
Probab. Theory Relat. Fields (2013) 156:229–248
DOI 10.1007/s00440-012-0426-3

Strong solutions of stochastic equations
with rank-based coefficients

Tomoyuki Ichiba · Ioannis Karatzas ·
Mykhaylo Shkolnikov

Received: 27 September 2011 / Accepted: 22 March 2012 / Published online: 10 April 2012
© Springer-Verlag 2012

Abstract We study finite and countably infinite systems of stochastic differential
equations, in which the drift and diffusion coefficients of each component (particle)
are determined by its rank in the vector of all components of the solution. We show that
strong existence and uniqueness hold until the first time three particles collide. Moti-
vated by this result, we improve significantly the existing conditions for the absence
of such triple collisions in the case of finite-dimensional systems, and provide the first
condition of this type for systems with a countable infinity of particles.
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230 T. Ichiba et al.

1 Introduction

We study the following system of stochastic differential equations:

dXi (t) =
∑

j∈I

1{Xi (t)=X( j)(t)} δ j dt +
∑

j∈I

1{Xi (t)=X( j)(t)} σ j dWi (t) (1.1)

for i ∈ I . Here I = {1, . . . , n} for some n ∈ N , or I = N ; δ j , j ∈ I are real
constants; σ j , j ∈ I are strictly positive real constants; (Wi : i ∈ I ) is a system of
independent standard Brownian motions; and

X(1)(t) ≤ X(2)(t) ≤ X(3)(t) ≤ · · · (1.2)

is the ordered particle configuration at time t . In addition, we let the initial configu-
ration be deterministic and satisfy

X1(0) < X2(0) < X3(0) < · · · . (1.3)

Ties in the ordered particle configuration are resolved in accordance with the initial
ranking of particles; for instance, we set X(i)(t) = Xi (t) , i = 1, . . . , n whenever
X1(t) = · · · = Xn(t) . We shall write X for (Xi : i ∈ I ) and W for (Wi : i ∈ I ).

In the case I = N we work under the following assumption.

Assumption 1 If I = N, we assume that there is an integer M ∈ N such that we have

δM = δM+1 = · · · , (1.4)

σM = σM+1 = · · · . (1.5)

Moreover, we assume that there exist constants γ1 > 0, γ2 ∈ R such that

Xi (0) ≥ γ1 i + γ2, i = 1, 2, . . . . (1.6)

For the case I = {1, . . . , n}, the main result of [3] implies that the system (1.1) has
a weak solution (“weak existence”), which is unique in the sense of the probability
distribution (“weak uniqueness”); the strict positivity of the diffusion coefficients is
crucial here. In the case I = N , a slight modification of the proof of Proposition 3.1 in
[17] shows that weak existence and weak uniqueness hold for the system (1.1) under
the Assumption 1; see Proposition 4 below.

In this paper, we investigate the questions of existence of a strong solution (“strong
existence”) and of pathwise uniqueness (“strong uniqueness”) in both cases. Due to
the discontinuity of the diffusion functions

σ i (x) =
∑

j∈I

1{xi =x( j)} σ j , x ∈ R
n, i = 1, . . . , n
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Strong solutions 231

in (1.1), general results on strong existence and strong uniqueness, which rely on the
regularity of the diffusion coefficients, do not apply even when I is finite.

In order to construct a strong solution to the system (1.1) in the case I = {1, . . . , n} ,
we rely heavily on the results of the recent article [9]; this paper deals with the case
n = 2 and establishes strength and pathwise uniqueness for the solution of the result-
ing system (1.1) (actually, even when one of the diffusion coefficients vanishes, but
not both). The idea, then, is to put together paths of the strong solutions found in [9]
for two particles, to obtain the strong solution in the case n > 2 of several particles.

This is possible and the approach is viable, however, only when the particle system
in (1.1) does not exhibit triple collisions, that is, when the event

{∃ t > 0 : Xi (t) = X j (t) = Xk(t) for some i < j < k } (1.7)

has zero probability for the state process X in the weak solution of the system (1.1).
We provide new, necessary and sufficient conditions for the absence of triple collisions
in the case I = {1, . . . , n} ; and develop the first such conditions in the case I = N .

To formulate our main results we shall need the following Definition 1, as well as
Conditions 1 and 2 below.

Definition 1 A finite or infinite sequence (a1, a2, . . .) is called concave, if for every
three consecutive elements ai , ai+1, ai+2 we have

ai+1 ≥ 1

2

(
ai + ai+2

)
.

Condition 1 The sequence (σ 2
1 , σ 2

2 , . . .) is concave.

Condition 2 Either I = {1, 2, . . . , n} and the sequence (0, σ 2
1 , σ 2

2 , . . . , σ 2
n , 0) is

concave; or I = N and the sequence (0, σ 2
1 , σ 2

2 , . . .) is concave.

Our main results read as follows.

Theorem 1 Consider the particle system in (1.1) and, if I = N, let Assumption 1 be
satisfied.

If the diffusion coefficients satisfy Condition 2, then the unique weak solution of
(1.1) has no triple collisions; that is, the event (1.7) has zero probability. On the other
hand, if Condition 1 fails, then the event (1.7) has positive probability.

Theorem 2 Consider the particle system in (1.1) and, if I = N, let Assumption 1 be
satisfied. Introduce the first time of a triple collision, namely

τ := inf{ t ≥ 0 | ∃ i < j < k : Xi (t) = X j (t) = Xk(t)}. (1.8)

Then the system (1.1) has a unique strong solution up to time τ .
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232 T. Ichiba et al.

In particular, if Condition 2 is also satisfied, then there is a unique strong solution
of the system (1.1) defined for all t ≥ 0.

Remark 1 Theorem 1 can be recast as saying that Condition 1 is necessary, and Condi-
tion 2 sufficient, for the absence of triple collisions. A condition that is both necessary
and sufficient for the absence of triple collisions, has yet to be determined. So far,
this question is completely resolved only in the case n = 3, in which the results of
Varadhan and Williams [18] imply that Condition 1 is both necessary and sufficient
for the absence of triple collisions; see the proofs of Lemma 6 and Theorem 1 below
for more details.

The remaining gap between Condition 1 and Condition 2 is due to the following
reason. By an inductive argument, we reduce the statement of Theorem 1 to the prob-
lem studied in De Blassie [8]. However, the (sharp) criterion given there involves the
invariant distribution of the projection of a certain diffusion process in a Euclidean
space on the unit sphere. Due to the lack of rotational symmetries in our situation,
it is however not clear how to analyze this invariant distribution. For this reason, we
simplify the condition in [8] to a checkable sufficient condition in Proposition 5 below,
sacrificing its sharpness at this point.

Theorem 2 leaves open the questions of whether a strong solution continues to
exist, and of whether pathwise uniqueness continues to hold, after a triple collision
(we know from the work of Bass and Pardoux [3] that a weak solution exists after
such triple collisions, and is unique in distribution). At the moment, we conjecture
that strong solutions fail to exist beyond the time of the first triple collision, but this
problem remains open and will have to be settled in future work. ��

Questions regarding the presence or absence of triple or higher-order collisions in
multidimensional diffusions have been addressed by several authors; in addition to the
example of Sect. 3 in Bass and Pardoux [3], one should consult the works by Fried-
man [10] (see also [11], chapter 11), Ramasubramanian [14,15], De Blassie [8,7] and
Ichiba and Karatzas [12]. In the papers [4,5], Cépa and Lépingle consider systems of
Brownian particles with repulsive forces of electrostatic type, and show absence of
triple collisions under conditions of sufficiently strong repulsion.

Preview: The present paper is organized as follows. Section 2 collects a number of
preliminaries, most notably results from [1,8,13,17] that are crucial in our context.
Section 3 deals with the absence of triple collisions under Condition 2, and with
the proof of Theorem 1, which represents a significant improvement over our earlier
results in [12]. In particular, we provide here new necessary conditions and new suf-
ficient conditions for the absence of triple collisions in the case of a finite number
of particles, and develop the first such conditions for a countable infinity of parti-
cles.

Section 4 is devoted to the proof of Theorem 2. We start by setting up an inductive
procedure, which “bootstraps” the strength of the solution to the system of equations
(1.1) that was established recently by Fernholz et al. [9] for the case n = 2 of two
particles—first to the case n = 3 of three particles; then to the case of an arbitrary,
finite number n of particles; and finally, building on results of Shkolnikov [17], to the
case of a countable infinity of particles.
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Strong solutions 233

2 Preliminaries

We start with some preliminaries on the weak solution of the system (1.1), when
I = {1, . . . , n}. First, we recall the dynamics of the ordered particles X(1), . . . , X(n)

in the system (1.1) from section 3 in [1] and section 4 of [13], building on the results
in [2]; once again, the strict positivity of the diffusion coefficients is crucial for these
results.

As in those papers, we shall denote by � j−1, j (t), j = 2, . . . , n the local times
(normalized according to Tanaka’s formula) accumulated at the origin by the nonneg-
ative semimartingales

Y j−1(·) := X( j)(·) − X( j−1)(·), j = 2, . . . , n (2.1)

over the time-interval [0, t] , and set �0,1(·) ≡ �n,n+1(·) ≡ 0 .

Proposition 3 Set I = {1, . . . , n} and let (X, W ) be a weak solution of the system
(1.1). Then, with the independent standard Brownian motions

β j (·) =
n∑

i=1

·∫

0

1{Xi (t)=X( j)(t)} dWi (t), j ∈ I, (2.2)

it holds

dX( j)(t) = δ j dt + σ j dβ j (t) + 1

2

(
d� j−1, j (t) − d� j, j+1(t)

)
, t ≥ 0 (2.3)

for all j ∈ I .

It was observed in [1] that Proposition 3 permits the identification of the process of
ordered particles (X(1), . . . , X(n)) as a Reflected Brownian Motion (RBM for short)
in the wedge

W := {(x1, . . . , xn) ∈ R
n : x1 ≤ · · · ≤ xn} (2.4)

with reflection matrix

R :=

⎛

⎜⎜⎜⎜⎜⎝

− 1
2 0 0

1
2 − 1

2 0

0 1
2

. . .

0 0
. . .

⎞

⎟⎟⎟⎟⎟⎠
.

That is, the process (X(1), . . . , X(n)) behaves as an n-dimensional standard Brownian
motion in the interior of the wedge W , and is obliquely reflected on the faces {xi =
xi+1}, i = 1, . . . , n−1 of W . The directions of reflection are specified by the columns
ri , i = 1, . . . , n − 1 of the matrix R .
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234 T. Ichiba et al.

Occasionally, it will be more convenient to consider instead of the process of the
ordered particles (X(1), . . . , X(n)) the process of spacings (or gaps)

Y := (
X(2) − X(1), . . . , X(n) − X(n−1)

)
(2.5)

as in (2.1). From Proposition 3, we have the dynamics

dY j−1(t) = (
δ j − δ j−1

)
dt + σ j dβ j (t) − σ j−1 dβ j−1(t)

− 1

2

(
d� j, j+1(t) + d� j−2, j−1(t)

)
+ d� j−1, j (t), t ≥ 0 (2.6)

for the spacings of (2.1) with j = 2, . . . , n . Thus, the process Y is an RBM in the
(n − 1)-dimensional orthant (R+)n−1 with reflection matrix

R :=

⎛

⎜⎜⎜⎜⎝

1 − 1
2 0 0

− 1
2 1 − 1

2 0

0 − 1
2 1

. . .

0 0
. . .

. . .

⎞

⎟⎟⎟⎟⎠
.

For a detailed summary of many results on Brownian motions with oblique reflection
in the orthant, we refer to the excellent survey article [19].

For further reference we make the following simple observation. The event in (1.7)
can be reformulated as

{∃ t ≥ 0 : Yi (t) = Yi+1(t) = 0 for some 1 ≤ i ≤ n − 1}, (2.7)

so that the presence or absence of triple collisions is an intrinsic property of the spac-
ings process Y .

Next, we let I = N and construct the weak solution to (1.1) along the lines of the
proof of Proposition 3.1 in [17], under the Assumption 1.

Proposition 4 Let I = N and let Assumption 1 be satisfied.
There exists then a weak solution (X, W ) of the system (1.1), which is unique in

distribution.
Moreover, after enlarging the probability space if necessary, we can find stopping

times 0 = κ0 ≤ κ1 ≤ · · · , integers M = n(0) < n(1) < · · · , and weak solutions
X (	), 	 ≥ 0 of the system (1.1) with I = {1, . . . , n(	)} , such that

Xi (t) = X (	)
i (t), t ∈ [κ	, κ	+1], 1 ≤ i ≤ n(	), (2.8)

Xi (t) = Xi (0) + δi t + σi Wi (t), t ∈ [κ	, κ	+1], i ≥ n(	) + 1 (2.9)

and, for each 	 ≥ 0 , the processes X (	) and (Wn(	)+1, Wn(	)+2, . . . ) are independent.
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Proof The proof of Proposition 3.1 in [17] carries over mutatis mutandis to the situ-
ation here. We only need to replace the a priori estimate on the expected number of
particles in an interval of the form (−∞, x] at a time t ≥ 0 by

∑

i∈N

sup
ϑ(·)

P

⎛

⎝Xi (0) − max
i

|δi | · t − sup
0≤s≤t

s∫

0

ϑ(u) dWi (u) < x

⎞

⎠ < ∞,

where the supremum is taken over all progressively measurable processes ϑ(·) adapted
to the filtration on the underlying probability space, which take values in the interval
[mini σi , maxi σi ]. The finiteness of the series follows from the L

2-version of Doob’s
maximal inequality for continuous martingales and the condition (1.6). ��

Finally, as a preparation for the proof of Theorem 1, we state a special case of the
main result of De Blassie [8].

Proposition 5 Let H be a finite-dimensional Euclidean space and σ : H → H
2 be

a mapping satisfying

σ (x) = σ

(
x

‖x‖2

)
for all x ∈ H\{0}

where ‖ · ‖2 denotes the Euclidean norm on H , and suppose that the set of disconti-
nuity points of σ (·) on the unit sphere {x ∈ H : ‖x‖2 = 1} has surface measure zero.
In addition, let W be an H−valued standard Brownian motion, and suppose that the
martingale problem corresponding to the H−valued stochastic differential equation

dV (t) = σ
(
V (t)

)
dW (t), V (0) ∈ H\{0} (2.10)

is well-posed. If the condition

inf
x∈H‖x‖2=1

(
Tr α(x)

〈α(x)x, x〉
)

> 2 (2.11)

is satisfied, then we have

P
(

V (t) �= 0, ∀t ∈ [0,∞)
) = 1.

Here α(·) = σ (·)′σ (·) is the diffusion matrix of V , Tr denotes the trace operator,
and 〈·, ·〉 is the Euclidean scalar product on H .

Proof It suffices to note that (2.11) implies the condition

inf
x∈H‖x‖2=1

B(x) > 1

in the notation of equation (1.9) in [8]. Thus, the result is a special case of Theorem 1.1
(i) in [8]. ��
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236 T. Ichiba et al.

3 Triple collisions

The two main steps in the proof of Theorem 1 are provided by the following two
lemmata.

Lemma 6 Let I = {1, . . . , n} with an integer n ≥ 3 , and suppose that Condition 2
holds. Then the first time of a triple collision τ , defined in (1.8), must satisfy

τ = η (3.1)
with probability one, where

η := inf{t ≥ 0 : X1(t) = X2(t) = · · · = Xn(t)}. (3.2)

Lemma 7 Let I = {1, . . . , n} with an n ≥ 3 and suppose that Condition 2 holds.
Then the first time of a triple collision τ , defined in (1.8), must satisfy τ = ∞ with
probability one.

We shall prove both lemmata simultaneously, by induction over n . The main obser-
vation behind the proof of Lemma 6 is that, during any time interval on which one
of the spacings between consecutive particles is bounded away from zero, the parti-
cle system separates into two independent particle systems with a smaller number of
particles, so that the induction hypothesis can be used. On the other hand, Lemma 7
is shown by reducing the problem to a situation where Proposition 5 can be used, via
Lemma 6.

Proof of Lemmas 6 and 7 Step A. First, we note that for every T ∈ (0,∞) we can
make a Girsanov change of measure such that the processes (δi t +σi βi (t), t ∈ [0, T ]),
i = 1, . . . , n become independent standard Brownian motions under the new measure.
Here, the Brownian motions β1, . . . , βn are defined as in Proposition 3.

Since almost-sure events retain this property under an absolutely continuous change
of measure, and since T ∈ (0,∞) can be chosen arbitrarily, it suffices to prove the
almost sure absence of triple collisions under the new measure. For notational sim-
plicity, we prefer to assume δ1 = · · · = δn = 0 from the start. Section 2.2 in [12] can
be consulted for a more detailed exposition of the same argument.

Step B. We proceed with the inductive argument. For n = 3, we deduce from Propo-
sition 3 of [12] that

τ = η = ∞ (3.3)

holds with probability one, in the notation of (1.8) and (3.2). In fact, this is a conse-
quence of Theorem 2.2 in [18] for the reflected Brownian motion Y (see the proof of
Proposition 3 in [12] for more details).

Step C. Now, fix an m ≥ 4 and suppose that Lemmas 6 and 7 hold for all integers
n = 3, · · · , m − 1 . We will first show that Lemma 6 must hold for n = m as well.

To this end, we define for each 0 < ε < 1 the stopping time

ηε := inf{t ≥ 0 : ‖Y (t)‖2 ≤ ε or ‖Y (t)‖2 ≥ ε−1}, (3.4)

where we have written ‖ · ‖2 for the usual Euclidean norm.
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We claim that, for all 0 < ε < 1 , the comparison

τ ≥ ηε holds with probability one.

If we can prove this claim, then we will be able to conclude that either τ = η = ∞
or τ = η = limε↓0 ηε < ∞ must hold, and this will yield Lemma 6.

To prove the claim, we deploy an argument similar to the one on pages 471–475 in
[20]. As there, we consider the local behavior of the RBM of interest (in our case Y )
on the compact sets

Kε := {
y ∈ (R+)n−1 : ε ≤ ‖y‖2 ≤ ε−1}, 0 < ε < 1. (3.5)

For each y ∈ (R+)n−1\{0} , we consider an open set U (y) of (R+)n−1 such that

∃ 1 ≤ j ≤ n − 1, δ > 0 : z j ≥ δ for all z ∈ U (y), (3.6)

and let j(y) be a number in {1, . . . , n − 1} as in (3.6). From the semimartingale
decomposition of Y in (2.6), we see that if we start the process Y in the set U (y) for
some y ∈ (R+)n−1\{0} , then we can write

(
Y j (t ∧ ζU (y)) : 1 ≤ j ≤ a(y)

) = (
Y ′

j (t ∧ ζU (y)) : 1 ≤ j ≤ a(y)
)
,

(
Y j (t ∧ ζU (y)) : b(y) ≤ j ≤ n − 1

) = (
Y ′′

j (t ∧ ζU (y)) : 1 ≤ j ≤ c(y)
)

for all t ≥ 0 . Here we have set

a(y) := j(y) − 1, b(y) := j(y) + 1, c(y) := n − 1 − j(y) ;

the process Y ′ is an RBM in the a(y)-dimensional orthant; the process Y ′′ is an
RBM in the c(y)-dimensional orthant; and ζU (y) is the time that Y hits the boundary
of U (y). In particular, the induction hypothesis implies

τ > ζU (y), (3.7)

where y is such that Y (0) ∈ U (y).
Next, we fix an ε ∈ (0, 1) and cover the compact set Kε of (3.5) by a finite number

of open sets from the collection U (y) , y ∈ (R+)n−1\{0} , say

Kε ⊂
L⋃

	=1

U (y	). (3.8)

Then we can find stopping times 0 = ζ0 < ζ1 < ζ2 < · · · of the form ζU (y), such
that the path of the process Y (t ∧ ηε), t ≥ 0 can be decomposed into

Y (t ∧ ηε), ζ	 ≤ t ≤ ζ	+1, (3.9)
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238 T. Ichiba et al.

	 ≥ 0 with the notation of (3.4) and with Y (t ∧ ηε) ∈ U (y	) for some 1 ≤ 	 ≤ L and
all ζ	 ≤ t ≤ ζ	+1.

Using the strong Markov property of Y and the previous observation, one shows
by induction over 	 that τ > ζ	 ∧ ηε must hold with probability one, for all 	 ≥ 0 .
By taking the limit 	 → ∞, we conclude that τ ≥ ηε holds with probability one.
Thus, outside of a set of probability zero, we must have

∀ε ∈ (0, 1) : τ ≥ ηε. (3.10)

This proves the claim and, thus, Lemma 6 for n = m.

Step D. It remains to show that Lemma 7 holds for n = m. To this end, consider the
centered process

V (t) :=
(

X1(t) − n−1
n∑

i=1

Xi (t), . . . , Xn(t) − n−1
n∑

i=1

Xi (t)

)
(3.11)

for 0 ≤ t < ∞ . It is obvious that

η = inf{t ≥ 0 : V (t) = 0}. (3.12)

In addition, recalling that we have assumed δ1 = · · · = δn = 0 in Step A without loss
of generality, we see from (1.1) that V is a diffusion process in the hyperplane

H = {x ∈ R
n : x1 + · · · + xn = 0} (3.13)

governed by the system of stochastic differential equations

dVi (t) =
n∑

j=1

1{Vi (t)=V( j)(t)} σ j dWi (t) − 1

n

n∑

k=1

n∑

j=1

1{Vk (t)=V( j)(t)} σ j dWk(t)

(3.14)

for i = 1, 2, . . . , n. In particular, we note that V has zero drift, and that its diffusion
function satisfies the conditions of Proposition 5. Moreover, the martingale problem
corresponding to the stochastic differential equation for the process V is well-posed,
thanks to the main result of [3] and the non-degeneracy of the diffusion matrix of V
on H (which, in turn, follows from the strict positivity of the diffusion coefficients
in (1.1)). Thus, we need only check that the inequality of (2.11) is a consequence of
Condition 2, since then Lemma 7 will follow from Proposition 5.

To check (2.11), we first compute the diagonal entries of the diffusion matrix α(·)
of V in the coordinates of R

n to be
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σ 2
i (1 − 2n−1) + n−2

n∑

j=1

σ 2
j , i = 1, . . . , n, (3.15)

where the order depends on the ranking of the coordinates of V .
Next, we note that the normal vector to H is an eigenvector of α(·) with eigenvalue

0 . Thus, α(·) has an orthonormal eigenbasis over R
n , which includes the unit normal

vector to H . It follows that the trace of the diffusion matrix α(·) of V on H coincides
with the trace of the diffusion matrix of V in the coordinates of R

n , and is given by

M0 :=
n∑

i=1

(
σ 2

i (1 − 2n−1) + n−2
n∑

j=1

σ 2
j

)
= n − 1

n

n∑

i=1

σ 2
i .

We estimate now the denominator on the left-hand side of (2.11) from above by
the maximal eigenvalue of the diffusion matrix α(·) of V on H . The latter is given
by the maximal eigenvalue of the matrix

P ′ diag(σ 2
1 , . . . , σ 2

n ) P, (3.16)

where P is the matrix representing the normal projection of vectors in R
n onto H ,

and diag(σ 2
1 , . . . , σ 2

n ) is the n × n diagonal matrix with diagonal entries σ 2
1 , . . . , σ 2

n .
Next, we observe that the spectral radius (and, thus, the maximal eigenvalue) of the

matrix (3.16) is given by

M1 := max
x∈Rn\{0}

x1+···+xn=0

(
σ 2

1 x2
1 + · · · + σ 2

n x2
n

x2
1 + · · · + x2

n

)
. (3.17)

This quantity can be further estimated from above as

M2 := max
x∈Rn\{0}

x1+···+xn=0

(
Cx2

1 + c(x2
2 + · · · + x2

n )

x2
1 + · · · + x2

n

)
≥ M1, (3.18)

where C is the maximal element of the set {σ 2
1 , . . . , σ 2

n } and c is the second largest
element of the same set. A careful optimization using Lagrange multipliers gives

M2 = n − 1

n
C + 1

n
c,

and shows that M2 = M1 holds if and only if all elements in the set {σ 2
1 , . . . , σ 2

n } are
greater than or equal to c.

All in all, we conclude that the condition (2.11), which proscribes triple collisions,
amounts to

M0 > 2 M1 (3.19)
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and is satisfied, in particular, if the stronger inequality

M0 = n − 1

n

n∑

i=1

σ 2
i > 2

( n − 1

n
C + 1

n
c
)

= 2 M2 (3.20)

holds. We shall show (3.19), or its stronger version (3.20), by distinguishing the cases
σ 2

1 �= C �= σ 2
n and C = σ 2

1 (the case C = σ 2
n being completely analogous to the

latter).

• In the first case (σ 2
1 �= C �= σ 2

n ), the concavity of the sequence (0, σ 2
1 , . . . , σ 2

n , 0)

shows that its third-largest element is greater than or equal to 1
2 C , whereas its

fourth-largest element is greater than or equal to 1
3 C . Hence, the left-hand side of

(3.20) is greater than or equal to

n − 1

n

(
C + c + 1

2
C + 1

3
C

)
.

Plugging this into (3.20) and simplifying, we see that it suffices to check (n−3) c >
n−1

6 C . The latter inequality, thus also (3.20) and (2.11), holds for all n ≥ 4 due
to c ≥ 2

3 C , a consequence of the concavity of the sequence (0, σ 2
1 , . . . , σ 2

n , 0).
• In the second case (C = σ 2

1 ), we use the concavity of the sequence (0, σ 2
1 , . . . , σ 2

n ,

0) to deduce that its third-largest element is greater than or equal to 1
2 C , whereas

its fourth-largest element is greater than or equal to 1
4 C . Hence, the left-hand side

of (3.20) is greater than or equal to

n − 1

n

(
C + c + 1

2
C + 1

4
C

)
.

Plugging this into (3.20), we conclude that it suffices to show

(n − 3) c >
n − 1

4
C. (3.21)

Using c ≥ 3
4 C (again, a consequence of the concavity of (0, σ 2

1 , . . . , σ 2
n , 0) ), we

observe that (3.21) holds with “ > ” replaced by “ ≥ ”, and that the two sides are
equal if and only if both c = 3

4 C and n = 4 . Moreover, the derivation of (3.21)
with “ ≥ ” shows that: either (3.20) holds (therefore, also (3.19)); or we have n = 4 ,
(σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4 ) = (C, 3

4 C, 1
2 C, 1

4 C) and equality in (3.20). In this latter case,
however, the inequality M2 ≥ M1 in (3.18) is strict, so that (3.19) must hold. ��

We can combine now our results, to prove Theorem 1.

Proof of Theorem 1 Step 1. First, let I = {1, . . . , n}. Then under Condition 2 there
are no triple collisions, by virtue of Lemma 7.

Now, suppose that Condition 1 fails; that is, for some integer i = 2, . . . , n − 1 the
comparison

σ 2
i − σ 2

i−1 < σ 2
i+1 − σ 2

i (3.22)
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holds. Consider the weak solution X ′ = (X ′
1, X ′

2, X ′
3) to the system (1.1) with I =

{1, 2, 3} and the parameters δi−1, δi , δi+1, σi−1, σi , σi+1 . Then, applying Theorem
2.2 of [18] as in the proof of Proposition 3 in [12], we conclude that a triple collision
of the particles X ′

1, X ′
2, X ′

3 occurs with positive probability. It follows that there is a
T ∈ (0,∞) and a bounded, open subset U of the wedge {x ∈ R

3 : x1 ≤ x2 ≤ x3} ,
such that the event

{
(X ′

(1)(t), X ′
(2)(t), X ′

(3)(t)) ∈ U, t ∈ [0, T ] }

∩ {∃ t ∈ [0, T ] : X ′
1(t) = X ′

2(t) = X ′
3(t)

}

has positive probability for every initial condition in U . Along with the semimartin-
gale decomposition of (2.3) for the components of the process (X(1), . . . , X(n)) , this
implies that the event

{
X( j−2)(t) �= X( j−1)(t), X( j+1)(t) �= X( j+2)(t), t ∈ [0, 2T ]}

∩ {
(X( j−1)(t), X( j)(t), X( j+1)(t)) ∈ U, t ∈ [T, 2T ]}

∩ {∃ t ∈ [T, 2T ] : X( j−1)(t) = X( j)(t) = X( j+1)(t)
}

has positive probability. This completes the proof of Theorem 1 for I = {1, . . . , n}.
Step 2. Now, we turn to the case I = N and assume first that Condition 2 holds. We
recall the notation in Proposition 4 and observe that the event (1.7) is contained in the
event

⋃

i1<i2<i3

⋃

	∈N0

{
Xi1(t) = Xi2(t) = Xi3(t) for some t ∈ [κ	, κ	+1]

}
. (3.23)

Moreover, for every fixed i1 < i2 < i3 and 	 ≥ 0 , Proposition 4 shows that there
is a choice of n ≥ M and a weak solution

(
X (	)

1 , · · · , X (	)
n

)
of the system (1.1) with

I = {1, . . . , n} and parameters δ1, . . . , δn, σ1, . . . , σn , such that

Xi (t) = X (	)
i (t), t ∈ [0, κ	+1], 1 ≤ i ≤ n. (3.24)

Therefore, Step 1 of the present proof implies

P

({
Xi1(t) = Xi2(t) = Xi3(t) for some t ∈ [κ	, κ	+1]

}) = 0 (3.25)

for any fixed i1 < i2 < i3 and 	 ≥ 0. Thus, the event (1.7) has zero probability, as
claimed.

Next, suppose that Condition 1 fails, and recall the definition of the constant M in
Assumption 1. In this case, there is an integer i = 2, . . . , M such that (3.22) holds. In
particular, it follows from Step 1 of this proof that the weak solution X ′ of (1.1) with
I = {1, 2, . . . , M + 1} and parameters δ1, δ2, . . . , δM+1, σ1, σ2, . . . , σM+1 exhibits
a triple collision with positive probability. In conjunction with the semimartingale
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decomposition of the process X ′, this shows that for every L > 0 there is a T > 0
such that the event

{X ′
(M+1)(t) ≤ X ′

(M+1)(0) − 2L , T ≤ t ≤ 2T }
∩ {∃ i1 < i2 < i3, t ∈ [T, 2T ] : X ′

i1
(t) = X ′

i2
(t) = X ′

i3
(t)}

has positive probability. In addition, Proposition 4 shows that, with probability one,
the paths of the process X(M+2) are continuous and do not reach negative infinity in
finite time.

Putting these last two observations together, we see that there exist real constants
L > 0 and T > 0 , such that the event

{
max(X(M+1)(t), X(M+1)(0) − L) < X(M+2)(t), t ∈ [0, 2T ]}

∩{
X(M+1)(t) ≤ X(M+1)(0) − 2L , T ≤ t ≤ 2T

}

∩ {∃ i1 < i2 < i3 ≤ M + 1, t ∈ [T, 2T ] : Xi1(t) = Xi2(t) = Xi3(t)
}

has positive probability. In particular, the event (1.7) has positive probability. ��

4 Construction of strong solutions

This section is devoted to the proof of Theorem 2. In the first subsection we explain our
methodology in the special case I = {1, 2, 3}. The following subsection extends the
construction of strong solutions to systems with any finite number of particles. Finally,
in the last subsection we use the strong solutions in systems with finitely many particles
to obtain the strong solution in the system with infinitely many particles.

4.1 Systems with three particles

In this subsection we explain the construction of strong solutions when there are only
three particles. That is, we consider the system of stochastic differential equations

dXi (t) =
3∑

j=1

1{Xi (t)=X( j)(t)} δ j dt +
3∑

j=1

1{Xi (t)=X( j)(t)} σ j dWi (t) (4.1)

with initial conditions satisfying X1(0) < X2(0) < X3(0). As before, we define τ to
be the first time of a triple collision for a weak solution of the system (4.1); to wit,

τ = inf{t ≥ 0 : X1(t) = X2(t) = X3(t)}. (4.2)

In this setting our main result reads as follows.

Proposition 8 Suppose

σ 2
2 − σ 2

1 ≥ σ 2
3 − σ 2

2 .
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Then the system (4.1) admits a strong solution, which is pathwise unique. Moreover, if

σ 2
2 − σ 2

1 < σ 2
3 − σ 2

2

holds, then a strong solution exists and is pathwise unique up to the triple collision
time τ .

Proof We will construct a strong solution to (4.1) by putting together paths of strong
solutions to the system (1.1) with I = {1, 2} and parameters δ1, δ2, σ1, σ2 and
δ2, δ3, σ2, σ3 , respectively.

To this end, we introduce the following notation. For a closed time-interval [a, b]
we denote by Z = Z [a,b],B,W (b1, b2, c1, c2) the R

2−valued strong solution of the
system (1.1) with drift parameters b1, b2 and diffusion parameters c1, c2 , driven by
the independent standard Brownian motions B, W , namely

dZ1(t) = (
b11{Z1(t)≤Z2(t)} + b21{Z1(t)>Z2(t)}

)
dt

+(
c11{Z1(t)≤Z2(t)} + c21{Z1(t)>Z2(t)}

)
dB(t),

dZ2(t) = (
b11{Z1(t)>Z2(t)} + b21{Z1(t)≤Z2(t)}

)
dt

+(
c11{Z1(t)>Z2(t)} + c21{Z1(t)≤Z2(t)}

)
dW (t),

on the time-interval [a, b]. A strong solution exists for this system, and is pathwise
unique, thanks to the results in Sect. 5 of [9].

We can now define the stopping times 0 = τ0 ≤ ρ0 ≤ τ1 ≤ ρ1 ≤ · · · and the
desired strong solution on the intervals [τk, ρk], [ρk, τk+1], k ≥ 0 inductively by

Xπk (1)([τk, ρk]) := (
Z [τk ,ρk ],Wπk (1),Wπk (2) (δ1, δ2, σ1, σ2)

)
1,

Xπk (2)([τk, ρk]) := (
Z [τk ,ρk ],Wπk (1),Wπk (2) (δ1, δ2, σ1, σ2)

)
2,

Xπk (3)(t) := Xπk (3)(τk) + δ3(t − τk) + σ3Wπk (3)(t) − σ3Wπk(3)(τk),

t ∈ [τk, ρk]
ρk := inf{t > τk : Xπk (3)(t) = Xπk (2)(t) or Xπk (3)(t) = Xπk (1)(t)},

Xθk (1)(t) := Xθk (1)(ρk) + δ1(t − ρk) + σ1Wθk (1)(t) − σ1Wθk (1)(ρk),

t ∈ [ρk, τk+1]
Xθk (2)([ρk, τk+1]) := (

Z [ρk ,τk+1],Wθk (2),Wθk (3) (δ2, δ3, σ2, σ3)
)

1,

Xθk (3)([ρk, τk+1]) := (
Z [ρk ,τk+1],Wθk (2),Wθk (3) (δ2, δ3, σ2, σ3)

)
2,

τk+1 := inf{t > ρk : Xθk (2)(t) = Xθk (1)(t) or Xθk (3)(t) = Xθk (1)(t)}.

For each k ≥ 0 , we have denoted here by πk a permutation of the set {1, 2, 3} such
that

Xπk (1)(τk) ≤ Xπk (2)(τk) ≤ Xπk (3)(τk),
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and by θk a permutation of the set {1, 2, 3} such that

Xθk (1)(ρk) ≤ Xθk (2)(ρk) ≤ Xθk (3)(ρk).

Intuitively, we follow the paths of the top particle and of the bottom two particles
separately, until the top particle collides with one of the bottom two particles; then
we follow the paths of the top two particles and of the bottom particle separately, until
one of the top two particles collides with the bottom particle; and so on, until we see
a triple collision.

A bit more formally: it is straightforward to check that the just constructed pro-
cesses X1, X2, X3 are well-defined and form a strong solution to the system (4.1) up
to the time

τ̃ := lim
k→∞ τk = lim

k→∞ ρk . (4.3)

On the other hand, since the paths of the ranked processes X(1), X(2), X(3) are contin-
uous, we have

X(1)(̃τ ) = lim
k→∞ X(1)(τk) = lim

k→∞ X(2)(τk) = X(2)(̃τ ).

Moreover, an analogous computation yields X(2)(̃τ ) = X(3)(̃τ ) . Thus, τ̃ ≥ τ . This
proves the existence results of Proposition 8.

We now turn to the pathwise uniqueness of the solution. In the case σ 2
2 − σ 2

1 ≥
σ 2

3 − σ 2
2 , it follows from Theorem 1 that τ = ∞ with probability one. In this case,

pathwise uniqueness of the solution constructed above is a consequence of Theorem
3.2 in [6]. The latter states that, for a system of stochastic differential equations with
time-independent coefficients, strong existence in the presence of weak uniqueness
(which is guaranteed for the system of (1.1), thanks to the results of [3]) implies
pathwise uniqueness.

In the case σ 2
2 − σ 2

1 < σ 2
3 − σ 2

2 , we recall from Theorem 1 that we have P(τ <

∞) > 0. In this case, we let (X (t), W (t)), 0 ≤ t ≤ τ and (X̂(t), W (t)), 0 ≤ t ≤ τ̂

be two strong solutions of the equation (4.1), where τ̂ is the first time of a triple col-
lision in the particle system X̂ = (X̂1, X̂2, X̂3). By enlarging the probability space if
necessary, we can extend X and X̂ to weak solutions of the equation (4.1), defined on
the whole time interval [0,∞). Then, an application of Theorem 3.1 in [6] shows that
the joint laws of the triples (τ, X ([0, τ ]), W ([0, τ ])) and (̂τ , X̂([0, τ̂ ]), W ([0, τ̂ ]))
are the same. We can now proceed as in the proof of Theorem 3.2 in [6] to deduce
τ = τ̂ and X ([0, τ ]) = X̂([0, τ̂ ]) with probability one. ��
4.2 Systems with finitely many particles

We now turn to the proof of Theorem 2 with I = {1, . . . , n}, where n > 3. Although
the main idea behind the construction of the strong solution is the same as for n = 3,
the proof is more involved here due to a more complicated pattern of possible colli-
sions. For example, even in the absence of triple collisions, it is still possible to have
collisions of the form X1(t) = X2(t) , X3(t) = X4(t) .
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Proof of Theorem 2 for I = {1, . . . , n} Step 1. As in the proof of Proposition 8, we
start by constructing a strong solution to the system (1.1) in an inductive manner.
However, this time several layers of inductive constructions will be necessary.

First, we recall the notation Z [a,b],B,W (b1, b2, c1, c2) for the strong solution of the
system (1.1) with I = {1, 2} and parameters b1, b2, c1, c2 , which is driven by the
independent standard Brownian motions B, W on the time interval [a, b] ; this exists
thanks to the results of Sect. 5 in [9].

Next, we define stopping times 0 = τ0 ≤ τ1 ≤ · · · , subsets A0, A1, A2, . . . of the
set N with A0 = ∅, and the desired strong solution of (1.1) on [τ0, τ1], [τ1, τ2], . . .
inductively by

Xπk ( j)(t) = Xπk ( j)(τk) + δπk ( j)(t − τk) + σπk ( j)(Wπk ( j)(t) − Wπk ( j)(τk)),

j : { j − 1, j} ∩ Ak = ∅, t ∈ [τk, τk+1],
Xπk ( j)[τk, τk+1] = (

Z [τk ,τk+1],Wπk ( j),Wπk ( j+1) (δ j , δ j+1, σ j , σ j+1)
)

1,

Xπk ( j+1)[τk, τk+1] = (
Z [τk ,τk+1],Wπk ( j),Wπk ( j+1) (δ j , δ j+1, σ j , σ j+1)

)
2, j ∈ Ak,

τk+1 = inf{t > τk : X( j)(t) = X( j+1)(t) for some j /∈ Ak},
Ak+1 = {

1 ≤ j ≤ n − 1 : X( j)(τk+1) = X( j+1)(τk+1)
} ;

here, for each k ≥ 0, πk is a permutation of the set {1, . . . , n} for which

Xπk (1)(τk) ≤ Xπk (2)(τk) ≤ · · · ≤ Xπk (n)(τk).

As in the case of n = 3 it is not hard to see that this defines a strong solution of the
system (1.1) up to the time

τ [1] := lim
k→∞ τk .

We note at this point that, for n > 3, τ [1] = τ is not necessarily true.

Step 2. To proceed, for 1 ≤ j ≤ n − 1 we let (ρ j,k)k≥1 be a (possibly empty) sub-
sequence of the sequence (τk)k≥1, which contains all the elements of the sequence
(τk)k≥1 for which X( j)(τk) = X( j+1)(τk). Since for every k0 ≥ 0 there are at least two
sequences of the form (ρ j,k)k≥1, which contain at least one element of {τk0 , τk0+1},
at least two of the sequences (ρ j,k)k≥1 are infinite. Thus, due to the continuity of the
paths of the ordered particles, there exist 1 ≤ j1 < j2 ≤ n − 1 such that

X( j1)(τ
[1]) = X( j1+1)(τ

[1]), X( j2)(τ
[1]) = X( j2+1)(τ

[1])

holds.
If j2 = j1 + 1, we have a triple collision of X( j1), X( j1+1) and X( j1+2) at time τ [1].

In this case, τ ≤ τ [1], and the existence results of the theorem follow readily.
If j2 �= j1 +1 , then we proceed with the construction of the processes X1, . . . , Xn

as in Step 1, but now starting at t = τ [1] instead of t = 0. This gives us a new sequence
of stopping times τ [1] = τ

[1]
0 ≤ τ

[1]
1 ≤ · · · , defined by analogy with the stopping
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times τ0 ≤ τ1 ≤ · · · in Step 1. Next, we set τ [2] = limk→∞ τ
[1]
k and observe that we

have constructed a strong solution to the system (1.1) up to the time τ [2].
Again, either there is a triple collision at τ [2] and the proof is complete, or else we

go ahead with the construction to extend the solution up to a time τ [3]. Proceeding in
the same manner, and assuming that we do not encounter a triple collision, we end up
with a strong solution up to time τ [∞] := limk→∞ τ [k].

Thus, assuming that a triple collision has not occured, we conclude that, for each
k ∈ N, there exist 1 ≤ j1(k) < j2(k) ≤ n − 1 such that j2(k) > j1(k) + 1 and

X( j1(k))(τ
[k]) = X( j1(k)+1)(τ

[k]), X( j2(k))(τ
[k]) = X( j2(k)+1)(τ

[k]).

Arguing as before, we conclude that there exist 1 ≤ j1(∞) < j2(∞) < j3(∞) <

j4(∞) ≤ n − 1 such that

X( j	(∞))(τ
[∞]) = X( j	(∞)+1)(τ

[∞]), 	 = 1, 2, 3, 4.

Again, either there is a triple collision at time τ [∞], or we proceed with the con-
struction of the strong solution until a time τ̃ at which

X( j̃	)(̃τ ) = X( j̃	+1)(̃τ ), 	 = 1, . . . 2K ,

where K is such that 2K > n/2 (unless a triple collision occurs before the time τ̃ ).
Now, the inequality 2K > n/2 implies that at time τ̃ there must be a triple collision,
which in turn implies τ ≤ τ̃ . Thus, we have constructed a strong solution up to the
time τ , as desired.

Finally, pathwise uniqueness up to time τ can be shown by the same arguments as
in the case n = 3 (see the proof of Proposition 8 for the details). ��

4.3 Systems with infinitely many particles

We can now use the results of the previous subsection to construct the unique strong
solution for the system with infinitely many particles.

Proof of Theorem 2 for I = N Consider a probability space on which a system W =
(Wi : i ∈ I ) of independent standard Brownian motions is defined. Then the result
of the previous subsection shows that for every n ∈ N, there is a strong solution X (n)

to the system (1.1) with I = {1, . . . , n} and the parameters δ1, . . . , δn, σ1, . . . , σn

which is defined up to the time

inf{t ≥ 0 : X (n)
i (t) = X (n)

j (t) = X (n)
k (t) for some 1 ≤ i < j < k ≤ n}. (4.4)

In particular, the strong solution X (n) is defined for all t ≥ 0 if Condition 2 is satisfied.
Now, we can construct a strong solution X of the system (1.1) up to time τ by follow-
ing the proof of Proposition 3.1 in [17], and making the following two modifications.
We use the just described strong solutions X (n) instead of the weak solutions used in
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[17], and replace the a priori estimate for the expected number of particles on intervals
of the form (−∞, x] at a time t ≥ 0 in the proof of Proposition 3.1 in [17] by the
corresponding a priori estimate in the proof of our Proposition 4. This proves strong
existence.

To prove strong uniqueness, let X ′ = (X ′
i : i ∈ I ) be another strong solution

of the system (1.1), defined on the same probability space as X and adapted to the
same Brownian filtration, and let τ ′ be the corresponding first time of a triple col-
lision. Moreover, we define the stopping times 0 = κ ′

0 ≤ κ ′
1 ≤ · · · and the sets

{1, . . . , M} = I ′
0 ⊂ I ′

1 ⊂ · · · inductively by

κ ′
	+1 =

(
inf{t ≥ κ ′

	 | ∃ i ∈ I ′
	, j /∈ I ′

	 : X ′
j (t) = X ′

i (t)}
)

∧ τ ′,

I ′
	+1 = {

i ∈ I | ∃ 0 ≤ t ≤ κ ′
	+1 : X ′

i (t) = X ′
j (t) for some j ∈ I ′

	

}

and let 0 = κ0 ≤ κ1 ≤ . . . and {1, . . . , M} = I0 ⊂ I1 ⊂ . . . be the correspond-
ing quantities for the strong solution X . Then, by the strong uniqueness for the finite
system, for each 	 ∈ N the process

(
X ′

1(t ∧ κ ′
	), . . . , X ′

|I ′
	|(t ∧ κ ′

	)
)
, t ≥ 0

must be the unique strong solution of (1.1) with I = I ′
	 and parameters δ1, . . . , δ|I ′

	|,
σ1, . . . , σ|I ′

	| driven by W1, . . . , W|I ′
	|, stopped at κ ′

	 . Moreover, we have

X ′
i (t ∧ κ ′

	) = X ′
i (0) + δi (t ∧ κ ′

	) + σi Wi (t ∧ κ ′
	), t ≥ 0

for all i /∈ I ′
	 . The same arguments with X ′ replaced by X and induction over 	 give

κ ′
	 = κ	, I ′

	 = I	, X (t ∧ κ	) = X ′(t ∧ κ ′
	) (4.5)

for all t ≥ 0 and 	 ∈ N. Thus, by taking the limit 	 → ∞ we obtain τ = τ ′ and
X (t ∧ τ) = X ′(t ∧ τ ′), t ≥ 0.

Note that the almost sure identities

τ = lim
	→∞ κ	 and τ ′ = lim

	→∞ κ ′
	

follow from the fact that, with probability one, for every x ∈ R and t ≥ 0 there are
finitely many particles on the interval (−∞, x] at time t in X and X ′ ; this is a conse-
quence of the a priori estimate in the proof of Proposition 4 and of the Borel-Cantelli
Lemma. ��
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