∗w f ∈ H
for all w ∈ Wm . Let H∗ = ⋃

m≥0 Hm . Functions in H∗ are referred to as piecewise
harmonic functions. From [16, Lemma 3.10], H∗ is dense in F . The AF-martingale
dimension of (E ,F ) is denoted by dm as before.

Proposition 4.9 Let d ∈ N satisfy d ≤ dm. Then, there exists g = (g1, . . . , gd) ∈
H d such that

νg
({x ∈ K | Φg(x) is invertible}) > 0. (4.6)

Proof Take a countable set { fi | i ∈ N} from H∗ such that it is dense in F . For
i, j ∈ N, define Ẑ i, j = dν fi , f j /dν. From Proposition 2.11 and Theorem 2.13, we

have ν-ess supx∈K supN∈N rank(Ẑ i, j (x))N
i, j=1 ≥ d. Then, there exists N ∈ N such

that ν
({

x ∈ K
∣∣ rank

(
Ẑ i, j (x)

)N
i, j=1 ≥ d

})
> 0. Therefore, there exists 1 ≤ α1 <

α2 < · · · < αd ≤ N such that ν(B̂) > 0 with

B̂ =
{

x ∈ K
∣∣ the matrix

(
Ẑαi ,α j (x)

)d

i, j=1
is invertible

}
.

We can take a sufficiently large m ∈ Z+ such that every fαi , i = 1, . . . , d, belongs
to Hm . Take w ∈ Wm such that ν(B̂ ∩ Kw) > 0. Define g = (g1, . . . , gd) ∈ H d

by gi = ψ∗w fαi , i = 1, . . . , d, and let Zi, j = dνgi ,g j /dν for i, j ∈ {1, . . . , d}. From
Proposition 4.7, we have ν(B) > 0, where

B =
{

x ∈ K
∣∣ the matrix

(
Zi, j (x)

)d

i, j=1
is invertible

}
.

Since the trace of any invertible and nonnegative definite symmetric matrix is

positive, and (dνg/dν)(x) = (1/d) tr
(
Zi, j (x)

)d
i, j=1, we have B ⊂ {dνg/dν > 0}

up to ν-null set, which implies νg(B) > 0. Then, (4.6) holds since Φg(x) =(
Zi, j (x)

/ dνg
dν (x)

)d
i, j=1 on {dνg/dν > 0}. ��

For later use, we introduce the following sets for given d ∈ N and a > 0:

Mat(d) = {All real square matrices of order d},
PSM(d; a) = {Q ∈ Mat(d) | Q is a positive definite symmetric matrix and det Q ≥ a}.

The set Mat(d) is identified with R
d×d as a topological vector space, and PSM(d; a)

is regarded as a closed subset of Mat(d).

4.2 Case of post-critically finite self-similar sets

In this subsection, we follow [22] and consider the case that K is connected and the
self-similar structure (K , S, {ψi }i∈S) that was introduced in the previous subsection
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is post-critically finite (p.c.f.), that is, P is a finite set. See Fig. 1 as some of the typical
examples. Let Vm =⋃

w∈Wm
ψw(V0) for m ∈ N and V∗ =⋃∞

m=0 Vm .
In general, given a finite set V, l(V ) denotes the space of all real-valued functions

on V . We equip l(V ) with an inner product (·, ·)l(V ) that is defined by (u, v)l(V ) =∑
q∈V u(q)v(q). Let D = (Dqq ′)q,q ′∈V0 be a symmetric linear operator on l(V0),

which is also regarded as a square matrix of size #V0, such that the following condi-
tions hold:

(D1) D is nonpositive-definite;
(D2) Du = 0 if and only if u is constant on V0;
(D3) Dqq ′ ≥ 0 for all q, q ′ ∈ V0 with q �= q ′.
We define E (0)(u, v) = (−Du, v)l(V0) for u, v ∈ l(V0). This is a Dirichlet form on
l(V0), where l(V0) is identified with the L2 space on V0 with the counting measure
(see [22, Proposition 2.1.3]). For r = {ri }i∈S with ri > 0, we define a bilinear form
E (m) on l(Vm) as

E (m)(u, v) =
∑
w∈Wm

1

rw
E (0)(u ◦ ψw|V0 , v ◦ ψw|V0), u, v ∈ l(Vm).

We refer to (D, r) as a harmonic structure if for every v ∈ l(V0),

E (0)(v, v) = inf{E (1)(u, u) | u ∈ l(V1) and u|V0 = v}.

Then, for m ∈ Z+ and v ∈ l(Vm),

E (m)(v, v) = inf{E (m+1)(u, u) | u ∈ l(Vm+1) and u|Vm = v}.

In particular, E (m)(u|Vm , u|Vm ) ≤ E (m+1)(u, u) for u ∈ l(Vm+1).
We consider only regular harmonic structures, that is, 0 < ri < 1 for all i ∈ S.

Demonstrating the existence of regular harmonic structures is a nontrivial problem.
Several studies have been conducted, such as in [15,28,31]. We only remark here
that all nested fractals have canonical regular harmonic structures. Nested fractals are
self-similar sets that are realized in Euclidean spaces and have good symmetry; for the
precise definition, see [22,28]. All the fractals shown in Fig. 1 except the rightmost
one are nested fractals.

We assume that a regular harmonic structure (D, r) is given. Letμ be a self-similar
probability measure on K , and take V0 as K ∂ . We can then define a regular Dirichlet
form (E ,F ) on L2(K , μ) associated with (D, r), satisfying conditions (A1)–(A7),
by

F =
{

u ∈ C(K ) ⊂ L2(K , μ)
∣∣∣ lim

m→∞E (m)(u|Vm , u|Vm ) <∞
}
,

E (u, v) = lim
m→∞E (m)(u|Vm , v|Vm ), u, v ∈ F .

(See the beginning of [22, Section 3.4].) Note that (A7) follows from the fact that
#K ∂ ( = #V0) <∞, Proposition 2.6, and Proposition 3.8. From [22, Theorem 3.3.4],
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766 M. Hino

a property stronger than (A4) follows: There exists a constant c4.2 > 0 such that

sup
x∈K

f (x)− inf
x∈K

f (x) ≤ c4.2
√

E ( f ), f ∈ F ⊂ C(K ). (4.7)

From this inequality, it is easy to prove that the capacity associated with (E ,F ) of
any nonempty subset of K is uniformly positive (see, e.g., [17, Proposition 4.2]).

Let us recall that the space of all harmonic functions is denoted by H . For each
u ∈ l(V0), there exists a unique h ∈ H such that h|V0 = u. For any w ∈ W∗ and
h ∈ H , ψ∗wh belongs to H . By using the linear map l(V0) � u 	→ h ∈ H , we can
identify H with l(V0). In particular, H is a finite dimensional subspace of F .

The following is the main theorem of this subsection, which is an improvement of
[17, Theorem 4.4].

Theorem 4.10 The index of (E ,F ) is 1. In other words, the AF-martingale dimension
dm of the diffusion process associated with (E ,F ) is 1.

Unlike [17, Theorem 4.4], we do not need technical extra assumptions. The main ideas
of the proofs of [17, Theorem 4.4] and Theorem 4.10 are quite different from each
other.

Proof of Theorem 4.10 Since (E ,F ) is nontrivial, dm ≥ 1 from Proposition 2.12. We
will derive a contradiction by assuming dm ≥ 2. We proceed to Step 1 of Strategy 3.6
with d = 2. From Proposition 4.9, there exists g = (g1, g2) ∈ H 2 such that (4.6)
holds. Take a > 0 such that

νg
({x ∈ K | detΦg(x) ≥ a}) =: δ > 0. (4.8)

Let B = {
x ∈ K | detΦg(x) ≥ a

}\V∗. From (4.8) and Lemma 4.6 (i), νg(B) = δ >
0. Let us recall Mat(2) and PSM(2; a) that were introduced in the end of the previous
subsection. A map that is obtained by restricting the domain of Φg to B is denoted
by Φg|B . This is regarded as a map from B to PSM(2; a). Fix an element L in the
support of the induced measure (Φg|B)∗(νg|B) on PSM(2; a).

We will perform a kind of blowup argument. Let k ∈ N. We denote by Uk the inter-
section of PSM(2; a) and the open ball with center L and radius 1/k in Mat(2)  R

2×2

with respect to the Euclidean norm. Let Bk = (Φg|B)−1(Uk) ⊂ B. Then, νg(Bk) > 0.
For n ∈ N, we set

Y (k)n (x) =
{
νg(K[x]n ∩ Bk)

/
νg(K[x]n ) if x ∈ K \ V∗ and νg(K[x]n ) > 0,

0 otherwise.

Then, from the martingale convergence theorem as in the proof of Proposition 4.7,
limn→∞ Y (k)n = 1 νg-a.e. on Bk . In particular, there exist xk ∈ Bk and Nk ∈ N such

that Y (k)n (xk) ≥ 1− 2−k for any n ≥ Nk .
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Upper estimate of martingale dimension for self-similar fractals 767

Take increasing natural numbers n1 < n2 < n3 < · · · such that Y (k)nk (xk) ≥ 1−2−k

for all k. We set B̂k = ψ−1
[xk ]nk

(Bk). We define g(k) = (g(k)1 , g(k)2 ) ∈H 2 as

g(k) := ψ∗[xk ]nk
g = (ψ∗[xk ]nk

g1, ψ
∗[xk ]nk

g2),

and h(k) = (h(k)1 , h(k)2 ) ∈H 2 as

h(k)i =
⎛
⎝g(k)i −

∫

K

g(k)i dμ

⎞
⎠/√

2E (g(k)), i = 1, 2.

Here, we note that 2E (g(k)) = νg(k) (K ) = r[xk ]nk
νg(K[xk ]nk

) > 0 from Lemma 4.6

and Y (k)nk (xk) > 0. Then,

∫

K

h(k)i dμ = 0, i = 1, 2, (4.9)

νh(k) (K ) = 2E (h(k)) = 1, (4.10)

and

νh(k) (B̂k) =
νg(k) (B̂k)

2E (g(k))
= r[xk ]nk

νg(K[xk ]nk
∩ Bk)

r[xk ]nk
νg(K[xk ]nk

)
= Y (k)nk

(xk) ≥ 1− 2−k .

From (4.7), (4.9), and (4.10), {h(k)}k∈N is bounded in F 2. Since H 2 is a finite-dimen-
sional subspace of F 2, we can take a subsequence {h(k( j))} of {h(k)} converging to
some h ∈H 2 in F 2. We may assume that 2E (h− h(k( j))) ≤ 2− j for all j and

lim
j→∞Φh(k( j)) (x) = Φh(x) for νh-a.e. x (4.11)

from Lemma 2.9, by taking a further subsequence if necessary.
Since 2E (h(k( j))) = 1 for all j, νh(K ) = 2E (h) = 1. We also have

√
νh(K \ B̂k( j)) ≤

∣∣∣∣
√
νh(K \ B̂k( j))−

√
νh(k( j)) (K \ B̂k( j))

∣∣∣∣+
√
νh(k( j)) (K \ B̂k( j))

≤
√

2E (h− h(k( j)))+
√
νh(k( j)) (K \ B̂k( j))

≤ 2− j/2 + 2−k( j)/2 ≤ 2− j/2 + 2− j/2,

that is, νh(K \ B̂k( j)) ≤ 2− j+2.
From Borel–Cantelli’s lemma, for νh-a.e. x ∈ K , x belongs to B̂k( j) for sufficiently

large j . Note that x ∈ B̂k( j) implies Φg(ψ[xk( j)]nk( j)
(x)) ∈ Uk( j). From Corollary 4.8,

for νh-a.e. x ∈ K , Φh(k( j)) (x) ∈ Uk( j) for sufficiently large j . Therefore, Φh(x) = L
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for νh-a.e. x ∈ K from (4.11). From Lemma 3.3, we may assume that L is the identity
matrix. This completes Step 1 of Strategy 3.6.

Take f ∈ FD such that f > 0 on K \V0. From Proposition 3.4, h∗( f 2νh)� L 2.
Since νh(V0) = 0 by (A7), h∗νh � L 2. This meets condition (U)2, which conflicts
with Theorem 3.5 (i) since the capacity of any nonempty set is positive. Therefore,
the assumption dm ≥ 2 is invalid, which completes the proof of Theorem 4.10. ��

4.3 Case of Sierpinski carpets

Let D and l be integers with D ≥ 2 and l ≥ 3. We assume that the cardinality of the
index set S, denoted by M , is less than l D . Let Q0 = [0, 1]D , the D-dimensional unit
cube. Let C be the collection of all cubes that are described as

∏D
j=1[k j/ l, (k j+1)/ l]

for k j ∈ {0, 1, . . . , l − 1}. Assume that we are given a family {ψi }i∈S of contractive
affine transformations on R

D of typeψi (x) = l−1x+bi for bi ∈ R
D such that eachψi

maps Q0 onto some cube in C , andψi �= ψi ′ if i �= i ′. Let Qm =⋃
w∈Wm

ψw(Q0) for
m ∈ N and K = ⋂

m∈N
Qm . Then, (K , S, {ψi }i∈S) is a self-similar structure and K

is called a (generalized) Sierpinski carpet, which satisfies condition (A1) in Sect. 4.1.
See Fig. 2 in Sect. 1 for typical examples. We take the normalized Hausdorff measure
on K as the underlying measure μ. In order to define a self-similar Dirichlet form on
L2(K , μ), we further assume the following properties, which are due to M. T. Barlow
and R. F. Bass:

• (Symmetry) Q1 is preserved by all the isometries of the unit cube Q0.
• (Connectedness) Int(Q1) is connected and contains a path connecting the hyper-

planes {x1 = 0} and {x1 = 1}.
• (ND: Nondiagonality) Let m ≥ 1 and B be a cube in Q0 of side length 2/ lm

that is described as
∏D

j=1[k j/ lm, (k j + 2)/ lm] for k j ∈ {0, 1, . . . , lm − 2}. Then,
Int(Q1 ∩ B) is either an empty set or a connected set.

• (BI: Borders included) Q1 contains the line segment {(x1, 0, . . . , 0) ∈ R
D | 0 ≤

x1 ≤ 1}.
In the above description, Int(B) denotes the interior of B in R

D . After several studies
such as [2,3,27], the unique existence of the “Brownian motion” on K up to the con-
stant time change was proved in [5]. It has an associated nontrivial regular Dirichlet
form (E ,F ) on L2(K , μ) that satisfies conditions (A2)–(A4), where ri in (A3) is
independent of i . We denote ri by r and take K \ Int(Q0) as K ∂ , which coincides with
V0. Moreover, (E ,F ) has the following property:

For any isometries ψ on Q0 and f ∈ F , ψ∗ f belongs to F and E (ψ∗ f ) = E ( f ).

(4.12)

From this property, we can easily prove the following:

Lemma 4.11 For any isometries ψ on Q0, f ∈ F , and B ∈ B(K ), we have
νψ∗ f (B) = ν f (ψ(B)).

We will confirm that conditions (A5)–(A7) are also satisfied. We remark that we do
not use the uniqueness of (E ,F ) in the subsequent argument.
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Upper estimate of martingale dimension for self-similar fractals 769

Remark 4.12 In [3], the nondiagonality condition was assumed only for m = 1, but it
was not sufficient; it was corrected to the above form in [5]. In some articles such as
[16,19], the conditions described in [3] were inherited, which should also be corrected.

Concerning the nondiagonality, we remark the following fact. See [21] for the proof.

Proposition 4.13 The following are mutually equivalent.

• Nondiagonality condition (ND) holds.
• (ND) with only m = 2 holds.
• (ND)H: Let B be a D-dimensional rectangle in Q0 such that each side length of

B is either 1/ l or 2/ l and B is a union of some elements of C . Then, Int(B ∩ Q1)

is either an empty set or a connected set.

We list some properties of this Dirichlet form and the associated objects. The Brown-
ian motion has the heat kernel density p(t, x, y) that is continuous in (t, x, y) ∈
(0,∞)× K × K such that, for some positive constants c4.i (i = 3, 4, 5, 6),

c4.3t−ds/2 exp
(−c4.4(|x − y|dw

RD/t)1/(dw−1))
≤ p(t, x, y) ≤ c4.5t−ds/2 exp

(−c4.6(|x − y|dw
RD/t)1/(dw−1)), t ∈(0, 1], x, y∈K .

(4.13)

Here, ds = (2 log M)/ log(M/r) > 1 and dw = log(M/r)/ log l ≥ 2 (cf. [3–5]).
The constants ds and dw are called the spectral dimension and the walk dimension,
respectively. The resolvent operators are compact ones on L2(K , μ). The Sobolev
inequality (3.2) holds if ds > 2. Indeed, from [33], (3.2) is equivalent to the on-diag-
onal upper heat kernel estimate

p(t, x, x) ≤ c4.7t−ds/2, t ∈ (0, 1], x ∈ K (4.14)

for some positive constant c4.7. The domain F is characterized as a Besov space.
More precisely stated, the Besov spaces on (K , μ) are defined as follows: For 1 ≤
p <∞, β ≥ 0 and m ∈ Z+, we set

am(β, f ) := γmβ

⎛
⎜⎝γmdH

∫∫

{(x,y)∈K×K ||x−y|
RD<cγ−m }

| f (x)− f (y)|p μ(dx) μ(dy)

⎞
⎟⎠

1/p

for f ∈ L p(K , μ), where γ ∈ (1,∞) and c ∈ (0,∞) are fixed constants, and dH is
the Hausdorff dimension of K , which is equal to log M/ log l. Note that the relation

dH = dwds/2 ≥ ds (4.15)

holds. Then, for 1 ≤ q ≤ ∞, the Besov space Λβp,q(K ) is defined as the set of all

f ∈ L p(K , μ) such that ā(β, f ) := {am(β, f )}∞m=0 ∈ lq .Λβp,q(K ) is a Banach space
with norm ‖ f ‖

Λ
β
p,q (K )

:= ‖ f ‖L p(K ,μ) + ‖ā(β, f )‖lq . Different selections of c > 0
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and γ > 1 provide the same spaceΛβp,q(K )with equivalent norms. For f ∈ L2(K , μ)
and δ > 0, we define

Eδ( f ) := δ−dw−dH

∫∫

{(x,y)∈K×K ||x−y|
RD<δ}

| f (x)− f (y)|2 μ(dx) μ(dy). (4.16)

Theorem 4.14 (cf. [14, Theorem 5.1], [23]) The domain F is equal to Λdw/2
2,∞ (K ),

and the norm ‖ · ‖F is equivalent to ‖ · ‖
Λ

dw/2
2,∞ (K )

. Moreover, f ∈ F if and only if

f ∈ L2(K , μ) and lim supδ→0 Eδ( f ) <∞. Further, for f ∈ F ,

E ( f ) ! sup
δ>0

Eδ( f ) ! lim sup
δ→0

Eδ( f ).

Here, a1 ! a2 represents that there exists a constant c ≥ 1 depending only on K and
(E ,F ) such that c−1a1 ≤ a2 ≤ ca1 holds.

From this characterization, condition (A5) is verified. Condition (A6) is confirmed,
for example, by (A3), Theorem 4.14, and a property of the unfolding operator intro-
duced in [5, p. 665]. This is also assured by Lemma 5.3 in the next section. Condi-
tion (A7) is proved in [5, Remark 5.3] under some extra assumptions, e.g., the set
{(x2, . . . , xD) ∈ R

D−1 | (0, x2, . . . , xD) ∈ K } also satisfies the conditions corre-
sponding to (H1)–(H4). The proof is based on [19, Proposition 3.8], and these extra
assumptions were introduced for the main topic of the paper [19], i.e., the characteriza-
tion of the trace space of F on subsets such as surfaces of Sierpinski carpets. However,
in order to prove condition (A7) only, such assumptions are in fact not necessary, as
seen from the careful modification of the arguments in [19]. Since the setup of [19]
is quite complicated and it is not easy to extract and modify the necessary parts for
this purpose, this will be discussed in Sect. 5 and the following proposition is proved
there.

Proposition 4.15 Condition (A7) holds true. In particular, ν f (K ∂ ) = 0 for any f ∈
F .

For the time being, we admit this proposition and continue arguments. The main
theorem of this subsection is as follows.

Theorem 4.16 1 ≤ dm ≤ ds. In particular, if ds < 2, then dm = 1.

We note that ds < 2 if and only if the diffusion process associated with (E ,F ) is
point recurrent. In view of (4.15), ds < 2 holds in particular for 2-dimensional Sier-
pinski carpets (that is, when D = 2). For the 3-dimensional standard Sierpinski carpet
(shown in the rightmost figure of Fig. 2), 2 < ds < 3 holds from [3, Corollary 5.3],
which implies that dm is either 1 or 2. It has not been determined which is true.

Compared with the case of p.c.f. fractals in Sect. 4.2, the proof of Theorem 4.16
is more complicated in that the space H of all harmonic functions is infinite-dimen-
sional, so that much work is required to select a converging sequence from a bounded
set in H .

For the proof of Theorem 4.16, we introduce one more notation.
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Upper estimate of martingale dimension for self-similar fractals 771

Definition 4.17 For A ⊂ Wm for m ∈ Z+, we set K A = ⋃
w∈A Kw. For w ∈ Wm

with m ∈ Z+, we define N0(w) = {w} and

Nn(w) = {v ∈ Wm | Kv ∩ KNn−1(w) �= ∅}, n = 1, 2, 3, . . . ,

inductively.

We remark the following: Let f ∈ F ,m ∈ N, and A, A′ ⊂ Wm with A ∩ A′ = ∅.
From Lemma 4.6 (i), we have

ν f (K A∪A′) = ν f (K A)+ ν f (K A′). (4.17)

We also note that for any n ∈ Z+, #Nn(w) ≤ (2n + 1)D for w ∈ W∗ and

sup
m∈N

max
v∈Wm

#{w ∈ Wm | v ∈ Nn(w)} ≤ (2n + 1)D .

Proof of Theorem 4.16 Since (E ,F ) is nontrivial, it is sufficient to prove that dm ≤ ds
from Proposition 2.12. Take d ∈ N arbitrarily such that d ≤ dm (≤ +∞). From Prop-
osition 4.9, there exists g = (g1, . . . , gd) ∈ H d that satisfies (4.6). We may assume
νg(K ) = 1 by multiplying g by a normalizing constant. There exists a > 0 such that

νg(B0) =: δ > 0, where B0 = {x ∈ K | detΦg(x) ≥ a}. (4.18)

Since νg(K ∂ ) = 0 by (A7), there exists n0 ∈ N such that for any n ≥ n0,

νg(K A(n)) ≤ δ/3, where A(n) = {w ∈ Wn | K ∂ ∩ KN3(w) �= ∅}. (4.19)

Let b = supn∈N maxv∈Wn #{w ∈ Wn | v ∈ N3(w)}(≤ 7D) and ε = δ/(3b). For
n ≥ n0, define Gn = {w ∈ Wn | νg(Kw) ≤ ενg(KN3(w))}. Then, from (4.17),

νg(KGn ) =
∑
w∈Gn

νg(Kw) ≤ ε
∑
w∈Gn

νg(KN3(w)) ≤ εbνg(K ) = δ/3.

We define K∞ = lim infn→∞ KGn . From Fatou’s lemma,

νg(K∞) ≤ lim inf
n→∞ νg(KGn ) ≤ δ/3. (4.20)

We set B = B0 \ (K A(n0) ∪ K∞ ∪ K ∂∗ ). Then, νg(B) ≥ δ − δ/3 − δ/3 = δ/3 from
(4.18), (4.19), (4.20), and Lemma 4.6 (i).

Let Φg|B denote the map Φg whose defining set is restricted to B. This is a map
from B to PSM(d; a). Fix an element L in the support of the measure (Φg|B)∗(νg|B)
on PSM(d; a). We will perform a blowup argument.

Let k ∈ N. We denote by Uk the intersection of PSM(d; a) and the open ball with
center L and radius 1/k in Mat(d)  R

d×d with respect to the Euclidean norm. Let
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Bk = (Φg|B)−1(Uk) ⊂ B. Then, νg(Bk) > 0. For n ∈ N, we set

Y (k)n (x) =
{
νg(K[x]n ∩ Bk)

/
νg(K[x]n ) if x ∈ K \ K ∂∗ and νg(K[x]n ) > 0,

0 otherwise.

Then, from the martingale convergence theorem as in the proof of Proposition 4.7,
limn→∞ Y (k)n = 1 νg-a.e. on Bk . In particular, there exist xk ∈ Bk and Nk ∈ N

such that Y (k)n (xk) ≥ 1 − 2−k for any n ≥ Nk . Since xk /∈ K∞, for infinitely many
n, νg(K[xk ]n ) > ενg(KN3([xk ]n)). Therefore, there exists a sequence of increasing
natural numbers (n0 ≤ ) n1 < n2 < n3 < · · · such that

Y (k)nk
(xk) ≥ 1− 2−k and νg(K[xk ]nk

) > ενg(KN3([xk ]nk )
) (4.21)

for all k ∈ N. For each k ∈ N, define g(k) = (g(k)1 , . . . , g(k)d ) ∈H d as

g(k)i =
⎛
⎜⎝gi −

∫

K[xk ]nk

— gi dμ

⎞
⎟⎠

/√
rnkνg(K[xk ]nk

), i = 1, . . . , d. (4.22)

Then,
∫

K[xk ]nk
g(k)i dμ = 0 (i = 1, . . . , d),

νg(k) (K[xk ]nk
) = 1

d

d∑
i=1

ν
g(k)i
(K[xk ]nk

) = r−nk , (4.23)

and

rnkνg(k) (KN3([xk ]nk )
) = νg(KN3([xk ]nk )

)
/
νg(K[xk ]nk

) < 1/ε (4.24)

for all k ∈ N, from (4.21) and (4.22). We denote ψ∗[xk ]nk
g(k) by h(k). Then, from

Lemma 4.6 (ii) and (4.23),

νh(k) (K ) =
1

d

d∑
i=1

ν
ψ∗[xk ]nk

g(k)i
(K ) = 1

d

d∑
i=1

rnkν
g(k)i
(K[xk ]nk

) = 1.

Denoting ψ−1
[xk ]nk

(Bk) by B̂k , we have

νh(k) (B̂k) = νψ∗[xk ]nk
g(k) (ψ

−1
[xk ]nk

(Bk)) = rnkνg(k) (K[xk ]nk
∩ Bk)

= νg(K[xk ]nk
∩ Bk)

/
νg(K[xk ]nk

) = Y (k)nk
(xk) ≥ 1− 2−k .

From (4.24), we can use the following proposition.
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Proposition 4.18 Let {hn}∞n=1 be a sequence in H and {wn}∞n=1 be a sequence in W∗
such that KN3(wn) ∩ K ∂ = ∅ and

∫
Kwn

hn dμ = 0 for all n ∈ N, and

sup
n

r |wn |νhn (KN3(wn)) <∞. (4.25)

Then, the sequence {ψ∗wn
hn}∞n=1 has a convergent subsequence in F .

We note that r |wn |νhn (Kwn ) = νψ∗wn hn (K ) = 2E (ψ∗wn
hn) from Lemma 4.6.

Since the proof of Proposition 4.18 is long, we postpone it until the next section
and finish the proof of Theorem 4.16 first.

By applying Proposition 4.18 to {g(k)i }∞k=1 ⊂ H and {[xk]nk }∞k=1 ⊂ W∗ for each
i = 1, . . . , d successively, we can take a subsequence {h(k( j))}∞j=1 of {h(k)}∞k=1, con-

verging to some h ∈ H d in F d . By taking a further subsequence, we may assume
that 2E (h− h(k( j))) ≤ 2− j for all j and

lim
j→∞Φh(k( j)) (x) = Φh(x) for νh-a.e. x (4.26)

from Lemma 2.9. Then, νh(K ) = 1 and

√
νh(K \ B̂k( j)) ≤

∣∣∣∣
√
νh(K \ B̂k( j))−

√
νh(k( j)) (K \ B̂k( j))

∣∣∣∣+
√
νh(k( j)) (K \ B̂k( j))

≤
√

2E (h− h(k( j)))+
√
νh(k( j)) (K \ B̂k( j))

≤ 2− j/2 + 2−k( j)/2 ≤ 2− j/2 + 2− j/2,

that is, νh(K \ B̂k( j)) ≤ 2− j+2. From Borel–Cantelli’s lemma, for νh-a.e. x ∈ K , x ∈
B̂k( j) for sufficiently large j . Note that x ∈ B̂k( j) implies that Φg(ψ[xk( j)]nk( j)

(x)) ∈
Uk( j). From Corollary 4.8,Φh(k( j)) (x) ∈ Uk( j) for sufficiently large j for νh-a.e. x ∈ K .
Therefore, Φh(x) = L for νh-a.e. x ∈ K from (4.26). From Lemma 3.3, we may
assume that L is the identity matrix. This completes Step 1 of Strategy 3.6.

Take w ∈ W∗ such that Kw ∩ K ∂ = ∅ and νh(Kw) > 0. From the regularity of
(E ,F ), there exists f ∈ FD ∩ C(K ) such that 0 ≤ f ≤ 1 on K and f = 1 on
Kw. From Proposition 3.4, the measure h̃∗( f 2νh) on R

d is described as ξ(x) dx with√
ξ ∈ W 1,2(Rd). From Corollary 4.8 and Lemma 4.5, ψ∗wh plays the role of h in

Step 2 of Strategy 3.6, and condition (U’)d is satisfied.
Now, if ds < 2, then the process associated with (E ,F ) is point recurrent and the

capacity on nonempty set is positive, thus d = 1 from Theorem 3.5 (i). If ds > 2, we
have d ≤ ds from Theorem 3.5 (ii). When ds = 2, (4.14) holds with ds replaced by
any number bigger than 2, since the larger ds is, the weaker the inequality is. Thus,
the Sobolev inequality (3.2) holds with ds replaced by any number bigger than 2, for
example, 2.01. From Theorem 3.5 (ii), d ≤ 2.01. Since d is a natural number, we
obtain d ≤ 2. This completes the proof of Theorem 4.16 if we grant Propositions 4.15
and 4.18, which are proved in the next section. ��
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5 Proof of Propositions 4.15 and 4.18

In this section, we prove Propositions 4.15 and 4.18. We use the same notations as
those in Sect. 4.3. In Sect. 5.1, we present a description of the structure of F (Propo-
sition 5.1) and a quantitative estimate for a class of harmonic functions (Proposition
5.22) as preparatory results. For the proofs, we use a characterization of F by the
Besov space, folding/unfolding maps on K , some geometric properties of K originat-
ing from the nondiagonal property (ND), the elliptic Harnack inequality, and so on.
Using these results, we prove in Sect. 5.2 a claim apparently stronger than Proposition
4.18 (Proposition 5.23), and Proposition 4.15.

5.1 Preliminaries

First, we introduce some concepts. We have to be careful that condition (A7) cannot be
used; in particular, Lemma 4.6 and (4.17) are not available, while Lemma 4.4 is valid.
We remark that an assertion stronger than Lemma 4.4 (i) holds from [19, pp. 600–601]:
For any w ∈ W∗, there exists a constant c5.1 ≥ 1 such that

c−1
5.1 Cap(B) ≤ Cap(ψw(B)) ≤ c5.1 Cap(B) (5.1)

for every B ⊂ K .
For a nonempty subset A of Wm for some m ∈ N, a collection { fw}w∈A of functions

in F is called compatible if f̃v(ψ−1
v (x)) = f̃w(ψ−1

w (x)) for q.e. x ∈ Kv ∩ Kw for
every v,w ∈ A. This concept is well-defined from (5.1). We define

F A=
{

f ∈ L2(K A, μ|K A ) ψ
∗
w f ∈ F for all w ∈ A and {ψ∗w f }w∈A is compatible

}

and

E A( f, g) = r−m
∑
w∈A

E (ψ∗w f, ψ∗wg) for f, g ∈ F A.*2 (5.2)

It is evident that { f |K A | f ∈ F } ⊂ F A. Also, from (A3), E A( f, g) =
E A·Wn ( f, g) for any n ∈ N and f, g ∈ F A. See Definition 4.1 for the definition
of A ·Wn .

For simplicity, we write E A( f ) for E A( f |K A , f |K A ) if f ∈ F . Then,

1

2
ν f (K A) = 1

2rm

∑
w∈Wm

νψ∗w f (ψ
−1
w (K A)) ≥ 1

2rm

∑
w∈A

νψ∗w f (K ) = E A( f ), (5.3)

where the first identity follows from Lemma 4.4 (ii). It will turn out that the above
inequality is replaced by the equality from Proposition 4.15, which is yet to be proved.

∗2 In [19], symbol (EA,FA) was used instead. Since it is slightly misleading, we use the terminology
(E A,F A) here.
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Upper estimate of martingale dimension for self-similar fractals 775

The following result was used in [19, Section 5.3] without proof. Since the proof
is not obvious, we provide the proof here.

Proposition 5.1 Let m, n ∈ Z+ and let A be a nonempty subset of Wm. Then, F A =
F A·Wn . In particular, F = F Wn for every n ∈ Z+.

Although this assertion might be deduced directly from the powerful theorem on the
uniqueness of self-similar diffusions on K [5], we give a proof without using this fact,
since some concepts and lemmas stated below in proving Proposition 5.1 are useful
elsewhere.

For Borel subsets B1 and B2 of K and a positive constant δ, we define

Eδ( f, B1, B2) := δ−dw−dH

∫∫

{(x,y)∈B1×B2||x−y|
RD<δ}

| f (x)− f (y)|2 μ(dx) μ(dy)

for f ∈ L2(K , μ). We write Eδ( f, B1) for Eδ( f, B1, B1). Note that Eδ( f, K , K ) =
Eδ( f ) (see (4.16)).

Definition 5.2 We define a folding map ϕ : [0, 1]D → [0, 1/ l]D as follows. Let
ϕ̂ : R → R be a periodic function with period 2/ l such that ϕ̂(t) = |t | for t ∈
[−1/ l, 1/ l]. The map ϕ is defined as

ϕ(x1, . . . , xD) = (ϕ̂(x1), . . . , ϕ̂(xD)), (x1, . . . , xD) ∈ [0, 1]D .

Moreover, we define ϕi : K → Ki for i ∈ S as

ϕi (x) =
(
ϕ|Ki

)−1
(ϕ(x)), x ∈ K .

Note that ϕi |Ki : Ki → Ki is the identity map and ϕi ◦ ϕ j = ϕi for i, j ∈ S.
Hereafter, a1 � a2 means that there exists a positive constant c depending only on

(K , μ) and (E ,F ) such that a1 ≤ ca2 holds.

Lemma 5.3 Let k ∈ S and f ∈ F . Define g ∈ F S as g(x) = f (ψ−1
k (ϕk(x))) for

x ∈ K . Then, g ∈ F and E (g) � E ( f ).

Proof Let δ ∈ (0, 1/ l). We have

Eδ(g)=
∑
i∈S

∑
j∈S

Eδ(g, Ki , K j ) =
∑
i∈S

Eδ(g, Ki )+
∑

i, j∈S, i �= j, Ki∩K j �=∅
Eδ(g, Ki , K j ).

In the first term of the rightmost side, we have

Eδ(g, Ki ) = Eδ(g, Kk) � Elδ( f ) � E ( f ).
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In the second term, we have

Eδ(g, Ki , K j ) = δ−dw−dH

∫∫

{(x,y)∈Ki×K j ||x−y|
RD<δ}

|g(x)− g(ϕi (y))|2 μ(dx) μ(dy)

(since g(ϕi (y)) = g(y))

≤ δ−dw−dH

∫∫

{(x,z)∈Ki×Ki ||x−z|
RD<δ}

|g(x)− g(z)|2 μ(dx) μ(dz)

= Eδ(g, Ki ) � E ( f ).

Here, in the first inequality, we used the inequality |x − ϕi (y)|RD ≤ |x − y|RD

for x ∈ Ki and y ∈ K j , and the identity (ϕi |K j )∗(μ|K j ) = μ|Ki . Therefore,
lim supδ→0 Eδ(g) � E ( f ). This completes the proof. ��
Corollary 5.4 Let k ∈ S and f ∈ F S. Define g ∈ F S as g = f ◦ ϕk . Then, g ∈ F .

We remark that f = g on Kk .

Proof of Corollary 5.4 Apply Lemma 5.3 to ψ∗k f ∈ F as f . ��
Definition 5.5 For m ∈ N and v,w ∈ Wm , we write v �

m
w if ψv(Q0)∩ψw(Q0) is

a (D − 1)-dimensional hypercube.

For i, j ∈ S = W 1 with i �
1

j , let Hi, j be a unique (D−1)-dimensional hyperplane

including Ki ∩ K j . Then, Hi, j splits R
D into two closed half spaces, say Gi, j and

G j,i , which satisfy that Gi, j ⊃ Ki and G j,i ⊃ K j .

Lemma 5.6 Let i, j ∈ S satisfy that i �
1

j . Suppose that f ∈ F S satisfies that

f̃ = 0 q.e. on Ki ∩ K j . Define ĝ ∈ F S as ĝ(x) = f (ϕi (x)) · 1Gi, j (x) for x ∈ K .
Then, ĝ ∈ F .

Proof From [12, Lemma 2.3.4], there exists a sequence { f̂n}∞n=1 in F ∩ C(K ) such
that f̂n → ψ∗i f in F and Supp[ f̂n] ⊂ K \ ψ−1

i (Ki ∩ K j ). For each n, define

gn(x) = f̂n(ψ
−1
i (ϕi (x))), ĝn(x) = gn(x) · 1Gi, j (x) for x ∈ K .

Then, from Lemma 5.3, gn ∈ F and Eδ(gn) � E ( f̂n) for δ > 0. Here, we note that
the constant involved in symbol � is independent of n and δ.

Let n ∈ N and δ > 0 be smaller than the Euclidean distance between Supp[gn] and
ψ−1

i (Ki ∩ K j ). Then,

Eδ(ĝn) = Eδ(gn, K ∩ Gi, j ) ≤ Eδ(gn) � E ( f̂n).

Therefore, lim supδ→0 Eδ(ĝn) � E ( f̂n), which implies that ĝn ∈ F and

lim sup
n→∞

E (ĝn) � lim sup
n→∞

E ( f̂n) = E (ψ∗i f ) <∞.
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Upper estimate of martingale dimension for self-similar fractals 777

Since ĝn → ĝ in L2(K , μ), ĝn converges weakly in F and the limit coincides with
ĝ. In particular, ĝ ∈ F . ��
Definition 5.7 We define maps

Ξi : F S → F , i ∈ S

and

Ξi, j : { f ∈ F S | f̃ = 0 q.e. on Ki ∩ K j } → F , i, j ∈ S with i �
1

j

by Ξi ( f ) = g and Ξi, j ( f ) = ĝ, where g and ĝ are provided in Corollary 5.4 and
Lemma 5.6, respectively.

For i ∈ S, let z(i) = (z(i)1 , . . . , z(i)D ) ∈ R
D be defined as z(i) = ψi (1/2, . . . , 1/2), that

is, the center of ψi (Q0).

Definition 5.8 For i, j ∈ S, we define a distance d(i, j) between i and j as d(i, j) =
l
∑D

k=1 |z(i)k − z( j)
k |.

Note that d(i, j) = 1 if and only if i �
1

j .

We recall the following fact, where condition (ND) plays the essential role.

Proposition 5.9 (cf. [21, Proposition 2.5]) Let C be a D-dimensional cube with side
length 2/ l that is a union of some 2D elements of C . We define T ⊂ S as T = {i ∈ S |
Ki ⊂ C}. Then, for each i, j ∈ T , there exists a sequence {n(k)}d(i, j)

k=0 of elements of
T such that n(0) = i, n(d(i, j)) = j , and n(k−1) �

1
n(k) for k = 1, 2, . . . ,d(i, j).

Now, we prove Proposition 5.1.

Proof of Proposition 5.1 By induction, it is sufficient to prove that F = F S . Take
f ∈ F S . In order to prove that f ∈ F , it suffices to show that lim supδ→0 Eδ( f ) <
∞. For δ ∈ (0, 1/ l), we have

Eδ( f )=
∑
i∈S

∑
j∈S

Eδ( f, Ki , K j )=
∑
i∈S

Eδ( f, Ki )+
∑

i, j∈S, i �= j, Ki∩K j �=∅
Eδ( f, Ki , K j ).

Since Eδ( f, Ki ) � Elδ(ψ
∗
i f ) � E (ψ∗i f ), we have lim supδ→0 Eδ( f, Ki ) �

E (ψ∗i f ). Therefore, it is sufficient to show that lim supδ→0 Eδ( f, Ki , K j ) < ∞ for
i, j ∈ S such that i �= j and Ki ∩ K j �= ∅. Hereafter, we fix such i and j .

We can take a D-dimensional cube C with side length 2/ l such that C is a union of
some 2D elements of C and Ki ∪ K j ⊂ C . Take a subset T of S as in Proposition 5.9.
Then, from Proposition 5.9, there exists a sequence {n(k)}Nk=0 in T , where N = d(i, j),
such that n(0) = i, n(N ) = j , and n(k − 1) �

1
n(k) for k = 1, 2, . . . , N . We note

that N is equal to the number of α ∈ {1, . . . , D} such that the α-th coordinates of
the centers of Ki and K j , that is, z(i)α and z( j)

α , are different. In particular, for each
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k = 1, . . . , N , there exists a unique α(k) ∈ {1, . . . , D} such that z(n(k−1))
α(k) �= z(n(k))α(k) .

Then, z(n(0))α(k) = z(n(1))α(k) = · · · = z(n(k−1))
α(k) and z(n(k))α(k) = z(n(k+1))

α(k) = · · · = z(n(N ))α(k) ; there
is no leeway to change a fixed coordinate more than once. This in particular implies
that

⋃k−1
s=0 Kn(s) ⊂ Gn(k−1),n(k) and

⋃N
s=k Kn(s) ⊂ Gn(k),n(k−1) (see the description

before Lemma 5.6 for the definition of G ·,·).
Keeping Definition 5.7 in mind, we define hk ∈ F , k = 0, 1, . . . , N , inductively

by

h0 = Ξi ( f ) and hk = Ξn(k),n(k−1)

(
f −

k−1∑
s=0

hs

)
for k = 1, . . . , N .

Based on the above observation, we can prove by mathematical induction that f −∑k
s=0 hs = 0 on

⋃k
s=0 Kn(s) for every k = 0, 1, . . . , N . Denoting

∑N
s=0 hs by h ∈ F ,

we have f = h on
⋃N

s=0 Kn(s)(⊃ Ki ∪ K j ). Therefore,

Eδ( f, Ki , K j ) = Eδ(h, Ki , K j ) ≤ Eδ(h) � E (h),

which implies that lim supδ→0 Eδ( f, Ki , K j ) <∞. ��
For the proof of Proposition 5.23 in the next subsection, we study some properties

of functions that are harmonic on subsets of K and other related function spaces. From
Definition 5.10 to Lemma 5.14 stated below, m is a fixed natural number and A is a
subset of Wm .

Definition 5.10 We define closed subspaces F 0
A and H (A) of F as

F 0
A = { f ∈ F | f = 0 μ-a.e. on KWm\A},

H (A) = {h ∈ F | E (h) ≤ E (h + g) for all g ∈ F 0
A}.

Note that the inclusion F 0
A ⊂ FD does not necessarily hold if K A ∩ K ∂ �= ∅. The

following lemma is a variant of Lemmas 3.2 and 4.3 and its proof is omitted.

Lemma 5.11 (i) For h ∈ F , h ∈H (A) if and only if E (h, g) = 0 for all g ∈ F 0
A.

(ii) For any f ∈H (A) and w ∈ A, ψ∗w f belongs to H .

The following is proved as in [16, Lemma 3.5]; we provide a proof for readers’ con-
venience.

Lemma 5.12 Suppose that A �= Wm. Then, there exists some constant c5.2 > 0
(depending on A) such that ‖ f ‖2

L2(K ,μ)
≤ c5.2E ( f ) for all f ∈ F 0

A.

Proof Let f ∈ F 0
A. From Chebyshev’s inequality and (4.1), for b > 0,

μ

⎛
⎝
⎧⎨
⎩
∣∣∣∣∣∣ f −

∫

K

f dμ

∣∣∣∣∣∣ > b

⎫⎬
⎭
⎞
⎠ ≤ 1

b2

∥∥∥∥∥∥ f −
∫

K

f dμ

∥∥∥∥∥∥
2

L2(K ,μ)

≤ c4.1

b2 E ( f ). (5.4)
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Let a = μ(K \ K A) > 0 and b = (2c4.1E ( f )/a)1/2. Then, the last term of (5.4)
is less than a. Since f = 0 on K \ K A,

∣∣∫
K f dμ

∣∣ must be less than or equal to b.
Therefore,

‖ f ‖2
L2(K ,μ) =

∥∥∥∥∥∥ f −
∫

K

f dμ

∥∥∥∥∥∥
2

L2(K ,μ)

+
∣∣∣∣∣∣
∫

K

f dμ

∣∣∣∣∣∣
2

≤ c4.1E ( f )+ 2c4.1

a
E ( f ). ��

Lemma 5.13 Suppose that A �= Wm. Then, for each f ∈ F , there exists a unique
function HA f ∈H (A) such that HA f = f on KWm\A.

Proof This is proved by a standard argument. Let G = { f̂ ∈ F | f̂ − f ∈ F 0
A}.

Take a sequence { f̂n} from G such that E ( f̂n) decreases to inf{E ( f̂ ) | f̂ ∈ G} =: a
as n →∞. Then, we have

‖ f̂n‖L2(K ,μ) ≤ ‖ f̂n − f ‖L2(K ,μ) + ‖ f ‖L2(K ,μ)

≤ √c5.2E ( f̂n − f )1/2 + ‖ f ‖L2(K ,μ) (from Lemma 5.12)

≤ √c5.2{E ( f̂n)
1/2 + E ( f )1/2} + ‖ f ‖L2(K ,μ).

Therefore, { f̂n} is bounded in F . A weak limit point f̂∞ of { f̂n} in F belongs to G
and attains the infimum of inf{E ( f̂ ) | f̂ ∈ G}, i.e., E ( f̂∞) = a. Thus, f̂∞ ∈ H (A)
and we can take f̂∞ as HA f . Uniqueness follows from the strict convexity of E (·).
More precisely speaking, if another f ′ attains the infimum, then f̂∞ − f ′ ∈ F 0

A and
Lemma 5.12 implies

c−1
5.2‖ f̂∞ − f ′‖2

L2(K ,μ) ≤ E ( f̂∞ − f ′) = 2E ( f̂∞)+ 2E ( f ′)− 4E
(
( f̂∞ + f ′)/2

)
≤ 0.

Therefore, f ′ = f̂∞. ��
From this lemma, we can define a bounded linear map HA : F � f 	→ HA f ∈ F .
The following lemma is also proved in a standard manner.

Lemma 5.14 Suppose that A �= Wm. Let f, f1, f2 ∈ F .

(i) If f1 = f2 on K A, then HA f1 = HA f2 on K A.
(ii) It holds that

μ-ess inf
x∈K A

f (x) ≤ μ-ess inf
x∈K A

HA f (x) ≤ μ-ess sup
x∈K A

HA f (x) ≤ μ-ess sup
x∈K A

f (x).

Proof (i) Since f1 − f2 = 0 on K A,E A( f1 − f2) = 0. Therefore, f1 − f2 is the
minimizer of inf{E ( f̂ ) | f̂ −( f1− f2) ∈ F 0

A}. This implies that HA( f1− f2) =
f1 − f2. From the linearity of HA, HA f1 − HA f2 = 0 on K A.

(ii) Suppose that f ≤ b μ-a.e. on K A for b ∈ R. Let f̂ = f ∧b ∈ F . Since f = f̂
on K A, HA f = HA f̂ on K A from (i). Since HA f̂ − f̂ ∈ F 0

A, b − f̂ ∈ F ,
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and b − f̂ ≥ 0, we have (HA f̂ ) ∧ b − f̂ = (HA f̂ − f̂ ) ∧ (b − f̂ ) ∈ F 0
A.

Moreover, we have E ((HA f̂ ) ∧ b) ≤ E (HA f̂ ) by the Markov property of
(E ,F ). Thus, (HA f̂ ) ∧ b = HA f̂ , which implies that HA f̂ ≤ b. Therefore,
HA f = HA f̂ ≤ b on K A. This implies the last inequality. By considering − f
in place of f , we obtain the first inequality. The second inequality is evident.

��

Hereafter, in most cases, we use the map HA for A = N3(w) with w ∈ W∗. (See
Definition 4.17 for the definition of Nn(w).)

Definition 5.15 For i ∈ {1, . . . , D} and j ∈ {0, 1}, we define

K ∂
i, j = {x = (x1, . . . , xD) ∈ K | xi = j}.

A subset FH of F including FD is defined as

FH =
{

f ∈ F
∣∣ f̃ = 0 q.e. on K ∂

i, j for some i ∈ {1, . . . , D} and some j ∈ {0, 1}}.

We note that
⋃D

i=1
⋃1

j=0 K ∂
i, j = K ∂ .

Lemma 5.16 There exists some constant c5.3 > 0 such that ‖ f ‖2
L2(K ,μ)

≤ c5.3E ( f )

for all f ∈ FH .

Proof From (4.12), it suffices to consider the case when f̃ = 0 q.e. on K ∂
1,1. Let

us recall the folding map ϕ in Definition 5.2. Let K ′ = {x = (x1, . . . , xD) ∈ K |
x1 ≤ 1/ l}. From Lemma 5.6, the function g defined as g(x) = f (l · ϕ(x)) · 1K ′(x)
belongs to F . Then, it holds that ‖g‖2

L2(K ,μ)
≤ c5.2E (g) from Lemma 5.12. Since

‖g‖L2(K ,μ) = c5.4‖ f ‖L2(K ,μ) and E (g) = c5.5E ( f ) for some positive constants c5.4
and c5.5 that are independent of f , we complete the proof. ��

Definition 5.17 Let A ⊂ Wm and A′ ⊂ Wm′ for m,m′ ∈ Z+. We say that K A and K A′
have the same shape and write K A ∼ K A′ if there exists a similitude ξ(x) = lm−m′x+b
with some b ∈ (l−m′

Z)D such that ξ(K A) = K A′ and ξ(K A ∩ K ∂ ) = K A′ ∩ K ∂ .

It is evident that∼ is an equivalence relation on the set {K A | A ⊂ Wm for some m ∈
Z+}.

The following Lemmas 5.18–5.21 are used only to prove Proposition 5.22 stated
below.

Lemma 5.18 There exists a positive constant c5.6 such that for any w ∈ W∗ and
f ∈ F 0

N3(w)
∩FD,

‖ f ‖2
L2(K ,μ) =

∫

KN3(w)

f 2 dμ ≤ c5.6(r/M)|w|E N3(w)( f ) = c5.6(r/M)|w|E ( f ).
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Proof It is sufficient to prove the inequality in the equation described above. Let
ŵ ∈ W∗ and f̂ ∈ F 0

N3(ŵ)
∩FD. Then, from Lemma 5.16,

∫

KN3(ŵ)

f̂ 2 dμ ≤ c5.3E ( f̂ ) = c5.3E
N3(ŵ)( f̂ ). (5.5)

Next, let w ∈ W∗, f ∈ F 0
N3(w)

∩FD and suppose that KN3(ŵ) ∼ KN3(w). We take
a similitude ξ as in Definition 5.17 such that ξ(KN3(ŵ)) = KN3(w) and ξ(KN3(ŵ) ∩
K ∂ ) = KN3(w) ∩ K ∂ , and define

f̂ (x) =
{

f (ξ(x)) if x ∈ KN3(ŵ),

0 otherwise.

Then, f̂ ∈ F 0
N3(ŵ)

∩FD from Proposition 5.1 and

∫

KN3(w)

f 2 dμ = M |ŵ|−|w|
∫

KN3(ŵ)

f̂ 2 dμ

≤ c5.3 M |ŵ|−|w|E N3(ŵ)( f̂ ) (from (5.5))

= c5.3 M |ŵ|−|w|r |w|−|ŵ|E N3(w)( f ) (from (5.2))

= c5.3(M/r)|ŵ| · (r/M)|w|E N3(w)( f ).

Since the number of the equivalent classes of {KN3(w) | w ∈ W∗} with respect to ∼
is finite, we obtain the assertion. ��

Lemma 5.19 There exists a positive constant c5.7 such that for any f ∈ F and
w ∈ W∗ with KN3(w) ∩ K ∂ = ∅, it holds that

E N3(w)(HN3(w) f ) ≤ E N3(w)( f ) (5.6)

and

⎛
⎜⎝

∫

KN3(w)

(HN3(w) f )2 dμ

⎞
⎟⎠

1/2

≤ c5.7
(
(r/M)|w|E N3(w)( f )

)1/2 +
⎛
⎜⎝

∫

KN3(w)

f 2 dμ

⎞
⎟⎠

1/2

.

(5.7)
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Proof Equation (5.6) is evident. We prove (5.7). Since HN3(w) f − f ∈ F 0
N3(w)

∩FD,
from Lemma 5.18,

⎛
⎜⎝

∫

KN3(w)

(HN3(w) f )2 dμ

⎞
⎟⎠

1/2

−
⎛
⎜⎝

∫

KN3(w)

f 2 dμ

⎞
⎟⎠

1/2

≤
⎛
⎜⎝

∫

KN3(w)

(HN3(w) f − f )2 dμ

⎞
⎟⎠

1/2

≤ (
c5.6(r/M)|w|E N3(w)(HN3(w) f − f )

)1/2

≤ 2
(
c5.6(r/M)|w|E N3(w)( f )

)1/2
.

Here, we used (5.6) in the last inequality. ��
Lemma 5.20 There exists a positive constant c5.8 such that for any f ∈ F and
w ∈ W∗ with KN3(w) ∩ K ∂ = ∅,

∫

KN3(w)

∣∣∣∣∣∣∣
f (x)−

∫

Kw

— f dμ

∣∣∣∣∣∣∣

2

μ(dx) ≤ c5.8(r/M)|w|E N3(w)( f ). (5.8)

Proof Let m = |w|. We write N3(w) = {v1, . . . , vs}. Here, s is the cardinality of
N3(w), which does not exceed 7D . From the assumption of the nondiagonality of K ,
we can renumber the indices such that the following hold:

• v1 = w;
• for any i ≥ 2, there exists j < i such that vi �

m
v j .

First, we prove by mathematical induction that

∫

Kvi

∣∣∣∣∣∣∣
f (x)−

∫

Kw

— f dμ

∣∣∣∣∣∣∣

2

μ(dx) ≤ ci (r/M)mE N3(w)( f ) (5.9)

for i = 1, . . . , s with ci = (√c4.1 + 2(i − 1)
√

c5.3)
2. When i = 1, we have

LHS of (5.9) = M−m
∫

K

∣∣∣∣∣∣ψ
∗
w f (x)−

∫

K

ψ∗w f dμ

∣∣∣∣∣∣
2

μ(dx)

≤ c4.1 M−mE (ψ∗w f ) = c4.1 M−mrmE {w}( f ) (from (4.1) and (5.2))

≤ c4.1(r/M)mE N3(w)( f ).
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Therefore, (5.9) holds for i = 1. Supposing (5.9) holds for i = 1, . . . , k with k < s, we
prove (5.9) for i = k+ 1. Take j such that j ≤ k and vk+1 �

m
v j . Let � : R

D → R
D

be the reflection map with respect to the (D − 1)-dimensional hyperplane containing
Kvk+1 ∩ Kv j . Define a function f̂ on Kvk+1 as f̂ (x) = f (�(x)). Then,

⎛
⎜⎝

∫

Kvk+1

∣∣∣∣ f (x)−
∫

Kw

— f dμ

∣∣∣∣
2

μ(dx)

⎞
⎟⎠

1/2

≤
⎛
⎜⎝

∫

Kvk+1

∣∣∣∣ f̂ (x)−
∫

Kw

— f dμ

∣∣∣∣
2

μ(dx)

⎞
⎟⎠

1/2

+
⎛
⎜⎝

∫

Kvk+1

∣∣∣ f (x)− f̂ (x)
∣∣∣2 μ(dx)

⎞
⎟⎠

1/2

=
⎛
⎜⎝

∫

Kv j

∣∣∣∣ f (x)−
∫

Kw

— f dμ

∣∣∣∣
2

μ(dx)

⎞
⎟⎠

1/2

+ M−m/2
∥∥ψ∗vk+1

( f − f̂ )
∥∥

L2(K ,μ),

since (�|Kvk+1
)∗(μ|Kvk+1

) = μ|Kv j
. The first term is dominated by

(
c j (r/M)m

E N3(w)( f )
)1/2 from the induction hypothesis. Since ψ∗vk+1

( f − f̂ ) belongs to FH,
from Lemma 5.16, the second term is dominated by

M−m/2
√

c5.3E (ψ∗vk+1
( f − f̂ ))

≤ √c5.3 M−m/2(E (ψ∗vk+1
f )1/2 + E (ψ∗vk+1

f̂ )1/2
)

= √c5.3 M−m/2(E (ψ∗vk+1
f )1/2 + E (ψ∗v j

f )1/2
)

= √c5.3 M−m/2(rm/2E {vk+1}( f )1/2 + rm/2E {v j }( f )1/2
)

≤ 2
√

c5.3(r/M)m/2E N3(w)( f )1/2.

Therefore,

∫

Kvk+1

∣∣∣∣∣∣∣
f (x)−

∫

Kw

— f dμ

∣∣∣∣∣∣∣

2

μ(dx)

≤ (√c j + 2
√

c5.3)
2(r/M)mE N3(w)( f )

= c j+1(r/M)mE N3(w)( f ) ≤ ck+1(r/M)mE N3(w)( f );

thus (5.9) holds for i = k + 1.
Now, by summing up (5.9) for i = 1, . . . , s, we obtain (5.8) with c5.8 =∑7D

i=1

(√
c4.1 + 2(i − 1)

√
c5.3

)2. ��
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Lemma 5.21 There exists a constant c5.9 > 0 such that for anyw ∈ W∗ with KN3(w)∩
K ∂ = ∅ and h ∈H (N3(w)) with h ≥ 0 μ-a.e., the following inequalities hold:

μ-ess sup
x ∈KN2(w)

h(x) ≤ c5.9 μ-ess inf
x ∈KN2(w)

h(x)

≤ c5.9

⎛
⎜⎝

∫

KN2(w)

— h2 dμ

⎞
⎟⎠

1/2

≤ c5.9

⎛
⎜⎝M |w|

∫

KN2(w)

h2 dμ

⎞
⎟⎠

1/2

.

Proof The first inequality follows from the elliptic Harnack inequality; this is implied
by the parabolic Harnack inequality, which is equivalent to (4.13) in our context. See,
e.g., [4], [3], [12, Theorem 4.6.5], and [19, Proposition 2.9] for further details. The
remaining inequalities are evident. ��
Proposition 5.22 There exists a constant c5.10 > 0 such that for any w ∈ W∗ with
KN3(w) ∩ K ∂ = ∅ and h ∈H (N3(w)) with

∫
Kw

h dμ = 0,

μ-ess sup
x ∈KN2(w)

|h(x)| ≤ c5.10
(
r |w|E N3(w)(h)

)1/2
.

Proof Let w ∈ W∗ and h ∈ H (N3(w)) as stated above. We define h1 = h ∨ 0 and
h2 = (−h) ∨ 0. Since h = HN3(w)h1 − HN3(w)h2 and HN3(w)h j ≥ 0 on K for
j = 1, 2 from Lemma 5.14, we have

μ-ess sup
x ∈KN2(w)

|h(x)|

≤ μ-ess sup
x ∈KN2(w)

(HN3(w)h1)(x)+ μ-ess sup
x ∈KN2(w)

(HN3(w)h2)(x)

≤
2∑

j=1

c5.9

⎛
⎜⎝M |w|

∫

KN2(w)

(HN3(w)h j )
2 dμ

⎞
⎟⎠

1/2

(from Lemma 5.21)

≤
2∑

j=1

c5.11

⎧⎪⎨
⎪⎩
(
r |w|E N3(w)(h j )

)1/2 +
⎛
⎜⎝M |w|

∫

KN3(w)

h2
j dμ

⎞
⎟⎠

1/2⎫⎪⎬
⎪⎭ (from Lemma 5.19)

≤ 2c5.11

⎧⎪⎨
⎪⎩
(
r |w|E N3(w)(h)

)1/2 +
⎛
⎜⎝M |w|

∫

KN3(w)

h2 dμ

⎞
⎟⎠

1/2⎫⎪⎬
⎪⎭

≤ 2c5.11

{(
r |w|E N3(w)(h)

)1/2 + (
c5.8r |w|E N3(w)(h)

)1/2
}
.

Here, the last inequality follows from the assumption
∫

Kw
h dμ = 0 and Lemma

5.20. This completes the proof. ��
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5.2 Proof of Propositions 4.15 and 4.18

The ideas of the proof are based on [16,19]. First, we prove Proposition 4.18. By
taking (5.3) into consideration, it is sufficient to prove the following.

Proposition 5.23 Under the same assumptions as those of Proposition 4.18, with
(4.25) replaced by

sup
n

r |wn |E N3(wn)(hn) <∞, (5.10)

the same conclusion of Proposition 4.18 holds.

Proof Let us recall the concept of “same shape” in Definition 5.17. Since there are
only finite kinds of shapes of KN3(w) (w ∈ W∗), that is, the cardinality of {KN3(w) |
w ∈ W∗}/∼ is finite, we may assume that all KN3(wn), n ∈ N, are of the same shape
by taking a suitable subsequence.

We let u = w1. Take g ∈ F 0
N2(u)

∩C(K ) such that 0 ≤ g ≤ 1 on K and g = 1 on

KN1(u). Let c5.12 = max{E (ψ∗v g)1/2 | v ∈ N2(u)}.
Let n ∈ N, and take a similitude ξn on R

D as in Definition 5.17 such that
ξn(KN3(u)) = KN3(wn). Set

fn(x) =
{

g(x)hn(ξn(x)) if x ∈ KN3(u),

0 otherwise.

Then, fn ∈ F 0
N2(u)

since hn is bounded on KN2(wn) from Proposition 5.22. We have

E ( fn)
1/2 =

⎛
⎝ ∑
v∈N2(u)

r−|u|E (ψ∗v fn)

⎞
⎠

1/2

≤
∑

v∈N2(u)

r−|u|/2E (ψ∗v fn)
1/2

≤ r−|u|/2
∑

v∈N2(u)

{
E (ψ∗v g)1/2‖ψ∗v (hn ◦ ξn)‖L∞(K ,μ)

+ E (ψ∗v (hn ◦ ξn))
1/2‖ψ∗v g‖L∞(K ,μ)

}
(from Proposition 2.1)

≤ r−|u|/2
∑

v∈N2(u)

{
E (ψ∗v g)1/2μ-ess sup

x ∈KN2(wn )

|hn(x)| + E (ψ∗v (hn ◦ ξn))
1/2

}

≤ r−|u|/2
∑

v∈N2(u)

{
c5.12c5.10

(
r |wn |E N3(wn)(hn)

)1/2 + (
r |wn |E {v′}(hn)

)1/2
}

(
from Proposition 5.22, and v′ denotes a unique element of
N2(wn) such that Kv′ = ξn(Kv)

)

≤ c5.13r−|u|/2
(
r |wn |E N3(wn)(hn)

)1/2
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and

‖ fn‖2
L∞(K ,μ) ≤ μ-ess sup

x ∈KN2(wn )

|hn(x)|2 ≤ c2
5.10r |wn |E N3(wn)(hn) (from Proposition 5.22).

Therefore, { fn}∞n=1 is bounded both in F and in L∞(K , μ) under Assumption 5.10.
We can take a suitable subsequence of { fn}∞n=1, denoted by the same notation, con-
verging to some f∞ weakly in F . It is evident that f∞ ∈ F 0

N2(u)
∩ L∞(K , μ). Since

fn = hn ◦ ξn on KN1(u), it holds that fn ∈ H (N1(u)) for all n. This implies that
f∞ ∈H (N1(u)).

We define f̂n = fn− f∞ for n ∈ N. Then, f̂n ∈H (N1(u))∩L∞(K , μ) and f̂n →
0 weakly in F . Since F is compactly imbedded in L2(K , μ), which is equivalent
to the statement that the resolvent operators are compact ones on L2(K , μ), f̂n → 0
strongly in L2(K , μ). Proposition 2.1 implies that

E ( f 2
n )

1/2 ≤ 2E ( fn)
1/2‖ fn‖L∞(K ,μ)

and

E ( fn f∞)1/2 ≤ E ( fn)
1/2‖ f∞‖L∞(K ,μ) + E ( f∞)1/2‖ fn‖L∞(K ,μ),

which are both bounded in n. Then, { f̂ 2
n }∞n=1 is also bounded in F since

E ( f̂ 2
n )

1/2 ≤ E ( f 2
n )

1/2 + 2E ( fn f∞)1/2 + E ( f 2∞)1/2.

By taking a subsequence if necessary, we may assume that { f̂ 2
n }∞n=1 converges weakly

in F . This implies that { f̂ 2
n }∞n=1 converges in L2(K , μ) from the same reason as

described above. Then, the limit function has to be 0.
Now, we take ĝ ∈ F 0

N1(u)
∩ C(K ) such that 0 ≤ ĝ ≤ 1 on K and ĝ = 1 on Ku .

Then, since f̂n ĝ ∈ F 0
N1(u)

,

0 = 2E ( f̂n, f̂n ĝ) = E ( f̂ 2
n , ĝ)+

∫

K

ĝ dν f̂n
,

where the second equality follows from the characterization of the energy measure
ν f̂n

. From the above argument, E ( f̂ 2
n , ĝ)→ 0 as n →∞. We also have

∫

K

ĝ dν f̂n
=

∑
v∈N1(u)

r−|u|
∫

K

ψ∗v ĝ dν
ψ∗v f̂n

(from Lemma 4.4 (ii))

≥ r−|u|
∫

K

ψ∗u ĝ dν
ψ∗u f̂n

= r−|u|ν
ψ∗u f̂n

(K ) = 2r−|u|E (ψ∗u f̂n).
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Combining these relations, we obtain that lim supn→∞ E (ψ∗u f̂n) ≤ 0, in other words,
limn→∞ E (ψ∗u f̂n) = 0. Therefore, ψ∗u f̂n → 0 in F since f̂n → 0 in L2(K , μ). This
implies that ψ∗wn

hn = ψ∗u fn → ψ∗u f∞ in F as n →∞, which completes the proof.
��

Next, we proceed to prove Proposition 4.15. Let I ⊂ S be defined by

I =
{

i ∈ S Ki ⊂ {(x1, . . . , xD) ∈ R
D | xD ≤ 1/ l}

}
.

For n ∈ N, we denote the direct product of n copies of I by In , which is regarded
as a subset of Wn . Note that K I1 ⊃ K I2 ⊃ K I3 ⊃ · · · and

⋂∞
n=1 K In = K ∂

D,0 (see
Definition 5.15). We define

K (w; a) =

⎧⎪⎨
⎪⎩ f ∈H (N3(w))

∣∣∣∣
∫

Kw

f dμ = 0, r |w|E N3(w)( f ) ≤ a

⎫⎪⎬
⎪⎭

for w ∈⋃∞
n=2 In and a > 0, and

K = the closure of

{
ψ∗w f

∣∣∣∣ w ∈
∞⋃

n=2

In, f ∈ K (w; 1)

}
in F .

Remark 5.24 Since l ≥ 3, for any w ∈ ⋃∞
n=2 In , it holds that KN3(w) ∩ K ∂

D,1 = ∅.

Moreover, for each i = 1, . . . , D−1, there exists j ∈ {0, 1} such that KN3(w)∩K ∂
i, j =∅.

Lemma 5.25 The set K is a compact subset in F .

Proof We fix u ∈ W2 such that KN1(u) ∩ K ∂ = ∅. As in Definition 5.2, we define a
folding map ϕ(2) : [0, 1]D → [0, 1/ l2]D as

ϕ(2)(x1, . . . , xD) = (ϕ̂(2)(x1), . . . , ϕ̂
(2)(xD)), (x1, . . . , xD) ∈ [0, 1]D,

where ϕ̂(2) : R → R is a periodic function with period 2/ l2 such that ϕ̂(2)(t) = |t | for
t ∈ [−1/ l2, 1/ l2]. Let ϕu : K → Ku ⊂ K be defined as

ϕu(x) =
(
ϕ(2)

∣∣
Ku

)−1
(ϕ(2)(x)), x ∈ K .

This is the folding map based on Ku . For f ∈ F , define fu(x) = f (ψ−1
u (ϕu(x))) for

x ∈ K . Then, fu ∈ F W2 = F from Proposition 5.1. Now, let w ∈ In with n ≥ 2
and f ∈ K (w; 1). Let N3,u(w) denote a subset of Wn+2 such that KN3,u(w) is the
connected component of ϕ−1

u (ψu(KN3(w))) that includes Ku·w (see Fig. 3).
Set KN3,u(w) is described as a union of (at most 2D) sets that are isomet-

ric to ψu(KN3(w)). Moreover, KN3,u(w) ⊃ KN3(u·w), KN3,u(w) ∩ K ∂ = ∅ and
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Fig. 3 Case of w ∈ I2

fu ∈ H (N3,u(w)). In particular, KN3(u·w) ∩ K ∂ = ∅ and fu ∈ H (N3(u · w)).
We also have ψ∗u·w fu = ψ∗w f,

∫
Ku·w fu dμ = M−2

∫
Kw

f dμ = 0, and

r |u·w|E N3(u·w)( fu) =
∑

v′∈N3(u·w)
E (ψ∗v′ fu) ≤ 2D

∑
v∈N3(w)

E (ψ∗v f )

= 2Dr |w|E N3(w)( f ) ≤ 2D.

In other words, f ∈ K (w; 1) implies fu ∈ K (u · w; 2D). Therefore, we have

⎧⎨
⎩ψ∗w f

∣∣∣∣ w ∈
⋃
n≥2

In, f ∈ K (w; 1)

⎫⎬
⎭⊂

⎧⎨
⎩ψ∗u·wg

∣∣∣∣ w ∈
⋃
n≥2

In, g ∈ K (u · w; 2D)

⎫⎬
⎭ .

(5.11)

From Proposition 5.23, the right-hand side is relatively compact in F . This completes
the proof. (We note that Proposition 5.23 cannot be applied directly to the left-hand
side of (5.11), since KN3(w) ∩ K ∂ = ∅ does not necessarily hold.) ��
The following claim is stated in [19] without an explicit proof. We provide the proof
for completeness.

Lemma 5.26 Let f ∈ F . If E Wm\Im ( f ) = 0 for all m ∈ N, then f is constant μ-a.e.

Proof Let S′ ⊂ S be defined by S′ = {
i ∈ S

∣∣ Ki ⊂ {(x1, . . . , xD) ∈ R
D | xD ≤

1 − 1/ l}}. For m ≥ 2, let Jm := Wm \ (Im−1 · S′) ⊂ Wm \ Im (see Fig. 4). Then,
Jm is connected in the following sense: For any v,w ∈ Jm , there exists a sequence
w0, w1, . . . , wk in Jm for some k such that w0 = v,wk = w, and w j �

m
w j+1

for all j = 0, 1, . . . , k − 1. This is confirmed by the assumptions of connectedness,
nondiagonality, and borders inclusion on K (see Sect. 4.3). Since f is constant on Kw
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Fig. 4 Illustration of K Jm for
m = 2

for each w ∈ Jm , the connectedness of Jm implies that f is constant on K Jm . Since
K \⋃∞

m=2 K Jm = K ∂
D,0 and μ(K ∂

D,0) = 0, we conclude that f is constant μ-a.e. ��

The following proposition states that the energy measures of a class of functions do not
concentrate near the boundary uniformly in some sense, which is the key proposition
to prove Proposition 4.15.

Proposition 5.27 There exist c0 ∈ (0, 1) and m ∈ N such that for all n ∈ Z+ and
h ∈H (In),

E In+m (h) ≤ c0E
In (h).

Proof We define C := supn∈Z+ maxw∈In+2 #N3(w) ≤ 7D . Let n ∈ Z+ andw ∈ In+2.
Let δ = 1/(4C2). We define K δ = { f ∈ K | E ( f ) ≥ δ}. From Lemma 5.26, for

each f ∈ K δ , there exist m( f ) ∈ N and a( f ) ∈ (0, 1) such that E Im ( f ) < a( f )E ( f )
for all m ≥ m( f ). By continuity, E Im (g) < a( f )E (g) for all m ≥ m( f ) for any g in
some neighborhood of f in F . Since K δ is compact in F from Lemma 5.25, there
exist m′ ∈ N and a′ ∈ (0, 1) such that E Im′ ( f ) < a′E ( f ) for every f ∈ K δ . Then,

E ( f ) < aE Wm′ \Im′ ( f ) for all f ∈ K δ (5.12)

with a = (1− a′)−1 > 1.
Now, consider n and h in the claim of the proposition. We note that h ∈H (N3(w))

for any w ∈ In+2 since N3(w) ⊂ In ·W2. We construct an oriented graph as follows:
The vertex set is In+2 and the set E of oriented edges is defined as

E=
{
(v,w) ∈ In+2 × In+2 v ∈ N3(w), E {w}(h)>0, and E {w}(h) ≥ 2CE {v}(h)

}
.
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Fig. 5 Case of w ∈ Y and
E {w}(h) ≥ δE N3(w)(h)

This graph does not have any loops. Let Y be the set of all elements w in In+2 such
that E {w}(h) > 0 and w is not a source of any edges. For w ∈ Y , we define

N0(w) = {w},

Nk(w) =
⎧⎨
⎩v ∈ In+2 \

k−1⋃
j=0

N j (w)

∣∣∣∣ (v, u) ∈ E for some u ∈ Nk−1(w)

⎫⎬
⎭

for k = 1, 2, 3, . . . inductively, and N (w) =⋃
k≥0 Nk(w). It is evident that

In+2 =
⋃
w∈Y

N (w) ∪ {
w ∈ In+2

∣∣ E {w}(h) = 0
}

(5.13)

and that for all k ∈ Z+, #Nk(w) ≤ Ck and E {v}(h) ≤ (2C)−kE {w}(h) for v ∈ Nk(w).
Then, for each w ∈ Y ,

E N (w)(h) =
∞∑

k=0

∑
v∈Nk(w)

E {v}(h) ≤
∞∑

k=0

Ck(2C)−kE {w}(h) = 2E {w}(h). (5.14)

Suppose w ∈ Y and E {w}(h) ≥ δE N3(w)(h). Then, since

ψ∗w

⎛
⎜⎝
⎛
⎜⎝h −

∫

Kw

— h dμ

⎞
⎟⎠
/√

rn+2E N3(w)(h)

⎞
⎟⎠ ∈ K δ,

(5.12) implies that E (ψ∗wh) < aE Wm′ \Im′ (ψ∗wh), that is, E {w}(h) < aE w·(Wm′ \Im′ )(h).
(See Fig. 5.)

Next, suppose w ∈ Y and E {w}(h) < δE N3(w)(h). Since w is not a source of any
edges, E {v}(h) < 2CE {w}(h) for every v ∈ N3(w) ∩ In+2. Then,

E N3(w)∩In+2(h) < C · 2CE {w}(h) < 2C2δE N3(w)(h) = (1/2)E N3(w)(h),

which implies thatE N3(w)∩In+2(h) < E N3(w)∩((In ·W2)\In+2)(h) sinceN3(w) ⊂ In ·W2.
In particular, E {w}(h) < E N3(w)∩((In ·W2)\In+2)(h). (See Fig. 6.)
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Fig. 6 Case of w ∈ Y and Ew(h) < δE N3(w)(h)

Fig. 7 Illustration of Kw and K(N3(w)·Wm′ )∩((In ·Wm )\In+m )

Therefore, in any case, for w ∈ Y , we have

E {w}(h) < aE w·(Wm′ \Im′ )(h) ∨ E N3(w)∩((In ·W2)\In+2)(h)

≤ aE (w·(Wm′ \Im′ ))∪((N3(w)∩((In ·W2)\In+2))·Wm′ )(h)

≤ aE (N3(w)·Wm′ )∩((In ·Wm )\In+m )(h), (5.15)

where m = m′ + 2 (see Fig. 7); further, it should be noted that In+m ⊂ In+2 ·Wm′ .
Then, we have

E In+m (h) ≤ E In+2(h) ≤
∑
w∈Y

E N (w)(h) (from (5.13))

≤ 2a
∑
w∈Y

E (N3(w)·Wm′ )∩((In ·Wm )\In+m )(h) (from (5.14) and (5.15))

≤ 2aC ′E (In ·Wm )\In+m (h) = 2aC ′
(
E In (h)− E In+m (h)

)
,

where C ′ := supn∈Z+ maxv∈Wn+2 #{w ∈ In+2 | v ∈ N3(w)} ≤ 7D . Hence, the claim
of the proposition holds by setting c0 = 2aC ′/(1+ 2aC ′). ��

Proposition 5.28 For any f ∈ F , ν f (K ∂
D,0) = 0.

Proof Take c0 and m as in Proposition 5.27. For each n ∈ N, define hn = HIn ( f ) ∈
H (In) (cf. Lemma 5.13). From Lemma 4.4 (ii) and Proposition 5.27, for j ∈ N,
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1

2
νhn (K

∂
D,0) ≤

1

2

∑
w∈In+ jm

r−(n+ jm)νψ∗whn (K )

(since ψ−1
w (K ∂

D,0) = ∅ for w ∈ Wn+ jm \ In+ jm)

= E In+ jm (hn) ≤ c j
0E In (hn) ≤ c j

0E In ( f ) ≤ c j
0E ( f )→ 0 as j →∞.

Therefore,

νhn (K
∂
D,0) = 0. (5.16)

Since E (hn) ≤ E ( f ) and hn = f on KWn\In for each n, {hn}∞n=1 is bounded in
F in view of Lemma 5.12. Moreover, since μ(K ∂

D,0) = 0 and
⋃∞

n=1 KWn\In =
K \K ∂

D,0, hn(x) converges to f (x) forμ-a.e. x ∈ K . Therefore, hn converges weakly
to f in F . In particular, the Cesàro mean of a certain subsequence of {hn}∞n=1 con-
verges to f in F . By combining (2.3), (2.1), and (5.16), we obtain that ν f (K ∂

D,0) = 0.
��

Proof of Proposition 4.15 From Propositions 2.6 and 5.28, and Lemma 4.11, we con-
clude that ν(K ∂ ) = 0.
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