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Abstract Consider the stochastic heat equation ∂t u = (�/2)�u +σ(u)Ḟ , where the
solution u := ut (x) is indexed by (t, x) ∈ (0,∞) × Rd , and Ḟ is a centered Gauss-
ian noise that is white in time and has spatially-correlated coordinates. We analyze
the large-‖x‖ fixed-t behavior of the solution u in different regimes, thereby study the
effect of noise on the solution in various cases. Among other things, we show that if the
spatial correlation function f of the noise is of Riesz type, that is f (x) ∝ ‖x‖−α , then
the “fluctuation exponents” of the solution are ψ for the spatial variable and 2ψ − 1
for the time variable, where ψ := 2/(4 −α). Moreover, these exponent relations hold
as long as α ∈ (0, d ∧ 2); that is precisely when Dalang’s theory [Dalang, Electron J
Probab 4:(Paper no. 6):29, 1999] implies the existence of a solution to our stochastic
PDE. These findings bolster earlier physical predictions [Kardar et al., Phys Rev Lett
58(20):889–892, 1985; Kardar and Zhang, Phys Rev Lett 58(20):2087–2090, 1987].
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1 Introduction

Consider the nonlinear stochastic heat equation,

∂

∂t
ut (x) = �

2
(�ut )(x)+ σ(ut (x))Ḟt (x), (SHE)

where � > 0 is a viscosity constant, σ : R → R is globally Lipschitz continuous,
and {Ḟt (x)}t>0,x∈Rd is a centered generalized Gaussian random field [21, Chapter 2,
§2.7] with covariance measure

Cov
(
Ḟt (x), Ḟs(y)

) = δ0(t − s) f (x − y) (1.1)

of the convolution type. We also assume, mostly for the sake of technical simplicity,
that the initial function u0 : Rd → R is nonrandom, nonnegative, essentially bounded,
and measurable. In particular, we assume the following once and for all:

Throughout this paper, we assume that ‖u0‖L∞(Rd ) < ∞, (1.2)

and that the correlation function f is sufficiently nice that there exists a unique strong
solution to (SHE); see the next section for the technical details.

Our first result (Theorem 2.1) tells us that if the initial function u0 decays at infinity
faster than exponentially, then the solution x �→ ut (x) is typically globally bounded
at all nonrandom times t > 0. The remainder of this paper is concerned with showing
that if by contrast u0 remains uniformly away from zero, then the typical structure
of the random function x �→ ut (x) is quite different from the behavior outlined in
Theorem 2.1. In particular, our results show that the solution to (SHE) depends in a
very sensitive way on the structure of the initial function u0. (This property explains
the appearance of “chaos” in the title of the paper.)

Hereforth, we assume tacitly that u0 is bounded uniformly away from zero and
infinity; to be precise we assume from now on that

0 < inf
x∈R

u0(x) � sup
x∈R

u0(x) < ∞. (1.3)

We now describe the remaining contributions of this paper (valid for such choices of
u0).

Loosely speaking, Ḟt (x) is nothing but white noise in the time variable t , and has
a homogenous spatial correlation function f for its space variable x . In a companion
paper [11] we study (SHE) in the case that Ḟ is replaced with space-time white noise;
that is the case where we replace the covariance measure with δ0(t − s)δ0(x − y).
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On the chaotic character of the stochastic heat equation, II 485

In that case, the solution exists only when d = 1 [13,27,29]. Before we describe the
results of [11], let us introduce some notation.

Let h, g : Rd → R+ be two functions. We write: (a) “h(x) 	 g(x)” when
lim sup‖x‖→∞[h(x)/g(x)] is bounded below by a constant; (b) “h(x) 
 g(x)” when

h(x) 	 g(x) and g(x) 	 h(x) both hold; and finally (c) “h(x)
(log)≈ g(x)” means that

log h(x) 
 log g(x).
Armed with this notation, we can describe some of the findings of [11] as follows:

1. If σ is bounded uniformly away from zero, then ut (x) 	 �−1/12(log ‖x‖)1/6 a.s.
for all times t > 0, where the constant in “	” does not depend on �;

2. If σ is bounded uniformly away from zero and infinity, then ut (x) 
 �−1/4

(log ‖x‖)1/2 a.s. for all t > 0, where the constant in “
” holds uniformly for
all � � �0 for every fixed �0 > 0; and

3. If σ(z) = cz for some c > 0—and (SHE) is in that case called the “parabolic
Anderson model” [8]—then

ut (x)
(log)≈ exp

(
(log ‖x‖)ψ
�2ψ−1

)
, (1.4)

for ψ = 2/3 and 2ψ − 1 = 1/3, valid a.s. for all t > 0.1

Coupled with the results of [19], the preceding facts show that the solution to the
stochastic heat equation (SHE), driven by space-time white noise, can depend in a
quite sensitive way on the choice of the initial data u0.

Let us emphasize that these findings (and the subsequent ones of the present paper)
are remarks about the effect of the noise on the solution to the PDE (SHE). Indeed, it
is easy to see that if u0(x) is identically equal to one—this is permissible in the pres-
ent setup—then the distribution of ut (x) is independent of x . Therefore, the limiting
behaviors described above cannot be detected by looking at the distribution of ut (x)
alone for a fixed x . Rather it is the correlation between ut (x) and ut (y) that plays an
important role.

The goal of the present paper is to study the effect of disorder on the “intermittent”
behavior of the solution to (SHE); specifically, we consider spatially-homogeneous
correlation functions of the form f (x −y) that are fairly nice, and think of the viscosity
coefficient � as small, but positive. Dalang’s theory [13] can be used to show that the
stochastic PDE (SHE) has a solution in all dimensions if f (0) < ∞; and it turns out
that typically the following are valid in all dimensions, as ‖x‖ → ∞:

1′. If σ is bounded uniformly away from zero, then ut (x) 	 (log ‖x‖)1/4 for all times
t > 0, uniformly for all � > 0 small;

2′. If σ is bounded uniformly away from zero and infinity, then ut (x) 
 (log ‖x‖)1/2

for all t > 0, uniformly for all � > 0 small; and
3′. If σ(z) = cz for some c > 0 [the parabolic Anderson model] then (1.4) holds with

ψ = 1/2 and 2ψ − 1 = 0, for all t > 0 and uniformly for all � > 0 small.

1 Even though the variable x is one-dimensional here, we write “‖x‖” in place of “|x |” because we revisit
(1.4) in the next few paragraphs and consider the case that x ∈ Rd for d � 1.
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486 D. Conus et al.

Thus, we find that for nice bounded correlation functions, the level of disorder
(as measured by 1/�) does not play a role in determining the asymptotic large-‖x‖
behavior of the solution, whereas it does for f (x − y) = δ0(x − y). In other words,
1′, 2′, and 3′ are in sharp contrast to 1, 2, and 3 respectively. This contrast can be
explained loosely as saying that when f is nice, the model is “mean field”; see in
particular the application of the typically-crude inequality (4.29), which is shown to
be sharp in this context.

One can think of the viscosity coefficient � as “inverse time” by making analo-
gies with finite-dimensional diffusions. And, as it will turn out, the power 2ψ − 1
of log ‖x‖ describes a “spatial correlation length.” As such, (1.4) suggests a kind of
space-time scaling that is valid universally for many choices of initial data u0; inter-
estingly enough this very scaling law (ψ vs. 2ψ−1) has been predicted in the physics
literature [23,24], and several parts of it have been proved rigorously in recent works
by Balázs et al. [3] and Amir et al. [2] in a large-t fixed-x regime.

We mentioned that (1.4) holds forψ = 2/3 (space-time white noise) andψ = 1/2 ( f
nice and bounded). In the last portion of this paper we prove that there are models—for
the correlation function f of the noise Ḟ—that satisfy (1.4) for every ψ ∈ (1/2, 2/3)

in dimension d = 1 and for every ψ ∈ (1/2, 1) in dimension d � 2. It is possible that
these results reinforce the “superuniversality” predictions of Kardar and Zhang [24].
We mention that the mentioned results seem to have connections to the intermediate
disorder scaling regimes of polymer models, introduced recently by Alberts, Khanin,
and Quastel [1]. But the precise connections, if any, between their work and the present
results escape us.

We conclude the introduction by setting forth some notation that will be used
throughout, and consistently.

Let pt (z) denote the heat kernel for (�/2)� on Rd ; that is,

pt (z) := 1

(2π�t)d/2
exp

(
−‖z‖2

2�t

)
(t > 0, z ∈ Rd). (1.5)

We will use the Banach norms on random fields as defined in [20]. Specifically, we
define, for all k � 1, δ > 0, and random fields Z ,

M(k)
δ (Z) := sup

t�0
x∈Rd

[
e−δt‖Zt (x)‖k

]
, (1.6)

where we write

‖Z‖k :=
(

E
(
|Z |k

))1/k
whenever Z ∈ Lk(P) for some k ∈ [1,∞). (1.7)

Throughout, S denotes the collection of all rapidly-decreasing Schwarz test func-
tions from Rd to R, and our Fourier transform is normalized so that

ĝ(ξ) =
∫

Rd

ei x ·ξ g(x) dx for all g ∈ L1(Rd). (1.8)
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On the chaotic character of the stochastic heat equation, II 487

On several occasions, we apply the Burkholder–Davis–Gundy inequality [5–7] for
continuous L2(P)martingales: If {Xt }t�0 is a continuous L2(P)martingale with run-
ning maximum X∗

t := sups∈[0,t] |Xs | and quadratic variation process 〈X〉, then for all
real numbers k � 2 and t > 0,

∥∥X∗
t

∥∥
k � ‖4k〈X〉t‖1/2

k/2 . (BDG)

The factor 4k is the asymptotically-optimal bound of Carlen and Kree [9] for the sharp
constant in the Burkholder–Davis–Gundy inequality that is due to Davis [15]. We will
also sometimes use the notation

u0 := inf
x∈Rd

u0(x), u0 := sup
x∈Rd

u0(x). (1.9)

2 Main results

Since f is a correlation function, the Schwartz–Minlos theorem tells us that f has to
be a nonnegative definite and symmetric function; see for example [13]. Throughout,
we assume tacitly that the Fourier transform f̂ of f is a measurable function. Since
f is assumed to be a symmetric function, it follows that f̂ = |ĥ|2 � 0. With this in
mind, we assume also that

∫

Rd

f̂ (ξ)

1 + ‖ξ‖2 dξ < ∞. (2.1)

Condition (2.1) ensures the existence of an a.s.-unique predictable random field u =
{ut (x)}t>0,x∈Rd that solves (SHE) in the mild form [13].2 That is, u solves the follow-
ing random integral equation for all t > 0 and x ∈ Rd :

ut (x) = (pt ∗ u0)(x)+
∫

(0,t)×Rd

pt−s(y − x)σ (us(y)) F(ds dy) a.s. (2.2)

We note that, because f is positive definite, Condition (2.1) is verified automatically
(for all d � 1) when f is a bounded function. In fact, it has been shown in Foondun
and Khoshnevisan [18] that Dalang’s condition (2.1) is equivalent to the condition that
the correlation function f has a bounded potential in the sense of classical potential
theory. Let us recall what this means next: Define Rβ to be the β-potential correspond-
ing to the convolution semigroup defined by {pt }t>0; that is, Rβ is the linear operator
that is defined via setting

2 Dalang’s theory assumes that f is continuous away from the origin; this continuity condition can be
removed [18,27].
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488 D. Conus et al.

(Rβφ)(x) :=
∞∫

0

e−βt (pt ∗ φ)(x) dt (t > 0, x ∈ Rd), (2.3)

for all measurable φ : Rd → R+. Then, Dalang’s condition (2.1) is equivalent to
the condition that Rβ f is a bounded function for one, hence all, β > 0; and another
equivalent statement (the maximum principle) is that

(Rβ f )(0) < ∞ for one, hence all, β > 0. (2.4)

See [18, Theorem 1.2] for details.
Our first main result states that if u0 decays at infinity faster than exponentially,

then a mild condition on f ensures that the solution to (SHE) is bounded at all times.

Theorem 2.1 Suppose lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞,
∫ 1

0 s−a(ps ∗ f )(0)
ds < ∞ for some a ∈ (0, 1/2), and σ(0) = 0. Then supx∈Rd |ut (x)| < ∞ a.s. for all
t > 0. In fact, supx∈Rd |ut (x)| ∈ Lk(P) for all t > 0 and k ∈ [2,∞).

Our condition on f is indeed mild, as the following remark shows.

Remark 2.2 Suppose that there exist constants A ∈ (0,∞) and α ∈ (0, d ∧ 2) such
that sup‖x‖>z f (x) � Az−α for all z > 0. (Just about every correlation function that
one would like to consider has this property.) Then we can deduce from the form of
the heat kernel that for all r, s > 0,

(ps ∗ f )(0) � (2π�s)−d/2 ·
∫

‖x‖�r

f (x) dx + sup
‖x‖>r

f (x)

� (2π�s)−d/2 ·
∞∑

k=0

∫

2−k−1r<‖x‖�2−kr

f (x) dx + A

rα

� const

sd/2 ·
∞∑

k=0

(
2−k−1r

)d−α + A

rα
� const ·

[
rd−α

sd/2 + r−α
]
. (2.5)

We optimize over r > 0 to find that (ps ∗ f )(0) � const · s−α/2. In particular,
(Rβ f )(0) < ∞ for all β > 0, and

∫ 1
0 s−a(ps ∗ f )(0) ds < ∞ for some a ∈ (0, 1/2).

Recall that the initial function u0 is assumed to be bounded throughout. For the
remainder of our analysis we study only bounded initial functions that also satisfy
infx∈Rd u0(x) > 0. And we study only correlation functions f that have the form
f = h ∗ h̃ for some nonnegative function h ∈ W 1,2

loc (R
d), where h̃(x) := h(−x)

denotes the reflection of h, and W 1,2
loc (R

d) denotes the vector space of all locally
integrable functions g : Rd → R whose Fourier transform is a function that satisfies

∫

‖x‖<r

‖x‖2 |ĝ(x)|2 dx < ∞ for all r > 0. (2.6)
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On the chaotic character of the stochastic heat equation, II 489

Because L2(Rd) ⊂ W 1,2
loc (R

d), Young’s inequality tells us that f := h ∗ h̃ is
positive definite and continuous, provided that h ∈ L2(Rd); in that case, we have
also that supx∈Rd | f (x)| = f (0) < ∞. And the condition that h ∈ L2(Rd) cannot be
relaxed, as there exist many choices of nonnegative h ∈ W 1,2

loc (R
d)\ L2(Rd) for which

f (0) = ∞; see Example 3.2 below. We remark also that (2.1) holds automatically
when h ∈ L2(Rd).

First, let us consider the case that h ∈ L2(Rd) is nonnegative [so that f is non-
negative, bounded and continuous, and (2.1) is valid automatically]. According to the
theory of Walsh [29], (SHE) has a mild solution u = {ut (x)}t>0,x∈Rd —for all d � 1—
that has continuous trajectories and is unique up to evanescence among all predictable
random fields that satisfy supt∈(0,T ) supx∈Rd E(|ut (x)|2) < ∞ for all T > 0. In par-
ticular, u solves (2.2) almost surely for all t > 0 and x ∈ Rd , where the stochastic
integral is the one defined by Walsh [29] and Dalang [13].

Our next result describes the behavior of that solution, for nice choices of h ∈
L2(Rd), when viewed very far away from the origin.

Theorem 2.3 Consider (SHE) where infx∈Rd u0(x) > 0, and suppose f = h ∗
h̃ for a nonnegative h ∈ L2(Rd) that satisfies the following for some a > 0:∫
‖z‖>n[h(z)]2 dz = O(n−a) as n → ∞. If σ is bounded uniformly away from zero,

then

lim sup
‖x‖→∞

|ut (x)|
(log ‖x‖)1/4

> 0 a.s. for all t > 0. (2.7)

If σ is bounded uniformly away from zero and infinity, then

0 < lim sup
‖x‖→∞

|ut (x)|
(log ‖x‖)1/2

< ∞ a.s. for all t > 0. (2.8)

Remark 2.4 Our derivation of Theorem 2.3 will in fact yield a little more information.
Namely, that the limsups in (2.7) and (2.8) are both bounded below by a constant
c(�) := c(t, �, f, d) which satisfies inf�∈(0,�0) c(�) > 0 for all �0 > 0; and the
limsup in (2.8) is bounded above by a constant that does not depend on the viscosity
coefficient �.

If g1, g2, . . . is a sequence of independent standard normal random variables, then
it is well known that lim supn→∞(2 log n)−1/2gn = 1 a.s. Now choose and fix some
t > 0. Because {ut (x)}x∈Rd is a centered Gaussian process when σ is a constant, the
preceding theorem suggests that the asymptotic behavior of x �→ ut (x) is the same
as in the case that σ is a constant; and that behavior is “Gaussian.” This “Gaussian”
property continues to hold if we replace Ḟ by space-time white noise—that is formally
when f = δ0; see [11]. Next we exhibit “non Gaussian” behavior by considering the
following special case of (SHE):

∂

∂t
ut (x) = �

2
(�ut )(x)+ ut (x)Ḟt (x). (PAM)
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490 D. Conus et al.

This is the socalled “parabolic Anderson model,” and arises in many different contexts
in mathematics and theoretical physics [8, Introduction].

Theorem 2.5 Consider (PAM) when inf x∈Rd u0(x) > 0 and f = h ∗ h̃ for some
nonnegative function h ∈ L2(Rd) that satisfies the following for some a > 0:∫
‖z‖>n[h(z)]2 dz = O(n−a) as n → ∞, Then for every t > 0 there exist positive

and finite constants At (�) := A(t, �, d, f, a) and At = A(t, d, f (0), a) such that
with probability one

At (�) � lim sup
‖x‖→∞

log ut (x)

(log ‖x‖)1/2
� At . (2.9)

Moreover: (i) There exists �0 := �0( f, d) ∈ (0,∞) such that inf�∈(0,�0) At (�) > 0
for all t > 0; and (ii) If f (x) > 0 for all x ∈ Rd , then inf�∈(0,�1) At (�) > 0 for all
�1 > 0.

The conclusion of Theorem 2.5 is that, under the condition of that theorem, and if
the viscosity coefficient � is sufficiently small, then for all t > 0,

B

�2ψ−1 � lim sup
‖x‖→∞

log ut (x)

(log ‖x‖)ψ � B

�2ψ−1 a.s., (2.10)

with nontrivial constants B and B that depend on (t, d, f )—but not on �—and ψ =
1/2. Loosely speaking, the preceding and its proof together imply that

sup
‖x‖<R

ut (x)
(log)≈ econst·(log R)1/2 , (2.11)

for all � small and R large. This informal assertion was mentioned earlier in Intro-
duction.

In [11] we have proved that if Ḟ is replaced with space-time white noise—that is,
loosely speaking, when f = δ0—then (2.10) holds with ψ = 2/3. That is,

sup
‖x‖<R

ut (x)
(log)≈ econst·(log R)2/3/�1/3

, (2.12)

for all � > 0 and R large.
In some sense these two examples signify the extremes among all choices of possible

correlations. One might wonder if there are other correlation models that interpolate
between the mentioned cases of ψ = 1/2 and ψ = 2/3. Our next theorem shows
that the answer is “yes for every ψ ∈ (1/2, 2/3) when d = 1 and every ψ ∈ (1/2, 1)
when d � 2.” However, our construction requires us to consider certain correlation
functions f that have the form h ∗ h̃ for some h ∈ W 1,2

loc (R
d) \ L2(Rd).

In fact, we choose and fix some number α ∈ (0, d), and consider correlation func-
tions of the Riesz type; namely,

f (x) := const · ‖x‖−α for all x ∈ Rd . (2.13)
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On the chaotic character of the stochastic heat equation, II 491

It is not hard to check that f is a correlation function that has the form h ∗ h̃ for some
h ∈ W 1,2

loc (R
d), and h �∈ L2(Rd); see also Example 3.2 below. Because the Fourier

transform of f is proportional to ‖ξ‖−(d−α), (2.1) is equivalent to the condition that
0 < α < min(d, 2), and Dalang’s theory [13] tells us that if u0 : Rd → R is bounded
and measurable, then (SHE) has a solution (that is also unique up to evanescence),
provided that 0 < α < min(d, 2). Moreover, when σ is a constant, (SHE) has a
solution if and only if 0 < α < min(d, 2).

Our next result describes the “non Gaussian” asymptotic behavior of the solution
to the parabolic Anderson model (PAM) under these conditions.

Theorem 2.6 Consider (PAM) when infx∈Rd u0(x) > 0. If f (x) = const · ‖x‖−α for
some α ∈ (0, d ∧2), then for every t > 0 there exist positive and finite constants B and
B—both depending only on (t, d, α)—such that (2.10) holds with ψ := 2/(4 − α);
that is, for all t > 0,

B

�α/(4−α) � lim sup
‖x‖→∞

log ut (x)

(log ‖x‖)2/(4−α) � B

�α/(4−α) a.s. (2.14)

Remark 2.7 We emphasize that unimportant constants—denoted by “const”—in the
preceding and future results might depend on u0 but only through infx∈Rd u0(x) and
supx∈Rd u0(x). We will not keep track of this dependence, since we are interested only
in how these constants depend on �.

We end this section by presenting a brief non-technical outline of some of the
forthcoming proofs.

In the next section (Sect. 3) we couple together space-time noises that are white
in time and have spatially-homogeneous correlation functions with the specific form
f := h ∗ h̃, as the function h varies over all of L2(Rd). We present an a priori
bound that allows us to extend our coupling to all of h in a larger class W 1,2

loc (R
d) that

includes all Riesz kernels of interest. Since the noises are all coupled together, as h
varies over the space W 1,2

loc (R
d), we can compare them to one another: If h ≈ g in a

suitable sense, then the noises that correspond to h and g are close (also in a suitable
sense).

In Sect. 4 we establish moment bounds for the solution u to (SHE), under various
conditions on the correlation function f . We also use those moment bounds to derive
various tail estimates for the distribution of ut (x).

Section 5 contains a “localization” argument which implies roughly that if x1, . . . ,

xN ∈ Rd are “sufficiently spread out,” then ut (x1), . . . , ut (xN ) are “sufficiently
independent.” This undertaking uses a two-step coupling argument [17,25] which
might be of some interest. Our coupling aims to “localize” the effect of the under-
lying noise on the solution u to (SHE), and ultimately leads to an estimate of a so
called spatial “correlation length” for the solution to (SHE). That estimate follows
our earlier bound [11] that was devised for space-time white noise. But the presence
of spatial correlations adds a number of subtle (but quite serious) technical prob-
lems.
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492 D. Conus et al.

We prove Theorem 2.1 in Sect. 6 by showing that supz∈Rd |ut (z)| ∈ Lk(P) for all
k ∈ [2,∞). We do this by finding sharp estimates of the kth moment of the random
variable supy∈T (x) |ut (y)| as ‖x‖ → ∞, where T (x) denotes the hypercube centered
at x ∈ Zd that has side length 2d−1/2. That moment estimate in, turn, follows from a
metric entropy argument that is based on a refinement of the Kolmogorov continuity
theorem.

In Sects. 7 and 8 we combine the preceding bounds with the Borel–Cantelli lemma
in order to prove respectively Theorems 2.3 and 2.5. The proof of Theorem 2.6 (Sect. 9)
requires ideas that are similar to those used to prove Theorems 2.3 and 2.5, but the
technical details are quite different.

3 A coupling of the noise

3.1 A construction of the noise

Let W := {Wt (x)}t�0,x∈Rd denote (d + 1)-parameter Brownian sheet. That is, W
is a centered Gaussian random field with the following covariance structure: for all
s, t � 0 and x, y ∈ Rd ,

Cov (Wt (x),Ws(y)) = (s ∧ t) ·
d∏

j=1

(|x j | ∧ |y j |)1(0,∞)(x j y j ). (3.1)

Define Ft to be the sigma-algebra generated by all random variables of the form
Ws(x), as s ranges over [0, t] and x over Rd . As is standard in stochastic analysis, we
may assume without loss of generality that {Ft }t�0 satisfy the “usual conditions” of
the general theory of stochastic processes [16, Chapter 4].

If h ∈ L2(Rd), then we may consider the mean-zero Gaussian random field {(h ∗
Wt )(x)}t�0,x∈Rd that is defined as the following Wiener integral:

(h ∗ Wt )(x) :=
∫

Rd

h(x − z)Wt (dz). (3.2)

It is easy to see that the covariance function of this process is given by

Cov ((h ∗ Wt )(x), (h ∗ Ws)(y)) = (s ∧ t) f (x − y), (3.3)

where we recall, from the introduction, that f := h ∗ h̃. In this way we can define an
isonormal noise F (h) via the following: for every φ ∈ S (the usual space of all test
functions of rapid decrease),

F (h)t (φ) :=
∫

(0,t)×Rd

φ(x)(h ∗ dWs)(x) dx (t > 0). (3.4)
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It is easy to see that the following form of the stochastic Fubini theorem holds:

F (h)t (φ) =
∫

(0,t)×Rd

(φ ∗ h̃)(x)W (ds dx). (3.5)

[Compute the L2(P)-norm of the difference.] In particular, {F (h)t (φ)}t�0 is a Brownian
motion (for each fixed φ ∈ S), normalized so that

Var
(

F (h)1 (φ)
)

=
∫

Rd

∣∣∣(φ ∗ h̃)(x)
∣∣∣
2

dx = 1

(2π)d

∫

Rd

|φ̂(ξ)|2 f̂ (ξ) dξ. (3.6)

(The second identity is a consequence of Plancherel’s theorem, together with the fact
that |ĥ(ξ)|2 = f̂ (ξ).)

3.2 An extension

Suppose h ∈ L2(Rd), and that the underlying correlation function is described by
f := h ∗ h̃. Consider the following probability density function on Rd :

(x) :=
d∏

j=1

(
1 − cos x j

πx2
j

)

for x ∈ Rd . (3.7)

We may build an approximation {n}n�1 to the identity as follows: For all real numbers
n � 1 and for every x ∈ Rd ,

n(x) := nd(nx), so that ̂n(ξ) =
d∏

j=1

(
1 − |ξ j |

n

)+
, (3.8)

for all ξ ∈ Rd .

Lemma 3.1 If h ∈ L2(Rd), then for all φ ∈ S and integers n,m � 1,

E

(

sup
t∈(0,T )

∣∣∣F (h∗n+m)
t (φ)− F (h∗n)

t (φ)

∣∣∣
2
)

� 16d2T

(2π)d

∫

Rd

|φ̂(ξ)|2
(

1 ∧ ‖ξ‖2

n2

)
f̂ (ξ)dξ.

(3.9)

Proof By the Wiener isometry and Doob’s maximal inequality, the left-hand side of
the preceding display is bounded above by 4T Q, where
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Q :=
∫

Rd

∣∣∣
(
φ ∗ ˜h ∗ n+m

)
(x)−

(
φ ∗ ˜h ∗ n

)
(x)
∣∣∣
2

dx

= 1

(2π)d

∫

Rd

|φ̂(ξ)|2 ∣∣̂n+m(ξ)− ̂n(ξ)
∣∣2 f̂ (ξ) dξ ; (3.10)

we have appealed to the Plancherel’s theorem, together with the fact that f̂ (ξ) =
|ĥ(ξ)|2. Because

0 � 1 − ̂n(ξ) � 1 −
((

1 − 1

n
max

1� j�d
|ξ j |
)+)d

� d‖ξ‖
n

, (3.11)

it follows from the triangle inequality that |̂n+m(ξ)−̂n(ξ)| � 2d‖ξ‖/n. This implies
the lemma, because we also have |̂n+m(ξ)− ̂n(ξ)| � ‖n+m‖L1(Rd )+‖n‖L1(Rd ) =
2 � 2d. ��

Lemma 3.1 has the following consequence: Suppose h ∈ W 1,2
loc (R

d), and f := h∗ h̃

in the sense of generalized functions. Because h ∈ W 1,2
loc (R

d), the dominated conver-
gence theorem tells us that

lim
n→∞

∫

Rd

|φ̂(ξ)|2
(

1 ∧ ‖ξ‖2

n2

)
f̂ (ξ) dξ = 0 for all φ ∈ S. (3.12)

Consequently, F (h)t (φ) := limn→∞ F (h∗n)
t (φ) exists in L2(P), locally uniformly in t .

Because L2(P)-limits of centered Gaussian random fields are themselves Gaussian,
it follows that F (h) := {F (h)t (φ)}t�0,φ∈S is a centered Gaussian random field, and

{F (h)t }t�0 is a Brownian motion scaled in order to satisfy (3.6). We mention also that,
for these very reasons, F (h) satisfies (3.5) a.s. for all t � 0 and φ ∈ S. The follow-
ing example shows that one can construct the Gaussian random field F (h) even when
h ∈ W 1,2

loc (R
d) is not in L2(Rd).

Example 3.2 (Riesz kernels) We are interested in correlation functions of the Riesz
type: f (x) = c0 · ‖x‖−α , where x ∈ Rd [and of course α ∈ (0, d) so that f is
locally integrable]. If is well known that f̂ (ξ) = c1 · ‖ξ‖−(d−α) for a positive and
finite constant c1 that depends only on (d, α, c0). We may define h ∈ L1

loc(R
d) via

ĥ(ξ) := c
1/2
1 · ‖ξ‖−(d−α)/2. It then follows that f = h ∗ h̃; and it is clear from the fact

that f̂ = |ĥ|2 that h ∈ W 1,2
loc (R

d) if and only if
∫
‖ξ‖<1 ‖ξ‖2 f̂ (ξ) dξ < ∞, which is

satisfied automatically because α ∈ (0, d).

Of course, even more general Gaussian random fields can be constructed using
only general theory. What is important for the sequel is that here we have con-
structed a random-field-valued stochastic process (t, h) �→ F (h)t ; i.e., the random
fields {F (h)t (φ)}φ∈S are all coupled together as (t, h) ranges over the index set (0,∞)×
W 1,2

loc (R
d).
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3.3 A coupling of stochastic convolutions

Suppose Z := {Zt (x)}t�0,x∈Rd is a random field that is predictable with respect to
the filtration F , and satisfies the following for all t > 0 and x ∈ Rd :

t∫

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x) |E (Zs(y)Zs(z))| f (y − z) < ∞.

(3.13)

Then we may apply the theories of Walsh [29, Chapter 2] and Dalang [13] to the martin-
gale measure (t, A) �→ F (h)t (1A), and construct the stochastic convolution p ∗ Z Ḟ (h)

as the random field

(
p ∗ Z Ḟ (h)

)

t
(x) :=

∫

(0,t)×Rd

pt−s(y − x)Zs(y) F (h)(ds dy). (3.14)

Also, we have the following Itô-type isometry:

E

⎛

⎜
⎝

∣∣∣
∣∣∣∣

∫

(0,t)×Rd

pt−s(y − x)Zs(y) F (h)(ds dy)

∣∣∣
∣∣∣∣

2⎞

⎟
⎠

=
t∫

0

ds
∫

Rd

dy
∫

Rd

dz pt−s(y − x)pt−s(z − x)E [Zs(y)Zs(z)] f (y − z). (3.15)

If h : Rd → R+ is nonnegative and measurable, then we define, for all real numbers
n � 1,

hn(x) := h(x)̂n(x) for every x ∈ Rd . (3.16)

Some important features of this construction are that: (a) 0 � hn � h pointwise;
(b) hn → h as n → ∞, pointwise; (c) every hn has compact support; and (d) if
h ∈ W 1,2

loc (R
d), then hn ∈ W 1,2

loc (R
d) for all n � 1.

For the final results of this section we consider only nonnegative functions h ∈
L2(Rd) that satisfy the following (relatively mild) condition:

sup
r>0

⎡

⎢
⎣ra ·

∫

‖x‖>r

[h(x)]2 dx

⎤

⎥
⎦ < ∞ for some a > 0. (3.17)
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Lemma 3.3 If h ∈ L2(Rd) satisfies (3.17), then there exists b ∈ (0, 2) such that

sup
n�1

⎡

⎢
⎣nb ·

∫

Rd

(
1 ∧ ‖x‖2

n2

)
[h(x)]2 dx

⎤

⎥
⎦ < ∞. (3.18)

Proof We may—and will—assume, without loss of generality, that (3.17) holds for
some a ∈ (0, 2). Then, thanks to (3.17),

∫

‖x‖�n

‖x‖2

n2 [h(x)]2 dx �
∞∑

k=0

4−k
∫

2−k−1n<‖x‖�2−k n

[h(x)]2 dx

� const ·
∞∑

k=0

4−k
(

2−k−1n
)−a

, (3.19)

and this is O(n−a) since a ∈ (0, 2). The lemma follows readily from this. ��
Proposition 3.4 If h ∈ L2(Rd) is nonnegative and satisfies (3.17), then for all pre-
dictable random fields that satisfy (3.13), and for all δ > 1, x ∈ Rd , n � 1, and
k � 2,

M(k)
δ

(
p ∗ Z Ḟ (h) − p ∗ Z Ḟ (hn)

)
� C

√
k

nb
M(k)

δ (Z) (3.20)

for some positive constant C which does not depend on �, where b is the constant
introduced in Lemma 3.3 and M(k)

δ is defined in (1.6).

Remark 3.5 This proposition has a similar appearance as Lemma 3.1. However, note
that here we are concerned with correlations functions of the form q ∗ q̃ where q :=
ĥn , whereas in Lemma 3.1 we were interested in q = h ∗ n . The methods of proof
are quite different.

Proof The present proof follows closely renewal-theoretic ideas that were developed
in [20]. Because we wish to appeal to the same method several more times in the
sequel, we describe nearly all the details once, and then refer to the present discussion
for details in later applications of this method.

Equation (3.5) implies that p ∗ Z Ḟ (h) − p ∗ Z Ḟ (hn) = p ∗ Z Ḟ (D) a.s., where
D := h − hn = h(1 − ̂n) � 0. According to (1.8),

E

⎛

⎜
⎝

∣∣∣∣
∣∣∣

∫

(0,t)×Rd

pt−s(y − x)Zs(y)F
(D)(ds dy)

∣∣∣∣
∣∣∣

k⎞

⎟
⎠

� E

⎛

⎜
⎝

∣
∣∣∣∣∣∣
4k

t∫

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x)Z f (D)(y − z)

∣
∣∣∣∣∣∣

k/2⎞

⎟
⎠ ,

(3.21)
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where Z := |Zs(y)Zs(z)| and f (D) := D ∗ D̃; we observe that f (D) � 0. The
classical Minkowski inequality for integrals implies that ‖ ∫

(0,t)×Rd×Rd ( · · · )‖k/2 �∫
(0,t)×Rd×Rd ‖ · · · ‖k/2. Therefore, it follows that

E

⎛

⎜
⎝

∣∣∣∣∣
∣∣

∫

(0,t)×Rd

pt−s(y − x)Zs(y)F
(D)(ds dy)

∣∣∣∣∣
∣∣

k⎞

⎟
⎠

�

∣∣∣
∣∣∣∣
4k

t∫

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x) f (D)(z − y)‖Zs(y)Zs(z)‖k/2

∣∣∣
∣∣∣∣

k/2

.

(3.22)

Young’s inequality shows that the function f (D) = D ∗ D̃ is bounded uniformly from
above by

‖D‖2
L2(Rd )

= ‖h(1 − ̂n)‖2
L2(Rd )

�
(

d

n

)2 ∫

|z|∞�n

[‖z‖h(z)]2dz

+
∫

|z|∞>n

[h(z)]2dz = O(n−b), (3.23)

where |z|∞ := max1� j�n |z j |; see also Lemma 3.3. Therefore

E

⎛

⎜
⎝

∣∣∣
∣∣∣∣

∫

(0,t)×Rd

pt−s(y − x)Zs(y)F
(D)(ds dy)

∣∣∣
∣∣∣∣

k⎞

⎟
⎠

= O(n−bk/2)

∣∣∣∣∣∣
∣
k

t∫

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x)‖Zs(y)Zs(z)‖k/2

∣∣∣∣∣∣
∣

k/2

.

(3.24)

According to the Cauchy–Schwarz inequality, ‖Zs(y)Zs(z)‖1/2
k/2 is bounded above by

supw∈Rd ‖Zs(w)‖k � eδsM(k)
δ (Z), and the proposition follows. ��

4 Moment and tail estimates

In this section we state and prove a number of inequalities that will be needed subse-
quently. Our estimates are developed in different subsections for the different cases
of interest [e.g., σ bounded, σ(u) ∝ u, f = h ∗ h̃ for h ∈ L2(Rd), f (x) ∝ ‖x‖−α ,
etc.]. Although the techniques vary from one subsection to the next, the common
theme of this section is that all bounds are ultimately derived by establishing moment
inequalities of one sort or another.
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4.1 An upper bound in the general h ∈ L2(Rd) case

Proposition 4.1 Let u denote the solution to (SHE), where f := h ∗ h̃ for some non-
negative h ∈ L2(Rd). Then, for all t > 0 there exists a positive and finite constant
γ = γ (d, f (0), t)—independent of �—such that for all λ > e,

sup
x∈Rd

P {ut (x) > λ} � γ−1e−γ (log λ)2 . (4.1)

Proof Because |(pt ∗ u0)(x)| � ‖u0‖L∞(Rd ) uniformly in x ∈ Rd , we can appeal to
(1.8) and (2.2) in order to obtain

‖ut (x)‖k � ‖u0‖L∞(Rd ) +

∥∥∥∥∥∥
∥

∫

(0,t)×Rd

pt−s(y − s)σ (us(y))F
(h)(ds dy)

∥∥∥∥∥∥
∥

k

� ‖u0‖L∞(Rd ) + 2
√

k

⎛

⎜
⎝E

⎡

⎢
⎣

⎛

⎜
⎝

t∫

0

ds
∫∫

Rd×Rd

dy dz Q

⎞

⎟
⎠

k/2⎤

⎥
⎦

⎞

⎟
⎠

1/k

, (4.2)

where Q := f (y − z)pt−s(y − x)pt−s(z − x)σ (us(y))σ (us(z)); see the proof of
Proposition 3.4 for more details on this method. Since |Q| is bounded above by W :=
f (0)pt−s(y − x)pt−s(z − x)|σ(us(y)) · σ(us(z))| we find that

‖ut (x)‖k � ‖u0‖L∞(Rd ) +
⎛

⎜
⎝4k

t∫

0

ds
∫∫

Rd×Rd

dy dz ‖W‖k/2

⎞

⎟
⎠

1/2

, (4.3)

Because |σ(z)| � |σ(0)| + Lipσ |z| for all z ∈ R, we may apply the Cauchy–Schwarz
inequality to find that ‖ut (x)‖k is bounded above by

‖u0‖L∞(Rd ) +
⎛

⎜
⎝4k · f (0)

t∫

0

ds
∫

Rd

dy pt−s(y − x)‖σ(us(y))‖2
k

⎞

⎟
⎠

1/2

� ‖u0‖L∞(Rd )+
⎛

⎜
⎝4k · f (0)

t∫

0

ds
∫

Rd

dy pt−s(y−x)
[|σ(0)|+Lipσ‖us(y)‖k

]2

⎞

⎟
⎠

1/2

.

(4.4)

We introduce a parameter δ > 0 whose value will be chosen later on. It follows from
the preceding and some algebra that

‖ut (x)‖2
k � 2‖u0‖2

L∞(Rd )
+ 16k f (0)

(
|σ(0)|2t + Lip2

σ e2δtA
)
, (4.5)
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where A := ∫ t
0 ds e−2δ(t−s)

∫
Rd dy pt−s(y − x)e−2δs‖us(y)‖2

k . Note that

A �
t∫

0

ds e−2δ(t−s)
∫

Rd

dy pt−s(y − x)
[
M(k)

δ (u)
]2

� 1

2δ

[
M(k)

δ (u)
]2
. (4.6)

Therefore, for all δ > 0 and k � 2, [M(k)
δ (u)]2 is bounded above by

2‖u0‖2
L∞(Rd )

+ 16k f (0)

(

|σ(0)|2 sup
t�0

[
te−2δt

]
+ Lip2

σ

2δ

[
M(k)

δ (u)
]2
)

. (4.7)

Let us choose δ := (
1 ∨ 16 f (0)Lip2

σ

)
k in order to find that [M(k)

δ (u)]2 is bounded
above by 4u2

0 + Ck for some constant C > 0 that does not depend on k. Hence,

sup
x∈Rd

‖ut (x)‖k � const · √
k e
(
1∨16 f (0)Lip2

σ

)
kt . (4.8)

Lemma 3.4 of [11] then tells us that there exists γ := γ (t) > 0 sufficiently small
[how small depends on t but not on (�, x)] such that E[exp(γ (log+ ut (x))2)] < ∞.
Therefore, the proposition follows from Chebyshev’s inequality. ��

4.2 Lower bounds for h ∈ L2(Rd) when σ is bounded

Lemma 4.2 Let u denote the solution to (SHE), where σ is assumed to be bounded
uniformly away from zero and infinity and infx∈Rd u0(x) > 0. If f = h ∗ h̃ for some
nonnegative h ∈ L2(Rd), then for all t > 0 there exist positive and finite constants
c1 = c1(�, t, d, f ) and c2 = c2(t, d, f )—independent of �—such that uniformly for
all λ > e,

c−1
1 e−c1λ

2 � inf
x∈Rd

P {|ut (x)| > λ} � sup
x∈Rd

P {|ut (x)| > λ} � c−1
2 e−c2λ

2
. (4.9)

Furthermore, sup�∈(0,�0)
c1(�) < ∞ for all �0 < ∞.

Proof Choose and fix an arbitrary τ > 0, and consider the continuous L2(P) martin-
gale {Mt }t∈[0,τ ] defined by

Mt := (pτ ∗ u0)(x)+
∫

(0,t)×Rd

pτ−s(y − x)σ (us(y)) F (h)(ds dy), (4.10)

as t ranges within (0, τ ). By Itô’s formula, for all even integers k � 2,

Mk
t = (pτ ∗ u0)(x)

k + k

t∫

0

Mk−1
s dMs +

(
k

2

) t∫

0

Mk−2
s d〈M〉s . (4.11)
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The final integral that involves quadratic variation can be written as

t∫

0

Mk−2
s

⎡

⎢
⎣
∫

Rd

dy
∫

Rd

dz pτ−s(y − x)pτ−s(z − x) f (z − y)Z

⎤

⎥
⎦ ds, (4.12)

where Z := σ(us(y))σ (us(z)) � ε2
0 for some ε0 > 0. This is because σ is uniformly

bounded away from 0. Thus, the last integral in (4.11) is bounded below by

ε2
0

t∫

0

Mk−2
s

⎡

⎢
⎣
∫

Rd

dy
∫

Rd

dz pτ−s(y − x)pτ−s(z − x) f (z − y)

⎤

⎥
⎦ ds

= ε2
0

t∫

0

Mk−2
s 〈pτ−s, pτ−s ∗ f 〉L2(Rd ) ds, (4.13)

where 〈a, b〉L2(Rd ) := ∫
Rd a(x)b(x) dx denotes the usual inner product on L2(Rd).

This leads us to the recursive inequality,

E(Mk
t ) �

(
inf

x∈Rd
u0(x)

)k

+
(

k

2

)
ε2

0 ·
t∫

0

E(Mk−2
s )〈pτ−s, pτ−s ∗ f 〉L2(Rd ) ds.

(4.14)

Next, consider the Gaussian process {ζt }t�0 defined by

ζt := ε0

∫

(0,t)×Rd

pτ−s(y − x) F (h)(ds dy) (0 < t < τ). (4.15)

We may iterate, as was done in [11, proof of Proposition 3.6], in order to find that

E(Mk
t ) � E

([
inf

x∈Rd
u0(x)+ ζt

]k
)

� E
(
ζ k

t

)
�
(

const · k E
[
ζ 2

t

])k/2
. (4.16)

Now E(ζ 2
t ) = ε2

0

∫ t
0 〈pτ−s, pτ−s ∗ f 〉L2(Rd )ds. Since pτ−s ∈ S for all s ∈ (0, τ ),

Parseval’s identity applies, and it follows that

〈pτ−s, pτ−s ∗ f 〉L2(Rd ) = 1

(2π)d

∫

Rd

f̂ (ξ)e−�(τ−s)‖ξ‖2
dξ. (4.17)
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Therefore,

E(ζ 2
τ ) = ε2

0

(2π)d

∫

Rd

f̂ (ξ)

[
1 − e−�τ‖ξ‖2

�‖ξ‖2

]

dξ

� ε2
0

2(2π)d

∫

Rd

f̂ (ξ)

τ−1 + �‖ξ‖2 dξ. (4.18)

This requires only the elementary bound (1 − e−z)/z � (2(1 + z))−1, valid for all
z > 0. Since Mt = ut (x) when t = τ , it follows that

c(�)
√

k � inf
x∈Rd

‖ut (x)‖k, (4.19)

for all k � 2, where c(�) = c(t, �, f, d) is positive and finite, and has the additional
property that

inf
�∈(0,�0)

c(�) > 0 for all �0 > 0. (4.20)

Similar arguments reveal that

sup
x∈Rd

‖ut (x)‖k � c′√k, (4.21)

for all k � 2, where c′ is a positive and finite constant that depends only on (t, f, d).
The result follows from the preceding two moment estimates (see [11] for details).

��
Lemma 4.3 Let u denote the solution to (SHE), where σ is assumed to be bounded
uniformly away from zero and infx∈Rd u0(x) > 0. If f = h ∗ h̃ for some nonneg-
ative h ∈ L2(Rd), then for all t > 0 there exists a positive and finite constant
a(�) := a(�, t, d, f ) such that uniformly for every λ > e,

P{|ut (x)| � λ} �
exp
(−a(�)λ4

)

√
a(�)

. (4.22)

Furthermore, sup�∈(0,�0)
a(�) < ∞ for all �0 > 0.

Proof The proof of this proposition is similar to the proof of Proposition 3.7 in the
companion paper [11], and uses the following elementary fact (called the “Paley–Zyg-
mund inequality”): If Z ∈ L2(P) is nonnegative and ε ∈ (0, 1), then

P {Z > (1 − ε)EZ} � (εEZ)2

E(Z2)
. (4.23)

This is a ready consequence of the Cauchy–Schwarz inequality.
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Note, first, that the moment bound (4.19) continues to hold for a constant c(�) =
c(t, �, f, d) that satisfies (4.20). We can no longer apply (4.21), however, since that
inequality used the condition that σ is bounded above; a property that need not hold
in the present setting. Fortunately, the general estimate (4.8) is valid with “const” not
depending on �. Therefore, we appeal to the Paley–Zygmund inequality (4.23) to see
that

P

{
|ut (x)| � 1

2
‖ut (x)‖2k

}
�
[
E
(|ut (x)|2k

)]2

4E
(|ut (x)|4k

) � const · [c(�)]2e−Ck2
, (4.24)

as k → ∞, where C ∈ (0,∞) does not depend on (k, �). Since ‖ut (x)‖2k � c(�) ·√
2k, it follows that P{|ut (x)| � c(�) · √

k/2} � exp(−C ′k2) as k → ∞ for some
C ′ which depends only on t . We obtain the proposition by considering λ between
c(�) · √

k/2 and c(�) · √
(k + 1)/2. ��

4.3 A lower bound for the parabolic Anderson model for h ∈ L2(Rd)

Throughout this subsection we consider u to be the solution to the parabolic Anderson
model (PAM) in the case that infx∈Rd u0(x) > 0. It might help to also recall (1.9).

Proposition 4.4 There exists a constant �d ∈ (0,∞)—depending only on d—such
that for all t, � > 0 and k � 2,

uk
0 exp

(
�dat k

2
)

� E
(
|ut (x)|k

)
� uk

0 exp
(

t f (0)k2
)
, (4.25)

where at = at ( f, �) > 0 for all t, � > 0, and is defined by

at := sup
δ>0

[
δ2

4�

(
1 ∧ 4�t

δ2

)
inf

x∈B(0,δ)
f (x)

]
. (4.26)

This proves, in particular, that the exponent estimate
(
1 ∨ 16 f (0)Lip2

σ

)
k2t , derived

more generally in (4.8), is sharp—up to a constant—as a function of k.
The proof of Proposition 4.4 hinges on the following variation of a Feynman–Kac-

type representation of the solution to (SHE). It is a ready consequence of a moment
formula of Conus [10]; see also [4,22] for related results and special cases.

Lemma 4.5 ([10]) For all t > 0, and x ∈ Rd:

E
(
|ut (x)|k

)
� uk

0 · E exp

⎛

⎝
∑∑

1�i �= j�k

t∫

0

f
(√
�
[
b(i)r − b( j)

r

])
dr

⎞

⎠ ,

E
(
|ut (x)|k

)
� uk

0 · E exp

⎛

⎝
∑∑

1�i �= j�k

t∫

0

f
(√
�
[
b(i)r − b( j)

r

])
dr

⎞

⎠ ,

(4.27)

where b(1), b(2), . . . denote independent standard Brownian motions in Rd .
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Proof of Proposition 4.4 The upper bound for E(|ut (x)|k) follows readily from Lemma
4.5 and the basic fact that f is maximized at the origin.

In order to establish the lower bound recall that f is continuous and f (0) > 0.
Because f (x) � q1B(0,δ)(x) for all δ > 0, with q = q(δ) := infx∈B(0,δ) f (x), it
follows that if b(1), . . . , b(k) are independent d-dimensional Brownian motions, then

∑∑

1�i �= j�k

t∫

0

f
(√
�
[
b(i)r − b( j)

r

])
dr

� q
∑∑

1�i �= j�k

t∫

0

1B(0,δ/
√
�)

(
b(i)r − b( j)

r

)
dr

� q
∑∑

1��= j�k

t∫

0

1B(0,δ/(2
√
�))(b

(i)
r )1B(0,δ/2

√
�)(b

( j)
r ) dr. (4.28)

Recall Jensen’s inequality,

E(eZ ) � eEZ , (4.29)

valid for all nonnegative random variables Z . Because of (4.29), Lemma 4.5 and the
preceding, we can conclude that

E
(
|ut (x)|k

)
� I k · E exp

⎛

⎝q
∑∑

1�i �= j�k

t∫

0

1B(0,δ/(2
√
�))(b

(i)
r )1B(0,δ/2

√
�)(b

( j)
r ) dr

⎞

⎠

= I k · exp

⎛

⎝qk(k − 1) ·
t∫

0

[
G

(
δ

2
√
�
√

r

)]2

dr

⎞

⎠ , (4.30)

where I := inf u0 and G(z) := (2π)−d/2
∫
‖x‖�z e−‖x‖2/2 dx for all z > 0. Because

k(k − 1) � k2/4 for all k � 2, and we find that E(|ut (x)|k) � I k · exp(Aδk2), where
Aδ is defined as

q

4

t∫

0

[
G

(
δ

2
√
�
√

r

)]2

dr = inf
x∈B(0,δ)

f (x) ·
t∫

0

[
1

2
G

(
δ

2
√
�
√

r

)]2

dr. (4.31)

Finally, we observe that

0 < �̃d := inf
z>0

[
1
2 G(z)

1 ∧ zd

]1/2

< ∞. (4.32)
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A few lines of computation yield the bound, supδ>0 Aδ � �̃dat . The lemma follows
from this by readjusting and relabeling the constants. ��

5 Localization when h ∈ L2(Rd) satisfies (3.17)

Throughout this section we assume that h ∈ L2(Rd) is nonnegative and satisfies
condition (3.17). Moreover, we let u denote the solution to (SHE).

In order to simplify the notation we define, for every x := (x1, x2, . . . , xd) ∈ Rd

and a ∈ R+,

[x − a, x + a] := [x1 − a, x1 + a] × · · · × [xd − a, xd + a]. (5.1)

That is, [x − a, x + a] denotes the �∞ ball of radius a around x .
Given an arbitrary β > 0, define U (β) to be the solution to the random integral

equation

U (β)
t (x)=(pt ∗ u0)(x)+

∫

(0,t)×[x−β√
t,x+β√

t]
pt−s(y−x)σ

(
U (β)

s (y)
)

F (hβ)(ds dy),

(5.2)

where hβ is defined in (3.16). A comparison with the mild form (2.2) of the solution
to (SHE) shows that U (β) is a kind of “localized” version of u. Our goal is to prove
that if β is sufficiently large, then U (β)

t (x) ≈ ut (x).
The method of Dalang [13] can be used to prove that the predictable random field

U (β) exists, is unique up to a modification, and satisfies the estimate
supt∈[0,T ] supx∈Rd E(|U (β)

t (x)|k) < ∞ for every T > 0 and k � 2. Furthermore, the
method of Foondun and Khoshnevisan [20] shows that, in fact U (β) satisfies a similar
bound as does u in (4.8). Namely, there exists a constant D1 ∈ (0,∞)—depending
on σ and t—such that for all t > 0 and k � 2,

sup
β>0

sup
x∈Rd

E
(
|U (β)

t (x)|k
)

� D1eD1k2t . (5.3)

We skip the details of the proofs of these facts, as they require only simple modifica-
tions to the methods of [13,20].

Remark 5.1 We emphasize that D1 depends only on (t, f (0), d, σ ). In particular, it
can be chosen to be independent of �. In fact, D1 has exactly the same parameter
dependencies as the upper bound for the moment estimate in (4.8); and the two asser-
tions holds for very much the same reasons. ��
Lemma 5.2 For every T > 0 there exists finite and positive constants G∗ and F∗—
depending only on (T, f (0), d, �, b, σ )—such that for sufficiently large β > 0 and
k � 1,
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sup
t∈[0,T ]

sup
x∈Rd

E

(∣∣∣ut (x)− U (β)
t (x)

∣∣∣
k
)

� Gk∗kk/2 exp(F∗k2)

βkb/2 , (5.4)

where b ∈ (0, 2) was introduced in Lemma 3.3.

Proof By the triangle inequality,

∥
∥∥ut (x)− U (β)

t (x)
∥
∥∥

k

�
∥
∥∥ut (x)− V (β)

t (x)
∥
∥∥

k
+
∥
∥∥V (β)

t (x)− Y (β)t (x)
∥
∥∥

k
+
∥
∥∥Y (β)t (x)− U (β)

t (x)
∥
∥∥

k
,

(5.5)

where

V (β)
t (x) := (pt ∗ u0)(x)+

∫

(0,t)×Rd

pt−s(y − x)σ
(

U (β)
s (y)

)
F (h)(ds dy), (5.6)

and

Y (β)t (x) := (pt ∗ u0)(x)+
∫

(0,t)×Rd

pt−s(y − x)σ
(

U (β)
s (y)

)
F (hβ)(ds dy). (5.7)

In accord with (3.24) and (5.3),

‖V (β) − Y (β)‖k � const ·
√

kt

βb
eD1tk (5.8)

where we remind that D1 is a constant that does not depend on �. Next we bound the
quantity ‖Y (β) − U (β)‖k , using the Burkholder–Davis–Gundy inequality, (1.8) and
obtain the following:

∥∥∥Y (β)t (x)− U (β)
t (x)

∥∥∥
k

=

∥∥∥∥
∥∥∥

∫

(0,t)×[x−β√
t,x+β√

t]c

pt−s(y − x)σ
(

U (β)
s (y)

)
F (hβ)(ds dy)

∥∥∥∥
∥∥∥

k

� const ·√k f (0)

⎛

⎜
⎝

t∫

0

ds
∫

[x−β√
t,x+β√

t]c

dy
∫

[x−β√
t,x+β√

t]c

dz W

⎞

⎟
⎠

1/2

, (5.9)

where

W := pt−s(y − x)pt−s(z − x)
(

1 +
∥∥∥U (β)

s (y)
∥∥∥

k

) (
1 +

∥∥∥U (β)
s (z)

∥∥∥
k

)
. (5.10)
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Therefore, (5.3) implies that

∥∥∥Y (β)t (x)− U (β)
t (x)

∥∥∥
k

� D2eD2tk
√

k f (0) · W̃, (5.11)

where D2 ∈ (0,∞) depends only on d, f (0), and t , and

W̃ :=
t∫

0

ds

⎛

⎜
⎝

∫

[x−β√
t, x+β√

t]c

dy pt−s(y − x)

⎞

⎟
⎠

2

. (5.12)

Before we proceed further, let us note that

∫

z∈R:
|z|>β√

t

e−z2/(2�(t−s))

√
2π�(t − s)

dz � 2 · exp

(
− β2t

4�(t − s)

)
. (5.13)

Using the above in (5.11), we obtain

∥
∥∥Y (β)t (x)− U (β)

t (x)
∥
∥∥

k
� 2D2eD2tk

√
kt f (0) exp

(
−dβ2

4�

)
. (5.14)

Next we estimate ‖ut (x)− V (β)
t (x)‖k . An application of (1.8) yields

∥∥∥ut (x)− V (β)
t (x)

∥∥∥
k

�

∥∥∥∥∥
∥∥

∫

(0,t)×Rd

pt−s(y − x)
{
σ(us(y))− σ(U (β)

s (y))
}

F (h)(ds dy)

∥∥∥∥∥
∥∥

k

� 2
√

k

∥∥∥∥
∥∥∥

t∫

0

ds
∫

Rd

dy
∫

Rd

dz f (y − z)pt−s(y − x)pt−s(z − x)Q

∥∥∥∥
∥∥∥

k/2

, (5.15)

where Q := |σ(us(y))− σ(U (β)
s (y))| · |σ(us(z))− σ(U (β)

s (z))|. Since σ is Lipschitz
continuous, it follows from Minkowski’s inequality that

∥∥∥ut (x)− V (β)
t (x)

∥∥∥
2

k
� 4Lip2

σ k f (0)

t∫

0

Q∗
s ds, (5.16)
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where Q∗
s := supy∈Rd ‖us(y)− U (β)

s (y)‖2
k . Equations (5.5), (5.8) and (5.14) together

imply that Q∗
t � const · ktβ−beconst·kt + const · k f (0) · ∫ t

0 Q∗
s ds. Therefore,

Q∗
t � const ·

(
tkeconst·kt

βb

)
for all t > 0, (5.17)

owing to Gronwall’s inequality. Because “const” does not depend on (k, t), we take
both sides to the power k/2 in order to finish the proof. ��

Now, let us define U (β,n)
t to be the nth Picard-iteration approximation of U (β)

t (x).
That is , U (β,0)

t (x) := u0(x) , and for all l � 0,

U (β,l+1)
t (x) := (pt ∗ u0) (x)

+
∫

(0,t)×[x−β√
t,x+β√

t]
pt−s(y − x)σ

(
U (β,l)

s (y)
)

F (hβ)(ds dy). (5.18)

Lemma 5.3 For every T > 0 there exists finite and positive constants G and F—
depending only on (T, f (0), d, �, b, σ )—such that for sufficiently large β > 0 and
k � 1,

sup
t∈[0,T ]

sup
x∈Rd

E

(∣∣
∣ut (x)− U (β,[logβ]+1)

t (x)
∣∣
∣
k
)

� Gkkk/2 exp(Fk2)

βkb/2 , (5.19)

where b ∈ (0, 2) was introduced in Lemma 3.3.

Proof The method of Foondun and Khoshnevisan [18] can be used to show that if
δ := D′k for a sufficiently-large positive and finite constant D′, then

M(k)
δ

(
U (β) − U (β,n)

)
� const · e−n for all n � 0 and k ∈ [2,∞). (5.20)

To elaborate, we replace the un of Ref. [18, (5.36)] by our U (β,n) and obtain

‖U (β,n+1) − U (β,n)‖k,θ � ‖U (β,n) − U (β,n−1)‖k,θ · Q(k, θ), (5.21)

where ‖X‖k,θ := {supt�0 supx∈R e−θ t E(|Xt (x)|k)}1/k = M(k)
θ/k(X), for all random

fields {Xt (x)}t>0,x∈Rd , and Q(k, θ) is defined in Theorem 1.3 of [18]. We recall from
[18] that Q(k, θ) satisfies the following bounds:

Q(k, θ) �
√

4kLip2
σ · ϒ

(
2θ

k

)
� const · k‖h‖L2(Rd )

θ 1/2
. (5.22)
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[The function ϒ is defined in [18, (1.8)].] Therefore, it follows readily from these
bounds that if θ := D′′k2 for a large enough D′′ > 0, then

∥∥∥U (β,n+1) − U (β,n)
∥∥∥

k,θ
� e−1

∥∥∥U (β,n) − U (β,n−1)
∥∥∥

k,θ
. (5.23)

We obtain (5.20) from this inequality.
Finally we set n := [logβ] + 1 and apply the preceding together with Lemma 5.2

to finish the proof. ��

For every x, y ∈ Rd , let us define

D(x, y) := min
1�l�d

|xl − yl |. (5.24)

Lemma 5.4 Choose and fix β � 1, t > 0 and let n := [logβ] + 1. Also fix
x (1), x (2), . . . ∈ Rd such that D(x (i), x ( j)) � 2nβ(1 + √

t). Then {U (β,n)
t (x ( j))} j∈Z

are independent random variables.

Proof The lemma follows from the recursive definition of the U (β,n)’s. Indeed,
U (β,n)

t (x) depends on U (β,n−1)
s (y), y ∈ [x −β√

t, x +β√
t], s ∈ [0, t]. An induction

argument shows that U (β,n)
t (x) depends only on the values of U (β,1)

s (y), as y varies
in [x − (n − 1)β

√
t, x + (n − 1)β

√
t] and s in [0, t].

Finally, we observe that {U (β,1)
s (x)}s∈[0,t], x∈Rd is a Gaussian random field that

has the property that U (β,1)
s (x) and U (β,1)

s (x ′) are independent whenever D(x, x ′) �
2β(1+√

t). [This assertion follows from a direct covariance calculation in conjunction
with the fact that (hβ ∗ h̃β)(z) = 0 when D(0, z) � 2β]. ��

6 Proof of Theorem 2.1

In this section we prove our first main theorem (Theorem 2.1). It is our first proof
primarily because the following derivation is the least technical and requires that we
keep track of very few parameter dependencies in our inequalities.

Define for all k ∈ [2,∞), β > 0, and predictable random fields Z ,

Y(k)β (Z) := sup
t>0

x∈Rd

[

exp

(

−βt +
√
β

8�
‖x‖
)

· ‖Zt (x)‖k

]

. (6.1)

Let us begin by developing a weighted Young’s inequality for stochastic convolu-
tions. This is similar in spirit to the results of Conus and Khoshnevisan [12], extended
to the present setting of correlated noise. However, entirely new ideas are needed in
order to develop this result; therefore, we include a complete proof.
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Proposition 6.1 (A weighted stochastic Young inequality) Let Z := {Zt (x)}t>0,x∈Rd

be a predictable random field. Then for all real numbers k ∈ [2,∞) and β > 0,

Y(k)β
(

p ∗ Z Ḟ
)

� Y(k)β (Z) ·
√

2dk(Rβ/4 f )(0), (6.2)

where Rβ is the resolvent operator defined in (2.3).

Proof For the sake of typographical ease we write c = c(β) := √
β/(8�) throughout

the proof.
Our derivation of (3.22) yields the following estimate:

∥∥(p ∗ Z Ḟ
)

t (x)
∥∥2

k
� 4k

t∫

0

ds
∫

Rd

dy
∫

Rd

dz f (y − z)pt−s(y − x)pt−s(z − x) · Z,

(6.3)

where Z := ‖Zs(y) · Zs(z)‖k/2 � ‖Zs(y)‖k · ‖Zs(z)‖k . Consequently, for all β > 0,

∥
∥(p ∗ Z Ḟ

)
t (x)

∥
∥2

k

� 4k
[
Y(k)β (Z)

]2 ·
t∫

0

ds
∫

Rd

dy
∫

Rd

dz f (y − z)Ps(y, y − x)Ps(z, z − x), (6.4)

where Ps(a, b) := eβs−c‖a‖ pt−s(b) for all s > 0 and a ∈ Rd . Since ‖y‖ � ‖x‖ −
‖x − y‖ and ‖z‖ � ‖x‖ − ‖x − z‖, it follows that

∥∥(p ∗ Z Ḟ
)

t (x)
∥∥2

k
� 4ke2βt−2c‖x‖ [Y(k)β (Z)

]2 ·
∞∫

0

e−βs (Qs ∗ Qs ∗ f ) (0) ds,

(6.5)

where

Qs(a) := e−(βs/2)+c‖a‖ ps(a) for all s > 0 and a ∈ Rd . (6.6)

Clearly,

if
βs

2
� c‖a‖, then Qs(a) � ps(a). (6.7)

Now consider the case that (βs/2) < c‖a‖. Then,

c‖a‖ − ‖a‖2

2s�
= −‖a‖2

2s�

(
1 − 2s�c

‖a‖
)
< −‖a‖2

2s�

(
1 − 4�c2

β

)
= −‖a‖2

4s�
. (6.8)
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We can exponentiate the preceding to see that, in the case that (βs/2) < c‖a‖,

Qs(a) � e−(βs/2)−‖a‖2/(4s�)

(2π�s)d/2
� 2d/2 p2s(a). (6.9)

Since ps(a) � 2d/2 p2s(a) for all s > 0 and a ∈ Rd , we deduce from (6.7) and (6.9)
that (6.9) holds for all s > 0 and a ∈ Rd . Therefore, the Chapman–Kolmogorov
equation implies that Qs ∗ Qs � 2d p4s , and hence

∞∫

0

e−βs (Qs ∗ Qs ∗ f ) (0) ds � 2d

∞∫

0

e−βs (p4s ∗ f ) (0) ds

= 2d−2(Rβ/4 f )(0). (6.10)

The proposition now follows from (6.5). ��
Next we state and prove an elementary estimate for the heat semigroup.

Lemma 6.2 Suppose φ : Rd → R is a measurable function and L(c) :=
supx∈Rd (ec‖x‖|φ(x)|) is finite for some c > 0. Then Y(k)

8c2�
(p ∗ φ) � 2d/2L(c) for

all k ∈ [2,∞).

Proof Let us define β := 8c2�, so that c = √
β/(8�). Then,

e−βt+c‖x‖ |(pt ∗ φ)(x)| =
∫

Rd

e−βt+c‖x‖ pt (x − y)|φ(y)| dy

�
∫

Rd

e−βt+c‖x−y‖ pt (x − y) · ec‖y‖|φ(y)| dy

� L(c)
∫

Rd

e−βt+c‖z‖ pt (z) dz � L(c)
∫

Rd

Qt (z) dz, (6.11)

where the function Qt (z) is defined in (6.6). We apply (6.9) to deduce from this that
e−βt+c‖x‖|(pt ∗ φ)(x)| � 2d/2L(c)

∫
Rd p2t (z) dz = 2d/2 L(c). Optimize over t and x

to finish. ��
We will next see how to combine the preceding results in order to establish the

rapid decay of the moments of the solution to (SHE) as ‖x‖ → ∞.

Proposition 6.3 Recall that u0 : Rd → R is a bounded and measurable function and
σ(0) = 0. If, in addition, lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞, then

lim sup
‖x‖→∞

log E(|ut (x)|k)
‖x‖ < 0 for all t > 0 and k ∈ [2,∞). (6.12)
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Proof For all t > 0 and x ∈ Rd , define u(0)t (x) := u0(x), and

u(l+1)
t (x) := (pt ∗ u0)(x)+

(
p ∗
(
σ ◦ u(l)

)
Ḟ
)

t
(x) for all l � 0. (6.13)

That is, u(l) is the lth level in the Picard iteration approximation to the solution u. By
the triangle inequality,

Y(k)β
(

u(l+1)
)

� Y(k)β (p ∗ u0)+ Y(k)β
((

p ∗
(
σ ◦ u(l)

)
Ḟ
))

� Y(k)β (p ∗ u0)+ Y(k)β
(
σ ◦ u(l)

)
·
√

2dk(Rβ/4 f )(0); (6.14)

see Proposition 6.1. Because |σ(z)| � Lipσ |z| for all z ∈ Rd , it follows from the
triangle inequality that

Y(k)β
(

u(l+1)
)

� Y(k)β (p ∗ u0)+ Y(k)β
(

u(l)
)

·
√

2dLip2
σ k(Rβ/4 f )(0). (6.15)

By the dominated convergence theorem, limq→∞(Rq f )(0) = 0. Therefore, we may

choose β large enough to ensure that the coefficient of Y(k)β (u(l)) in the preceding is
at most 1/2. The following holds for this choice of β:

sup
l�0

Y(k)β
(

u(l+1)
)

� 2Y(k)β (p ∗ u0) � 2(d+2)/2 sup
x∈Rd

(
e‖x‖√β/(8�)|u0(x)|

)
; (6.16)

we have applied Lemma 6.2 in order to deduce the final inequality. According to the
theory of Dalang [13], u(l)t (x) → ut (x) in probability as l → ∞, for all t > 0 and
x ∈ Rd . Therefore, Fatou’s lemma implies that

Y(k)β (u) � 2(d+2)/2 sup
x∈Rd

(
e‖x‖√β/(8�)|u0(x)|

)
; (6.17)

whence follows the result (after some arithmetic). ��
Next we introduce a fairly crude estimate for the spatial oscillations of the solution

to (SHE), in the sense of Lk(P). We begin with an estimate of L1(Rd)-derivatives of
the heat kernel. This is without doubt a well-known result, though we could not find
an explicit reference. In any event, the proof is both elementary and short; therefore
we include it for the sake of completeness.

Lemma 6.4 For all s > 0 and x ∈ Rd ,

∫

Rd

|ps(y − x)− ps(y)| dy � const ·
( ‖x‖√

�s
∧ 1

)
, (6.18)

where the implied constant does not depend on (s, x).
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Proof For s fixed, let us define

μd(r) = μd(r ; s) := sup
z∈Rd

‖z‖�r

∫

Rd

|ps(y − z)− ps(y)| dy for all r > 0. (6.19)

First consider the case that d = 1. In that case, we may use the differential equation
p′

s(w) = −(w/�s)ps(w) in order to see that

μ1(|x |) = sup
z∈(0,|x |)

∞∫

−∞

∣∣∣
∣∣∣

y∫

y−z

p′
s(w) dw

∣∣∣
∣∣∣

dy

� 1

�s
sup

z∈(0,|x |)

∞∫

−∞
dy

y∫

y−z

dw |w|ps(w) = |x |
�s

∞∫

−∞
|w|ps(w) dw

=
√

2

π�s
|x | for all x ∈ R. (6.20)

For general d, we can integrate one coordinate at a time and then apply the triangle
inequality to see that for all x := (x1, . . . , xd) ∈ Rd , μd(‖x‖) �

∑d
j=1 μ1(‖x‖) �√

2/(π�s) d‖x‖. Because |ps(y − x) − ps(y)| � ps(y − x) + ps(y), we also have
μd(‖x‖) � 2. ��
Proposition 6.5 Let us assume that: (i) lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞, (ii)

σ(0) = 0, and (iii)
∫ 1

0 s−a(ps ∗ f )(0) ds < ∞ for some a ∈ (0, 1/2). Then for all
t > 0 and k ∈ [2,∞) there exists a constant C ∈ (1,∞) such that uniformly for all
x, x ′ ∈ Rd that satisfy ‖x − x ′‖ � 1,

E
(
|ut (x)− ut (x

′)|k
)

� C exp

(
−‖x‖ ∧ ‖x ′‖

C

)
· ‖x − x ′‖ak/4. (6.21)

Proof First of all, we note that

∣∣(pt ∗ u0)(x)− (pt ∗ u0)(x
′)
∣∣ � ‖u0‖L∞(Rd ) ·

∫

Rd

∣∣pt (y − x)− pt (y − x ′)
∣∣ dy

� const · ‖x − x ′‖; (6.22)

see Lemma 6.4. Now we may use this estimate and the same argument that led us to
(3.22) in order to deduce that for all � ∈ [2,∞),

‖ut (x)− ut (x
′)‖2

� � const · ‖x − x ′‖2

+const ·
t∫

0

ds
∫

Rd

dy
∫

Rd

dz f (y − z)ABs(y)Bs(z), (6.23)
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where

A := As(y, z) := ‖us(y) · us(z)‖2
�/2 , and

Bs(w) := ∣∣pt−s(w − x)− pt−s(w − x ′)
∣∣ for all w ∈ Rd .

(6.24)

According to [13], sups∈[0,T ] supy,z∈Rd A < ∞. On the other hand, (Bs ∗ f )(z) �
2 supw∈Rd (pt−s ∗ f )(w), and the latter quantity is equal to 2(pt−s ∗ f )(0) since pr ∗ f
is positive definite and continuous for all r > 0 (whence is maximized at the origin).
We can summarize our efforts as follows:

‖ut (x)− ut (x
′)‖2

�

� const · ‖x − x ′‖2 + const ·
t∫

0

(ps ∗ f )(0) ds
∫

Rd

dz
∣∣ps(z − x)− ps(z − x ′)

∣∣

� const · ‖x − x ′‖2 + const ·
t∫

0

(ps ∗ f )(0)

(‖x − x ′‖√
s

∧ 1

)
ds; (6.25)

see Lemma 6.4 below, for instance. We remark that the implied constants do not depend
on (x, x ′). Since r ∧ 1 � r2a for all r > 0, it follows that

‖ut (x)− ut (x
′)‖� � const · ‖x − x ′‖a/2, (6.26)

where the implied constant does not depend on (x, x ′) as long as ‖x − x ′‖ � 1 (say).
Next we write

E
(
|ut (x)− ut (x

′)|k
)

� E
(
|ut (x)− ut (x

′)|k/2 · {|ut (x)| + |ut (x
′)|}k/2

)

� const · ∥∥ut (x)− ut (x
′)
∥∥k/2

k

(
‖ut (x)‖k/2

k ∨ ‖ut (x
′)‖k/2

k

)
, (6.27)

by Hölder’s inequality. Proposition 6.3 and Eq. (6.26) together complete our proof.
��

Proposition 6.5 and a quantitative form of Kolmogorov’s continuity lemma [14, pp.
10–12] readily imply the following.

Corollary 6.6 Let us assume that: (i) lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞, (ii)

σ(0) = 0, and (iii)
∫ 1

0 s−a(ps ∗ f )(0) ds < ∞ for some a ∈ (0, 1/2). Then for all
t > 0 and k ∈ [2,∞) there exists a constant C ∈ (1,∞) such that uniformly for all
hypercubes T ⊂ Rd of sidelength 2/

√
d,

E

(

sup
x,x ′∈T

|ut (x)− ut (x
′)|k
)

� C exp

(
− 1

C
inf
z∈T

‖z‖
)
. (6.28)

Finally, we are in position to establish Theorem 2.1.
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Proof of Theorem 2.1 Define

T (x) :=
{

y ∈ Rd : max
1� j�d

|x j − y j | � 2√
d

}
for every x ∈ Rd . (6.29)

Then, for all t > 0 and k ∈ [2,∞), there exists a constant c ∈ (0, 1) such that
uniformly for every x ∈ Rd ,

E

(

sup
y∈T (x)

|ut (y)|k
)

� 2k

{

E
(
|ut (x)|k

)
+ E

(

sup
y∈T (x)

|ut (y)− ut (x)|k
)}

� 1

c
·
{

e−c‖x‖ + exp

(
−c inf

y∈T (x)
‖y‖
)}

; (6.30)

see Proposition 6.3 and Corollary 6.6. Because inf y∈T (x) ‖y‖ � ‖x‖−1 for all x ∈ Zd ,
the preceding is bounded by const · exp(−const · ‖x‖), whence E(supz∈Rd |ut (z)|k) �∑

x∈Zd E(supy∈T (x) |ut (y)|k) is finite.

7 Proof of Theorem 2.3

Throughout this section, we assume that f = h ∗ h̃ for some nonnegative function
h ∈ L2(Rd) that satisfies (3.17). Moreover, we let u denote the solution to (SHE).

7.1 The first part

Here and throughout we define for all R, t > 0

u∗
t (R) := sup

‖x‖�R
|ut (x)|. (7.1)

As it turns out, it is easier to prove slightly stronger statements than (2.7) and (2.8).
The following is the stronger version of (2.7).

Proposition 7.1 If σ is bounded uniformly away from zero, then

lim inf
R→∞

u∗
t (R)

(log R)1/4
> 0 a.s. (7.2)

Proof Let us introduce a free parameter N � 1, which is an integer that we will select
carefully later on in the proof.
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As before, let us denote n = [logβ]+1. For all θ, R > 0 and x (1), x (2), . . . , x (N ) ∈
Rd , we may write

P

{
max

1� j�N
|ut (x

( j))| < θ(log R)1/4

}

� P

{
max

1� j�N
|U (β,n)

t (x ( j))| < 2θ(log R)1/4

}

+ P

{
max

1� j�N
|ut (x

( j))− U (β,n)
t (x ( j))| > θ(log R)1/4

}
. (7.3)

We bound these quantities in order.
Suppose in addition that D(x (i), x ( j)) � 2nβ(1 + √

t) whenever i �= j , where
D(x, y) was defined in (5.24). Because of Lemma 5.4, the collection {U (β,n)

t (x j )}N
j=1

is comprised of independent random variables. Consequently,

P

{
max

1� j�N
|U (β,n)

t (x ( j))| < 2θ(log R)1/4

}

�
(

P
{∣∣∣U (β,n)

t (x (1))
∣∣∣ < 2θ(log R)1/4

})N
� (T1 + T2)

N , (7.4)

where

T1 := sup
x∈Rd

P
{
|ut (x)| < 3θ(log R)1/4

}
,

T2 := sup
x∈Rd

P
{
|ut (x)− U (β,n)

t (x)| > θ(log R)1/4
}
.

(7.5)

According to Lemma 4.3, T1 � 1 − a(�)− 1
2 R−2(3θ)4a(�) for all R sufficiently large;

and Lemma 5.3 implies that there exists a finite constant m � 1 such that the following
holds uniformly for all k, β � m:

T2 � Gkkk/2eFk2

θkβkb/2(log R)k/4
� c1(k)β

−kb/2(log R)−k/4; (7.6)

for a finite and positive constant c1(k) := c1(k,G, F, θ). We combine the preceding
to find that

(T1 + T2)
N �

(

1 − a(�)− 1
2

R2(3θ)4a(�)
+ c1(k)

βkb/2

)N

, (7.7)
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uniformly for all k, β � m. Because the left-hand side of (7.3) is bounded above by
(T1 + T2)

N + NT2, it follows that

P

{
max

1� j�N
|ut (x

( j))| < θ(log R)1/4

}
�
(

1 − a(�)− 1
2

R2(3θ)4a(�)
+ c1(k)

βkb/2

)N

+ c1(k)N

βkb/2 ,

(7.8)

Now we choose the various parameters as follows: We choose N := �Rq�d and
β := R1−q/ log R, where q ∈ (0, 1) is fixed, and let k � 2 be the smallest integer
so that qd − 1

2 kb(1 − q) < −2 so that Nβ−kb/2 � R−2. In a cube of side length
2(1+√

t)R, there are at least N points separated by “D-distance” 2nβ(1+√
t)where

n := [logβ] + 1. Also choose θ > 0 small enough so that (3θ)4a(�) < q. For these
choices of parameters, an application of the Borel–Cantelli lemma (together with a
monotonicity argument) implies that lim inf R→∞(log R)−1/4 u∗

t (R) > 0 a.s. See [11]
for more details of this kind of argument in a similar setting. ��

7.2 The second part

Similarly as in the proof of Theorem 2.1, we will need a result on the modulus of
continuity of u.

Lemma 7.2 If supx∈R |σ(x)| < ∞, then there exists a constant C = C(t) ∈ (0,∞)

such that

E
(∣
∣ut (x)− ut (x

′)
∣
∣2k
)

�
(

Ck√
�

)k

· ‖x − x ′‖k, (7.9)

uniformly for all x, x ′ ∈ Rd that satisfy ‖x − x ′‖ � (t�)1/2.

Proof Let S0 := supz∈R |σ(z)|. Because | f (z)| � f (0) for all z ∈ Rd , the optimal
form of the Burkholder–Davis–Gundy inequality (1.8) and (6.22) imply that

∥∥ut (x)− ut (x
′)
∥∥

2k � const · ‖x − x ′‖ + 2S0
√

2k f (0) Qt (x − x ′), (7.10)

where

Qt (w) :=
t∫

0

ds

⎛

⎜
⎝
∫

Rd

dy |pt−s(y − w)− pt−s(y)|
⎞

⎟
⎠

2

for w ∈ Rd . (7.11)

Lemma 6.4 and a small computation implies readily that Qt (w) � const · ‖w‖√t/�
whenever ‖w‖ � (t�)1/2; and the lemma follows from these observations. ��
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Lemma 7.3 Choose and fix t > 0, and suppose that σ is bounded. Then there exists
a constant C ∈ (0,∞) such that

E

⎡

⎢
⎣ sup

x,x ′∈T :
‖x−x ′‖�δ

exp

(√
�|ut (x)− ut (x ′)|2

Cδ

)
⎤

⎥
⎦ � 2

δ
, (7.12)

uniformly for every δ ∈ (0, (t�)1/2] and every cube T ⊂ Rd of side length at most 1.

As the proof is quite similar to the proof of [11, Lemma 6.2], we leave the verifica-
tion to the reader. Instead we prove the following result, which readily implies (2.8),
and thereby completes our derivation of Theorem 2.3.

Proposition 7.4 If σ is bounded uniformly away from zero and infinity, then u∗
t (R) 


(log R)1/2 a.s.

Proof We may follow the proof of Proposition 7.1, but use Lemma 4.2 instead of
Lemma 4.3, in order to establish that lim inf R→∞(log R)−1/2u∗

t (R) > 0 a.s. We skip
the details, as they involve making only routine changes to the proof of Proposition 7.1.

It remains to prove that

u∗
t (R) = O

(
(log R)1/2

)
(R → ∞) a.s. for all t > 0. (7.13)

It suffices to consider the case that R � t . Let us divide the cube [0, R]d into
subcubes �1, �2, . . . such that the � j ’s have common side length a := const · (t�)1/2

and the distance between any two points in � j is at most (t�)1/2. The total number N
of such subcubes is O(Rd).

We now apply Lemmas 7.3 and 4.2 as follows:

P

{

sup
x∈[0,R]d

|ut (x)| > 2b(ln R)1/2

}

� P

{
max

1� j�N
|ut (x j )| > b(ln R)1/2

}

+P

{

max
1� j�N

sup
x,y∈� j

|ut (x)− ut (y)| > b(ln R)1/2

}

� const · Rde−c2b2 ln R + const · Rd

(t�)1/2 exp
(
b2 ln(R)/Ct 1/2

) . (7.14)

Consequently,

∞∑

m=1

P

{

sup
x∈[0,m]d

|ut (x)| > 2b(ln m)1/2

}

< ∞, (7.15)

provided that we choose b sufficiently large. This, the Borel–Cantelli Lemma, and a
monotonicity argument together complete the proof of (7.13). ��
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8 Proof of Theorem 2.5

Let us first establish some point estimates for the tail probability of the solution u to
(PAM). Throughout this subsection the assumptions of Theorem 2.5 are in force.

Lemma 8.1 For every t > 0,

lim sup
λ→∞

sup
x∈Rd

log P{|ut (x)| � λ}
(log λ)2

� − 1

4t f (0)
. (8.1)

Additionally, for every t > 0,

lim inf
λ→∞ inf

x∈Rd

log P{|ut (x)| � λ}
(log λ)2

� − 4t f (0)

(�dat )2
, (8.2)

where �d and at = at ( f, �) were defined in Proposition 4.4.

Proof Let log+(z) := log(z ∨ e) for all real numbers z. Proposition 4.4 and Lemma
3.4 of the companion paper [11] together imply that if 0 < γ < (4t f (0))−1, then
E exp(γ | log+(ut (x))|2) is bounded uniformly in x ∈ Rd . The first estimate of the
lemma follows from this by an application of Chebyshev’s inequality.

As regards the second bound, we apply the Paley–Zygmund inequality (4.23) in
conjunction with Proposition 4.4 as follows:

P

{
|ut (x)| � 1

2
‖ut (x)‖2k

}
�
(
E
(|ut (x)|2k

))2

4E
(|ut (x)|4k

)

� 1

4
ek2[8�d at −16t f (0)] · (u0/u0

)4k
. (8.3)

Let us denote γ = γ (�, t) := 16t f (0)− 8�dat > 0. A second application of Propo-
sition 4.4 then yields the following pointwise bound:

P
{
|ut (x)| � u0

2
e2�d at k

}
� 1

4
e−γ k2 (

u0/u0
)4k
. (8.4)

The second assertion of the lemma follows from this and the trivial estimate γ �
16t f (0), because we can consider λ between the two values 1

2 u0 exp(2�dat k) and
1
2 u0 exp(2�dat (k − 1)). ��

Owing to the parameter dependencies pointed out in Proposition 4.4, Theorem 2.5
is a direct consequence of the following result.

Proposition 8.2 For the parabolic Anderson model, the following holds: For all t > 0,
there exists a constant θt ∈ (0,∞)—independent of �—such that

�dat

(8t f (0))1/2
� lim inf

R→∞
log u∗

t (R)

(log R)1/2
� lim sup

R→∞
log u∗

t (R)

(log R)1/2
� θt , (8.5)

where �d and at = at ( f, �) were defined in Proposition 4.4.
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Proof Choose and fix two positive and finite numbers a and b that satisfy the follow-
ing:

a <
1

4t f (0)
, b >

4t f (0)

(�dat )2
. (8.6)

According to Lemma 8.1, the following holds for all λ > 0 sufficiently large:

e−b(log λ)2 � P {|ut (x)| � λ} � e−a(log λ)2 . (8.7)

Our goal is twofold: First, we would like to prove that with probability one log |u∗
t (R)|


 (log R)1/2 as R → ∞; and next to estimate the constants in “
.”
We first derive an almost sure asymptotic lower bound for log |u∗

t (R)|.
Let us proceed as we did in our estimate of (7.3). We introduce free parameters

β, k, N � 1 (to be chosen later) together with N points x (1), . . . , x (N ). We will
assume that D(x (i), x ( j)) � 2nβ(1 + √

t) where D(x, y) was defined in (5.24) and
n := [logβ] + 1 as in Lemma 5.4. If ξ > 0 is an arbitrary parameter, then our local-
ization estimate (Lemma 5.3) yields the following for all sufficiently-large values of
R (independently of N and β):

P

{
max

1� j�N
|ut (x

( j))| < eξ
√

log R
}

� P

{
max

1� j�N
|U (β,n)

t (x ( j))| < 2eξ
√

log R
}

+ P

{
max

1� j�N

∣∣
∣ut (x

( j))− U (β,n)
t (x ( j))

∣∣
∣ > eξ

√
log R

}

�
(

1 − P
{∣∣∣U (β,n)

t (x (1))
∣∣∣ � 2eξ

√
log R

})N + N Gkkk/2eFk2

βkb/2ekξ
√

log R
. (8.8)

And we estimate the remaining probability by similar means, viz.,

P
{∣∣∣U (β,n)

t (x (1))
∣∣∣ � 2eξ

√
log R

}

� P
{∣∣∣ut (x

(1))

∣
∣∣ � 3eξ

√
log R

}
− P

{∣∣∣ut (x
(1))− U (β,n)

t (x (1))
∣
∣∣ > eξ

√
log R

}

� exp

(
−b
{

log
(

3eξ
√

log R
)}2
)

− N Gkkk/2eFk2

βkb/2ekξ
√

log R
. (8.9)

We now fix our parameters N and β as follows: First we choose an arbitrary θ ∈ (0, 1),
and then select N := �Rθ�d and β := R1−θ / log R. For these choices, we can apply
(8.9) in (8.8) and deduce the bound

123



520 D. Conus et al.

P

{
max

1� j�N
|ut (x j )| < eξ

√
log R

}

�
(

1 − const

Rbξ2 + Gkkk/2eFk2
(log R)k

R(kb(1−θ)−2θd)/2 eξk
√

log R

)N

+ Gkkk/2eFk2
(log R)k

R(kb(1−θ)−2θd)/2 eξk
√

log R
.

(8.10)

Now we choose our remaining parameters k and ξ so that 1
2 kb(1 − θ)− θd > 2 and

bξ2 < θ/2. In this way we obtain

P

{
max

1� j�N
|ut (x j )| < eξ

√
log R

}
� exp

(
−C Rθ/2

)
+ C

R2 . (8.11)

In a cube of side length 2(1 + √
t)R, there are at least N points separated by

“D-distance” 2(1 + √
t)βn. Therefore, the Borel–Cantelli Lemma and a monoto-

nicity argument together imply that lim inf R→∞ exp{−ξ(log R)1/2}u∗
t (R) > 1 almost

surely. We can first let θ ↓ 1, then ξ ↑ (2b)−1/2, and finally b ↑ 4t f (0)/(�dat )
2—in

this order—in order to complete our derviation of the stated a.s. asymptotic lower
bound for u∗

t (R).
For the other direction, we begin by applying (6.22) and (1.8):

‖ut (x)− ut (y)‖2k � const · ‖x − x ′‖

+2

⎛

⎜
⎝4k f (0)

t∫

0

‖us(0)‖2
2k ds

⎡

⎢
⎣
∫

Rd

dw |pt−s(w − x)− pt−s(w − y)|
⎤

⎥
⎦

2⎞

⎟
⎠

1/2

.

(8.12)

We apply Proposition 4.4 to estimate ‖us(0)‖2k , and Lemma 6.4 to estimate the inte-
gral that involves the heat kernel. By arguments similar as in Lemma 7.2, we find that
there exists C = C(t) ∈ (0,∞)—independently of (x, y, k, �)—such that uniformly
for all x, y ∈ Rd with ‖x − y‖ � (t�)1/2,

E
(
|ut (x)− ut (y)|2k

)
� (Ck)ke4t f (0)k2 ‖x − y‖k

�k/2 . (8.13)

By arguments similar to the ones that led to (7.12) in the companion paper [11] we
can show that

E

⎛

⎜
⎜
⎝ sup

x,y∈T :
‖x−y‖�√

t�

|ut (x)− ut (y)|2k

⎞

⎟
⎟
⎠ � Ck

1 eC2k2
(8.14)

(where C1 and C2 depend only on t), uniformly over cubes T with side lengths at
most 1. (The preceding should be compared with the result of Lemma 7.2.) Now that
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we are armed with (8.14), we may proceed to complete the proof of the theorem as
follows: We split [0, R]d into subcubes of side length a each of which is contained in
a ball of radius 1

2 (t�)
1/2 centered around its midpoint. Let CR denotes the collection

of all mentioned subcubes and MR the set of their midpoints. For all ζ > 0, we have:

P
{

u∗
t (R) > 2eζ

√
log R

}

� P

{
max

x∈MR

|ut (x)| > eζ
√

log R
}

+ P

{

sup
T ∈CR

sup
x,y∈T

|ut (x)− ut (y)| > eζ
√

log R

}

,

� O(Rd) · P
{
|ut (0)| > eζ

√
log R

}
+
∑

T ∈CR

P

{

sup
x,y∈T

|ut (x)− ut (y)| > eζ
√

log R

}

.

(8.15)

We use the notation set forth in (8.7), together with (8.14), and deduce the following
estimate:

P
{

u∗
t (R) > 2eζ

√
log R

}
= O(Rd) ·

[

e−aζ 2 log R + Ck
1 eC2k2

e2kζ
√

log R

]

, (8.16)

as R → ∞. Now choose k := [(log R)1/2] and ζ large so that the above is sum-
mable in R, as the variable R ranges over all positive integers. The Borel-Cantelli
Lemma and a standard monotonicity argument together imply that with probability
one, lim supR→∞(log R)−1/2 log u∗

t (R) � ζ . (Now R is allowed to roam over all
positive reals.) From the way in which ζ is chosen, it is clear that ζ does not depend
on �. ��

9 Riesz kernels

Now we turn to the case where the correlation function is of the Riesz form; more
precisely, we have f (x) = const · ‖x‖−α for some α ∈ (0, d ∧ 2). We begin this dis-
cussion by establishing some moment estimates for the solution u to (PAM). Before
we being our analysis, let us recall some well-known facts from harmonic analysis
(see for example [26]).

For all b ∈ (0, d) define Rb(x) := ‖x‖−b (x ∈ Rd). This is a rescaled Riesz kernel
with index b ∈ (0, d); it is a locally integrable function whose Fourier transform is
defined, for all ξ ∈ Rd , as

R̂b(ξ) = Cd,d−bRd−b(ξ), where Cd,p := πd/22d−p�((d − p)/2)

�(p/2)
. (9.1)

We may note that the correlation function f considered in this section is proportional
to Rα . We note also that the Fourier transform of (9.1) is understood in the sense of
generalized functions. Suppose next that a, b ∈ (0, d) satisfy a + b < d, and note
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that R̂d−a(ξ)R̂d−b(ξ) = {Cd,aCd,b/Cd,a+b}R̂d−(a+b)(ξ). In other words, whenever
a, b, a + b ∈ (0, d),

Rd−a ∗ Rd−b = Cd,aCd,b

Cd,a+b
Rd−(a+b), (9.2)

where the convolution is understood in the sense of generalized functions.

9.1 Riesz-kernel estimates

We now begin to develop several inequalities for the solution u to (PAM) in the case
that f (x) = const · ‖x‖−α = const · Rα(x).

Proposition 9.1 There exists positive and finite constants c = c(α, d) and c̄ = c̄(α, d)
such that

uk
0 exp

(

ct
k(4−α)/(2−α)

�α/(2−α)

)

� E
(
|ut (x)|k

)
� uk

0 exp

(

c̄t
k(4−α)/(2−α)

�α/(2−α)

)

, (9.3)

uniformly for all x ∈ Rd , t, � > 0, and k � 2, where u0 and u0 are defined in (1.9).

Remark 9.2 We are interested in what Proposition 9.1 has to say in the regime in which
t is fixed, � ≈ 0, and k ≈ ∞. However, let us spend a few extra lines and emphasize
also the following somewhat different consequence of Proposition 9.1. Define for all
k � 2,

λ(k) := lim inf
t→∞ inf

x∈Rd

1

t
log E

(
|ut (x)|k

)

λ(k) := lim sup
t→∞

sup
x∈Rd

1

t
log E

(
|ut (x)|k

)
.

(9.4)

These are respectively the lower and upper uniform Lyapunov Lk(P)-exponents of the
parabolic Anderson model driven by Riesz-type correlations. Convexity alone implies
that if λ(k0) > 0 for some k0 > 0, and if λ(k) < ∞ for all k � k0, then λ(k)/k and
λ(k)/k are both strictly increasing for k > k0. Proposition 9.1 implies readily that
the common of these increasing sequences is ∞. In fact, we have the following sharp
growth rates, which appear to have not been known previously:

c

�α/(2−α) � lim inf
k→∞

λ(k)

k2/(2−α) � lim sup
k→∞

λ(k)

k2/(2−α) � c

�α/(2−α) . (9.5)

These bounds can be used to study further the large-time intermittent structure of the
solution to the parabolic Anderson model driven by Riesz-type correlations. We will
not delve into this matter here.
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Proof Recall that f (x) = A · ‖x‖−α; we will, without incurring much loss of gener-
ality, that A = 1.

We first derive the lower bound on the moments of ut (x). Let {b( j)}k
j=1 denote k

independent standard Brownian motions in Rd . We may apply Lemma 4.5 to see that

E
(
|ut (x)|k

)
� uk

0E

⎡

⎢
⎣exp

⎛

⎜
⎝
∑∑

1�i �= j�k

t∫

0

�−α/2 ds
∥∥∥b(i)s − b( j)

s

∥∥∥
α

⎞

⎟
⎠

⎤

⎥
⎦ . (9.6)

We can use the preceding to obtain a large-deviations lower bound for the kth
moment of ut (x) as follows: Note that

∫ t
0 ‖b(i)s − b( j)

s ‖−α ds � (2ε)−αt1�ε a.s.,

where �ε is defined as the event {max1�l�k sups∈[0,t] ‖b(l)s ‖ � ε}. Therefore,

E
(
|ut (x)|k

)
� uk

0 sup
ε>0

[
exp

(
k(k − 1)t

(2ε
√
�)α

)
· P(�ε)

]
. (9.7)

Because of an eigenfunction expansion [28, Theorem 7.2, p. 126] there exist constants
λ1 = λ1(d) ∈ (0,∞), and c = c(d) ∈ (0,∞) such that

P(�ε) =
(

P

{

sup
s∈[0,t/ε2]

‖b(1)s ‖ � 1

})k

� cke−ktλ1/ε
2
, (9.8)

uniformly for all k � 2 and ε ∈ (0, t 1/2]. And, in fact, λ1 is the smallest positive
eigenvalue of the Dirichlet Laplacian on the unit ball of Rd . Thus,

E
(
|ut (x)|k

)
� (cu0)

k sup
ε∈(0,t1/2]

[
exp

(
k(k − 1)t

(2ε
√
�)α

− ktλ1

ε2

)]
. (9.9)

The supremum of the expression inside the exponential is at least const · tk · k2/(2−α)/
�α/(2−α),where “const” depends only on (α, d). This proves the asserted lower bound
on the Lk(P)-norm of ut (x).

We adopt a different route for the upper bound. Let {R̄λ}λ>0 denote the resolvent
corresponding to

√
2 times a Brownian motion in Rd with diffusion coefficient �. In

other words, R̄λ f := ∫∞
0 exp(−λs)(p2s ∗ f ) ds = (1/2)(Rλ/2 f ). Next define

Q(k, β) := zk

√
(R̄2β/k f )(0) for all β > 0 and k � 2, (9.10)

where zk is the optimal constant, due to Davis [15], in the Burkholder–Davis–Gundy
inequality for the Lk(P) norm of continuous martingales [5–7]. We can combine
[18, Theorem 1.2] and Dalang’s theorem [13] to conclude that, because the solution
to (PAM) exists, (R̄λ f )(0) < ∞ for all λ > 0. The proof of [18, Theorem 1.3] and
Eq. (5.35) therein (loc. cit.) together imply that if Q(k, β) < 1 then e−βt/k‖ut (x)‖k �
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u0/(1 − Q(k, β)) uniformly for all t > 0 and x ∈ Rd . In particular, if Q(k, β) � 1
2 ,

then

E
(
|ut (x)|k

)
� eβt 2kuk

0. (9.11)

According to Carlen and Kree [9], zk � 2
√

k; this is the inequality that led also to
(1.8). Therefore, (9.11) holds as soon as k(R̄2β/k f )(0) < 1/16. Because both Brown-
ian motion and f satisfy scaling relations, a simple change of variables shows that
(R̄λ f )(0) = c2λ

−(2−α)/2�−α/2, where c2 is also a nontrivial constant that depends
only on (d, α). Therefore, the condition k(R̄2β/k f )(0) < 1/16—shown earlier to be
sufficient for (9.11)—is equivalent to the assertion that β > k · c3k2/(2−α)/�α/(2−α)
for a nontrival constant c3 that depends only on (d, α). Now we choose β := 2k ·
c3k2/(2−α)/�α/(2−α), plug this choice in (9.11), and deduce the upper bound. ��

Before we proceed further, let us observe that, in accord with (9.2),

f (x) = const

‖x‖α = (h ∗ h)(x) = (h ∗ h̃)(x) with h(x) := const

‖x‖(d+α)/2 , (9.12)

where the convolution is understood in the sense of generalized functions.
As in (3.16), we can define hn(x) := h(x)̂n(x) and fn = (h − hn) ∗ (h̃ − h̃n).

Lemma 9.3 For all η ∈ (0, 1∧α) there exists a constant A := A(d, �, α, η) ∈ (0,∞)

such that (ps ∗ fn)(0) � An−η · s−(α−η)/2 for all s > 0 and n � 1.

Proof Because fn � h ∗ (h − hn), it follows that

(ps ∗ fn)(0) � [(ps ∗ h ∗ h)(0)− (ps ∗ h ∗ hn)(0)]

=
∫

Rd

dy
∫

Rd

dz ps(z)h(y)h(y − z)
(
1 − ̂n(y − z)

)

� const ·
∫

Rd

dy

‖y‖(d+α)/2

∫

Rd

ps(z) dz

‖y − z‖(d+α)/2

(
1 ∧ ‖y − z‖

n

)
;

(9.13)

see (3.11).
Choose and fix some η ∈ (0, 1 ∧ α). Since 1 ∧ r � rη for all r > 0,

(ps ∗ fn)(0) � const

nη
·
∫

Rd

dy

‖y‖(d+α)/2

∫

Rd

ps(z) dz

‖y − z‖(d+α−2η)/2

= const

nη
·
∫

Rd

dy
∫

Rd

dz R(d+α)/2(y)ps(z)R(d+α−2η)/2(z − y)

= const

nη
·
∫

Rd

‖z‖−α+η ps(z) dz, (9.14)
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by (9.2), because ps is a rapidly-decreasing test function for all s > 0. A change of
variable in the integral above proves the result. ��

Proposition 9.4 For every η ∈ (0, 1 ∧ α), the following holds uniformly for every
k � 2, δ > 0, and all predictable random fields Z:

M(k)
δ

(
p ∗ Z F (h) − p ∗ Z F (hn)

)
� const ·

√
k

nη · δ(2−α+η)/2 M(k)
δ (Z), (9.15)

where the implied constant depends only on (d, �, α, η).

Remark 9.5 Proposition 9.4 compares to Proposition 3.4.

Proof For notational simplicity, let us write

� :=
∥∥∥
(

p ∗ Z F (h)
)

t
(x)−

(
p ∗ Z F (hn)

)

t
(x)
∥∥∥

k
. (9.16)

We apply first (1.8), and then Minkowski’s inequality, to see that for all δ > 0,

�2 � 4
[
M(k)

δ (Z)
]2

k

t∫

0

ds
∫

Rd

dy
∫

Rd

dz pt−s(y) fn(y − z)pt−s(z)

� 4e2δt
[
M(k)

δ (Z)
]2

k

∞∫

0

e−2δr (p2r ∗ fn) (0) dr

= 2e2δt
[
M(k)

δ (Z)
]2

k

∞∫

0

e−δs (ps ∗ fn) (0) ds. (9.17)

The appeal to Fubini’s theorem is justified since: (i) pr is a rapidly decreasing test
function for all r > 0; (ii) pr ∗ pr = p2r by the Chapman–Kolmogorov equation; and
(iii) pr , fn � 0 pointwise for every r > 0 and n � 1. Now we apply Lemma 9.3 in
order to find that for all η ∈ (0, 1 ∧ α),

�2 � const · e2δt k

nη

[
M(k)

δ (Z)
]2

∞∫

0

e−δss−(α−η)/2 ds

= const · e2δt k

nη

[
M(k)

δ (Z)
]2
δ−(2−α+η)/2. (9.18)

Since the right-most term is independent of x , we can divide both sides by exp(2δt),
optimize over t , and then take square root to complete the proof. ��
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9.2 Localization for Riesz kernels

The next step in our analysis of Riesz-type correlations is to establish localization;
namely results that are similar to those of Sect. 5 but which are applicable to the setting
of Riesz kernels.

9.3 The general case

Recall the random fields U (β), V (β), and Y (β) respectively from (5.2), (5.6), and (5.7).
We begin by studying the nonlinear problem (PAM) in the presence of noise whose
spatial correlation is determined by f (x) = const · ‖x‖−α .

Proposition 9.6 Let u denote the solution to (PAM). For every T > 0 and η ∈
(0, 1 ∧ α) there exist finite and positive constants �i := �i (d, α, T, �, η) [i = 1, 2],
such that uniformly for β > 0 and k � 2,

sup
t∈[0,T ]

sup
x∈Rd

E

(∣∣∣ut (x)− U (β)
t (x)

∣∣∣
k
)

�
(
�2k

βη

)k/2

e�1k(4−α)/(2−α)
. (9.19)

Proof Notice that

V (β)
t (x) = (pt ∗ u0)(x)+

(
p ∗ U (β)F (h)

)

t
(x),

Y (β)t (x) = (pt ∗ u0)(x)+
(

p ∗ U (β)F (hβ)
)

t
(x).

(9.20)

Proposition 9.4 tells us that for all η ∈ (0, 1 ∧ α),

M(k)
δ

(
V (β) − Y (β)

)
� C1 ·

√
k

βη · δ(2−α+η)/2 M(k)
δ (U

(β)), (9.21)

where C1 is a positive and finite constant that depends only on (d, �, α, η).
It follows from the definition (1.6) that

M(k)
δ

(
V (β) − Y (β)

)
� const ·

√
k�(2−α)/2

βη · δ(2−α+η)/2 M(k)
δ (U

(β)), (9.22)

where “const” depends only on (d, �, α, η). In order to estimate the latter M(k)
δ -norm

we mimic the proof of the first inequality in Proposition 9.1 to see that, for the same
constant c as in the latter proposition,

log ‖U (β)
t (x)‖k � u0 + ctk2/(2−α)

�α/(2−α) , (9.23)
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uniformly for all x ∈ Rd , t, �, β > 0, and k � 2. We omit the lengthy details
because they involve making only small changes to the proof of the second inequality
in Proposition 9.1. The end result is that

M(k)
δ (U

(β)) � sup
t>0

[

u0 exp

{

−δt + ct
k2/(2−α)

�α/(2−α)

}]

= u0, (9.24)

provided that

δ >
ck2/(2−α)

�α/(2−α) . (9.25)

Therefore, the following is valid whenever δ satisfies (9.25):

M(k)
δ

(
V (β) − Y (β)

)
� C1 ·

√
k

βη · δ(2−α+η)/2 , (9.26)

where C1 depends only on (d, �, α, η, σ (0),Lipσ , u0).

In order to bound ‖Y (β)t (x)− U (β)
t (x)‖k , we apply (1.8) and deduce that

E
(
|Y (β)t (x)− U (β)

t (x)|k
)

� E

⎛

⎜
⎝

∣∣∣∣∣
∣∣
4k

t∫

0

ds
∫

[x−β√
t,x+β√

t]c

dy
∫

[x−β√
t,x+β√

t]c

dz h(∗2)
β (z − y)W

∣∣∣∣∣
∣∣

k/2⎞

⎟
⎠

�

⎛

⎜
⎝4k

t∫

0

ds
∫

[x−β√
t, x+β√

t]c

dy
∫

[x−β√
t, x+β√

t]c

dz f (z − y)‖W‖k/2

⎞

⎟
⎠

k/2

,

(9.27)

where we have used Minkowski’s inequality in the last bound. Here, h(∗2)
β := hβ ∗ h̃β ,

and W := pt−s(y − x)pt−s(z − x)|U (β)
s (y)| · |U (β)

s (z)|. In particular,

‖W‖k/2 � pt−s(y − x)pt−s(z − x) sup
y∈Rd

∥∥∥U (β)
s (y)

∥∥∥
2

k
, (9.28)

thanks to the Cauchy–Schwarz inequality. By the definition (1.6) of M(k)
δ ,

sup
w∈Rd

∥∥∥U (β)
s (w)

∥∥∥
k

� eδsM(k)
δ

(
U (β)

)
for all s > 0. (9.29)
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Therefore,

‖W‖k/2 � const · e2δs pt−s(y − x)pt−s(z − x)M(k)
δ (U

(β))2. (9.30)

Let us define

� :=
t∫

0

ds
∫∫

A×A
dy dz f (z − y)e2δs pt−s(y − x)pt−s(z − x), (9.31)

where we have written A := [x −β√
t, x +β√

t]c, for the sake of typographical ease.
Our discussion so far implies that

∥∥∥Y (β)t (x)− U (β)
t (x)

∥∥∥
k

� const · √
k M(k)

δ (U
(β)) ·�1/2. (9.32)

We may estimate � as follows:

� �
t∫

0

sup
w∈Rd

(pt−s ∗ f )(w)e2δs ds
∫

[x−β√
t,x+β√

t]c

pt−s(y − x) dy

� const ·
t∫

0

sup
w∈Rd

(pt−s ∗ f )(w) exp

(
− dβ2t

4�(t − s)
+ 2δs

)
ds, (9.33)

where we used (5.13) and “const” depends only on (d, α). Because pt−s ∗ f is a
continuous positive-definite function, it is maximized at the origin. Thus, by scaling,

sup
w∈Rd

(pt−s ∗ f ) (w) � const

(t − s)α/2�α/2
, (9.34)

where “const” depends only on (d, α). Consequently,

� � const

�α/2
·

t∫

0

exp

(
− dβ2t

4�(t − s)
+ 2δs

)
ds

(t − s)α/2

� const

�α/2
· e2δt t (2−α)/2

1∫

0

e−dβ2/(4�s) ds

sα/2
� const

�α/2
t (2−α)/2 exp

(
2δt − dβ2

4�

)
.

(9.35)

It follows from the preceding discussion and (9.32) that

M(k)
δ

(
Y (β) − U (β)

)
� const

�α/4
· e−dβ2/(8�)

√
k, (9.36)

provided that δ satisfies (9.25).
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Next we note that

‖ut (x)− V (β)
t (x)‖k

�

∥∥∥∥∥
∥∥

∫

(0,t)×Rd

pt−s(y − x)
[
us(y)− U (β)

s (y)
]

F (h)(ds dy)

∥∥∥∥∥
∥∥

k

� const ·

√√√√√k

t∫

0

ds
∫

Rd

dy
∫

Rd

dz f (y − z)T̃ , (9.37)

where

T̃ := pt−s(y − x)pt−s(z − x)
∥∥∥us(z)− U (β)

s (z)
∥∥∥

k
·
∥∥∥us(y)− U (β)

s (y)
∥∥∥

k

� pt−s(y − x)pt−s(z − x) sup
y∈Rd

∥∥∥us(y)− U (β)
s (y)

∥∥∥
2

k
. (9.38)

We then obtain

‖ut (x)− V (β)
t (x)‖k � const ·

⎛

⎝k

t∫

0

supy ‖us(y)− U (β)
s (y)‖2

k

((t − s)�)α/2
ds

⎞

⎠

1/2

, (9.39)

from similar calculations as before; see the derivation of (9.34). Consequently,

M(k)
δ

(
u − V (β)

)
� const · k1/2M(k)

δ

(
u − U (β)

)
⎛

⎝
∞∫

0

e−2δr

(�r)α/2
dr

⎞

⎠

1/2

= const · k1/2

�α/4δ(2−α)/4 M(k)
δ

(
u − U (β)

)
. (9.40)

Next we apply the decomposition (5.5) and the bounds in (9.40), (9.36), and (9.26) to
see that

M(k)
δ

(
u − U (β)

)

� M(k)
δ

(
u − V (β)

)
+ M(k)

δ

(
V (β) − Y (β)

)
+ M(k)

δ

(
Y (β) − U (β)

)

� const · k1/2

�α/4δ(2−α)/4 M(k)
δ

(
u−U (β)

)
+C1 ·

√
k

βη · δ(2−α+η)/2 + const · k1/2

�α/4
e−dβ2/(8�).

(9.41)

We now choose δ := Ck2/(2−α)/�α/(2−α) with C > c so large that the coefficient of
M(k)

δ (u − U (β)) in the preceding bound, is smaller that 1/2. Because δ has a lower
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bound that holds uniformly for all k � 1, the preceding implies that

M(k)
δ

(
u − U (β)

)
� const · √

k
[
β−η/2 + e−dβ2/(8�)

]
� const · √

k β−η/2,
(9.42)

which has the desired result. ��

Recall the nth level Picard-iteration approximation U (β,n)
t (x) of U (β)

t (x) defined
in (5.18). The next two lemmas are the Picard-iteration analogues of Lemmas 5.3 and
5.4.

Lemma 9.7 For every T > 0 and η ∈ (0, 1 ∧ α) there exist finite and positive con-
stants �i := �i (d, α, T, �, η, σ ) [i = 1, 2], such that uniformly for β > 0 and k � 2

sup
t∈[0,T ]

sup
x∈Rd

E

(∣∣∣ut (x)− U (β, [logβ]+1)
t (x)

∣∣∣
k
)

�
(
�2k

βη

)k/2

e�1k(4−α)/(2−α)
. (9.43)

Lemma 9.8 Choose and fixβ � 1, t > 0 and n � 1. Also fix x (1), x (2), · · · ∈ Rd such
that D(x (i), x ( j)) � 2nβ(1 + √

t). Then {U (β,n)
t (x ( j))} j∈Z are independent random

variables.

We will skip the proofs, as they are entirely similar to the respective proofs of
Lemmas 5.3 and 5.4, but apply the method of proof of Proposition 9.6 in place of
Lemma 5.2.

9.4 Proof of Theorem 2.6

The proof of this theorem is similar to that of Theorem 2.5. Thanks to Proposition 9.1
and [11, Lemma 3.4], we have the following: There exist positive and finite constants
a < b, independently of � > 0, such that for all x ∈ Rd and λ > e,

ae−b(log λ)(4−α)/2�α/2 � P {|ut (x)| � λ} � be−a(log λ)(4−α)/2�α/2 . (9.44)

Define, for the sake of typographical ease,

EM := EM,�(R) := exp

(
M · (log R)2/(4−α)

�α/(4−α)

)

for all M > 0. (9.45)

For the lower bound, we choose once again N distinct points x (1), . . . , x (N ) such that
D(x (i), x ( j)) � 2nβ(1+√

t)whenever i �= j ; see (5.24) for the definition of D(x, y).
Let n := [logβ] + 1 and choose and fix η ∈ (0, 1 ∧ α). We apply Proposition 9.6 and
the independence of the U (β,n)(x ( j))’s (Lemma 9.8) to see that
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P

{
max

1� j�N
|ut (x

( j))| < EM

}

�
(

1 − P
{
|U (β,n)

t (x (1))| � 2EM

})N + const · N

βkη/2Ek
M

�
(

1 −
[

P
{
|ut (x

(1))| � 3EM

}
− const · N

βkη/2

])N

+ const · N

βkη/2 , (9.46)

since EM is large for R sufficently large. Notice that the implied constants depend
on (�, t, k, d, α, η, σ ). Now we choose the various parameters involved (and in this
order): Choose and fix some ν ∈ (0, 1), and then set N := �Rν�d and β := R1−ν .
The following is valid for all M > 0 sufficiently small, every k sufficiently large, and
for the mentioned choices of N and β:

P

{
max

1� j�N
|ut (x

( j))| < EM

}
� const · R−2. (9.47)

Borel-Cantelli Lemma and a simple monotonicity argument together yield the bound,

lim inf
R→∞

log u∗
t (R)

(log R)2/(4−α) >
C

�α/(4−α) a.s., (9.48)

where C does not depend on �. For the other bound, we start with a modulus of
continuity estimate, viz.,

‖ut (x)− ut (y)‖2k � const · ‖x − y‖ +
⎛

⎝8k

t∫

0

sup
a∈Rd

‖us(a)‖2
2k Is ds

⎞

⎠

1/2

, (9.49)

where Is := ∫∫
Rd×Rd dw dz |H(w)H(z)| f (w − z), for H(ξ) := pt−s(ξ − x) −

pt−s(ξ − y) for all ξ ∈ Rd . Because of Proposition 9.1, we can simplify our estimate
to the following:

‖ut (x)− ut (y)‖2k � const · ‖x − y‖ + Au0

⎛

⎝8k

t∫

0

Is ds

⎞

⎠

1/2

; (9.50)

where A := e2ct (2k)2/(2−α)�−α/(2−α)
. The simple estimate

∫
Rd |H(z)| f (w − z) dz �

2 supz∈Rd (pt−s ∗ f )(z), together with (9.34) yields

Is � const

(t − s)α/2�α/2
·
∫

Rd

|H(w)| dw � const

(t − s)α/2
·
( ‖x − y‖
(t − s)1/2

∧ 1

)
, (9.51)

where “const” does not depend on (x, y, s, t), but might depend on �; see Lemma
6.4 for the last inequality. These remarks, and some computations together show that,
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uniformly for all x, y ∈ Rd that satisfy ‖x − y‖ � 1 ∧ t 1/2, E(|ut (x) − ut (y)|2k) �
C‖x−y‖�k , where C := C(k, �, t, d, α) is positive and finite and� = min(1, 2−α).
Now a quantitative form of the Kolmogorov continuity theorem [14, (39), p. 11] tells
us that uniformly for all hypercubes T ⊂ Rd of side length � d−1/2(1 ∧ t 1//2), and
for all δ ∈ (0, 1 ∧ t 1/2),

E

⎛

⎜
⎝ sup

x,y∈T
‖x−y‖�δ

|ut (x)− ut (y)|2k

⎞

⎟
⎠ � q(δ� k)k exp

(
ct (2k)(4−α)/(2−α)

�α/(2−α)

)

, (9.52)

where q ∈ (0,∞) is a constant that depends only on (�, t, d, α). We now split [0, R]d

into sub-cubes of sidelength const · (1 ∧ t 1/2), each of which is contained in a ball of
radius (1 ∧ t 1/2)/2. Let CR denote the collection of mentioned subcubes and MR , the
set of midpoints of these subcubes. We can then observe the following:

P
{
u∗

t (R) > 2EM
}

�
∑

x∈MR

P {|ut (x)| > EM } +
∑

T ∈CR

P

{
Osc

T
(ut ) > EM

}
,

(9.53)

where OscT (g) := supx,y∈T |g(x)− g(y)|. In this way we find that

P
{
u∗

t (R) > 2EM
}

� ARd ×
[

eAk(4−α)/(2−α)�−α/(2−α)

eMk(log R)2/(4−α)�−α/(4−α)

]

, (9.54)

where A ∈ (0,∞) is a constant that depends only on (t, �, α, d). Finally, we choose
k := �α/(4−α)(log R)(2−α)/(4−α) and M large enough to ensure that P{u∗

t (R) >
2EM } = O(R−2) as R → ∞. An application of Borel–Cantelli lemma proves the
result.
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