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Abstract Toeplitz covariance matrices are used in the analysis of stationary
stochastic processes and a wide range of applications including radar imaging, tar-
get detection, speech recognition, and communications systems. In this paper, we
consider optimal estimation of large Toeplitz covariance matrices and establish the
minimax rate of convergence for two commonly used parameter spaces under the
spectral norm. The properties of the tapering and banding estimators are studied in
detail and are used to obtain the minimax upper bound. The results also reveal a funda-
mental difference between the tapering and banding estimators over certain parameter
spaces. The minimax lower bound is derived through a novel construction of a more
informative experiment for which the minimax lower bound is obtained through an
equivalent Gaussian scale model and through a careful selection of a finite collection
of least favorable parameters. In addition, optimal rate of convergence for estimating
the inverse of a Toeplitz covariance matrix is also established.

Keywords Banding · Covariance matrix · Minimax lower bound · Optimal rate of
convergence · Spectral norm · Tapering · Toeplitz covariance matrix

Mathematics Subject Classification Primary 62H12; Secondary 62F12 · 62G09

The research of T. Cai was supported in part by NSF FRG Grant DMS-0854973 and the research of
Z. Ren and H. Zhou was supported in part by NSF Career Award DMS-0645676 and NSF FRG Grant
DMS-0854975.

T. T. Cai (B)
Statistics Department, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
e-mail: tcai@wharton.upenn.edu

Z. Ren · H. H. Zhou
Department of Statistics, Yale University, New Haven, CT 06511, USA

123



102 T. T. Cai et al.

1 Introduction

Estimation of a Toeplitz covariance matrix and its inverse arises naturally in the analy-
sis of stationary time series which are used in a wide range of applications in many fields
including engineering, economics, and biology. For example, stationary Gaussian pro-
cesses is one of the most fundamental models in statistical signal processing and
Toeplitz covariance matrices are used for radar imaging, target detection, speech rec-
ognition, and communications systems (see, e.g., [12,14,22,24]).

The problem of optimal estimation of large covariance matrices has drawn consid-
erable recent attention. In the present paper, we consider estimation of large Toeplitz
covariance matrix and its inverse under the matrix spectral norm in the high dimen-
sional setting. Suppose we observe independent and identically distributed (i.i.d.)
p-variate random variables X1, . . . , Xn with covariance matrix �p×p which has a
Toeplitz structure,

�p×p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0 σ1 σ2 · · · σp−2 σp−1
σ1 σ0 σ1 σp−2

σ2 σ1 σ0
...

...
. . .

...

σp−2 σ0 σ1
σp−1 σp−2 · · · · · · σ1 σ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The goal is to construct rate-optimal estimators based on the sample {X1, . . . , Xn}
and establish the optimal rate of convergence. We assume both n and p are growing.
However, unlike many other covariance matrix estimation problems, the results also
hold for a fixed sample size n. For example, n can be taken to be 1 as is common in time
series analysis. For a matrix A its spectral norm is defined as ‖A‖ = sup‖x‖2=1 ‖Ax‖2.
The minimax risk of estimating � over a given collection F under the spectral norm
‖ · ‖ is defined as

R(F) = inf
�̂

sup
�∈F

E‖�̂ − �‖2.

In the present paper, we establish the optimal rates of convergence of R(F) over
two commonly used parameter spaces and introduce a rate-optimal tapering estimator.

It is clear that the Toeplitz covariance matrix �p×p is uniquely determined by the
sequence of covariances (σm) ≡ (σ0, σ1, . . . , σp−1, . . .). A natural parameter space
to consider is the following collection defined in terms of the rate of decay of the
covariance sequence (σm),

Gβ (M) =
{
�p×p : |σm | ≤ M(m + 1)−β−1, � � 0

}
(2)

where 0 < β, M < ∞, and � � 0 denotes that � is positive-semidefinite. It is well
known that the Toeplitz covariance matrix � is closely related to the spectral density
f given by
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Optimal rates of convergence for estimating Toeplitz covariance matrices 103

f (x) = 1

2π

[
σ0 + 2

∞∑
m=1

σm cos(mx)

]
, x ∈ [−π, π ],

which is a real-valued and even function on [−π, π ]. Another natural parameter space
to consider is a set defined in terms of the smoothness of the spectral density f . The
parameter space Fβ(M0, M), defined in Sect. 2, contains Toeplitz covariance matrices
whose corresponding spectral density functions are of Hölder smoothness β.

Our analysis establishes the minimax rates of convergence for estimating the
Toeplitz covariance matrices over the parameter spaces Gβ(M) and Fβ(M0, M). We
first introduce the tapering and banding estimators and study in detail their properties
under the matrix spectral norm. The optimal tapering estimator is constructed and its
rate of convergence is derived. Somewhat surprisingly, our results show that the band-
ing estimators and tapering estimators are fundamentally different in the context of
estimating Toeplitz covariance matrices over a range of parameter spaces Fβ(M0, M),
in the sense that the best banding estimator cannot achieve the same rate of conver-
gence as the one attained by the optimal tapering estimator because of a large bias. In
other words, banding is strictly sub-optimal and in particular is not as good as tapering
for estimating Toeplitz covariance matrices over a range of Fβ(M0, M). However for
estimation over the parameter spaces Gβ(M), with the same choice of the banding
and tapering parameters, the two estimators attain the same rate of convergence. This
phenomenon is different from those in the estimation of other types of covariance
matrices. In addition, we also establish in this paper the optimal rate of convergence
for estimating the inverse of a Toeplitz covariance matrix.

The problem of estimating Toeplitz covariance matrices and its inverse exhibits
interesting new features different from those in other related covariance matrix esti-
mation problems. This is particularly true for establishing minimax lower bounds.
In this paper, the lower bound is obtained through a novel construction of a more
informative experiment which is shown to be exactly equivalent to a Gaussian scale
model. A minimax lower bound for the more informative model, which immediately
provides a lower bound for the original problem, is derived by carefully constructing
a collection of least favorable spectral densities and by applying Fano’s Lemma. This
two-step technique is quite different from those used to establish the optimal rate in
other covariance matrix estimation problems (see, e.g., [9,10]).

By combining the minimax lower and upper bounds developed in later sections,
the main results on the optimal rate of convergence for estimating a Toeplitz covari-
ance matrix can be summarized in the following theorem. Here for two sequences of
positive numbers an and bn , an � bn means that there exist positive constants c and
C independent of n such that c ≤ an/bn ≤ C .

Theorem 1 The minimax risk of estimating the Toeplitz covariance matrix �p×p over
the collections Gβ(M) or Fβ(M0, M) satisfies

inf
�̂p×p

sup
Hβ

E

∥∥∥�̂p×p − �p×p

∥∥∥2 �
(

log(np)

np

) 2β
2β+1

under the condition (7), where Hβ = Gβ(M), or Hβ = Fβ(M0, M) defined in (6).
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104 T. T. Cai et al.

In addition to the Toeplitz matrices considered in the present paper, estimation of
large covariance matrices under other structural assumptions has been actively stud-
ied in the recent literature. The most commonly considered assumptions are “sparse”,
where only a small number of entries in each row/column are nonzero, and “bandable”,
where the entries of the matrix decay as they move away from the diagonal. Many
regularization methods have been proposed and studied under these assumptions. For
example, Bickel and Levina [2,3] proposed a banding estimator for estimating banda-
ble covariance matrices and a thresholding estimator for sparse covariance matrices
and obtained rate of convergence for the two estimators (see also [13,16]). Cai et al.
[9] established the optimal rates of convergence for estimating bandable covariance
matrices and introduced rate-optimal tapering estimators. Cai and Zhou [10] derived
the minimax rate of convergence for estimating sparse covariance matrices under the
spectral norm. In particular, a new general lower bound technique was developed.
Cai and Liu [6] introduced an adaptive thresholding procedure for estimating sparse
covariance matrices that automatically adjusts to the variability of individual entries.
Estimation of sparse inverse covariance matrices has also drawn considerable attention
due to its close connections to Gaussian graphical model selection (see [7,21,27]).
The optimal rate of convergence for estimating sparse inverse covariance matrices was
established in [8].

The rest of the paper is organized as follows. In Sect. 2, tapering and banding esti-
mators are introduced and studied. In particular, a minimax upper bound for estimating
Toeplitz covariance matrices under the spectral norm is obtained. Section 3 establishes
a minimax lower bound which matches in terms of the rate of convergence the mini-
max upper bound derived in Sect. 2. The upper and lower bounds together yield the
optimal rate of convergence. Section 4 considers estimation of the inverse of a Toeplitz
covariance matrix and establishes the optimal rate of convergence for estimating the
inverse under the spectral norm. Section 5 discusses connections and differences of
our work with other related problems. The proofs are given in Sects. 6 and 7.

2 Methodology and minimax upper bound under the spectral norm

In this section we introduce tapering and banding procedures for estimating the
Toeplitz covariance matrix �p×p based on a random sample of p-variate Gaussian

observations X1, . . . , Xn
iid∼ N (μ,�p×p). The properties of the tapering and banding

estimators under the spectral norm are then studied and used to establish the minimax
upper bounds.

Given a random sample {X1, . . . , Xn} from a Gaussian distribution with a Toeplitz
covariance matrix �p×p, the sample covariance matrix is

�∗
p×p = (σ ∗

st )1≤s,t≤p = 1

n − 1

n∑
l=1

(
Xl − X̄

) (
Xl − X̄

)T
(3)

where X̄ = 1
n

∑n
l=1 Xl is the sample mean. Note that �∗ is translation invariant, thus

we shall assume EXl = 0 hereafter. When the covariance matrix �p×p is Toeplitz, an
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Optimal rates of convergence for estimating Toeplitz covariance matrices 105

immediate improvement of the sample covariance estimator is to average the entries
in the diagonals of �∗

p×p. For 0 ≤ m ≤ p − 1, set

σ̃m = 1

p − m

∑
s−t=m

σ ∗
st (4)

and define the Toeplitz matrix �̃ by �̃ = (σ̃st )1≤s,t≤p with σ̃st = σ̃|s−t |. Then �̃ is
an unbiased estimator of �.

We shall construct tapering estimators of the Toeplitz covariance matrix�p×p based
on the unbiased estimator �̃ as follows. For a given even positive integer k ≤ p/2, let
ω = (ωm)0≤m≤p−1 be a weight sequence with the ωm given by

ωm =
⎧⎨
⎩

1, when m ≤ k/2
2 − 2m

k , when k/2 < m ≤ k
0, Otherwise

.

Define the tapering estimator �̂k of the Toeplitz matrix � by �̂k = (σ̂st ) where

σ̂st = σ̂|s−t | = ω|s−t |σ̃|s−t |.

For the tapering estimator it is easy to see

Eσ̂m = ωmσm .

Similarly, for a given integer 0 ≤ k ≤ p−1, a banding estimator �̂B
k can be defined

as �̂B
k = (σ̂ B

st ) with

σ̂ B
st = σ̂ B|s−t | = σ̃|s−t | · I (|s − t | ≤ k). (5)

It is clear that the tapering estimator �̂k is different from the banding estimator �̂B
k ,

which is an unbiased estimator of �B
k = (σ B

st )1≤s,t≤p with σ B
st = σ|s−t | I (|s − t | ≤ k).

Note that both tapering and banding estimators have been used for other covariance
estimation problems and the two estimators share similar properties (see, e.g., [2,9]).

As mentioned in Sect. 1, the Toeplitz covariance matrix is closely connected to the
spectral density of the stationary process. In addition to the parameter space Gβ(M)

defined in (2) in terms of the rate of decay of the covariance sequence (σm), another
natural parameter space to consider is defined in terms of the smoothness of the spec-
tral density f , which is commonly used in the analysis of periodic time series (see,
e.g., [15,17,19,20,23]). The smoothness condition determines the consistency and
rate of convergence in various estimation settings. Let β = γ + α > 0, where γ is
the largest integer strictly less than β, 0 < α ≤ 1, and 0 < M0, M < ∞. Define

Fβ (M0, M) =
{
� ( f ) : ‖ f ‖∞ ≤ M0 and

∥∥∥ f (γ )(· + h) − f (γ )(·)
∥∥∥∞

≤ Mhα,� � 0
}

, (6)
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106 T. T. Cai et al.

where �( f ) is a p × p Toeplitz matrix uniquely determined by Fourier coefficients
of f . The smoothness parameter β of the spectral density f is closely connected to
the rate of decay of the covariances σm as m increases. For a non-integer β, Gβ(M) is
a subset of Fβ(M0, M1) for some constants M0 and M1 depending on M . However,
for the two parameter spaces Gβ(M) and Fβ(M0, M), in general neither is a subclass
of the other. Their connections and differences are further discussed in Sect. 5. The
optimal rate of convergence for estimating the Toeplitz covariance matrices �p×p

over the parameter space Fβ(M0, M) critically depends on the value of β.
We study the performance of both the tapering estimator �̂k and the banding esti-

mator �̂B
k over the two parameter spaces Fβ(M0, M) and Gβ(M). The analysis is quite

similar for the two parameter spaces, but the asymptotic behaviors of the tapering and
banding estimators are more interesting over Fβ(M0, M) than Gβ(M). We therefore
will mainly focus our analysis on Fβ(M0, M). We begin by establishing the following
risk bounds for the tapering estimator �̂k under the spectral norm.

Remark 1 Throughout the paper we shall assume that

(
np

log (np)

) 1
2β+1 ≤ p/2. (7)

The purpose of assumption (7) is to rule out the naive estimator (4). The right hand
side p/2 in (7) can of course be replaced by cp for any positive constant c < 1.

To simplify the notation, from now on we shall write � for �p×p if the dependence
on p is clearly understood. Throughout the paper we denote by C, c, C1, c1, C2,

c2, . . . etc. generic constants, not depending on n or p, which may vary from place to
place. Let �x� denote the largest integer less than or equal x .

Theorem 2 The tapering estimator �̂k of the Toeplitz covariance matrix � with
k ≤ p/2 satisfies

sup
Fβ(M0,M)

E

∥∥∥�̂k − �

∥∥∥2 ≤ C
k log (np)

np
+ Ck−2β (8)

for some constant C > 0. Consequently, by setting an optimal choice k = k∗ ≡
�( np

log(np)
)

1
2β+1 �, we have

sup
Fβ(M0,M)

E

∥∥∥�̂k∗ − �

∥∥∥2 ≤ C1

(
log(np)

np

) 2β
2β+1

. (9)

The upper bounds given in Theorem 2 are proved by using the connections between
the spectral norm of a Toeplitz matrix � and the supnorm of the corresponding spectral
density f . Indeed,

‖�‖ ≤ 2π‖ f ‖∞ = sup
[−π,π ]

∣∣∣∣∣σ0 + 2
∞∑

m=1

σm cos mx

∣∣∣∣∣ . (10)
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Optimal rates of convergence for estimating Toeplitz covariance matrices 107

See, for example, Chapter 1 of [4]. Note that

E

∥∥∥�̂k − �

∥∥∥2 ≤ 2E

∥∥∥�̂k − E�̂k

∥∥∥2 + 2
∥∥∥E�̂k − �

∥∥∥2
.

The variance term E‖�̂k − E�̂k‖2 and the bias term ‖E�̂k − �‖2 can then be
bounded from above by the supnorm of the corresponding spectral densities of the
Toeplitz matrices �̂k − E�̂k and E�̂k − �, respectively. For the variance part, we
apply a large deviation result for spectral density estimation from [1] and show that

E

∥∥∥�̂k − E�̂k

∥∥∥2 ≤ C
k log (np)

np
.

The upper bound for the bias term ‖E�̂k − �‖2 is of order k−2β due to a well
known result for the tapering estimators from harmonic analysis (see [28]). Set k =
k∗ ≡ �( np

log(np)
)

1
2β+1 �, then the tapering estimator achieves the rate of convergence

(
log(np)

np )2β/(2β+1).

Remark 2 The tapering estimator �̂k∗ in (9) is not guaranteed to be positive semidef-
inite for a given sample. By using results on circulant matrices, one can construct a
new estimator �̂New based on �̂k∗ such that �̂New is positive semidefinite, Toeplitz
and attains the upper bound in Eq. (9). See Sect. 5 for details.

We now turn to the performance of the banding estimator. The analysis is simi-
lar, but the result is somewhat surprisingly different. It is interesting to note that the
best banding estimator is inferior to the optimal tapering estimator for estimating the
Toeplitz covariance matrices over Fβ(M0, M). Assume that

(np log(np))1/(2β+1) = O(pκ) (11)

for some κ < 2
5 . The following theorem is established by extending a major result of

[26] in which a condition similar to (11) was imposed, together with the fact that the
banding estimator may have a large bias as shown in Lemma 3. The details are given
in Sect. 6.3.

Theorem 3 Under the assumption (11), the banding estimator (5) satisfies

(
np

log(np)

) 2β
2β+1

inf
k

sup
Fβ(M0,M)

E

∥∥∥�̂B
k − �

∥∥∥2 → ∞.

Let us now consider the parameter space Gβ(M) defined in (2). It can be shown that
the tapering estimator attains the same rate of convergence as the one for Fβ(M0, M).
Furthermore, in contrast to estimation over Fβ(M0, M), for estimating � over the
parameter space Gβ(M) the banding estimator achieves the same rate of convergence
as the tapering estimator.
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108 T. T. Cai et al.

Theorem 4 For k ≤ p/2, the tapering estimator �̂k or the banding estimator �̂B
k of

the Toeplitz covariance matrix � satisfies, for some constant C > 0,

sup
�∈Gβ(M)

E

∥∥∥�̂ − �

∥∥∥2 ≤ C
k log (np)

np
+ Ck−2β

where �̂ = �̂k or �̂B
k . Consequently, by setting an optimal choice of k = k∗ ≡

�( np
log(np)

)
1

2β+1 �, we have

sup
�∈Gβ(M)

E

∥∥∥�̂k∗ − �

∥∥∥2 ≤ C1

(
log(np)

np

) 2β
2β+1

.

The parameter spaces Gβ(M) and Fβ(M0, M) are similar, but they also have subtle
differences which lead to distinct risk properties for the banding estimator over the
two parameter spaces. For a Toeplitz covariance matrix � ∈ Gβ(M), due to the rate
of decay of the sequence of covariances (σi ), the bias component of the risk of the
banding estimator �̂B

k has the upper bound

sup
Gβ(M)

∥∥∥E�̂B
k − �

∥∥∥2 ≤ Ck−2β,

which is the same as that of the tapering estimator �̂k in terms of the rate of conver-
gence. The bias bound above is different from the case of Fβ(M0, M), for which as
shown in Lemma 3 the banding estimator �̂B

k satisfies

sup
Fβ(M0,M)

∥∥∥E�̂B
k − �

∥∥∥2 � (log k)2 k−2β,

whereas the maximum squared bias of the tapering estimator �̂k is of order k−2β .
There is no significant difference in the variance behavior between the banding esti-
mator �̂B

k and the tapering estimator �̂k . We shall omit the proof of Theorem 4 for
reasons of space.

3 Minimax lower bound under the spectral norm

The problem of optimal estimation of large covariance matrices poses new technical
challenges, partly due to the difficulty in obtaining rate-sharp minimax lower bounds.
For estimating Toeplitz covariance matrices, it appears difficult to derive a rate-sharp
minimax lower bound directly. In this section we shall establish a minimax lower bound
for estimating Toeplitz covariance matrices by first constructing a more informative
model under which independent random variables are observed, and then deriving a
lower bound for the more informative model through an equivalent Gaussian scale
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Optimal rates of convergence for estimating Toeplitz covariance matrices 109

model. The minimax lower bound for the more informative model then immediately
yields a lower bound for the original problem.

Recall that in the original experiment, we observe an i.i.d. random sample {X1, . . . ,

Xn} from a p-variate Gaussian distribution with the Toeplitz covariance matrix � given
as in (1). Now let us consider an “enlarged” experiment in which one observes an i.i.d.
random sample {Y1, . . . , Yn} from a (2p − 1)-variate Gaussian distribution with a
circulant covariance matrix �̌ = �̌(2p−1)×(2p−1) matrix where

�̌ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ0 σ1 σ2 · · · σp−2 σp−1
σ1 σ0 σ1 σp−2

σ2 σ1 σ0
...

...
. . .

...

σp−2 σ0 σ1
σp−1 σp−2 · · · · · · σ1 σ0

σp−1 σp−2 · · · σ2 σ1
σp−1 σp−1 σ2

σp−2 σp−1
...

...
. . .

...

σ2 σp−1 σp−1
σ1 σ2 · · · σp−2 σp−1

· · · · · · · · · · ··

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i.e.,

(�̌)st =
{

σ|s−t | when |s − t | ≤ p − 1
σ2p−1−|s−t | when p ≤ |s − t | ≤ 2p − 2

.

Denote the vector of the first p coordinates of Yi by Y(1)
i and the last p − 1 coor-

dinates by Y(2)
i . Then Yi can be written as Yi = (Y(1)

i , Y(2)
i ) and Y(1)

i has exactly the
same distribution as Xi . The second experiment with the random sample {Y1, . . . , Yn}
is clearly more informative than the first one with {X1, . . . , Xn} because in the second
experiment one can always make inference simply based only on {Y(1)

1 , . . . , Y(1)
n } and

ignore {Y(2)
1 , . . . , Y(2)

n }.
The major advantage of the more informative experiment is that it is easier to ana-

lyze. It is important to note that the second experiment in which we observe the random
sample {Y1, . . . , Yn} is exactly equivalent to a Gaussian scale model under which one
observes

Zi j = Sp( f )1/2
(

2π j

2p − 1

)
ξi j , with ξi j

i id∼ N (0, 1), (12)

for | j | ≤ p − 1, and i = 1, 2, . . . n. Here

Sp( f )(x) = 1

2π

⎛
⎝σ0 + 2

p−1∑
m=1

σm cos mx

⎞
⎠ (13)

is the partial sum of f with order p. This can be seen as follows. Define

υ j = 2π j

2p − 1
for | j | ≤ p − 1.
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110 T. T. Cai et al.

It is well known (see [5]) that the spectral decomposition of �̌ can be given by

�̌ =
∑

| j |≤p−1

λ j u j u′
j

where λ j are real eigenvalues and u j are real orthonormal eigenvectors. The eigen-
values are

λ j =
∑

|k|≤p−1

σk exp(−iυ j k) = 2π Sp( f )
(
υ j
)
, | j | ≤ p − 1

where Sp( f )(x) is the pth order partial sum of f given in (13). The eigenvectors
u j of the circulant matrix �̌ are given by u′

0 = (2p − 1)−1/2(1, . . . , 1) and for
j = 1, . . . , p − 1,

u′
j =

(
2

2p − 1

)1/2

(1, cos(υ j ), cos(2υ j ), . . . , cos((2p − 2)υ j )), (14)

u′− j =
(

2

2p − 1

)1/2

(0, sin(υ j ), sin(2υ j ), . . . , sin((2p − 2)υ j )), (15)

which in fact do not depend on the entries σ j of the matrix �̌. In particular, the set
of eigenvectors do not depend on the set of eigenvalues λ j . This is the key advantage
of working with the circulant matrix �̌ = �̌(2p−1)×(2p−1) over the Toeplitz matrix
�p×p.

Define the (2p−1)×(2p−1) orthogonal matrix U by U = (u−(p−1), . . . , u(p−1))

and set

Zi = 1√
2π

U ′Yi , for i = 1, 2, . . . , n.

Note that Zi are independent (2p − 1)-dimensional zero-mean Gaussian variables
and each Zi has a diagonal covariance matrix with values λ j/2π along the diagonal.
Hence Zi can be equivalently written in the form of the Gaussian scale model given
in (12). Notice that the transformation is invertible and independent of the unknown
parameter f , thus the experiment of observing the random sample {Y1, . . . , Yn} is
exactly equivalent to observing {Zi j , | j | ≤ p − 1, i = 1, . . . , n} under the Gaussian
scale model given in (12).

We shall work with the Gaussian scale model (12) to establish a minimax lower
bound. It is clear that for any statistical problem an optimal procedure based on a more
informative experiment performs at least as well as the best procedure based on a less
informative experiment. Hence, for our problem of estimating � under the spectral
norm, a minimax lower bound for the above more informative model automatically
provides a lower bound for the original model. The following lower bound is obtained
through this technique.

123



Optimal rates of convergence for estimating Toeplitz covariance matrices 111

Theorem 5 The minimax risk for estimating the Toeplitz covariance matrix � over
Fβ(M0, M) under the spectral norm satisfies

inf
�̂

sup
Fβ(M0,M)

E

∥∥∥�̂ − �

∥∥∥2 ≥ c

(
np

log (np)

)− 2β
1+2β

for some constant c > 0.

After the construction of the more informative model, there are two additional major
steps in establishing the minimax lower bound. The first step is to construct a finite
collection of least favorable spectral densities to reduce the lower bound problem for
estimating � over the whole parameter space to the one for estimating the spectral
density over this finite parameter space. The second step is to use Fano’s Lemma to
obtain a lower bound for estimating the spectral density under the Gaussian scale
model (12) over the finite parameter space. This lower bound then yields immediately
the desired lower bound for the original problem of estimating a Toeplitz covariance
matrix under the spectral norm.

Similarly, the same lower bound can be obtained for the parameter space Gβ(M).

Theorem 6 The minimax risk for estimating the covariance matrix � over Gβ(M)

under the operator norm satisfies

inf
�̂

sup
Gβ(M)

E

∥∥∥�̂ − �

∥∥∥2 ≥ c

(
np

log (np)

)− 2β
1+2β

.

The upper bounds given in Theorems 2 and 4 together with the lower bounds stated
in Theorems 5 and 6 show that the minimax risk of estimating the Toeplitz covariance
matrix �p×p over the collections Gβ(M) or Fβ(M0, M) satisfies

inf
�̂p×p

sup
Hβ

E

∥∥∥�̂p×p − �p×p

∥∥∥2 �
(

log(np)

np

) 2β
2β+1

, (16)

where Hβ = Gβ(M) or Fβ(M0, M). The results also show that the tapering estimator

�̂k with the tapering parameter k = �( np
log(np)

)
1

2β+1 � attains the optimal rate of conver-

gence (
log(np)

np )
2β

2β+1 over both Gβ(M) and Fβ(M0, M), while the banding estimator

�̂B
k with the same choice of k is rate optimal over Gβ(M), but not for Fβ(M0, M).

These results show subtle differences between tapering and banding estimators and
between the two parameter spaces Gβ(M) and Fβ(M0, M).

4 Estimation of the inverse Toeplitz covariance matrix

As mentioned in Sect. 1, the inverse �−1 of the Toeplitz covariance matrix � is of
significant interest in many applications. The results and analysis given in the last two

123



112 T. T. Cai et al.

sections can be extended to establish the optimal rate of convergence for estimating
�−1 under the spectral norm.

For estimating the inverse �−1
p×p, we require the minimum value of the spectral

density f to be bounded from below by a positive constant so that the minimum
eigenvalue of �p×p is bounded away from zero for all p. For a given constant δ > 0,
define

Lδ =
{

f : inf
x

f (x) >
δ

2π

}
.

Define the parameter spaces

Pβ = Fβ (M0, M) ∩ Lδ and Qβ = Gβ (M) ∩ Lδ. (17)

Recall that for any f ∈ Fβ(M0, M), we have ‖ f ‖∞ ≤ M0 and for f ∈ Gβ(M),

we have ‖ f ‖∞ ≤ M/(βπ). Note that for every Toeplitz matrix �

λmin (�) ≥ 2π inf
x

f (x) (18)

where λmin(�) denotes the smallest eigenvalue of � (cf. [5], Proposition 4.5.3).
Equations (18) and (10) imply

δ < λmin (�) ≤ λmax (�) ≤ η,

where η = 2π max{M0, M/ (βπ)}.
The following theorem gives the minimax rate of convergence for estimating �−1.

Theorem 7 The minimax risk of estimating the inverse of the Toeplitz covariance
matrix �−1 over the class Pβ or the class Qβ defined in (17) satisfies

inf
�̂

sup
Rβ

E

∥∥∥�̂ − �−1
∥∥∥2 �

(
log(np)

np

) 2β
2β+1

where Rβ = Pβ or Qβ .

In fact, the optimal rate of convergence is achieved by the inverse of a slight mod-

ification of the tapering estimator �̂∗ = �̂k∗ with k∗ = �( np
log(np)

)
1

2β+1 �. Set

�̃ =
{

�̂∗ for λmin(�̂) ≥ 1
log(np)

I otherwise
(19)

and let �̂∗ = �̃−1. Then �̂∗ is rate-optimal, i.e.,

sup
Rβ

E

∥∥∥�̂∗ − �−1
∥∥∥2 ≤ C

(
log(np)

np

) 2β
2β+1
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for some constant C > 0, where in this case Rβ = Pβ or Qβ . The proof can be found
in Sect. 6.6.

Minimax lower bound for estimating the inverse

It is interesting to note that it is not necessary to have a completely separate lower
bound derivation for estimating the inverse �−1. The following simple argument yields
a minimax lower bound for estimating �−1 based on the lower bound for �, which
is already established in Sect. 3. Let Rβ = Pβ or Qβ . For any estimator �̂ of �−1,
define

�̂proj = arg min
A∈Rβ

{‖�̂ − A−1‖}.

In other words, �̂−1
proj is the closest matrix to �̂ such that �̂proj is in the parameter

space Rβ. The true � is in Rβ , so ‖�̂ − �−1‖ ≥ ‖�̂ − �̂−1
proj‖ and hence

2
∥∥∥�̂ − �−1

∥∥∥ ≥
∥∥∥�̂ − �−1

∥∥∥ +
∥∥∥�̂ − �̂−1

proj

∥∥∥ ≥
∥∥∥�−1 − �̂−1

proj

∥∥∥ .

Also note that

∥∥∥�̂proj − �

∥∥∥ =
∥∥∥�̂proj (�

−1 − �̂−1
proj )�

∥∥∥ ≤
∥∥∥�̂proj

∥∥∥
∥∥∥�−1 − �̂−1

proj

∥∥∥ ‖�‖.

Since both �̂proj and � are in the space Rβ , their spectral norms are bounded from
above by a constant η as commented earlier, we conclude that

∥∥∥�−1 − �̂−1
proj

∥∥∥ ≥ η−2 ·
∥∥∥�̂proj − �

∥∥∥ .

Therefore the minimax risk for estimating �−1 can be bounded from below as

inf
�̂

sup
Rβ

E

∥∥∥�̂ − �−1
∥∥∥2 ≥ 1

4η4 inf
�̂

sup
Rβ

E

∥∥∥�̂proj − �

∥∥∥2 ≥ 1

4η4 inf
�̂

sup
Rβ

E

∥∥∥�̂ − �

∥∥∥2

≥ c

(
np

log (np)

)− 2β
2β+1

for some constant c > 0.
Note that the above simple argument can also be applied to some other covariance

matrix estimation problems such as that in [9–11] to more conveniently establish a
minimax lower bound for estimating the inverse covariance matrices.
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5 Discussion

This paper introduces a rate optimal tapering estimator and establishes the minimax
rate of convergence for estimating the Toeplitz covariance matrices over the param-
eter spaces Fβ(M0, M) and Gβ(M) under the spectral norm. The results also show
interesting differences between the tapering and banding estimators for estimation
over Fβ(M0, M). A key step in the lower bound argument is the construction of a
more informative model for which the minimax lower bound is easier to obtain. The
more informative model is shown to be equivalent to a Gaussian scale model and the
lower bound for this model is established by carefully constructing a collection of
least favorable spectral densities and by applying Fano’s Lemma. Spectral analysis
of times series plays a major role in the technical arguments for establishing both the
minimax upper and lower bounds.

The problem of estimating Toeplitz covariance matrices is quite distinct from other
covariance matrix estimation problems such as those of estimating bandable or sparse
covariance matrices. In those problems technical analyses rely much more heav-
ily on the random matrix theory and the lower bound techniques are significantly
different from what is used here (see [9–11]). For example, here a major step in
the lower bound argument is the construction of a more informative experiment. To
the best of our knowledge, this is not needed in other covariance matrix estimation
problems.

As mentioned in Sect. 2, the tapering estimator �̂k∗ in (9) is not guaranteed to
be positive semidefinite for a given realization. Through a circulant matrix, a new
estimator �̂New can be constructed such that it is positive semidefinite, Toeplitz and
attains the upper bound in (9). The construction is as follows. Recall that for the taper-

ing estimator �̂k∗ with k∗ = �( np
log(np)

)
1

2β+1 �, the corresponding spectral density is

f̂k∗(x) = 1
2π

(σ̂0 + 2
∑k∗

m=1 σ̂m cos(mx)). Define

f̂ New (x) =
{

f̂k∗ (x) , if f̂k∗ (x) ≥ 0
0, otherwise

.

Let

�̂New
(2p−1)×(2p−1) = 2π

∑
| j |≤p−1

f̂ New (
υ j
)

u j u′
j (20)

where υ j = (2π j)/(2p − 1) and u j are defined in Eqs. (14) and (15). Now define a
new estimator �̂New

p×p by selecting the first p rows and p columns of �̂New
(2p−1)×(2p−1).

It is clear that �̂New
p×p is a Toeplitz matrix. Since f̂ New(x) ≥ 0, �̂New

(2p−1)×(2p−1) is non-

negative which implies �̂New
p×p is non-negative too. The following proposition shows

that it attains the optimal rate of convergence (
np

log(np)
)−2β/(2β+1).
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Proposition 1 The estimator �̂New
p×p satisfies

sup
Hβ

E

∥∥∥�̂New
p×p − �

∥∥∥2 ≤ C

(
log(np)

np

)2β/(2β+1)

,

where Hβ = Gβ(M) or Fβ(M0, M).

The parameter spaces Fβ(M0, M1) and Gβ(M) are similar, but also have subtle dif-
ferences, which lead to different risk properties for the banding estimators over these
two parameters spaces. For any M > 0 and noninteger β > 0, it can be shown that there
exists some constants M0 and M1 depending on M such that Gβ(M) ⊂ Fβ(M0, M1).
However in general this is not true for integer β (see, e.g., [28]). Conversely, it is easy
to see for any � ∈ Fβ(M0, M1) we have |σm | ≤ Mm−β , where M is some constant
depending only on M0 and M1. Therefore Fβ(M0, M1) ⊂ Gβ−1(M) for some constant
M depending on M0 and M1.

The problem of estimating a Toeplitz covariance matrix is closely connected to
the problem of estimating the spectral densities. For example, an upper bound for the
risk of estimating the spectral density f under the supnorm automatically provides an
upper bound for estimating the Toeplitz covariance matrix � under the spectral norm
through the classical bound

‖�̂ − �‖ ≤ 2π‖ f̂ − f ‖∞.

However, despite their close connections, the two problems are different. For exam-
ple, it is usually not true that ‖�̂ − �‖ ≥ c‖ f̂ − f ‖∞ uniformly over all f̂ and f for
some constant c > 0. The lower bound argument for the matrix estimation problem
is more involved than that for the spectral density estimation problem.

Golubev et al. [15] studied the asymptotic equivalence between the spectral density
estimation and a Gaussian white noise model, which suggests it should be possible to
provide an asymptotic equivalence theory for the Toeplitz covariance matrix estimation
problem. Observe a sample X1 = (y(1), . . . , y(p))′ from a real Gaussian stationary
sequence y(t) with Ey(t) = 0 and autocovariance function σm = Ey(t)y(t +m) with
the spectral density f (x) = 1

2π

∑∞
m=−∞ σmexp(ihx), i.e.,

X1 ∼ Np(0, �( f ))

where �( f ) is the p × p Toeplitz covariance matrix with entries (�) j,k = σ|k− j |, for
j, k = 1, . . . , p. Let F be a set of spectral densities defined by

F =
{

f : f ∈ Fβ (M0, M), and inf
x

f (x) ≥ ε
}

for β > 1/2, and some positive constants ε, M and M0. It was shown in [15] that the
experiments given by observations

X1 ∼ Np(0, �( f ))
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and

d Zx = log f (x)dx + 2π1/2 p−1/2dWx , x ∈ [−π, π ]

with f ∈ F are asymptotically equivalent. This suggests the experiment of observing

X1, . . . , Xn
i.i.d.∼ Np(0, �( f ))

is asymptotically equivalent to

d Zt = log f (t)dt + 2π1/2 (np)−1/2 dWt , t ∈ [−π, π ]

under a certain smoothness assumption. Applications of the asymptotic equivalence
theory include sharp asymptotic minimaxity in estimating � by expecting that

inf
�̂

sup
F

E

∥∥∥�̂ − �

∥∥∥2 = (1 + o (1)) 4π2 inf
f̂

sup
F

E

∥∥∥ f̂ − f
∥∥∥2

∞

and

inf
�̂

sup
F

E
1

p

∥∥∥�̂ − �

∥∥∥2

F
= (1 + o (1)) inf

f̂
sup
F

E

∥∥∥ f̂ − f
∥∥∥2

2

due to the following facts,

‖�∞×∞‖ = 2π ‖ f ‖∞

and

‖ f ‖2
2 = 1

2π

∫
f 2 =

∞∑
m=−∞

σ 2
m = σ 2

0 + 2
∞∑

m=1

σ 2
m .

It is an interesting and important topic for future research to establish the asymptotic
equivalence rigorously.

6 Proofs of main theorems

In this section, we first prove the risk upper bounds for the tapering procedures in
Sects. 6.1 and 6.2, and show that the banding estimator has inferior risk properties
in Sect. 6.3, then establish the minimax lower bounds in Sects. 6.4 and 6.5 for the
parameter spaces Fβ and Gβ , respectively. In Sect. 6.6, we prove Theorem 7, which
gives minimax risk results for estimating the inverse of a Toeplitz covariance matrix.
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6.1 Proof of Theorem 2

It follows from the triangle inequality and Eq. (10) that

∥∥∥�̂k − �

∥∥∥2 ≤ 2
∥∥∥�̂k − E�̂k

∥∥∥2 + 2
∥∥∥E�̂k − �

∥∥∥2

≤ 8π2
(∥∥∥E f̂k(x) − f̂k(x)

∥∥∥2

∞ +
∥∥∥E f̂k(x) − f (x)

∥∥∥2

∞

)

where

f (x) = 1

2π

(
σ0 + 2

∞∑
m=1

σm cos mx

)
, and f̂k(x) = 1

2π

(
σ̂0 + 2

k∑
m=1

σ̂m cos mx

)
.

We shall establish following upper bounds for the bias and variance separately,

sup
Fβ

∥∥∥E f̂k(x) − f (x)

∥∥∥2

∞ ≤ Ck−2β (21)

and

sup
Fβ

E

∥∥∥E f̂k(x) − f̂k(x)

∥∥∥2

∞ ≤ C
k log (np)

np
. (22)

These two bounds together immediately imply Eq. (8) of Theorem 2. A trade-off

between the bias and variance leads to an optimal choice of k = k∗ ≡ (
np

log(np)
)

1
2β+1 ,

which yields the rate of convergence (
log(np)

np )
2β

2β+1 as stated in Eq. (9) of Theorem 2.
We now establish Eqs. (21) and (22). It is relatively easy to derive the upper bound

(21) for the bias. Note that

E f̂k(x) = 1

2π

(
ω0σ0 + 2

k∑
m=1

ωmσm cos mx

)

= 1

2π

⎛
⎝σ0 + 2

k/2∑
m=1

σm cos mx + 2
k∑

m=k/2+1

(
2 − 2m

k

)
σm cos mx

⎞
⎠ .

Since E f̂k(x) is the de la Vallée Poussin mean of f , we have

∥∥∥E f̂k(x) − f (x)

∥∥∥∞ ≤ C inf
T ∈TriPoly(k)

‖T − f (x)‖∞ (23)
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where TriPoly(k) is the collection of all trigonometric polynomial with degree no
more than k, and the right hand side of (23) can be further bounded as

inf
T ∈TriPoly(k)

‖T − f (x)‖∞ ≤ 3Mk−β

for f ∈ Fβ(M0, M) (cf. Vol 1, Chapter 3.13 and page 117 of [28]). Consequently, we
obtain the desired upper bound in Eq. (21).

To study the variance part, we need the following large deviation bounds, which is
proved in Sect. 7.1.

Lemma 1 For each observation Xl , l = 1, 2, . . . n, the corresponding estimated spec-
tral density f̂ (l)

k (x) has the following property

P

{
±
√

p

k

(
f̂ (l)
k (x) − E f̂ (l)

k (x)
)

≥ t

}
≤ exp

(
−c1t2

)
for 0 ≤ t ≤ c2

√
p

k

and

P

{√
p

k

∣∣∣ f̂ (l)
k (x) − E f̂ (l)

k (x)

∣∣∣ ≥ t

}
≤ c3 exp (−c4t)

uniformly over all x and the parameter space Fβ(M0, M).

Lemma 1, together with certain continuity property of f̂k(x) = 1
n

∑n
l=1 f̂ (l)

k (x),
yields the following desired upper bound for the variance part.

Lemma 2 The estimator f̂k of spectral density satisfies

sup
Fβ

E

∥∥∥E f̂k(x) − f̂k(x)

∥∥∥2

∞ ≤ C
k log (np)

np
.

The detailed proofs of Lemmas 1 and 2 are given in Sect. 7.

6.2 Proof of Proposition 1

Similar to the definitions of �̂New
(2p−1)×(2p−1) and �̂New

p×p in Sect. 5, we define

�
T aper
(2p−1)×(2p−1) by

�
T aper
(2p−1)×(2p−1) = 2π

∑
| j |≤p−1

E f̂k∗
(
υ j
)

u j u′
j ,

where υ j = (2π j)/(2p − 1) and u j are defined in Eqs. (14) and (15), and define a

new matrix �
T aper
p×p by selecting the first p rows and columns of �

T aper
(2p−1)×(2p−1). Note

that �
T aper
p×p = E�̂k∗ , where k∗ ≡ (

np
log(np)

)
1

2β+1 , then
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∥∥∥�T aper
p×p − �p×p

∥∥∥2 ≤ (2π)2
∥∥∥ f − E f̂k∗

∥∥∥2

∞ ≤ Ck−2β∗ = C

(
log(np)

np

) 2β
2β+1

from Theorem 2. By the triangle inequality, we have

∥∥∥�̂New
p×p − �p×p

∥∥∥2 ≤ 2
∥∥∥�̂New

p×p − �
T aper
p×p

∥∥∥2 + 2
∥∥∥�T aper

p×p − �p×p

∥∥∥2
,

thus it is enough to show that

E

∥∥∥�̂New
p×p − �

T aper
p×p

∥∥∥2 ≤ C

(
log(np)

np

)2β/(2β+1)

(24)

to establish Proposition 1.
Now we establish Eq. (24). Note that

∥∥∥�̂New
p×p − �

T aper
p×p

∥∥∥2 ≤
∥∥∥�̂New

(2p−1)×(2p−1) − �
T aper
(2p−1)×(2p−1)

∥∥∥2

= (2π)2
(

max
j

∣∣∣ f̂ New (
υ j
) − E f̂k∗

(
υ j
)∣∣∣
)2

≤ (2π)2
∥∥∥ f̂ New − E f̂k∗

∥∥∥2

∞ (25)

By the triangle inequality, we can write

∥∥∥ f̂ New − E f̂k∗

∥∥∥2

∞ ≤ 2
∥∥∥ f̂ New − f

∥∥∥2

∞ + 2
∥∥∥ f − E f̂k∗

∥∥∥2

∞ .

Since f is non-negative and f̂ New is the positive part of f̂k∗ , it is easy to see that

∥∥∥ f̂ New − f
∥∥∥2

∞ ≤
∥∥∥ f̂k∗ − f

∥∥∥2

∞ ,

then we have

E

∥∥∥ f̂ New − E f̂k∗

∥∥∥2

∞ ≤ 2E

∥∥∥ f̂k∗ − f
∥∥∥2

∞ + 2E

∥∥∥ f − E f̂k∗

∥∥∥2

∞
≤ 2E

∥∥∥ f̂k∗ − f
∥∥∥2

∞ + Ck−2β∗

which, together with Eq. (25), immediately implies
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E

∥∥∥�̂New
p×p − �

T aper
p×p

∥∥∥2 ≤ (2π)2
E

∥∥∥ f̂ New − E f̂k∗

∥∥∥2

∞

≤ 8π2
E

∥∥∥ f̂k∗ − f
∥∥∥2

∞ + Ck−2β∗ ≤ C

(
log(np)

np

)2β/(2β+1)

where the last inequality follows from Theorem 2.

6.3 Proof of Theorem 3

This theorem is a consequence of the following three auxiliary lemmas. The proofs
of the first two lemmas can be found in the Appendix. We omit the proof of the third
lemma, since it is similar to the tapering case which was shown in Sect. 6.1. A key
step in the proof of Lemma 3 is to follow an example in page 315 of [28] by explicitly
constructing a covariance matrix �, or equivalently the corresponding spectral den-
sity, for which the bias of the banding estimator �̂B

k is much larger than k−2β . Lemma
4 is an extension of a major result in [26].

Lemma 3 The bias of the banding estimator �̂B
k in Eq. (5) of the Toeplitz covariance

matrix � with k ≤ p
2 satisfies

sup
Fβ(M0,M)

∥∥∥E�̂B
k − �

∥∥∥2 ≥ Ck−2β (log k)2

for some constant C > 0.

Lemma 4 Let � = Ip×p, the identity matrix. The banding estimator �̂B
k with k =

O(pκ) for some κ < 2
5 and k → ∞ as p → ∞ satisfies

E
∥∥∥�̂B

k − �

∥∥∥2 ≥ c
k log k

np

for some constant c > 0. Moreover, if k ≥ pκ, the banding estimator satisfies

E
∥∥∥�̂B

k − �

∥∥∥2 ≥ c
pκ log p

np

for some constant c > 0.

Lemma 5 The banding estimator �̂B
k defined in (5) satisfies

sup
Fβ(M0,M)

E

∥∥∥�̂B
k − E�̂B

k

∥∥∥2 ≤ C
k log (np)

np
, (26)

for some constant C > 0.
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It suffices to show that for each fixed pair (k, p) there exists some �, or equivalently
some f ∈ Fβ(M0, M) such that

E

∥∥∥�̂B
k − �

∥∥∥2 ≥ C

(
log(np)

np

) 2β
2β+1

(log np)
2

2β+1 −ε

for some constants C > 0 and ε < 1
2β+1 .

Firstly we consider banding �̂B
k estimators with k < (np)

1
2β+1 (log np)

( 1
2β+1 −ε).

It follows from Lemma 3 and Eq. (26) that

E

∥∥∥�̂B
k − �

∥∥∥2 ≥
∥∥∥E�̂B

k − �

∥∥∥2 − E

∥∥∥�̂B
k − E�̂B

k

∥∥∥2

≥ Ck−2β (log k)2 − C1
k log (np)

np
.

Hence, for some ε < 1
2β+1 and all sufficiently large n or p,

E

∥∥∥�̂B
k − �

∥∥∥2 ≥ C

(
log(np)

np

) 2β
2β+1

(log np)
2

2β+1 +2βε

−C1

(
log(np)

np

) 2β
2β+1

(log np)
2

2β+1 −ε ≥ C2

(
log(np)

np

) 2β
2β+1

(log np)
2

2β+1 −ε
.

When k ≥ (np)
1

2β+1 (log np)
( 1

2β+1 −ε) = O(pκ), let � be the identity matrix, then
Lemma 4 implies

E

∥∥∥�̂B
k − �

∥∥∥2 ≥ c
k log k

np
≥ C3

(
log(np)

np

) 2β
2β+1

(log np)
2

2β+1 −ε
.

6.4 Proof of Theorem 5

Define f0 = M0/2 and fi (with period 2π ) as follows,

fi = f0 + τεβ
n,p

[
A

(
x − εn,p(i − 0.5)

εn,p

)
+ A

(
x + εn,p(i − 0.5)

εn,p

)]
,

εn,p = 2π/k∗ (27)

where i = 1, 2, . . . k∗/2 with k∗ =�( np
log(np)

)
1

2β+1 �, and A(u) = exp(− 1
1−4u2 )1{|2u|<1}.

It is easy to see that

A ∈ C∞(R) ∩ Fβ

(
e−1, 1/2

)
and A(x) > 0 ⇐⇒ x ∈ (−1/2, 1/2) (28)
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and fi is positive and even, then fi ∈ Fβ(M0, M) by setting τ to be a sufficiently
small positive constant. Let Fsub = { f0, f1, . . . fk∗/2}.

As we have seen that there is a close connection between autocovariance matrix
and spectral density function, now we reduce the lower bound problem for estimating
covariance matrix under the spectral norm to the one for estimating spectral density
under the supnorm. The careful construction of fi in Eq. (27) is crucial to establish
the following lemma.

Lemma 6 There exists some positive constant c such that

inf
�̂

sup
Fβ

E

∥∥∥�̂ − �

∥∥∥2 ≥ c inf
f̃

sup
Fsub

E

∥∥∥ f̃ − f
∥∥∥2

∞ .

It is then enough to show

inf
f̃

sup
Fsub

E

∥∥∥ f̃ − f
∥∥∥2

∞ ≥ c

(
np

log (np)

)− 2β
1+2β

(29)

to establish Theorem 5.
We now establish the lower bound for the spectral density estimation in Eq. (29).

Recall that we have already constructed a more informative model, which is exactly
equivalent to a Gaussian scale model where one observes

Zi j = Sp( f )1/2
(

2π j

2p − 1

)
ξi j , with ξi j

i id∼ N (0, 1) ,

for | j | ≤ p − 1, and i = 1, 2, . . . n. For the above more informative model we will

give a lower bound of order (
np

log(np)
)
− 2β

1+2β , which of course is also a lower bound for
the original model. It is easy to see that

∥∥ fi − f j
∥∥2

∞ > c0

(
τεβ

n,p

)2 ≥ c

(
np

log (np)

)− 2β
1+2β

. (30)

In Sect. 7.4 we prove the following lemma.

Lemma 7 Let P f denote the joint distribution of (Zi j : i = 1, . . . , n, | j | ≤ p − 1)

indexed by function f . Then

2

k∗

k/2∑
i=1

K (P fi , P f0) ≤ a · log k∗, a ∈ (0, 1/8) . (31)

By the Fano’s lemma (cf. [25]), Eq. (30) and Lemma 7 immediately imply Eq. (29),
which then yields Theorem 5 together with Lemma 6.
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6.5 Proof of Theorem 6

The proof of Theorem 6 is similar to that of Theorem 5, except that we need to show
that the trigonometric coefficients of fi belongs to the parameter space Gβ(M), i.e.,

∣∣σm,i
∣∣ ≤ C (β) τm−β−1

uniformly for all i = 0, 1, . . . , k/2, where the constant C(β) only depends on β. Note
that

σm,i =
∫

(−π,π ]
τεβ

n,p

[
A

(
x − εn,p(i − 0.5)

εn,p

)
+ A

(
x + εn,p(i − 0.5)

εn,p

)]
cos (xm) dx .

Since the length of the support of A(u) is 1 and A(u) ≤ e−1, then there exists a set
Ii with measure εn,p such that

∣∣σm,i
∣∣ ≤

∫

Ii

τεβ
n,p · 2e−1dx = τεβ

n,p · 2e−1 · εn,p = 2τe−1εβ+1
n,p , (32)

which implies |σm,i | ≤ C(β)τm−β−1 for m ≤ k. For those m > k, since A is chosen
such that all derivatives are bounded and vanish at −1/2 and 1/2, we apply integration
by parts and immediately obtain |σm,i | ≤ C(β)τm−β−1.

6.6 Proof of Theorem 7

Since we have included the lower bound derivation in Sect. 4, here we only need to
show the upper bound. Note that

∥∥∥�̂∗ − �−1
∥∥∥2 =

∥∥∥�̃−1 − �−1
∥∥∥2 =

∥∥∥�̃−1(� − �̃)�−1
∥∥∥2

≤
∥∥∥�̃−1

∥∥∥2 ∥∥∥�̃ − �

∥∥∥2 ∥∥∥�−1
∥∥∥2

.

It follows from the assumption (17) that ‖�−1‖2 ≤ C for some C > 0, then we
have

E

∥∥∥�̂∗ − �−1
∥∥∥2 ≤ CE

∥∥∥�̃−1
∥∥∥2 ∥∥∥�̃ − �

∥∥∥2
.

Let R0 = E{‖�̃−1‖2‖�̃ − �‖2 · I {λmin(�̃) ≤ δ/2}} and write

E

∥∥∥�̃−1
∥∥∥2 ∥∥∥�̃ − �

∥∥∥2 = E

{∥∥∥�̃−1
∥∥∥2 ∥∥∥�̃ − �

∥∥∥2 · I {λmin(�̃) > δ/2}
}

+ R0

≤ C1E

∥∥∥�̃ − �

∥∥∥2 + R0
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where λmin(�̃) denotes the minimal eigenvalue of �̃. The risk upper bound is then
established by showing that

R0 = o

⎛
⎝
(

np

log (np)

)− 2β
2β+1

⎞
⎠ (33)

and

E

∥∥∥�̃ − �

∥∥∥2 ≤ C

(
np

log (np)

)− 2β
2β+1

. (34)

The following lemma is helpful to establish Eqs. (33) and (34). Its proof is very
similar to that of Lemma 2 and thus omitted.

Lemma 8 For any positive constant δ1, the tapering estimator �̂k∗ satisfies

sup
Rβ

P

(∥∥∥�̂k∗ − �

∥∥∥ > δ1

)
≤ CD(np)−D

for all D > 0.

It is easy to establish Eq. (34). Indeed,

E

∥∥∥�̃ − �

∥∥∥2 ≤ E

∥∥∥�̂∗ − �

∥∥∥2 +
(

P

(
λmin(�̂∗) ≤ 1

log (np)

))
‖I − �‖2

≤ E

∥∥∥�̂∗ − �

∥∥∥2 + CP

(∥∥∥�̂∗ − �

∥∥∥ > δ − 1

log (np)

)

≤ C

(
np

log (np)

)− 2β
2β+1 + o

⎛
⎝
(

np

log (np)

)− 2β
2β+1

⎞
⎠ ,

where the last inequality follows from Lemma 8.
To show Eq. (33), we apply the Cauchy–Schwarz inequality to R0 and have

R0 ≤
(

E

∥∥∥�̃−1
∥∥∥4 ∥∥∥�̃ − �

∥∥∥4
)1/2

·
(
P

({
λmin(�̃) ≤ δ/2

}))1/2

≤ (log (np))2
(

E

∥∥∥�̃ − �

∥∥∥4
)1/2

· (P(λmin(�̂∗) ≤ δ/2))1/2 (35)

where the second inequality follows from the definition of �̃ in (19). Since
λmin(�) > δ for p sufficiently large, we have

{
λmin(�̂∗) ≤ δ/2

}
⊂
{∥∥∥�̂∗ − �

∥∥∥ > δ/2
}
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then

P(λmin(�̂∗) ≤ δ/2) ≤ P

(∥∥∥�̂∗ − �

∥∥∥ > δ/2
)

which decays to 0 than any polynomial of np from Lemma 8. It is trivial to see

E

∥∥∥�̃ − �

∥∥∥4 ≤ E

∥∥∥�̃ − �

∥∥∥4

Frobenius
≤ Cp4

which, together with Lemma 8 and Eq. (35), proves the negligibility of R0 in Equation
(33), thus we complete the proof of Theorem 7.

7 Proofs of auxiliary lemmas

In this section we collect proofs for some auxiliary lemmas.

7.1 Proof of Lemma 1

Write

f̂ (l)
k (x) = 1

2π

∑
|m|≤p

wm,pC p(m)e−i xm,

where

C p(m) =
{

1
p

∑
s−t=m X(s)

l X(t)
l for |m| ≤ k − 1

0 otherwise

and

wm,p =

⎧⎪⎨
⎪⎩

p
p−|m| for |m| ≤ k/2

p
p−|m|

2(k−|m|)
k for k/2 < |m| ≤ k

0 otherwise

.

Define ‖W‖∞ = 1
2π

∑
|m|≤kwm,p and ‖W‖2 = 1

2π
(
∑

|m|≤kw
2
m,p)

1/2.
The key technical of the proof of Lemma 1 is Theorem 2.1 of [1], from which we

have

P
{
±( f̂ (l)

k (x) − E f̂ (l)
k (x))ap ≥ t

}
≤ exp

{
− t2

2
G

(
t

�

)}
(36)

for all x and t > 0, where ap =
√

p
2
√

π‖W‖2‖ f ‖∞ , � = 1
2π

‖W‖2
√

p
‖W‖∞ , and

G(t) =
{

1, t = 0
2t−2[t − log(1 + t)], t > 0

.
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The proof of Lemma 1 can be completed by studying ap, � and G as follows. Note
that for any f ∈ Fβ(M0, M) we have ‖ f ‖∞ ≤ M0, and for k ≤ p/2,

‖W‖∞ � k and ‖W‖2 � k1/2 (37)

then we have ap ≥ c
√

p
k for some c > 0. Consequently (36) implies that

P
{
±( f̂ (l)

k (x) − E f̂ (l)
k (x))

√
p

k
≥ t

}
≤ exp

{
− t2

c2 G

(
t

c�

)}
.

Equation (37) implies � �
√

p
k , then there exist some constants c1, c2 > 0 such

that

P

{
±
√

p

k

(
f̂ (l)
k (x) − E f̂ (l)

k (x)
)

≥ t

}
≤ exp

(
−c1t2

)
, for 0 ≤ t ≤ c2

√
p

k
.

(38)

For t ≥ 1 it is easy to see that tG( t
c�) > c0 > 0 for some c0 > 0. Therefore we

conclude that for t ≥ 1 there exists some constant c3 > 0 such that

P
{
±( f̂ (l)

k (x) − E f̂ (l)
k (x))

√
p

k
≥ t

}
≤ exp (−c3t)

Clearly, we could choose a large enough constant c4 to complete our proof, i.e., for
all t > 0

P
{√

p

k

∣∣∣ f̂ (l)
k (x) − E f̂ (l)

k (x)

∣∣∣ ≥ t

}
≤ c4 exp (−c3t) (39)

uniformly over x and the parameter space Fβ(M0, M).

7.2 Proof of Lemma 2

Set A to be the uniform grids on [−π, π ] with Card(A) = (np)5, and define

G =
{

sup
x∈A

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣ ≤ b

(
k

np
log (np)

) 1
2
}
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where b is a positive constant to be specified later. Write

sup
Fβ

E

∥∥∥E f̂k(x) − f̂k(x)

∥∥∥2

∞ ≤ sup
Fβ

Esup
x∈A

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣2

+ sup
Fβ

E sup
|x−y|≤2π(np)−5

∣∣∣ f̂k (x) − E f̂k(x) − f̂k (y) + E f̂k(y)

∣∣∣2

= R1 + R2 + R3 (40)

where

R1 = sup
Fβ

Esup
x∈A

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣2 {G}, R2 = sup
Fβ

Esup
x∈A

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣2 {Gc}

R3 = sup
Fβ

E sup
|x−y|≤π(np)−5

∣∣∣ f̂k (x) − E f̂k(x) − f̂k (y) + E f̂k(y)

∣∣∣2 .

Note that

R1 ≤ c
k

np
log(np). (41)

We will complete the proof of Lemma 2 by showing that

R2 = o

(
k

np
log (np)

)
, (42)

and R3 = o

(
k

np
log (np)

)
. (43)

We first establish Eq. (42). Equation (39) of Lemma 1 yields

E

{
exp

(√
p

k

(
f̂ (l)
k (x) − E f̂ (l)

k (x)
)

t

)}
≤ exp(c5t2) for |t | ≤ c6

which implies

P

{√
np

k

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣ ≥ t

}
≤ 2 exp

(
−c7t2

)
for t ≤ c8

√
n. (44)

where f̂k(x) = 1
n

∑n
l=1 f̂ (l)

k (x). See, for example, Chapter 3.4 of [18].
When log(np) = o(n), let b >

√
(D + 5)/c7 for any positive value D. Equation

(44) implies

P
{
Gc} ≤ 2(np)5 exp

(
−c7b2 log (np)

)
= o

(
(np)−D

)
.
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If log(p) ≥ c9n for some constant c9 > 0, then we have log(np) = o(
p
k ) by

noting k = (
np

log(np)
)1/(1+2β). Write Zl =

√
p
k ( f̂ (l)

k (x) − E f̂ (l)
k (x)) and its truncation

Z T
l = Zl{|Zl | ≤ b1

√
log(np)} for some large constant b1 and each l = 1, 2, . . . , n.

Note that Z T
l −EZl is subgaussian because of log(np) = o(

p
k ) and the tail probability

(38), then there is a constant c10 such that

P
{
Gc} ≤ (np)5

P

{√
np

k

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣ ≥ b
√

log(np)

}

≤ (np)5

[
P

{
1√
n

∣∣∣∣∣
n∑

l=1

Z T
l

∣∣∣∣∣ ≥ b
√

log(np)

}
+ nP

{
|Z1| ≥ b1

√
log(np)

}]

≤ (np)5
[
(np)−b2c10 + n (np)−b2

1c10
]

= o
(
(np)−D

)
.

The last step holds by setting the constants b>
√

(D+5)/c10 and b1 >
√

(D+5)/c10.
Therefore we conclude that P{Gc} = o((np)−D) for any positive value D.

Moreover,

E sup
x

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣4 =
(

1

2π

)4

E sup
x

∣∣∣∣∣σ̂0 − σ0 + 2
k∑

m=1

(
σ̂m − ωmσm

)
cos mx

∣∣∣∣∣
4

≤ cE

(
k∑

m=0

∣∣σ̂m − ωmσm
∣∣
)4

≤ ck3
E

k∑
m=0

(
σ̂m − ωmσm

)4

≤ ck3
E

k∑
m=0

(
1

p − m

∑
t−s=m

σ ∗
st − σm

)4

≤ ck3
k∑

m=0

(∑
t−s=m E

(
σ ∗

st − σm
)4

p − m

)

= O

(
k4

n2

)
.

where in the last step we used the normality assumption. The Cauchy–Schwarz inequal-
ity then implies

R2 ≤
[

E

(
sup
x∈A

∣∣∣ f̂k (x) − E f̂k(x)

∣∣∣
)4

P
{
Gc}

] 1
2

= O

((
k4

n2 (np)−D
)1/2

)
= o

(
k

np
log (np)

)

uniformly over the parameter space Fβ(M0, M) by letting D large.
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We now establish Eq. (43). Note that

R3 ≤ sup
Fβ

E sup
|x−y|≤2π(np)−5

2

(
k−1∑
m=1

|σ̂m − ωmσm | |cos mx − cos my|
)2

≤ 2k sup
Fβ

k−1∑
m=1

E sup
|x−y|≤2π(np)−5

|σ̂m − ωmσm |2 |cos mx − cos my|2 .

Since ωm ≤ 1 and | cos mx − cos my| ≤ m|x − y|, we have

R3 ≤ 8π2k

(np)10 sup
Fβ

k−1∑
m=1

m2
E

(
1

p − m

∑
t−s=m

σ ∗
st − σm

)2

≤ ck

(np)10 sup
Fβ

k−1∑
m=1

m2

[
1

p − m

∑
t−s=m

E
(
σ ∗

st − σm
)2

]

≤ c11k

(np)10 sup
Fβ

k−1∑
m=1

m2 1

p − m
· p

≤ c12k

(np)10 k4 = o

(
k

np
log (np)

)
.

Equations (40)–(43) all together complete the proof of Lemma 2.

7.3 Proof of Lemma 6

Since

sup
Fβ(M0,M)

E

∥∥∥�̂ − �

∥∥∥2 ≥ sup
Fsub

E

∥∥∥�̂ − �

∥∥∥2
,

it is enough to show that

inf
�̂

sup
Fsub

E

∥∥∥�̂ − �

∥∥∥2 ≥ cR (Fsub) (45)

to establish Lemma 6, where R(Fsub) = inf f̃ supFsub
E‖ f̃ − f ‖2∞.

The estimator �̂ in (45) can be arbitrary, but we show that it is enough to consider
estimators of the Toeplitz form in the parameter space Fsub as follows. For any esti-
mator �̂, we define �̂sub to be the closest matrix in Fsub to �̂ in terms of the spectral
norm. For � ∈ Fsub we have

2
∥∥∥�̂ − �

∥∥∥ ≥
∥∥∥�̂ − �

∥∥∥ +
∥∥∥�̂ − �̂sub

∥∥∥ ≥
∥∥∥�̂sub − �

∥∥∥
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which implies

∥∥∥�̂ − �

∥∥∥ ≥ 1

2

∥∥∥�̂sub − �

∥∥∥ . (46)

Thus a minimax lower bound for estimators of the Toeplitz form in Fsub provides
a lower bound among all possible estimators up to a constant factor 1/2, i.e.,

inf
�̂

sup
Fsub

E

∥∥∥�̂ − �

∥∥∥2 ≥ 1

2
inf

�̂sub∈Fsub

sup
Fsub

E

∥∥∥�̂sub − �

∥∥∥2
. (47)

To establish Eq. (45), it is then sufficient to show that

inf
�̂sub∈Fsub

sup
Fsub

E

∥∥∥�̂sub − �

∥∥∥2 ≥ π2 R (Fsub). (48)

for p sufficiently large.
A key tool to establish Eq. (48) is the following fact,

‖�‖ ≥ sup
x∈[−π,π ]

〈�vx , vx 〉
〈vx , vx 〉 = 2π sup

x∈[−π,π ]

∣∣Fp( f )(x)
∣∣ (49)

where vx = (eix , ei2x , . . . , eipx ) for any Toeplitz matrix � of size p × p, and

Fp( f )(x) = 1

2π

⎛
⎝σ0 + 2

p−1∑
m=1

(
1 − m

p

)
σm cos mx

⎞
⎠ .

Define

�Bk∗ = [σmωm]p×p

where

ωm =
⎧⎨
⎩

1 when m ≤ Bk∗/2
2 − 2m

Bk when Bk∗/2 < m ≤ Bk∗
0 Otherwise

i.e. �Bk is a tapering matrix of �, and

TBk( f )(x) = 1

2π

(
σ0 + 2

Bk∑
m=1

ωmσm cos mx

)
.
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By the triangle inequality and Eq. (49) we have

∥∥∥�̂sub − �

∥∥∥ ≥
∥∥∥�̂sub − �Bk

∥∥∥ − ‖�Bk − �‖
≥ 2π

∥∥∥Fp(TBk( f )) − Fp( f̂sub)

∥∥∥∞ − ‖�Bk − �‖
≥ 2π

[∥∥∥Fp( f̂sub) − f
∥∥∥∞ − ‖ f − TBk( f )‖∞ − ∥∥TBk( f ) − Fp(TBk( f ))

∥∥∞
]

−‖�Bk − �‖ ,

= 2π

∥∥∥Fp( f̂sub) − f
∥∥∥∞ − [

2π ‖ f − TBk( f )‖∞
+2π

∥∥TBk( f ) − Fp(TBk( f ))
∥∥∞ + ‖�Bk − �‖] , (50)

From Eq. (29) we have seen that

inf
f̃

sup
{ f0, f1,... fk/2}

(2π)2
E

∥∥∥Fp( f̃ ) − f
∥∥∥2

∞ ≥ 4π2 inf
f̃

sup
Fsub

E

∥∥∥ f̃ − f
∥∥∥2

∞

≥ c2

(
np

log (np)

)− 2β
1+2β

,

which will be helpful to show that 2π‖Fp( f̂sub) − f ‖∞ is the dominating term in
Eq. (50) as follows. From Eq. (21), we have

sup
Fsub

‖�Bk − �‖ ≤ C B−βk−β∗ = C B−β

(
np

log (np)

)− β
1+2β

(51)

2π sup
Fsub

‖ f − TBk( f )‖∞ ≤ 2πC B−βk−β∗
(

np

log (np)

)− β
1+2β

(52)

which can be made to be bounded by ε
√

R(Fsub) for any ε > 0 by setting the constant
B sufficiently large. The term ‖TBk( fi ) − Fp(TBk( fi ))‖∞ is negligible, since

2π
∥∥TBk( fi ) − Fp(TBk( fi ))

∥∥∞

≤ 2

∥∥∥∥∥
Bk∑

m=1

ωmσm,i
m

p
cos mx

∥∥∥∥∥
∞

≤ 4τe−1εβ+1
n,p

1

p

Bk∑
m=1

m = O

(
τ B2k2

p
εβ+1

n,p

)
= O

(
τ
√

R (Fsub)
)

(53)

where the second inequality is due to the bound |σm,i | ≤ 2τe−1ε
β+1
n,p in Eq. (32). This

value also can be made to be bounded by ε
√

R(Fsub) for any ε > 0 by setting the
constant τ sufficiently small after setting the constant B.

Equations (50)–(53) imply (48), which together with Eq. (47) yield the proof of
Lemma 6.
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7.4 Proof of Lemma 7

Note that f0 = M0/2 is a constant function, hence Sp( f0) = f0 for all p. Since

K (N (0, σ1) , N (0, σ0)) = 1

2

(
σ1

σ0
− 1 − log

σ1

σ0

)
,

we have

2

k

k/2∑
i=1

K (P fi , P f0) = n
2

k

k/2∑
i=1

∑
| j |≤p−1

1

2

(
Sp ( fi )

(
t j
)

f0
(
t j
) − 1 − log

Sp ( fi )
(
t j
)

f0
(
t j
)

)
,

(54)

where t j = 2π j
2p−1 . We will show that

(
Sp( fi )(t j )

f0(t j )
− 1

)
− log

Sp( fi )(t j )

f0(t j )
≤ 4

M2
0

(Sp( fi )(t j ) − f0(t j ))
2, for all i and j,

(55)

and

n

k

4

M2
0

k/2∑
i=1

∑
| j |≤p−1

(Sp( fi )(t j ) − f0(t j ))
2 ≤ Cτ 2 log (np), (56)

which are crucial to bound (54) and prove Lemma 7.
We first establish Eq. (55). Since Sp is a linear operator, we may write

Sp( fi )= f0+τεβ
n,p

[
Sp

[
A

(
x−εn,p(i −0.5)

εn,p

)]
+Sp

[
A

(
x−εn,p(i +0.5)

εn,p

)]]
.

Then

∥∥Sp( fi ) − f0
∥∥∞ ≤ 2τεβ

n,p

∥∥∥∥Sp

(
A

(
x

εn,p

))∥∥∥∥∞
→ 0.

Since a − log(1 + a) ≤ a2 when |a| ≤ 1/4, consequently we have

(
Sp( fi )(t j )

f0(t j )
− 1

)
− log

Sp( fi )(t j )

f0(t j )
≤
(

Sp( fi )(t j )

f0(t j )
− 1

)2

= 4

M2
0

(Sp( fi )(t j ) − f0(t j ))
2.
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Now we show Eq. (56). Recall that Sp( fi )(t j ) − f0(t j ) = ∑p−1
m=1 σm,i cos(t j m),

then we write

n

k

4

M2
0

k/2∑
i=1

∑
| j |≤p−1

(Sp( fi )(t j ) − f0(t j ))
2 ≤ n

k

4

M2
0

k/2∑
i=1

∑
| j |≤p−1

⎛
⎝

p−1∑
m=1

σm,i cos(t j m)

⎞
⎠

2

.

Since

2

2p − 1

2p−1∑
j=1

ϕm

(
2π j

2p − 1

)
ϕm′

(
2π j

2p − 1

)
= δmm′ , 1 ≤ m, m′ ≤ p − 1,

where ϕm(x) = cos(xm), the Parseval’s identity yields

2

k

k/2∑
i=1

K (P fi , P f0) ≤ n

k

4

M2
0

· 2p − 1

2

k/2∑
i=1

p−1∑
m=1

σ 2
m,i

= n

k

4

M2
0

· 2p − 1

2

k/2∑
i=1

∫

[−π,π ]

[
Sp( fi − f0)(x)

]2
dx

which is bounded by

n

k

4

M2

2p − 1

2

k/2∑
i=1

∫

[−π,π ]
( fi (x) − f0(x))2dx ≤ Cnpτ 2ε2β+1

n,p = Cτ 2 log (np).

Equations (54)–(56) together imply

2

k

k/2∑
i=1

K (P fi , P f0) ≤ Cτ 2 log (np),

which can be bounded by a·log k = a
1+2β

log(np)(1+o(1)) by choosing τ sufficiently
small. We then establish Lemma 7.

Acknowledgments We thank Zongming Ma for a helpful discussion which led to Proposition 1.

8 Appendix

We prove Lemmas 3 and 4 in this appendix.
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8.1 Proof of Lemma 3

To show for the banding estimator the bias part has lower bound k−2β(log k)2, we only
need to construct a special spectral density f ∈ Fβ(M0, M) for each fixed pair (k, p)

with k ≤ p/2 such that ‖E�̂B
k − �‖∞ ≥ ck−β(log k) for some positive constant c.

Here we only give a special spectral density for 0 < β < 1. The construction is similar
to an example in [28] (page 315, example 10). Define the function

Q(x, N , n) = 2 sin N x
n∑

t=1

sin(t x)

t

Clearly

Q = cos(N − n)x

n
+ cos(N − n − 1)x

n − 1
+ · · ·

+cos(N − 1)x

1
− cos(N + 1)x

1
− · · · − cos(N + n)x

n

is a purely cosine polynomial with terms of rank varying from N −n to N +n. On one
hand the polynomial Q is uniformly bounded in x, N , n, say ‖Q‖∞ ≤ A. On the other
hand, at x = 0 the sum of the first n terms of Q(x, N , n) is 1/n+· · ·+1/2+1 > log n.

For each pair (k, p) with k ≤ p/2, let us define

f (x) = 2A + 4−tβ Q(x, k, 4t ) (57)

with k ∈ [4t , 4t+1). Clearly, A ≤ f (x) ≤ 3A, therefore it is indeed a spectral density
since the Toeplitz matrix �p×p corresponding to f (x) is positive definite for any p.

It’s not hard to check that for each M0 and M, we may pick a constant C > 0 such
that C f (x) ∈ Fβ(M0, M) uniformly for all pairs (k, p) with k ≤ p/2. Now we show
that for this function the desired bias lower bound is of order k−2β(log k)2 as follows,

∥∥∥E�̂B
k − �

∥∥∥ ≥ sup
x∈[−π,π ]

∣∣∣∣∣2
p∑

m=k+1

(
1 − m

p

)
σm cos mx

∣∣∣∣∣

≥ 2C · 4−tβ ·
k+4t∑

m=k+1

(
1 − m

p

)
1

m − k

≥ C

4
4−tβ log k ≥ C

4
k−β log k.

For β ≥ 1 the desired special spectral density exists similarly. We omit the proof
for the limit of space.
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8.2 Proof of Lemma 4

We will modify the Woodroofe and Van Ness’s proof [26] a little to a stronger statement
of which our first claim here E‖�̂B

k − �‖2 ≥ c k log k
np is just a simple consequence.

Only a brief proof is given here. For more details, refer to [26]. According to (49), we
have that ‖�̂B

k − �‖ ≥ supλ∈[−π,π ]|σ̃0 − 1 + 2
∑k−1

m=1(1 − m
p )σ̃m cos mλ|. Here we

will prove a stronger result, as p → ∞

(
np

4k log k

)1/2

sup
λ∈[−π,π ]

∣∣∣∣∣σ̃0 − 1 + 2
k−1∑
m=1

(
1 − m

p

)
σ̃m cos mλ

∣∣∣∣∣ → 1 in probability.

Recall that σ̃m = 1
p−m

1
n

∑n
l=1

∑
s−t=m X (l)

s X (l)
t where X (l)

s are i.i.d. standard nor-
mal for all l = 1, . . . , n and s = 1, . . . , p. We could write

(np

k

)1/2
(

σ̃0 − 1 + 2
k−1∑
m=1

(
1 − m

p

)
σ̃m cos mλ

)
= Z p(λ) − rp(λ) + tp

where 0 ≤ λ ≤ π , and

Z p(λ) = p−1/2
p∑

t=1

Z p,t (λ) (58)

Z p,t (λ) = 2 (kn)−1/2
n∑

l=1

k−1∑
v=1

X (l)
t X (l)

t+v cos (vλ) (59)

= 2 (kn)−1/2
n∑

l=1

k−1∑
v=1

ωuni f (v/k)X (l)
t X (l)

t+v cos (vλ) (60)

with ωuni f (x) = 1{|x | < 1}, and

rp(λ) = 2(npk)−1/2
n∑

l=1

p∑
t=p−k+2

k−1∑
v=p−t+1

X (l)
t+v X (l)

t cos (vλ)

tp = (npk)−1/2
n∑

l=1

p∑
t=1

[
(X (l)

t )2 − 1
]
.
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In the proof of our second claim, we need to replace uniform kernel by another
kernel but the remaining part of the proof is similar. Since for p = 1, 2, . . .

E sup
λ

∣∣rp(λ)
∣∣ ≤ 2(npk)−1/2

k−1∑
v=1

E

∣∣∣∣∣∣
n∑

l=1

p∑
t=p−v+1

X (l)
t+v X (l)

t

∣∣∣∣∣∣

E

∣∣∣∣∣∣
n∑

l=1

p∑
t=p−v+1

X (l)
t+v X (l)

t

∣∣∣∣∣∣

2

≤ vn

and k = O(pκ) for some κ < 2
5 , we have supλ | − rp(λ) + tp| = op((log k)−1) as

p → ∞. Hence it suffices to consider the processes Z p(λ), 0 ≤ λ ≤ π defined by
(58) and (59). The random variables Z p,1(λ), Z p,2(λ), . . . , Z p,p(λ), 0 ≤ λ ≤ π, have
the desirable property of k-dependence, which we will now exploit. Define q = qp =
�k(log k)4� where �·� denotes the greatest integer function. We may write p = qd +r
where 0 ≤ r < q. Let us define for i = 1. . . . , d.

Up,i (λ) = q−1/2(Z p,(i−1)q+1(λ) + · · · + Z p,iq−k(λ))

Vp,i (λ) = k−1/2(Z p,iq−k+1(λ) + · · · + Z p,iq(λ))

Vp,0(λ) = Z p,dq+1(λ) + · · · + Z p,p(λ)

Up(λ) = d−1/2
d∑

i=1

Up,i (λ) and Vp(λ) = d−1/2
d∑

i=1

Vp,i (λ)

Then clearly

Z p(λ) = (qd/p)1/2
(

Up(λ) + (k/q)1/2Vp(λ)
)

+ p−1/2Vp,0(λ)

The proof of max0≤λ≤π |Vp,0(λ)| = o(p1/2(log k)−1) is similar to the proof for
supλ |rp(λ)| = op((log k)−1). Next we will truncate Up,i (λ) and Vp,i (λ) as follow

Up,i (λ)′ = Up,i (λ){|Up,i (λ)| ≤ p0.3}
Vp,i (λ)′ = Vp,i (λ){|Vp,i (λ)| ≤ p0.3}

Up,i (λ)′′ = (Up,i (λ)′ − EUp,i (λ)′)/V ar(Up,i (λ)′)1/2

Vp,i (λ)′′ = (Vp,i (λ)′ − EVp,i (λ)′)/V ar(Vp,i (λ)′)1/2

and let Up(λ)′, Up(λ)′′, Vp(λ)′, Vp(λ)′′ be d−1/2 times their respective sums. Note all
of them are sums of independent identically distributed random variables.

Before showing Vp(λ) is negligible, we need some lemmas. For the proof of these
lemmas, please refer to [26]. The first lemma is a standard result of trigonometric
polynomial and the last two are based on Lemmas (10) and (11), which are not hard
to prove.
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Lemma 9 Let p(λ) = ∑k
v=−k αv exp(ivλ) be a trigonometric polynomial. Define

λ j = π( j/rk), | j | ≤ rk. Then

max|λ|≤π
p(λ) ≤ max| j |≤rk

∣∣∣p(λ j )/(1 − 3πr−1)

∣∣∣

Lemma 10 The random variables Z p,1(λ), . . . , Z p,p(λ) have zero means and covari-
ance

Cov(Z p,1(λ1), Z p,1(λ2)) = (4/k)

k−1∑
v=1

(cos vλ2)(cos vλ1)

If t1 < t2 < t3 < t4 and 0 ≤ λi ≤ π, then

E(Z p,t1(λ1)Z p,t2(λ2)) = 0 = E

(
4∏

i=1

Z p,ti (λi )

)

Moreover, there exists a constant C for which

∣∣∣∣∣E
(

4∏
i=1

Z p,ti (λ1)

)∣∣∣∣∣ ≤ C if t1 = t2 and t3 = t4

≤ C(nk)−1 if t1 = t2 �= t3 �= t4

Lemma 11 Let h(p) = kλp and 0 ≤ λp < π. If h(p) → ∞ as p → ∞,

then (2/k)
∑k−1

v=0 cos vλp = O(h(p)−1) as p → ∞; if lim inf h(p) ≥ 1, then
lim(2/k)|∑k−1

v=0 cos vλp| < ‖ωuni f ‖2
2 = 2.

Lemma 12 Let σ 2
p(λ) = V ar(Z p,1(λ)), then σ 2

p(λ) is uniformly bounded and

σ 2
p(λ) → 2 as p → ∞

uniformly on [k−1 log k, π ]

Lemma 13 Let γp(λ1, λ2) be the correlation of Z p,1(λ1) and Z p,1(λ2), 0 ≤ λi ≤ π,

then

sup
|λ1−λ2|≥(log k)2k−1

∣∣γp(λ1, λ2)
∣∣ = O((log k)−2)

lim
p→∞ sup

|λ1−λ2|≥k−1

∣∣γp(λ1, λ2)
∣∣ < 1
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Based on Lemma (10), it is not hard to see E|Vp,i (λ)|4 ≤ C and E |Up,i (λ)|4 ≤
Cq(nk)−1. According to Lemma (9), the fact that Vp(λ) is negligible follows from

P(Vp(λp, j )
′ �= Vp(λp, j ), for some j) → 0 (61)

max
j

∣∣Vp(λp, j )
′ − Vp(λp, j )

′′∣∣ ≤ O(1) max
j

∣∣Vp(λp, j )
′∣∣ + o(1) (62)

max
j

∣∣Vp(λp, j )
′′∣∣ = op(log k) (63)

as p → ∞ where λp, j = π j/�k log k�, j = 0, . . . , �k log k�. Equation (61) follows
from E|Vp,i (λ)|4 ≤ C since

P(Vp(λp, j )
′ �= Vp(λp, j ), for some j) ≤

∑
i

∑
j

p−6/5
E
∣∣Vp,i (λp, j )

∣∣4 ≤ Cp−1/5.

Equation (62) can be shown to follow similarly. Since for ε > 0,

P

(
max

j

∣∣Vp(λp, j )
′′∣∣ ≥ ε log k

)
≤
∑

j

P(
∣∣Vp(λp, j )

′′∣∣ ≥ 2(2 log k)1/2)

when p is sufficiently large, Eq. (63) is then an easy consequence of the first part of
Lemma (14) below.

Lemma 14 Let �(·) denote the standard univariate normal distribution function
and ϕr (·, ·) to denote the standard bivariate normal density with correlation r . If
0 < z p → ∞ and z p = o(log k) as p → ∞, then as p → ∞

P(
∣∣Vp(λ)′′

∣∣ ≥ z p) ∼ 2(1 − �(z p)) as p → ∞ uniformly on [0, π ]

P(±Up(λ1)
′′ ≥ z p,±Up(λ2)

′′ ≥ z p) ∼
∞∫

z p

∞∫

z p

ϕrp(λ1,λ2)(±y1, ± y2)dy1dy2

× uniformly on Sp

P(±Up(λi )
′′ ≥ z p, i = 1, . . . , v) ∼ (1 − �(z p))

v uniformly on Sp,v

P(±Up(λi )
′′ ≥ z p, i = 1, . . . , v) ∼ (1 − �(z p))

v−2

∞∫

z p

∞∫

z p

ϕrp(λ1,λ2)

×(±y1, ± y2)dy1dy2 uniformly on S′
p,v

where Sp = {(λ1, λ2), 0 ≤ λi ≤ π and |λ1 − λ2| ≥ k−1}, Sp,v = {(λ1, . . . λv), 0 ≤
λi ≤ π and mini �= j |λi −λ j | ≥ k−1(log k)2} and S′

p,v = {(λ1, . . . λv), λ2 −λ1 ≥ k−1

and λi − λi−1 ≥ k−1(log k)2 i = 3, . . . , v}.
As a consequence, we have P(|Up(λ)′′| ≥ z p) ∼ 2(1 − �(z p)) as p → ∞ uni-

formly on [0, π ]. The result of Lemma (12) is also true for σ 2
p(λ)′ = V ar(Up,i (λ)′).i.e.

uniformly bounded and
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σ 2
p(λ)′ → 2 as p → ∞

uniformly on [k−1 log k, π ].
Please refer to [26] for full details. Basically Lemma (13) and the truncation are

used to prove this lemma.
Now it is enough to show

(
1

4 log k

)1/2

sup
λ∈[−π,π ]

Up(λ) → 1 in probability

To further simplify it, we note that P(Up(λp, j )
′ �= Up(λp, j ), for some j) → 0

by the same argument (61) above for Vp(λp, j ). By the fact E|Up,i (λ)|4 ≤ Cq(nk)−1

and Lemma (10) it is easy to see that

(Up(λ)′′σp(λ)′ − Up(λ)′) = d1/2 (EUp,i (λ)′
) = o(1)

According to Lemma (9), it is enough to show

lim P

(
max

j

∣∣Up(λp, j )
′′∣∣ σp(λp, j )

′
)

≥ (1 + ε)
√

2(2 log k)1/2 = 0, (64)

lim P

(
max

j

∣∣Up(λp, j )
′′∣∣ σp(λp, j )

′
)

≤ (1 − ε)
√

2(2 log k)1/2 = 0 (65)

To establish (64), let S be the set of integers j for which 1 ≤ j ≤ �k log k� and
λp, j ≥ k−1 log k. Then if ε = 2ε′ is given, we find from last two parts of Lemma (14)
that for p sufficiently large

(
max
j∈S

∣∣Up(λp, j )
′′∣∣ σp(λp, j )

′ ≥ (1 + ε)
√

2(2 log k)1/2
)

≤
∑
j∈S

P(
∣∣Up(λp, j )

′′∣∣ ≥ (1 + ε′)(2 log k)1/2)

≤ 4k log k(1 − �((1 + ε′)(2 log k)1/2)) = o(1)

and

P
(

max
j /∈S

∣∣Up(λp, j )
′′∣∣ σp(λp, j )

′ ≥ (1 + ε)
√

2(2 log k)1/2
)

≤
∑
j /∈S

P(
∣∣Up(λp, j )

′′∣∣ ≥ c(2 log k)1/2)

≤ 2(log k)2(1 − �(c(2 log k)1/2)) = o(1)

as p → ∞, where c2 > 0 is a lower bound for 2/σ 2
p(λ)′. This establishes (64). Equa-

tion (65) could be established using Lemma (14). Full details are given in the technical
report of [26]. Therefore we finish the first part of Lemma 4.
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To show the second claim, E‖�̂B
k − �‖2 ≥ c pκ log p

np for k ≥ pκ , first we set
k0 = pκ and note that

∥∥∥�̂B
k − �

∥∥∥≥
∥∥∥∥
(
�̂B

k − �
)

k0×k0

∥∥∥∥ ≥ sup
λ∈[−π,π ]

∣∣∣∣∣σ̃0 − 1+2
k0−1∑
m=1

(
1 − m

k0

)
σ̃m cos mλ

∣∣∣∣∣ ,

where (�̂B
k − �)k0×k0 is the upper k0 × k0 submatrix of �̂B

k − �. Note the subtle
difference between the right hand side of the inequality above and that in the (60) at
the beginning of this proof. This time we need to replace the uniform kernel in the
expression of Z p,t (λ) by another kernel. Z p,t (λ) can be written as

Z p,t (λ) = 2 (k0n)−1/2
n∑

l=1

k0−1∑
v=1

ωp(v/k0)X (l)
t X (l)

t+v cos (vλ)

where kernel ωp(x) = 1{|x | < 1} 1−|x |
1−|x |pκ−1 . The proof is pretty similar to that of the

first claim if we could prove the following fact corresponding to Lemma (11).

Lemma 15 Let h(p) = k0λp and 0 ≤ λp < π. If h(p) → ∞ as p → ∞, then

(2/k0)

k0−1∑
v=0

ωp(v/k0)
2 cos vλp = O(h(p)−1) as p → ∞

If lim h(p) ≥ 1, then

lim(2/k0)

∣∣∣∣∣
k−1∑
v=0

ωp(v/k0)
2 cos vλp

∣∣∣∣∣ <
∥∥ωtriangle

∥∥2
2 = 2/3

where ωtriangle(x) = 1{|x | < 1}(1 − |x |).
Once this is proved, there is no difficulty in showing the desired result, following

the steps in the above proof (refer to [26] for details)

(
np

2
∥∥ωtriangle

∥∥2
2 k0 log k0

)1/2

sup
λ∈[−π,π ]

∣∣∣∣∣σ̃0 − 1 + 2
k0−1∑
m=1

(
1 − m

k0

)
σ̃m cos mλ

∣∣∣∣∣ → 1

in probability. Finally note that E‖�̂B
k − �‖2 ≥ c k0 log k0

np is just a consequence of it.
The Lemma (15) cannot be shown directly using the method in [26] since the require-
ment of the kernel in that paper is not satisfied by our kernel, namely that its second
derivative at 0 does not exist. Hence we prove it in details. First of all notice that to
prove Lemma (15) we only need to show

(2/k0)

k0−1∑
v=0

ωtriangle(v/k0)
2 cos vλp = O(h(p)−1) as p → ∞ (66)
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and lim(2/k0)|∑k−1
v=0 ωtriangle(v/k0)

2 cos vλp| < ‖ωtriangle‖2
2 = 2/3 because it is

easy to see that

(2/k0)

k0−1∑
v=0

∣∣∣ωtriangle(v/k0)
2 − ωp(v/k0)

2
∣∣∣ = O(pκ−1) = o(h(p)−1)

noting the facts h(p) = k0λp = O(pκ) and κ < 2
5 . The proof of

lim(2/k0)

∣∣∣∣∣
k−1∑
v=0

ωtriangle(v/k0)
2 cos vλp

∣∣∣∣∣ <
∥∥ωtriangle

∥∥2
2 = 2/3

is straightforward (cf. [26], p. 1562) and here we only focus on the proof of the fact
(66). Let W (y) be the Fourier transform of the kernel ωtriangle(x). i.e.

W (y) = (2π)−1
∫

e−i xyωtriangle(x)dx = π−1 1 − cos x

x2 ≥ 0

Routine Fourier analysis yields

k−1
0

k0−1∑
v=0

ωtriangle(v/k0)
2 cos vλp =

π∫

−π

sin
[
(k0 − 1)(y + λp)

]

sin
[
2−1(y + λp)

] Wp(y)dy

where Wp(y) = ∑∞
m=−∞ W ∗ W (k0 y + 2mk0 y), ∗ denotes convolution in L1(R)

space. Notice Wp(y) is non-negative and λp ≤ π, we have

∫

2|y|≤λp

∣∣∣∣∣
sin

[
(k0 − 1)(y + λp)

]

sin
[
2−1(y + λp)

]
∣∣∣∣∣Wp(y)dy

≤ ∣∣sin
(
λp/4

)∣∣−1
π∫

−π

Wp(y)dy = 1∣∣sin
(
λp/4

)∣∣ k0

∞∫

−∞
W ∗ W (y)dy

= 2π∣∣sin
(
λp/4

)∣∣ k0
ω2

triangle(0) = O(h(p)−1)
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Notice that W ∗ W (y) = 2(λ−sin λ)

πλ3 , we have

∫

2|y|>λp

∣∣∣∣∣
sin

[
(k0 − 1)(y + λp)

]

sin
[
2−1(y + λp)

]
∣∣∣∣∣Wp(y)dy ≤ k0

∫

2|y|>h(p)/k0

Wp(y)dy

≤
∫

2|y|>h(p)

W ∗ W (y)dy

≤ C

∞∫

h(p)/2

y−2dy = O(h(p)−1)

The two inequalities above show the desired result and Lemma (15) is thus proved.
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