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Abstract For the canonical heat kernels pt (x, y) associated with Dirichlet forms
on post-critically finite self-similar fractals, e.g. the transition densities (heat ker-
nels) of Brownian motion on affine nested fractals, the non-existence of the limit
limt↓0 tds/2 pt (x, x) is established for a “generic” (in particular, almost every) point
x , where ds denotes the spectral dimension. Furthermore the same is proved for any
point x in the case of the d-dimensional standard Sierpinski gasket with d ≥ 2 and
the N -polygasket with N ≥ 3 odd, e.g. the pentagasket (N = 5) and the heptagasket
(N = 7).
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Dirichlet form · Heat kernel · Oscillation · Short time asymptotics

Mathematics Subject Classification Primary 28A80 · 60J35; Secondary 31C25 ·
58C40

1 Introduction

It is a general belief that the heat kernels on fractals should exhibit highly oscillatory
behavior as opposed to the classical case of Riemannian manifolds. For example, on
the Sierpinski gasket (Fig. 1), the canonical “Brownian motion” has been constructed
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52 N. Kajino

Fig. 1 Sierpinski gasket

by Goldstein [11] and Kusuoka [22], and Barlow and Perkins [3] have proved that
its transition density (heat kernel) pt (x, y) is jointly continuous and subject to the
following sub-Gaussian estimate
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(1.1)

for t ∈ (0, 1]; here c1, c2 ∈ (0,∞) are some constants, ds := 2 log5 3 and dw := log2 5
are called the spectral dimension and the walk dimension of the Sierpinski gasket,
respectively, and ρ is the shortest path metric in the gasket which is easily seen to
be equivalent to the Euclidean metric. In particular, for any point x of the Sierpinski
gasket we have

c1 ≤ tds/2 pt (x, x) ≤ c2, t ∈ (0, 1], (1.2)

and Barlow and Perkins have conjectured in [3, Problem 10.5] that the limit

lim
t↓0

tds/2 pt (x, x) (1.3)

does not exist, but this problem has been open since then. The main purpose of this
paper is to prove this conjecture, namely:

Theorem 1.1 Let the heat kernel pt (x, y) and ds = 2 log5 3 be as above. Then the
limit limt↓0 tds/2 pt (x, x) does not exist for any point x of the Sierpinski gasket.

We can consider the same problem for a class of finitely ramified self-similar frac-
tals, called affine nested fractals. (See Sect. 4 for their definition; typical examples of
affine nested fractals are shown in Fig. 2, and see Figs. 3, 4 and 5 below for further
examples). By the results of Fitzsimmons, Hambly and Kumagai [9], an affine nested
fractal K admits a canonical Brownian motion on it, and the associated (jointly con-
tinuous) transition density pt (x, y) satisfies the two-sided sub-Gaussian bound (1.1)
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On-diagonal oscillation of heat kernels on p.c.f. fractals 53

Fig. 2 Typical examples of affine nested fractals. From the left, two-dimensional level-3 Sierpinski gasket,
three-dimensional standard (level-2) Sierpinski gasket, pentagasket (5-polygasket) and snowflake. In each
fractal, the set V0 of its boundary points is marked by solid circles

with certain ds and dw and a suitably constructed geodesic metric ρ on K . In partic-
ular, the on-diagonal estimate (1.2) holds for any x ∈ K , and then it is natural to ask
whether the limit limt↓0 tds/2 pt (x, x) exists or not. We address this question in the
present article, and the following theorem summarizes our main results. Recall that
a self-similar measure on K is defined as the image of a Bernoulli measure on the
corresponding shift space through the canonical projection; see [18, Section 1.4]. See
Examples 5.1 and 5.3 for the precise definition of the d-dimensional level-l Sierpinski
gasket and the N -polygasket, respectively.

Theorem 1.2 Let V0 be the set of boundary points of our affine nested fractal K .

(1) Assume #V0 ≥ 3. Then the limit limt↓0 tds/2 pt (x, x) does not exist for any
x ∈ K \ S∗, where S∗ is a Borel subset of K satisfying ν(S∗) = 0 for any self-
similar measure ν on K . (S∗ is explicitly defined by (4.4) and (3.1) and satisfies
V0 ⊂ S∗.)

(2) The limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ V0 when K is either
– the d-dimensional level-l Sierpinski gasket with d ≥ 2, l ≥ 2, or
– the N-polygasket with N ≥ 3, N/4 
∈ N.

(3) The limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K when K is either
– the d-dimensional standard (i.e. level-2) Sierpinski gasket with d ≥ 2, or
– the N-polygasket with N ≥ 3 odd.

Remark 1.3 The above description contains some ambiguity in the choice of a “canon-
ical” Brownian motion on K since an affine nested fractal may admit more than one
self-similar diffusion compatible with its symmetry. For example, according to [9,
Section 2, especially Proposition 2.3], on the two-dimensional level-3 Sierpinski gas-
ket in Fig. 2 one can construct self-similar diffusions which are invariant under the
symmetries of the space and have two different resistance scaling factors, one for
cells containing a boundary point and the other for those containing the barycenter.
In fact, Theorem 1.2-(1) is true for any choice of a self-similar diffusion on K (to
be more precise, of a regular harmonic structure on K ) that is invariant under certain
symmetries of K , whereas Theorem 1.2-(2),(3) concern only the case where all cells
have the same resistance scaling factor. See Sects. 4 and 6 for details.

Under a slightly more general framework than in Theorem 1.2-(1), Barlow and
Kigami [2] have proved a similar oscillation in the asymptotic behavior of the
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54 N. Kajino

eigenvalues of the associated Laplacian. The heart of their argument is to construct
a pre-localized eigenfunction of the Laplacian (i.e. an eigenfunction of the Laplacian
which satisfies both Neumann and Dirichlet boundary conditions on V0), based only
on the symmetry of the fractal and the Laplacian. We prove Theorem 1.2-(1) by mod-
ifying their argument to construct a pre-localized eigenfunction which is non-zero at
a given specific point, and the construction is again based only on the symmetry.

Unfortunately, since V0 ⊂ S∗, Theorem 1.2-(1) tells us nothing about the non-
existence of the limit limt↓0 tds/2 pt (x, x) for x ∈ V0. Theorem 1.2-(2) asserts this
non-existence in the particular cases of the d-dimensional level-l Sierpinski gasket
and the N -polygasket, and its proof is based on a simple geometric argument which
makes full use of the specific cell structures of these fractals.

Note that S∗ is defined through another subset S of K given by (4.4), which is the
set of “points lying in some axis of symmetry of K ”. For the 2-dimensional standard
Sierpinski gasket and the N -polygasket with N odd, we have S ⊂ V∗, by virtue of
which Theorem 1.2-(3) follows from Theorem 1.2-(1),(2). A similar argument applies
also to the case of the d-dimensional standard Sierpinski gasket with d ≥ 3 although
S 
⊂ V∗ in this case (see Theorem 5.2). It is quite likely that Theorem 1.2-(3) can be
generalized to other affine nested fractals, but they are beyond the reach of our method.

Similar oscillatory phenomena have been proved in [12,21,24] for the simple ran-
dom walks on self-similar graphs by using the method of “singularity analysis”, and
their results can be considered as giving sufficient conditions for the non-existence of
the limit limt↓0 tds/2 pt (x, x) for x ∈ V0, in view of the local limit theorem [6, Theo-
rem 31]. Their sufficient conditions, however, require some concrete calculations of
certain rational functions associated with the simple random walk and seem difficult
to verify for a general d-dimensional level-l Sierpinski gasket. Also their results do
not apply to fractals with “less symmetric boundary” such as the N -polygasket with
N 
= 3, 6, 9. An important point of Theorem 1.2-(2) is that it has successfully treated
all Sierpinski gaskets and polygaskets in a unified way without depending on concrete
calculations.

In fact, we can conclude the non-existence of the limit limt↓0 tds/2 pt (x, x) for any
point x of the fractal if the eigenvalues of the Laplacian possess a certain property, as
treated in a forthcoming paper [17]. This result in particular applies to the two-dimen-
sional level-3 Sierpinski gasket and the hexagasket (6-polygasket, see Fig. 5), which
are beyond the scope of Theorem 1.2-(3). The property of the eigenvalues required
there, however, again seems difficult to verify for a general d-dimensional level-l Sier-
pinski gasket since some concrete calculation is necessary. Moreover, the property can
be verified only by the method of spectral decimation, which does not work for the
N -polygasket, N 
= 3, 6, 9. In this sense, the method of this paper is the only way
established so far to obtain Theorem 1.2-(2),(3) for the N -polygasket, N 
= 3, 6, 9.

This paper is organized as follows. In Sect. 2, we introduce our framework, recall
basic facts about the heat kernel pt (x, y) and present our key criterion for the non-
existence of the limit limt↓0 tds/2 pt (x, x). Following the framework of Barlow and
Kigami [2], in Sect. 3 we state and prove Theorem 3.4 which generalizes Theorem 1.2-
(1), and then we verify in Sect. 4 that Theorem 3.4 actually applies to the case of affine
nested fractals to imply Theorem 1.2-(1). We recall the definition of the d-dimen-
sional level-l Sierpinski gasket and the N -polygasket in Sect. 5, and Sect. 6 is devoted
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On-diagonal oscillation of heat kernels on p.c.f. fractals 55

to the proof of Theorem 1.2-(2),(3). In fact, in Sect. 6 we establish the assertions of
Theorem 1.2-(2),(3) also for the (N , l)-polygasket, which is a post-critically finite
self-similar fractal introduced in [5] as a generalization of the N -polygasket.

Notation In this paper, we adopt the following notation and conventions.

(1) N = {1, 2, 3, . . .}, i.e. 0 
∈ N.
(2) The cardinality (the number of elements) of a set A is denoted by #A.
(3) We set sup ∅ := 0, inf ∅ := ∞ and 00 := 1. All functions in this paper are

assumed to be R-valued.
(4) For d ∈ N, R

d is always equipped with the Euclidean norm | · |, and O(d)
denotes the d-dimensional real orthogonal group. For g ∈ O(d), det g denotes
its determinant.

(5) Let E be a topological space. The Borel σ -field of E is denoted by B(E). We
set C(E) := {u | u : E → R, u is continuous} and ‖u‖∞ := supx∈E |u(x)|,
u ∈ C(E). For A ⊂ E , its interior in the topology of E is denoted by intE A. If
ρ is a metric on E , we set distρ(x, A) := inf y∈A ρ(x, y) for x ∈ E and A ⊂ E .

2 Preliminaries

In this section, we first introduce our framework of a self-similar set and a Dirichlet
form on it, and then present preliminary facts.

Let us start with the standard notions concerning self-similar sets. We refer to [18,
Chapter 1] for details. Throughout this paper, we fix a compact metrizable topological
space K , a finite set S with #S ≥ 2 and a continuous injective map Fi : K → K for
each i ∈ S. We set L := (K , S, {Fi }i∈S). Also we arbitrarily take a metric ρ on K
compatible with the topology of K and fix it throughout this paper.

Definition 2.1 (1) Let W0 := {∅}, where ∅ is an element called the empty word,
let Wm := Sm = {w1 · · ·wm | wi ∈ S for i ∈ {1, . . . ,m}} for m ∈ N and let
W∗ := ⋃

m∈N∪{0} Wm .

(2) We set � := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, which is always
equipped with the product topology, and define the shift map σ : � → �

by σ(ω1ω2ω3 · · · ) := ω2ω3ω4 · · ·. For i ∈ S we define σi : � → � by
σi (ω1ω2ω3 · · · ) := iω1ω2ω3 · · · and set i∞ := i i i . . . ∈ �. Furthermore for
ω = ω1ω2ω3 . . . ∈ � and m ∈ N ∪ {0}, we write [ω]m := ω1 · · ·ωm ∈ Wm .

(3) For w = w1 · · ·wm ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwm (F∅ := idK ), Kw :=
Fw(K ), σw := σw1 ◦ · · · ◦ σwm (σ∅ := id�) and �w := σw(�).

Definition 2.2 L is called a self-similar structure if and only if there exists a contin-
uous surjective map π : � → K such that Fi ◦ π = π ◦ σi for any i ∈ S. Note that
such π , if exists, is unique and satisfies {π(ω)} = ⋂

m∈N
K[ω]m for any ω ∈ �.

In what follows we always assume that L is a self-similar structure.

Definition 2.3 (1) We define the critical set C and the post-critical set P of L by

C := π−1
(⋃

i, j∈S, i 
= j Ki ∩ K j
)

and P := ⋃
m∈N

σm(C). (2.1)
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56 N. Kajino

L is called post-critically finite, or p.c.f. for short, if and only if P is a finite set.
(2) We set V0 := π(P), Vm := ⋃

w∈Wm
Fw(V0) for m ∈ N and V∗ := ⋃

m∈N
Vm .

V0 should be considered as the “boundary” of the self-similar set K ; recall that
Kw∩Kv = Fw(V0)∩Fv(V0) for anyw, v ∈ W∗ with�w∩�v = ∅ by [18, Proposition
1.3.5-(2)]. Note that Vm−1 ⊂ Vm for any m ∈ N by [18, Lemma 1.3.11].

From now on our self-similar structure L = (K , S, {Fi }i∈S) is always assumed to
be post-critically finite with K connected, so that #V0 ≥ 2 and V∗ is dense in K .

Next we briefly describe the construction of a Dirichlet form on K ; see [18, Chapter
3] for details. Let D = (Dpq)p,q∈V0 be a real symmetric matrix of size #V0 (which
we also regard as a linear operator on R

V0 ) such that

(D1) {u ∈ R
V0 | Du = 0} = R1V0 ,

(D2) Dpq ≥ 0 for any p, q ∈ V0 with p 
= q.

We define E (0)(u, v) := −∑
p,q∈V0

Dpqu(q)v(p) for u, v ∈ R
V0 , so that (E (0),RV0)

is a Dirichlet form on L2(V0, #). Furthermore let r = (ri )i∈S ∈ (0,∞)S and define

E (m)(u, v) :=
∑
w∈Wm

1

rw
E (0)(u ◦ Fw|V0 , v ◦ Fw|V0), u, v ∈ R

Vm (2.2)

for each m ∈ N, where rw := rw1rw2 · · · rwm for w = w1w2 · · ·wm ∈ Wm (r∅ := 1).

Definition 2.4 The pair (D, r) with D and r as above is called a harmonic structure
on L if and only if E (0)(u, u) = infv∈RV1 , v|V0 =u E (1)(v, v) for any u ∈ R

V0 ; note

that then E (m)(u, u) = min
v∈R

Vm+1 , v|Vm =u E (m+1)(v, v) for any m ∈ N ∪ {0} and any

u ∈ R
Vm . If r ∈ (0, 1)S in addition, then (D, r) is called regular.

In the rest of this paper, we assume that (D, r) is a regular harmonic structure on L.
Let dH ∈ (0,∞) be such that

∑
i∈S rdH

i = 1, and let μ be the self-similar measure on

K with weight (rdH
i )i∈S , i.e. the unique Borel measure on K such that μ(Kw) = rdH

w

for any w ∈ W∗. We set ds := 2dH/(dH + 1), which is called the spectral dimension.
In this case, {E (m)(u|Vm , u|Vm )}m∈N∪{0} is non-decreasing and hence has the limit in
[0,∞] for any u ∈ C(K ). Then we define

F := {u ∈ C(K )
∣∣∣limm→∞ E (m)(u|Vm , u|Vm ) < ∞},

E(u, v) := limm→∞ E (m)(u|Vm , v|Vm ) ∈ R, u, v ∈ F , (2.3)

so that (E,F) possesses the following self-similarity: for any u, v ∈ F ,

u ◦ Fi ∈ F for any i ∈ S and E(u, v) =
∑
i∈S

1

ri
E(u ◦ Fi , v ◦ Fi ). (2.4)

By [18, Theorem 3.3.4], (E,F) is a resistance form on K whose resistance met-
ric R : K × K → [0,∞) is compatible with the original topology of K , and then
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[20, Corollary 6.4 and Theorems 9.4], (2.4) and E(1, 1) = 0 together imply that (E,F)
is a strong local regular Dirichlet form on L2(K , μ). See [18, Definition 2.3.1] or [20,
Definition 3.1] for the definition of resistance forms and their resistance metrics, and
see [10, Section 1.1] for the definition of regular Dirichlet forms and their strong
locality. Furthermore by [20, Theorem 10.4] (or by [18, Section 5.1]), the Markovian
semigroup {Tt }t∈(0,∞) on L2(K , μ) associated with (E,F) admits a unique continu-
ous function p = pt (x, y) : (0,∞) × K × K → [0,∞), called the heat kernel of
(K , μ, E,F), such that for each f ∈ L2(K , μ) and t ∈ (0,∞),

Tt f =
∫
K

pt (·, y) f (y)dμ(y) μ-a.e. (2.5)

Also by [18, Corollary 5.3.2] (or by [20, Theorem 15.10]; see the proof of Lemma 2.5
below), there exist c1, c2 ∈ (0,∞) such that for any x ∈ K ,

c1 ≤ tds/2 pt (x, x) ≤ c2, t ∈ (0, 1], (2.6)

where ds = 2dH/(dH + 1) is the spectral dimension defined above.
Now we prepare several preliminary lemmas. The following lemma is standard.

Lemma 2.5 There exist c3, c4, c5 ∈ (0,∞) such that for any (t, x, y) ∈ (0, 1]× K ×
K ,

|pt (x, x)− pt (y, y)| ≤ c3 R(x, y)1/2t−(ds+2)/4, (2.7)

pt (x, y) ≤ c4t−ds/2 exp

(
−c5

( R(x, y)dH +1

t

)1/dH
)
. (2.8)

Proof (2.7) is immediate from [20, (3.1) and Lemma 10.8-(2)] and (2.6) (or from
[16, Lemma 5.2]). We easily see from [18, Lemmas 3.3.5 and 4.2.3] and (2.4)
(see also [18, Lemma 4.2.4]) that c6sdH ≤ μ(Bs(x, R)) ≤ c7sdH for any (s, x) ∈
(0, diamR K ] × K for some c6, c7 ∈ (0,∞), where diamR K := supx,y∈K R(x, y)
and Bs(x, R) := {y ∈ K | R(x, y) < s}. Therefore an application of [20, Theorem
15.10] yields (2.8). ��
Remark 2.6 The power 1/dH in the exponential in the right-hand side of (2.8) is not
best possible in general. Under the same framework, Hambly and Kumagai [16] have
obtained a sharp two-sided estimate of pt (x, y).

Lemma 2.7 Let U be a non-empty open subset of K and set μ|U := μ|B(U ),
FU := {u ∈ F | u|K\U = 0} and EU := E |FU ×FU . Then (EU ,FU ) is a
strong local regular Dirichlet form on L2(U, μ|U )whose associated Markovian semi-
group {T U

t }t∈(0,∞) admits a unique continuous integral kernel pU = pU
t (x, y) :

(0,∞) × U × U → [0,∞), called the Dirichlet heat kernel onU, similarly to (2.5).
Moreover, pU is extended to a continuous function on (0,∞) × K × K by set-
ting pU := 0 on (0,∞) × (K × K \ U × U ), and pU

t (x, y) ≤ pt (x, y) for any
(t, x, y) ∈ (0,∞)× K × K .
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58 N. Kajino

Proof This is immediate from [20, Theorem 10.4]. ��
Lemma 2.8 Let U be a non-empty open subset of K . Then for any (t, x, y) ∈ (0,∞)×
U × U,

pt (x, y)− pU
t (x, y) ≤ sup

s∈[t/2, t]
sup

z∈U\U

ps(x, z)+ sup
s∈[t/2, t]

sup
z∈U\U

ps(z, y). (2.9)

Proof This is immediate from [14, Theorem 5.1] (or [13, Theorem 10.4]) and the
continuity of the heat kernels pt (x, y) and pU

t (x, y). ��
Finally we relate the non-existence of the limit limt↓0 tds/2 pt (x, x) to properties of

eigenvalues and eigenfunctions of the Laplacian. Let� be the non-positive self-adjoint
operator (“Laplacian”) associated with the Dirichlet form (E,F) on L2(K , μ) and
let D[�] be its domain. Recall that D[�] ⊂ F and that for u ∈ F and f ∈ L2(K , μ),

u ∈ D[�] and −�u = f if and only if E(u, v) =
∫
K

f vdμ for any v ∈ F .

(2.10)

Let {ϕn}n∈N be a complete orthonormal system of L2(K , μ) such that for each n ∈ N,
ϕn is an eigenfunction of�, i.e. ϕn ∈ D[�] and −�ϕn = λnϕn for some λn ∈ R. Such
{ϕn}n∈N exists since � has compact resolvent by [20, Lemma 9.7], and then neces-
sarily {λn}n∈N ⊂ [0,∞) and limn→∞ λn = ∞. Therefore without loss of generality
we assume that {λn}n∈N is non-decreasing, and note that λ1 = 0 < λ2.

Lemma 2.9 Let x ∈ K . Then the limit limt↓0 tds/2 pt (x, x) exists if and only if so does
the limit

lim
λ→∞

∑
n∈N, λn≤λ ϕn(x)2

λds/2
. (2.11)

Proof [20, Proof of Lemma 10.7] tells us that

pt (x, y) =
∑
n∈N

e−λn tϕn(x)ϕn(y), (t, x, y) ∈ (0,∞)× K × K , (2.12)

where the series is uniformly absolutely convergent on [T,∞) × K × K for any
T ∈ (0,∞). Let x ∈ K and set Nx (λ) := ∑

n∈N, λn≤λ ϕn(x)2 for λ ∈ R. Then
pt (x, x) = ∫

[0,∞)
e−λt dNx (λ) for any t ∈ (0,∞) by (2.12), and the assertion fol-

lows by Karamata’s Tauberian theorem [8, p. 445, Theorem 2]; note that (2.6) and
[7, Theorem 1] yield 0 < infλ∈[1,∞) λ

−ds/2Nx (λ) ≤ supλ∈[1,∞) λ
−ds/2Nx (λ) < ∞.

��
Lemma 2.10 The limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K satisfying

lim sup
n→∞

ϕn(x)2

λ
ds/2
n

> 0. (2.13)
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On-diagonal oscillation of heat kernels on p.c.f. fractals 59

Proof Let x ∈ K satisfy (2.13), and for λ ∈ R let Nx (λ) be as in the previous proof.
Then since

lim sup
n→∞

Nx (λn)− Nx (λn − 1)

λ
ds/2
n

≥ lim sup
n→∞

ϕn(x)2

λ
ds/2
n

> 0,

the limit (2.11) cannot exist and hence neither does the limit limt↓0 tds/2 pt (x, x) by
Lemma 2.9. ��

Lemma 2.10 will play fundamental roles in the proofs of our main results below.

3 Symmetry group and oscillation at “generic” points

Throughout this section and the next, we follow the framework described in the previ-
ous section. Namely, L = (K , S, {Fi }i∈S) is a post-critically finite self-similar struc-
ture with K connected and #S ≥ 2, (D, r = (ri )i∈S) is a regular harmonic structure
on L, and μ is the self-similar measure on K with weight (rdH

i )i∈S . Also, (E,F) is
the resistance form on K associated with (D, r) as in (2.3), R : K × K → [0,∞) is
the resistance metric of (E,F), and p = pt (x, y) : (0,∞)× K × K → [0,∞) is the
heat kernel of (K , μ, E,F).

In this section, we establish the non-existence of the limit limt↓0 tds/2 pt (x, x) for a
“generic” point x ∈ K under the assumption of a certain symmetry of (K , μ, E,F),
following closely the arguments in [18, Section 4.4] and [2, Sections 5 and 6].

Let us start with the following definition. Note thatπ(A) ∈ B(K ) for any A ∈ B(�).
Definition 3.1 For each Z ⊂ K , we define Z∗ ∈ B(K ) by

Z∗ := {x ∈ K | limm→∞ distρ(π(σ
m(ω)), Z) = 0 for any ω ∈ π−1(x)}, (3.1)

which is independent of a particular choice of the metric ρ on K .

Then we have the following easy proposition. Note that any Borel measure on
K vanishing on V∗ is of the form ν ◦ π−1 with ν a Borel measure on �, since
π |�\π−1(V∗) : � \ π−1(V∗) → K \ V∗ is a continuous bijective map with Borel
measurable inverse. Recall that a Borel measure ν on � is called σ -ergodic if and
only if ν ◦ σ−1 = ν and ν(A)ν(� \ A) = 0 for any A ∈ B(�) with σ−1(A) = A.

Proposition 3.2 Let Z be a closed subset of K . If ν is a σ -ergodic finite Borel measure
on � and satisfies ν ◦ π−1(K \ Z) > 0, then ν ◦ π−1(Z∗) = 0.

Proof Since Z is closed and ν ◦ π−1(K \ Z) > 0, we can choose ε ∈ (0,∞) so that
ν ◦ π−1({x ∈ K | distρ(x, Z) ≥ ε}) > 0. Define A ∈ B(�) by

A := ⋂
n∈N

⋃
m≥n σ

−m
(
π−1

({x ∈ K | distρ(x, Z) ≥ ε})).
Then σ−1(A) = A and π−1(Z∗) ⊂ � \ A. By virtue of ν ◦ σ−1 = ν, a version
[4, Proposition II.5.14] of the Borel–Cantelli lemma yields ν(A) > 0 and hence we
have ν ◦ π−1(Z∗) ≤ ν(� \ A) = 0 by the σ -ergodicity of ν. ��
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The following definition is fundamental for the arguments of this section.

Definition 3.3 (1) We define the symmetry group G of (L, (D, r), μ) by

G :=
{

g

∣∣∣∣ g is a homeomorphism from K to itself, g(V0) = V0, μ ◦ g = μ,

u ◦ g, u ◦ g−1 ∈ F and E(u ◦ g, u ◦ g) = E(u, u) for any u ∈ F
}
,

(3.2)

which clearly forms a subgroup of the group of homeomorphisms of K .
(2) For a finite subgroup G of G and h ∈ G, we define S(G, h) and S∗(G, h) by

S(G, h) :=
⋃
g∈G

{x ∈ K | h−1g(x) = x}, S∗(G, h) := (S(G, h) ∪ V0)∗.

(3.3)

(3) For g ∈ G and u : K → R, we define Tgu := u ◦ g−1, so that Tg defines a linear
surjective isometry Tg : L2(K , μ) → L2(K , μ) by virtue of μ ◦ g = μ.

In the situation of Definition 3.3-(2), S(G, h) is closed in K , V∗ ⊂ S∗(G, h) since
σm(π−1(Vm)) = P for m ∈ N ∪ {0} by [18, Proposition 1.3.5-(1)], and Proposi-
tion 3.2 says that S∗(G, h) may be considered as “measure-theoretically small” if
S(G, h) 
= K . Keeping this observation in mind, now we state the main theorem of
this section.

Theorem 3.4 Suppose that a finite subgroup G of G and h ∈ G \ G satisfy S(G, h) 
=
K and h−1(q) ∈ {g(q) | g ∈ G} for any q ∈ V0. Then the limit limt↓0 tds/2 pt (x, x)
does not exist for any x ∈ K \ S∗(G, h). If in addition the limit limt↓0 tds/2 pt (x, x)
does not exist for any x ∈ S(G, h) \ V0, then neither does it for any x ∈ K \ V∗.

In view of V∗ ⊂ S∗(G, h), Theorem 3.4 tells us nothing about the non-existence
of the limit limt↓0 tds/2 pt (x, x) for x ∈ V∗, which we will establish in Sect. 6 below
in the case of certain examples such as Sierpinski gaskets and polygaskets.

The rest of this section is devoted to the proof of Theorem 3.4. The essential part
is the proof of the following two lemmas.

Lemma 3.5 Suppose that a finite subgroup G of G and h ∈ G\G satisfy S(G, h) 
= K
and h−1(q) ∈ {g(q) | g ∈ G} for any q ∈ V0. Then for each x ∈ K \ (S(G, h)∪ V0),
there exists an eigenfunction ϕx of � such that ϕx |V0 = 0 and ϕx (x) 
= 0.

Proof We follow [18, Proof of Theorem 4.4.4]. We define RG, RG,h, R∗
G,h by

RG := (#G)−1 ∑
g∈G Tg, RG,h := RG Th−1 − RG, R∗

G,h := Th RG − RG ,

(3.4)

so that
∫

K (RG,hu)vdμ = ∫
K u R∗

G,hvdμ for u, v ∈ L2(K , μ), and RG,hu, R∗
G,hv ∈ F

and E(RG,hu, v) = E(u, R∗
G,hv) for any u, v ∈ F . Moreover for u ∈ C(K ) and
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q ∈ V0, h−1(q) = g−1(q) for some g ∈ G and hence R∗
G,hu(q) = RGu(g−1(q)) −

RGu(q) = 0, from which it follows that R∗
G,h(F) ⊂ FK\V0 .

Let x ∈ K \(S(G, h)∪V0). Since V0 ∪{g(x) | g ∈ G} is finite and does not contain
h(x), we can choose u ∈ FK\V0 so that u ≥ 0, u(h(x)) = 1 and u(g(x)) = 0 for g ∈
G. Then (#G)RG,hu(x) = ∑

g∈G

(
u(hg(x))− u(g(x))

) ≥ u(h(x)) = 1. Let {ϕ0
n}n∈N

be a complete orthonormal system of L2(K , μ) consisting of eigenfunctions of the
non-positive self-adjoint operator on L2(K , μ|K\V0) associated with (E K\V0 ,FK\V0);
such {ϕ0

n}n∈N exists by [20, Lemma 9.7]. Then letting un := ∑n
k=1

(∫
K uϕ0

k dμ
)
ϕ0

k for
n ∈ N, we see from [20, (3.1)] that ‖u − un‖2∞ ≤ (diamR K )E(u − un, u − un) → 0
as n → ∞. Thus limn→∞ RG,hun(x) = RG,hu(x) ≥ (#G)−1, and it follows that
RG,hϕ

0
j (x) 
= 0 for some j ∈ N. Now by using R∗

G,h(F) ⊂ FK\V0 and (2.10) for

(E K\V0 ,FK\V0) we can easily verify that ϕx := RG,hϕ
0
j ∈ FK\V0 is an eigenfunction

of � with ϕx (x) 
= 0. ��
Lemma 3.6 Let ω ∈ � and y ∈ K \ V0. If lim infm→∞ ρ(π(σm(ω)), y) = 0 and
the limit limt↓0 tds/2 pt (y, y) does not exist, then the limit limt↓0 tds/2 pt (π(ω), π(ω))

does not exist, either.

Proof Set x := π(ω). By the assumption we have limk→∞ R(π(σmk (ω)), y) = 0 for
some strictly increasing sequence {mk}k∈N ⊂ N. Let k ∈ N be large enough so that
R(π(σmk (ω)), y) ≤ distR(y, V0)/2 =: Dy , and set wk := [ω]mk , xk := F−1

wk
(x) =

π(σmk (ω)), τk := r−(dH +1)
wk and K I

k := Kwk \ Fwk (V0). Then K I
k is open in K since

K \ K I
k = Fwk (V0)∪⋃

w∈Wmk \{wk } Kw. By [19, Theorem A.1] there exists c8 ∈ (0, 1]
such that R(Fw(x1), Fw(x2)) ≥ c8rwR(x1, x2) for any w ∈ W∗ and x1, x2 ∈ K , and
therefore

R(x, Fwk (q)) ≥ c8rwk R
(
xk, q

) ≥ c8 Dyrwk , q ∈ V0. (3.5)

Let t ∈ (0, τ−1
k ]. Then Lemmas 2.5, 2.7, 2.8 and (3.5) together yield

0 ≤ pt (x, x)− p
K I

k
t (x, x) ≤ 4c4t−ds/2 exp

(−cy(τk t)−1/dH
)
, (3.6)

0 ≤ pτk t (xk, xk)− pK\V0
τk t (xk, xk) ≤ 4c4(τk t)−ds/2 exp

(−cy(τk t)−1/dH
)
, (3.7)∣∣pτk t (xk, xk)− pτk t (y, y)

∣∣ ≤ c3 R(xk, y)1/2(τk t)−(ds+2)/4, (3.8)

where cy := c5(c8 Dy)
1+1/dH . Since tds/2 p

K I
k

t (x, x) = (τk t)ds/2 pK\V0
τk t (xk, xk) by

(2.3) and (2.4), it follows from (3.6), (3.7) and (3.8) that for any t ∈ (0, τ−1
k ],

∣∣tds/2 pt (x, x)− (τk t)ds/2 pτk t (y, y)
∣∣ ≤ 4c4 exp

(−cy(τk t)−1/dH
)

+c3 R(xk, y)1/2(τk t)(ds−2)/4. (3.9)

Set Ay := lim supt↓0 tds/2 pt (y, y)− lim inf t↓0 tds/2 pt (y, y) ∈ (0,∞) and choose

ty ∈ (0, 1] so that 4c4 exp
(−cyt−1/dH

y
) ≤ Ay/6. The definition of Ay tells us that
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tds/2
1 pt1(y, y)− tds/2

2 pt2(y, y) ≥ Ay/2 for some t1, t2 ∈ (0, ty]. Setting t = t1/τk and
t = t2/τk in (3.9), from limk→∞ R(xk, y) = 0 we easily see that

lim inf
k→∞

(
(t1/τk)

ds/2 pt1/τk (x, x)− (t2/τk)
ds/2 pt2/τk (x, x)

)
≥ Ay/6 > 0,

in view of which the limit limt↓0 tds/2 pt (x, x) cannot exist since τ−1
k = rdH +1

wk → 0
as k → ∞ by r ∈ (0, 1)S . ��

We also need the following easy lemma.

Lemma 3.7 (V0)∗ = V∗. (Here (V0)∗ is of course given by (3.1) with Z = V0).

Proof We have V∗ ⊂ (V0)∗ since σm(π−1(Vm)) = P for any m ∈ N ∪ {0} by
[18, Proposition 1.3.5-(1)]. Let x ∈ (V0)∗ and ω ∈ π−1(x). Then from π−1(V0) = P
and limm→∞ distρ(π(σm(ω)), V0) = 0 we see that limm→∞ distδ(σm(ω),P) = 0,
where δ is a metric on� compatible with the product topology of�. Since P is finite
and σ(P) ⊂ P , there exist n ∈ N and wk, vk ∈ Wn for k ∈ {1, . . . , #P} such that
P = {wkv

∞
k | k ∈ {1, . . . , #P}}, where wv∞ := wvvv . . . ∈ � for w, v ∈ Wn

in the natural manner. Take ε ∈ (0,∞) such that [τ ]3n = [κ]3n for any τ, κ ∈ �

with δ(τ, κ) < ε, and choose N ∈ N so that distδ(σmn(ω),P) < ε for any m ≥ N .
Then for each m ≥ N , δ(σmn(ω),wkmv

∞
km
) < ε for some km ∈ {1, . . . , #P}, hence

[σmn(ω)]3n = [wkmv
∞
km

]3n , and it turns out that vkm = vkm+1 for m ≥ N . Thus

σ Nn(ω) = wkN v
∞
kN

∈ P and x = F[ω]Nn (π(σ
Nn(ω))) ∈ V∗. ��

Proof of Theorem 3.4 Let x ∈ K \S∗(G, h), so that x 
∈ V∗, and letω ∈ π−1(x). Then
lim supm→∞ distρ(π(σm(ω)),S(G, h)∪V0) > 0, and by the compactness of K there
exist y ∈ K \ (S(G, h) ∪ V0) and a strictly increasing sequence {mk}k∈N ⊂ N such
that limk→∞ ρ(π(σmk (ω)), y) = 0. By Lemma 3.5 we can take an eigenfunction ϕy

of −�with eigenvalue λ ∈ (0,∞) such that ϕy |V0 = 0, ϕy(y) > 0 and
∫

K ϕ
2
ydμ = 1.

Let k ∈ N be large enough so thatϕy(π(σ
mk (ω))) ≥ ϕy(y)/2, and defineϕx,k ∈ C(K )

by ϕx,k |K[ω]mk
:= r−dH[ω]mk

ϕy ◦ F−1
[ω]mk

and ϕx,k |K\K[ω]mk
:= 0 (recall ϕy |V0 = 0). Then∫

K ϕ
2
x,kdμ = 1, and (2.3) and (2.4) easily imply that ϕx,k is an eigenfunction of −�

with eigenvalue λ/rdH +1
[ω]mk

. Now since limk→∞ λ/rdH +1
[ω]mk

= ∞ and

ϕx,k(x)2(
λ/rdH +1

[ω]mk

)ds/2
= ϕy(π(σ

mk (ω)))2

λds/2
≥ ϕy(y)2

4λds/2
> 0,

the limit limt↓0 tds/2 pt (x, x) does not exist by Lemma 2.10.
For the proof of the second assertion let x ∈ S∗(G, h) \ V∗ and ω ∈ π−1(x). By

Lemma 3.7 we have lim supm→∞ distρ(π(σm(ω)), V0) > 0, which together with the
compactness of K yields y ∈ K \ V0 such that lim infm→∞ ρ(π(σm(ω)), y) = 0.
Then y ∈ (S(G, h) ∪ V0) \ V0 = S(G, h) \ V0 by x ∈ S∗(G, h), and the second
assertion follows since the non-existence of the limit limt↓0 tds/2 pt (y, y) implies that
of the limit limt↓0 tds/2 pt (x, x) by virtue of Lemma 3.6. ��
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4 The case of affine nested fractals

In this section, we recall the definition of affine nested fractals and show that Theo-
rem 3.4 is applicable to them. Throughout this section, we follow the same framework
and notation as in the previous section, and furthermore we assume the following:

d ∈ N, K is a compact subset of R
d , and Fi = fi |K for

some contractive similitude fi on R
d for each i ∈ S.

(4.1)

Recall that f : R
d → R

d is called a contractive similitude on R
d if and only if there

exist α ∈ (0, 1), U ∈ O(d) and b ∈ R
d such that f (x) = αU x + b for any x ∈ R

d .
According to [18, Theorem 1.2.3], any finite family of contractive similitudes on R

d

actually gives rise to a self-similar structure satisfying (4.1) by taking the associated
self-similar set.

Notation For x, y ∈ R
d with x 
= y, let gxy : R

d → R
d denote the reflection in the

hyperplane Hxy := {z ∈ R
d | |z − x | = |z − y|}.

First we prove that Theorem 3.4 is applicable if #V0 ≥ 3 and gxy |K ∈ G for any
x, y ∈ V0 with x 
= y, following [18, Proof of Theorem 4.4.10]; see Theorem 4.3
below. Later we will see that affine nested fractals with #V0 ≥ 3 satisfy this condition.

Lemma 4.1 Assume that gxy(V0) = V0 for any x, y ∈ V0 with x 
= y, and define

G0 := {gx1 y1 gx2 y2 · · · gxn yn | n ∈ N, xi , yi ∈ V0, xi 
= yi , i ∈ {1, . . . , n}}, (4.2)

G1 := {gx1 y1 gx2 y2 · · · gx2n y2n | n ∈ N, xi , yi ∈ V0, xi 
= yi , i ∈{1, . . . , 2n}}. (4.3)

Then for n ∈ N and xi , yi ∈ V0 with xi 
= yi , i ∈ {1, . . . , n}, gx1 y1 gx2 y2 · · · gxn yn ∈
G0 \ G1 if and only if n is odd. Moreover, G0 � g �→ g|V0 is injective and #G0 ≤
(#V0)!.
Proof Without loss of generality assume

∑
p∈V0

p = 0Rd . Let g ∈ G0 and choose
n ∈ N and xi , yi ∈ V0 with xi 
= yi so that g = gx1 y1 gx2 y2 · · · gxn yn . Then g ∈ O(d) by
g(V0) = V0, and we have det g = (−1)n , from which the first assertion is immediate.

Next let H0 := {∑p∈V0
ap p | (ap)p∈V0 ∈ R

V0}, which is a linear subspace of R
d .

Since each g ∈ G0 is the identity on the orthogonal complement of H0, G0 � g �→ g|V0

is injective with g|V0 : V0 → V0 bijective and hence #G0 ≤ (#V0)!. ��
Proposition 4.2 Assume that gxy(V0) = V0 for any x, y ∈ V0 with x 
= y, and define

S :=
{

x ∈ K

∣∣∣∣ gx1 y1 gx2 y2 · · · gx2n−1 y2n−1(x) = x for some n ∈ N

and xi , yi ∈ V0 with xi 
= yi , i ∈ {1, 2, . . . , 2n − 1}
}
. (4.4)

Then we have the following statements (recall that S∗ is given by (3.1) with Z = S).

(1) S is closed in K and intK S = ∅. If #V0 ≥ 3 then V0 ⊂ S and V∗ ⊂ S∗.
(2) If ν is a σ -ergodic finite Borel measure on Σ and satisfies ν ◦ π−1(K \ S) > 0,

then ν ◦ π−1(S∗) = 0.
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Fig. 3 Some examples of affine nested fractals. From the left, snowflake, the Vicsek set, and some modified
Sierpinski gaskets

Proof (1) Without loss of generality assume
∑

p∈V0
p = 0Rd , and let HK be the

linear subspace of R
d generated by K . Then for any g ∈ G0 \ G1, g|HK is

a linear isometry of HK with determinant −1 by Lemma 4.1, and therefore
intK {x ∈ K | g(x) = x} = ∅ by virtue of the second assertion of [18, Lemma
4.4.5-(3)], which is in fact valid without assuming g(K ) = K . Now since S =⋃

g∈G0\G1
{x ∈ K | g(x) = x} and #G0 < ∞ by Lemma 4.1, S is closed in K

and intK S = ∅. If #V0 ≥ 3, then gxygyzgzx (x) = x for any distinct x, y, z ∈ V0
and hence V0 ⊂ S, which easily implies V∗ ⊂ S∗.

(2) Since S is closed in K , this is a special case of Proposition 3.2. ��
Now a simple application of Theorem 3.4 yields the following theorem.

Theorem 4.3 Assume #V0 ≥ 3 and that gxy |K ∈ G for any x, y ∈ V0 with x 
= y.
Then the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K \ S∗. If in addition
the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ S \ V0, then neither does it
for any x ∈ K \ V∗.

Proof Set G1|K := {g|K | g ∈ G1} and let h ∈ G0 \ G1. Then by the assump-
tion and Lemma 4.1, G1|K is a finite subgroup of G, h|K ∈ G \ G1|K and
K 
= S = ⋃

g∈G0\G1
{x ∈ K | g(x) = x} = S(G1|K , h|K ) ⊃ V0, whence

S∗ = S∗(G1|K , h|K ). Moreover, gyzgxz(x) = y and gyzgxz ∈ G1 for any distinct
x, y, z ∈ V0 and therefore {g(q) | g ∈ G1|K } = V0 for q ∈ V0. Now the assertions
follow from Theorem 3.4. ��

Next we recall the definition of affine nested fractals and apply Theorem 4.3 to them.

Definition 4.4 (1) A homeomorphism g : K → K is called a symmetry of L if and
only if, for any m ∈ N ∪ {0}, there exists an injective map g(m) : Wm → Wm

such that g(Fw(V0)) = Fg(m)(w)(V0) for any w ∈ Wm .
(2) We set Gs := {g | g is a symmetry of L, g = f |K for some isometry f of R

d}.
(3) L is called an affine nested fractal if and only if it is post-critically finite, K is

connected and gxy |K ∈ Gs for any x, y ∈ V0 with x 
= y.
(4) We call a real matrix L = (L pq)p,q∈V0 Gs -invariant if and only if L pq =

Lg(p)g(q) for any p, q ∈ V0 and g ∈ Gs . Also a = (ai )i∈S ∈ (0,∞)S is called Gs -
invariant if and only if ai = a j for any i, j ∈ S satisfying g(Fi (V0)) = Fj (V0)

for some g ∈ Gs .
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By [18, Propositions 3.8.7 and 3.8.9], if L is an affine nested fractal, then L =
(L pq)p,q∈V0 is Gs-invariant if and only if L pq = L p′q ′ whenever |p − q| = |p′ − q ′|.
Theorem 4.5 Assume that L = (K , S, {Fi }i∈S) is an affine nested fractal with
#V0 ≥ 3 and that both D = (Dpq)p,q∈V0 and r = (ri )i∈S are Gs -invariant. Fur-
ther assume that

#(Fi (V0) ∩ Fj (V0)) ≤ 1 for any i, j ∈ S with i 
= j. (4.5)

Then the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K \ S∗. If in addition
the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ S \ V0, then neither does it
for any x ∈ K \ V∗.

Proof In view of Theorem 4.3, it suffices to show Gs ⊂ G. Let m ∈ N ∪ {0} and
suppose μ ◦ g(Kw) = μ(Kw) for any w ∈ Wm and any g ∈ Gs . Let i ∈ S, w ∈ Wm

and g ∈ Gs . Since g is a symmetry of L, g(Fi (V0)) = Fj (V0) for some j ∈ S,
and by [18, Proposition 3.8.20] there exists gi ∈ Gs such that g ◦ Fi = Fj ◦ gi . Then

μ(g(Kiw)) = μ◦Fj (gi (Kw)) = rdH
j μ(gi (Kw)) = rdH

i μ(Kw) = rdH
i rdH

w = μ(Kiw).
Thus for any g ∈ Gs , μ ◦ g(Kw) = μ(Kw) for any w ∈ W∗ and hence μ ◦ g = μ,
which together with [18, Corollary 3.8.21] implies that Gs ⊂ G. ��
Remark 4.6 (1) The following fact is known for the existence of Gs-invariant har-

monic structures (see [18, Section 3.8] and references therein for details):

If L is an affine nested fractal and satisfies (4.5), then for each Gs -invariant
r ∈ (0,∞)S, there exist a unique λ ∈ (0,∞) and a unique (up to constant multi-
ples) Gs -invariant real symmetric matrix D = (Dpq)p,q∈V0 satisfying (D1), (D2)
such that (D, λr) is a harmonic structure on L.

(2) It is quite unclear whether the assumption (4.5) can be removed from Theorem 4.5
(or more specifically, from [18, Proposition 3.8.20]; see the previous proof and
[18, Proof of Corollary 3.8.21]), although (4.5) should be regarded as a technical
assumption to avoid nonessential difficulties, as noted in [1, Remark 5.25-2.(c)]
and [18, p. 118].

(3) The non-existence of the limit limt↓0 tds/2 pt (x, x) may or may not occur when
#V0 = 2. Of course this limit exists for any x in the case [18, Example 3.1.4] of
the unit interval [0, 1] with its usual Dirichlet form. On the other hand, Exam-
ple 4.7 below presents an affine nested fractal with #V0 = 2 to which Theorem 3.4
applies.

Example 4.7 Following [18, Example 4.4.9], let S := {1, 2, 3, 4} and define fi : C →
C for i ∈ S by f1(z) := 1

2 (z + 1), f2(z) := 1
2 (z − 1), f3(z) :=

√−1
4 (z + 1) and

f4(z) :=
√−1

4 (z − 1). Let K be the self-similar set associated with { fi }i∈S , i.e. the
unique non-empty compact subset of C ∼= R

2 that satisfies K = ⋃
i∈S fi (K ), and

set Fi := fi |K , i ∈ S. Then L = (K , S, {Fi }i∈S) is a self-similar structure, and we
have P = {1∞, 2∞} and V0 = {−1, 1}. Defining g, h : C → C by g(z) := −z and
h(z) := z, we easily see that g|K , h|K ∈ Gs , and thus L is an affine nested fractal.
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Fig. 4 Sierpinski gaskets. From the left, two-dimensional level-l Sierpinski gasket (l = 2, 3, 4) and three-
dimensional level-2 Sierpinski gasket

Let D = (Dpq)p,q∈V0 := ( −1 1
1 −1

)
, r ∈ (0, 1) and r = (ri )i∈S := ( 1

2 ,
1
2 , r, r

)
.

Then (D, r) is clearly a regular harmonic structure on L, and similarly to the proof of
Theorem 4.5 we can verify g|K , h|K ∈ G. Now since h|K 
= idK , S({idK }, h|K ) =
{x ∈ K | h(x) = x} 
= K and h(q) = q for q ∈ V0, Theorem 3.4 implies that the
limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K \ S∗({idK }, h|K ).

5 Examples

In this section, we apply Theorems 3.4 and 4.5 to basic examples. Note that by
[18, Theorem 1.6.2], if L = (K , S, {Fi }i∈S) is a self-similar structure, then K is
connected if and only if any i, j ∈ S admit n ∈ N and {ik}n

k=0 ⊂ S with i0 = i
and in = j such that Kik−1 ∩ Kik 
= ∅ for any k ∈ {1, . . . , n}. Recall that, given
a post-critically finite self-similar structure L = (K , S, {Fi }i∈S) with K connected
and a regular harmonic structure (D, r = (ri )i∈S) on L, we always equip K with the
self-similar measure μ on K with weight (rdH

i )i∈S , where dH ∈ (0,∞) is such that∑
i∈S rdH

i = 1.

5.1 Sierpinski gaskets

Example 5.1 (Sierpinski gaskets) Let d, l ∈ N, d ≥ 2, l ≥ 2, and let {qk}d
k=0 ⊂

R
d be the set of the vertices of a regular d-dimensional simplex. Further let S :=

{(ik)
d
k=1 ∈ (N ∪ {0})d | ∑d

k=1 ik ≤ l − 1}, and for each i = (ik)
d
k=1 ∈ S we set

qi := q0+∑d
k=1(ik/ l)(qk−q0) and define fi : R

d → R
d by fi (x) := qi +l−1(x−q0).

Let K be the self-similar set associated with { fi }i∈S and set Fi := fi |K . Then L =
(K , S, {Fi }i∈S) is a self-similar structure, which is called the d-dimensional level-l
Sierpinski gasket (see Fig. 4 above). This is an affine nested fractal satisfying (4.5),
and we have P = {i∞k | k ∈ {0, 1, . . . , d}} and V0 = {qk | k ∈ {0, 1, . . . , d}}, where
ik := ((l − 1)1{k}( j))dj=1 ∈ S. Moreover, Gs = {g|K | g ∈ G0} (recall (4.2)).

Define D = (Dpq)p,q∈V0 by Dpp := −d and Dpq := 1 for p, q ∈ V0, p 
= q.
Note that any Gs-invariant real symmetric matrix satisfying (D1), (D2) is a constant
multiple of D. By the symmetry of L and D, there exists a unique r ∈ (0,∞) such that
(D, r = (ri )i∈S) with ri := r is a harmonic structure on L. Moreover, [18, Corollary
3.1.9] yields r < 1, so that (D, r) is a regular harmonic structure on L.
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The d-dimensional level-2 Sierpinski gasket (i.e. the case of l = 2) is also referred
to as the d-dimensional standard Sierpinski gasket, for which we can easily verify that
r = (d + 1)/(d + 3) and hence that ds = 2 logd+3(d + 1). Unfortunately, however,
it seems impossible to calculate the value of r explicitly for a general d-dimensional
level-l Sierpinski gasket.

For this example, the assumptions of Theorem 4.5 are clearly satisfied and hence
the non-existence of the limit limt↓0 tds/2 pt (x, x) is assured for any x ∈ K \ S∗. In
fact, since the d-dimensional level-l Sierpinski gasket possesses a quite large group
of symmetries, we can conclude a slightly stronger result as follows.

Theorem 5.2 Let L = (K , S, {Fi }i∈S) be the d-dimensional level-l Sierpinski gasket
with d ≥ 2, l ≥ 2 and let (D, r) be the harmonic structure on L as in Example 5.1.
Define a closed subset Ŝ of K by

Ŝ :=
⋂

I⊂{0,...,d}, #I=3

⋃
i, j∈I, i 
= j

{x ∈ K | gqi q j (x) = x}. (5.1)

Then the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K \ Ŝ∗ (recall
that Ŝ∗ is given by (3.1) with Z = Ŝ). If in addition the limit limt↓0 tds/2 pt (x, x) does
not exist for any x ∈ Ŝ \ V0, then neither does it for any x ∈ K \ V∗.

Proof For each I ⊂ {0, . . . , d} with #I = 3, we define hI := gqi q j |K and G I :=
{idK , gqi qk gqi q j |K , gqi q j gqi qk |K }, where I = {i, j, k}, i < j < k, so that G I is a sub-
group of G and hI ∈ G \ G I . Theorem 3.4 implies that the limit limt↓0 tds/2 pt (x, x)
does not exist for any x ∈ K \ S∗(G I , hI ), which yields the first assertion since

⋂
I⊂{0,...,d}, #I=3 S∗(G I , hI ) = (⋂

I⊂{0,...,d}, #I=3 S(G I , hI )
)
∗ = Ŝ∗

by the compactness of S(G I , hI ). Similarly to the second paragraph of the proof of
Theorem 3.4, the second assertion follows from Lemmas 3.6 and 3.7. ��

Note that Ŝ ⊂ V∗ if and only if l = 2; indeed, if l ≥ 3 then by setting i :=
(1[1,l)(k))dk=1 ∈ S we have π(i∞) = q0 + (l − 1)−1 ∑min{l−1,d}

k=1 (qk − q0) ∈ Ŝ \ V∗,

whereas we easily see Ŝ ⊂ V∗ when l = 2. This fact will be used in the next section
to show that the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K when l = 2.

5.2 Polygaskets

Example 5.3 (N -polygasket) Let N ∈ N satisfy N ≥ 3 and N/4 
∈ N. Let S :=
{0, 1, . . . , N − 1}, and for each i ∈ S we set qi := e2π(i/N )

√−1 ∈ C ∼= R
2 and define

fi : C → C by fi (z) := qi + αN (z − qi ), where

αN :=
{

1 − (1 + 2 sin π
2N )

−1 if N is odd,

1 − (1 + sin π
N )

−1 if N is even.
(5.2)
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Fig. 5 N -polygasket (N = 5, 6, 7, 9). From the left, pentagasket (N = 5), hexagasket (N = 6), heptagas-
ket (N = 7) and nonagasket (N = 9)

The self-similar structure L = (K , S, {Fi }i∈S), with K the self-similar set associated
with { fi }i∈S and Fi := fi |K , is called the N-polygasket. The 3-polygasket is noth-
ing but the (two-dimensional standard) Sierpinski gasket, and the N -polygasket for
N = 5, 6, 7, 9 (Fig. 5) is called the pentagasket, hexagasket, heptagasket and nona-
gasket, respectively. Again L is an affine nested fractal satisfying (4.5), and it holds
that P = {i∞ | i ∈ S} and V0 = {qi | i ∈ S}. Moreover, Gs = {g|K | g ∈ G0}.

Remark 5.4 The N -polygasket is suitably defined also for N ∈ N with N/4 ∈ N, but
then it satisfies #V0 = ∞, which is why we have excluded this case in this paper.

In fact, Example 5.3 is a special case of the following example adopted from [5].

Example 5.5 ((N , l)-polygasket) Let N , l ∈ N, N ≥ 3, l < N/2 and set S :=
{0, 1, . . . , N −1}. For k ∈ Z, let [k] denote the unique i ∈ S such that (k − i)/N ∈ Z.
Define an equivalence relation ∼ on � = SN by saying ω ∼ τ if and only if either

{ω, τ } = {wi[i + l]∞, w[i + 1][i + 1 − l]∞} for some (w, i) ∈ W∗ × S (5.3)

orω = τ . Let K := �/ ∼ be equipped with the quotient topology and let π : � → K
be the quotient map. For i ∈ S, since iω ∼ iτ whenever ω, τ ∈ � and ω ∼ τ ,
we can define a continuous injective map Fi : K → K by Fi (π(ω)) := π(iω),
ω ∈ �, so that Fi ◦ π = π ◦ σi . We further define P and V0 as in Definition
2.3. Then P = {i∞ | i ∈ S}, Kw ∩ Kv = Fw(V0) ∩ Fv(V0) for any w, v ∈ W∗ with
�w∩�v = ∅, and π−1(Kw \ Fw(V0)) = �w \σw(P) for anyw ∈ W∗. By using these
facts, we easily see that K is a compact metrizable topological space and hence that
L := (K , S, {Fi }i∈S) is a post-critically finite self-similar structure with K connected.
We call L the (N , l)-polygasket. Let qi := π(i∞) for i ∈ S, so that V0 = {qi | i ∈ S}.

For ω = (ωm)m∈N ∈ �, define ω1 , ω− ∈ � by ω1 := ([ωm + 1])m∈N and
ω− := ([−ωm])m∈N. Then ω1 ∼ τ 1 and ω− ∼ τ− for any ω, τ ∈ � with ω ∼ τ ,
and therefore we can define continuous maps g, h : K → K by g(π(ω)) := π(ω1)

and h(π(ω)) := π(ω−), ω ∈ �. Clearly g(V0) = h(V0) = V0 and gN = h2 =
ghgh = idK , and hence Ĝ := {idK , g, . . . , gN−1, h, hg, . . . , hgN−1} is a subgroup
of the group of symmetries of L which is isomorphic to the dihedral group of order
2N (recall Definition 4.4-(1)). We set G := {idK , g, . . . , gN−1}, which is a subgroup
of Ĝ.
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A simple calculation similar to [23, §4.3] immediately shows the existence of a
unique r ∈ (0,∞) and a unique (up to constant multiples) real symmetric matrix
D = (Dpq)p,q∈V0 with (D1), (D2) and Dg(p)g(q) = Dh(p)h(q) = Dpq , p, q ∈ V0,
such that (D, r = (ri )i∈S) with ri := r is a harmonic structure on L. In fact,

r = 2N

N + 2l(N − 2l)+ √
(N − 2l(N − 2l))2 + 8l2 N

< 1 (5.4)

and thus (D, r) is a regular harmonic structure on L. Then we also have Ĝ ⊂ G.

Theorem 3.4 clearly applies to this example to yield the non-existence of the limit
limt↓0 tds/2 pt (x, x) for any x ∈ K \ S∗(G, h). We remark that S(G, h) ⊂ V∗ if
and only if N is odd, which will be used in the next section to show that the limit
limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K when N is odd.

Note that for N ∈ N with N ≥ 3 and N/4 
∈ N, the N -polygasket is nothing but
the (N , �N/4�)-polygasket, where �a� := min{n ∈ Z | n ≥ a}, and that we have
Gs = Ĝ, S = S(G, h) and S∗ = S∗(G, h) in this case.

6 Further results for Sierpinski gaskets and polygaskets

The purpose of this section is to prove the following theorem.

Theorem 6.1 Let L = (K , S, {Fi }i∈S) be either the d-dimensional level-l Sierpinski
gasket with d ≥ 2, l ≥ 2 in Example 5.1 or the (N , l)-polygasket with N ≥ 3, l < N/2
in Example 5.5. Also let (D, r) be the harmonic structure on L described there. Then
the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ V∗.

Corollary 6.2 Let L = (K , S, {Fi }i∈S) be either the d-dimensional standard Sier-
pinski gasket with d ≥ 2 in Example 5.1 or the (N , l)-polygasket in Example 5.5 with
N ≥ 3 odd and l < N/2. Also let (D, r) be the harmonic structure on L described
there. Then the limit limt↓0 tds/2 pt (x, x) does not exist for any x ∈ K .

Proof This is immediate from Theorems 3.4, 5.2 and 6.1 since Ŝ ⊂ V∗ for the
d-dimensional standard Sierpinski gasket and S(G, h) ⊂ V∗ for the (N , l)-polyg-
asket with N odd, where Ŝ is given by (5.1) and G and h are as in Example 5.5. ��

The rest of this section is devoted to the proof of Theorem 6.1. First we prove the
following lemma, which reduces the proof of Theorem 6.1 to the case of x ∈ V0.

Lemma 6.3 Under the same framework and notation as in Sect. 3, let q ∈ V0 and
suppose {g(q) | g ∈ G} = V0 and that ri = r for any i ∈ S for some r ∈ (0, 1).
Then there exist c9, c10 ∈ (0,∞) such that for any m ∈ N ∪ {0}, any x ∈ Vm and any
t ∈ (0, 1], with nx,m := #{w ∈ Wm | x ∈ Kw},
∣∣nx,m(r

(dH +1)mt)ds/2 pr (dH +1)m t (x, x)− tds/2 pt (q, q)
∣∣ ≤ c9 exp

(−c10t−1/dH
)
. (6.1)
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Proof Let m ∈ N ∪ {0}, x ∈ Vm and set Wm,x := {w ∈ Wm | x ∈ Kw}. We also set
U x
w := (Kw \ Fw(V0))∪{x} forw ∈ Wm,x and U x := ⋃

w∈Wm,x
U x
w, which is open in

K . For each w ∈ Wm,x , x ∈ Kw ∩ Vm = Fw(V0), and hence by {g(q) | g ∈ G} = V0
we can choose gw ∈ G so that x = Fw(gw(q)). Further let U := (K \ V0) ∪ {q}. We
claim that for v ∈ Wm,x and for any (t, y, z) ∈ (0,∞)× K × K ,

pU
t/r (dH +1)m (y, z) = rdH m

∑
w∈Wm,x

pU x

t (Fv ◦ gv(y), Fw ◦ gw(z)), (6.2)

which together with (2.8), Lemmas 2.7 and 2.8 easily yields the assertion. Note here
that nx,m ≤ #π−1(x) ≤ #C ≤ #S#P < ∞ by [18, Proof of Lemma 4.2.3] and that
R(Fw(y), Fw(z)) ≥ c8rwR(y, z) for any w ∈ W∗ and y, z ∈ K for some c8 ∈ (0, 1]
by [19, Theorem A.1]. Thus it remains to show (6.2).

For each bijective map τ : Wm,x → Wm,x , we define Rτ : U x → U x by Rτ |U x
w

:=
Fτ(w) ◦ gτ(w) ◦ g−1

w ◦ F−1
w |U x

w
. Then Rτ is a homeomorphism with R−1

τ = Rτ−1 , and
μ|U x ◦ Rτ = μ|U x since ri = r for i ∈ S. Moreover, regarding FU x as a linear
subspace of C(U x ), we have u ◦ Rτ ∈ FU x and E(u ◦ Rτ , u ◦ Rτ ) = E(u, u) for any
u ∈ FU x by (2.3), (2.4) and ri = r , i ∈ S. It easily follows from these facts that

T U x

t (u ◦ Rτ ) = (T U x

t u) ◦ Rτ , t ∈ (0,∞), u ∈ L2(U x , μ|U x ). (6.3)

On the other hand, for a Borel measurable function u : U → R we define a Borel
measurable function ιx u : U x → R by ιx u|U x

w
:= u ◦ g−1

w ◦ F−1
w |U x

w
, w ∈ Wm,x .

Then
∫

U x (ιx u)2dμ = nx,mrdH m
∫

U u2dμ, hence ιx defines an injective linear operator
ιx : L2(U, μ|U ) → L2(U x , μ|U x ), and furthermore ιx u ∈ FU x and E(ιx u, ιx u) =
nx,mr−mE(u, u) for any u ∈ FU by (2.3) and (2.4). Based on these facts and (6.3),
we can easily verify that for any t ∈ (0,∞),

T U x

t ιx
(
L2(U, μ|U )

) ⊂ ιx (FU ), ι−1
x T U x

t ιx = T U
t/r (dH +1)m , (6.4)

from which (6.2) immediately follows. ��
Remark 6.4 In the situation of Lemma 6.3, there exist c11 ∈ (0,∞) and a continuous
log(r−dH −1)-periodic function G : R → (0,∞) such that for any x ∈ V∗,

pt (x, x) = n−1
x t−ds/2G(− log t)+ O

(
exp

(−c11r2mx/ds t−1/dH
))

as t ↓ 0, (6.5)

where mx := min{m ∈ N ∪ {0} | x ∈ Vm} and nx := #{w ∈ Wmx | x ∈ Kw}.
Indeed, it suffices to verify (6.5) for x = q in view of (6.1). We easily see from

(6.1) and (2.6) that, for each x ∈ V∗, nx = nx,m(= #{w ∈ Wm | x ∈ Kw}) for any
m ∈ N ∪ {0} satisfying x ∈ Vm . In particular, nq,1 = nq = 1, and (6.1) with m = 1
and x = q immediately shows (6.5) for x = q, similarly to [15, Theorem 5.3].

The assumptions of Lemma 6.3 are clearly satisfied for the d-dimensional level-l
Sierpinski gasket and for the (N , l)-polygasket. Thus it suffices to prove the non-
existence of the limit limt↓0 tds/2 pt (x, x) for x ∈ V0. We first treat the case of the
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d-dimensional level-l Sierpinski gasket. The proof for the (N , l)-polygasket will be
provided later.

Lemma 6.5 Let L = (K , S, {Fi }i∈S) be the d-dimensional level-l Sierpinski gasket
with d ≥ 2, l ≥ 2 and let (D, r)be the harmonic structure on L as in Example 5.1. Then
there exists an eigenfunction ϕ of� such that ϕ(q0) = 1 > |ϕ(q1)| and ϕ(qk) = ϕ(q1)

for any k ∈ {2, . . . , d} (recall V0 = {qk | k ∈ {0, 1, . . . , d}}).
Proof Let G be the subgroup of G generated by {gxy |K | x, y ∈ V0 \ {q0}, x 
= y},
which is finite by Lemma 4.1, and let RG := (#G)−1 ∑

g∈G Tg , so that RG(F) ⊂ F ,
E(RGu, v) = E(u, RGv) for u, v ∈ F and

∫
K (RGu)vdμ = ∫

K u RGvdμ for u, v ∈
L2(K , μ). Then we easily see that RGu ∈ D[�] and �RGu = RG�u for any u ∈
D[�], and therefore there exist {ϕn}n∈N ⊂ RG(F) and {ψn}n∈N ⊂ (TidK − RG)(F)
such that {ϕn}n∈N ∪ {ψn}n∈N is a complete orthonormal system of L2(K , μ) con-
sisting of eigenfunctions of �. Note that then for any n ∈ N, ϕn(qk) = ϕn(q1) for
k ∈ {2, . . . , d} and ψn(q0) = 0.

Suppose that |ϕn(q0)| ≤ |ϕn(q1)| for any n ∈ N. Let t ∈ (0,∞), and for n ∈ N

let λn, λ
′
n ∈ [0,∞) be such that −�ϕn = λnϕn and −�ψn = λ′

nψn . Then since
pt (g(x), g(y)) = pt (x, y) for g ∈ G and x, y ∈ K , from (2.12) we get

pt (q0, q0) =
∑
n∈N

e−λn tϕn(q0)
2 ≤

∑
n∈N

e−λn tϕn(q1)
2

≤
∑
n∈N

(
e−λn tϕn(q1)

2 + e−λ′
n tψn(q1)

2) = pt (q1, q1) = pt (q0, q0),

which means that ψn(q1) = 0 for any n ∈ N. On the other hand, choose u ∈ F
so that u(q1) = 1 and u(qk) = 0 for k ∈ {2, . . . , d}, and set v := u − RGu ∈
(TidK − RG)(F). Then v(q1) > 0, but setting vn := ∑n

k=1

(∫
K vψkdμ

)
ψk for n ∈ N,

we have ‖v−vn‖2∞ ≤ (diamR K )E(v−vn, v−vn) → 0 as n → ∞ by [20, (3.1)] and
hence v(q1) = 0. This contradiction shows that |ϕ j (q0)| > |ϕ j (q1)| for some j ∈ N.
Now the function ϕ := (ϕ j (q0))

−1ϕ j has the desired properties. ��
Proof of Theorem 6.1 for the d-dimensional level-l Sierpinski gasket We follow the
same notation as in Example 5.1 during this proof. It suffices to show the assertion for
x = q0 by virtue of Lemma 6.3. We set

A := {u ∈ C(K ) | u(q0) = 1 > |u(q1)|, u(qk) = u(q1) for k ∈ {2, . . . , d}}, (6.6)

and for u ∈ A we define �u ∈ C(K ) by

�u|Ki := u(q1)
∑d

k=1 ik u ◦ F−1
i , i = (ik)

d
k=1 ∈ S, (6.7)

so that �u ∈ A and � : A → A. Then �(F ∩ A) ⊂ F ∩ A by (2.3). Furthermore
for u ∈ A we can easily verify that

∫
K

(�nu)2dμ ≤ curdH n for any n ∈ N, (6.8)
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where cu := ∫
K u2dμ

∏
n∈N∪{0}

(
1 + (#S − 1)u(q1)

2ln ) ∈ (0,∞).
Now for the eigenfunction ϕ ∈ A of � as in Lemma 6.5, let λ ∈ (0,∞) be such

that −�ϕ = λϕ and define ϕn := (∫
K (�

nϕ)2dμ
)−1/2

�nϕ for n ∈ N. Then for each
n ∈ N,

∫
K ϕ

2
ndμ = 1, ϕn is an eigenfunction of −� with eigenvalue λ/r (dH +1)n by

(2.4), and (6.8) yields

ϕn(q0)
2

(λ/r (dH +1)n)ds/2
= rdH n

λds/2
∫

K (�
nϕ)2dμ

≥ 1

cϕλds/2
> 0.

Therefore Lemma 2.10 implies that the limit limt↓0 tds/2 pt (q0, q0) does not exist. ��
Lemma 6.6 Let L = (K , S, {Fi }i∈S) be the (N , l)-polygasket with N ≥ 3, l < N/2
and let (D, r) be the harmonic structure on L as in Example 5.5. (Recall that qi =
π(i∞) for i ∈ S and that V0 = {qi | i ∈ S}).
(1) If N = 4l, then there exists an eigenfunction ϕ of� such that ϕ(ql) = ϕ(q3l) = 0

and ϕ(q0) = −ϕ(q2l) = 1.
(2) If N 
= 4l, then there exists an eigenfunction ϕ of � such that ϕ(q0) = 1,

ϕ(ql) = ϕ(qN−l) ∈ (−1, 1) and ϕ(q2l) = ϕ(qN−2l) ∈ (−1, 1).

Proof Let g, h : K → K be the homeomorphisms defined in Example 5.5. Similarly
to the proof of Lemma 6.5, there exist {ϕn}n∈N, {ψn}n∈N ⊂ F such that ϕn ◦ h = ϕn

and ψn ◦ h = −ψn for any n ∈ N and {ϕn}n∈N ∪ {ψn}n∈N is a complete orthonor-
mal system of L2(K , μ) consisting of eigenfunctions of �. Then in the same way as
the second paragraph of the proof of Lemma 6.5, we have |ϕ j (q0)| > |ϕ j (ql)| and
ψk(ql) 
= 0 for some j, k ∈ N.

(1) Since ψk(q0) = ψk(q2l) = 0 and ψk(q3l) = −ψk(ql) by ψk ◦ h = −ψk , the
function ϕ := (ψk(ql))

−1ψk ◦ gl has the desired properties.
(2) Let ψ := (ϕ j (q0))

−1ϕ j , so that ψ(q0) = 1 > |ψ(ql)|, ψ(ql) = ψ(qN−l)

and ψ(q2l) = ψ(qN−2l). If N = 3l, then it suffices to set ϕ := ψ since
q2l = qN−l and qN−2l = ql . Thus we may assume that N 
= 3l, 4l, so that
ql , qN−l , q2l , qN−2l are distinct and N ≥ 5. Define ϕ ∈ C(K ) by, for each
i ∈ S = {0, 1, . . . , N − 1},

ϕ|Ki :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ ◦ g−i ◦ F−1
i if i = 0 or i = N/2,

ψ(ql)ψ ◦ gl−i ◦ F−1
i if 0 < i < N/2 and i is odd,

ψ(ql)ψ ◦ g−l−i ◦ F−1
i if 0 < i < N/2 and i is even,

ψ(ql)ψ ◦ g−l−i ◦ F−1
i if i > N/2 and N − i is odd,

ψ(ql)ψ ◦ gl−i ◦ F−1
i if i > N/2 and N − i is even.

(6.9)

Then ϕ(q0) = 1, ϕ(ql) = ϕ(qN−l) = ϕ(q2l) = ϕ(qN−2l) = ψ(ql)
2 ∈ [0, 1) by

N/2 
∈ {l, N − l, 2l, N − 2l}, and ϕ is an eigenfunction of � by (2.3) and (2.4). ��
Proof of Theorem 6.1 for the (N , l)-polygasket We will use the same notation as in
Example 5.5 during this proof. Again it suffices to show the assertion for x = q0
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by virtue of Lemma 6.3. Similarly to (6.6) and (6.7), we define A ⊂ C(K ) and
� : A → A by, if N = 4l,

A := {u ∈ C(K ) | u(q0) = 1, u(ql) = u(q3l) = 0},
�u|Ki := 1{0}(i)u ◦ F−1

i , i ∈ S = {0, 1, . . . , N − 1}, (6.10)

and if N 
= 4l,

A :=
{

u ∈ C(K )

∣∣∣∣ u(q0) = 1, u(ql) = u(qN−l) ∈ (−1, 1)
and u(q2l) = u(qN−2l) ∈ (−1, 1)

}
,

�u|Ki :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ◦ F−1
i if i = 0,

u(ql)u(q2l)
i−1u ◦ gl−i ◦ F−1

i if 0 < i < N/2,

u(ql)u(q2l)
N−i−1u ◦ g−l−i ◦ F−1

i if i > N/2,

u(q2l)
i−1u ◦ g−i ◦ F−1

i if i = N/2

(6.11)

for i ∈ S = {0, 1, . . . , N −1}. Then we can easily show the non-existence of the limit
limt↓0 tds/2 pt (q0, q0) by applying Lemma 2.10 to ϕn := (∫

K (�
nϕ)2dμ

)−1/2
�nϕ,

where ϕ is the eigenfunction of � given in Lemma 6.6, in exactly the same way as in
the previous case of the d-dimensional level-l Sierpinski gasket. ��
Acknowledgments The author would like to thank Professor Jun Kigami for fruitful discussions and
helpful comments and Professor Alexander Teplyaev for information on the reference [5].
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the Sierpiński graph. Stoch. Process. Appl. 69, 127–138 (1997)

123



74 N. Kajino

13. Grigor’yan, A.: Heat kernel upper bounds on fractal spaces (2004, preprint). http://www.math.
uni-bielefeld.de/~grigor/fkreps.pdf. Accessed 2 January 2012

14. Grigor’yan, A., Hu, J., Lau, K.-S.: Comparison inequalities for heat semigroups and heat kernels on
metric measure spaces. J. Funct. Anal. 259, 2613–2641 (2010)

15. Hambly, B.M.: Asymptotics for functions associated with heat flow on the Sierpinski carpet. Can. J.
Math. 63, 153–180 (2011)

16. Hambly, B.M., Kumagai, T.: Transition density estimates for diffusion processes on post critically
finite self-similar fractals. Proc. Lond. Math. Soc. 78, 431–458 (1999)

17. Kajino, N., Teplyaev, A.: Spectral gap sequence and on-diagonal oscillation of heat kernels (2012, in
preparation)

18. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Math., vol. 143. Cambridge University Press,
Cambridge (2001)

19. Kigami, J.: Harmonic analysis for resistance forms. J. Funct. Anal. 204, 399–444 (2003)
20. Kigami, J.: Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Am. Math. Soc.

216(1015) (2012)
21. Krön, B., Teufl, E.: Asymptotics of the transition probabilities of the simple random walk on self-similar

graphs. Trans. Am. Math. Soc. 356, 393–414 (2004)
22. Kusuoka, S.: A diffusion process on a fractal. In: Ito, K., Ikeda, N. (eds.) Probabilistic Methods on

Mathematical Physics. Proceedings of Taniguchi International Symposium (Katata & Kyoto, 1985),
pp. 251–274. Kinokuniya, Tokyo (1987)

23. Strichartz, R.S.: Differential Equations on Fractals: A Tutorial. Princeton University Press, Prince-
ton (2006)

24. Teufl, E.: On the asymptotic behaviour of analytic solutions of linear iterative functional equations. Ae-
quationes Math. 73, 18–55 (2007)

123

http://www.math.uni-bielefeld.de/~grigor/fkreps.pdf
http://www.math.uni-bielefeld.de/~grigor/fkreps.pdf

	On-diagonal oscillation of the heat kernels on post-critically finite self-similar fractals
	Abstract
	1 Introduction
	2 Preliminaries
	3 Symmetry group and oscillation at ``generic'' points
	4 The case of affine nested fractals
	5 Examples
	5.1 Sierpinski gaskets
	5.2 Polygaskets

	6 Further results for Sierpinski gaskets and polygaskets
	Acknowledgments
	References


