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1 Introduction

Informally a rank-based model is a multidimensional Markov process whose
instantaneous dynamics is a function of the order in which the coordinates can be
ranked. When the process is a diffusion its movement can be described by a stochastic
differential equation (SDE) as follows. Let n be the dimension of the process. Let
δi and σi , 1 ≤ i ≤ n, be two finite collections of real and positive real constants,
respectively. For any vector x ∈ R

n , let x(1) ≤ x(2) ≤ · · · ≤ x(n) denote its ranked
coordinates in increasing order. Consider the following system of SDEs: For each
i = 1, 2, . . . , n we have

d Xi (t) =
⎛
⎝

n∑
j=1

δ j · 1{Xi (t)=X( j)(t)}
⎞
⎠ dt +

⎛
⎝

n∑
j=1

σ j · 1{Xi (t)=X( j)(t)}
⎞
⎠ dWi (t). (1)

Here W = (W1,W2, . . . ,Wn) is a system of jointly independent one-dimensional
standard Brownian motions. Assumptions and conditions guaranteeing the existence
of such processes will be discussed later in the text.

Different versions of the particle system in (1) have been considered in several recent
articles. Among the more recent ones, see Banner et al. [4], Banner and Ghomrasni [5],
McKean and Shepp [31], Pal and Pitman [33], Jourdain and Malrieu [25], Chatterjee
and Pal [11,12], Ichiba and Karatzas [23], Ichiba et al. [24], Pal and Shkolnikov [34],
and Shkolnikov [40,41]. Related discrete time processes are studied in the context of
competing particle systems by Arguin and Aizenman [1], Ruzmaikina and Aizenman
[38], Shkolnikov [39], and Rácz [36]. We refer the reader to the above articles for
the full list of applications of such processes (keywords: McKean-Vlasov equations,
competing particles, dynamic models of spin glasses, models of equity markets, and
queueing theory).

Processes satisfying (1) do not have any equilibrium. For example consider the
average of all the coordinates. The resulting process is a linear diffusion with a con-
stant drift and a constant diffusion coefficient. This process clearly has no equilibrium.
The interesting long-term asymptotics arise when one considers the centered process
by subtracting the average from each of the coordinates. Under appropriate conditions
(see below), the centered coordinate process is positively recurrent in the neighbor-
hoods of the origin and has a unique stationary distribution.

Another interesting and useful feature of this model is the process of spacings:

Yi (t) = X(i+1)(t)− X(i)(t), i = 1, 2, . . . , n − 1.

The vector Y = (Y1,Y2, . . . ,Yn−1) has the law of a semimartingale reflecting Brown-
ian motion (SRBM) in the positive orthant (R+)n−1 with a constant drift and diffusion
coefficient and a constant oblique direction of reflection on each face of the orthant.
This is an important class of processes that arise as a heavy-traffic limit of queues.
Please see the survey by Williams [44].

A particularly interesting example of the rank-based models is the so-called Atlas
model in which one takes σi = σ for all i and δi = 0 for all i > 1. At any moment,
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the smallest particle gets an upward drift of δ1 = δ > 0 while the others are locally
independent Brownian motions. The asymmetry of the interaction among the particles
sets it apart from the usual models of colliding particles (see, e.g., Harris [20], Swan-
son [42]). In discrete time, this model can be compared with the asymmetric exclusion
process or the Hammersley–Aldous–Diaconis process.

In this paper we shall determine exponential rates of convergence to the equilibrium
for rank-based models and the derived reflecting Brownian motions. We also obtain
sharp Gaussian fluctuations around the equilibrium mean for additive functionals of
these processes. The main difficulty one encounters with these processes is the lack
of smoothness in its drift and diffusion parameters. Classical theorems often cannot
be used and novel methods have to be invented. Our approach is based on recent
advances in Transportation Cost-Information inequalities as in Bakry et al. [3] and
Guillin et al. [19] (see also Lezaud [30] and Gao et al. [18]), as well as classical
Poincaré inequalities satisfied by the associated Dirichlet forms.

One of our primary motivations is to solve certain open problems described in
the survey by Fernholz and Karatzas [17]. These are related to the area of Stochastic
Portfolio Theory to which we provide a very brief introduction.

1.1 A brief introduction to stochastic portfolio theory

Stochastic Portfolio Theory (Fernholz [16], Fernholz and Karatzas [17]) is a descrip-
tive theory of equity market models (i.e., a dynamical model of total wealth that various
companies raise through their stocks) which aims to be compatible with data on long-
term market structure. This is a departure from the usual Black-Scholes models that are
normative and are not supported by data. One significant difference between the two
models is that while the Black-Scholes model assumes the principle of no-arbitrage
in all its formulas, models in SPT, in fact, try to uncover arbitrages.

The importance of the rank-based models stems from the fact that they match the
data of the capital distribution curve. To explain this, suppose index i denotes a typical
company listed in any of the major U.S. stock exchanges. Let Si (t) be its market capital
(i.e., number of shares × price of each share) at time t . Let S(t) = (S1, S2, . . . , Sn)(t)
denote the vector of market capitals of all such companies. Here n is of the order of
several thousands. We define the market weights as

μi (t) = Si (t)∑n
j=1 S j (t)

, i = 1, 2, . . . , n.

It has been observed for over eight decades that if we arrange the market weights in
decreasing order then they display a power-law decay. In other words, the i th largest
market weight is proportional to i−α . See Fig. 1 which plots logμ(n+1−i)(t) versus
log i for one instance of t per decade. These curves are called capital distribution
curves. It is known (see [4,11]) that if we define Xi = log Si to be a rank-based
model, then, under appropriate assumptions, such a power law decay can be proved
in equilibrium for large n.

However, the stability of the market weights over time is more mysterious. It is
clear that market parameters do not remain constant. In fact, the number of listed
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Fig. 1 Capital distribution curves: 1929–1999

companies have grown ten fold. This stability has three reasons: (i) the limiting
shape is independent of the parameters satisfying certain weak conditions, (ii) a
fast return to equilibrium when perturbed in the parameters or dimension, (iii) tame
fluctuations during the period that it takes the process to mix. (i) has been shown
in [11]. In [34], the authors have proved a fluctuation of order

√
T for the shape

of the market weights over intervals of time of length T . This shows (iii). In this
article we take up (ii) and show an exponential rate of convergence for market
weights.

Another important topic of analysis is the performance of portfolios when the mar-
ket is modeled as rank-based. A portfolio (π1(t), . . . , πn(t)) is a random process that
takes values in the simplex {x ∈ R

n : xi ≥ 0 and
∑

i xi = 1}. The quantity
πi (t) represents the proportion of wealth an investor invests in stocks of company i
at time t . When π ≡ μ, the market weights, the portfolio is called the market portfo-
lio. The latter is of central importance since the market portfolio determines various
index funds (i.e., portfolio tracking an index such as S&P 500). An important ques-
tion in practice is the relative performance of portfolios when compared to the market
portfolio.

Let V π (t) denote the wealth of an investor who has followed portfolio π with an
initial investment of $1. Often π = H(μ) is a function of the market weights. Such
portfolios are called functionally generated (see the survey [17]). We focus on estimat-
ing tail probabilities of the quantity V π (t)/Vμ(t) and its reciprocal for a functionally
generated portfolio π . These are probabilities that the portfolio π will beat the market
which determine its attractiveness to investors.

This is closely related to finding relative arbitrage opportunities. According to the
definition in [17], the rank-based models are not diverse, i.e., the market entropy pro-
cess is not bounded from below. This implies that the entropy weighted portfolio (see
Sect. 3.1 below) does not necessarily provide a long-term arbitrage opportunity over
the market portfolio. Thus, a natural question is an estimate of the tail probability
of the ratio of value processes between the functionally generated portfolio and the
market portfolio.
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1.2 Main results

Define the set I as {1, 2, . . . , n} and consider the SDE in (1):

d Xi (t) =
∑
j∈I

δ j · 1{Xi (t)=X( j)(t)}dt +
∑
j∈I

σ j · 1{Xi (t)=X( j)(t)}dWi (t), i ∈ I. (2)

The weak solution of (2) exists and it is unique in law (e.g., [4,7]).
We assume the following constraint on the drift constants: for 1 ≤ k ≤ n − 1, the

constants

αk := 2
k∑

i=1

(
δi − δ

)
are strictly positive, (3)

where δ :=∑ j∈I δ j/n is the average drift.
This is a stability criterion that guarantees the existence of an invariant distribution

for spacings or “gaps” (see [24]).
For some of our results we will also assume the condition

σ 2
2 − σ 2

1 = · · · = σ 2
n − σ 2

n−1 (4)

on the diffusion coefficients. This is an assumption that is directly motivated by data
on volatility. See Figure 13.6 in [17] which shows estimated volatilities to be almost
linearly decreasing with rank.

Let ν denote the law on R
n−1 of an (n−1)-dimensional random vector with indepen-

dent coordinates, where the kth coordinate is distributed according to the Exponential
distribution of parameter

α̃k := 2αk(σ
2
k + σ 2

k+1)
−1.

It is shown in Corollary 2 of [24] that under (3) the distribution of the spacing system
(Y (t) := (Y1(t), . . . ,Yn−1(t)), t ≥ 0) consisting of

Y j (t) := X( j+1)(t)− X( j)(t), j = 1, . . . , n − 1,

converges in total variation norm as t → ∞ to its unique stationary distribution.
Moreover, under condition (4) the latter is given by the measure ν defined above, as
explained in section 5 of [24].

We call a probability measure κ supported by (R+)n−1 a spacing distribution. The
above ν is a spacing distribution.

In this setting we obtain the following theorem.

Theorem 1 Let condition (3) hold and suppose that σi ≡ 1, i ∈ I . Then for every
initial spacing distribution κ that is absolutely continuous and such that dκ/dν is
in L2((R+)n−1; ν), and for every bounded function u of the spacings with ν(u) :=
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∫
(R+)n−1 u dν = 0 and Varν(u) := ∫

(R+)n−1 u2dν = σ 2, and t, r, ε > 0, the following
estimate holds:

P

⎛
⎝1

t

t∫

0

u(Y (s))ds ≥ r

⎞
⎠ ≤

∥∥∥∥
dκ

dν

∥∥∥∥
2

exp

[
− t

β
max

(
r2

δ2(u)
, 4ε(ε + σ 2)

(√
1 + r2

2ε(ε + σ 2)2 ‖u‖2∞
− 1

))]
. (5)

Here δ(u) := sup |u(x)− u(y)| is the range of u and

β = 4λn

min1≤k≤n−1 α̃
2
k

, (6)

where λn is given in (10) below.

Remark 1 Notice the effect of various parameters in the expression (5). It is exponen-
tial in t showing a geometric rate of convergence. It is Gaussian in r , when r is large,
which shows a strong concentration around the mean. This is evident in real data on
additive functionals such as cumulative excess growth rate as can be seen in Figure
11.3 in [17].

Remark 2 In stochastic portfolio theory one typically considers continuous functions
of the market weights, such as the relative growth rate of the portfolio value of a
functionally generated portfolio with respect to the market portfolio. Since the market
weights take values in a compact set by their definition, any continuous function of
the market weights is also bounded. Alternatively, these functions can be viewed as
bounded functions of the spacings, so that the boundedness assumption in Theorem 1
is fully satisfactory in this context.

Theorem 2 Let conditions (3), (4) be satisfied, the (n − 1) × (n − 1) matrix � be
defined by

� = (ξi j )1≤i, j≤n−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
i + σ 2

i+1, when 1 ≤ i = j ≤ n − 1,

−σ 2
i , when 2 ≤ i = j + 1 ≤ n,

−σ 2
i+1, when 1 ≤ i = j − 1 ≤ n − 1,

0, otherwise

(7)

and the (n − 1)× (n − 1) matrix 
 be a nondegenerate square root of �. Then:

(i) For every function u ∈ L2((R+)n−1; ν), for which ν(u) = 0, ‖∇u‖ ∈
L2((R+)n−1; ν), the function Ũ (x) := ∫∞

0 E
x [u(Y (t))] dt is in C2

(
(R+)n−1

)
and the function U (x) := Ũ (
 x) satisfies the Neumann boundary condition
on 
−1(R+)n−1, we obtain a variance bound
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E
ν

⎡
⎢⎣
⎛
⎝1

t

t∫

0

u(Y (s))ds

⎞
⎠

2
⎤
⎥⎦ = O(t−1).

(ii) Furthermore, for every 0 < ε < 2 and every initial spacing distribution κ
that is absolutely continuous with respect to ν and such that dκ/dν belongs to
L2/ε((R+)n−1; ν), the bound of part (i) is modified to

E
κ

⎡
⎢⎣
⎛
⎝1

t

t∫

0

u(Y (s))ds

⎞
⎠

2−ε⎤
⎥⎦ = O(t−1).

1.3 Outline

The article is organized as follows. Section 2 establishes rates of convergence for
SRBMs and their additive functionals under the condition of skew-symmetry. After
that, in Sect. 3.1, we prove comparison bounds on the performance of functionally
generated portfolios with respect to the market portfolio. Finally, in Sect. 3.2 we give
estimates on the fluctuations of the market weights and of the time spent by a given
market weight in a given rank.

2 Convergence to equilibrium under the skew-symmetry condition

To be ready to prove Theorem 1 we start with some preliminaries. In the first subsec-
tion of this section we recall the construction of certain normally reflected Brownian
motions with constant drift. In the following subsection we explain how the latter are
related to the spacings process in the case that σi = 1, i ∈ I and give the proof of
Theorem 1 in this case. Finally, in the last subsection of this section we extend our
approach to the setting of Theorem 1.

2.1 Normally reflected Brownian motion with constant drift

Fix a dimension n ∈ N, define the open wedge

H =
{

x ∈ R
n :

n∑
i=1

xi > 0, and x1 < x2 < · · · < xn

}

and let γ = (γ1, . . . , γn) be a given vector of constants.
We consider a normally reflected Brownian motion (RBM) on H with a constant

drift vector γ , an identity covariance matrix, and normal reflection. This process can
be obtained by the following Dirichlet form construction as described in section 2 of
Burdzy et al. [10].
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First, define the positive measure

m(dx) := 1H (x) exp(2〈γ, x〉)dx .

Next, let F be the collection of continuously differentiable functions on H such that
both the function and its gradient are square integrable with respect to m. That is,

F =
{

u ∈ L2(H ; m) : ∇u ∈ L2(H ; m)
}
. (8)

Over this domain we define the symmetric Dirichlet form

E(u, v) := 1

2

∫

H

〈∇u(x),∇v(x)〉 m(dx), for u, v ∈ F .

It can be shown (see [10]) that (E,F) is a regular Dirichlet form on L2(H ; m) in the
sense that Cc(H) ∩ F is dense both in Cc(H) in the uniform norm and in F with
respect to the Hilbert norm

√
E1(u, u) :=

√
E(u, u)+ 〈u, u〉L2(H ;m).

Hereby, as usual, Cc(H) denotes the space of continuous functions with compact
support in H .

A strongly continuous Markov process X is called an RBM on H with a constant
drift γ , if it is symmetric with respect to the measure m and the associated Dirichlet
form is given by (E,F) in the sense

F =
{

u ∈ L2(H ; m) : lim
t→0

1

t
〈u − Pt u, u〉L2(H ;m) < ∞

}

E(u, v) = lim
t→0

1

t
〈u − Pt u, v〉L2(H ;m) , for u, v ∈ F .

Here (Pt )t≥0 refers to the transition semigroup of the process.
The function h(x) = 1H (x) exp(2 〈γ, x〉) is the density of an invariant measure for

X . When h is integrable with respect to the Lebesgue measure on H , the normalized
measure (which we will continue to denote by m) constitutes the unique invariant
distribution of the RBM.

It is known that this process is unique in law and admits a semimartingale decom-
position, given by the solution of a deterministic Skorokhod problem applied to the
path of a Brownian motion with drift vector γ . In particular, the process has a local
time at the boundary and, started from any point in H , almost surely never visits the
origin [43]. For more details on reflected Brownian motions and Skorokhod problems
we refer the reader to [8,13–15,21,22,37] and the references therein.
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2.2 Proof of Theorem 1

We now return to the rank-based model described in the introduction and assume
throughout this subsection that σi = 1, i ∈ I . As explained in the proof of Theorem
8 in [33], the law of a suitably shifted vector of ordered processes in this model is
identical to that of an RBM in H .

More specifically, let β denote an independent one-dimensional RBM with a neg-
ative drift −θ (θ > 0). Define

Ỹi (t) := X(i)(t)− X(t)+ β(t)√
n
, i = 1, 2, . . . , n.

Note that
∑

i∈I Ỹi (t) = √
nβ(t) ≥ 0 for t ≥ 0. In addition, for every t ≥ 0 the spac-

ings between the components of the vector Ỹ (t) are the same as the original spacings,
and, moreover, the process Ỹ is an RBM in H , as described above, with a drift vector
γ determined by

〈γ, ỹ〉=
n∑

i=1

(
δi −δ − θ√

n

)
ỹi =−1

2

n−1∑
k=1

αk (ỹk+1 − ỹk)− θ√
n

n∑
i=1

ỹi , ỹ ∈ H.

It follows from [33, Lemma 9] that the corresponding invariant measure m is inte-
grable with respect to the Lebesgue measure on H and that, under its normalized
version, the law of the spacings (ỹk+1 − ỹk, k = 1, . . . , n − 1) is given by a product
of Exponential distributions with parameters αk, k = 1, . . . , n − 1.

For any ỹ ∈ H , we make the transformation

yk = ỹk+1 − ỹk, k = 1, . . . , n − 1,

which maps configurations of ordered particles to the corresponding vectors of spac-
ings. Next, we let T be the unique linear extension of this map to the whole of R

n . The
push-forward of the measure m by T , which is a probability measure on the positive
orthant (R+)n−1, will be denoted by ν and is given by the product of Exponential
distributions with parameters αk, k = 1, . . . , n − 1.

Consider any function f : (R+)n−1 → R which is continuously differentiable.
The gradients ∇y f on (R+)n−1 and ∇ỹ( f ◦T ) on H satisfy the simple linear equation

∂( f ◦ T )

∂ ỹi
=

n−1∑
j=1

∂ f

∂y j

∂y j

∂ ỹi
=

n−1∑
j=1

ai j
∂ f

∂y j
,

where A = (ai j ) is an n × (n − 1) matrix given by

ai j =

⎧⎪⎨
⎪⎩

−1, if 1 ≤ j = i ≤ n − 1,

+1, if 1 ≤ j = i − 1 ≤ n − 1,

0, otherwise.
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Moreover, it is clear that f and its gradient are in L2((R+)n−1; ν) if and only if
g := f ◦ T and the gradient of g are in L2(H ; m). In fact, we have the following
bound:

∫

(R+)n−1

∥∥∇y f
∥∥2

dν ≤ λn

∫

H

∥∥∇ỹ g
∥∥2

dm. (9)

Here, 1/λn is the minimal eigenvalue of the matrix A′ A, with A′ denoting the trans-
pose of A. To compute the latter eigenvalue explicitly, we note that 2 · I d − A′ A is the
(n − 1) × (n − 1) tridiagonal matrix which has zeros on the diagonal and ones next
to the diagonal, with I d being the (n − 1)× (n − 1) identity matrix. It is well-known
(see e.g. [28] and the references there) that the eigenvalues of a tridiagonal matrix of
this type are given by 2 cos kπ

n , k = 1, . . . , n − 1, so that the largest eigenvalue of
2 · I d − A′ A is given by 2 cos πn . Thus,

λn = 1

2 − 2 cos πn
. (10)

In particular, we see that λn grows quadratically in n.
Now, recall that a probability measure μ on R

n is said to satisfy the Poincaré
inequality with the Poincaré constant CP > 0 if for every continuously differentiable
function f : R

n → R it holds

Varμ( f ) =
∫

Rn

f 2dμ−
⎛
⎝
∫

Rn

f dμ

⎞
⎠

2

≤ CP

∫

Rn

‖∇ f ‖2 dμ, (11)

where Varμ( f ) stands for the variance of f under μ.
We proceed by recalling the fact that the Exponential distribution with parameter 1

satisfies the Poincaré inequality with a constant CP = 4. This well-known result can
be found in several sources, such as the book by Ledoux (Lemma 5.1 of [29]) or the
article by Barthe and Wolff [6], who also prove several other interesting results about
the Gamma family.

It follows by a simple scaling argument that the Exponential distribution with a
parameter λ > 0 satisfies the Poincaré inequality with the Poincaré constant CP =
4/λ2. In addition, we use the fact that the Poincaré inequality has the following tens-
orization property: if μ1, . . . , μn are probability measures on Euclidean spaces satis-
fying the Poincaré inequality with the constants C1, . . . ,Cn , then the product measure
μ1 × · · · × μn satisfies the Poincaré inequality on the corresponding product space
with the Poincaré constant maxi=1,...,n Ci .

The above considerations lead to the following lemma.

Lemma 3 The measure ν defined in the beginning of this subsection satisfies the
Poincaré inequality with the Poincaré constant
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Cν := 4 · max
1≤k≤n−1

α−2
k = 4 ·

(
min

1≤k≤n−1
α2

k

)−1
.

Combining Lemma 3 with the comparison bound in (9) and the Eq. (10), we obtain
for all functions f ∈ F the estimate

Varm ( f ) ≤ 1

2 − 2 cos πn
· 4

min1≤k≤n−1 α
2
k

· E( f, f ) =: βE( f, f ). (12)

Here, the pair (E,F) is defined for the RBM Ỹ according to the previous subsection.
We can now finish the proof of Theorem 1 in the case that σi = 1, i ∈ I . Indeed,

applying Theorem 3.1 from Guillin et al. [19], we obtain the estimate of Theorem 1
for any bounded measurable function of the particle configuration given by the com-
ponents of the process Ỹ . In particular, the statement of Theorem 1 holds for any
bounded measurable function of the vector of spacings, as claimed.

2.3 Proof of Theorem 2

We now give the proof of Theorem 2. In this part we assume the condition (3) on
the drift coefficients and the condition (4) on the diffusion coefficients. The proof is
broken down in several steps.

Step 1: Reduction to SRBM The ordered particle system corresponds to the fol-
lowing SDE:

d X(i)(t) = δi dt + σi d Bi (t)+ 1

2
d Li−1,i (t)− 1

2
d Li,i+1(t), i = 1, . . . , n, (13)

where Li,i+1 refers to the local time of collisions between the i-th and the (i + 1)-st
ranked particles (see Section 3 of [4]). In other words, this is the semimartingale local
time at zero for the process X(i+1)(t) − X(i)(t), t ≥ 0 normalized according to the
Itô-Tanaka formula.

In the following we closely follow the analysis and linear algebra done in Ichiba
and Karatzas [23, Section 3.2.1]. The process (X(1), . . . , X(n)) is a semimartingale
reflected Brownian motion (SRBM) in the sense of [43], with a constant drift vector, a
constant diffusion matrix and normal reflection, taking values in the Euclidean closure
of the wedge

{
(x1, . . . , xn) ∈ R

n : x1 ≤ · · · ≤ xn
}
.

Next, we consider the process of spacings Y , whose components are governed by
the SDEs

dYi (t) = (δi+1 − δi )dt + σi+1d Bi+1(t)− σi d Bi (t)

+d Li,i+1(t)− 1

2
d Li+1,i+2(t)− 1

2
d Li−1,i (t),
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i = 1, . . . , n − 1. It is easy to verify that Y is also an SRBM in the sense of [43],
taking values in the positive orthant (R+)n−1, and having a constant drift vector γ , a
constant diffusion matrix � and a reflection matrix R.

More specifically, the drift vector is given by γ = (δ2 − δ1, . . . , δn − δn−1). The
covariance matrix � = (ξi j )1≤i, j≤n−1 is tridiagonal with components

ξi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
i + σ 2

i+1, when 1 ≤ i = j ≤ n − 1,

−σ 2
i , when 2 ≤ i = j + 1 ≤ n,

−σ 2
i+1, when 1 ≤ i = j − 1 ≤ n − 1,

0, otherwise.

(14)

The reflection matrix R = (ri j )1≤i, j≤n−1 is also tridiagonal and its components are
given by

ri j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, when 1 ≤ i = j ≤ n − 1,

− 1
2 , when 2 ≤ i = j + 1 ≤ n,

− 1
2 , when 1 ≤ i = j − 1 ≤ n − 1,

0, otherwise.

(15)

Let 
 denote a nondegenerate square root of the matrix �, that is, an invertible
(n − 1)× (n − 1) matrix which satisfies 

′ = �. Note hereby that the matrix � is
strictly positive definite, since none of the processes σi+1 Bi (t) − σi Bi (t), t ≥ 0 for
i = 1, . . . , n − 1 can be obtained as a linear combination of the other n − 2 processes
of the same type.

Now, one can make the transformation Z(t) := 
−1Y (t), t ≥ 0 to obtain an SRBM
in a polyhedral domain G given by the image of the orthant (R+)n−1 under
−1. This
new SRBM has a constant drift vector given by
−1γ , identity covariance matrix, and
a new reflection matrix R := 
−1 R.

Hence, for the sake of the proof of Theorem 2 we can restrict our attention to the
case of an SRBM taking values in the closure of a polyhedral domain G with data of
the following form:

(i) drift vector 
−1γ and reflection matrix R,
(ii) a cone G of dimension n − 1 given by the dual description:

G = {x : (
x)i > 0, i = 1, . . . , n − 1}.

In particular, the (n − 1)× (n − 1) matrix N whose columns are the unit nor-
mal vectors on the faces of G is given by the normalized row vectors of 
. In
addition, the equality � = 

′ implies that the norm of the i-th row of 
 is
equal to

√
ξi i . Thus, if we let D denote the diagonal matrix comprised of the

diagonal elements of �, we have N = 
′D−1/2.
(iii) Due to the condition (4) the reflection matrix R admits the decomposition

R = N + Q,
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where the diagonal elements of N ′Q are all zero. In fact, under (4) the so-called
skew-symmetry condition

N ′Q + Q′N = 0 (16)

holds (see page 975 in [23] for details).

Following Williams [43] we call the process Z an SRBM associated with the param-
eters (N , Q, 
−1γ ). Such an SRBM has the following semimartingale decomposition:

Z(t) = Z(0)+
−1γ t + W (t)+ (N + Q) L(t), (17)

where L is the vector of the accumulated local times at the faces of the boundary
of G.

Step 2: Application of duality Next, we define γ̃ := 2
(
I − N−1 Q

)−1

−1γ and

let γ̂ denote the vector γ̃ −
−1γ . The above considerations show that the following
result from Williams [43, Thm 1.2, Cor 1.1] applies in our setting.

Theorem 4 Consider the measure ρ on G whose density with respect to the Lebesgue
measure on G is given by

ρ(x) = exp(〈γ̃ , x〉).

The SRBMs associated with (N , Q, 
−1γ ) and (N ,−Q, γ̂ ) are in duality relative to
ρ and ρ is an invariant measure for these two processes. In particular, if ρ is finite,
the normalized measure (which we will also denote by ρ) is the unique stationary
distribution for each of the two processes.

The duality being referred to is in the following sense: let (Pt )t≥0 and (P̂t )t≥0
denote the transition semigroups for the two SRBMs in the theorem. Then for all
continuous functions f, g with compact support in the closure of G we have

∫

G

(Pt f )(x)g(x)ρ(x) dx =
∫

G

f (x)(P̂t g)(x)ρ(x) dx . (18)

For a classical treatment of duality in the presence of reflection please consult [32].
Now, let C∞

c (G) be the collection of infinitely differentiable functions with com-
pact support in the open cone G and let L and L̂ denote the respective generators of the
two SRBMs in the statement of the latter theorem on the domain C∞

c (G) ⊆ L2(G; ρ).
That is,

L = 〈
−1γ,∇〉 + 1

2
�, L̂ = 〈γ̂ ,∇〉 + 1

2
�. (19)

From the said duality we conclude:

〈−L f, g〉L2(G;ρ) =
〈
−L̂g, f

〉
L2(G;ρ) , f, g ∈ C∞

c (G).
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Next, for f, g ∈ C∞
c (G), we define the symmetrized Dirichlet form Eσ with domain

C∞
c (G) by

Eσ ( f, g) := 1
2

[〈−L f, g〉L2(G;ρ) + 〈−Lg, f 〉L2(G;ρ)
] = 1

2

〈
−L̂g − Lg, f

〉
L2(G;ρ) .

(20)

Moreover, using integration by parts we get

〈
−L̂g − Lg, f

〉
L2(G;ρ) =

∫

G

[−〈γ̃ , (∇g)(x)〉 − (�g)(x)
]

f (x) exp(〈γ̃ , x〉) dx

=
∫

G

〈(∇g)(x), (∇ f )(x)〉 exp(〈γ̃ , x〉) dx . (21)

Thus,

Eσ ( f, g) = 1

2

∫

G

〈(∇g)(x), (∇ f )(x)〉 exp(〈γ̃ , x〉) dx . (22)

In other words, Eσ is the pre-Dirichlet form for an SRBM with a constant drift
vector, identity covariance matrix and normal reflection on the faces of G. It is known
in such case (see the references in Burdzy et al. [10]) that the Dirichlet form is closable
in L2(G; ρ) and that the resulting closed extension is regular in a sense made precise
in the previous subsection. Moreover, the domain of the Dirichlet form Eσ is given by
(8), with H replaced by G and m replaced by ρ.

Step 3: Forward-backward martingale decomposition Now to analyze additive
functionals, note that the duality (18) between (Pt )t≥0 and (P̂t )t≥0 can be expressed in
the following way. Suppose {Z(u), 0 ≤ u ≤ t} is an SRBM (N , Q, 
−1γ ) such that
Z(0) ∼ ρ (which is assumed to be a Probability measure). Define the time-reversed
process Ẑ(s) = Z(t − s), 0 ≤ s ≤ t . Then {Ẑ(u), 0 ≤ u ≤ t} is an SRBM
(N ,−Q, γ̂ )with Ẑ(0) ∼ ρ. This follows since the time-reversed process is obviously
Markov, and the duality equation (18) determines its transition kernel.

Now let v : G → R be a continuous function such that

‖v‖∞ < ∞, and
∫

G

v(x)ρ(x)dx = 0. (23)

Suppose U : G → R is a twice continuously differentiable function (i.e., U ∈ C2(G))
such that

−
(
L̂ + L

)
U (x) = 2v(x), x ∈ G, and (∇U (x))′ n(x) = 0, x ∈ ∂G. (24)
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Here n(x) is the inward normal at the boundary point x . This vector is also one of the
columns of the matrix N .

In other words, U is the solution of the Neumann problem:

− 〈γ̃ ,∇U (x)〉 −�U (x) = 2v(x), x ∈ G, and (∇U (x))′ n(x) = 0, x ∈ ∂G.

(25)

The solution to this Poisson equation exists due to Theorem 4.16 in [9].
Now, fix a t > 0. We apply a forward-backward martingale decomposition. By

Itô’s rule applied to the semimartingale Z , we get

M(t) :=U (Z(t))−U (Z(0))−
t∫

0

LU (Z(s))ds−
t∫

0

(∇U (Z(s)))′ (N + Q) d L(s),

(26)

is the final element of the martingale ∇U (Z) · W in time [0, t].
When we reverse time, applying Itô’s rule to Ẑ we get

M̂(t) :=−U (Z(t))+U (Z(0))−
t∫

0

L̂U (Z(s))ds−
t∫

0

(∇U (Z(s)))′ (N −Q) d L(s)

(27)
is the final element of another martingale.

Adding (26) and (27) and using (24) we get

M(t)+ M̂(t)

2
=

t∫

0

v (Z(s)) ds. (28)

Thus, for any convex function φ we have

Eφ

⎛
⎝

t∫

0

v (Z(s)) ds

⎞
⎠ ≤ 1

2

[
Eφ (M(t))+ Eφ

(
M̂(t)

)]
. (29)

Connection to the Poisson equation

Lemma 5 Consider the Poisson equation with Neumann boundary condition in (25).

(i) If ‖∇U‖p := ∫G ‖∇U (x)‖p ρ(x)dx < ∞ for some p ≥ 1, then

E

⎛
⎝1

t

t∫

0

v (Z(s)) ds

⎞
⎠

p

≤ C pt−p/2 ‖∇U‖p ,

where C p is some universal constant.
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(ii) If ‖∇U‖∞ := supx∈G ‖∇U (x)‖ < ∞, then, for any λ ∈ R, we get

E exp

⎛
⎝λ

t

t∫

0

v(Z(s))ds

⎞
⎠ ≤ exp

(
λ2 ‖∇U‖2∞

2t

)
.

Hence, for any r > 0, we have

P

⎛
⎝1

t

t∫

0

v(Z(s))ds ≥ r

⎞
⎠ ≤ exp

(
− r2t

2 ‖∇U‖2∞

)
.

Proof We start by estimating 〈M〉 (t) and
〈
M̂
〉
(t). We will only consider 〈M〉 since

the other case is symmetric. By Itô’s rule, we get

〈M〉 (t) =
t∫

0

‖∇U (Z(s))‖2 ds.

Moreover, for any k ≥ 1, Jensen’s inequality implies

E 〈M〉k (t) = tk E

⎛
⎝1

t

t∫

0

‖∇U (Z(s))‖2 ds

⎞
⎠

k

≤ tk E

⎛
⎝1

t

t∫

0

‖∇U (Z(s))‖2k ds

⎞
⎠

= tk 1

t

t∫

0

E ‖∇U (Z(s))‖2k ds = tk
∫

G

‖∇U (x)‖2k ρ(x)dx = tk ‖∇U‖2k .

The second last equality is due to the fact that the process is running in equilibrium.
Suppose now ‖∇U‖p < ∞ for some p ≥ 1. We invoke Burkholder–Davis–Gundy

inequality (see [27, p. 166]) for continuous local martingales to infer

E |M(t)|p ≤ C p E 〈M(t)〉p/2 ≤ C pt p/2 ‖∇U‖p .

The same bound for E
∣∣∣M̂(t)

∣∣∣p proves (i) by (29).

Now assume that ‖∇U‖∞ < ∞. Then, by Itô’s rule, it follows that almost surely
〈M(t)〉 ≤ ‖∇U‖2∞ t . Hence, by an exponential martingale inequality we get that for
any λ ∈ R, we have

E exp (λM(t)) ≤ exp

(
λ2 ‖∇U‖2∞ t

2

)
.
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Again obtaining the same bound for M̂ and combining with (28), we obtain the first
part of (ii). The rest follows by a standard application of Markov’s inequality and
optimizing over λ. ��
Poincaré inequality for the symmetric process For a large class of functions v, one
can show that the corresponding ‖∇U‖ is in L2(G; ρ). To this end, we prove first the
Poincaré inequality in the setting of Theorem 2.

Lemma 6 Let the conditions (3) and (4) hold true. Then for any f in the domain of
Eσ in (22) which satisfies

∫
G f (x)ρ(x) dx = 0, we have

∫

G

f 2(x) exp(〈γ̃ , x〉) dx ≤ CP

∫

G

‖∇ f ‖2 (x) exp(〈γ̃ , x〉) dx .

Hereby, CP is given by 4λ̃n
min1≤k≤n−1 α̃

2
k

with λ̃n being the largest eigenvalue of �−1 and

α̃k, k = 1, . . . , n − 1 being defined as in the introduction.

Proof As remarked in the introduction, condition (3) implies that the process of spac-
ings Y possesses a unique invariant distribution, so that the density function ρ can be
normalized to a probability density function, which we will refer to as ρ1.

We now fix a function f as in the statement of the theorem, define a function
g : (R+)n−1 → R by g(y) = f (
−1 y) and denote the invariant distribution of the
process of spacings Y by ν as before. From the definitions of ν and ρ1 we see

∫

G

f 2(x)ρ1(x) dx =
∫

(R+)n−1

g2(y) dν(y). (30)

By Theorem 2 in [24] the probability measure ν is a product of Exponential distri-
butions with parameters α̃k, k = 1, . . . , n − 1, so that as in the derivation of Lemma
3 we conclude that ν satisfies the Poincaré inequality with the Poincaré constant

4
min1≤k≤n−1 α̃

2
k

. In particular, it holds

∫

(R+)n−1

g2(y) dν(y) ≤ 4

min1≤k≤n−1 α̃
2
k

∫

(R+)n−1

‖∇g‖2 (y) dν(y). (31)

In addition, employing the chain rule as in the previous subsection (see (9)), we
can bound ‖∇g‖2 (y) from above by λ̃n ‖∇ f ‖2 (
−1 y) for all y ∈ (R+)n−1, where
λ̃n is the largest eigenvalue of (

′)−1 = �−1. Putting together (30), (31) and the
latter observation, we obtain Lemma 7. ��
A variance bound for additive functionals It is well-known (see Proposition 2.1 in
the notes by Bakry [2]) that a Poincaré inequality as proved in Lemma 6 implies that
for any function f ∈ L2(G; ρ) such that

∫
G f (x)ρ(x)dx = 0 one has
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∫

G

(Pt f (x))2 ρ(x)dx ≤ e−2t/CP

∫

G

f 2(x)ρ(x)dx . (32)

Here (Pt )t≥0 is the Markov semigroup associated with the Dirichlet form Eσ in (22).
We show below that the Poincaré inequality entails a variance bound for a large

class of additive functionals via Theorem 2.

Lemma 7 For any v ∈ L2(G; ρ) such that
∫

G v(x)ρ(x)dx = 0, suppose that the
function

U (x) =
∞∫

0

Ptv(x)dt, x ∈ G, (33)

is in C2(G) and satisfies the Neumann boundary condition. Then U is a solution of
the Poisson equation (25). Moreover, if ‖∇v‖ ∈ L2(G; ρ), then ‖∇U‖ ∈ L2(G; ρ).
Proof We first claim that U is finite everywhere on G. To see this choose 0 < δ <

2/CP and note that by the Cauchy–Schwarz inequality

⎛
⎝

∞∫

0

Ptv(x)dt

⎞
⎠

2

≤
⎛
⎝

∞∫

0

e−δt dt

⎞
⎠
⎛
⎝

∞∫

0

eδt (Ptv(x))
2 dt

⎞
⎠ . (34)

The quantity on the left is infinite only if the quantity on the right is. But the right-hand
side is integrable with respect to ρ(x)dx by (32) and our choice of δ.

Let A denote the generator of the semigroup (Pt )t≥0. Then, by the usual semigroup
calculus it follows that

AU (x) =
∞∫

0

APtv(x)dt =
∞∫

0

(
d

dt
Ptv(x)

)
dt = −v(x).

The generator A is an extension of the differential operator (L + L̂)/2 over C2-func-
tions satisfying the Neumann boundary condition. It follows that U is a solution of
the Poisson problem with the Neumann boundary condition.

For any two points x, y ∈ G, let X x , X y be two processes with transition ker-
nels (Pt )t≥0 driven by the same Brownian motion B while starting from x and y,
respectively.

By an application of Itô’s rule

∣∣X x
t − X y

t

∣∣ = 2

t∫

0

〈X x
s − X y

s , n(X x
s )〉d�x

s + 2

t∫

0

〈X y
s − X x

s , n(X y
s )〉d�y

s + |x − y|,
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where �x and �y are the local time components of X x and X y at ∂G, respectively.
Since G is convex, the inner products in the integrands are nonpositive, and hence∣∣X x

t − X y
t

∣∣ ≤ |x − y| with probability one (Lemma 3.1 of [45]). Taking y → x , this
shows ‖∇ Ptv‖ ≤ Pt ‖∇v‖ for all t ≥ 0 (see inequality (3.4) in [45]). The rest is an
application of the Cauchy–Schwarz inequality as in (34). ��

We can now put together our findings to give a proof of Theorem 2.

Proof of Theorem 2 Part (i) is a consequence of a combination of Lemmata 5 and
7 along with the transformation back from Z to Y . Part (ii) is obtained by putting
together Hölder’s inequality

E
κ

⎡
⎢⎣
⎛
⎝1

t

t∫

0

u(Y (s))ds

⎞
⎠

2−ε⎤
⎥⎦ = E

ν

⎡
⎢⎣dκ

dν
·
⎛
⎝1

t

t∫

0

u(Y (s))ds

⎞
⎠

2−ε⎤
⎥⎦

≤ E

[(
dκ

dν

)2/ε
]

· E
ν

⎡
⎢⎣
⎛
⎝1

t

t∫

0

u(Y (s))ds

⎞
⎠

2
⎤
⎥⎦

and part (i). ��

Remark 3 It must be known that U as defined in Lemma 7 is automatically in C2(G)
and satisfies the Neumann boundary condition. However, at the present moment we
cannot find a suitable reference.

3 Applications

3.1 Portfolio performance

For the rest of the paper we set σi = 1, i ∈ I without further notice. As an applica-
tion of Theorem 1 we shall consider an abstract equity market model (Si (·), i ∈ I )
where the market capitalization Si (t) of company i ∈ I at time t ≥ 0 is given by
Si (t) := exp(Xi (t)). That is, each Xi (t) in (2) gives the logarithmic capitalization of
company i ∈ I at time t ≥ 0. This market model was introduced by Fernholz in the
book [16] and investigated further in the articles [4,11,17,33] and [24] among others.

By Itô’s formula and (2) we have

d Si (t)= Si (t)

⎛
⎝∑

j∈I

δ j · 1{Xi (t)= X( j)(t)}dt + dWi (t)

⎞
⎠+ 1

2
Si (t)dt,

d

(∑
i∈I

Si (t)

)
=
∑
i∈I

Si (t)

⎛
⎝∑

j∈I

δ j · 1{Xi (t)= X( j)(t)}+ 1

2

⎞
⎠ dt+

∑
i∈I

Si (t)dWi (t).
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Another application of Itô’s formula shows that the market capitalization weights
μi (t) := Si (t)/

∑
j∈I S j (t), i ∈ I satisfy

dμi (t) = (finite variation part
)+ μi (t)

∑
j∈I

(
δi j − μ j (t)

)
dW j (t), i ∈ I,

where δi j is the Kronecker delta. Hence, the corresponding cross variation processes
grow at the rates

d〈μi , μ j 〉
dt

(t) = μi (t)μ j (t)
∑
k∈I

(
δik − μk(t)

)(
δ jk − μk(t)

)
, (i, j) ∈ I 2. (35)

For notational simplicity we will from now on write Di for the partial derivative
with respect to the i th variable and Di j for the second partial derivative with respect
to the i th and the j th variables.

A portfolio (πi (·), i ∈ I ) in the market above is defined as a stochastic process
adapted to the Brownian filtration and such that

π1(t)+ · · · + πn(t) = 1, t ≥ 0.

Its value process V π (·) is defined as a solution to

dV π (t)

V π (t)
=
∑
i∈I

πi (t)
d Si (t)

Si (t)
.

For example, πi (.) = μi (.), i ∈ I gives the market portfolio and we will write Vμ(·)
for its value process.

Following Fernholz [16], we introduce the family C of portfolio generating func-
tions G : U → (0,∞), which are functions of class C2 on some open neighborhood
U ⊂ R

n of the simplex

�n+ := {x = (x1, . . . , xn) ∈ [0, 1]n : x1 + · · · + xn = 1}

and such that the mapping x → xi log G(x) is bounded on�n+ for all i ∈ I . According
to Theorem 3.1.5 of [16], given a portfolio generating function G ∈ C, the functionally
generated portfolio (πi (.), i ∈ I ), defined by

πi (t) =
⎛
⎝Di log G(μ(t))+ 1 −

∑
j∈I

μ j D j log G(μ(t))

⎞
⎠μi (t), t ≥ 0, i ∈ I

has a value process V π (·) which satisfies the master formula

log(V π (t)/Vμ(t)) = log(G(μ(t))/G(μ(0)))+
t∫

0

g(s)ds, t ≥ 0, (36)
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where the drift part is

g(t) = −1

2G(μ(t))

∑

(i, j)∈I 2

Di j G(μ(t))
d〈μi , μ j 〉

dt
(t), t ≥ 0. (37)

Substituting (35) into this formula, we obtain g(·) as a function of the market weights
μi (·), i ∈ I :

g(·) = −1

2G(μ(·))
∑

(i, j)∈I 2

Di j G(μ(·))μi (·)μ j (·)
∑
k∈I

(
δik − μk(·)

)(
δ jk − μk(·)

)
.

The relative value process V π (·)/Vμ(·) is determined by the drift process g.
We shall now rewrite the drift process g in terms of the spacings process Y of

Theorem 1. The ranked market weights μ(1)(t) ≤ μ(2)(t) ≤ · · · ≤ μ(n)(t) at a given
time t ≥ 0 are obtained from the corresponding value of the spacings process by the
formula

μ( j)(t) = M j (Y (t)), j ∈ I,

where the functions M j : [0,∞)n−1 → (0, 1) are defined by

M1(y1, . . . , yn−1) := [1 + ey1 + ey1+y2 + · · · + ey1+···yn−1]−1,

Mk(y1, . . . , yn−1) := ey1+···+yk−1 M1(y1, . . . , yn−1), k = 2, . . . , n.
(38)

For notational simplicity we will write M(Y (t)) or M(t) for the value of the process
(μ(1)(·), . . . , μ(n)(·)) at a given time t ≥ 0. Let us also introduce the partitions

R
n =

⋃
i∈I

Q(i)
l , l ∈ I, R

n =
⋃
l∈I

Q(i)
l , i ∈ I

such that for every (i, l) ∈ I 2 and every x = (x1, . . . , xn) ∈ Q(i)
l the component xi is

the lth ranked from the bottom in the set {x1, . . . , xn}.
We recall that the domain of the portfolio generating function G is given by �n+

rather than the set

�n+,≤ := {(x1, . . . , xn) ∈ �n+ : x1 ≤ x2 ≤ · · · ≤ xn}. (39)

However, if the function G is permutational invariant, in the sense that

G(x1, . . . , xn) = G(x p(1), . . . x p(n)) (40)
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for every permutation (p(1), . . . , p(n))of I , then we may and will view G as a function
on �n+,≤. Next, let us introduce the functions

g jk(x) :=
∑

(h,i)∈I 2

Dhi G(x) · 1
Q(h)

j
(x) · 1

Q(i)
k
(x), ( j, k) ∈ I 2 (41)

defined on the simplex �n+.
Important examples of portfolio generating functions are:

• G(x) = (
∑

i∈I x p
i )

1/p for some 0 < p < 1 (diversity) or
• G(x) = 1 − 1

2

∑
i∈I (xi − n−1)2 (quadratic Gini coefficient) or

• G(x) = (1 − p)−1 log(
∑

i∈I x p
i ) for some p �= 1 (Rényi entropy) or

• G(x) = −∑i∈I xi log xi (entropy) or
• G(x) = (x1 · · · xn)

1/n (equal-weighting generating function).

Under condition (40) (in particular, in the latter examples) each process g jk(μ(t)), t ≥
0 can be rewritten as

g̃ jk(M(Y (t))), t ≥ 0 (42)

for appropriate functions g̃ jk on�n+,≤ and all ( j, k) ∈ I 2. Thus, in this case, the drift
process g in (37) can be written as

g(t) = −1

2G(μ(t))

∑

(h,i)∈I 2

Dhi G(μ(t))μh(t)μi (t)
∑
�∈I

(
δhl − μl(t)

)(
δil − μl(t)

)

= −1

2G(μ(t))

∑

(h,i, j,k)∈I 4

1
Q(h)

j ∩Q(i)
k

Dhi G(μ(t))μh(t)μi (t)

×
∑
�∈I

(
δhl − μl(t)

)(
δil − μl(t)

) = −1

2G(μ(t))

∑

( j,k)∈I 2

g jk(μ(t))μ( j)(t)μ(k)(t)

×
∑
�∈I

(
δ jl − μ(l)(t)

)(
δkl − μ(l)(t)

) = ũ(Y (t)), t ≥ 0,

where the function ũ : [0,∞)n−1 → R is defined by

ũ(y) := − 1

2G(M(y))

∑

( j,k)∈I 2

g̃ jk(M(y))M j (y)Mk(y)

×
∑
�∈I

(
δ jl − Ml(y)

)(
δkl − Ml(y)

)
.

Finally, using the stationary distribution ν of the spacings process described in the
introduction, we define a normalized version u : [0,∞)n−1 → R of ũ by

u(y) := ũ(y)− ν(̃u) = ũ(y)−
∫

[0,∞)n−1

ũ(z) dν(z). (43)
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Combining Theorem 1, (36) and the representation of the drift process g in terms
of the spacings process Y , we can compare the value process V π of the portfolio
generated by a permutation invariant function G ∈ C to the value process Vμ of the
market portfolio with the same initial value. Similarly, instead of (36), we can use

log(Vμ(t)/V π (t)) = − log(G(μ(t))/G(μ(0)))+
t∫

0

(−g(s))ds

and apply Theorem 1 with −u. All in all, we obtain the following corollary.

Corollary 8 Suppose that G is permutation invariant, and that u in (43) satisfies
0 < Varν(u) = σ 2 < ∞, ‖u‖∞ ∈ (0,∞) and δ2(u) > 0. Then for every initial
spacing distribution κ of Y (0) the ratios between the portfolio value V π (·) generated
by G and the market portfolio value Vμ(·) satisfy the estimates

P(V π (t)/Vμ(t) ≥ c+
1 (t)G(μ(t))/G(μ(0))) ≤

∥∥∥dκ

dν

∥∥∥
2

exp
[

− t

β
c2

]
,

P(Vμ(t)/V π (t) ≥ c−
1 (t)G(μ(0))/G(μ(t))) ≤

∥∥∥dκ

dν

∥∥∥
2

exp
[

− t

β
c2

]

for all t, r, ε > 0, where c±
1 (t) := exp[{r ± ν(̃u)}t], β is given by (6) and

c2 := max

(
r2

δ2(u)
, 4ε(ε + σ 2)

(√
1 + r2

2ε(ε + σ 2)2‖u‖2∞
− 1

))
.

Example 1 We now examine the statement of Corollary 8 in the cases of the portfo-
lios generated by the diversity, the quadratic Gini coefficient, the Rényi entropy, the
entropy and the equal-weighting generating function defined above.

For the diversity-weighted portfolio, that is, the portfolio generated by the diversity,
we compute

(D jkG)(x) = (1 − p)

(∑
i∈I

x p
i

)(1/p)−2

x p−1
j x p−1

k + δ jk(p − 1)

×
(∑

i∈I

x p
i

)(1/p)−1

x p−2
j ,

for all ( j, k) ∈ I 2. In addition, we note that the vector M(Y (t)), which we will abbre-
viate by M(t) from now on, satisfies M1(t) < M2(t) < · · · < Mn(t) for Lebesgue
almost every t ≥ 0 with probability one. Indeed, this is a consequence of the fact that
the set

{t ≥ 0 : X(i)(t) = X( j)(t) for some 1 ≤ i < j ≤ n}
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is a Lebesgue zero set with probability one (see [33] for more details). Hence, we
may conclude g̃ jk(M(t)) = (D jkG)(M(t)) for Lebesgue almost every t ≥ 0 with
probability one. Using the formula above for the partial derivatives D jkG, ( j, k) ∈ I 2

and taking into account the latter observation, we obtain after some elementary com-
putations:

ũ(Y (t)) = 1 − p

2

(
1 −

∑
i∈I (Mi (t))2p

(
∑

i∈I (Mi (t))p)2

)

for Lebesgue almost every t ≥ 0 almost surely. Moreover, since by definition the
market weights Mi (t), i ∈ I are [0, 1]-valued, we conclude using the Cauchy–Sch-

warz inequality that ũ(Y (t)) takes values in
[
0, (n−1)(1−p)

2n

]
for Lebesgue almost every

t ≥ 0 with probability one. Hence, the fluctuations of the relative performance of the
diversity-weighted portfolio with respect to the market portfolio are controlled by
the estimates of Corollary 8 with ‖u‖∞ replaced by (n−1)(1−p)

2n and δ(u) replaced by
(n−1)(1−p)

n .
For the portfolio generated by the quadratic Gini coefficient a similar computation

yields

(D jkG)(x) = −δ jk, ( j, k) ∈ I 2

and, hence,

ũ(Y (t)) =
∑

i∈I (Mi (t))2 − 2(
∑

i∈I (Mi (t))3)+ (
∑

i∈I (Mi (t))2)2

2 −∑i∈I (Mi (t)− n−1)2

for Lebesgue almost every t ≥ 0 almost surely. Moreover, the inequality (Mi (t))2 −
2(Mi (t))3 + (Mi (t))4 ≥ 0 for every t ≥ 0 and i ∈ I , and the fact that the market
weights are [0, 1]-valued and sum up to one imply:

0 ≤ ũ(Y (t)) ≤ 2

2 − (1 − n−1)2

for Lebesgue almost every t ≥ 0 with probability one. Thus, the inequalities of Cor-
ollary 8 apply with ‖u‖∞ replaced by 2

2−(1−n−1)2
and δ(u) replaced by 2

1− 1
2 (1−n−1)2

.

In the case of the portfolio generated by the Rényi entropy we get

(D jkG)(x) = p2

p − 1
· x p−1

j x p−1
k

(
∑

i∈I x p
i )

2
− δ jk

px p−2
j∑

i∈I x p
i

for all ( j, k) ∈ I 2. An analogous computation to the case of the diversity-weighted
portfolio yields here:
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ũ(Y (t)) = p

2 log(
∑

i∈I Mi (t)p)

·
(

1 − p + p ·
∑

i∈I (Mi (t))2p

(
∑

i∈I (Mi (t))p)2
− 2 ·

∑
i∈I (Mi (t))p+1
∑

i∈I (Mi (t))p
+
∑
i∈I

Mi (t)
2

)

for Lebesgue almost every t ≥ 0 almost surely. Although the values of the process
Mn(t), t ≥ 0 can be arbitrarily close to one, a simple analysis based on L’Hôpital’s
rule shows that the values of the process |ũ(Y (t))|, t ≥ 0 are uniformly bounded for
Lebesgue almost every t ≥ 0 with probability one, so that Corollary 8 applies in this
case as well.

In the case of the entropy-weighted portfolio, that is, the portfolio generated by the
entropy, one computes

(D jkG)(x) = −δ jk
1

x j
, ( j, k) ∈ I 2, and

ũ(Y (t)) = 1 −∑i∈I (Mi (t))2

−2
∑

i∈I Mi (t) log Mi (t)

for Lebesgue almost every t ≥ 0 almost surely. Moreover, the estimate

|ũ(Y (t))| ≤ 1 − (Mn(t))2

−2Mn(t) log Mn(t)
,

an analysis of the right-hand side of the latter inequality as Mn(t) approaches one, and
the inequality Mn(t) ≥ n−1 show that the values of the process |ũ(Y (t))|, t ≥ 0 are
uniformly bounded for Lebesgue almost every t ≥ 0 with probability one. Hence, our
Corollary 8 can be also applied in this case.

Finally, for the equal-weighted portfolio, that is, the portfolio generated by the
equal-weighting generating function, one easily checks

(D jkG)(x) = 1

nx j xk
(x1 · · · xn)

1/n
(1

n
− δ jk

)
, ( j, k) ∈ I 2, and

ũ(Y (t)) = n − 1

n

for Lebesgue almost every t ≥ 0 almost surely. Thus, this is a trivial case and, although
Corollary 8 applies, it does not give a meaningful estimate.

3.2 Fluctuations of the market weights

On pages 46 and 52 of their survey on Stochastic Portfolio Theory [17], Fernholz and
Karatzas pose the following open questions which we restate slightly for the models
considered in this article. Consider an abstract rank-based equity market model with
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n companies as defined in the previous subsection and consider for any given time
t ≥ 0 the ranked market weights:

μ(1)(t) ≤ μ(2)(t) ≤ · · · ≤ μ(n)(t).

What can one say about the following objects:

(i) approximate laws of μ(1)(t) and μ(n)(t),
(ii) fluctuations of the moving averages

1

T

T∫

0

μ(k)(t)dt, k = 1, . . . , n.

(iii) In addition, the following question is of interest: What is the approximate devi-
ation from 1/n of the quantity

1

T
{amount of time the i-th market weight has rank k during [0, T ]}.

Our estimates on the rate of convergence to equilibrium will allow us to partially
answer each of these questions.

To answer question (ii), we recall from the previous subsection that at any given
time each ranked market weight can be written as a time-independent continuous
bounded function of the vector of spacings. Thus, our Theorem 1 can be applied
directly to the moving averages in question (ii). It gives completely explicit esti-
mates on the fluctuations of the latter, provided that one can compute the first two
moments of the corresponding ranked market weight in equilibrium. This is in gen-
eral a daunting task. In the following theorem we provide formulas for all moments
of the ranked market weights in the Atlas model under their stationary distribution.
Although not explicitly numerical, they can be effectively computed via a software
such as Mathematica. This also gives a partial answer to question (i) for the Atlas
model. Recall that the latter is the special case of the particle system in (2) with
δ1 = δ > 0, δ2 = · · · = δn = 0, σ1 = · · · = σn = 1.

Theorem 9 Consider the Atlas model with δ being the drift of the lowest ranked parti-
cle. In equilibrium, the law of the ranked market weights is determined by the following
Laplace transform:

τ(θ) := E

[
exp

(
− θ

μ(k)

)]
= e−θ (φ(θ))n−k E[ψβ(θ)k−1], (44)

where

(i) φ is the Laplace transform of eW with W being an Exponential random variable
of parameter 2δ/n,
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(ii) ψβ is the conditional Laplace transform of

(
β

(1 − β)V + β

)n/2δ

,

conditional on the value of β, where β is Beta(n − k + 1, k) distributed, V is
uniformly distributed on (0, 1), and β, V are independent.

In particular, in equilibrium, we obtain all moments of μ(k) by the formula

E
[
(μ(k))

r ] = 1

(r − 1)!
∞∫

0

θr−1τ(θ)dθ, r = 1, 2, . . . .

Proof We fix a k ∈ {1, . . . , n} and recall the following result from Pal and Pitman
[33, Theorem 8]. Let ξ1, ξ2, . . . , ξn−1 be independent Exponential random variables
with respective parameters

2δ

n
(n − i) , i = 1, 2, . . . , n − 1.

Then take ξ0 to be any random variable and set ηi := ξ0 + ξ1 + · · · + ξi−1, i =
1, 2, . . . , n. Then, the following equality in law holds:

μ(k) = eηk∑n
j=1 eη j

, k = 1, 2, . . . , n.

Note that ξ0 does not play any role, since it gets cancelled in the latter fraction.
Thus,

1

μ(k)
=
∑k−1

j=1 eη j

eηk
+ 1 +

∑n
j=k+1 eη j

eηk
= Ak + 1 +
k . (45)

Hereby,

Ak =
k−1∑
j=1

exp

⎛
⎝−

k−1∑
l= j

ξl

⎞
⎠ , 
k =

n∑
j=k+1

exp

⎛
⎝

j−1∑
l=k

ξl

⎞
⎠

are independent random variables.
Next, let ϑ1, ϑ2, . . . , ϑm denote i.i.d. Exponential random variables with some

parameter α. Then the Rényi representation of the order statistics of i.i.d. Exponential
random variables states that the random variables

ϑ(i+1) − ϑ(i), i = 1, 2, . . . ,m − 1,
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are independent and Exponentially distributed with respective parameters α(m − i),
i = 1, 2, . . . ,m − 1. Hereby, ϑ(1) ≤ ϑ(2) ≤ · · · ≤ ϑ(m) are the order statistics of the
vector (ϑ1, ϑ2, . . . , ϑm). We shall use this representation to express Ak and 
k in a
symmetric way.

Now, set m = n−k, α = 2δ/n and define�i := ϑ(i+1)−ϑ(i), i = 1, 2, . . . ,m−1,
�0 := ϑ(1). Then, we get the following equality in distribution:

�i = ξk+i , 0 ≤ i ≤ n − k − 1.

Hence, it holds

n−k∑
i=1

eϑi =
n−k∑
i=1

eϑ(i) =
n−k∑
i=1

exp

(
i−1∑
l=0

�l

)
= 
k

in distribution. Thus, 
k is the sum of (n − k) i.i.d. random variables. In particular,

E
(
e−θ
k

) = (φα(θ))
n−k , (46)

where φα is the Laplace transform of eϑ1 given by

φα(θ) =
∞∫

0

α exp
(− αx − θex) dx . (47)

The case of Ak is a bit more convoluted. First, let T1, T2, . . . , Tn be i.i.d. Expo-
nential random variables with parameter α = 2δ/n, which are independent of the
ϑi ’s. Setting R j = exp(−Tj ) for j = 1, . . . , n, it is clear that each random variable
R j is distributed according to the Beta distribution Beta(α, 1). Hence, we can write

R j = U 1/α
j , j = 1, . . . , n with suitable i.i.d. uniformly on (0, 1) distributed random

variables U1,U2, . . . ,Un .
Now, using the Rényi representation again we obtain the following identity in dis-

tribution:

Ak =
k−1∑
j=1

e−T(k)

e−T( j)
=

k−1∑
j=1

R(n−k+1)

R(n− j+1)
=

k−1∑
j=1

(
U(n−k+1)

U(n− j+1)

)1/α

=
n∑

j=n−k+2

(
U(n−k+1)

U( j)

)1/α

, (48)

where T(1) ≤ T(2) ≤ · · · ≤ T(n), R(1) ≤ R(2) ≤ · · · ≤ R(n) and U(1) ≤ U(2) ≤
· · · ≤ U(n) are the order statistics of the vectors (T1, T2, . . . , Tn), (R1, R2, . . . , Rn)

and (U1,U2, . . . ,Un), respectively.
We now employ some known identities related to the Uniform distribution. First,

we note that the vector
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(
U(1),U(2) − U(1),U(3) − U(2), . . . ,U(n) − U(n−1), 1 − U(n)

)

is distributed uniformly over the (n + 1)-simplex {x ∈ R
n+1 : xi ≥ 0,

∑
i xi = 1},

i.e. as Dirichlet(1, 1, . . . , 1).
By the aggregation rule for the Dirichlet distribution the vector

(
U(n−k+1),U(n−k+2) − U(n−k+1), . . . ,U(n) − U(n−1), 1 − U(n)

)

has the Dirichlet(n − k + 1, 1, . . . , 1) distribution on the (k + 1)-simplex.
Hence, by the usual Beta–Gamma algebra, we see that

1

1 − U(n−k+1)

(
U(n−k+2) − U(n−k+1), . . . ,U(n) − U(n−1), 1 − U(n)

)

is distributed as Dirichlet(1, 1, . . . , 1) over the k-simplex independently of U(n−k+1),
which is distributed as Beta(n − k + 1, k).

As a corollary, taking partial sums, we deduce that the law of the vector

(
U(n−k+2) − U(n−k+1)

1 − U(n−k+1)
,

U(n−k+3) − U(n−k+1)

1 − U(n−k+1)
, . . . ,

U(n) − U(n−k+1)

1 − U(n−k+1)

)

is the same as that of the order statistics of (k−1) i.i.d. Uniform(0, 1) random variables
V1, . . . , Vk−1 independent of β := U(n−k+1).

Using the expression in (48) we obtain that Ak has the same law as

k−1∑
j=1

(
β

(1 − β)Vj + β

)1/α

.

Hence,

E
(

e−θ Ak
)

= E[ψβ(θ)k−1],

where ψβ is the conditional Laplace transform of

(
β

(1 − β)V1 + β

)1/α

conditioned on β.
Hence, from (45) we get

τ(θ) = E
(
e−θ/μ(k)) = e−θφα(θ)n−k E[ψβ(θ)k−1],

which leads to (44).
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To find the moments, we use the following fundamental identity: for any r > 0, we
have

1

�(r)

∞∫

0

θr−1e−θ/μdθ = μr .

Replacing μ by μ(k) above and interchanging expectation and integral we get

E[(μ(k))r ] = 1

�(r)

∞∫

0

θr−1τ(θ)dθ.

This completes the proof. ��

Unfortunately, the beautiful identities provided by the Atlas model do not extend
to more general models. Asymptotic derivation of moments (when n tends to infinity)
is possible in certain regimes due to an approximation by the atoms of the Poisson–
Dirichlet distribution. Please see the article by Chatterjee and Pal [11] for the details.
Formulas for moments in the two-parameter Poisson–Dirichlet model can be found in
Pitman and Yor [35, Proposition 17].

We now give an answer to question (iii) in the case of the particle system in (2)
under the condition (3). Recall that we assume σi = 1, i ∈ I throughout.

Theorem 10 Let

X̃(t) =
(

X1(t)− n−1
∑
i∈I

Xi (t), . . . , Xn(t)− n−1
∑
i∈I

Xi (t)

)
, t ≥ 0

be the centered version of the particle system in (2) and assume that (3) holds. Then
the process X̃ is Markovian and possesses a unique invariant distribution ν̃. Moreover,
for every measure κ which is absolutely continuous with respect to ν̃ and such that dκ

d ν̃
is square integrable with respect to ν̃, one has for all t, r, ε > 0 the estimate

P

⎛
⎝1

t

t∫

0

u(X̃(s))ds ≥ r

⎞
⎠ ≤

∥∥∥dκ

d ν̃

∥∥∥
2

exp

×
[
− t

CP
max

(
r2

δ2(u)
, 4ε(ε + σ 2)

(√
1 + r2

2ε(ε + σ 2)2 ‖u‖2∞
− 1

))]

for all bounded measurable functions u provided that the initial value X̃(0) is distrib-
uted according to κ, ν̃(u) = 0 and V arν̃ (u) = σ 2. Hereby, CP is a positive constant
depending only on n and δ1, . . . , δn (see (53) for an explicit expression).
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In particular, the latter estimate holds for functions of the form

u(x) = 1{xi =x( j)} − n−1, (i, j) ∈ I 2

with σ 2 = n−2(n − 1), δ(u) = 1 and ‖u‖∞ = 1 − n−1.

Proof 1) The Markov property and the existence and uniqueness of the invariant distri-
bution of the process X̃ were shown in Theorem 8 of [33]. Thus, we only need to prove
the inequality in the statement of the theorem. To this end, we introduce for each vector
x ∈ R

n a permutation π(x) of the set {1, . . . , n} such that xπ(x)(1) ≤ · · · ≤ xπ(x)(n)
holds. Since the process X̃ is a diffusion process with state space

H = {x ∈ R
n : x1 + · · · + xn = 0},

it is a Feller process, the space C∞
c (H) is a core for its generator L and on that space

the generator is given by

(L f )(x) = 1

2

n∑
i, j=1

ai j
∂2 f̃

∂xi∂x j
(x)+

n∑
i=1

μ̃π(x)−1(i)
∂ f̃

∂xi
(x), x ∈ H, (49)

where ai j = δi j − n−1, μ̃i = δi − n−1∑
j∈I δ j and f̃ is the composition of the

projection of vectors in R
n onto H and f (see chapter 18 of [26] for the details).

Next, we define the cone

H≤ = {x ∈ H : x1 ≤ · · · ≤ xn}

and introduce the mapping� : R
n → R

n , which arranges the coordinates of a vector
x ∈ R

n in ascending order, as well as the mapping

� : H≤ → (R+)n−1, x �→ (x2 − x1, . . . , xn − xn−1),

which maps vectors in H≤ to the corresponding vectors of spacings. We recall from
Theorem 8 in [33] the following facts. The invariant distribution ν̃ of the process X̃
is absolutely continuous with respect to the Lebesgue measure on H, its density is

proportional to e−∑n−1
k=1 �k (�(x))αk and the process X̃ is reversible with respect to ν̃.

2) In view of the results in step 1, as well as Theorem 3.1 in [19] it suffices to show
that the Poincaré inequality

∫

H

f (x)2e−∑n−1
k=1 �k (�(x))αk dx ≤ CP

∫

H

(−L f )(x) f (x)e−∑n−1
k=1 �k (�(x))αk dx

(50)

holds for a suitable constant CP > 0, whereby the integration is performed with
respect to the Lebesgue measure on the hyperplane H. To this end, let 
 be a positive
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definite symmetric n × n-matrix such that 
2 = (ai j )1≤i, j≤n . Then the same compu-
tation as on the top of page 64 in [3], but with ∇ replaced by
∇, shows that inequality
(50) is fulfilled provided that there exists a function V : H → [1,∞) which belongs
to H1(H; ν̃) and satisfies

LV

V
≤ − 1

2CP
(51)

almost everywhere on H. Hereby, H1(H; ν̃) is the space of square integrable functions
with respect to ν̃, whose gradient exists in the weak sense and is square integrable
with respect to ν̃.

We claim that there is a 0 < c < 1 such that the function

V (x) = e(c/2)
∑n−1

k=1 �k (�(x))αk (52)

defined on H has the desired properties. Indeed, V is a Lipschitz function and, thus,
differentiable almost everywhere. Moreover, the condition 0 < c < 1 shows that V
belongs to H1(H; ν̃). In addition, it holds

∑n−1
k=1 �k(�(x))αk ≥ 0 by definition, so

that we have V ≥ 1. Finally, we compute

(LV )

V
(x) = c2

8

n∑
i, j=1

aπ(x)(i)π(x)( j)(αi−1 − αi )(α j−1 − α j )

+ c

2

n∑
i=1

μ̃π(x)−1(i)(απ(x)−1(i)−1 − απ(x)−1(i))

= c2

2

n∑
i, j=1

ai j μ̃i μ̃ j − c
n∑

i=1

μ̃2
π(x)−1(i) ≤

(c2λmax

2
− c
)
‖μ̃‖2,

where we have set α0 = αn = 0 and have written λmax for the maximal eigenvalue of
the matrix (ai j )1≤i, j≤n . It is not hard to see that the eigenvalues of the latter are given
by 1, . . . , 1, 0, so that λmax = 1. Thus, for any c ∈ (0, 1) the Poincaré inequality (50)
with the constant CP = − 1

(c2−2c)‖μ̃‖2 holds true. Taking the limit c ↑ 1, we conclude
that the Poincaré inequality (50) is satisfied with

CP = 1

‖μ̃‖2 = 1∑
i∈I (δi − n−1

∑
j∈I δ j )2

. (53)

This finishes the proof. ��
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