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Abstract We prove that first-passage percolation times across thin cylinders of the
form [0, n]× [−hn, hn]d−1 obey Gaussian central limit theorems as long as hn grows
slower than n1/(d+1). It is an open question as to what is the fastest that hn can grow
so that a Gaussian CLT still holds. Under the natural but unproven assumption about
existence of fluctuation and transversal exponents, and strict convexity of the limiting
shape in the direction of (1, 0, . . . , 0), we prove that in dimensions 2 and 3 the CLT
holds all the way up to the height of the unrestricted geodesic. We also provide some
numerical evidence in support of the conjecture in dimension 2.

Keywords First-passage percolation · Central limit theorem · Cylinder percolation

Mathematics Subject Classification (2000) Primary 60F05 · 60K35

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
1.2 Limit shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
1.3 Tail bounds and limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
1.4 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

S. Chatterjee (B) · P. S. Dey
Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012-1185, USA
e-mail: sourav@cims.nyu.EDU
http://www.cims.nyu.edu/sourav

P. S. Dey
e-mail: partha@cims.nyu.EDU
http://www.cims.nyu.edu/partha

123



614 S. Chatterjee, P. S. Dey

1.5 Fluctuation exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
1.6 Comparison with directed last-passage percolation . . . . . . . . . . . . . . . . . . . . . . . 619
1.7 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
3 Estimates for the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
4 Lower bound for the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
5 Upper bound for central moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
6 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

6.1 Reduction to Tn(Gn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
6.2 Approximation as an i.i.d. sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
6.3 Lyapounov condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
6.4 A technical estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
6.5 Renormalization step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
6.6 Choosing the sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
6.7 Completing the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

7 The case of fixed graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
8 CLT upto the height threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
9 Proof of CLT upto the height threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
10 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

1 Introduction

Before stating our theorems, let us begin with a short review of the first-passage per-
colation model and some of the known results.

1.1 The model

More than 40 years ago, Hammersley and Welsh [14] introduced first-passage perco-
lation to model the spread of fluid through a randomly porous media. The standard
first-passage percolation model on the d-dimensional square lattice Zd is defined
as follows. Consider the edge set E consisting of nearest neighbor edges, that is,
(x, y) ∈ Zd ×Zd is an edge if and only if ‖x − y‖ := ∑d

i=1 |xi − yi | = 1. With each
edge (also called a bond) e ∈ E is associated an independent nonnegative random
variable ωe distributed according to a fixed distribution F . The random variable ωe

represents the amount of time needed to pass through the edge e.
For a path P (which will always be finite and nearest neighbor) in Zd define

ω(P) :=
∑

e∈P
ωe

as the passage time for P . For x, y ∈ Zd , let a(x, y), called the first-passage time, be
the minimum passage time over all paths from x to y. Intuitively a(x, y) is the first
time the fluid will appear at y if a source of water is introduced at the vertex x at time
0. Formally

a(x, y) := inf{ω(P) | P is a path connecting x to y in Zd}.
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First-passage percolation across thin cylinders 615

The principle object of study in first-passage percolation theory is the asymptotic
behavior of a(0, nx) for fixed x ∈ Zd . We refer the reader to Smythe and Wier-
man [28] and Kesten [18] for earlier surveys of the subject.

1.2 Limit shape

The first result proved by Hammersley and Welsh [14] was that the limit

ν(x) := lim
n→∞

1

n
E[a(0, nx)] (1.1)

exists and is finite when E[ω] < ∞ where ω is a generic random variable from the
distribution F . Moreover results of Kesten [18] show that ν(x) > 0 if and only if
F(0) < pc(d) where pc(d) is the critical probability for standard bernoulli bond
percolation in Zd .

First-passage percolation is often regarded as a stochastic growth model by consid-
ering the growth of the random set

Bt := {x ∈ Zd | a(0, x) ≤ t}.

When F(0) = 0, a(·, ·) is a random metric on Zd and Bt is the ball of radius t in this
metric. Moreover, if F(0) < pc(d) and E[ω2] < ∞ (or under weaker conditions in
Cox and Durrett [11]), the growth of Bt is linear in t with a deterministic limit shape,
that is, as t → ∞, Bt ≈ t B0 ∩ Zd for a nonrandom compact set B0. Precisely, the
shape theorem says that (see Richardson [26], Cox and Durrett [11] and Kesten [18]), if
F(0) < pc(d) and E[min{ωd

1 , ωd
2 , . . . , ωd

2d}] < ∞ where ω1, . . . , ω2d are i.i.d. from
F , there is a nonrandom compact set B0 such that for all ε > 0

(1 − ε)B0 ⊆ t−1 B̃t ⊆ (1 + ε)B0 eventually with probability one

where B̃t = {y ∈ Rd | ∃ x ∈ Bt s.t. ‖x − y‖ ≤ 1} is the “inflated” version of Bt .

1.3 Tail bounds and limit theorems

The next natural question is about the tail behavior and distributional convergence
of the random variables a(0, nx) as x remains fixed and n → ∞. Kesten [19] used
martingale methods to prove that P(|a(0, ne1) − E[a(0, ne1)]| ≥ t

√
n) ≤ c1e−c2t

for all t ≤ c3n for some constants ci > 0, where e1 is the unit vector (1, 0, . . . , 0).
Later, Talagrand [30] used his famous isoperimetric inequality to prove that

P(|a(0, nx) − M]| ≥ t
√

n ‖x‖) ≤ c1e−c2t2

for all t ≤ c3n for some constants ci > 0 where M is a median of a(0, nx) and
x ∈ Zd . Both these results were proved for distributions F having finite exponential
moments and satisfying F(0) < pc(d).
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616 S. Chatterjee, P. S. Dey

From these inequalities, one might naïvely expect that a central limit theorem holds
for a(0, nx). However, the situation is probably much more complex, and it may not
be true that a Gaussian CLT holds. For critical first-passage percolation (assuming
F(0) = 1/2 and F has bounded support) in two dimensions a Gaussian CLT was
proved by Newman and Zhang [20]. However, this is sort of a degenerate case since
here E[a(0, nx)] and Var(a(0, nx)) are both of order log n (see Chayes et al. [10], and
Newman and Zhang [20]). When F(0) < 1/2, we do not know of any distributional
convergence result in any dimension.

Convergence to the Tracy–Widom law is known for directed last-passage percola-
tion in Z2 under very special conditions (see Sect. 1.6 for details), but the techniques
do not carry over to the undirected case. Naturally, one may expect that convergence
to something like the Tracy–Widom distribution may hold for undirected first-passage
percolation also, but surprisingly, this does not seem to be the case. In the following
subsection, we present our main result: a Gaussian CLT for undirected first-passage
percolation when the paths are restricted to lie in thin cylinders. This gives rise to an
interesting question: as the cylinders become thicker, when does the CLT break down,
if it does?

1.4 Our results

We consider first-passage percolation on Zd with height restricted by an integer h
(that will be allowed to grow with n). We assume that the edge weight distribution F
satisfies a standard admissibility criterion, defined below.

Definition 1.1 Given the dimension d, we call a probability distribution function F
on the real line admissible if F is supported on [0,∞), is nondegenerate and we have
F(λ) < pc(d) where λ is the smallest point in the support of F and pc(d) is the
critical probability for Bernoulli bond percolation in Zd .

For simplicity we will consider only first-passage time from 0 to ne1 where e1 is
the first coordinate vector. The same method can be used to prove similar results for
a(0, nx) where x has rational coordinates. Define an(h) as the first-passage time to
the point ne1 from the origin in the graph Z × [−h, h]d−1, formally

an(h) := inf{ω(P) | P is a path from 0 to ne1 in Z × [−h, h]d−1}.

Here, by [−h, h] we mean the subset [−h, h] ∩Z of Z. Informally, an(h) is the min-
imal passage time over all paths which deviate from the straight line path joining the
two end points by a distance at most h. We also consider cylinder first-passage time
(see Smyth and Wierman [28], Grimmett and Kesten [13]). A path P from 0 to ne1
is called a cylinder path if it is contained within the x1 = 0 and x1 = n planes. We
define
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First-passage percolation across thin cylinders 617

tn(h) := inf{ω(P) | P is a path from 0 to ne1 in [0, n] × [−h, h]d−1} and

Tn(h) := inf{ω(P) | P is a path connecting {0} × [−h, h]d−1 and

{n} × [−h, h]d−1 in [0, n] × [−h, h]d−1}.

Clearly an(h), tn(h) and Tn(h) are non-increasing in h for any n ≥ 1. Our main result
is that for cylinders that are ‘thin’ enough, we have Gaussian CLTs for an(h), tn(h)

and Tn(h) after proper centering and scaling.

Theorem 1.1 Suppose that the edge-weights ωe’s are i.i.d. random variables from an
admissible distribution F. Suppose E[ωp] < ∞ for some p > 2. Let {hn}n≥1 be a
sequence of integers satisfying hn = o(nα) where

α <
1

d + 1 + 2(d − 1)/(p − 2)

Then we have

an(hn) − E[an(hn)]√
Var(an(hn))

⇒ N (0, 1) as n → ∞.

In particular, if E[ωp] < ∞ for all p ≥ 1 then the CLT holds when hn = o(nα)

with α < 1/(d + 1). If hn = O(1) then the F(λ) < pc(d) condition is not needed.
Moreover, the same result is true for tn(hn) and Tn(hn).

In Sect. 2, we will present a generalization of this result (Theorem 2.1) to cylinders of
the form Z× Gn where {Gn} is an arbitrary sequence of undirected connected graphs.

Theorem 1.1 give rise to a new exponent γF (d) defined as

γF (d) := sup

{

α : an(nα) − E[an(nα)]√
Var(an(nα))

⇒ N (0, 1) as n → ∞
}

.

Clearly we have γF (d) ≥ 1/(d + 1) for F having all moments finite and satisfying
the conditions in Theorem 1.1.

Is γF (d) actually equal to 1/(d + 1)? We do not have a rigorous answer for that
yet. However, under some well known but unproven hypotheses about existence of
fluctuation exponent χ(d) and transversal exponent ξ(d) (see the next Sect. 1.5), and
strict convexity of the limiting shape we prove in Sects. 8 and 9 that γF (d) = ξ(d)

when the fluctuation exponent is strictly positive, or if the dimension is 2 or 3. For
d = 2, this result is also supported by numerical simulations (Sect. 10).

Conjecture 1.2 (Partly proved in Sects. 8 and 9) For all d ≥ 2 and F having finite
exponential moment, γF (d) = ξ(d).

An interesting feature of the proof of Theorem 1.1 is that while it is relatively easy
to get a CLT for cylinders of width nα for α sufficiently small, to go all the way up
to α = 1/(d + 1) one needs a somewhat complicated ‘renormalization’ argument
that has to be taken to a certain depth of recursion, where the depth depends on how
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close α is to 1/(d + 1). This renormalization step is required because of the gap in the
lower and upper bounds for the moments. We believe this step can be removed with
the correct order for the moments.

A deficiency of Theorem 1.1 is that we do not have formulas for the mean and the
variance of an(hn). Still, we have some bounds: the following result states that under
the hypotheses of Theorem 1.1 the mean grows linearly with n and the growth rate
does not depend on hn as long as hn → ∞. It also gives upper and lower bounds for
the variance of an(hn).

Proposition 1.3 Let μn(hn) and σ 2
n (hn) be the mean and variance of an(hn). Assume

that hn → ∞ as n → ∞. Then

lim
n→∞

μn(hn)

n
= ν(e1),

where ν(e1) is defined as in (1.1). Moreover, if F is admissible we have

c1
n

hd−1
n

≤ σ 2
n (hn) ≤ c2n

for some absolute constants c1, c2 > 0 depending only on d and F. If hn = h for all
n for fixed h ∈ (0,∞), then both limn→∞ μn(h)/n and limn→∞ σ 2

n (h)/n exist and
are positive for any non-degenerate distribution F on [0,∞), but their values depend
on h.

In fact when hn = h for all n for fixed h ∈ (0,∞), we can say much more. Define
μ(h) := limn→∞ μn(h)/n and σ 2(h) := limn→∞ σ 2

n (h)/n. Existence of the limits
follow from Proposition 1.3. Now consider the continuous process X (·) defined by
X (n) = tn(h) − nμ(h) for n ∈ {0, 1, . . .} and extended by linear interpolation. Then
we have the following result.

Proposition 1.4 Assume that E[ωp] < ∞ for some p > 2 where ω ∼ F. Then
the scaled process {(nσ 2(h))−1/2 X (nt)}t≥0 converges in distribution to the standard
Brownian motion as n → ∞.

Here we mention that even though we have lower and upper bounds for the variance
of an(hn) in Proposition 2.2, none of the bounds seem to be the correct one, at least
when d = 2 as hn → ∞. In fact numerical simulation results suggests the following.

Conjecture 1.5 For d = 2 and hn � n2/3, Var(an(hn)) = �(nh−1/2
n ).

Finally let us mention that a variant of Theorem 1.1 can be proved for the undirected
first-passage site percolation model also. Here instead of edge-weights {ωe | e ∈ E}
we have vertex weights {ωx | x ∈ Zd} and travel time for a path P is defined by
ω(P) = ∑

v∈P ωv . The same proof technique should work. The same remark also
holds for semi-directed first-passage model where the paths are not allowed to move
backward in a particular direction.
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First-passage percolation across thin cylinders 619

1.5 Fluctuation exponents

In the physics literature, there are two main exponents χ and ξ that describe, respec-
tively, the longitudinal and transversal fluctuations of the growing surface Bt . For
example, it is expected under mild conditions that the first-passage time a(0, nx) has
standard deviation of order nχ , and the exponent χ is independent of the direction
x ∈ Zd . It is also expected that all the paths achieving the minimal time a(0, nx)

deviate from the straight line path joining 0 to nx by distance at most of the order of
nξ , that is all the minimal paths are expected to lie entirely inside the cylinder centered
on the straight line joining 0 to nx whose width is of the order of nξ (see Sect. 8 for a
rigorous definition of χ and ξ ).

In general the exponents χ and ξ are expected to depend only on the dimension d
not the distribution F . Moreover they are also conjectured to satisfy the scaling rela-
tion χ = 2ξ − 1 for all d (see Krug and Spohn [21]). Very recently this relation has
been proved under certain natural but unproven assumptions (see Chatterjee [9], and
Auffinger and Damron [3]). The predicted values for d = 2 (for models whose expo-
nents are expected to be same in all directions) are χ = 1/3 and ξ = 2/3 (see Kardar
et al. [17]). For higher dimensions there are many conflicting predictions. However it
is believed that above some finite critical dimension dc, the exponents satisfy χ = 0
and ξ = 1/2.

We briefly describe the rigorous results known about the exponents χ and ξ . The
first nontrivial upper bound on the variance of a(0, nx) was O(n) for all d due to
Kesten [19]. The best known upper bound of n/ log n is due to Benjamini, Kalai and
Schramm [5]. In d = 2 the best known lower bound of log n is due to Pemantle and
Peres [25] for exponential edge weights, Newman and Piza [24] for general edge
weights satisfying F(0) < pc(2) or F(λ) < pdir

c (2) for λ being the smallest point in
the support of F where pdir

c (2) is the critical probability for directed Bernoulli bond
percolation, and Zhang [31] for x = e1 and edge weight distributions having finite
exponential moments and satisfying F(λ) ≥ pdir

c (2), F(λ−) = 0, λ > 0.
Hence the only nontrivial bound known for χ is χ ≤ 1/2. Note that the bound

0 ≤ χ ≤ 1/2 along with the scaling relation (which is unproven) would imply that
1/2 ≤ ξ ≤ 3/4. In fact using a closely related exponent χ ′ which satisfies χ ′ ≥ 2ξ −1
and χ ′ ≤ 1/2 (see Newman and Piza [24], Kesten [19] and Alexander [1,2]), it was
proved in [24] that ξ ≤ 3/4 in any dimension for paths in the directions of strict con-
vexity of the limit shape. Moreover, Licea et al. [23], comparing appropriate variance
bounds, proved that ξ(d) ≥ 1/(d + 1) for all dimensions d. They also proved that
ξ ′(d) ≥ 1/2 for all dimensions d for a related exponent ξ ′ of ξ .

Our results show that under some natural but unproven assumptions, ξ(d) is also
expected to be the threshold where the Gaussian CLT breaks down.

1.6 Comparison with directed last-passage percolation

In all the previous discussions we used undirected first-passage times. A directed
model is obtained when instead of all paths, one considers only directed paths. A
directed path is a path that moves only in the positive direction at each step (e.g. in
d = 2, the path moves only up and right). Let us restrict ourselves to d = 2 henceforth.
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620 S. Chatterjee, P. S. Dey

The directed (site/bond) last-passage time to the point (n, h) starting from the origin
is defined as

Ls↑(n, h) := sup{ω(P) | P ∈ �(n, h)},

where �(n, h) is the set of all directed paths from (0, 0) to (n, h). Note that all the
paths in �(n, h) are inside the rectangle [0, n] × [0, h].

The directed last-passage site percolation model in d = 2 has received particular
attention in recent years, due to its myriad connections with the totally asymmetric
simple exclusion process, queuing theory and random matrix theory. An important
breakthrough, due to Johansson [15], says that when the vertex weights ωx’s are i.i.d.
geometric random variables, Ls↑(n, n) has fluctuations of order n1/3 and has the same
limiting distribution as the largest eigenvalue of a GUE random matrix upon proper
centering and scaling (this is also known as the Tracy–Widom law). Moreover, this
holds if we replace Ls↑(n, n) with Ls↑(n, �ρn�) for any ρ ∈ (0, 1]. This continues to
hold if one replaces geometric by exponential or bernoulli random variables [12,16].
However universality of this limit result for a general class of vertex weight distribu-
tions is still open.

Since the above result holds for arbitrary ρ > 0, one can speculate whether we
can actually take ρ → 0 as n → ∞, i.e. look at directed last-passage percolation
in thin rectangles. Indeed, the analog of Johansson’s result in this setting was proved
by several authors [4,7,29] in recent years for quite a general class of vertex weight
distributions, provided the rectangles are ‘thin’ enough (in particular for ρ = n−(1−α)

with α < 3/7 when the vertex weights have finite moments of all order). This contrasts
starkly with our result about the Gaussian behavior of first-passage percolation in thin
rectangles.

1.7 Structure of the paper

The article is organized as follows. In Sect. 2 we state a general result that encom-
passes Theorem 1.1. In Sect. 3 we prove the asymptotic behavior of the mean of an(Gn).
Sects. 4 and 5 contain, respectively, the lower bound for the variance and upper bounds
for general central moments of an(Gn). In Sect. 6 we prove the generalized version
of Theorem 1.1. We consider the case of first-passage time across [0, n] × G when
G is a fixed graph in Sect. 7. All the results till Sect. 7 are unconditional. However,
when Gn = [−hn, hn]d−1 one can prove the CLT for a wider range of hn under a few
natural but unproved assumptions. In Sect. 8 we state the CLT under the assumption
of existence of fluctuation and transversal exponents, positive curvature of the limit-
ing shape, etc. and we prove the stated results in Sect. 9. In particular, we show that
the CLT holds all the way up to the height of the unrestricted geodesic under those
assumptions in dimension 2 and 3. Finally in Sect. 10 we present the numerical results.

2 Generalization

In this section, we generalize the theorems of Sect. 1 to first-passage percolation on
graphs on the form Z × Gn , where {Gn} is an arbitrary increasing sequence of finite
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First-passage percolation across thin cylinders 621

undirected graphs with kn many edges and having diameter dn . To get the results for
d-dimensional square lattice one takes Gn = [−hn, hn]d−1 for n ≥ 1.

Before stating the results, let us fix our notations. The set {a, a + 1, . . . , b} with
the nearest neighbor graph structure will be denoted by [a, b]. When a = 0, we will
simply write [b] instead of [0, b]. Throughout the rest of the article we will consider
the undirected first-passage bond percolation model with edge weight distribution F ,
as defined in the previous section. Let μ and σ 2 be the mean and the variance of F .
We will use the standard notations an = O(bn) and an = o(bn), respectively, in the
case supn≥1 an/bn < ∞ and limn→∞ an/bn = 0.

For two finite connected graphs H and G, we define the product graph structure on
H × G in the natural way, that is, there is an edge between (u, w) and (v, z) if and
only if either (u, v) is an edge in H and w = z, or u = v and (w, z) is an edge in G.

We will consider first-passage percolation on a special class of product graphs. Fix
an integer n and a connected graph G with a distinguished vertex o ∈ G. Let an(G)

denote the first-passage time from (0, o) to (n, o) in Z × G. That is,

an(G) := inf{ω(P) | P is a path from (0, o) to (n, o) in Z × G}

where ω(P) := ∑
e∈P ωe is weight of the path P . We define the cylinder first-passage

time tn(G) as

tn(G) := inf{ω(P) : P is a path from (0, o) to (n, o) in [0, n] × G}.

We also define the side-to-side (cylinder) first-passage time as follows:

Ta,b(G) := min{ω(P) | P is a path connecting the two sides

{a} × G and {b} × G in [a, b] × G}, (2.1)

that is, Ta,b(G) is the minimum weight among all paths that join the right boundary
of the product graph [a, b] × G to the left boundary of it. Note that it is enough to
consider only those paths that start from some vertex in {a} × G and end at some
vertex in {b} × G, and lie in the set [a + 1, b − 1] × G throughout except for the
first and last edges. One implication of this fact is that Ta,b(G) is independent of the
weights of the edges in the left and right boundaries {a} × G, {b} × G. We will write
T0,n(G) simply as Tn(G).

Now consider a nondecreasing sequence of connected graphs Gn =(Vn, En), n ≥1.
By ‘nondecreasing’ we mean that Gn is a subgraph (need not be induced) of Gn+1
for all n. Let o be a distinguished vertex in G1, which we will call the origin of G1.
Then o ∈ Gn for all n. Let kn and dn be the number of edges and the diameter of Gn ,
respectively.

Our object of study is first-passage percolation on the product graph Z × Gn with
i.i.d. edge weights from the distribution F . In particular, we wish to understand the
behavior of the first-passage time an(Gn) from (0, o) to (n, o).

The main result of this section is the following.

123



622 S. Chatterjee, P. S. Dey

Theorem 2.1 Let Gn be a nondecreasing sequence of connected graphs with a fixed
origin o. Let dn and kn be the diameter and the number of edges in Gn. Suppose
that as n → ∞, kn = O(dθ

n ) for some fixed θ ≥ 1. Let an(Gn) be the first-passage
percolation time from (0, o) to (n, o) in the graph Z × Gn. Suppose that a generic
edge weight ω satisfies E[ωp] < ∞ for some p > 2. Then we have

an(Gn) − E[an(Gn)]√
Var(an(Gn))

⇒ N (0, 1)

as n → ∞ provided one of following holds:

A. There is a fixed connected graph G such that Gn = G for all n ≥ 1, or
B. Gns are connected subgraphs of Zd−1 for some d > 1, the edge weight distribu-

tion is admissible and dn = o(nα), where

α <
1

2 + θ + 2θ/(p − 2)
.

Moreover, the same result holds for tn(Gn), Tn(Gn) in place of an(Gn).

Clearly, this theorem implies Theorem 1.1 by taking Gn = [−hn, hn]d−1 with
dn = 2hn(d − 1)1/2 and θ = d − 1. Throughout the rest of the paper we will consider
the case of general sequence Gn .

As we remarked earlier we do not have explicit formulas for the mean and the
variance of an(Gn). The following result is the generalization of the ‘mean part’ of
Proposition 1.3.

Proposition 2.1 Consider the setup introduced above. Then the limit

ν := lim
n→∞

1

n
E[an(Gn)]

exists and we have

νn ≤ E[an(Gn)] ≤ μn for all n.

Moreover, ν > 0 if Gn = G for all n ≥ 1 or Gn’s are subgraphs of Zd−1 and
F(0) < pc(d). In particular, when Gn = [−hn, hn]d−1 and hn → ∞ as n → ∞, we
have ν = ν(e1), where ν(e1) is defined as in (1.1). We also have

E[an(Gn)] ≤ E[tn(Gn)] ≤ E[Tn(Gn)] + 2μdn ≤ E[an(Gn)] + 2μdn

for all n.

Now let us state the upper and lower bounds for the variance of an(Gn), i.e. the
‘variance part’ of Proposition 1.3.
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Proposition 2.2 Under the condition of Theorem 2.1 we have

c1
n

kn
≤ Var(an(Gn)) ≤ c2n

for some positive constants c1, c2 that do not depend on n. Moreover, limn→∞ Var
(an(Gn))/n exists for all non-degenerate distribution F on [0,∞) when Gn = G for
all n. The above results hold for tn(Gn) and Tn(Gn).

In fact when Gn = G for all n ≥ 1, we can say much more as in Proposition 1.4.
Define

μ(G) := lim
n→∞

E[an(G)]
n

and σ 2(G) := lim
n→∞

Var(an(G))

n
. (2.2)

Existence and positivity of the limits follow from Propositions 2.1 and 2.2. Consider
the continuous process X (·) defined by X (n) = tn(G)−nμ(G) for n ≥ 0 and extended
by linear interpolation. Then we have the following result.

Proposition 2.3 Assume that the generic edge weight ω is non-degenerate and satis-
fies E[ωp] < ∞ for some p > 2. Then the scaled process

{(nσ 2(G))−1/2 X (nt)}t≥0

converges in distribution to the standard Brownian motion as n → ∞.

3 Estimates for the mean

In this section we will prove Proposition 2.1. We will break the proof into several
lemmas. Lemma 3.1 shows that the random variables an(Gn), tn(Gn) and Tn(Gn) are
close in L p norm when the diameter dn of Gn is small. Note that the maximum weight
over all self avoiding paths in Gn is of the order of dn .

Lemma 3.1 We have

Tn(Gn) ≤ an(Gn) ≤ tn(Gn) for all n.

Moreover we have

E[|tn(Gn) − Tn(Gn)|p] ≤ 2pd p
n E[ωp] for all n ≥ 1

when E[ωp] < ∞ for some p ≥ 1 and a typical edge weight ω ∼ F.

Proof Fix any path P from (0, o) to (n, o) in Z × Gn . The path P will hit {0} × Gn

and {n} × Gn at some vertices. Let (0, u) be the vertex where P hits {0} × Gn the last
time and (n, v) be the vertex where P hits {n} × Gn the first time after hitting (0, u).
The path segment of P from (0, u) to (n, v) lies inside [n]×Gn and by non-negativity
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of edge weights we have ω(P) ≥ Tn(Gn). Since this is true for any path P joining
(0, o) to (n, o) in Z × Gn , we have Tn(Gn) ≤ an(Gn).

Clearly an(Gn) ≤ tn(Gn). Combining the two inequalities, we see that

Tn(Gn) ≤ an(Gn) ≤ tn(Gn) for all n.

Since the number of paths joining the left side {0} × Gn to the right side {n} × Gn in
[0, n]×Gn is finite there is a path achieving the minimal weight Tn(Gn). Choose such
a path P∗ using a deterministic rule. Suppose that the path P∗ starts at (0, u) and ends
at (n, w). As we remarked earlier in Sect. 2 the random variables Tn(Gn),P∗, u, w

are independent of the edge weights ωe where e is an edge in {0} × Gn or {n} × Gn .
Let P(u),P(w) be some minimal length paths in Gn joining o, u and o, w respec-

tively. We have tn(Gn) − Tn(Gn) ≤ Sn where Sn is the sum of edge weights in the
paths {0} × P(u) and {n} × P(w) and hence

E[|tn(Gn) − Tn(Gn)|p] ≤ E[S p
n ].

Moreover by independence of u, w and the edge weights in {0, n} × Gn we have
E[S p

n |u, w] ≤ (|P(u)|+|P(w)|)p E[ωp]. By definition of diameter we have |P(u)|+
|P(w)| ≤ 2dn and thus we are done. ��

The following lemma combined with Lemma 3.1 completes half of the proof of
Proposition 2.1. Recall that {Gn} is a nondecreasing sequence of finite connected
graphs.

Lemma 3.2 The limit

ν = lim
n→∞

E[an(Gn)]
n

exists and we have

νn ≤ E[an(Gn)] ≤ μn for all n.

Moreover, we have ν < μ if dn ≥ 1 and F is non-degenerate.

Proof Considering the straight line path from (0, o) to (n, o) it is easy to see that
E[an(Gn)] ≤ μn. The existence of the limit is easily obtained from subadditivity as
follows. Fix n, m. Consider Gn and Gm as subgraphs of Gn+m . Let an,n+m(Gm) denote

the first-passage time in Z × Gm from (n, o) to (n + m, o). Clearly an,n+m(Gm)
d=

am(Gm). Joining the minimal weight paths from (0, o) to (n, o) achieving the weight
an(Gn) and from (n, o) to (n +m, o) achieving the weight an,n+m(Gm), we get a path
in Z × Gn+m from (0, o) to (n + m, o). Clearly

an+m(Gn+m) ≤ an(Gn) + an,n+m(Gm).
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Now taking expectation in both sides and using the subadditive lemma we have

ν := lim
n→∞

E[an(Gn)]
n

exists and equals infn≥1 E[an(Gn)]/n.
To show that ν < μ it is enough to consider the one edge graph Gn = G =

{0, 1} and n even. Consider the following two paths from (0, 0) to (2n, 0). One is the
straight line path. The other is the path connecting (0, 0), (0, 1), (1, 1), (1, 0), (2, 0)

and repeating the same pattern. Clearly we haveE[a2n(G)] ≤ μn+n E[min{ω1, ω2+
ω3 + ω4}] where ωi ’s are i.i.d. from F . From here it is easy to see that ν < μ. ��

We complete the proof of Proposition 2.1 by finding lower bound for ν under
appropriate conditions. Recall that ν(e1) > 0 iff F(0) < pc(d) where e1 is the first
coordinate vector in Zd and ν(x) is defined as in (1.1).

Lemma 3.3 Suppose Gn’s are subgraphs of Zd−1. Then the limit ν in Lemma 3.2
satisfies

ν ≥ ν(e1)

where ν(e1) is as defined in (1.1). Equality holds when Gn = [−hn, hn]d−1 with
hn → ∞ as n → ∞. Moreover, the limit ν is positive if Gn = G for all n.

Proof First suppose that Gn = G for all n and G has v vertices. It is easy to see
that E[an(Gn)] ≥ n E[Y ] where Y is the minimum of v i.i.d. random variables each
having distribution F , because any path from (0, o) to (n, o) must contain at least one
edge of the form ((k, u), (k + 1, u)) for each k = 0, . . . , n − 1. Since E[Y ] > 0, it
follows that ν > 0.

Now consider the case when Gn’s are subgraphs of Zd−1 (we will match o with the
origin in Zd−1). Then Z × Gn is a subgraph of Zd with (0, o) = 0 and (n, o) = ne1
where 0 and e1 denote the origin and the first coordinate vector in Zd . Clearly we have
a(0, ne1) ≤ an(Gn) for all n. Diving both sides by n and taking expectations we have

ν = lim
n→∞

1

n
E[an(Gn)] ≥ lim

n→∞
1

n
E[a(0, ne1)] = ν(e1).

To prove that ν = ν(e1) when Gn = [−hn, hn]d−1, break the cylinder graph [n]× Gn

into smaller cylinder graphs of length �ln/C� for some fixed constant C > 0 where
ln = min{n1/2, hn}. Note that concatenating paths from (iln/C, o) to ((i +1)ln/C, o)

for i = 0, 1, . . . we get a path from (0, o) to (n, o). Let n = m�ln/C� + r with
r < �ln/C�. Thus we have

E[an(Gn)] ≤ m E[X (�ln/C�, ln)] + E[X (r, ln)] (3.1)

where
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X (n, h) := inf{ω(P) | P is a path from (0, o) to (n, o) that lies in the

rectangle [1, n − 1] × [−h, h]d−1 except for the first and last edge}.

Dividing both sides of (3.1) by n and taking limits (note ln = o(n) and ln → ∞ as
n → ∞) we have

ν := lim
n→∞

1

n
E[an(Gn)] ≤ lim inf

n→∞
E[X (�n/C�, n)]

�n/C� ≤ lim
n→∞

E[X (n, �Cn�)]
n

for any C > 0. The last limit exists by subadditivity. Denote the last limit by α(C)

which also satisfies α(C) = infn E[X (n, �Cn�)/n. Now let us consider the unre-
stricted cylinder percolation time t (0, ne1) defined as the minimum weight among all
paths from 0 to ne1 lying in the vertical strip 0 < x1 < n except for the first and the
last edge. From standard results in first-passage percolation theory (see Sect. 5.1 in
Smythe and Wierman [28] for a proof) we have

lim
n→∞

1

n
E[t (0, ne1)] = ν(e1).

Now for fixed n, the random variables X (n, �Cn�) are decreasing in C and t (0, ne1) =
limC→∞ X (n, �Cn�). By monotone convergence theorem we have

E[t (0, ne1)] = lim
C→∞E[X (n, �Cn�)] ≥ lim sup

C→∞
α(C)n ≥ νn.

Dividing both sides by n and letting n → ∞ we are done. ��

4 Lower bound for the variance

Here we will prove the lower bound for the variance given in Proposition 2.2. First we
will prove a uniform lower bound that holds for any n and G. Later we will specialize
to the case G = Gn for given n.

Lemma 4.1 Let G be a subgraph of Zd−1 with diameter D and number of edges k.
Let F be admissible. Then we have

Var(tn(G)) ≥ c1
n

k
and Var(Tn(G)) ≥ c1

n

k

(

1 − c2
D

n

)

(4.1)

for some absolute positive constants c1, c2 that depend only on d and F. The same
result holds for all nondegenerate probability distributions F on [0,∞) with ci

depending only on G and F. In particular, when D ≤ n/(2c2) we have

Var(Tn(G)) ≥ c3
n

k

for all n, k for some absolute constant c3 > 0.
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Remark 4.2 The proof of the variance lower bound bears many similarities to the
variance bound proofs given in Newman and Piza [24] and Benjamini et al. [5] using
influence of random variables. In fact one can view the lower bound as the contribution
coming from the first order Fourier terms. When the edge weights are Gaussian (not
non-negative) one can give a simpler proof as follows. For any smooth function f of
N Gaussian variables one has

Var( f ) =
∞∑

k=1

∑

1≤i1,i2,...,ik≤N

(E[∂xi1
∂xi2

· · · ∂xik
f ])2

where the kth sum corresponds to the contribution from kth order Fourier coeffi-
cients. Using the lower bound for k = 1 and Cauchy—Schwarz inequality one has
Var( f ) ≥ N−1(E(

∑N
i=1 ∂xi f ))2. The same bound holds when f is a Lipschitz func-

tion, in particular when f is the minimum path weight function. In that case ∂xi f =
1{i is in the optimal path} and sum over all i gives number of edges in the optimal
path. Thus using N = total number of edges = nk and number of edges in the optimal
path ≥ n we get the variance lower bound cn/k. From this heuristic and the fact that
for noise sensitive random variables contribution from lower order Fourier coefficients
is negligible for the variance, it is also easy to guess why the lower bound is probably
not optimal.

Proof of Lemma 4.1 Fix G and n. Let v be the number of vertices in G. Let {e1, e2, . . . ,

eN } be a fixed enumeration of the edges in [n] × G where N = (n + 1)k + nv is the
number of edges in that graph. For simplicity let us write tn(G) simply as t . Let Fi be
the sigma-algebra generated by {ω(e1), ω(e2), . . . , ω(ei )} for i = 0, 1, . . . , N . For
simplicity we will write ωi instead of ω(ei ). Also we will use t (ω) to explicitly show
the dependence of t on the sequence of edge-weights ω = (ω1, ω2, . . . , ωN ).

Using Doob’s martingale decomposition we can write the random variable t −E[t]
as a sum of martingale difference sequences E[t |Fi ] − E[t |Fi−1], i = 1, 2, . . . , N .
Since martingale difference sequences are uncorrelated we have the standard identity

Var(t) =
N∑

i=1

Var(E[t |Fi ] − E[t |Fi−1]).

For 1 ≤ i ≤ N , let ω̂i denote the sequence of edge-weights ω excluding the weight ωi .
Moreover, for x ∈ R+, we will write (ω̂

i
, x) to denote the sequence of edge-weights

where the weight of the edge e j is ω j for j �= i and x for j = i . Clearly we have
ω = (ω̂

i
, ωi ) for i = 1, 2, . . . , N . If η is a random variable distributed as F and is

independent of ω, then we have E[t |Fi ] − E[t |Fi−1] = E[t (ω̂i
, ωi ) − t (ω̂i

, η)|Fi ].
It is easy to see that (since Var(t) ≥ Var(E[t |F]) for any sigma field F)

Var(E[t (ω̂i
, ωi ) − t (ω̂i

, η)|Fi ]) ≥ Var(E[E[t (ω̂i
, ωi ) − t (ω̂i

, η)|Fi ]|ωi ])
= Var(E[t (ω)|ωi ]).
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Now for any random variable X we have Var(X) = 1
2 E(X1 − X2)

2 where X1, X2 are
i.i.d. copies of X . Thus we have

Var(E[t (ω)|ωi ]) = 1

2
E[(E[t (ω̂i

, ωi ) − t (ω̂i
, η)|ωi , η])2]

= E[(1{ωi >η} E[t (ω̂i
, ωi ) − t (ω̂i

, η)|ωi , η])2] (4.2)

where in the last line we have used the fact that ωi and η are i.i.d.. Define

�i := E[1{ωi >η}(t (ω̂i
, ωi ) − t (ω̂i

, η))|ω] (4.3)

for i = 1, 2, . . . , N . From (4.2) we have Var(E[t (ω)|ωi ]) ≥ (E[�i ])2 for all i .
Combining we have

Var(t) ≥
N∑

i=1

(E[�i ])2 ≥ 1

N

(
N∑

i=1

E[�i ]
)2

= 1

N
(E[g(ω)])2

where

g(ω) :=
N∑

i=1

�i =
N∑

i=1

E[1{ωi >η}(t (ω) − t (ω̂i
, η))|ω].

Let P∗(ω) be a minimum weight path for ω chosen according to a deterministic
rule. If the edge ei is in P∗(ω), we have

1{ωi >η}(t (ω) − t (ω̂i
, η)) ≥ 1{ωi >η}(ωi − η) = (ωi − η)+

as the weight of the path P∗(ω) for the configuration (ω̂
i
, η) is t (ω) − ωi + η. Thus

we have

g(ω) ≥
∑

i :ei ∈P∗(ω)

E[(ωi − η)+|ωi ]. (4.4)

Now define the function

h(x) = E[(x − η)+] where η ∼ F.

It is easy to see that h(x) = 0 iff x ≤ λ where λ is the smallest point in the support of
F and E[h(ω)] < ∞.

Define a new set of edge weights ω′
i = h(ωi ) for i = 1, 2, . . . , N with distribution

function F ′. Clearly ω′
i ’s are i.i.d. with F ′(0) = P(h(ω) = 0) = P(ω = λ). Moreover

let t (ω′) be the cylinder first-passage time from (0, o) to (n, o) in [0, n]×G with edge
weights ω′. From (4.4) we have g(ω) ≥ t (ω′). Now from Lemma 3.2 and 3.3 we have
E[t (ω′)] ≥ ν′(e1)n where ν′(e1) is as defined in (1.1) with edge weight distribution
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F ′ and ν′(e1) > 0 as F ′(0) < pc(d). Also note that N = (n +1)k +nv ≤ 3nk. Thus,
finally we have

1

n
Var(t) ≥ 1

3k

(
E[t (ω′)]

n

)2

≥ ν′(e1)
2

3k
. (4.5)

Now assume that F is any non-degenerate distribution supported on [0,∞). From
Lemma 3.3 we can see thatE[tn(G)] ≥ cn for all n for some constant c > 0 depending
on G and F . Thus we are done.

To prove the result for Tn(G) we start with Tn(G) in place of tn(G) and use
E[Tn(G)] ≥ E[tn(G)] − 2μD from Lemma 3.1 in (4.5). ��
Proof of the lower bound in Proposition 2.2 From Lemma 3.1 we have

| Var(an(Gn))1/2 − Var(tn(Gn))1/2| ≤ (E[|an(Gn) − tn(Gn)|2])1/2

≤ 2dn(μ2 + σ 2)1/2

for all n ≥ 1. Now under Theorem 2.1 we have dn = o(n1/(2+θ)) which clearly
implies that d2

n = o(n/kn) as kn = O(dθ
n ). Thus by Lemma 4.1 we are done. Using

Lemma 5.5 one can drop the condition dn = o(n1/(2+θ)) when F is admissible. ��

5 Upper bound for central moments

In this section we will prove upper bounds for central moments of an(Gn), tn(Gn) and
Tn(Gn), in particular the upper bound for variance of an(Gn) stated in Proposition 2.2.
Note that by Lemma 3.1 we have

E[|tn(Gn) − an(Gn)|p] ≤ E[|tn(Gn) − Tn(Gn)|p] ≤ E[(2dnω)p]

for all n when E[ωp] < ∞ for some p ≥ 2 with ω ∼ F . Hence it is enough to prove
bounds for E[|tn(Gn) − E[tn(Gn)]|p].

Fix n ≥ 1 and a finite connected graph G. We will prove the following.

Proposition 5.1 Let E[ωp] < ∞ for some p ≥ 2 and F(0) < pc(d) where ω ∼ F.
Also suppose that G is a finite subgraph of Zd−1. Then for any n ≥ 1 we have

E[|tn(G) − E[tn(G)]|p] ≤ cn p/2

where c is a constant depending only on p, d and F. Moreover, the same result holds
with c depending on G without any restriction on F(0). The above result holds for
an(G) and Tn(G) when

D ≤ Cn1/2

for some absolute constant C > 0 where D is the diameter of G.
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When F has finite exponential moments in some neighborhood of zero, one can
use Talagrand’s [30] strong concentration inequality along with Kesten’s Lemma 5.5
to prove a much stronger result P(|tn(G)−E[tn(Gn)]| ≥ x) ≤ 4e−c1x2/n for x ≤ c2n
for some constants c1, c2 > 0. Moreover, one can use moment inequalities due to
Boucheron et al. [8] to prove that the p-th moment is bounded by n p/2k p/2−1 for
p ≥ 2. But none of that gives what we need for the proof of Theorem 2.1, so we have
to devise our own proof of Proposition 5.2.

The next two technical lemmas will be useful in the proof of Proposition 5.1. Proofs
of the two technical lemmas and of Proposition 5.1 are given at the end of this section.

Lemma 5.2 For any p > 2 and x, y ∈ R we have

∣
∣
∣x |x |p−2 − y|y|p−2

∣
∣
∣ ≤ max{1, (p − 1)/2}|x − y|(|x |p−2 + |y|p−2).

Lemma 5.3 Let β > 1, a, b ≥ 0. Let y ≥ 0 satisfy yβ ≤ a + by. Then

yβ−1 ≤ a(β−1)/β + b.

Before proving Proposition 5.1 we need to define a new random variable Ln(G).
Consider thecylinder first-passage time tn(G) in [n] × G. Call a path P from (0, o)

to (n, o) in [n] × G a weight minimizing path if its weight ω(P) equals tn(G). An
edge e of [n] × G is called a pivotal edge if all weight minimizing paths pass through
the edge e. Let Ln(G) denote the number of pivotal edges given the edge weights ω.
Clearly Ln(G) is a random variable. Lemma 5.4 gives upper bound for the pth central
moment of tn(G) in terms of moments of Ln(G). Roughly it says that the fluctuation
of tn(G) around its mean behaves like square root of Ln(G).

Lemma 5.4 Let E[ωp] < ∞ for some p ≥ 2 where ω ∼ F. Then we have

E[|tn(G) − E[tn(G)]|p] ≤(2p)p/2 E[Ln(G)p/2]E[ω2]p/2

+ 2p/2(2p)p−2 E[Ln(G)]E[ωp]

where Ln(G) is the number of pivotal edges for tn(G).

Proof The proof essentially is a general version of the Efron–Stein inequality. Fix
n, G and a fixed enumeration {e1, . . . , eN } of the edges in [n] × G where N is the
number of edges in that graph. Consider the random variable tn(G) − E[tn(G)] as a
function f (ω) of the edge weight configuration ω = (ω1, . . . , ωN ) ∈ RN+ where ωi

is the weight of the edge ei .
Let ω′

1, . . . , ω
′
N be i.i.d. copies of ω1. For a subset S of {1, 2, . . . , N } define ωS ∈

RN+ as the configuration where (ωS)i = ωi for i /∈ S and (ωS)i = ω′
i for i ∈ S. Recall

that [i] denote the set {1, 2, . . . , i}. Clearly ω[0] = ω.
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For illustration we will prove the p = 2 case first which is the Efron–Stein inequal-
ity. Recall that E[ f (ω)] = 0. We have

E[ f (ω)2] = E[ f (ω)( f (ω) − f (ω[N ]))] =
N∑

i=1

E[ f (ω)( f (ω[i−1]) − f (ω[i]))].

Exchanging ωi , ω
′
i one can easily see that (ω{i},ω[i],ω[i−1]) d= (ω,ω[i−1],ω[i]) and

hence we have

E[ f (ω)2] = 1

2

N∑

i=1

E[( f (ω) − f (ω{i}))( f (ω[i−1]) − f (ω[i]))].

By Cauchy—Schwarz inequality and exchangeability of ωi , ω
′
i we see that

E[ f (ω)2] ≤
N∑

i=1

E[( f (ω) − f (ω{i}))21{ω′
i > ωi }].

Now note that ω′
i > ωi and f (ω) �= f (ω{i}) implies that the i th edge ei is essential

for the configuration ω and moreover, 0 < f (ω{i}) − f (ω) ≤ ω′
i − ωi ≤ ω′

i . Also ω′
i

is independent of ω. Thus we have

E[ f (ω)2] ≤
N∑

i=1

E[(ω′
i )

21{ei is essential for ω}] = E[ω2
i ]E[Ln]

where Ln is the number of pivotal edges for the configuration ω.
Let g(·) be the function g(x) = x |x |p−2. Using similar decomposition as was done

for p = 2 case we have

E[| f (ω)|p] = 1

2

N∑

i=1

E[( f (ω) − f (ω{i}))(g(ω[i−1]) − g(ω[i]))].

Now Lemma 5.2 and symmetry of ωi and ω′
i imply that

E[| f (ω)|p] ≤ ap

N∑

i=1

E
[
| f (ω) − f (ω{i})|| f (ω[i−1]) − f (ω[i])|

·
(
| f (ω[i−1])|p−2 + | f (ω[i])|p−2

)
1{ω′

i > ωi }
]

where ap = max{1, (p − 1)/2}. Note that ω′
i > ωi , f (ω{i}) �= f (ω) and f (ω[i]) �=

f (ω[i−1]) imply that 0 < f (ω{i}) − f (ω), f (ω[i]) − f (ω[i−1]) ≤ ω′
i and the edge ei
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is essential for both the configurations ω and ω[i−1]. Moreover in that case we have

| f (ω[i])|p−2 ≤ | | f (ω[i−1])| + ω′
i |p−2

≤ 3| f (ω[i−1])|p−2 + max{2, (2(p − 3))p−3}(ω′
i )

p−2.

The last line follows easily when p ≤ 3. For p > 3 the last line follows by taking
ε = e−1/(p−3), using Jenson’s inequality (a + b)p−2 ≤ ε3−px p−2 + (1 − ε)3−p y p−2

and (1 − ε)−1 ≤ max{2, 2(p − 3)}. Thus

E[| f (ω)|p] ≤
N∑

i=1

E
[
(ω′

i )
21{ei is essential for ω[i−1]}

·
(

4ap| f (ω[i−1])|p−2 + bp(ω
′
i )

p−2
)]

where bp = ap max{2, (2(p − 3))p−3}. Simplifying we have

E[| f (ω)|p] ≤
N∑

i=1

E
[
(ω′

i )
21{ei is essential for ω}

(
4ap| f (ω)|p−2 + bp(ω

′
i )

p−2
)]

= 4ap E[(ω′
i )

2]E[Ln| f (ω)|p−2] + bp E[(ω′
i )

p]E[Ln]

where Ln is the number of pivotal edges in the configuration ω. Let y = E[| f
(ω)|p](p−2)/p. Using Hölder’s inequality we have

y p/(p−2) = E[| f (ω)|p]
≤ 4ap E[ω2]E[L p/2

n ]2/p E[| f (ω)|p](p−2)/p + bp E[ωp]E[Ln]
= 4ap E[L p/2

n ]2/p E[ω2]y + bp E[Ln]E[ωp].

Now Lemma 5.3 with β = p/(p − 2) gives that

E[| f (ω)|p]2/p = yβ−1 ≤ 4ap E[L p/2
n ]2/p E[ω2] + (bp E[Ln]E[ωp])2/p

or

E[| f (ω)|p] ≤ 2p/2−1(2ap)
p/2 E[L p/2

n ]E[ω2]p/2 + 2p/2−1bp E[Ln]E[ωp].

Note that 2ap ≤ p and bp ≤ 2p−1 p p−2. Hence simplifying we finally conclude that

E[| f (ω)|p] ≤ (2p)p/2 E[L p/2
n ]E[ω2]p/2 + 2p/2(2p)p−2 E[Ln]E[ωp].

Now we are done. ��
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It is easy to see that Ln(G) is smaller than the length of any length minimizing path.
In fact the random variable Ln(G) grows linearly with n. The following well-known
result due to Kesten [18] will be useful to get an upper bound on the length of a weight
minimizing path.

Lemma 5.5 (Proposition 5.8 in Kesten [18]) If F(0) < pc(d) then there exist con-
stants 0 < a, b, c < ∞ depending on d and F only, such that the probability that
there exists a selfavoiding path P from the origin which contains at least n many edges
but has ω(P) < cn is smaller than ae−bn.

Combining Lemma 5.4 and Lemma 5.5 we have the proof of Proposition 5.1.

Proof of Proposition 5.1 Note that Gn = G for all n clearly implies that Ln(G) ≤
3nk where k = k(G) is the number of edges in G. This completes the proof for the
case where the constants depend on G.

Let πn be the minimum number of edges in a weight minimizing path for tn(Gn).
To complete the proof it is enough to show the following: if Gn’s are subgraphs of
Zd−1 and F(0) < pc(d) we have E[π p/2

n ] ≤ cn p/2 for some constant c depending
only on d, p and F . We follow the idea from [19]. We have

P(πn > tn) ≤ P(tn(Gn) > ctn) + P(there exists a self avoiding path P
starting from 0 of at least tn edges but with ω(P) < ctn).

Now using Lemma 5.5 we see that the second probability decays like ae−btn . And the
first probability is bounded by P(Sn > ctn) where Sn is the weight of the straight line
path joining (0, o) to (n, o). Clearly Sn is sum of n many i.i.d. random variables. Thus
we have

E[π p/2
n ] =

∞∫

0

n p/2 p

2
t p/2−1 P(πn > tn) dt

≤
∞∫

0

n p/2 p

2
t p/2−1 P(Sn > ctn) dt +

∞∫

0

n p/2 p

2
t p/2−1ae−btn dt

= c−p/2 E[S p/2
n ] + ap

2bp/2 �(p/2) ≤ c1n p/2

where the constant c1 depends on d, p and F . The result for an(G) and Tn(G) follow
by Lemma 3.1 that

E[|tn(G) − an(G)|p] ≤ E[|tn(G) − Tn(G)|p] ≤ E[(2Dω)p]

for all n, G when E[ωp] < ∞ for some p ≥ 2 with ω ∼ F and D is the diameter of
G. ��
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Proof of the first technical Lemma 5.2 For x, y ∈ R/{0}, x �= y, let z = x/y. Then
we have

x |x |p−2 − y |y|p−2

(x − y)(|x |p−2 + |y|p−2)
= z |z|p−2 − 1

(z − 1)(|z|p−2 + 1)
.

Now, the lemma follows from the fact that

cp := sup
z∈R

∣
∣
∣
∣
∣

z |z|p−2 − 1

(z − 1)(|z|p−2 + 1)

∣
∣
∣
∣
∣
≤ max{1, (p − 1)/2}.

To prove this note that, by p > 2 we have

sup
z≥0

z p−1 + 1

(z + 1)(z p−2 + 1)
≤ 1

and

sup
z≥0

z p−1 − 1

(z − 1)(z p−2 + 1)
=

(

1 − sup
x≥0

sinh p−3
p−1 x

sinh x

)−1

=
⎧
⎨

⎩

(
1 − p−3

p−1

)−1
if p > 3,

(1 − 0)−1 if p ≤ 3

and the line can be written succinctly as max{1, (p − 1)/2}. ��
Proof of the second technical Lemma 5.3 Define f (a, b) := (b+a1−1/β)1/(β−1) and
g(a, b) := sup{y ≥ 0 : yβ ≤ a + by}. Without loss of generality assume b > 0. Then
it is easy to see that

g(a, b) = b1/(β−1)g(ab−β/(β−1), 1) and f (a, b) = b1/(β−1) f (ab−β/(β−1), 1).

So again w.l.g. we can assume that b = 1. Clearly f (a, 1) ≥ 1, g(a, 1) ≥ 1.
Let F : [1,∞) → R be the strictly increasing function F(x) := xβ − x . Note

that F(g(a, 1)) = a. Now y > f (a, 1) implies that yβ − y = F(y) > F( f (a, 1)) =
f (a, 1)( f (a, 1)β−1 − 1) ≥ a1/β(1 + a(β−1)/β − 1) = a. Hence the upper bound is
proved. ��

6 Proof of Theorem 2.1

The proof of Theorem 2.1 will be given in several steps. First we will show that it is
enough to prove the CLT for Tn(Gn) after proper centering and scaling. Then we will
prove that Tn(Gn) is “approximately” a sum of i.i.d. random variables each having
distribution Tl(Gn) and an error term where l depends on n. Finally, writing Tl(Gn)’s
inductively as approximate i.i.d. sums (the “renormalization steps”) and controlling
the error in each step, we will complete the proof. Recall that the notations an = O(bn)

and an = o(bn), respectively, mean that an ≤ Cbn for all n ≥ 1 for some constant
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First-passage percolation across thin cylinders 635

C < ∞ and an/bn → 0 as n → ∞. Throughout the proof c will denote a constant
that depends only on q, F and whose value may change from line to line.

6.1 Reduction to Tn(Gn)

Let us first recall the setting. We have a sequence of nondecreasing graphs Gn with
Gn having diameter dn and kn edges. We also have kn = O(dθ

n ) for some fixed θ ≥ 1.
Define

μn(G) := E[Tn(G)] and σ 2
n (G) := Var(Tn(G))

for any integer n ≥ 1 and any finite connected graph G.
Now from Lemma 3.1 we have

E[|an(Gn) − Tn(Gn)|p] ≤ 2pd p
n E[ωp]

for all n when E[ωp] < ∞ for a typical edge weight ω. Moreover, from Proposi-
tion 2.2 we have σ 2

n (Gn) ≥ cnk−1
n for all n for some absolute constant c > 0 when

dn = o(n). Thus when d2
n = o(nk−1

n ) (which is satisfied if dn = o(n1/(2+θ))), we
have

Tn(Gn) − μn(Gn)

σn(Gn)
− an(Gn) − E[an(Gn)]

Var(an(Gn))1/2
L2−→ 0.

Hence it is enough to prove CLT for (Tn(Gn) − μn(Gn))/σn(Gn) when dn

= o(n1/(2+θ)). From now on we will assume that

dn = o(nα) with α < 1/(2 + θ) fixed.

6.2 Approximation as an i.i.d. sum

In Lemma 6.1 we will prove a relation between side-to-side first-passage times in large
and small cylinders and this will be crucial to the whole analysis. Fix an integer n and
a finite connected graph G. Let n = ml + r with 0 ≤ r < l where l ≥ 1 is an integer.

We divide the cylinder graph [n] × G horizontally into m equal-sized smaller cyl-
inder graphs R1, . . . , Rm with Ri = [(i − 1)l, il] × G, i = 1, 2, . . . , m each having
width l and a residual graph Rm+1 = [ml, n] × G. Let

Xi = T(i−1)l,il(G) (6.1)

be the side-to-side first-passage time for the product graph Ri for i = 1, 2, . . . , m (see
Definition 2.1). We also define Xm+1 = Tml,n(G) for the residual graph Rm+1. Clearly
Xm+1 = 0 if r = 0. Note that Xi ’s depend on n and G, but we will suppress n, G for
readability. We have the following relation. This is a generalization of Lemma 3.1.
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Lemma 6.1 Let n, G be fixed. Let Xi be as defined in (6.1). Then the random variable

Y := Tn(G) − (X1 + X2 + · · · + Xm+1)

is nonnegative and is stochastically dominated by Sm D where Sm D is sum of m D
many i.i.d. random variables each having distribution F and D is the diameter of G.
Moreover, X1, . . . , Xm are i.i.d. having the same distribution as Tl(G), Xm+1 has the
distribution of Tr (G) and Xm+1 is independent of X1, . . . , Xm.

Proof First of all, it is easy to see that Xi depends only on the weights for the edge set
{e : e is an edge in [(i −1)l, il]×G}\ {e | e is an edge in {(i −1)l}×G or {il}×G}.
Thus, X1, . . . , Xm’s are i.i.d. having the same distribution as Tl(G).

Now choose a minimal weight path P∗ joining the left boundary {0}×G to the right
boundary {n} × G (if there are more than one path one can use some deterministic
rule to break the tie). The path P∗ hits all the boundaries {il} × G at some vertex
for i = 0, 1, . . . , m. Let ui , vi , i = 0, 1, . . . , m be the vertices in G such that for
each i, P∗ hits {il} × G for the last time at the vertex (il, ui ) and after that it hits the
boundary {(i + 1)l} × G at the vertex ((i + 1)l, vi ) for the first time (take (m + 1)l
to be n). Clearly if P∗ hits {il} × G only at a single vertex then ui = vi−1. Now the
part of P∗ between the vertices (il, ui ) and ((i + 1)l, vi ) is a path in [il, (i + 1)l]× G
and hence has weight more than Xi . But all these parts are disjoint. Hence we have
Tn(G) = ω(P∗) ≥ ∑m+1

i=1 Xi .
Now to prove upper bound for Y , let P∗

i be a minimal weight path joining the left
boundary {il} × G to the right boundary {(i + 1)l} × G and achieving the weight
Xi . Suppose P∗

i hits {il} × G at (il, wi ) and hits {(i + 1)l} × G at ((i + 1)l, zi ) for
i = 0, 1, . . . , m. Let Pi be a minimal length path in {il} × G joining (il, zi−1) to
(il, wi ) for i = 1, 2, . . . , m. Consider the concatenated path P∗

0 ,P1,P∗
1 ,P2, . . . ,P∗

m
joining (0, w0) to (n, zm+1). By minimality of weight we have

Tn(G) ≤
m∑

i=1

(Xi + ω(Pi )) + Xm+1.

Thus we have Y = Tn(G) − ∑m+1
i=1 Xi ≤ ∑m

i=1 ω(Pi ). Clearly
∑m

i=1 ω(Pi ) is a sum
of

∑m
i=1 d(zi−1, wi ) many i.i.d. random variables each having distribution F where

d(·, ·) is the graph distance in Gn . But we have
∑m

i=1 d(zi−1, wi ) ≤ m D by definition
of the diameter. Now F is supported on R+. Thus we are done. ��

An obvious corollary of Lemma 6.1 is the following.
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Corollary 6.2 For any integer m, l, r and connected graph G we have

|μml+r (G) − (mμl(G) + μr (G))| ≤ m Dμ

and

∣
∣
∣
∣σml+r (G) −

(
mσ 2

l (G) + σ 2
r (G)

)1/2
∣
∣
∣
∣ ≤ m D(μ2 + σ 2)1/2

where D is the diameter of G.

Proof Taking expectation of Y in Lemma 6.1 with n = ml + r we have E[Y ] =
μn(G) − mμl(G) − μr (G) and 0 ≤ E[Y ] ≤ m Dμ.

Moreover, we have

∣
∣
∣Var(Tn(G))1/2 − Var(Tn(G) − Y )1/2

∣
∣
∣

= |‖Tn(G) − E[Tn(G)]‖2 − ‖Tn(G) − Y − E[Tn(G) − Y ]‖2|
≤ ‖Y − E[Y ]‖2 ≤ (E[Y 2])1/2 ≤ m D(μ2 + σ 2)1/2.

Now the result follows since Tn(G) − Y = ∑m+1
i=1 Xi and Xi ’s are independent of

each other. ��

6.3 Lyapounov condition

From here onwards, we return to using n in subscripts and superscripts. From
Lemma 6.1 and Corollary 6.2 clearly we have

E |Tn(Gn) − μn(Gn) − (X (n)
1 + X (n)

2 + · · · X (n)
m − mμl(Gn))|

≤ E |Tn(Gn) − (X (n)
1 + X (n)

2 + · · · X (n)
m+1)| + mdnμ + E |X (n)

m+1 − μr (Gn)|
≤ 2mdnμ + σr (Gn) (6.2)

where X (n)
i , i = 1, 2, . . . , m are defined as in (6.1) and n = ml + r . We will take

l = max{�nβ�, 1} for some fixed β ∈ (2/(2 + θ), 1) and m = �n/ l�.

Then we have d2
n = o(l) and all the lower and upper bounds on moments are valid for

Tl(Gn). The dependence of m, l on n is kept implicit. Note that 0 ≤ r < l. Moreover,
writing l − r in place of l and 1 in place of m, we get from Corollary 6.2 that

σr (Gn) ≤ σl(Gn) + (μ2 + σ 2)1/2dn . (6.3)
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Thus from (6.2) we have

E

∣
∣
∣
∣
∣

Tn(Gn) − μn(Gn)√
mσl(Gn)

−
∑m

i=1(X (n)
i − μl(Gn))√

mσl(Gn)

∣
∣
∣
∣
∣

≤ 2mdnμ + σr (Gn)√
mσl(Gn)

≤ 1√
m

+ 3(σ 2 + μ2)1/2
√

mdn

σl(Gn)
. (6.4)

Recall that we have l ∼ nβ for some β < 1 and thus m ∼ n1−β . From the lower
bound for the variance in Proposition 2.2 (as dn = o(l)) we have

md2
n

σ 2
l (Gn)

≤ cm2d2
n kn

n
,

where c is some absolute constant. By our assumption on m, dn and kn we have
m2d2

n kn = o(n) when α ≤ (2β − 1)/(2 + θ) which is true for some β < 1 as
α < 1/(2+ θ). Hence (Tn(Gn)−μn(Gn))/

√
mσl(Gn) has the same asymptotic limit

as

∑m
i=1 X (n)

i − mμl(Gn)√
mσl(Gn)

(6.5)

as n → ∞ when

α ≤ 2β − 1

2 + θ
for some β ∈

(
2

2 + θ
, 1

)

. (6.6)

Now X (n)
i , i = 1, 2, . . . , m are i.i.d. random variables with finite second moment,

hence by the CLT for triangular arrays it is expected that (6.5) has standard Gaussian
distribution asymptotically. However we cannot expect CLT for all values of β.

Let s2
n := mσ 2

l (Gn) be the variance of
∑m

i=1 X (n)
i . To use Lindeberg condition for

triangular arrays of i.i.d. random variables we need to show that

m

s2
n
E[T̃ 2

l 1{|T̃l | ≥ εsn}] → 0 as n → ∞

for every ε > 0 where T̃l = Tl(Gn)−μl(Gn). However, any bound using the relation
Tl(Gn) ≤ Sl where Sl is the weight of the straight line path joining (0, o) and (l, o),
gives rise to the condition θα ≤ 1 − 2β. The last condition is contradictory to (6.6).
The difficulty arises from the fact that the lower and upper bounds for the variances
are not tight.

Still we can prove a CLT by using estimates for the moments of T̃l(Gn) from Prop-
osition 5.1 and using a blocking technique which is reminiscent of the renormalization
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group method. Note that Lindeberg condition follows from the Lyapounov condition

m

s p
n
E[|Tl(Gn) − μl(Gn)|p] → 0 as n → ∞ for some p > 2 (6.7)

and thus it is enough to prove (6.7) for some β ∈ (2/(2+ θ), 1) where l = max{�nβ�,
1}, m = �n/ l�, s2

n = mσ 2
l (Gn). We also need to satisfy (6.6) to complete the proof

of Theorem 2.1.

6.4 A technical estimate

We need the following technical estimate for the next “renormalization” step. The
lemma gives an upper bound on the moment of sums of i.i.d. random variables. It is
known as Rosenthal’s inequality (see [27]) in the literature.

Lemma 6.3 Let Yi , i = 1, 2, . . . , m be i.i.d. random variables with mean zero and
E[Y p

i ] < ∞ for some p ≥ 2. Then we have

E[|Y1 + Y2 + · · · + Ym |p] ≤ Ap(m E[Y p] + (m E[Y 2])p/2) (6.8)

where Ap is a constant depending only on p.

Proof For simplicity we present the proof when p = 2q is an even integer. Let Y
d= Y1

and Sm = Y1 +· · ·+Ym . For a = (a1, a2, . . . , a2q) ∈ Z
2q
+ , we will denote

∑2q
i=1 ai by

|a| and
∑2q

i=1 iai by z(a). To estimateE[S2q
m ], we will use the following decomposition

which is an easy exercise in combinatorics. We have

E[S2q
m ] =

∑

a∈Z2q
+ :z(a)=2q

(2q)!
∏2q

i=1 i !ai ai !
(m)|a|

2q∏

i=1

E[Y i ]ai

where (m)k := m!/(m − k)! ≤ mk . Note that here we used the fact that Yi ’s are
i.i.d.. Since E[Y ] = 0 we can and we will assume that a1 = 0. Thus using Hölder’s
inequality we have

E[S2q
m ] ≤

∑

z(a)=2q

(2q)!
∏2q

i=2 i !ai ai !
(m)|a|

2q∏

i=2

E[|Y |i ]ai

≤
∑

z(a)=2q

(2q)!
∏2q

i=2 i !ai ai !
m|a|

2q∏

i=2

E[Y 2]
ai (q−i/2)

q−1 E[Y 2q ]
ai (i/2−1)

q−1

≤
∑

z(a)=2q

(2q)!
∏2q

i=2 i !ai ai !
(mq E[Y 2]q)

|a|−1
q−1 (m E[Y 2q ]) q−|a|

q−1 .
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Note that 2|a| ≤ z(a) = 2q as a1 = 0. Now using the fact that xα y1−α ≤ αx+(1−α)y
for all x, y ≥ 0, α ∈ [0, 1] we finally have

E[S2q
m ] ≤ Aq(m E[Y 2q ] + mq E[Y 2]q) (6.9)

where

Aq :=
∑

z(a)=2q

(2q)!
∏2q

i=2 i !ai ai !

is a constant depending only on q. ��

6.5 Renormalization step

Now we are ready to start our proof of the Lyapounov condition. For simplicity we
will write Tl(G) − μl(G) imply as T̃l(G). Recall that

ν = lim
n→∞

E[Tn(Gn)]
n

.

Lemma 6.4 Suppose that ν > 0 and E[ωp] < ∞ for some p > 2 where ω is a
typical edge weight. Suppose either Gn = G for all n or Gn’s are subgraphs of
Zd−1. Let l = max{�nβ�, 1}, dn = o(nα) with 2α < β and kn = O(dθ

n ) for fixed
θ ≥ 1. Suppose that there exist t ≥ 1 real numbers βi , i = 1, 2 . . . , t such that
2α < βt < βt−1 < · · · < β1 = β and we have

α ≤ 1 − 2(βi − βi+1) − (1 − βi )/q

2 + θ
for all i = 1, 2, . . . , t − 1,

and α ≤ q − 1

q
· 1 − βt

θ

where q = p/2. Then we have

∑m
i=1 X (n)

i − mμl(Gn)√
mσl(Gn)

⇒ N (0, 1)

as n → ∞ where X (n)
i ’s are i.i.d. with X (n)

i
d= Tl(Gn).

Proof Since X (n)
i , i = 1, 2, . . . , m are i.i.d. with mean μl(Gn) and variance σ 2

l (Gn)

and E[ωp] < ∞ for some p > 2, we can use the Lyapounov condition to prove the
central limit theorem. We need to show that

m

s p
n
E[|T̃l(Gn)|p] → 0 as n → ∞
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where s2
n = mσ 2

l (Gn). By the variance lower bound from Proposition 2.2 we have

s2
n ≥ c1

ml

kn
≥ c2

n

kn
(6.10)

for some constants ci > 0 where kn is the number of edges in Gn . Using the moment
bound from Proposition 5.1 and lower bound on s2

n (note that d2
n = o(l)) we have

m

s p
n
E[|T̃l(Gn)|p] ≤ cpml p/2

(n/kn)p/2 ≤ cpml p/2k p/2
n

(ml)p/2 = cpk p/2
n

m(p−2)/2
.

Thus when kn = o(m1−2/p) or equivalently θα ≤ (1 − 2/p)(1 − β), we see that the
right hand side converges to zero and we have a central limit theorem. This proves the
assertion of the theorem when t = 1.

Let us now look into the bounds more carefully. The random variable Tl(Gn) itself
behaves like a sum of i.i.d. random variables each having distribution Tl ′(Gn) for
l ′ < l. We will use this fact to improve the required growth rate of kn . Let q = p/2
and assume that there exist t ≥ 2 real numbers βi , i = 1, 2 . . . , t such that 2α < βt <

βt−1 < · · · < β1 = β and we have

α ≤ 1 − 2(βi − βi+1) − (1 − βi )/q

2 + θ
for all i = 1, 2, . . . , t − 1

and α ≤ q − 1

q
· 1 − βt

θ
. (6.11)

From now on we will write l1, m1 and β1 instead of l, m and β respectively. Recall
that we have l1 = max{�nβ1�, 1} and dn = o(nα). We will take

li = max{�nβi �, 1}, mi = �li−1/ li� for i = 2, . . . , t.

The idea is as follows. First we will break the cylinder graph [0, l1]×Gn into m2 many
equal sized graphs each of which looks like [0, l2] × Gn . Then we will break each
of the new graphs again into m3 many equal sized graphs each of which looks like
[0, l3]×Gn and so on. We will stop after t steps. Our goal is to break the error term into
smaller and smaller quantities and show that the original quantity is “small” when each
of the final quantities are “small”. Throughout the proof q, t, θ, α, βi , i = 1, 2, . . . , t
are fixed.

For simplicity, first we will assume that

l1 = m2m3 · · · mtlt .

Under this assumption we have mili = li−1 for all i = 2 . . . , t . Otherwise one has to
look at the error terms which can be easily bounded using essentially the same idea
and are considered in (6.19).
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First step. Let us start with the first splitting. We break the rectangular graph [0, l1]×Gn

into m2 many equal sized graphs [(i − 1)l2, il2] × Gn for i = 1, 2, . . . , m2. Recall
that we have l1 = m2l2.

Let Sm2 = ∑m2
i=1 Xi where Xi = T(i−1)l2,il2(Gn) − μl2(Gn). Recall that Xi ’s are

i.i.d. having the same distribution as T̃l2(Gn) where T̃l(Gn) = Tl(Gn) − μl(Gn). Let
ε1 = ε1(n) := m1/s2q

n . We need to show the Lyapounov condition:

ε1 E[T̃l1(Gn)2q ] = o(1). (6.12)

From Lemma 6.1 we have

E[|T̃l1(Gn) − Sm2 |2q ] ≤ c(m2dn)2q E[ω2q ]

for some constant c > 0. Moreover, Lemma 6.3 implies that

E[S2q
m2 ] ≤ Aq(mq

2 E[T̃l2(Gn)2]q + m2 E[T̃l2(Gn)2q ]).

Thus we have

ε1 E[T̃l1(Gn)
2q ]

≤ c(ε1(m2dn)2q + ε1mq
2 E[T̃l2(Gn)2]q + ε1m2 E[T̃l2(Gn)2q ]).

Hence we need to show that

ε1(m2dn)2q = o(1), (6.13)

ε1mq
2σ

2q
l2

(Gn) = o(1) (6.14)

and ε1m2 E[T̃l2(Gn)2q ] = o(1) (6.15)

Using the variance lower bound (6.10) we have

ε1(m2dn)2q ≤ c
m1(m2)

2q(d2
n kn)

q

nq
≤ c

(
d2

n kn

n1−2(β1−β2)−(1−β1)/q

)q

.

Now (6.13) follows as d2
n kn = o(n(2+θ)α) and (2+θ)α ≤ 1−2(β1−β2)−(1−β1)/q.

Moreover, Corollary 6.2 with l1 = m2l2 implies that

(m2σ
2
l2(Gn))1/2 ≤ σl1(Gn) + cm2dn .

Thus using the definition of ε1 = ε1(n) and the fact that s2
n = m1σ

2
l1
(Gn) we have

ε1mq
2σ

2q
l2

(Gn) ≤ c(ε1σ
2q
l1

(Gn) + ε1(m2dn)2q) ≤ c
(

m1−q
1 + ε1(m2dn)2q

)

123
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and the right hand side is o(1) as q > 1 and by (6.13). So the only thing that remains
to be proved is that

ε1m2 E[T̃l2(Gn)2q ] = o(1).

Induction step. From the above calculations in step 1 the induction step is clear. Define

εi = εi (n) = m1m2 · · · mi

s2q
n

for i ≥ 1.

Claim 1 We have εi (mi+1dn)2q = o(1) for all i < t .

Proof of Claim 1. Fix any i . Using definition of εi and the variance lower bound
from (6.10) we have

εi (mi+1dn)2q = m1 · · · mi (mi+1dn)2q

s2q
n

≤ c
n1−βi m2q

i+1(d
2
n kn)

q

nq

= o

([
n(2+θ)α

n1−2(βi −βi+1)−(1−βi )/q

]q)

.

Now the claim follows by our assumption (6.11) that (2 + θ)α ≤ 1 − 2(βi − βi+1) −
(1 − βi )/q for all i < t. ��

Our next claim is the following.

Claim 2 We have εi m
q
i+1σ

2q
li+1

(Gn) = o(1) for all i ≥ 1.

Proof of Claim 2. We will prove the claim by induction on i . We have already proved
the claim for i = 1 in (6.14). Now suppose that the claim is true for some i ≥ 1. Using
Corollary 6.2 for li+1 = li+2mi+2 we see that

εi+1(mi+2σ
2
li+2

(Gn))q ≤ c(εi+1σ
2q
li+1

(Gn) + εi+1(mi+2dn)2q)

= c(εi mi+1σ
2q
li+1

(Gn) + εi+1(mi+2dn)2q).

Hence we have εi+1(mi+2σ
2
li+2

(Gn))q = o(1) by Claim 1 and the induction hypothesis
as q > 1. This completes the proof. ��
Claim 3 For any i ≥ 1, εi E[T̃li (Gn)2q ] = o(1) if εi+1 E[T̃li+1(Gn)2q ] = o(1).

Proof of Claim 3. Assume that εi+1 E[T̃li+1(Gn)2q ] = o(1). We write T̃li (Gn) as a
sum of Smi+1 and an error term of order mi+1dn where Smi+1 is sum of mi+1 many
i.i.d. random variables each having distribution T̃li+1(Gn). Using Lemma 6.3, as was
done in the first step, one can easily see that εi E[T̃li (Gn)2q ] = o(1) when
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εi (mi+1dn)2q = o(1), (6.16)

εi m
q
i+1σ

2q
li+1

(Gn) = o(1) (6.17)

and εi mi+1 E[T̃li+1(Gn)2q ] = o(1). (6.18)

��
Now Condition (6.16) holds by Claim 1, Condition (6.17) holds by Claim 2 and
Condition (6.18) holds by the hypothesis as εi+1 = εi mi+1.

Hence if we stop at step t , we see that the central limit theorem holds when
εt E[T̃lt (Gn)2q ] = o(1). By the upper bound for the 2q-th moment from Proposi-
tion 5.1 (as d2

n = o(lt )) we see that εt E[T̃lt (Gn)2q ] ≤ εt l
q
t and by the lower bound

for the variance from (6.10) we have

εt l
q
t ≤ cm1m2 · · · mtl

q
t kq

n

nq
= ckq

n

(m1m2 · · · mt )q−1 = o

(
nqθα

n(q−1)(1−βt )

)

.

The last condition also holds by our assumption (6.11) that qθα ≤ (q − 1)(1 − βt ).
Thus we are done when l1 = m2m3 · · · mtlt .

Now, in general we have li−1 = mili + ri for i = 2, . . . , t where 0 ≤ ri < li for
all i . Using the same proof used in the case when all ri = 0, one can easily see from
Claim 3, that we need to prove the extra conditions that

εi E[T̃ri (Gn)2q ] = o(1) for all i = 2, 3, . . . , t. (6.19)

Fix i ∈ {2, 3, . . . , t}. If ri ≤ lt then we are done since εi ≤ εt and by Proposi-
tion 5.1 we have E[T̃ri (Gn)2q ] ≤ c(d2q

n + lq
t ) ≤ c1lq

t . The last inequality follows
since 2α < βt . Now suppose that l j+1 ≤ ri < l j for some j ≥ i . Since we have
εi ≤ ε j for j ≥ i working with ri instead of l j and using the same inductive analysis
used before we have the required result (6.19). ��

6.6 Choosing the sequence

To complete the proof of Theorem 2.1 we need to choose an appropriate sequence
(β1, . . . , βt ) in (6.11) which will be provided by Lemma 6.5. Note that

1 − 2(β0 − β1) − (1 − β0)/q

2 + θ
= 2β1 − 1

2 + θ

for β0 = 1 and we have noted earlier in (6.6) that

an(Gn) − E[an(Gn)]
Var(an(Gn))1/2 has the same asymptotic limit as

∑m
i=1 X (n)

i − mμl(Gn)√
mσl(Gn)

when dn = o(nα) and α ≤ (2β1 − 1)/(2 + θ).
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First-passage percolation across thin cylinders 645

Lemma 6.5 Let β1, β2, . . . , βt be t real numbers satisfying the system of linear equa-
tions

1 − 2(βi − βi+1) − (1 − βi )/q

2 + θ
= q − 1

q
· 1 − βt

θ
(6.20)

for all i = 0, 1, 2, . . . , t − 1 where β0 = 1. Then we have

βi := 1 − qθ(1 − r i )

θ + (q − 1)(2 + θ)(1 − r t )
(6.21)

for all i = 1, 2, . . . , t where r = 1 − 1/(2q).

Proof Define xi = 1−βi for i = 0, 1, . . . , t . Clearly x0 = 0. Also define the constants

c = q − 1

q
· 2 + θ

θ
and r = 1 − 1

2q
.

Then the system of Eqs. (6.20) can be written in terms of xi ’s as

1 − 2xi+1 + 2r xi = cxt for all i = 0, 1, . . . , t − 1

or xi+1 − r xi = (1 − cxt )/2 for all i = 0, 1, . . . , t − 1. (6.22)

Multiplying the i th equation by r−i−1 and summing over i = 0, 1, . . . , t − 1 we have

r−t xt = qr−t (cxt − 1)(r t − 1) or xt = q(1 − r t )

1 + qc(1 − r t )
.

Now solving (6.22) recursively starting from i = t − 1, t − 2, . . . , 0 we have

xi = q(1 − r i )

1 + qc(1 − r t )
for all i = 1, 2, . . . , t.

Simplifying and reverting back to βi we finally get

xi = 1 − qθ(1 − r i )

θ + (q − 1)(2 + θ)(1 − r t )

for all i = 1, 2, . . . , t . ��

6.7 Completing the proof

Now we connect all the loose ends to complete the proof of Theorem 2.1.
Recall that the number of edges satisfies kn = O(dθ

n ) and moreover we have
dn = o(nα) for some α < 1. We also have l ∼ nβ1 , m ∼ n1−β1 for some β1 ∈ (α, 1).
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We have proved in (6.6) that the CLT will follow if we can find some β1 ∈ (α, 1) such
that α ≤ (2β1 − 1)/(2 + θ) and

∑m
i=1 Xi − mμl(Gn)√

mσl(Gn)
⇒ N (0, 1) (6.23)

as n → ∞ where Xi ’s are i.i.d. having distribution Tl(Gn). Note that (2β − 1)/(2 +
θ) < β/2 for all β > 0.

To prove (6.23) we will use the condition in Lemma 6.4. Assume that E[ωp] < ∞
for some real number p > 2. Let q = p/2. From Lemma 6.4 we see that CLT
will hold in (6.23) if there exist t ≥ 1 real numbers βi , i = 1, 2 . . . , t such that
2α < βt < βt−1 < · · · < β1 < β0 = 1 and

α ≤ q − 1

q
· 1 − βt

θ
and α ≤ 1 − 2(βi − βi+1) − (1 − βi )/q

2 + θ
(6.24)

for all i = 0, 1, . . . , t − 1. For i = 0 the equation reduces to α ≤ (2β1 − 1)/(2 + θ).
Now fix any integer t ≥ 1. Define r = 1 − 1/2q. For i = 1, . . . , t , define

βi := 1 − qθ(1 − r i )

θ + (q − 1)(2 + θ)(1 − r t )
. (6.25)

As usual we will assume that β0 = 1. Clearly βt < βt−1 < · · · < β1 < β0. The
sequence (β1, . . . , βt ) is the unique solution to the system of equations given by
equality in the right hand side of (6.24) (see Lemma 6.5). In fact we have

q − 1

q
· 1 − βt

θ
= (q − 1)(1 − r t )

θ + (q − 1)(2 + θ)(1 − r t )

and

1 − 2(βi − βi+1) − (1 − βi )/q

2 + θ
= (q − 1)(1 − r t )

θ + (q − 1)(2 + θ)(1 − r t )

for any i = 0, 1, . . . , t − 1. Now note that

2(q − 1)(1 − r t )

θ + (q − 1)(2 + θ)(1 − r t )
< 1 − qθ(1 − r t )

θ + (q − 1)(2 + θ)(1 − r t )
= βt

as θ + (q − 1)(2 + θ)(1 − r t )− (2(q − 1)+ qθ)(1 − r t ) = θr t > 0. Thus combining
all the previous results we have

an(Gn) − E[an(Gn)]√
mσl(Gn)

⇒ N (0, 1) as n → ∞
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when

α ≤ (q − 1)(1 − r t )

θ + (q − 1)(2 + θ)(1 − r t )

for some integer t ≥ 1. Since r = 1 − 1/(2q) < 1, letting t → ∞ we get the CLT
when

α <
q − 1

θ + (q − 1)(2 + θ)
= 1

2 + θ + 2θ/(p − 2)
.

Thus we are done.

7 The case of fixed graph G

By the arguments given in Sect. 2, we have a Gaussian central limit theorem for an(G)

and Tn(G) as n → ∞ after proper scaling when G is a fixed graph. Proposition 2.1
says that

ν(G) := lim
n→∞

E[Tn(G)]
n

exists and is positive. Moreover, Proposition 2.2 gives that

0 < c1 ≤ Var(Tn(G))

n
≤ c2

for all n for some constants c1, c2 > 0 depending on G. The next lemma says that in
fact we can say more. Assume that v(G) is the number of vertices in G, k(G) is the
number of edges in G and D = D(G) is the diameter of G.

Lemma 7.1 Let G be a finite connected graph. Then we have

|E[Tn(G)] − nν(G)| ≤ μD for all n

and the limit

σ 2(G) := lim
n→∞

σ 2
n (G)

n

exists and is positive.

Proof Let μ̃n = μn/n and σ̃ 2
n = σ 2

n /n. Using the proof given in corollary 6.2 we
have

|nμ̃n − (mlμ̃l + rμ̃r )| ≤ mμD and
∣
∣
∣(nσ̃ 2

n )1/2 − (mlσ̃ 2
l + r σ̃ 2

r )1/2
∣
∣
∣ ≤ mbD

(7.1)
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for all n = ml + r with 0 ≤ r < l where b = (μ2 + σ 2)1/2. Thus for any m, k we
have |μ̃mk − μ̃m | ≤ μD/m. Reversing the roles of m and k, and combining, we see
that for any m, k, we have

|μ̃m − μ̃k | ≤ μD/k + μD/m.

Taking limits as k → ∞ we have, for any m,

|μ̃m − lim
n→∞ μ̃n| ≤ μD/m.

For the variance, we take n = 2l in Eq. (7.1) to have

|σ̃2l − σ̃l | ≤ bD(2/ l)1/2.

Hence, it follows that σ̃2k is Cauchy and limk→∞ σ̃2k exists.
Now take any l ≥ 1. There exists a unique positive integer k = k(l) such that

2l3/2 ≤ 2k < 4l3/2 (k(l) = 1 + �log2 l3/2�). Suppose 2k = ml + r where 0 ≤ r < l.
Clearly

√
l ≤ m ≤ 4

√
l. Now from (7.1) we have,

∣
∣
∣(2k σ̃ 2

2k )
1/2 − (mlσ̃ 2

l + r σ̃ 2
r )1/2

∣
∣
∣ ≤ mbD.

Dividing by 2k/2 on both sides, we get

∣
∣
∣
∣
∣
σ̃2k −

(

σ̃ 2
l + r(σ̃ 2

r − σ̃ 2
l )

ml + r

)1/2
∣
∣
∣
∣
∣
≤ mbD√

ml + r
≤ 2bDl−1/4.

Note that k, m, r are functions of l in the above expression. Among these, m(l) ≥ l1/2

and r(l) < l. Taking l → ∞, and using the fact that the sequence {σ̃ 2
n }n≥1 is uniformly

bounded (see Proposition 5.1), we get that limm→∞ σ̃m exists and equals limk→∞ σ̃2k .
Positivity of the limit follows from the variance lower bound given in Proposition 2.2.

��
Note that, if we consider the point-to-point cylinder first-passage time tn(G) in

[0, n] × G, the same results given in Lemma 7.1 hold for E[tn(G)] and Var(tn(G)).
Now we consider the process X (m) where X (m) = tm(G) − mν(G) for m ∈

{0, 1, . . .} and Xn(t) = Xm + (t − m)(Xm+1 − Xm) for t ∈ (m, m + 1). Note that
when G is the trivial graph consisting of a single vertex, X (n) corresponds to random
walk with linear interpolation and by Donsker’s theorem {(nσ 2)−1/2 X (nt)}t≥0 con-
verges to Brownian motion. The next lemma says that for general G we also have the
same behavior. We assume that E[ωp] < ∞ for some p > 2 where ω ∼ F .

Lemma 7.2 The scaled process {(nσ 2(G))−1/2 X (nt)}t≥0 converges in distribution
to standard Brownian motion as n → ∞.
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Proof Consider the continuous process X ′ defined as X ′(n) := Tn(G) − nν(G) for
n ∈ {0, 1, . . .} and extended by linear interpolation. By Lemma 3.1 it is enough to
prove Brownian convergence for {Yn(t) := (nσ 2(G))−1/2 X ′(nt) : 0 ≤ t ≤ T } for
any fixed T > 0. To prove the result it suffices to show that the finite dimensional
distributions of Yn(t) converge weakly to those of Bt and that {Yn} is tight.

First of all note that for any s > 0, we have

|Yn(s) − (nσ 2(G))−1/2 X (�ns�)| ≤ (nσ 2(G))−1/2|X ′(1 + �ns�) − X ′(�ns�)|
≤ (nσ 2(G))−1/2(Z + ν(G))

P−→ 0

where Z is the maximum of all the edge weights connecting {�ns�}×G to {1+�ns�}×
G, which has the distribution of maximum of v(G) many i.i.d. random variables each
having distribution F . Thus it is enough to prove finite dimensional distributional
convergence of the process {Wn(t) := (nσ 2(G))−1/2 X ′(�nt�)}t≥0. For a fixed t > 0,
using Theorem 2.1 we have Wn(t) ⇒ N (0, t) since �nt�/n → t .

For 0 = t0 < t1 < t2 < · · · < tl < ∞, define Vi = T�nti−1�,�nti �(G) − (�nti� −
�nti−1�)ν(G) for i = 1, 2, . . . , l. Clearly Vi ’s are independent for all i . Moreover
using Lemma 6.1 we have

E[|Wn(ti ) − Wn(ti−1) − (nσ 2(G))−1/2Vi |] → 0

as n → ∞ for all i . Thus by independence and by CLT for (nσ 2(G))−1/2Vi , we have

(Wn(ti ) − Wn(ti−1))
l
i=1 ⇒ (Bti − Bti−1)

l
i=1 as n → ∞.

To prove tightness for {Yn(·)}, first of all note that certainly {Yn(0)} is tight as
Yn(0) ≡ 0. Also it is enough to prove tightness for {Wn(·)}. We will prove tightness
via the following lemma.

Lemma 7.3 (Billingsley [6], page 87–91) The sequence {Wn} is tight if there exist
constants C ≥ 0 and λ > 1/2 such that for all 0 ≤ t1 < t2 < t3 and for all n, we have

E[|Wn(t2) − Wn(t1)|2λ|Wn(t3) − Wn(t2)|2λ] ≤ C |t2 − t1|λ|t3 − t2|λ.

Using the Cauchy–Schwarz inequality and Proposition 5.1, it is easy to that Lemma 7.3
holds with λ = p/4. Thus we are done. ��

8 CLT upto the height threshold

In this section we prove the Central Limit Theorem all the way upto the height threshold
under a few natural but unproved assumptions. A close look at the proof of Theorem 2.1
shows two main sources of error: (1) error coming from the gap between the upper
and lower bound of the variance, and (2) error coming from the sum of vertical edge
weights needed to join the within block optimal paths. To control the errors optimally
we assume the existence of fluctuation and transversal exponents. Recall that, given
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any direction x ∈ Zd , a(0, x) denotes the length of the geodesic joining 0 and x, and
D(0, x) denotes the Euclidean distance between the geodesic path and the straight line
path joining 0 and x. We assume the following:

Assumption 8.1 (Existence of fluctuation exponent) There exists a number χ ≥ 0
such that for every χ ′ > χ there exists α > 0 such that

sup
x∈Zd\{0}

E exp

(

α · |a(0, x) − E a(0, x)|
|x|χ ′

)

< ∞

and for every χ ′′ < χ we have

inf
x∈Zd\{0}

Var(a(0, x))

|x|2χ ′′ > 0.

Assumption 8.2 (Existence of transversal exponent) There exists a number ξ ≥ 0
such that for every ξ ′ > ξ there exists α > 0 such that

sup
x∈Zd\{0}

E exp

(

α · D(0, x)

|x|ξ ′

)

< ∞

and for every ξ ′′ < ξ we have

inf
x∈Zd\{0}

E(D(0, x))

|x|ξ ′′ > 0.

Roughly Assumptions 8.1 and 8.2 state that Var(a(0, x)) ≈ |x|2χ and D(0, x) ≈
|x|ξ for |x| large enough. Though there exists no rigorous proof on the existence of
the fluctuation and transversal exponents, it seems quite reasonable to expect that if
the two exponents χ and ξ indeed exist, then they should satisfy the above properties.
Moreover, it is not difficult to prove (see Chatterjee [9]) that if such exponents exist
then 0 ≤ ξ ≤ 1 and 0 ≤ χ ≤ 1

2 . We also recall that the limiting shape B0 given by

B0 := {x ∈ Rd : ν(x) ≤ 1}

where ν(x), as given in (1.1), is the asymptotic speed in the direction of x. We assume
that B0 has a positive curvature in the direction of e1.

Assumption 8.3 (Positive curvature) Let H be the (d −1)-dimensional plane passing
through the point e1 perpendicular to the line joining 0 and e1. There exists a positive
constant C such that for all z ∈ H we have

|ν(e1 + z) − ν(e1)| ≤ C |z|2.

Remark 8.4 We assume the positive curvature in the direction of e1 as we are trying to
prove the CLT in that direction. In general, one can prove the existence of a direction
x0 such that in the x0 direction the positive curvature assumption holds.
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Fig. 1 Two type blocking

Under Assumptions 8.1, 8.2 and 8.3 one can prove the following result.

Lemma 8.5 (KPZ scaling relation [9,3]) Assume 8.1, 8.2 and 8.3. Then we have
χ = 2ξ − 1.

Remark 8.6 If we apriori assume that the KPZ scaling relation is true, then in Assump-
tion 8.1 and 8.2, instead of all x ∈ Zd \ {0} it is enough to consider x in a cone in the
direction of e1 with angle ε for small enough ε > 0.

Now to control the error coming from the vertical fluctuation, we use a different
blocking method. Instead of dividing the length n cylinder [n] × [−hn, hn]d−1 into
small cylinders of equal length, we use two types of cylinders. Big cylinders are of
length �1 and small cylinders are of length �2 where �2 � �1. Let m = �n/(�1+�2)� ≈
n/�1. Divide the rectangle [n]× [−hn, hn]d−1 into 2m + 1 many sub-rectangles Ri ’s,
where R1, R3, R5, . . . are small cylinders and the rest are big cylinders. The last one
is the residual cylinder, which, for simplicity we will assume, is small.

Let Xi be the minimal passage time over all paths inside Ri connecting the left and
right boundaries of Ri for i = 1, 2, . . . , 2m +1. For i = 1, 2, . . . , m, let v2i and v2i+1
be the left and right endpoint of the optimal path in R2i (see Fig. 1). Define v1 = 0
and v2m+2 = (n, 0, . . . , 0). Let Yi be the first-passage time from vi to vi+1 inside the
cylinder Ri for i = 1, 2, . . . , 2m + 1. Clearly Y2i = X2i for i = 1, 2, . . . , m.

Note that, X1, X3, X5, . . . are i.i.d. and so is X2, X4, X6, . . .. Moreover they are
independent of each other. On the other hand, Y3, Y5, . . . are identically distributed
but not independent of each other. The main idea behind the above blocking tech-
nique, is to separate the height fluctuation and total passage-time fluctuation. While
the error arising from height fluctuation will come from the small cylinders, the main
contribution in the first-passage time fluctuation is coming from the big cylinders.

As before, let an(hn)denote the first-passage time from (0, 0, . . . , 0) to (n, 0, . . . , 0)

inside the rectangle [n] × [−hn, hn]d−1. Clearly we have

an(hn) ≥ X1 + X2 + X3 + X4 + · · · + X2m + X2m+1.

In the proof of Theorem 2.1 we used small rectangles of length 0, i.e., a vertical line.
We also have,

an(hn) ≤ Y1 + X2 + Y3 + X4 + · · · + X2m + Y2m+1.

For the cylinder C = [�] × [−hn, hn]d−1 we define the non-negative random vari-
able

�(C) := max
x∈BL ,y∈BR

T (x, y) − min
x∈BL ,y∈BR

T (x, y)
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where BL is the left boundary wall {0}×[−hn, hn]d−1, BR is the right boundary wall
{�} × [−hn, hn]d−1 and T (x, y) is the minimum passage time from x to y inside the
cylinder C . Thus we have

0 ≤ an(hn) − (X1 + X2 + · · · + X2m+1) ≤
m∑

i=1

(Y2i−1 − X2i−1) ≤
m∑

i=1

�(R2i−1).

In particular, as �(R2i−1)’s are i.i.d., we have

∥
∥
∥
∥
∥
(an(hn) − E[an(hn)]) −

2m+1∑

i=1

(Xi − E[Xi ])
∥
∥
∥
∥
∥

k

≤ 2m · ||�(R1)||k (8.1)

for all k ≥ 1 where ||X ||k = (E |Xk |)1/k for a random variable X . We prove the
following lemma.

Lemma 8.7 Assume conditions 8.1–8.3. Fix ξ ′ > ξ . Consider the cylinder R =
[n] × [−hn, hn]d−1 where hn = �(nξ ′

). Then there exists a constant c > 0 such that

||�(R)||k ≤ ckh2
n

n
for all k ≥ 1.

We also need a matching lower bound for the variance of an(hn) to complete the pro-
gram. Define σ 2

n (hn) := Var(X1+X2+· · ·+X2m+1) = (m+1) Var(X1)+m Var(X2).
From Eq. (8.1) it easily follows that

|√Var(an(hn)) − σn(hn)| ≤ 2m||�(R1)||2. (8.2)

Thus we can approximate an(hn) by the sum X1 +· · ·+ X2m+1 when m||�(R1)||2 ≤
cmh2

n/n � σn(hn). To get the appropriate lower bound for the variance we assume a
natural technical condition that we are unable to prove. Let

X (n, h) := the minimum passage time from the left boundary to the

right boundary inside the cylinder [n] × [−h, h]d−1. (8.3)

Assumption 8.8 There exists n0 > 0 such that for all fixed n ≥ n0 the function

f (h) = Var(X (n, h))

is a non-increasing function of h.

Define

θ = 1 − 2χ

ξ
≥ 0. (8.4)
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Under the above four assumptions we have following moment bound. Note that the
bound actually interpolates between the two cases: for h = O(1) the fluctuation is of
the order of n1/2 and for h ≈ nξ the fluctuation is of the order of nχ .

Lemma 8.9 Assume conditions 8.1, 8.2 and 8.3. Let X (n, h) be as in Eq. (8.3). Then
for any integer k ≥ 2 and ε > 0, δ > 0, there exist constants C > 0, ξ ′ > ξ such that

||X (n, h) − E[X (n, h)]||k ≤ C
√

nh−θ+ε

for all nδ � h � nξ ′
where θ is as in (8.4).

Moreover, if we assume condition 8.8 and χ > 0, for every ε > 0, δ > 0 there
exists a constant c > 0 such that

Var(X (n, h)) ≥ cnh−θ−ε

for all h � nδ .

Now note that, when�1 ≈ n1−β, �2 ≈ h1/ξ ′
n , χ > 0, we have m ≈ n/�1, ||�(R1)||2

≤ ch2
n/�2,

m||�(R1)||2 � n

�1
· h

2− 1
ξ ′

n and
√

nh−θ−ε
n � σn(hn).

Writing 1/ξ ′ = 1/ξ − δ, the sum approximation (8.1) is valid when

n

�1
· h

2− 1
ξ ′

n �
√

nh−θ−ε
n or h2(2ξ−1)/ξ+θ+δ+ε

n � n1−2β.

Using the result that χ = 2ξ − 1 we need

h1/ξ+δ+ε
n � n1−2β

which gives the condition hn � nξ as ε, δ, β can be made arbitrarily small. When
χ = 0, the variance lower bound is still valid but with θ replaced by (d − 1) (see
Proposition 2.2) and we can proceed as before to get the condition hn � n1/(d−1).
Combining we have the following main result.

Theorem 8.10 Assume conditions 8.1, 8.2, 8.3 and 8.8. Let {hn}n≥1 be a sequence of
integers satisfying hn = o(nα) where

α <

{
ξ if χ > 0
1

d−1 if χ = 0.

Then we have

an(hn) − E[an(hn)]√
Var(an(hn))

⇒ N (0, 1) as n → ∞.
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Moreover, for any ε > 0 there exist constants c, C > 0 such that

cnh−θ−ε
n ≤ Var(an(hn)) ≤ Cnh−θ+ε

n .

In dimension 2 the conjectured values of the exponents are ξ = 1/3, ξ = 2/3.
Thus the conjectured value of θ is 1/2 which matches with the simulation results.
Moreover, for d = 2, 3, 1/(d − 1) ≥ 1/2 and χ = 0 implies ξ = 1/2. Thus we have
the following corollary.

Corollary 8.11 Under the Assumptions 8.1, 8.2, 8.3 and 8.8, we have CLT for an(nα)

in dimension 2 and 3 for α < ξ .

9 Proof of CLT upto the height threshold

Throughout the proof C will denote a positive constant that depends only on the edge
weight distribution and the dimension and may change from line to line. Let

η(x) := E[a(0, x)] (9.1)

for all x ∈ Zd . Recall that ν(x) = limn→∞ η(nx)/n. By subadditivity we have
η(x) ≥ ν(x) for all x ∈ Zd . It turns out that under Assumptions 8.1 and 8.2, using
Alexander’s argument (see [1,2]) one can prove the following result.

Lemma 9.1 (see Theorem 4.1 in [9]) Assume 8.1 and 8.2. Let ν and η be as defined in
(1.1) and (9.1). Then for any χ ′ > χ there exists C > 0 such that for all x ∈ Zd \ {0}
we have

ν(x) ≤ η(x) ≤ ν(x) + C |x|χ ′
log |x|.

We will use the following result.

Lemma 9.2 Let {Xi : i ∈ I} be a finite collection of non-negative random variables
such that E[exp(αXi )] ≤ C for all i ∈ I for some α > 0. Then we have

|| max
i∈I

Xi ||k ≤ k

α
log(2C |I|)

for all k ≥ 1.

Proof Fix k ≥ 1. Let Y := maxi∈I Xi and Z := Y k−1/||Y ||k−1
k . Clearly we have

||Z ||1 ≤ ||Z ||k/(k−1) = 1. Moreover we have, by concavity of the logarithm function
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||Y ||k = E[ZY ] ≤ k

α
E

[

Z log

(
∑

i∈I
exp(αXi/k)

)]

≤ k||Z ||1
α

log

(
∑

i∈I
E

[
Z

||Z ||1 exp(αXi/k)

])

≤ k||Z ||1
α

log

(
∑

i∈I

1

||Z ||1 ||Z ||k/(k−1) E[exp(αXi )]1/k

)

≤ k||Z ||1
α

log

( |I|
||Z ||1 C1/k

)

≤ 1

α
(k ln(2|I|) + ln C)

where in the last line we used the fact that −x log x ≤ log 2 for all x ∈ [0, 1]. This
completes the proof. ��

Now we are ready to prove the results in Sect. 9.

Proof of Lemma 8.7 We want to bound the moments of the random variable

� := �(R) = max
x∈BL ,y∈BR

T (x, y) − min
x∈BL ,y∈BR

T (x, y)

where R is the cylinder [n]×[−h, h]d−1, BL is the left boundary wall {0}×[−h, h]d−1,

BR is the right boundary wall {n} × [−h, h]d−1 and T (x, y) is the minimum passage
time from x to y inside the cylinder R. Note that h ≈ nξ ′

for some ξ ′ > ξ . Choose
χ ′ ∈ (χ, 2ξ ′ − 1). This is possible since χ = 2ξ − 1.

We define a(x, y) as the unrestricted minimum passage time from x to y. Clearly
a(x, y) ≤ T (x, y) and E[a(x, y)] = ν(y − x). We have

0 ≤ � ≤ max
x∈BL ,y∈BR

(T (x, y) − ν(y − x)) + max
x∈BL ,y∈BR

(ν(y − x) − a(x, y))

+
(

max
x∈BL ,y∈BR

ν(y − x) − min
x∈BL ,y∈BR

ν(y − x)

)

.

Denote the three terms appearing in the r.h.s. by U, V, Z respectively. Note that

V ≤ Cnχ ′
max

x∈BL ,y∈BR

|ν(y − x) − a(x, y)|
|x − y|χ ′

and |BL ||BR | ≤ Ch2(d−1) ≤ CnC . By Assumption 8.1 and Lemma 9.2 we have

||V ||k ≤ Cknχ ′
ln n ≤ Cn2ξ ′−1.

Now to bound Z we use Lemma 9.1. We have

0 ≤ Z ≤ max
x∈BL ,y∈BR

(η(y − x) + C |y − x|χ ′
log |y − x|) − min

x∈BL ,y∈BR
η(y − x)

≤ Cnχ ′
log n + 2 max

x∈BL ,y∈BR
|η(y − x) − η(ne1)|.
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Now note that for x ∈ BL , y ∈ BR we have y − x = ne1 + z where z ⊥ e1 and
|z| ≤ Chn . Using Assumption 8.3 we have

max
x∈BL ,y∈BR

|η(y − x) − η(ne1)| = n · max
x∈BL ,y∈BR

|η((y − x)/n) − η(e1)|

≤ Cn(hn/n)2 ≤ Cn2ξ ′−1.

Now to bound U , we divide the boundary into two sets. Define Bo
L as the boundary

part {0} × {z ∈ Zd−1 : |z| ≤ hn/2} and Bb
L as the boundary part {0} × {z ∈ Zd−1 :

hn/2 < |z| ≤ hn}. Similarly we define Bo
R, Bb

R (o is for center and b is for border).
We also define the event

E(x, y) := the unconstrained geodesic from x to y lies within the cylinder R.

Using Assumption 8.2 one can easily see that for x ∈ Bo
L , y ∈ Bo

R we haveP(E(x, y)c)

≤ exp(−nε) for some ε > 0. Thus we have

max
x∈Bo

L ,y∈Bo
R

(T (x, y) − ν(y − x)) ≤ max
x∈Bo

L ,y∈Bo
R

(a(x, y) − ν(y − x) + 2n · 1{E(x, y)c})

and its kth norm is bounded by Cknχ ′
log n. When either x ∈ Bb

L or y ∈ Bb
R , we

consider the nearest boundary point of [n/3, 2n/3] × [−hn/2, hn/2]d−1 to x or y.
Call them x′ and y′ respectively (if x ∈ Bo

L we will take x′ = x and similar for y).
Clearly T (x, y) ≤ T (x, x′) + T (x′, y′) + T (y′, y). As before T (x′, y′) will equal
a(x′, y′) with high probability. Also note that 0 ≤ ν(x′ − x) + ν(y′ − x′) + ν(y −
y′) − ν(y − x) ≤ Cn2ξ ′−1 for all such x, y. Thus we need to bound the kth norm
of maxx,x′(T (x, x′) − ν(x′ − x)). But considering the diagonal direction (for which
Assumption 8.1 and 8.2 are also valid) and using the event that the unrestricted geode-
sic stays within the corresponding cylinder of radius |x′ − x|ξ ′

and Using Lemma 9.2
we get the bound that ||U ||k ≤ Cn2ξ ′−1. Combining everything we have

||�(R)||k ≤ Cn2ξ ′−1 = Ch2/n.

��
Proof of Lemma 8.9 We will first prove the variance upper bound. Under Assump-
tion 8.1 and 8.3 one can easily check that for any ξ ′ > ξ and χ ′ > χ > χ ′′, there
exist constants c, C > 0 such that

cn2χ ′′ ≤ Var(an(nξ ′
)) ≤ Cn2χ ′

.

Combining with Lemma 8.7 we get

cn2χ ′′ ≤ Var(X (n, nξ ′
)) ≤ Cn2χ ′

. (9.2)
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Fix ε ∈ (0, (2ξ)−1). Define ξ ′ > ξ such that 1/ξ ′ = 1/ξ − ε. Moreover define χ ′
such that

θ ′ := 1 − 2χ ′

ξ ′ = θ − 4ε = 1 − 2χ

ξ
− 4ε. (9.3)

Note that χ ′ > χ as (9.3) implies that (2χ ′ − 1)(1 − εξ) = (2χ − 1) + 4εξ or
2(χ ′ − χ)(1 − εξ) = εξ(2χ + 3) > 0. For simplicity we will always take hn of the
form nγ for some γ ∈ (0, ξ ′]. Define γ1 = ξ ′. From (9.2) we have

Var(X (n, nγ1)) ≤ Cn(nγ1)−θ ′
(9.4)

for large enough n.
We will use an induction argument to prove the upper bound. Suppose that for some

γ > 0 we have

Var(X (n, nγ )) ≤ Cn(nγ )−θ ′
. (9.5)

for all n large enough. We consider the cylinder [n] × [−nγ ′
, nγ ′ ] where γ ′ < γ

and divide it into consecutive big and small cylinders of length �1 := nγ ′/γ and
�2 := nγ ′/ξ ′

respectively. Number of such cylinders will be m ≈ n1−γ ′/γ . Using (8.2)
and Lemma 8.7 we have

√

Var(X (n, nγ ′
)) ≤ C

√

m Var(X (nγ ′/γ , nγ ′
)) + m Var(X (nγ ′/ξ ′

, nγ ′
))

+ Cm · n(2−1/ξ ′)γ ′ ≤ C
√

n1−θ ′γ ′ + n1−γ ′/γ+(2−1/ξ ′)γ ′
(9.6)

where in the last line we have used (9.5). Thus the variance upper bound

Var(X (n, nγ ′
)) ≤ C ′n(nγ ′

)−θ ′

will hold (with a different constant C ′) if we have

2(1 − γ ′/γ + (2 − 1/ξ ′)γ ′) ≤ 1 − θ ′γ ′ or 1/γ ′ − 2/γ ≤ −(θ ′ + 4 − 2/ξ ′).
(9.7)

Define λ := θ ′+4−2/ξ ′. Putting the values of θ ′, ξ ′ and using the fact that χ = 2ξ −1
we have

λ = (1 − 2χ)/ξ − 4ε + 4 − 2/ξ + 2ε = 1/ξ − 2ε < 1/ξ ′.

Thus if

1

γ ′ − λ ≤ 2

(
1

γ
− λ

)
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and the variance upper bound holds for γ , then the variance upper bound also holds
for γ ′. Now starting with γ1 = ξ ′ for which the variance upper bound holds, we can
see that the upper bound holds for γ (with a constant C depending on t) if

1

γ
− λ ≤ 2t

(
1

ξ ′ − λ

)

= 2tε

for some positive integer t ≥ 1. By taking t large we have the result.
To prove the upper bound for kth central moment, we use the following result from

Latała [22].

Lemma 9.3 (Theorem 2 in Latała [22]) If k ≥ 1 and X1, X2, . . . are i.i.d. mean zero
random variables then we have

||X1 + · · · + Xn||k ∼ sup

{
k

s

(n

k

)1/s ||X1||s : max{2, k/n} ≤ s ≤ k

}

.

Using Assumption 8.1, 8.3 and Lemma 8.7 one can easily check that for any k ≥
2, ξ ′ > ξ and χ ′ > χ > χ ′′, there exist constants c, C > 0 such that

cnξ ′′ ≤ ||X (n, nξ ′
) − E[X (n, nξ ′

)]||k ≤ Cnξ ′
.

We use induction over k. For k = 2 the kth moment upper bound is true. Now note
that if all the moments ||X1||i for 2 ≤ i ≤ k are upper bounded by Cnχ ′

, then from
Lemma 9.3 we have

||X1 + · · · + X�||k ≤ Ck�
1/2nχ ′

.

Moreover, from equation (8.1), for the kth central moment (similar to (9.6)) we have

||X (n, nγ ′
) − E[X (n, nγ ′

)]||k ≤ C ||X1 + · + Xm ||k + Cm · n(2−1/ξ ′)γ ′

where Xi
d= X (nγ ′/γ , nγ ′

) − E[X (nγ ′/γ , nγ ′
)] are i.i.d., and this is sufficient to run

the induction. We leave the proof details, which is similar to the variance upper bound,
to the interested reader.

Now we move on to the proof of the variance lower bound under the Assumption 8.8
and χ > 0. Here also we will take hn of the form nγ for some γ ∈ (0, ξ ′]. Suppose
for some γ0 < ξ the variance lower bound does not hold for hn = nγ0 so that there
exists ε′ > 0 such that

Var(X (n, nγ0)) ≤ cn(hn)−θ−ε′
(9.8)

for an increasing sequence of n. We will use the same idea used in the variance upper
bound. But instead of estimating the variance of thin cylinder from thick cylinders,
here we are estimating the variance of the thick cylinder from thin cylinders. If (9.8)
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holds for γ ′ instead of γ0, using the same idea used in the variance upper bound, we
can easily see that it will hold for γ > γ ′ if

1/γ ′ − 2/γ < −(θ + ε′ + 4 − 2/ξ ′) = −(1/ξ + ε′ + 2ε)

or 1/γ − λ > 1/2 · (1/γ ′ − λ)

where λ = 1/ξ + ε′ + 2ε. If γ0 < 1/λ using finitely many steps we can show that
(9.8) holds for γ smaller than but arbitrary close to 1/λ. Now for γ very close to 1/λ

or bigger than that, the variance upper bound becomes

Var(X (n, nγ )) ≤ cn1−γ (θ+ε′).

Now note that for γ = 1/λ we have

1 − γ (θ + ε′) = 1 − ξ

1 + (ε′ + 2ε)ξ

(
1 − 2χ

ξ
+ ε′

)

= 2εξ + 2χ

1 + (ε′ + 2ε)ξ

which is strictly smaller than 2χ for ε small enough. Thus in finitely many steps we
get a variance upper bound

Var(X (n, nγ )) ≤ cn2χ ′

where γ < ξ and χ ′ < χ . But under Assumption 8.8 we have

Var(X (n, nξ ′
)) ≤ Var(X (n, nγ )) ≤ cn2χ ′

for all ξ ′ ≥ ξ and for large enough n. This gives a contradiction to (9.2) and we are
done. ��
Proof of Theorem 8.10 We will use the same notations as in Sect. 8. To prove the CLT
we use the two type blocking with the big blocks having length �1 ≈ n1−β and small

blocks having lengths �2 ≈ h1/ξ ′
n where ξ ′ > ξ is fixed. Number of such cylinders is

2m + 1 ≈ nβ . In the proof β > 0 will be very small but fixed. From (8.1) we have

∥
∥
∥
∥
∥
(an(hn) − E[an(hn)]) −

2m+1∑

i=1

(Xi − E[Xi ])
∥
∥
∥
∥
∥

2

≤ 2m · ||�(R)||2 (9.9)

where R is the cylinder [�2] × [−hn, hn]d−1. Define

σ 2
n (hn) := Var

(
2m+1∑

i=1

Xi

)

= (m + 1) Var(T (�1, hn)) + m Var(T (�2, hn)).

From equation (8.2) we have

|√Var(an(hn)) − σn(hn)| ≤ 2m||�(R)||2 (9.10)
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Moreover, from Lemma 8.7 we have

||�(R)||2 ≤ Ch2
n

�2
≤ Ch2−1/ξ ′

n .

If we can show that

m||�(R)||2 � σn(hn) (9.11)

we will have

∥
∥
∥
∥
∥

an(hn) − E[an(hn)]√
Var(an(hn))

−
∑2m+1

i=1 (Xi − E[Xi ])
σn(hn)

∥
∥
∥
∥
∥

2

−→ 0

as n → ∞.
Now when χ > 0 using the variance lower bound from Lemma 8.9 and choosing

β, ξ ′ − ξ sufficiently small, one can show that 9.11 holds for hn = o(nα) with α < ξ

(see the discussion before Theorem 8.10). When χ = 0, using the variance lower
bound from Lemma 4.1

Var(X (n, h)) ≥ cnh−(d−1)

and the fact that ξ = 1/2, it follows that (9.11) holds for hn = o(nα) with α <

1/(d − 1).
The rest of the proof of CLT can be completed using Lyapounov’s condition and

the same recursion idea used in the proof of Theorem 2.1. However, when χ > 0,
it is possible to prove the CLT for

∑2m+1
i=1 Xi directly using the k-th central moment

bound from Lemma 8.9 as in that case for k > 1 we have

(m + 1)||X1 − E[X1]||2k
2k + m||X2 − E[X2]||2k

2k

((m + 1) Var(X1) + m Var(X2))k
≤ Cm(nh−θ+ε

n /m)k

(nh−θ−ε
n )k

→ 0

as n → ∞ for ε small enough. ��

10 Numerical results

In this section we report on some numerical simulation results which support Conjec-
ture 1.2 and 1.5. We consider two-dimensional rectangles {0, 1, . . . , n} × {−hn, . . . ,

hn} with hn = nα for hn ranging between 30 to 60 and α ranging within the set
{2/3, 1/2, 2/5, 1/3}. For the edge weight distribution we take Bernoulli(p) for dif-
ferent values of p. For each configuration we simulate 1,000 observations for an(hn)

to estimate the variance and use 1,000 estimates for the variance per configuration to
estimate the parameters.
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Fig. 2 Plot of estimated values of γ versus p for different values of α

4 3 2 1 0 1 2 3 4
380

390

400

410

420

430

440

450

460

470

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

4 3 2 1 0 1 2 3 4
900

910

920

930

940

950

960

970

980

990

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

4 3 2 1 0 1 2 3 4
2200

2210

2220

2230

2240

2250

2260

2270

2280

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

4 3 2 1 0 1 2 3 4
1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Fig. 3 QQ plots based on simulation data for an(n1/2) for n = 3,000 for Bernoulli(p) edge weights,
p = 0.6, 0.7, 0.8, 0.9 in clockwise direction starting from top left

We assume that there are two constants β, γ > 0 depending only on the distribution
of edge weights such that

Var(an(hn)) ≈ βnh−γ
n
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for hn ≤ n2/3. Note that we have the rigorous result that γ ∈ [0, 1] if it exists. How-
ever it is not clear how to define the approximation properly. Our conjecture is that γ

exists in some appropriate sense (for example the ratio of the logarithms of both sides
are bounded) and satisfies the following:

Conjecture 10.1 In two dimension, we have

γ = 1/2

when hn = �(nα) and α ≤ 2/3.

To estimate the numbers β, γ we use the simple linear regression model

log Var(an(hn)) = log β + log n − γ log(hn) + Gaussian error

and least square estimates. In Fig. 2 the estimated values of γ are plotted against p
for different values α, which shows that γ is close to 1/2 for all values of p.

Figure 3 shows QQ plots based on the above simulation data for an(hn) for n =
h2

n = 55 against an appropriately fitted normal distribution, supporting the conjecture
of asymptotic normality.
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