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Abstract We prove that, for a general class of random operators, the family of the
unfolded eigenvalues in the localization region is asymptotically ergodic in the sense
of Minami (Spectra of random operators and related topics, 2011). Minami conjec-
tured this to be the case for discrete Anderson model in the localized regime. We
also provide a local analogue of this result. From the asymptotics ergodicity, one can
recover the statistics of the level spacings as well as a number of other spectral sta-
tistics. Our proofs rely on the analysis developed in Germinet and Klopp (Spectral
statistics for random Schrödinger operators in the localized regime, 2010).
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0 Introduction

On �2(Zd), consider the Anderson model

Hω = −�+ λVω

where
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868 F. Klopp

• −� is the free discrete Laplace operator

(−�u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ �2(Zd); (0.1)

• Vω is the random potential

(Vωu)n = ωnun for u = (un)n∈Zd ∈ �2(Zd). (0.2)

We assume that the random variables (ωn)n∈Zd are independent identically distrib-
uted and that their common distribution admits a compactly supported bounded
density, say g.

• The coupling constant λ is chosen positive.

The Anderson model was introduced in [1] to describe a single electron’s motion in
a disordered crystal. When one omits particle interactions, it is the paradigmatic model
for the behavior of quantum particles in a disordered medium. Since their introduc-
tion, random operators have been (and still are) the object of a huge literature both in
physics (see e.g. [26,27]) and mathematics (see e.g. [21,33]). One of the most studied
questions is the occurrence of a localized phase. Physically, this phase corresponds to
a region of energies in which the electrons are trapped in the medium i.e. diffusion is
suppressed. Mathematically, this phase corresponds to a region, say, S, of the spec-
trum of the Hamiltonian in which the quantum evolution group does not propagate
to infinity. This can be expressed by the fact that the operator X e−i t Hω1S(Hω)1|x |≤C

stays bounded uniformly in time; here, X is the position operator. Actually the dynam-
ical localization property one can generally show is much stronger (see assumption
(Loc) in Sect. 1.1). This dynamical localization property implies that the spectrum
of Hω must consist only of eigenvalues. The associated eigenfunctions are generally
exponentially decaying (see Lemma 2.1 in Sect. 2.1.1). This entails that an eigen-
value essentially only depends on the local configuration of the potential i.e. on the
local potential in the region where the eigenfunction associated to the eigenvalue does
live. So, by virtue of the Heisenberg uncertainty principle, nearby eigenvalues should
roughly behave as independent random variables. Thus, properly renormalized, the
eigenvalues should look like a Poisson cloud. This has been proved to be true locally
near a typical energy (see e.g. [8,15,29,32]) in the sense that the locally renormalized
eigenvalue process converges weakly to a Poisson process. In the present paper, we
show the asymptotic ergodicity of the renormalized eigenvalues i.e. that the process
of the renormalized eigenvalues tested against a uniform random variable converges
in law to a Poisson process almost surely (see Theorems 0.1, 1.1, 1.5 and 1.6). This is
a global signature of the i.i.d behavior of the eigenvalues in the localized phase. It, in
particular, implies the convergence of the empirical distribution of the unfolded level
spacings to the exponential function (see Theorem 1.2) or enables one to compute the
asymptotics of the empirical distribution of the level spacing (see Theorem 1.4) or that
of any marginal of the eigenvalue or renormalized eigenvalues process.

We now recall some well known facts on the Anderson model (see e.g. [21]) and
state a version of our main result for this model. We will turn to general operators in
the next section.
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Asymptotic ergodicity in the localized phase 869

One has

• for almost every ω = (ωn)n∈Zd , the spectrum of Hω is equal to the set � :=
[−2d, 2d] + supp g;

• there exists a bounded density of states, say E �→ ν(E), such that, for any contin-
uous function ϕ : R → R, one has

∫

R

ϕ(E)ν(E)d E = E(〈δ0, ϕ(Hω)δ0〉). (0.3)

Here, and in the sequel, E(·) denotes the expectation with respect to the random
parameters, and P(·) the probability measure they induce.
Let N be the integrated density of states of Hω i.e. N is the distribution function
of the measure ν(E)d E . The function ν is only defined E-almost everywhere. In
the sequel, when we speak of ν(E) for some E , we mean that the non decreasing
function N is differentiable at E and that ν(E) is its derivative at E ;

• for λ large, ω almost surely, the spectrum of Hω is pure punctual i.e. only made
of eigenvalues; the associated eigenvalues are exponentially decaying; moreover,
one has dynamical localization in the sense described above.

For L ∈ N, let 
 = 
L = [−L , L]d be a large box and |
| := #
 = (2L + 1)d be
its cardinality. Let Hω(
) be the operator Hω restricted to 
 with periodic boundary
conditions. The notation |
| → +∞ is a shorthand for considering 
 = 
L in the
limit L → +∞. Let us denote the eigenvalues of Hω(
) ordered increasingly and
repeated according to multiplicity by E1(ω,
) ≤ E2(ω,
) ≤ · · · ≤ E|
|(ω,
).

For t ∈ [0, 1], consider the following point process

�(ω, t,
) =
|
|∑

n=1

δ|
|[N (En(ω,
))−t]. (0.4)

The values N (E1(ω,
)) ≤ · · · ≤ N (En(ω,
)) ≤ · · · ≤ N (E|
|(ω,
)) are
called the renormalized or unfolded eigenvalues or levels (see e.g. [30]).

We prove

Theorem 0.1 For sufficiently large coupling constant λ, ω-almost surely, when
|
| → +∞, the probability law of the point process �(ω, ·,
) under the uniform
distribution 1[0,1](t)dt converges to the law of the Poisson point process on the real
line with intensity 1.

This proves a conjecture by N. Minami (see [28,31]); a weaker version of Theorem 0.1,
namely, L2-convergence in ω when d = 1, is proved in [31].

Theorem 0.1, in particular, implies the convergence of the level spacings statistics
already obtained for this model under more restrictive assumptions in [15] (see also
Theorem 1.4 in the present paper for more details). Indeed, in Theorem 0.1, we do not
make any regularity assumption on the density of states E �→ ν(E).

Actually, Theorem 0.1 is a prototype of the general result we state and prove below.
Essentially, we prove that the claim in Theorem 0.1 holds in the localization region for
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870 F. Klopp

any random Hamiltonian satisfying a Wegner and a Minami estimate (see assumptions
(W) and (M) in Sect. 1). To do so, we use the analysis made in [15]; in particular, our
analysis relies on a slight generalization of one of the approximation theorems proved
in [15], namely, Theorem 1.16.

It is also interesting to compare Theorem 0.1 to the local eigenvalue statistics that
have been obtained in [29] for the discrete Anderson model (see also [8,15,32] for
similar results for other models). There, one studies�(ω, t,
) for fixed t . It is shown
that�(ω, t,
) converges weakly to a Poisson process (under the assumption that N is
differentiable and has a positive derivative at the energy E = N−1(t)). That is, for any
P ∈ N

∗, any (Ip)1≤p≤P measurable subsets of R and any (kp)1≤p≤P integers, one has

P
({
ω; ∀1 ≤ p ≤ P, 〈�(ω, t,
), 1Ip 〉 = kp

}) →|
|→+∞

p∏

p=1

e−|Ip | (|Ip|)kp

kp! (0.5)

Actually, the study done in [15] gives a result stronger than (0.5) under slightly weaker
assumptions.

In the present paper, we study the process for a “random” t but obtain an almost
sure convergence result. This gives access in particular to the level spacings statistics
(see Theorems 1.2 and 1.4) but also all the marginals of the process under very mild
assumptions.

1 The results

Consider Hω = H0 +Vω, a Z
d -ergodic random Schrödinger operator on H = L2(Rd)

or �2(Zd) (see e.g. [33,35]). Typically, H0, the deterministic part of the random Ham-
iltonian Hω, is the Laplacian −�, possibly perturbed by a periodic potential. Magnetic
fields can be considered as well; in particular, the Landau Hamiltonian is also admis-
sible as a background Hamiltonian. We assume that H0 is essentially self-adjoint on
C∞

0 (R
d) or C0(Z

d) (the space of sequences with compact support) and that the operator
has at most polynomially growing coefficients. For the sake of simplicity, we assume
that Vω is almost surely bounded; hence, almost surely, Hω has the same domain as H0.

1.1 The setting and the assumptions

For 
, a cube in either R
d or Z

d , we let Hω(
) be the self-adjoint operator Hω
restricted to
 with periodic boundary conditions. As in [15], our analysis stays valid
for Dirichlet boundary conditions.

In the sequel, we shall denote by 1J (H) the spectral projector of the operator H
on the energy interval J . E(·) denotes the expectation with respect to ω.

1.1.1 Independence at a distance

Our first assumption will be an independence assumption for local Hamiltonians that
are far away from each other, that is,
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Asymptotic ergodicity in the localized phase 871

(IAD) There exists R0 > 0 such that for any two cubes 
 and 
′ such that
dist(
,
′) > R0, the random Hamiltonians Hω(
) and Hω(
′) are sto-
chastically independent.

Remark 1.1 This assumption may be relaxed to assume that the correlation between
the random Hamiltonians Hω(
) and Hω(
′)decays sufficiently fast as dist(
,
′) →
+∞. We refer to [15] for more details.

1.1.2 Eigenvalue estimates

Let� be the almost sure spectrum of Hω; its existence is guaranteed by the ergodicity
assumption of Hω. Pick I a relatively compact open subset of�. Assume the following
holds:

(W) a Wegner estimate holds in I , i.e. there exists C > 0 such that, for J ⊂ I , and

, a cube in R

d or Z
d , one has

E [tr(1J (Hω(
)))] ≤ C |J | |
|. (1.1)

(M) a Minami estimate holds in I , i.e. there exists C > 0 and ρ > 0 such that, for
J ⊂ I , and 
, a cube in R

d or Z
d , one has

E [tr(1J (Hω(
))) · [tr(1J (Hω(
)))− 1]] ≤ C(|J | |
|)1+ρ. (1.2)

Remark 1.2 The Wegner estimate (W) has been proved for many random Schrödinger
models e.g. for both the discrete and the continuous Anderson models under rather
general conditions on the single site potential and on the randomness (see e.g. [19,21,
22,36]) but also for other models (see e.g. [17,24]). The left-hand side in (1.1) can be
lower bounded by the probability to have at least one eigenvalue in J .

Weaker forms of assumption (W) i.e. when the right-hand side is replaced with
C |J |α |
|β for some α ∈ (0, 1] and β ≥ 1, are known to hold also for some non
monotonous models (see e.g. [16,20,23]). This is sufficient for our proofs to work
if one additionally knows that the integrated density of states is a Hölder continuous
function.

On the Minami estimate (M), much less is known. For the discrete Anderson model,
it holds in arbitrary dimension with I = � (see [4,7,18,29]). For the continuous
Anderson model in any dimension, in [8], it is shown to hold at the bottom of the
spectrum under more restrictive conditions on the single site potential than needed
to prove the Wegner estimate (W). These proofs yield an optimal exponent ρ = 1.
In dimension 1, regardless of the random model under consideration, in [25], it is shown
that the Minami estimate holds at energies in the localization region (see assumption
(Loc) below) provided a Wegner estimate is known. In this case, the exponent ρ can
be taken arbitrarily close to 1.

Finally, let us note that the left-hand side in (1.2) can be lower bounded by the prob-
ability to have at least two eigenvalues in J . So, (M) can be interpreted as a measure
of the independence of nearby eigenvalues.
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872 F. Klopp

The integrated density of states of Hω (see the introduction) can also be defined as
the limit

N (E) := lim|
|→+∞
#{e.v. of Hω(
) less than E}

|
| . (1.3)

By (W), N (E) is the distribution function of a measure that is absolutely continuous
with respect to to the Lebesgue measure on R. Let ν be the density of state of Hω
i.e. the distributional derivative of N . In the sequel, for a set I, |N (I )| denotes the

Lebesgue measure of N (I ) i.e. |N (I )| =
∫

I
ν(E)d E .

1.1.3 The localization region

Let us now describe what we call the localized regime in the introduction. For
L ≥ 1, 
L denotes the cube [−L/2, L/2]d in either R

d or Z
d . In the sequel, we

write 
 for 
L i.e. 
 = 
L and when we write |
| → +∞, we mean L → +∞.
For H = L2(Rd) or �2(Zd) and a vector ϕ in H, we define

‖ϕ‖x =
{

‖1
(x)ϕ‖2 where 
(x) = {y; |y − x | ≤ 1/2} if H = L2(Rd),

|ϕ(x)| if H = �2(Zd).

(1.4)

Let I be a compact interval. We assume that I lies in the region of complete localization
(see e.g. [12,13]) for which we use the following finite volume version:

(Loc) for all ξ ∈ (0, 1), one has

sup
L>0

sup
supp f ⊂I

| f |≤1

E

⎛

⎝
∑

γ∈Zd

e|γ |ξ ‖1
(0) f (Hω(
L))1
(γ )‖2

⎞

⎠ < +∞. (1.5)

Remark 1.3 Such regions of localization have been shown to exist and described for
many random models (see e.g. [2,3,13,16,17,20,23,24,35]); a fairly recent review
can be found in [21]; other informational texts include [12,33].

Once a Wegner estimate is known (though it is not an absolute requirement see
e.g. [6,10,11,14]), the typical regions where localization holds are vicinities of the
edges of the spectrum. One may have localization over larger regions (or the whole)
of the spectrum if the disorder is large like in Theorem 0.1.

The assumption (Loc) may be relaxed; we refer to Remark 1.3 of [15] for more
details.

For L ∈ N, recall that 
 = 
L and that Hω(
) is the operator Hω restricted to

 with periodic boundary conditions. The notation |
| → +∞ is a shorthand for
considering 
 = 
L in the limit L → +∞.
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Asymptotic ergodicity in the localized phase 873

Finally, let E1(ω,
) ≤ E2(ω,
) ≤ · · · ≤ EN (ω,
) ≤ · · · denote the eigen-
values of Hω(
) ordered increasingly and repeated according to multiplicity. Actually,
the Minami estimate (M) implies that ω almost surely the eigenvalues are simple.

1.2 The results

For the finite volume approximations, we state our results in two cases. In the first
case described in Sect. 1.2.1, we consider a macroscopic energy interval i.e. the energy
interval in which we study the eigenvalues is a fixed compact interval where all the
above assumptions hold. In the second case described in Sect. 1.2.2, the energy inter-
val shrinks to a point but not too fast so as to contain enough eigenvalues, that is,
asymptotically infinitely many eigenvalues.

We also consider another point of view on the random Hamiltonian. Namely, under
assumption (Loc), in I , one typically proves that the spectrum of Hω is made only
of eigenvalues and that to these eigenvalues, one associates exponentially decaying
eigenfunctions (exponential or Anderson localization) (see e.g. [12,13,21,33]). One
can then enumerate these eigenvalues in an energy interval by considering only those
with localization center (i.e. with most of their mass) in some cube 
 and study the
thus obtained eigenvalue process. This is done in Sect. 1.2.3.

1.2.1 Macroscopic energy intervals

For J = [a, b] a compact interval such that N (b)− N (a) = |N (J )| > 0 and a fixed
configuration ω, consider the point process

�J (ω, t,
) =
∑

En(ω,
)∈J

δ|N (J )||
|[NJ (En(ω,
))−t] (1.6)

under the uniform distribution in [0, 1] in t ; here we have set

NJ (·) := N (·)− N (a)

N (b)− N (a)
= N (·)− N (a)

|N (J )| . (1.7)

Our main result is

Theorem 1.1 Assume (IAD), (W), (M) and (Loc) hold. Assume that J ⊂ I , the loca-
lization region, is such that |N (J )| > 0.

Then, ω-almost surely, as |
| → +∞, the probability law of the point process
�J (ω, ·,
) under the uniform distribution 1[0,1](t)dt converges to the law of the
Poisson point process on the real line with intensity 1.

First, let us note that Theorem 0.1 is an immediate consequence of Theorem 1.1 as
it is well known that, for the discrete Anderson model at large disorder, the whole
spectrum is localized in the sense of (Loc) (see e.g. [21]).

A number of spectral statistics for the unfolded eigenvalues are immediate conse-
quences of Theorem 1.1 and the results of [30]. For example, by [30, Proposition 4.4],
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874 F. Klopp

Theorem 1.1 implies the convergence of the empirical distribution of unfolded level
spacings to e−x (see [15,30,31]), namely,

Theorem 1.2 Assume (IAD), (W), (M) and (Loc) hold. Assume that J ⊂ I , the loca-
lization region, is such that |N (J )| > 0. Let N (J, ω,
) be the random number of
eigenvalues of Hω(
) in J . Define the renormalized eigenvalue (or level) spacings in
the following way

∀n, δNn(ω,
) = |
|(N (En+1(ω,
))− N (En(ω,
))) ≥ 0.

Define the empirical distribution of these spacings to be the random numbers, for
x ≥ 0

DRL S(x; J, ω,
) = #{En(ω,
) ∈ J s.t. δNn(ω,
) ≥ x}
N (J, ω,
)

.

Then, ω-almost surely, as |
| → +∞, DRL S(x; J, ω,
) converges uniformly to
e−x 1x≥0.

We refer to [30] for more results on the statistics of asymptotically ergodic sequences.
As in [15], one can also study the statistics of the levels themselves i.e. before

unfolding. Using classical results on transformations of point processes (see [5,34])
and the fact that N is Lipschitz continuous and increasing, one obtains

Theorem 1.3 Assume (IAD), (W), (M) and (Loc) hold. Assume that J = [a, b] ⊂ I
is a compact interval in the localization region satisfying |N (J )| > 0.
Define

• the probability density νJ (·) := 1

|N (J )|ν(·)1J (·) where n = d N

d E
is the density of

states of Hω;
• the point process �̃J (ω, t,
) =

∑
En(ω,
)∈J

δν(t)|
|[En(ω,
)−t].

Then, ω-almost surely, the probability law of the point process �̃J (ω, ·,
) under
the distribution νJ (t)dt converges to the law of the Poisson point process on the real
line with intensity 1.

We note that, in Theorem 1.3, we do not make any regularity assumption on N except
for the Wegner estimate. This enables us to remove the regularity condition imposed
on the density of states ν in the proof of the almost sure convergence of the level
spacings statistics given in [15]. Thus, we prove

Theorem 1.4 Assume (IAD), (W), (M) and (Loc) hold. Pick J ⊂ I a compact inter-
val in the localization region such that |N (J )| > 0. Let N (J, ω,
) be the random
number of eigenvalues of Hω(
) in J . Define the eigenvalue (or level) spacings as

∀n, δEn(ω,
) = |
|(En+1(ω,
)− En(ω,
)) ≥ 0
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Asymptotic ergodicity in the localized phase 875

and the empirical distribution of these spacings to be the random numbers, for x ≥ 0

DL S(x; J, ω,
) = #{En(ω,
) ∈ J s.t. δEn(ω,
) ≥ x}
N (J, ω,
)

.

Then, ω-almost surely, as |
| → +∞, DL S(x; J, ω,
) converges uniformly to the
distribution x �→ gν,J (x) where gν,J (x) = 1

|N (J )|
∫

J e−|N (J )|·x ·ν(λ)ν(λ)dλ.

1.2.2 Microscopic energy intervals

One can also prove a version of Theorem 1.1 that is local in energy. One proves

Theorem 1.5 Assume (IAD), (W), (M) and (Loc) hold in I . Pick E0 ∈ I .

Fix (I
)
 a decreasing sequence of intervals such that supI
 |x | →|
|→+∞ 0.

Let us assume that

if �′ = o(L) then
|N (E0 + I
L+�′ )|
|N (E0 + I
L )|

→
L→+∞ 1. (1.8)

Then, there exists τ = τ(ρ) such that, if, for 
 large, one has

|N (E0 + I
)| · |I
|−1−ρ̃ ≥ 1 and |
|δ · |N (E0 + I
)| →|
|→+∞ +∞ (1.9)

for some δ ∈ (0, 1) and ρ̃ ∈ (0,+∞] satisfying

δ ρ̃

1 + ρ̃
< τ (1.10)

then, ω-almost surely, the probability law of the point process�E0+I
(ω, ·,
) under
the uniform distribution 1[0,1](t)dt converges to the law of the Poisson point process
on the real line with intensity 1.

The exponent τ = τ(g) can be computed explicitly (see (3.62)). The first condition
in (1.9) requires that N is not too flat at E0. How flat it may be depends on the exponent
ρ̃, thus, in part on the value of τ if δ is not less that τ . Indeed, if δ < τ , then (1.10) is
satisfied for any ρ̃ > 0 and actually, we can take ρ̃ = +∞ i.e. drop the first condition
in (1.9); note that this is what happens in the case of macroscopic intervals. If δ ≥ τ ,
a condition on the flatness of N kicks in.

Condition (1.8) is necessary as we don’t impose anything else on how the density
of states of the intervals E0 + I
 be have; they could oscillate which could presumably
ruin convergence.

As a consequence of Theorem 1.5, using the results of [30], one shows that one
has convergence of the unfolded local level spacings distribution at any point of the
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876 F. Klopp

almost sure spectrum if one looks at “large” enough neighborhoods of the point; here,
“large” does not mean that the neighborhood needs to be large: it merely needs not to
shrink too fast to 0 (see (1.9)). In particular, the conclusions of Theorem 1.2 hold true
for the eigenvalues in E0 + I
 satisfying the assumptions of Theorem 1.5.

1.2.3 Results for the random Hamiltonian on the whole space

In our previous results, we considered the eigenvalues of the random Hamiltonian
restricted to a box. As in [15], one can also consider the operator Hω on the whole
space. Therefore, we recall

Proposition 1.1 ([15]) Assume (IAD), (W) and (Loc). Fix q > 2d. Then, for any
ξ ∈ (0, 1), ω-almost surely, there exists Cω > 1 such that E(Cω) < ∞, such that

1. with probability 1, if E ∈ I ∩ σ(Hω) and ϕ is a normalized eigenfunction asso-
ciated to E then, for any x(E, ω) ∈ R

d or Z
d that is a maximum of x �→ ‖ϕ‖x ,

one has, for x ∈ R
d ,

‖ϕ‖x ≤ Cω(1 + |x(E, ω)|2)q/2e−|x−x(E,ω)|ξ

where ‖ · ‖x is defined in (1.4).

We define x(E, ω) to be a center of localization for E or ϕ.
2. Pick J ⊂ I such that |N (J )| > 0. Let N f (J,
, ω) denotes the number of eigen-

values of Hω having a center of localization in 
. Then, there exists β > 0 such
that, for 
 sufficiently large, one has

∣∣∣∣
N f (J,
, ω)

|N (J )| |
| − 1

∣∣∣∣ ≤ 1

logβ |
| .

In view of Proposition 1.1, ω-almost surely, for L sufficiently large, there are only
finitely many eigenvalues of Hω in J having a localization center in
L . Thus, we can
enumerate these eigenvalues as E f

1 (ω,
) ≤ E f
2 (ω,
) ≤ · · · ≤ E f

N (ω,
) where
we repeat them according to multiplicity. As in the finite volume case,ω almost surely,
these eigenvalues are simple.

For t ∈ [0, 1], define the point process � f
J (ω, t,
) by (1.6) and (1.7) for those

eigenvalues. As a corollary of Theorem 1.1, we obtain

Theorem 1.6 Assume (IAD), (W), (M) and (Loc) hold. Assume that J ⊂ I , the local-
ization region, that |N (J )| > 0.

Then, ω-almost surely, the probability law of the point process � f
J (ω, ·,
) under

the uniform distribution 1[0,1](t)dt converges to the law of the Poisson point process
on the real line with intensity 1.

Theorem 1.6 also admits an corresponding analogue that is local in energy i.e. a coun-
terpart of Theorem 1.5.
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Asymptotic ergodicity in the localized phase 877

1.3 Outline of the paper

Let us briefly outline the remaining parts of the paper. In Sect. 2, we recall some
results from [15] that we build our analysis upon. The strategy of the proof will be
roughly to study the eigenvalues of the random operator where the integrated den-
sity of states, N (·), takes value close to t . Most of those eigenvalues, as in shown
in [15], can be approximated by i.i.d. random variables the distribution law of which
is roughly uniform on [0, 1] when properly renormalized. We then show that this
approximation is accurate enough to obtain the almost sure convergence announced
in Theorem 1.1.

Theorem 1.5 is proved in the same way and we only make a few remarks on this
proof in Sect. 3.7. Theorem 1.6 is deduced from Theorem 1.1 approximating the
eigenvalues of Hω by those of Hω(
) for sufficiently large
; this is done in Sect. 3.8.

Section 4 is devoted to the proof of Theorems 1.3 and 1.4. It relies on point process
techniques, in particular, on transformations of point processes (see e.g. [5,34]).

2 The spectrum of a random operator in the localized regime

Let us now recall some results describing the spectrum of a random operator in the
localized regime that we will use in our proofs. They are mostly taken from [15].

2.1 I.I.D approximations to the eigenvalues

The first ingredient of our proof is a description of most of the eigenvalues of Hω(
)
in some small interval, say, I
: it holds with a probability that tends to 1 faster than
any negative power of |
|. The description is given in terms of i.i.d. random variables
that we construct explicitly: they are the unique eigenvalue inside I
 of the restrictions
of Hω(
) to disjoint cubes that are much smaller than 
. The distribution of these
random variables is computed in Lemma 2.2 in Sect. 2.2.

2.1.1 Localization estimates and localization centers

We first recall a result of [15] defining and describing localization centers, namely,

Lemma 2.1 ([15]) Under assumptions (W) and (Loc), for any p > 0 and ξ ∈ (0, 1),
there exists q > 0 such that, for L ≥ 1 large enough, with probability larger than
1 − L−p, if

1. ϕn,ω is a normalized eigenvector of Hω(
L) associated to En,ω ∈ I ,
2. xn(ω) ∈ 
L is a maximum of x �→ ‖ϕn,ω‖x in 
L ,

then, for x ∈ 
L , one has

‖ϕn,ω‖x ≤ Lqe−|x−xn(ω)|ξ

where ‖ · ‖x is defined in (1.4).
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Moreover, define C(ϕ) = {x ∈ 
; ‖ϕ‖x = maxγ∈
 ‖ϕ‖γ } to be the set of locali-
zation centers for ϕ. Then, the diameter of C(ϕ j (ω,
)) is less than Cq(log |
|)1/ξ .

For each eigenfunction ϕ, we define its localization center in a unique way by ordering
the set C(ϕ) lexicographically and taking its supremum.

2.1.2 An approximation theorem for eigenvalues

Pick ξ ∈ (0, 1), R > 1 large and ρ′ ∈ (0, ρ) where ρ is defined in (M). For a cube


, consider an interval I
 = [a
, b
] ⊂ I . Set �′
 = (R log |
|) 1
ξ . We say that the

sequence (I
)
 is (ξ, R, ρ′′)-admissible if, for any 
, one has

|
| |N (I
)| ≥ 1, |N (I
)| |I
|−1−ρ′′ ≥ 1, |N (I
)|
1

1+ρ′′ (�′
)d ≤ 1. (2.1)

The reduction theorem we will use is a modified version of [15, Theorem 1.15], namely,

Theorem 2.1 Assume (IAD), (W), (M) and (Loc) hold. Let 
 = 
L be the cube of
center 0 and side length L.

Pick ρ′ ≥ ρ and ρ′′ ∈
(

0, ρ
1+d(ρ′+1)

)
where ρ is defined in (M). Pick a sequence

of intervals that is (ξ, R, ρ′′)-admissible, say, (I
)
 such that �′
 � �̃
 � L and

|N (I
)|
1

1+ρ′′ �̃d

 → 0 as |
| → ∞.

For any p > 0, for L sufficiently large (depending only on (ξ, R, ρ′′, p) but not on
the admissible sequence of intervals), there exists

• a decomposition of 
L into disjoint cubes of the form 
�
(γ j ) := γ j + [0, �
]d ,
where �
 = �̃
(1 + O(�̃
/|
L |)) = �̃
(1 + o(1)) such that
– ∪ j
�
(γ j ) ⊂ 
L ,
– dist (
�
(γ j ),
�
(γk)) ≥ �′
 if j �= k,
– dist (
�
(γ j ), ∂
L) ≥ �′
,
– |
L \ ∪ j
�
(γ j )| � |
L |�′
/�
,

• a set of configurations Z
 such that
– Z
 is large, namely,

P(Z
) ≥ 1 − |
|−p − exp
(
−c|N (I
)|(1+ρ)/(1+ρ′′)|
|�dρ′




)

− exp
(
−c|
||N (I
)|1/(1+ρ′′)�′
�−1




)
(2.2)

so that

• forω ∈ Z
, there exists at least
|
|
�d



(
1 + O

(
|N (I
)|1/(1+ρ′′)�d




))
disjoint boxes

(
�
(γ j )) j satisfying the properties:
1. the Hamiltonian Hω(
�
(γ j )) has at most one eigenvalue in I
, say, En(ω,


�
(γ j ));
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2. 
�
(γ j ) contains at most one center of localization, say xk j (ω, L), of an
eigenvalue of Hω(
) in I
, say Ek j (ω,
);

3. 
�
(γ j ) contains a center xk j (ω,
) if and only if σ(Hω(
�
(γ j )))∩ I
 �= ∅;
in which case, one has

|Ek j (ω,
)− En(ω,
�
(γ j ))| ≤ |
|−R and dist(xk j (ω, L),


L \
�
(γ j )) ≥ �′
 (2.3)

where we recall that �′
 = (R log |
|) 1
ξ ;

• the number of eigenvalues of Hω(
) that are not described above is bounded by

C |N (I
)||
|
(

|N (I
)|
ρ−ρ′′
1+ρ′′ �d(1+ρ′)


 + |N (I
)|−
ρ′′

1+ρ′′ (�′
)d+1�−1



)
; (2.4)

this number is o(|N (I
)||
|) provided

|N (I
)|−
ρ′′

1+ρ′′ (�′
)d+1 � �
 � |N (I
)|−
ρ−ρ′′

d(1+ρ′)(1+ρ′′) . (2.5)

We first note that the assumptions on (I
)
 in Theorem 2.1 imply that |I
| → 0
and |N (I
)| must go to 0 faster than logarithmically in |
| (see the right-hand side
of (2.5)).

We note that the statement of Theorem 2.1 is essentially void except if the probabil-
ity lower bounded in (2.2) does not go to 0. This will depend on the choice one makes
for the length scales �
 and on the size of N (I
) (resp. |I
| the two being linked
by (2.1)). How to make this choice depends on the problem one wants to analyze. An
example of such a choice is given in [15].

Let us now briefly explain how the length-scale � = �
 will be chosen in the
present analysis (see Sect. 3.2). We will use Theorem 2.1 on intervals I
 such that
|N (I
)| � |
|−α (for some α ∈ (0, 1) to be chosen) and set �
 � |N (I
)|−μ for
some μ ∈ (0, 1). Thus, log �′
 � log(log |
|) � log |
| � log �
 and (2.5) is
satisfied if the exponent μ is chosen so that

ρ′′

1 + ρ′′ < μ <
ρ − ρ′′

d(1 + ρ′)(1 + ρ′′)
. (2.6)

This is possible as ρ′ ≥ ρ and ρ′′ ∈
(

0, ρ
1+d(ρ′+1)

)
.

When comparing Theorem 2.1 with [15, Theorem 1.15], we see that we have intro-
duced a new parameter ρ′ > 0. The main benefit is that this will enable us to take ρ′′
and μ small (at the expense of taking ρ′ large) and, thus, take α close to 1.

Note that the left-hand side inequality in (2.5) implies that |N (I
)|
1

1+ρ′′ �̃d

 → 0 as

ρ−ρ′′
1+ρ < 1. With these choices, there exists χ ∈ (0, 1) such that the bound (2.4) then

becomes
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C |N (I
)||
|1−χ (2.7)

Notice that (2.6), ρ′ ≥ ρ and ρ′′ > 0 imply that μ ∈ (0, 1/d).
We still have one parameter to choose, namely, α. We will choose it in such way

that the lower bound in (2.2) tends quickly to 1. Pick α ∈ (0, 1) so that

max

(
1 + ρ

1 + ρ′′ − dμρ′, μ+ 1

1 + ρ′′

)
<

1

α
. (2.8)

This is possible as ρ′ ≥ ρ, ρ′′ ∈
(

0, ρ
1+d(ρ′+1)

)
and (2.6) imply

1 < μ+ 1

1 + ρ′′ and 1 <
1 + ρ

1 + ρ′′ − dμρ′.

Thus, as �
 � |N (I
)|−μ and |N (I
)| � |
|−α , one computes that

|N (I
)|(1+ρ)/(1+ρ′′)|
|�dρ

 � |N (I
)|(1+ρ)/(1+ρ′′)−dρ′μ|
|

≥ |
|1−α[(1+ρ)/(1+ρ′′)−dρ′μ],

and

|
||N (I
)|1/(1+ρ′′)�′
�−1

 � |N (I
)|1/(1+ρ′′)+μ|
|(log |
|)1/ξ

≥ |
|1−α[1/(1+ρ′′)+μ](log |
|)1/ξ .

Hence, as, by (2.8), 1 − α
[

1+ρ
1+ρ′′ − dρ′μ

]
> 0 and 1 − α

[
1

1+ρ′′ + μ
]
> 0, the lower

bound in estimate (2.2) becomes

P(Z
) ≥ 1 − |
|−p. (2.9)

In the proofs of Theorem 1.1 and 1.5, we will use Theorem 2.1 on intervals I
 of
weight N (I
) and with length-scales �
 chosen as just explained (see Sect. 3.2.1).
We will need some additional restrictions on the exponents ρ′, μ and α that will be
introduced in Sect. 3.2.1.

We will not give a self-contained proof of Theorem 2.1. In the appendix, Sect. 5,
we only indicate the (very few) modifications that are to be made to the proof of [15,
Theorem 1.15] to obtain Theorem 2.1.

2.2 Distribution of the unfolded eigenvalues

The second ingredient of our proof is the distribution of the unfolded eigenvalues for
the operator Hω restricted to the small cubes (
�(γ ))γ constructed in Theorem 2.1.

123



Asymptotic ergodicity in the localized phase 881

Pick 1 � �′ � �. Consider a cube 
 = 
� centered at 0 of side length �. Pick
an interval I
 = [a
, b
] ⊂ I (i.e. I
 is contained in the localization region) for �
sufficiently large.

Consider the following random variables:

• X = X (
, I
) = X (
, I
, �′) is the Bernoulli random variable

X = 1Hω(
) has exactly one eigenvalue in I
 with localization center in 
�−�′

• Ẽ = Ẽ(
, I
) is this eigenvalue conditioned on X = 1.

Let ϑ be the distribution function of Ẽ . We know

Lemma 2.2 ([15]) Assume (W), (M) and (Loc) hold. For κ ∈ (0, 1), one has

|P(X = 1)− |N (I
)||
|| � (|
||I
|)1+ρ + |N (I
)||
|�′�−1 + |
|e−(�′)κ

(2.10)

where N (E) denotes the integrated density of states of Hω. One has

|(ϑ(x)− ϑ(y)) P(X = 1)| � |x − y||I
||
|.

Moreover, setting N (x, y,
) := [N (a
 + x |I
|)− N (a
 + y|I
|)]|
|, one has

|(ϑ(x)− ϑ(y)) P(X = 1)− N (x, y,
)|
� (|
||I
|)1+ρ + |N (x, y,
)|�′�−1 + |
|e−(�′)κ . (2.11)

Estimates (2.10) and (2.11) are of interest mainly if their right-hand side, which are
to be understood as error terms, are smaller than the main terms. In (2.10), the main
restriction comes from the requirement that N (I
)|
| � (|
||I
|)1+ρ which is
essentially a requirement that N (I
) should not be too small with respect to |I
|.
Lemma 2.2 will be used in conjunction with Theorems 2.1. The cube
 in Lemma 2.2
will be the cube
� in Theorem 2.1. Therefore, the requirements induced by the other
two terms are less restrictive. The second term is an error term if �′ � �which is guar-
anteed by assumption; this induces no new requirement. To guarantee that the third
term in the right-hand side of (2.10) be small compared to |N (I
)||
|, one requires
that |N (I
)||
| � �de−(�′)κ . This links the size of the cube
 = 
� where we apply
Lemma 2.2 to the size of |N (I
)|. The right choice for � (that is conditioned by The-
orem 2.1) is � � |N (I
)|−μ. In our application, we will pick �′ � (log �)1/ξ for some
ξ ∈ (0, 1) coming from the localization estimate (Loc); so taking κ > ξ ensures that
the third term in the right-hand side of (2.10) is small compared to |N (I
)||
|. For
further details, we refer to the comments following the statement of Theorem 2.1 and
Sect. 3.2.1 for details.

In (2.11), the main restriction comes from the requirement that N (x, y,
) �
(|
||I
|)1+ρ . This is essentially a requirement on the size of |x − y|: it should not
be too small. On the other hand, we expect the spacing between the eigenvalues
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of Hω(
L) to be of size |
L |−1. Note that, here, we keep the notations of Theo-
rem 2.1. Recall that the cube 
 in Lemma 2.2 will be the cube 
� in Theorem 2.1,
hence, a cube much smaller than 
L . So to distinguish between the eigenvalues,
one needs to be able to know ϑ up to a resolution |x − y||I
| ∼ |
L |−1. This will
force us to use Lemma 2.2 on intervals I
 such that |N (I
)| � |
|−α for some
α ∈ (0, 1) close to 1 (see the discussion following Theorem 2.1 and Sect. 3.2.1).
Moreover, the approximation of ϑ(x)− ϑ(y) by N (x, y,
)/P(X = 1) will be good
if |x − y| � (|
L ||I
|)−1 � |
L |−χ for some χ > 0.

2.3 A large deviation principle for the eigenvalue counting function

Define the random numbers

N (I
,
,ω) := #{n; En(ω,
) ∈ I
}. (2.12)

Write I
 = [a
, b
] and recall that |N (I
)| = N (b
) − N (a
) where N is the
integrated density of states. Using Theorem 2.1 and standard large deviation estimates
for i.i.d. random variables, one shows that N (I
,
,ω) satisfies a large deviation
principle, namely,

Theorem 2.2 Assume (IAD), (W), (M) and (Loc) hold. Recall that ρ is defined in
Assumption (M).

For any ρ′′ ∈ (0, ρ/(1 + (1 + ρ)d)), δ ∈ (0, 1) and δ′ ∈ (0, 1 − δ), there exists
δ′′ > 0 such that, if (I
)
 is a sequence of compact intervals in the localization region
I satisfying

1. |N (I
)||
|δ → 0 as |
| → +∞
2. |N (I
)| |
|1−δ′ → +∞ as |
| → +∞
3. |N (I
)| |I
|−1−ρ′′ → +∞ as |
| → +∞,

then, for any p > 0, for |
| sufficiently large (depending on ρ′′, δ and δ′ but not on
the specific sequence (I
)
), one has

P

(
|N (I
,
,ω)− |N (I
)||
|| ≥ |N (I
)||
|1−δ′′) ≤ |
|−p. (2.13)

This result is essentially Theorem 1.8 in [15]; the only change is a change of scale for
|N (I
)| in terms of |
| (see point (1)). Up to this minor difference, the proofs of the
two results are the same.

Assume that, for J , an interval in the region of localization I , one has the lower
bound |N (x)− N (y)| � |x − y|1+ρ′′

for (x, y) ∈ I 2 and some ρ′′ ∈ (0, ρ/(1 + (1 +
ρ)d)). Then, as K �→ |N (K )| is a measure, thus, additive, for K ⊂ J the region of
localization, one may split K into intervals (Kk)k such that |N (Kk)| � |
|−δ , and
sum the estimates given by Theorem 2.2 on each Kk to obtain that

P

(
|N (K ,
, ω)− |N (K )||
|| ≥ |N (K )||
|1−δ′) � |
|−p.
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Though we will not need it, this gives an interesting large deviation estimate for inter-
vals of macroscopic size.

3 The proofs of Theorems 1.1, 1.6 and 1.5

We first prove Theorem 1.1. Theorem 1.6 is then a immediate consequence of Theo-
rem 1.1 and the fact that most of the eigenvalues of Hω(
) and those of Hω having
center of localization in 
 differ at most by L−p for any p and L sufficiently large
(see Sect. 3.8). Theorem 1.5 is proved in the same way as Theorem 1.1 in Sect. 3.8;
thus, we skip most of the details of this proof.

We shall use the following standard notations: a � b means there exists c < ∞ so

that a ≤ cb; 〈x〉 = (1 + |x |2) 1
2 . We write a � b when a � b and b � a.

From now on, to simplify notations, we write N instead of NJ so that the density
of states increases from 0 to 1 on J . We also write � instead of �J .

For ϕ : R → R continuous and compactly supported, set

Lω,
(ϕ) := Lω,J,
 :=
1∫

0

e−〈�(ω,t,
),ϕ〉dt (3.1)

and

〈�(ω, t,
), ϕ〉 :=
∑

En(ω,
)∈J

ϕ(|
|[N (En(ω,
))− t]) (3.2)

To prove Theorems 1.1 and 1.5, it suffices (see [31]) to prove

Theorem 3.1 Forϕ : R → R
+ continuously differentiable and compactly supported,

ω-almost surely,

Lω,
(ϕ) →|
|→+∞ exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠ . (3.3)

Then, a standard dense subclass argument shows that the limit (3.3) holds for com-
pactly supported, continuous, non negative functions. This completes the proof of
Theorem 1.1.

3.1 The proof of Theorem 3.1

The integrated density of states N is non decreasing. By assumption (W), it is Lips-
chitz continuous. One can partition [0, 1] =

⋃
m∈M Im where N is at most countable

and (Im)m∈M are intervals such that either

• Im is open and N is strictly increasing on the open interval N−1(Im); we then say
that m ∈ M+;
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• Im reduces to a single point and N is constant on the closed interval N−1(Im); we
then say that m ∈ M0.

We prove

Lemma 3.1 For the limit (3.3) to hold ω-almost surely, it suffices that, for any
m ∈ M+, for ϕ : R → R

+ continuously differentiable and compactly supported,
ω-almost surely, one has

∣∣∣∣∣∣
Lω,Im ,
(ϕ)− exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣
→|
|→+∞ 0. (3.4)

Proof As for m ∈ M0, Im is a single point, one computes

Lω,
(ϕ) =
∑

m∈M+

∫

Im

e−〈�(ω,t,
),ϕ〉dt. (3.5)

Assume J = [a, b]. Fix t ∈ Im = (N (am), N (bm)) for some m ∈ M+. For m ∈
M0, N is constant equal to, say, Nm on Im . Assume that ϕ has its support in (−R, R).
Then, for |
| large (depending only on R), one computes

〈�(ω, t,
), ϕ〉 =
∑

m∈M0

#{En(ω,
) ∈ Im}ϕ(|
|[Nm − t)])

+
∑

m∈M+

∑

En(ω,
)∈Im

ϕ(|
|[N (En(ω,
))− t)])

=
∑

En(ω,
)∈Im

ϕ(|
|[N (En(ω,
))− t)])

=
∑

En(ω,
)∈Im

ϕ(|N (Im)||
|[NIm (En(ω,
))

− (t − N (am))/|N (Im)|)])
= 〈�Im (ω, (t − N (am))/|N (Im)|,
), ϕ〉

On the other hand

N (bm)∫

N (am)

e−〈�Im (ω,(t−N (am))/|N (Im )|,
),ϕ〉dt = |N (Im)|
1∫

0

e−〈�Im (ω,t,
),ϕ〉dt.

Recall that, as the measure defined by N is absolutely continuous with respect to the
Lebesgue measure, we have

∑

m∈M+
|N (Im)| = |N (J )| = 1.
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Thus, by Lebesgue’s dominated convergence theorem, as N+ is at most countable,
we get that, if the necessary condition given in Lemma 3.1 is satisfied, then ω-almost
surely, we get

lim|
|→+∞ Lω,
(ϕ) =
∑

m∈M+
|N (Im)| lim|
|→+∞ Lω,Im ,
(ϕ).

Thus, we have proved Lemma 3.1. ��
From now on, we assume that N is a strictly increasing one-to-one mapping from J
to [0, 1] and prove Theorem 3.1 under this additional assumption.

Therefore, we first bring ourselves back to proving a similar result for “local” eigen-
values i.e. eigenvalues of restrictions of Hω(
) to cubes much smaller than 
 that
lie inside small intervals i.e. much smaller than J . The “local” eigenvalues are those
described by points (1), (2), (3) of Theorem 2.1. Using Lemma 2.2 then essentially
brings ourselves back to the case of i.i.d. random variables uniformly distributed on
[0, 1].

Theorem 2.1 does not give control on all the eigenvalues. To control the inte-
gral (3.1), this is not necessary: a good control of most of the eigenvalues is sufficient
as Lemma 3.8 below shows. Theorem 2.2, which is a corollary of Theorem 2.1 and
Lemma 2.2, is used to obtain good bounds on the number of controlled eigenvalues
in the sense of Lemma 3.8.

3.2 Reduction to the study of local eigenvalues

Assume we are in the setting of Theorem 1.1 and that N is as above i.e. N is a strictly
increasing Lipschitz continuous function from J to [0, 1]. Recall that ν is its derivative,
the density of states.

3.2.1 Choosing the right scales

To obtain our results, we will use Theorem 2.1 and Lemma 2.2. Therefore, we split
the interval I into small intervals and choose the length scale � = �
 so that we can
apply both Theorem 2.1 and Lemma 2.2 to these intervals. We now explain how this
choice is done.

Recall that ρ is defined in (M) and pick (ρ′, ρ′′) such that

ρ′ ≥ ρ+1+max

(
ρ,

1

d

)
and

ρ

1+2d(ρ′ − ρ)
<ρ′′ < ρ

1 + d(ρ′ + 1)
. (3.6)

The computations done right after Theorem 2.1 (see also [15, section 4.3.1]) show
that, for α ∈ (0, 1) satisfying (2.8) and μ ∈ (0, 1/d) satisfying (2.6) for I
 (in the
localization region) and � = �
 such that

|N (I
)| � |
|−α and �
 � |N (I
)|−μ (3.7)
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if, in addition, I
 satisfies

|N (I
)| ≥ |I
|1+ρ′′
, (3.8)

we can apply Theorem 2.1 and Lemma 2.2 to I
.
In addition to (2.6) and (2.8), we now require μ and α to satisfy

ρ − ρ′′

d(1 + ρ′′)(2ρ′ − ρ)
< μ and 1 + 1

2

(
ρ − ρ′′

1 + ρ′′ − dμρ

)
>

1

α
. (3.9)

This is possible as (3.6) implies that

ρ−ρ′′

1+ρ′′ −dμρ′< 1

2

(
ρ−ρ′′

1+ρ′′ −dμρ

)
and

ρ−ρ′′

d(1+ρ′′)(2ρ′−ρ) <
ρ−ρ′′

d(1+ρ′)(1+ρ′′)
.

We now define two more exponents that will be useful in the sequel:

• define β by

β := 1 − 1

α
+ 1 + ρ

1 + ρ′′ − dμρ − 1

α
> 2 − 2

α
+ ρ − ρ′′

1 + ρ′′ − dμρ > 0

(3.10)

using the second inequality in (3.9);
• pick κ satisfying

max

(
1,

1

dαβ

)
< κ <

1 + ρ′′

dαρ′′ (3.11)

which is possible by (3.6) as α ∈ (0, 1).

3.2.2 Reduction to small energy intervals

Partition J = [a, b] into disjoint intervals (J j,
)1≤ j≤ j
 of weight |N (J j,
)| ∼ |
|−α
so that j
 � |
|α .

Define the sets

B =
{

1 ≤ j ≤ j
; |N (J j,
)| ≤ |J j,
|1+ρ′′}
and G = {1, . . . , j
} \ B.

(3.12)

The set B is the set of “bad” indices j for which the interval J j,
 does not satisfy the
assumptions of Theorem 2.1, more precisely, does not satisfy the second condition
in (2.1) (that is (3.8)) for the exponent ρ′′.
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For j ∈ B, one has

|J j,
| ≥ |N (J j,
)|1/(1+ρ′′) = |
|−α/(1+ρ′′).

Thus, one gets

#B � |
|α/(1+ρ′′) (3.13)

Fix α′ ∈ (α,min[1, α(1 + 2ρ′′)/(1 + ρ′′)]). For j ∈ G, write J j,
 = [a
, b
) and
define

K j,
 := [a′

, b′


] ⊂ J j,
 where

⎧
⎨

⎩
a′

 = inf

{
a ≥ a
; N (a)− N (a
) ≥ |
|−α′}

,

b′

 = sup

{
b ≤ b
; N (b
)− N (b) ≥ |
|−α′}

.

that is, K j,
 is the interval J j,
 where small neighborhoods of the endpoints have
been remove.

Thus, our construction yields that

1. the total density of states of the set we have remove is bounded by

∑

j∈B

|N (J j,
)| +
∑

j∈G

|N (J j,
 \ K j,
)| � |
|−α+α/(1+ρ′′)

+ |
|−α′+α � |
|−(α′−α); (3.14)

2. for j ∈ G, t ∈ N (K j,
) and E ∈ J j ′,
 for j ′ �= j , one has

|
||N (E)− t | � |
|1−α′
.

Note that one has

1=|N (J )|=
∑

j∈G

|N (J j,
)|+
∑

j∈B

|N (J j,
)|=
∑

j∈G

|N (K j,
)|+O
(
|
|−(α′−α)) .

(3.15)

Recall (3.2). Thus, for 
 sufficiently large, by point (1) above, as ϕ is non negative,
one has

1∫

0

e−〈�(ω,t,
),ϕ〉dt =
∑

j∈G

∫

N (K j,
)

e−〈�(ω,t,
),ϕ〉dt + O
(
|
|−(α′−α))

=
∑

j∈G

∫

N (K j,
)

e−〈� j (ω,t,
),ϕ〉dt + O
(
|
|−(α′−α))
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where, as ϕ is compactly supported, by point (2) above, for |
| large, one has

〈� j (ω, t,
), ϕ〉 =
∑

En(ω,
)∈J j,


ϕ(|
|[N (En(ω,
))− t]).

Point (1) and (3.15) then yield

1∫

0

e−〈�(ω,t,
),ϕ〉dt =
∑

j∈G

∫

N (J j,
)

e−〈� j (ω,t,
),ϕ〉dt + O
(
|
|−(α′−α))

=
∑

j∈G

|N (J j,
)|
1∫

0

e−〈�J j,
 (ω,t,
),ϕ〉dt + O
(
|
|−(α′−α))

(3.16)

where �J j,
(ω, t,
) is defined by (1.6) for J = J j,
.

3.2.3 Asymptotic ergodicity uniformly for the small intervals

Following the proof of Lemma 3.1, the above computation shows that the limit (3.4)
will hold ω-almost surely if we prove that, ω almost surely, one has

sup
j∈G

∣∣∣∣∣∣

1∫

0

e−〈�J j,
 (ω,t,
),ϕ〉dt − exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣
→|
|→+∞ 0. (3.17)

To prove (3.17), we first prove a weaker result, namely, almost sure convergence along
a subsequence.

Lemma 3.2 Pick (αL)L≥1 any sequence valued in [1/2, 2] such that αL → 1 when
L → +∞.

For κ > 1 satisfying (3.11) and for ϕ : R → R
+ continuously differentiable and

compactly supported, ω-almost surely, one has

sup
j∈G

∣∣∣∣∣∣

1∫

0

e
−〈�J j,
Lκ

(ω,t,
Lκ ),ϕαL 〉
dt − exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣
→

L→+∞ 0

(3.18)

where, for α > 0, we have set, ϕα(·) = ϕ(α ·).
Indeed, Lemma 3.2, (3.16) and (3.15) clearly imply the claimed almost sure conver-
gence on a subsequence; more precisely, it implies that, for (αL)L≥1 a sequence such
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Asymptotic ergodicity in the localized phase 889

that αL → 1 when L → +∞, ω-almost surely,

∣∣∣∣∣∣
Lω,
Lκ (ϕαL )− exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣
→

L→+∞ 0. (3.19)

which is the claimed almost sure convergence on a subsequence for the choice of
sequence αL = 1.

To obtain the almost sure convergence on the whole sequence, we prove

Lemma 3.3 Fix κ satisfying (3.11). Then, for some κ ′ > 0, for ϕ : R → R
+ con-

tinuously differentiable and compactly supported, ω-almost surely, for L sufficiently
large, one has

sup
Lκ≤L ′≤(L+1)κ

∣∣Lω,
L′ (ϕ)− Lω,
Lκ (ϕαL′ )
∣∣ � L−κ ′

(3.20)

where αL ′ = |
L ′ |/|
Lκ |.
As αL → 1 when L → +∞, equation (3.17) and, thus, Theorem 3.1, are immediate
consequences of (3.19) and (3.20).

3.3 The proof of Lemma 3.2

The proof of Lemma 3.2 will consist in reducing the computation of the limit (3.18) to
the case of i.i.d. random variables that have a distribution close to the uniform one. The
number of these random variables will be random as well but large; it is essentially
controlled by Theorem 2.2.

The reduction is done in three steps. First, using Theorem 2.1, we introduce a family
of i.i.d. random variables, the distribution of which is controlled by Lemma 2.2. Sec-
ond, in Lemma 3.4, we show that the Laplace transform of the process defined by these
random variables is close to the Laplace transform of the process we want to com-
pute; therefore, we use the description given by Theorem 2.1. Finally, in Lemma 3.5,
we show that Laplace transform of the process defined by the new random variables
converges to that of the Poisson process; therefore, we use the distribution computed
using Lemma 2.2.

Pick R large in Theorem 2.1. The construction done in Sect. 3.2.2 with the choice
of scales �
 and exponents μ, α, ρ′ and ρ′′ explained in Sect. 3.2.1 implies that, for
j ∈ G (see (3.12)), one can apply

• Theorem 2.1 to the energy interval I
 := J j,
 for Hω(
L), the small cubes being
of side length � = �
;

• Lemma 2.2 to the energy interval I
 := J j,
 and any of the cubes 
�(γ ) of the
decomposition obtained in Theorem 2.1.

For j ∈ G and (
�(γk))k , the cubes constructed in Theorem 2.1 (we write � = �
),
define the random variables:
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890 F. Klopp

• X j,k = X (
�(γk), J j,
) is the Bernoulli random variable

X j,k = 1Hω(
�(γk )) has exactly one eigenvalue in J j,
 with localization center in 
�−�′

where � = �
 and �′ = �′
 are chosen as in Theorem 2.1 and Sect. 3.2.1; thus,
�
 � |
|αμ and �′
 � (log |
|)ξ (for some ξ ∈ (0, 1));

• Ẽ j,k = Ẽ(
�(γk), J j,
) is this eigenvalue conditioned on the event {X j,k = 1};
and the point measure

�
app
J j,

(ω, t,
) :=

∑

k; X j,k=1

δ|N (J j,
)||
|[NJ j,
 (Ẽ j,k)−t]. (3.21)

We prove

Lemma 3.4 There exists χ > 0 such that, for any p > 0 and R > 0, there exists a
set of configurations, say, Z
 such that P(Z
) ≥ 1 − |
|−p and, for 
 sufficiently
large, one has

sup
ϕ∈C+

1,R

sup
j∈G
ω∈Z


∣∣∣∣∣∣

1∫

0

e−〈�J j,
 (ω,t,
),ϕ〉dt −
1∫

0

e
−〈�app

J j,

(ω,t,
),ϕ〉

dt

∣∣∣∣∣∣
� |
|−χ .

(3.22)

where we have defined

C+
1,R =

{
ϕ : R → R

+; ϕ is continuously differentiable s.t.

suppϕ ⊂ (−R, R) and ‖ϕ‖C1 ≤ R

}
. (3.23)

and

Lemma 3.5 For κ > 1 satisfying (3.11), forϕ ∈ C+
1,R and for any (αL)L≥1 a sequence

valued in [1/2, 2], one has

∑

j∈G

∑

L≥1

E

⎛

⎝

⎡

⎣
1∫

0

e
−〈�app

J j,
Lκ
(ω,t,
Lκ ),ϕαL 〉

dt

− exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕαL (x)

)
dx

⎞

⎠

⎤

⎦
2
⎞

⎟⎠ < +∞.

Let us now complete the proof of Lemma 3.2 using Lemmas 3.4 and 3.5.
Fix κ, ϕ and (αL)L as in Lemma 3.2. Picking p > 1, as all the integrands are

bounded by 1 and as P(Z
) ≥ 1 − L−p, (3.22) and the Borel–Cantelli Lemma imply
that
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Asymptotic ergodicity in the localized phase 891

E

⎛

⎝lim sup
L≥1

sup
j∈G

∣∣∣∣∣∣

1∫

0

e
−〈�J j,
Lκ

(ω,t,
Lκ ),ϕαL 〉
dt −

1∫

0

e
−〈�app

J j,
Lκ
(ω,t,
Lκ ),ϕαL 〉

dt

∣∣∣∣∣∣

⎞

⎠=0.

Moreover, as αL → 1 when L → +∞, Lemma 3.5 and the Dominated Convergence
Theorem clearly imply that, for ϕ ∈ C+

1,R , one has

E

⎛

⎝lim sup
L≥1

sup
j∈G

∣∣∣∣∣∣

1∫

0

e
−〈�app

J j,
Lκ
(ω,t, j,
Lκ ),ϕαL 〉

dt−exp

⎛

⎝−
+∞∫

−∞

(
1−e−ϕαL (x)

)
dx

⎞

⎠

∣∣∣∣∣∣

⎞

⎠=0,

and

lim
L→+∞ exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕαL (x)

)
dx

⎞

⎠ = exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠ .

These three estimates clearly imply (3.18) and complete the proof of Lemma 3.2.

3.4 The proof of Lemma 3.4

For j ∈ G, we let Z j

 be the set of configurations ω defined by Theorem 2.1 for the

energy interval I
 = J j,
. Then, for any p, if 
 is sufficiently large (independently

of j ∈ G), (2.9) gives a lower bound on P(Z j

); this uniformity is warranted by

Theorem 2.1: the size of the cube 
 necessary for the result to hold does not depend
on the admissible sequence; it depends only on the parameters of admissibility that
are the same for all the intervals (J j,
) j∈G .

Let N b
ω, j,
 be the set of indices n of the eigenvalues (En(ω,
))n of Hω(
) in J j,


that are not described by (1)–(3) of Theorem 2.1. Let N g
ω, j,
 be the complementary

set. Both sets are random. By (2.5) and our choice of length-scales (see the comments
following Theorem 2.1), the number of eigenvalues not described by (1), (2) and (3)
of Theorem 2.1, say, N b

ω, j,
 := #N b
ω, j,
 is bounded by, for some χ > 0,

N b
ω, j,
 ≤ |N (J j,
)||
|1−χ (3.24)

whereas, by (2.13) in Theorem 2.2, the total number of eigenvalue of Hω(
) in J j,
,
say, N (J j,
,
,ω) satisfies, for some δ > 0, for any p > 0 and |
| sufficiently large
(independent of j ∈ G),

P

(∣∣∣∣
N (J j,
,
,ω)

|N (J j,
)||
| − 1

∣∣∣∣ ≥ |
|−δ
)

≤ |
|−p. (3.25)

Let now Z j

 be the set of configurations ω where one has both the conclusions of

Theorem 2.1 and the bound
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892 F. Klopp

∣∣∣∣
N (J j,
,
,ω)

|N (J j,
)||
| − 1

∣∣∣∣ ≤ |
|−δ. (3.26)

By (2.9) and (3.25), this new set still satisfies (2.9).
Define the point measure:

�
g
J j,

(ω, t,
) :=

∑

n∈N g
ω, j,


δ|N (J j,
)||
|[NJ j,
 (En(ω,
))−t]

and recall that, (
�(γk))k are the cubes constructed in Theorem 2.1 (we write � = �
)
and we have defined the random variables:

• X j,k = X (
�(γk), J j,
) is the Bernoulli random variable

X j,k = 1Hω(
�(γk )) has exactly one eigenvalue in J j,
 with localization center in 
�−�′

where � = �
 and �′ = �′
 are chosen as described above;
• Ẽ j,k = Ẽ(
�(γk), J j,
) is this eigenvalue conditioned on the event {X j,k = 1};

and the point measure �app
J j,

(ω, t,
) by (3.21).

Let us now give an estimate of the number

N app
ω, j,
 := {k; X j,k = 1}. (3.27)

It is provided by

Lemma 3.6 For any p > 0, for |
| sufficiently large (independent of j ∈ G), one
has

P

(∣∣∣N app
ω, j,
 − |N (J j,
)||
|

∣∣∣ ≥ [|N (J j,
)||
|]2/3
)

≤ e−[|N (J j,
)||
|]1/3
/3 ≤ |
|−p.

Proof Lemma 3.6 follows by a standard large deviation argument for the i.i.d. Ber-
noulli random variables (X j,k)k as, by Lemma 2.2 and our choice of J j,
 and (�′, �)
(for μ ∈ (ξ, 1) in Lemma 2.2, ξ being the exponent fixing �′ = �′
 in Theorem 2.1),
their common distribution satisfies
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Asymptotic ergodicity in the localized phase 893

P(X j,k = 1) = |N (J j,
)||
�|(1 + o(1)).

The proof of Lemma 3.6 is complete. ��

Thus, one may restrict once more the set of configurations ω to those such that, for
some δ > 0,

∣∣∣∣∣
N app
ω, j,


|N (J j,
)||
| − 1

∣∣∣∣∣ ≤ |
|−δ. (3.28)

and call this set again Z j

. By Lemma 3.6 and (2.9), the probability of this set also

satisfies (2.9) for any p > 0 provided |
| is sufficiently large (independent of j ∈ G).
We now define the set Z
 of Lemma 3.4 as Z
 =

⋂
j∈G

Z j

. As for |
| suf-

ficiently large, all the sets {Z j

} j∈G satisfy (2.9) and as #G � |
|, we obtain that

Z
 satisfies (2.9). Moreover, for ω ∈ Z
, for all j ∈ G, one has the conclusions on
Theorem 2.1 in J j,
 as well as (3.26) and (3.28).

We now prove

Lemma 3.7 For some χ > 0, for 
 sufficiently large, one has,

sup
ϕ∈C+

1,R

sup
j∈G

ω∈Z j



∣∣∣∣∣∣

1∫

0

e−〈�J j,
 (ω,t,
),ϕ〉dt −
1∫

0

e
−〈�g

J j,

(ω,t,
),ϕ〉

dt

∣∣∣∣∣∣
� |
|−χ , (3.29)

and

sup
ϕ∈C+

1,R

sup
j∈G

ω∈Z j



∣∣∣∣∣∣

1∫

0

e
−〈�g

J j,

(ω,t,
),ϕ〉

dt −
1∫

0

e
−〈�app

J j,

(ω,t,
),ϕ〉

dt

∣∣∣∣∣∣
� |
|−χ . (3.30)

Clearly, by summing (3.29) and (3.30), we obtain (3.22). Thus, we will have com-
pleted the proof of Lemma 3.4 when we will have completed the proof of Lemma 3.7.
Before proving Lemma 3.7, we state and prove a simple but useful result, namely,

Lemma 3.8 Pick a sequence of scales (L p)p≥1 such that L p → +∞. For p ≥ 1,
consider two finite sequences (x p

n )1≤n≤Np and (y p
m)1≤m≤Mp such that there exists

1 ≤ K p ≤ min(Np,Mp) and sets X p ⊂ {1, . . . , Np} and Yp ⊂ {1, . . . ,Mp} s.t.

1. #X p = #Yp = K p and [(Np − K p)+ (Mp − K p)]/L p =: ap → 0,
2. there exists a one-to-one map, say �p : X p �→ Yp such that, for n ∈ X p, one

has |x p
n − y p

�p(n)
| ≤ εp/L p, εp ∈ [0, 1]
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Fix η ∈ (0, 1). Set�x
p(t) = ∑Np

n=1 δL p[x p
n −t] and�y

p(t) = ∑Mp
m=1 δL p[y p

m−t]. Then, for

p such that aη−1
p > R, one has

sup
ϕ∈C+

1,R

∣∣∣∣∣∣

1∫

0

e−〈�x
p(t),ϕ〉dt −

1∫

0

e−〈�y
p(t),ϕ〉dt

∣∣∣∣∣∣
≤ 4aηp + eR εp K p − 1. (3.31)

Proof of Lemma 3.8 Let X̃ p = {1, . . . , Np} \ X p and Ỹp = {1, . . . ,Mp} \ Yp. For
(n,m) ∈ X̃ p × Ỹp, define

I x
n =

{
x p

n + aηp[Np − K p]−1[−1, 1] if X̃ p �= ∅ i.e. Np − K p ≥ 1,
∅ if not;

I y
m =

{
y p

m + aηp[Mp − K p]−1[−1, 1] if Ỹp �= ∅ i.e. Mp − K p ≥ 1,
∅ if not.

Then, by point (1) of our assumptions on the sequences (x p
n )n and (y p

m)m , one has

0 ≤
1∫

0

e−〈�x
p(t),ϕ〉dt −

∫

[0,1]\[(∪n∈X̃ p
I x
n )∪(∪m∈Ỹp

I y
m ]

e−〈�x
p(t),ϕ〉dt

≤ (Np − K p)a
η
p[Np − K p]−1 + (Mp − K p)a

η
p[Mp − K p]−1 = 2aηp (3.32)

and, similarly

0 ≤
1∫

0

e−〈�y
p(t),ϕ〉dt −

∫

[0,1]\[(∪n∈X̃ p
I x
n )∪(∪m∈Ỹp

I y
m ]

e−〈�y
p(t),ϕ〉dt ≤ 2aηp (3.33)

On the other hand, for t ∈ [0, 1]\[(∪n∈X̃ p
I x
n )∪(∪m∈Ỹp

I y
m] and p such that aη−1

p > R,
one has

L p dist(t, X̃ p ∪ Ỹp) ≥ aηp L p sup
(
[Np − K p]−1, [Np − K p]−1

)
≥ aη−1

p > R.

Thus, for p such that aη−1
p > R, for t ∈ [0, 1]\[(∪n∈X̃ p

I x
n )∪(∪m∈Ỹp

I y
m] and ϕ ∈ C+

1,R
(see (3.23)), one has

〈�x
p(t), ϕ〉 =

∑

n∈X p

ϕ(L p[x p
n − t]) and 〈�y

p, ϕ〉 =
∑

m∈Yp

ϕ(L p[y p
m − t]).
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Now, by point (2) of our assumptions on the sequences (x p
n )n and (y p

m)m , one has

sup
ϕ∈C+

1,R

sup
t∈[0,1]

t �∈(∪n∈X̃ p
I x
n )

t �∈(∪m∈Ỹp
I y
m )

∣∣∣〈�x
p(t), ϕ〉 − 〈�y

p(t), ϕ〉
∣∣∣ ≤ εp K p · sup

ϕ∈C+
1,R

‖ϕ′‖∞ ≤ R εp K p.

(3.34)

Hence, as ϕ is non negative, we obtain, for p such that aη−1
p > R,

sup
ϕ∈C+

1,R

∣∣∣∣∣∣∣∣

∫

[0,1]\[(∪n∈X̃ p
I x
n )∪(∪n∈Ỹp

I y
n )]

(
e−〈�x

p(t),ϕ〉 − e−〈�y
p(t),ϕ〉) dt

∣∣∣∣∣∣∣∣
≤ eR εp K p − 1

(3.35)

Combining (3.32), (3.33) and (3.35) completes the proof of Lemma 3.8. ��
Remark 3.1 Lemma 3.8, and, in particular, the error term coming from (3.34), can be
improved if one assumes that the points in the sequences are not too densely packed.
This is the case in the applications we have in mind. Though we do not use it here, it
may be useful to treat the case of long range correlated random potentials where the
error estimates of the local approximations of eigenvalues given by Theorem 2.1 can
not be that precise anymore.

The proof of Lemma 3.7 As underlined above, the statements of Lemma 3.7 are
corollaries of Lemma 3.8.

To obtain (3.29), for p = |
|, it suffices to take

• x p
n = En(ω,
) for n ∈ N g

ω, j,
 ∪ N b
ω, j,
,

• y p
n = En(ω,
) for n ∈ N g

ω, j,
.

Assumption (2) in Lemma 3.8 is clearly fulfilled as (y p
n )n is a subsequence of (x p

n )n .
Assumption (1) is an immediate consequence (3.24) and (3.26). Moreover, by (3.26),
in the notations of Lemma 3.8, using (3.7), we get that ap � p−χ for some χ > 0
independent of j ∈ G. Thus, we can apply Lemma 3.8 uniformly in j ∈ G and
obtain (3.29).

Let us now prove (3.30). Notice that, by Theorem 2.1, one has N app
ω, j,
 ≥ N g

ω, j,
.

Moreover, to each n ∈ N g
ω, j,
, one can associate a unique k(n) ∈ [1, N app

ω, j,
] such
that X j,k(n) = 1 and the first part of (2.3) hold.

To prove (3.30), for p = |
|, it suffices to set

• x p
n = Ẽ j,k(n) for k(n) such that X j,k(n) = 1,

• y p
n = En(ω,
) for n ∈ N g

ω, j,
.

So we may take K p = N g
ω, j,
. By the first part of (2.3), we know that assumption (2)

of Lemma 3.8 is satisfied with εp = |
|−2. Thus, εp · K p � |
|−1.
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That assumption (1) is satisfied follows immediately from (3.24) and (3.28). The
uniformity in j ∈ G is obtained as in the proof of (3.29) except that one uses (3.28)
instead of (3.26).

This completes the proof of Lemma 3.7 and, thus, of Lemma 3.4. ��

3.5 The proof of Lemma 3.5

Let us recall a few facts that will be of use in this proof.
Write 
� = 
�(0) and define the random variables X and Ẽ as in the beginning

of Sect. 2.2 for I
 = J j,
 and the cube 
�. Recall that the cube 
 = 
L is much
larger than 
�. Now, pick N app

ω, j,
 independent copies of Ẽ , say (Ẽk)1≤k≤N app
ω, j,


(see

the beginning of Sect. 3.3). Then, the random process �app
J j,


is the process

�
app
J j,

(ω, t,
) :=

∑

1≤k≤N app
ω, j,


δ|N (J j,
)||
|[NJ j,
 (Ẽk)−t].

By Lemma 3.8 and (3.28), it thus suffices to study the point process

�(ω, t, j,
) :=
∑

1≤k≤|
||N (J j,
)|
δ|N (J j,
)||
|[NJ j,
 (Ẽk )−t]. (3.36)

Recall that NJj,
 is defined by (1.7) for J = J j,
. Pick ϕ ∈ C+
1,R (see (3.23)). As the

random variables (Ẽk)1≤k≤|N (J j,
)||
| are i.i.d., one computes

E

⎛

⎝
1∫

0

e−〈�(ω,t, j,
),ϕ〉dt

⎞

⎠ =
1∫

0

�(t,
, J j,
, ϕ)dt (3.37)

and

E

⎛

⎜⎝

⎡

⎣
1∫

0

e−〈�(ω,t, j,
),ϕ〉dt

⎤

⎦
2⎞

⎟⎠ =
1∫

0

1∫

0

�(t, t ′,
, J j,
, ϕ)dtdt ′ (3.38)

where

�(t,
, J j,
, ϕ) =
[
1 − E

(
1 − e−ϕ(|N (J j,
)||
|[NJ j,
 (Ẽ)−t]))]|N (J j,
)||
|

(3.39)
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and

�(t, t ′,
, J j,
, ϕ)

=
[
1 − E

(
1 − e−ϕ(|N (J j,
)||
|[NJ j,
 (Ẽ)−t])−ϕ(|N (J j,
)||
|[NJ j,
 (Ẽ)−t ′]))]|N (J j,
)||
|

.

(3.40)

If E �→ NJj,
(E)were the distribution function of the random variable Ẽ , the random

variables NJj,
(Ẽ) would be distributed uniformly on [0, 1] and the desired result
would be standard and follow e.g. from the computations done in the appendix of [31].
The distribution function of Ẽ is described by Lemma 2.2. As we only consider
j ∈ G, we know that |N (J j,
)| ≥ |J j,
|1+ρ′′

for some ρ′′ satisfying (3.6). Recall
that ξ ∈ (0, 1) is the exponent defining �′
 from Theorem 2.1. Choosing κ ∈ (ξ, 1) in
Lemma 2.2, for x ∈ J j,
 (take y = 0), using (2.10) and (3.9), the estimation (2.11)
becomes„ for some β ′ > 0, for |
| = |
L | sufficiently large,

∣∣(1 + κ
) · |N (J j,
)||
|ϑ(x)− |N (J j,
)||
| NJj,
(x)
∣∣

� |
||N (J j,
)|
1+ρ

1+ρ′′ |
�|ρ � |N (J j,
)|
1+ρ

1+ρ′′ −dμρ−α−1

(3.41)

where, by (2.10) and the same computation as in (3.41), one has

κ
 := P(X (
�
, J j,
, �
′

) = 1)

|N (J j,
)||
�| − 1 and |κ
| � |N (J j,
)|(ρ−ρ′′)/(1+ρ′′)−dμρ.

(3.42)

Using (3.41), as ϕ ∈ C+
1,R , from (3.5) we derive

∣∣∣∣
log�(t,
, J j,
, ϕ)

|N (J j,
)||
| − log
[
1 − E

(
1 − e−ϕ(|N (J j,
)||
|[(1+κ
)·ϑ(Ẽ)−t]))]

∣∣∣∣

� |N (J j,
)|
1+ρ

1+ρ′′ −dμρ−α−1

. (3.43)

The random variable ϑ(Ẽ) is uniformly distributed on [0, 1]; thus, we compute

E

(
1 − e−ϕ(|N (J j,
)||
|[(1+κ
)·ϑ(Ẽ)−t])) =

1∫

0

(
1 − e−ϕ(|N (J j,
)||
|[(1+κ
) u−t])) du

= 1

(1 + κ
)|N (J j,
)||
|

|N (J j,
)||
|[(1+κ
)−t]∫

−|N (J j,
)||
|t

(
1 − e−ϕ(u)) du

= 1

(1 + κ
)|N (J j,
)||
|
+∞∫

−∞

(
1 − e−ϕ(u)) du (3.44)
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if we assume that t satisfies

R

|N (J j,
)||
| ≤ t ≤ 1 + κ
 − R

|N (J j,
)||
| . (3.45)

The last equality in (3.44) holds as ϕ has its support in [−R, R].
Recall that, by (3.7), one has

|N (J j,
)||
| � |N (J j,
)|1− 1
α , |N (J j,
)||
||N (J j,
)|

1+ρ
1+ρ′′ −dμρ−α−1

� |N (J j,
)|β (3.46)

where β is defined by (3.10).
Moreover, by (3.42), one has

|κ
| |N (J j,
)| |
| � |N (J j,
)|β (3.47)

as, by (3.10), one has

1 − 1

α
+ ρ − ρ′′

1 + ρ′′ − dμρ = β + 1

α
− 1 > β > 0. (3.48)

Thus, recalling that |N (J j,
)| → 0 as |
| → +∞, (3.40), (3.41) and (3.45) yield,
for |
| sufficiently large,

log�(t,
, J j,
, ϕ) = 1

(1 + κ
)

+∞∫

−∞

(
1 − e−ϕ(u)) du + O

(|N (J j,
)|β
)

(3.49)

if we assume that t satisfies

R

|N (J j,
)||
| ≤ t ≤ 1 − R + 1

|N (J j,
)||
| . (3.50)

Note that, in (3.49), O
(|N (J j,
)|β

)
is independent of j , thus, so is the smallest size

of 
 one should choose for (3.49) to hold under assumption (3.50).

Let us now estimate log�(t, t ′,
, J j,
, ϕ). We proceed as above. Using (3.41)
and ϕ ∈ C+

1,R , from (3.40), we derive

log�(t, t ′,
, J j,
, ϕ)

|N (J j,
)||
|
= log

[
1 − E

(
1 − e−ϕ(|N (J j,
)||[(1+κ
)·ϑ(Ẽ)−t])−ϕ(|N (J j,
)||
|[(1+κ
)ϑ(Ẽ)−t ′])

)

+ O(|N (J j,
)|
1+ρ

1+ρ′′ −dμρ−α−1

)

]
. (3.51)
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Moreover, for t and t ′ satisfying (3.45) such that additionally

2R

|N (J j,
)||
| ≤ |t − t ′|, (3.52)

as above, one computes

E

(
1 − e−ϕ(|N (J j,
)||[(1+κ
)·ϑ(Ẽ)−t])−ϕ(|N (J j,
)||
|[(1+κ
)ϑ(Ẽ)−t ′]))

=
1∫

0

(
1 − e−ϕ(|N (J j,
)||
|[(1+κ
) u−t])−ϕ(|N (J j,
)||
|[(1+κ
) u−t ′])) du

= 2

(1 + κ
)|N (J j,
)||
|
+∞∫

−∞

(
1 − e−ϕ(u)) du. (3.53)

As above, we obtain that, for |
| sufficiently large,

log�(t, t ′,
, J j,
, ϕ) = 2

+∞∫

−∞

(
1 − e−ϕ(u)) du + O

(|N (J j,
)|β
)

(3.54)

if we assume that t and t ′ both satisfy (3.50) and (3.52).
Again, in (3.54), O

(|N (J j,
)|β
)

is independent of j , thus, so is the smallest size
of 
 one should choose for (3.54) to hold under assumptions (3.50) and (3.52).

Finally notice that �(t,
, J j,
, ϕ) and �(t, t ′,
, J j,
, ϕ) are both bounded by
1 and that the measure of the sets of t ∈ [0, 1] satisfying (3.50) and the measure of
the sets of (t, t ′) ∈ [0, 1]2 satisfying (3.50) for t and t ′ and (3.52) are both larger than

1 − O
(
|N (J j,
)|α−1(1−α)). Thus, thus, taking (3.7) into account, we have proved

Lemma 3.9 Fix R > 0. Fixρ′ andρ′′ satisfying (3.6). Fixα ∈ (0, 1) andμ ∈ (0, 1/d)
satisfying (2.6), (2.8) and (3.9).

For |
| sufficiently large (depending only on R, ρ′, ρ′′, α and μ), one has

sup
ϕ∈C+

1,R

sup
j∈G

∣∣∣∣∣∣

1∫

0

�(t,
, J j,
, ϕ)dt − exp

⎛

⎝−
+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣
� |
|−βα (3.55)

and

sup
ϕ∈C+

1,R

sup
j∈G

∣∣∣∣∣∣

1∫

0

1∫

0

�(t, t ′,
, J j,
, ϕ)dtdt ′ − exp

⎛

⎝−2

+∞∫

−∞

(
1 − e−ϕ(x)) dx

⎞

⎠

∣∣∣∣∣∣

� |
|−βα (3.56)

where β is defined in (3.10).
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Let us use Lemma 3.9 to complete the proof of Lemma 3.5. For L ≥ 1, let 
 = 
L .
Fix (αL)L≥1 a sequence valued in [1/2, 2]. Then, for ϕ ∈ C+

1,R , the sequence (ϕαL )L≥1

is bounded in C+
1,2R . Thus, by Lemma 3.9, for κ > 1 such that καβd > 1 and (αL)L≥1,

any sequence valued in [1/2, 2], we have that

∑

j∈G

∑

L≥1

E

⎛

⎜⎝

⎡

⎣
1∫

0

e−〈�(ω,t, j,
Lκ ),ϕαL 〉dt−exp

⎛

⎝−
+∞∫

−∞

(
1−e−ϕαL (x)

)
dx

⎞

⎠

⎤

⎦
2⎞

⎟⎠<+∞.

Thus, we have proved Lemma 3.5. ��
The additional restriction we impose on κ in (3.11), namely the upper bound, is not

used in Lemma 3.5. It will be of use in Lemma 3.3.

3.6 The proof of Lemma 3.3

Fix κ satisfying (3.11). Clearly, by (3.15) and (3.16), to prove Lemma 3.3, it suffices
to show that, for some κ ′ > 0, ω-almost surely, one has

sup
j∈G

Lκ≤L ′≤(L+1)κ

∣∣∣∣∣∣

1∫

0

e
−〈�J j,
Lκ

(ω,t,
L′ ),ϕ〉
dt −

1∫

0

e
−〈�J j,
Lκ

(ω,t,
Lκ ),ϕαL′ 〉dt

∣∣∣∣∣∣
� L−κ ′

(3.57)

where αL ′ = |
L ′ |/|
Lκ |. Notice here that we chose the same partition of J into
(J j,
Lκ ) j for all Lκ ≤ L ′ ≤ (L + 1)κ which is possible as |
L ′ | = |
Lκ |(1 + o(1)).

The strategy of the proof of (3.57) goes as follows. In Lemma 3.10 below, we
prove that, with a good probability, for all j ∈ G, most eigenvalues of Hω(
L ′) and
of Hω(
Lκ ) in J j,
Lκ have center of localization in 
(L−1)κ ; this will be obtained
as a consequence of the description given by Theorem 2.1. Thus, by Lemma 2.1, the
Minami and Wegner estimates (M) and (W), with a good probability, these eigen-
values of Hω(
L ′) and of Hω(
Lκ ) are close to one another. We then use Lemma 3.8
to compare the point measures �J j,
Lκ

(ω, t,
L ′) and �J j,
Lκ
(ω, t,
Lκ ) and, thus,

derive (3.57).
We prove

Lemma 3.10 Pick κ > 1 satisfying (3.11) and p > 0 arbitrary. There exists κ ′ > 0
such that, with probability at least 1 − L−p, for L sufficiently large, one has

1. if Lκ ≤ L ′ ≤ (L + 1)κ and j ∈ G, to each eigenvalue of Hω(
L ′) in J j,
Lκ with
localization center in 
(L−1)κ , say, E, one can associate a unique eigenvalue of
Hω(
Lκ ) in J j,
Lκ , say, E ′, such that |E − E ′| ≤ L−3dκ ;

2. if Lκ ≤ L ′ ≤ (L + 1)κ and j ∈ G, to each eigenvalue of Hω(
Lκ ) in J j,
Lκ with
localization center in 
(L−1)κ , say, E, one can associate a unique eigenvalue of
Hω(
L ′) in J j,
Lκ , say, E ′, such that |E − E ′| ≤ L−3dκ .
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3.

sup
Lκ≤L ′≤(L+1)κ

j∈G

[∣∣∣∣
N (J j,
Lκ ,
L ′ ,
(L−1)κ , ω)

N (J j,
Lκ ,
Lκ ,
(L−1)κ , ω)
− 1

∣∣∣∣

+
∣∣∣∣

N (J j,
Lκ ,
L ′ ,
(L−1)κ , ω)

N (J j,
Lκ ,
L ′ , ω)
− 1

∣∣∣∣

]
� L−κ ′ ;

We postpone the proof of Lemma 3.10 and use it to apply Lemma 3.8 to�J j,
Lκ
(ω, t,


L ′) and �J j,
Lκ
(ω, t,
Lκ ). By Lemma 3.10, with probability at least 1 − L−p, the

assumptions of Lemma 3.8 will be satisfied if, using the notations of Lemma 3.8, we
take

• X p to be the eigenvalues of Hω(
L ′) in J j,
Lκ with localization center in
(L−1)κ ,
• Yp to be the eigenvalues of Hω(
Lκ ) in J j,
Lκ with localization center in
(L−1)κ .

Indeed, Lemma 3.10 then provides the estimates

0 ≤ ap � L−κ ′
, 0 ≤ K p ≤ C Ldκ+1 and 0 ≤ εp ≤ L−3dκ .

Hence, with probability at least 1 − L−p, (3.20) is an immediate consequence of
Lemma 3.8 (where one of the functions ϕ has been replaced with ϕαL′ ). Taking p > 1
and applying the Borel–Cantelli lemma, this completes the proof of Lemma 3.3. ��
Proof of Lemma 3.10 To prove Lemma 3.10, our main ingredients will be the Minami
estimate (M), the Wegner estimate (W), Lemma 2.1 and Theorem 2.1. Pick L ′ such that
Lκ ≤ L ′ ≤ (L + 1)κ . Slicing the interval J into intervals of size L−pρ−1−κd(1+ρ−1),
for each slice, the Minami estimate tells us that the probability to find two eigenvalues
in this slice is bounded by C L−(p+κd)(1+ρ−1). As the number of slices is bounded by
C L pρ−1+κd(1+ρ−1), we know that, there exists C > 0 such that, with probability at
least 1 − L−p,

(P1) no two eigenvalues of Hω(
L ′) in J are at a distance from each other smaller
than C−1L−pρ−1−κd(1+ρ−1).

Fix ξ ∈ (0, 1) arbitrary. By Lemma 2.1 and the Wegner estimate, we know that, for L
sufficiently large, with probability at least 1 − L−p,

(P2) for any j ∈ G, if E is any eigenvalue of Hω(
L ′) (resp. Hω(
Lκ )) in J j,
Lκ

associated to a localization center in
(L−1)κ , then there exists E ′ an eigenvalue

of Hω(
Lκ ) (resp. Hω(
L ′)) in J j,
Lκ such that |E − E ′| ≤ e−L(κ−1)ξ/3
.

Indeed, if E is an eigenvalue of Hω(
L ′) associated to the normalized eigenfunction
ϕ and the localization center xE , lettingψL be a (smooth) cut-off supported in the ball
B(xE , L(κ−1)/2), we have

∣∣‖ψLϕ‖L2(
Lκ )
− 1

∣∣+ ‖(Hω(
Lκ )− E)(ψLϕ)‖L2(
Lκ )
≤ e−L(κ−1)ξ/3‖ψLϕ‖L2(
Lκ )

.

123



902 F. Klopp

Thus, Hω(
Lκ ) has an eigenvalue, say, E ′ at distance at most e−L(κ−1)ξ/3
from E . More-

over, by the Wegner estimate (W), the probability that any eigenvalue of Hω(
Lκ )

falls into
(

J j,
Lκ + e−L(κ−1)ξ/3 [−1, 1]
)

\ J j,
Lκ is bounded by C Ldκe−L(κ−1)ξ/3
as,

by (3.7), one has |J j,
Lκ | ≥ N (J j,
Lκ ) � L−dα . Thus, inverting the roles of Hω(
Lκ )

and Hω(
L ′), we get (P2).

Combining (P1) and (P2), as for L large one has e−L(κ−1)ξ/3 � L−pρ−1−κd(1+ρ−1),
we see that, with probability at least 1 − 3L−p, for any j ∈ G, there exists � j a
bijection between the eigenvalues of Hω(
L ′) in J j,
Lκ associated to a loc. center
in 
(L−1)κ and the eigenvalues of Hω(
Lκ ) in J j,
Lκ associated to a loc. center in


(L−1)κ satisfying |�(E) − E | ≤ e−L(κ−1)ξ/3
. Thus, we get that, with probability at

least 1 − 3L−p, one has (1) and (2) of Lemma 3.10 as well as

N (J j,
Lκ ,
L ′ ,
(L−1)κ , ω) = N (J j,
Lκ ,
Lκ ,
(L−1)κ , ω). (3.58)

thus, the first part of point (3) in Lemma 3.10.
To complete the proof of Lemma 3.10, we use Theorem 2.1 with R > 0 satisfying

R > d−1(pρ−1 + κd(1 + ρ−1)). For all j ∈ G, we apply Theorem 2.1 to Hω(L)
and J j,
Lκ where Hω(L) is either Hω(
L ′) or Hω(
Lκ ). We then know that, with
probability at least 1 − L−p, the eigenvalues of Hω(L) corresponding to localization
centers in
(L−1)κ are described by (1), (2), (3) except for at most N (J j,
Lκ )L

dκ(1−χ)
of them. The number of cubes (
�(γ )))γ constructed in Theorem 2.1 that intersect

L ′ \ 
(L−1)κ or 
Lκ \ 
(L−1)κ is of order |
L ′ |(d−1/κ)/d�−d (where � = �L ′ ),
that is using (3.7), of order |
L ′ |(d−1/κ)/d−dαμ. The condition (3.11) guarantees that
1 − 1

κd − dαμ > 0.
Moreover, for each such cube 
�(γ ), the operator Hω(
�(γ )) puts at most one

eigenvalue in J j,
Lκ . The Wegner estimate implies that the probability that Hω(
�(γ ))
puts at least one eigenvalue in J j,
Lκ is bounded by C |J j,
Lκ |�d .

Hence, by a standard large deviation principle for independent random variables
(see e.g. [9]), with a probability at least 1− L−p , the number of eigenvalues described
by by (1), (2), (3) of Theorem 2.1 with localization center in
L ′ \
(L−1)κ is bounded
by C |J j,
Lκ | |
L ′ |(d−1/κ)/d . Using (3.7) and the definition of G (see (3.12)), for
j ∈ G, we have

|J j,
Lκ | |
L ′ |(d−1/κ)/d � |N (J j,
Lκ )|1/(1+ρ′′)|
L ′ |(d−1/κ)/d

� |
L ′ ||N (J j,
Lκ )||
L ′ |−1/(κd)+αρ′′/(1+ρ′′)

� |
L ′ ||N (J j,
Lκ )||
L ′ |−χ

as, using (3.11), (2.6), α < 1 and 1 + ρ < ρ′, one computes 1
dκ − αρ′′

1+ρ′′ > 0.

Thus, we obtain that there exists χ > 0 such that, with probability at least 1− L−p,

(P3) except for at most C |
Lκ ||N (J j,
Lκ )||
L ′ |−χ of them, the eigenvalues of
Hω(
L ′) and those of Hω(
Lκ ) are associated to a center of localization in

(L−1)κ .
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Now, with a probability at least 1 − 3L−p, using (P1), (P2) and (P3), we see that

∣∣N (J j,
Lκ ,
L ′ ,
(L−1)κ , ω)− N (J j,
Lκ ,
L ′ , ω)
∣∣ � |
Lκ | |N (J j,
Lκ )| |
L ′ |−χ

and

∣∣N (J j,
Lκ ,
L ′ ,
(L−1)κ , ω)− |
Lκ | |N (J j,
Lκ )|
∣∣ � |
Lκ | |N (J j,
Lκ )| |
L ′ |−χ .

This completes the proof of point (3) of Lemma 3.10, thus, the proof of Lemma 3.10.
��

3.7 The proof of Theorem 1.5

This proof follows the same analysis as the proof of Theorem 1.1. The only difference
comes in the second step of the reduction when one splits the interval E0 + I
 into
smaller intervals (see Sect. 3.2.2). As |I
| → 0 and, thus, |N (E0 + I
)| → 0, one has
to modify this part of the reduction and, as we will see now, a new condition comes
up because of the possible difference of asymptotics for |N (E0 + I
)| and |I
|.

Let us first follow the construction done in Sect. 3.2.2 under an assumption more
restrictive than the second assumption in (1.9), namely, that |N (E0 + I
)| � |
|−δ .
Pick α > δ such that the conditions on the exponents ρ′, ρ′′, μ, α, β and κ in
Sect. 3.2.1 be satisfied; this can be done by picking ρ′ large. Split the interval N (E0 +
I
) into subintervals of size |
|−α (see Sect. 3.2.2). Then, the estimate of the size of
B defined by (3.12) for E0 + I
 becomes

#B ≤ |
|α(1+ρ′′)−1−δ(1+ρ̃)−1
(3.59)

where ρ̃ is defined in Theorem 1.5.
On the other hand, for the density of states measure of the sets of energies that we

don’t control (i.e. those corresponding to the indices in B) to be much smaller than
|N (E0 + I
)|, we need to require that

#B · |
|−α � |
|−δ (3.60)

that is, using (3.59), it is sufficient that the exponents satisfy the inequality

ρ̃δ

1 + ρ̃
<

αρ′′

1 + ρ′′ . (3.61)

Define E to be the set of (ρ′, ρ′′, μ) satisfying (3.6), (2.6) and (3.9) and

τ := sup
(ρ′,ρ′′,μ)∈E

ρ′′

1 + ρ − dμρ′(1 + ρ′′)
> 0 (3.62)
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As α can be chosen arbitrary in the interval defined by (2.8) and (3.9), we will be able

to find (α, ρ′′) satisfying (3.61) if
ρ̃δ

1 + ρ̃
< τ .

Once this condition, hence, condition (3.60), is fulfilled, the analysis is the same as
in the macroscopic case. In particular, the analogues of Lemmas 3.2 and 3.3 hold.

Let us return to the general case when we only know that for some δ ∈ (0, 1)
satisfying (1.10), one has |N (E0 + I
)||
|δ → +∞. Then, we define δ0 as

δ0 = inf{δ′ > 0; |N (E0 + I
)||
|δ′ → +∞}.

Thus, by assumption (1.9), one has δ0 ∈ [0, δ] where δ is defined in Theorem 1.5.

Pick any δ1 > δ0 such that
ρ̃δ1

1 + ρ̃
< τ . We can then analyze the process associated

to the energies in E0 + I
 by splitting this interval into intervals of size (computed
with respect to the density of states) of order |
|−δ1 , with at most O(|
|δ1−δ0) such
intervals. The exponent δ1 − δ0 can be made arbitrarily small, we can glue the results
in the same way as in the macroscopic case.

Let us complete this section with a remark on how condition (1.8) is used. It
is needed to obtain the results corresponding to Lemmas 3.3 and 3.10. In Lem-
mas 3.3 and 3.10, the number of eigenvalues we take into account is asymptotic
to |N (E0 + I
L′ )||
L ′ | and we want these number to be close to each other for all the
cube of side-length L ′ in [Lκ , (L + 1)κ ]. Therefore, we need that |N (E0 + I
L′ )| ∼
|N (E0 + I
Lκ )| which is (1.8). This will now imply that the error estimate in the
analogues of Lemmas 3.3 and 3.10, instead of being of size an inverse power of L ,
will simply be o(1) (coming from condition (1.8)). But this does not modify the final
result.

3.8 The proof of Theorem 1.6

Theorem 1.6 follows from Theorem 1.1, Lemma 3.8 and the fact that most eigenvalues
of Hω in J with localization center in
 are very well approximated by an eigenvalue
of Hω(
) in J , and vice versa.

Write J = [a, b]. Using the techniques of the proof of Lemma 3.10, one proves
the following result for the eigenvalues of Hω in J having localization center in 


Lemma 3.11 Fix χ ∈ (0, 1). There exists χ ′ > 0 such that, ω-almost surely, for L
sufficiently large, one has

1.

∣∣∣∣
N f (J,
, ω)

N (J,
, ω)
− 1

∣∣∣∣ ≤ |
|−χ ′ ;

2. to each eigenvalue of Hω(
L) in JL := [a + L−3d/2, b − L−3d/2] with localiza-
tion center in 
L−Lχ , say, E, one can associate an eigenvalue of Hω in J with
localization center in 
L , say, E ′, such that |E − E ′| ≤ L−2d;
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3. to each eigenvalue of Hω in JL with localization center in
L−Lχ , say, E, one can
associate an eigenvalue of Hω(
L) in J , say, E ′, that satisfies |E − E ′| ≤ L−2d .

One then uses this to combine Theorem 1.1 and Lemma 3.8 to obtain Theorem 1.6.

4 The proof of Theorems 1.3 and 1.4

These proofs are simple and rely on general theorems on transformations of point
processes (see e.g. [5, Chap. 5.5] and [34, Chap. 3.5]).

4.1 The proof of Theorem 1.3

As in the proof of Theorem 1.1, it suffices to consider the case when J is an interval
in the essential support of ν, that is, N is strictly increasing on J . In particular, one
has ν(t) > 0 for almost every t ∈ J .

If t is a random variable distributed according to the law νJ (t)dt , then t̃ := NJ (t)
is uniformly distributed on [0, 1]. Thus, the process �J (ω, t̃,
) under the uniform
law in t̃ has the same law as the process �J (ω, NJ (t),
) under the law νJ (t)dt .

Rewrite the point measures �J (ω, NJ (t),
) and �̃J (ω, t,
) as

�J (ω, NJ (t),
) =
∑

En(ω,
)∈J

δxn(ω,t) and �̃J (ω, t,
) =
∑

En(ω,
)∈J

δx̃n(ω,t)

where

xn(ω, t) := |N (J )||
|[NJ (En(ω,
))− NJ (t)] = |
|[N (En(ω,
))− N (t)]

and

x̃n(ω, t) := ν(t)|
|[En(ω,
)− t].
Thus, one has

xn(ω, t) = �
(x̃n(ω, t); t) and x̃n(ω, t) = χ
(xn(ω, t); t) (4.1)

where

�
(x; t) = |
|
[

N

(
t + x

ν(t)|
|
)

− N (t)

]

and

χ
(x; t) = ν(t)|
|
[

N−1
(

N (t)+ x

|
|
)

− t

]

where N−1 is the inverse of the strictly increasing Lipschitz continuous function N .
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Note that, if N (J,
, ω) denotes the number of eigenvalues of Hω(
) in J , one
has

t = 1

N (J,
, ω)
· N−1

⎛

⎝
∑

En(ω,
)∈J

N (En(ω))− xn

|
|

⎞

⎠ . (4.2)

Following the notations of [34], let Mp(R) denote the space of point measures on the
real line endowed with its standard metric structure. Actually, by Minami’s estimate
(M), we could restrict ourselves to working with simple point measures.

The point processes �J (ω, NJ (t),
) and �̃J (ω, t,
) under the law νJ (t)dt are
the random processes (i.e. the Borelian random variables) obtained as push-forwards
of the probability measure νJ (t)dt through the maps t ∈ R �→ �J (ω, NJ (t),
) ∈
Mp(R) and t ∈ R �→ �̃J (ω, t,
) ∈ Mp(R). We denote them respectively by
�J (ω,
) and �̃J (ω,
).

One can extend the mapping x ∈ R �→ χ
(x, t) ∈ R to a map, say, χω,
 on
point measures in Mp(R) on the real line by mapping the supports pointwise onto
one another and computing t using (4.2) i.e.

χω,


(
∑

n

anδxn

)
=
∑

n

anδχω,
(xn;t(∑n anδxn ))

where t
(∑

n anδxn

)
is defined as

t

(
∑

n

anδxn

)
= 1

N (J,
, ω)

∑

En(ω,
)∈J

N−1
(

N (En(ω))− xn

|
|
)
.

For fixed 
 and ω, the map χω,
 : Mp(R) → Mp(R) is measurable as the map
t �→ χ
(x, t) is. Moreover, by the computations made above (see (4.1) and (4.2)),
one has

χω,
(�J (ω,
)) = �̃J (ω,
). (4.3)

For any x ∈ R, t almost surely, one has χ
(x; t) → x as |
| → +∞. Hence, as
|
| → +∞, χω,
 tends to the identity except on at most a set of measure 0 in Mp(R).
On the other hand, Theorem 1.3 tells us that, ω almost surely, �J (ω,
) converges
in law to the Poisson process of intensity 1 on the real line. Thus, we can apply [5,
Theorem 5.5] to obtain that, ω-almost surely, �̃J (ω,
), that is, �̃J (ω, t,
) under
the measure νJ (t)dt , converges in law to the Poisson process of intensity 1 on the real
line. This completes the proof of Theorem 1.3. ��
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4.2 The proof of Theorem 1.4

To complete this proof, recalling the notations of Theorem 1.4, we notice that, for
x > 0,

{En ∈ J ; |
|(En+1(ω,
)− En(ω,
)) ≥ x}
= {En ∈ J ; ν(t)|
|(En+1(ω,
)− En(ω,
)) ≥ ν(t) x}.

Thus, integration with respect to νJ (t)dt over J , Theorem 1.3 and the same compu-
tations as those made to obtain Proposition 4.4 in [30] lead to, ω-almost surely

DLS(x; J, ω,
) =
∫

J

# {En ∈ J ; ν(t)|
|(En+1(ω,
)− En(ω,
)) ≥ ν(t) x}
N (J, ω,
)

× νJ (t)dt →|
|→+∞

∫

J

e−|N (J )| x ν(t)νJ (t)dt.

This completes the proof of Theorem 1.4. ��

5 Appendix

We now indicate how one should modify the proof of [15, Theorem 1.15] to obtain
Theorem 2.1.

One just needs to modify the way one estimates the set S�
,L that is the set of
disjoint boxes of the decomposition 
�(γ j ) ⊂ 
L containing at least 2 centers of
localization of Hω(
L). Here,
 = 
L . It follows from [15, Lemma 3.1] (taking into
account �′
 � �
) that, using independence and Stirling’s formula,

P(�(S�
,L ≥ k) �
(|
L |/n

k

)
(|I
|�d


)
(1+ρ)k

�
(

e
|
L |
k�d



)k

(|I
|�d

)
(1+ρ)k =

(
e|
L |

k
N (I
)

1+ρ
1+ρ′′ �dρ




)k

� 2−k,

if we choose

k ≥ K :=
[

2eN (I
)|
L |
(

N (I
)
ρ−ρ′′
1+ρ′′ �dρ′




)]
+ 1. (5.1)

Note that,

K � |
L |
�d



(
N (I
)

1
1+ρ′′ �

d 1+ρ′
1+ρ




)1+ρ
= o

(
|
L |
�d



)
(5.2)
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if the right-hand side inequality in (2.5) holds. As a consequence, as ρ′ > ρ, we get
that

P(#(S�,L) ≥ K ) � 2−K .

So that, with probability larger than 1 − 2−K , we can assume that the boxes 
�(γ j ),
except at most K of them, contain at most one center of localization.

We now control the number of centers of localization that may be contained in these
K exceptional boxes. In a box of size �, the deterministic a priori bound on the number
of eigenvalues guarantees that this number is bounded by �d


 (up to a constant). Using
this crude estimate the number of eigenvalues we miss with these K boxes is bounded
by

K�d

 � N (I
)|
L |

(
N (I
)

ρ−ρ′′
1+ρ′′ �d(1+ρ′)




)
= o(N (I
)|
L |),

provided the right-hand side inequality in (2.5) holds.
The remaining part of the proof of Theorem 2.1 is identical to that of [15, Theorem

1.15]. ��
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