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Abstract The measure-valued Fleming–Viot process is a diffusion which models
the evolution of allele frequencies in a multi-type population. In the neutral setting
the Kingman coalescent is known to generate the genealogies of the “individuals”
in the population at a fixed time. The goal of the present paper is to replace this static
point of view on the genealogies by an analysis of the evolution of genealogies. We
encode the genealogy of the population as an (isometry class of an) ultra-metric space
which is equipped with a probability measure. The space of ultra-metric measure
spaces together with the Gromov-weak topology serves as state space for tree-val-
ued processes. We use well-posed martingale problems to construct the tree-valued
resampling dynamics of the evolving genealogies for both the finite population Moran
model and the infinite population Fleming–Viot diffusion. We show that sufficient
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information about any ultra-metric measure space is contained in the distribution of
the vector of subtree lengths obtained by sequentially sampled “individuals”. We give
explicit formulas for the evolution of the Laplace transform of the distribution of finite
subtrees under the tree-valued Fleming–Viot dynamics.

Keywords Tree-valued Markov process · Fleming–Viot process · Moran model ·
Genealogical tree · Martingale problem · Duality · (ultra-)Metric measure space ·
Gromov-weak topology

Mathematics Subject Classification (2000) Primary: 60K35 · 60J25;
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1 Introduction

The evolution of a population is commonly modeled using branching or resampling
dynamics. In both cases the analysis of the genealogical relationships of individuals
leads to a deeper understanding of the underlying dynamics and is crucial in appli-
cations in population genetics. An observation which is fundamental for the present
paper is that genealogical relationships between individuals change as the population
evolves. We here want to construct and study the evolution of the genealogical struc-
ture for the neutral Fleming–Viot process which arises as a large population limit of
various finite resampling models [5,8,17,22,27,28].

A basic finite resampling model is the Moran model, which can be described as
follows: Each pair of individuals, taken from a finite population of fixed size, resam-
ples at constant rate. Resampling means that one individual is chosen at random from
the pair, the pair dies and is replaced by two new individuals which are both offspring
of the chosen individual.

In resampling models genealogical trees can be generated by coalescent processes.
The equilibrium genealogy of the Fleming–Viot diffusion, for example, is generated
by the Kingman coalescent [2,23,29,34]. More general resampling dynamics which
allow for an infinite offspring variance are studied in [4]. Their genealogical trees are
described by �-coalescents [30,39]. Genealogical trees are also considered for branch-
ing models which allow for a varying population size. Prominent examples are the
Kallenberg tree [33], the Yule tree [19], the Brownian continuum random tree [1] and
the Brownian snake [37]. More general branching mechanisms lead e.g. to Lévy trees
[12], which are the infinite variance offspring distribution counterpart of the Brownian
continuum random trees, and trees arising in catalytic branching systems [31].

Coalescent trees describe the genealogy of a population at a fixed time and give
therefore a static picture only. The main goal of the present paper is to give with the
tree-valued Fleming–Viot dynamics a dynamic picture which describes the evolution
of genealogies. Evolving genealogies in exchangeable population models have already
been described by look-down processes [3,9–11]; see also Remark 2.20. For neutral
evolution, look-down processes contain—though in an implicit way—all information
about the genealogies. The depth of the tree [6,21,40] and the total tree length [41]
are examples of functionals of a genealogy which are constructed and studied via the
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Tree-valued resampling dynamics 791

look-down construction. The crucial point in the construction of look-down processes
is the use of labels as coordinates. This information is often not needed and constraints
the construction of tree-valued processes in selective (unequal chances of producing
offspring) and spatial (only pairs in the same location may resample) settings.

A first approach in the direction of a coordinate-free description has already been
established for spatially structured populations via historical processes [14,29]. Here,
however, the coding of the genealogical relationships requires that different “offspring”
immediately follow different spatial paths, almost surely. Only then the genealogy can
be read off from the spatial paths of the “individuals”. Therefore, in non-spatial situa-
tions or if space is discrete, additional structure would be required for an investigation
of genealogies via historical processes.

A different and more canonical coding of trees is therefore needed. In this paper we
rely on the fact that genealogical distances between individuals define a metric. To take
the individuals’ contribution to the population into account we equip the resulting met-
ric space with the (weak limit of the) empirical distribution of the individuals. We then
follow the theory of metric measure spaces equipped with the Gromov-weak topology
as developed in [30]. We show weak convergence of tree-valued Moran models and
construct the limiting tree-valued Fleming–Viot dynamics. Such weak convergence
results are best treated by using well-posed martingale problems, which allow—in
contrast to other techniques such as Dirichlet forms—for statements concerning con-
vergence of infinitesimal characteristics. In order to define these characteristics, we
require a suitably large class of continuous functions which are easy to manipulate.
For tree-valued processes such an approach is novel. We make use of general theory
in order to establish well-posedness of the limiting martingale problem (Theorem 1),
weak convergence of tree-valued Moran models (Theorem 2) and the long-time behav-
ior (Theorem 3).

Another useful consequence of a well-posed martingale problem is that it allows to
study the evolution of continuous functionals of these processes and to characterize
the functionals which are strong Markov processes. Of particular importance is the
vector of tree lengths for subsequently sampled “individuals”. An important result
(Theorem 4) is that the resulting subtree length distribution characterizes the ultra-
metric measure tree uniquely. From a theoretical point of view this can be considered
as a generalization of the moment problem for bounded real-valued random variables
to metric measure spaces. It is also of interest in statistical applications since it states
that all sufficient information about genealogies is contained in the lengths of subtrees
spanned by a finite sample. Under the Fleming–Viot dynamics we construct the evolu-
tion of the tree length distribution via a well-posed martingale problem (Theorem 5).
Moreover, we derive explicit formulas for the evolution of the Laplace transform of
finite subtrees.

Markov dynamics with values in the space of continuum trees have been constructed
only recently. Examples include excursion path-valued Markov processes with con-
tinuous sample paths—which can therefore be thought of as tree-valued diffusions—
as investigated in [45–47], and dynamics working with real-trees, for example, the
so-called root growth with re-grafting [20], the so-called subtree prune and re-graft
move [25] and the limiting random mapping [18]. The present construction is extended
to Fleming–Viot processes with selection in [7].
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2 Main results (Theorems 1, 2 and 3)

In this section we state our main results. In Sect. 2.1 we recall concepts and termi-
nology used to define the state space which consists of (ultra-)metric measure spaces
equipped with the Gromov-weak topology. In Sect. 2.2 we state the tree-valued Flem-
ing–Viot martingale problem and its well-posedness (Theorem 1), and present the
approximation by tree-valued Moran dynamics in Sect. 2.3 (Theorem 2). In Sect. 2.4
we identify a unique equilibrium and state that it will be approached as time tends to
infinity (Theorem 3).

2.1 State space: metric measure spaces

To define the state space we consider trees as metric spaces. Moreover, to allow for a
topology which discards atypical points in the tree, we will equip these metric spaces
with a probability measure on the leaves. (Compare also with Remark 2.15). We then
equip the space of metric measure spaces with the Gromov-weak topology which com-
bines the concept of weak convergence of probability measures in a fixed metric space
with Gromov’s idea of comparing different metric spaces. In [30] topological aspects
of the space of metric measure spaces equipped with the Gromov-weak topology are
investigated. In this subsection we recall basic facts and notation.

As usual, given a topological space (X, O) we denote by M1(X) the space of all
probability measures defined on the Borel-σ -algebra of X , and by ⇒ weak conver-
gence in M1(X). Recall that the support supp(μ) of μ ∈ M1(X) is the smallest closed
set X0 ⊆ X such that μ(X0) = 1. The push forward of μ under a measurable map
ϕ from X into another topological space Z is the probability measure ϕ∗μ ∈ M1(Z)

defined by

ϕ∗μ(A) := μ
(
ϕ−1(A)

)
, (2.1)

for all Borel subsets A ⊆ Z . We denote by B(X) and Cb(X) the bounded real-valued
functions on X which are measurable and continuous, respectively.

A metric measure space is a triple (X, r, μ) where (X, r) is a metric space equipped
with μ ∈ M1(X) such that (supp(μ), r) is complete and separable. Two metric mea-
sure spaces (X, r, μ) and (X ′, r ′, μ′) are measure-preserving isometric or equivalent
if there exists an isometry ϕ between supp(μ) and supp(μ′) such that μ′ = ϕ∗μ. It is
clear that the property of being measure-preserving isometric is an equivalence rela-
tion. We write (X, r, μ) for the equivalence class of a metric measure space (X, r, μ).
Define the set of (equivalence classes of) metric measure spaces

M := {x = (X, r, μ) : (X, r, μ) metric measure space
}
. (2.2)

If (X, r, μ) is such that r is only a pseudo-metric on X , (i.e. r(x, y) = 0 is possible
for x �= y) we can still define its measure-preserving isometry class. Since this class
contains also metric measure spaces, there is a bijection between the set of pseudo-
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Tree-valued resampling dynamics 793

metric measure spaces and the set of metric measure spaces and we use both notions
interchangeably.

For a metric space (X, r) we define by

R(X,r) :
{

XN → R
(N

2)+(
(xi )i≥1

) 
→ (
r(xi , x j )

)
1≤i< j

(2.3)

the map which sends a sequence of points in X to its (infinite) distance matrix,
and denote, for a metric measure space (X, r, μ), the distance matrix distribution
of (X, r, μ) by

ν(X,r,μ) := (R(X,r)
)
∗μ

⊗N ∈ M1

(
R

(N

2)+
)

. (2.4)

Obviously, ν(X,r,μ) depends on (X, r, μ) only through its measure-preserving isometry
class x = (X, r, μ). We can therefore define:

Definition 2.1 (Distance matrix distribution) The distance matrix distribution νx

of x ∈ M is the distance matrix distribution ν(X,r,μ) of an arbitrary representative
(X, r, μ) ∈ x.

By Gromov’s reconstruction theorem metric measure spaces are uniquely deter-
mined by their distance matrix distribution (see Section 3 1

2 .5 in [32] and Proposition
2.6 in [30]). We therefore base our notion of convergence in M on the convergence
of distance matrix distributions. In [30] we introduced the Gromov-weak topology in
which a sequence (xn)n∈N converges to x if and only if

νxn ⇒
n→∞νx (2.5)

in the weak topology on M1(R
(N

2)+ ) (and, as usual, R
(N

2)+ equipped with the product

topology); compare Theorem 5 of [30]. Notice that possible limits ν ∈ M1(R
(N

2)+ )

are not necessarily of the form ν = νx for some x ∈ M. Although {νx; x ∈ M} is not
closed, we could show that M equipped with the Gromov-weak topology is Polish
(compare, Theorem 1 in [30]).

Several sub-spaces of M are of special interest throughout the paper. Above all,
these are the ultra-metric and compact metric measure spaces.

(The equivalence class of) a metric measure space (X, r, μ) is called ultra-metric
iff

r(u, w) ≤ r(u, v) ∨ r(v, w), (2.6)

for μ-almost all u, v, w ∈ X . Define

U := {u ∈ M : u is ultra-metric
}
. (2.7)
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Remark 2.2 (Ultra-metric spaces are trees) Notice that there is a close connection
between ultra-metric spaces and R-trees, i.e., complete path-connected metric spaces
(X, rX ) which satisfy the four-point condition

rX (x1, x2)+ rX (x3, x4)

≤ max
{
rX (x1, x3)+ rX (x2, x4), rX (x1, x4)+ rX (x2, x3)

}
, (2.8)

for all x1, x2, x3, x4 ∈ X (see, for example, [13,15,43]). On the one hand, every
complete ultra-metric space (U, rU ) spans a path-connected complete metric space
(X, rX ) which satisfies the four point condition, such that (U, rU ) is isometric to
the set of leaves X\Xo. On the other hand, given an R-tree (X, rX ) and a distin-
guished point ρX ∈ X which is often referred to as the root of (X, rX ), the level sets
Xt := {x ∈ X : r(ρX , x) = t}, for t ≥ 0, form ultra-metric sub-spaces of (X, rX ).
For more details, see [24, Theorem 3.38].

Because of this connection between ultra-metric spaces and real trees, ultra-metric
spaces are often (especially in phylogenetic analysis) referred to as ultra-metric trees.

��
The next lemma implies that U equipped with the Gromov-weak topology is again

Polish.

Lemma 2.3 The sub-space U ⊂ M is closed.

Proof Let (un)n∈N be a sequence in U and x ∈ M such that un → x in the Gromov-
weak topology, as n →∞. Equivalently, by (2.5), νun ⇒ νx in the weak topology on

M1(R
(N

2)+ ), as n →∞. Consider the open set

A := {(ri, j )1≤i< j : r1,2 > r23 ∨ r1,3 or r2,3 > r1,2 ∨ r1,3 or r1,3 > r1,2 ∨ r2,3
}
.

(2.9)

By the Portmanteau Theorem, νx(A) ≤ lim infn→∞ νun (A) = 0. Thus, (2.6) holds for
μ⊗3-all triples (u, v, w) ∈ X3. In other words, x is ultra-metric. ��

(The equivalence class of) a metric measure space (X, r, μ) is called compact if
and only if the metric space (supp(μ), r) is compact. Define

Mc :=
{

x ∈ M : x is compact
}
. (2.10)

Moreover, we set

Uc := U ∩Mc. (2.11)

Remark 2.4 (Mc is not a closed subset of M)

(i) If x = (X, r, μ) is a finite metric measure space, i.e, #supp(μ) < ∞, then
x ∈ Mc.
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(ii) Since elements of M can be approximated by a sequence of finite metric mea-
sure spaces (see the proof of Proposition 5.3 in [30]), the sub-space Mc is not
closed. A similar argument shows that Uc is not closed.

(iii) In order to establish convergence within the space of compact metric measure
spaces, we provide a relative compactness criterion in Mc in Proposition 6.2.

2.2 The martingale problem (Theorem 1)

In this subsection we define the tree-valued Fleming–Viot dynamics as the solution
of a well-posed martingale problem. We start by recalling the terminology. All proofs
are given in Sect. 8.

Definition 2.5 (Martingale problem) Let (E, O) be a Polish space, P0 ∈ M1(E), F
a subspace of the space B(E) of bounded measurable functions on E and � a linear
operator on B(E) with domain F .

The law P of an E-valued stochastic process X = (Xt )t≥0 is called a solution
of the (P0, �, F)-martingale problem if X0 has distribution P0, X has paths in the
space DE ([0,∞)) of E-valued càdlàg functions, almost surely (where DE ([0,∞) is
equipped with the Skorohod topology) and for all F ∈ F ,

⎛

⎝F(Xt )−
t∫

0

ds �F(Xs)

⎞

⎠

t≥0

(2.12)

is a P-martingale with respect to the canonical filtration.
Moreover, the (P0, �, F)-martingale problem is said to be well-posed if there is a

unique solution P.

Recall that the classical measure-valued Fleming–Viot process ζ = (ζt )t≥0 is a
probability measure-valued diffusion process, which describes the evolution of allelic
frequencies; see e.g. [5,22]. In particular, for a fixed time t , the state ζt ∈ M1(K )

records the current distributions of allelic types on some (Polish) type space K . This
process is defined as the unique solution of the martingale problem corresponding to
the following operator �̂↑ (see [17]): for functions 	̂ : M1(K ) → R of the form

	̂(ζ ) = 〈ζ⊗N, φ̂
〉 :=

∫

K N

ζ⊗N(du) φ̂
(
u
)

(2.13)

with u = (u1, u2, . . .) ∈ K N and φ̂ ∈ Cb(K N) depending only on finitely many
coordinates, set

�̂↑	̂(ζ ) = γ

2

∑

k,l≥1

(
〈ζ⊗N, φ̂ ◦ θ̂k,l〉 − 〈ζ⊗N, φ̂〉

)
(2.14)

where the replacement operator θ̂k,l : K N → K N is the map which replaces the l th

component of an infinite sequence of types by the kth:
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796 A. Greven et al.

θ̂k,l(u1, u2, . . . , ul−1, ul , ul+1, . . .) := (u1, u2, . . . , ul−1, uk, ul+1, . . .). (2.15)

Here and in the following γ ∈ (0,∞) is referred to as the resampling rate.
In order to state the martingale problem for the tree-valued Fleming–Viot dynamics

we need the notion of polynomials on M.

Definition 2.6 (Polynomials) A function 	 : M → R is called a polynomial if there

exists a bounded, measurable test function φ : R
(N

2)+ → R, depending only on finitely
many variables such that

	
(
x
) = 〈νx, φ

〉 :=
∫

R
(N

2)
+

νx(dr) φ
(
r
)
, (2.16)

where r := (ri, j )1≤i< j .

Remark 2.7 (Properties of polynomials)

(i) Let 	 and φ be as in Definition 2.6. If x = (X, r, μ), then

	
(
x
) =

∫

XN

μ⊗N(d(x1, x2, . . .)) φ
(
(r(xi , x j ))1≤i< j

)
, (2.17)

where μ⊗N is the N-fold product measure of μ.

(ii) If n ∈ N is the minimal number such that there exists φ ∈ B(R
(N

2)+ ), depending
only on (ri, j )1≤i< j≤n such that (2.16) holds, n is referred to as degree and φ

as a minimal test function of 	. We write 	 = 	n,φ .
(iii) For m ∈ N, let m be the set of permutations of N which leave m + 1, m +

2,…fixed. For σ ∈ ∞ :=⋃m∈N
m , define

σ̃
(
(ri, j )1≤i< j

) := (rσ(i)∧σ( j),σ (i)∨σ( j)
)

1≤i< j . (2.18)

The symmetrization of φ is given by

φ̄ = 1

n!
∑

σ∈n

φ ◦ σ̃ . (2.19)

By symmetry of νx, 〈νx, φ〉 = 〈νx, φ̄〉, or equivalently, 	n,φ = 	n,φ̄ . ��

Recall from Sect. 2.1 the space B(R
(N

2)+ ) of bounded measurable real-valued func-

tions on R
(N

2)+ . An element φ ∈ B(R
(N

2)+ ) is said to be differentiable if for all 1 ≤ i < j

the partial derivatives ∂φ
∂ri, j

exist and if
∑

1≤i< j | ∂φ
∂ri, j

| < ∞. In this case we put
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Tree-valued resampling dynamics 797

〈∇φ, 2〉 := 2
∑

1≤i< j

∂φ

∂ri, j
=
∑

1≤i, j
i �= j

∂φ

∂ri∧ j,i∨ j
. (2.20)

Denote by C1
b(R

(N

2)+ ) the space of all bounded and continuously differentiable real-

valued functions φ on R
(N

2)+ with bounded derivatives. The function spaces we use in
the sequel are the space of polynomials

� := {	n,φ as in Remark 2.7(ii) : n ∈ N, φ ∈ B(R
(N

2)+ )
}
, (2.21)

and its sub-spaces

�0 := {	n,φ ∈ � : n ∈ N, φ ∈ Cb(R
(N

2)+ )
}
, (2.22)

and

�1 := {	n,φ ∈ � : n ∈ N, φ ∈ C1
b(R

(N

2)+ )
}
. (2.23)

Remark 2.8 (Polynomials form an algebra that separates points)

(i) Observe that �, �0 and �1 are algebras of functions. Specifically, given 	n,φ ,
and 	m,ψ ∈ �,

	n,φ ·�m,ψ = 	n+m,(φ,ψ)n = 	n+m,(ψ,φ)m (2.24)

where for φ, ψ ∈ B(R
(N

2)+ ) and � ∈ N,

(φ, ψ)�

(
r
) := φ(r) · ψ(τ�r), (2.25)

with τ�

(
(ri, j )1≤i< j

) = (r�+i,�+ j )1≤i< j .

(ii) By Proposition 2.6 in [30], � and �0 separate points in M. Since C1
b(R

(N

2)+ )

is dense in the topology of point-wise convergence in Cb(R
(N

2)+ ), �1 separates
points as well. ��

Remark 2.9 (The Gromov-weak topology) Let x, x1, x2, . . . ∈ M. Recall from (2.5)
that xn → x, as n → ∞, in the Gromov-weak topology iff νxn ⇒ νx, as n → ∞.
Equivalently, 	(xn) → 	(x), as n → ∞, for all 	 ∈ �0 (see Theorem 5 in [30]).
Notice that xn → x, as n →∞, if we restrict to �1 or to the set {	n,φ̄ : 	n,φ ∈ �} of
symmetric test functions. (Compare with Remark 2.7(iii)).

To lift the measure-valued Fleming–Viot process to the level of trees and thereby
construct the tree-valued Fleming–Viot dynamics, we consider the martingale prob-
lem associated with the operator �↑ on � with domain D(�↑) = �1. To define �↑
we let for 	 = 	n,φ ∈ �1,

�↑	 := �↑,grow	+�↑,res	. (2.26)
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The growth operator �↑,grow reflects the fact that the population gets older and
therefore the genealogical distances grow at speed 2 as time goes on. We therefore put

�↑,grow	
(
u
) := 〈νu, 〈∇φ, 2〉〉. (2.27)

For the resampling operator let

�↑,res	
(
u) := γ

2

∑

1≤k,l≤n

(〈
νu, φ ◦ θk,l

〉− 〈νu, φ
〉)

, (2.28)

where we put rk,k = 0 for all k ≥ 1, and

(
θk,l
(
(ri ′, j ′)1≤i ′< j ′

))
i, j :=

⎧
⎪⎨

⎪⎩

ri, j , if i, j �= l

ri∧k,i∨k, if j = l,

r j∧k, j∨k, if i = l.

(2.29)

Note that �↑	 ∈ � for all 	 ∈ �1.
Our first main result states that the martingale problem associated with (�↑, �1)

is well-posed.

Theorem 1 (Well-posed martingale problem) For all P0 ∈ M1(U), the (P0, �↑, �1)-
martingale problem is well-posed.

This leads to the following definition.

Definition 2.10 (The tree-valued Fleming–Viot dynamics) Fix P0 ∈ M1(U). The
tree-valued Fleming–Viot dynamics with initial distribution P0 is a stochastic process
with distribution P, the unique solution of the (P0, �↑, �1)-martingale problem.

Proposition 2.11 (Sample path properties) The tree-valued Fleming–Viot dynamics
U has the following properties.

(i) U has sample paths in CU([0,∞)), P-almost surely.
(ii) Ut ∈ Uc, for all t > 0, P-almost surely.

Proposition 2.12 (Feller property) The tree-valued Fleming–Viot dynamics U is a
strong Markov process. Moreover, it has the Feller property, i.e., u 
→ E[ f (Ut )|U0 = u]
is continuous if f ∈ Cb(U).

Corollary 2.13 (Quadratic variation) Let U = (Ut )t≥0 be the tree-valued Fleming–
Viot dynamics with initial distribution P0 ∈ M1(U) and 	 = 	n,φ ∈ �1, Then
	(U) := (	(Ut ))t≥0 is a continuous P-semi-martingale with quadratic variation

〈	(U)〉t = γ n2

t∫

0

ds
〈
νUs , (φ̄, φ̄)n ◦ θ1,n+1 − (φ̄, φ̄)n

〉
. (2.30)
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Remark 2.14 (Quadratic variation for a representative) Assume that for all t > 0,
Ut = (Ut , rt , μt ). Then the quadratic variation of 	(U) can be expressed as

〈	(U)〉t = γ n2

t∫

0

ds 〈μs,
(
χs − 〈μs, χs〉

)2〉, (2.31)

where χs = χ
φ
s : Us → R is defined as

χs(u1) :=
∫

μ⊗N
s (d(u2, u3, . . .)) φ̄((rs(ui , u j ))1≤i< j ). (2.32)

Remark 2.15 (The rôle of μ) Throughout the paper we encode trees as metric measure
spaces rather than just metric spaces. In the context of resampling, given u = (U, r, μ),
the measure μ can be understood as the weak limit of empirical distribution of the indi-
viduals in the population (which are associated with points in (U, r)). This observation
is in analogy to the measure-valued Fleming–Viot processes which arises as the large
population limit of empirical distributions on type space. Moreover, the additional
structure of a probability measure μ allows for defining polynomials and is therefore
very helpful to come up with a suitably large class of generic functions on equivalence
classes of measure metric spaces.

Remark 2.16 (Extended martingale problem) The martingale approach characterizes
a Markov process through a separating class of martingales. Here, for example, the
operator (�↑, �1) extends to an operator on the algebra

F = { f ◦	 : f ∈ B(R), 	 ∈ �} (2.33)

with domain

F2,1 := { f ◦	 : f ∈ C2
b(R), 	 ∈ �1} (2.34)

as follows (see e.g. [26, Corollary 1.2]):

�↑( f ◦	)(u) = f ′
(
	(u)

) ·�↑	(u)

+ 1
2 f ′′

(
	(u)

) · γ n2 · 〈νu, (φ̄, φ̄)n ◦ θ1,n+1 − (φ̄, φ̄)n
〉
. (2.35)

In particular, the tree-valued Fleming–Viot dynamics is the unique solution of the
(�↑, F2,1)-martingale problem.

Remark 2.17 (Reduced martingale problem) In view of Remark 2.16 one is interested
in finding a preferably minimal class of functions such that the martingales (2.12)
uniquely determine the process. Here, for example, we can use the class of prime
polynomials, where we want to refer to to 	 ∈ � as prime if 	 is not of the form
	 �= 	̂ · 	̃ for non-constant 	̂, 	̃ ∈ �. Indeed by (2.35) together with Corollary 2.13
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it is easy to see that an U-valued process U = (Ut )t≥0 is the unique solution of the
(�↑, �1)-martingale problem iff

⎛

⎝	(Ut )−	(U0)−
t∫

0

ds �↑	(Us)

⎞

⎠

t≥0

(2.36)

is a martingale for all prime 	 ∈ �1 with quadratic variation given by (2.30).

2.3 Particle approximation (Theorem 2)

A classical result in population genetics gives the approximation of the measure-valued
Fleming–Viot process by a finite population model—the so called Moran model—in
the limit of large population size (see e.g. [5,22]). In this model, ordered pairs of indi-
viduals are replaced by new pairs in a way that the “children” choose a parent—which
then becomes their common ancestor—independently at random from the parent pair.
In this subsection we state that also the tree-valued Fleming–Viot dynamics can be
approximated by tree-valued resampling dynamics which correspond to the Moran
model.

We will proceed as follows. For further reference, we provide with Proposition 2.22
a condition for the compact containment condition for finite population models in a
general setting. For example, the population size in Definition 2.18 and Proposi-
tion 2.22 is not assumed anymore to be constant, and τ denotes the time when the
population goes extinct. We use Proposition 2.22 for the convergence of the tree-valued
Moran dynamics to the tree-valued Fleming–Viot dynamics in the proof of Theorem
2 (where we have a constant population size and τ = ∞.) Our compact containment
condition will be applicable also in the construction of evolving �-coalescents or
branching trees.

Definition 2.18 (Finite population dynamics) Let (�, (At )t≥0, P) be a filtered prob-
ability space. Let I = (It )t∈R be an adapted process with values in {{1, . . . , n} :
n ∈ N0}. For each t ∈ R, we refer to It as the population at time t . Furthermore, let
�= (�t )t≥0 be an adapted process such that for all t ≥ 0, �t is a partial order on
{(i, s) : s ∈ (−∞, t], i ∈ Is}which defines the genealogical relationships at all times
before t and satisfies the following:

(i) for all r, s, t ∈ R with 0, r ≤ s ≤ t , ir ∈ Ir , and is ∈ Is , (ir , r) �s (is, s)

implies that (ir , r) �t (is, s), i.e., order relations from earlier times are pre-
served,

(ii) for all i ∈ It and s ≤ t there is a unique As(i, t) ∈ Is such that (As(i, t), s) �t

(i, t). We say that As(i, t) is the ancestor of i at time s,
(iii) for all i, j ∈ I0 there is an almost surely finite time T 0

i j such that AT 0
i j
(i, t) =

AT 0
i j
( j, t), i.e., all individuals at time t = 0 are related.

Let τ := inf{s ≥ 0 : Is = ∅} be the lifetime of the population. Put then for all t ≤ τ

and i, j ∈ It ,
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Fig. 1 The graphical representation of a Moran model of size N = 5. By resampling the genealogical
relationships between individuals change. Arrows between lines indicate resampling events. The individual
at the tip dies and the other one reproduces. At any time, genealogical relationships of individuals •, which
are currently alive, can be read from this graphical representation

rt (i, j) := 2
(
t − sup

{
s ≤ t : As(i, t) = As( j, t)

})
. (2.37)

The tree-valued population dynamics (Ut )t∈[0,τ ) read off from (I,�) and is defined
as follows: for all t ∈ [0, τ ),

Ut :=
⎛

⎝It , rt ,
1
|It |
∑

i∈It

δi

⎞

⎠ ∈ U. (2.38)

For a particular choice of (I,�) we obtain the Moran dynamics. (Compare also
with Fig. 1).

Definition 2.19 (Tree-valued Moran dynamics of population size N ) Fix N ∈ N.
The tree-valued population Moran dynamics with population size N is the tree-val-
ued population dynamics read off from (I,�) as follows: Put I = (It )t∈R with
It := IN := {1, 2, . . . , N } for all t ∈ R. Let �0 be a random partial order on
(−∞, 0] × IN which satisfies (iii) in Definition 2.18, almost surely. Consider an
independent family of rate γ

2 -Poisson processes η := {ηi, j ; i, j ∈ IN }. (Note that at
time ηi, j an arrows from i to j appears in the graphical representation, Fig. 1.)

For any s, t ∈ R with 0 ≤ s ≤ t and is, it ∈ IN , we say that (is, s) �t (it , t) iff
there is a path of descent from (is, s) to (it , t), i.e., if there exist n ∈ N, s =: u0 ≤
u1 < u2 < · · · < un := t and j1 := is, jn := it , j1, . . . , jn−1 ∈ {1, 2, . . . , N }
such that for all k ∈ {1, . . . , n}, η jk−1, jk {uk} = 1 and ηm, jk−1(uk−1, uk) = 0 for all
m ∈ IN .

In empirical population genetics models for finite populations rather than infinite
populations are of primary interest. The next result states that the known convergence
of Moran to Fleming–Viot dynamics holds also on the level of trees.

Theorem 2 (Convergence of Moran to Fleming–Viot dynamics) For N ∈ N, let
U N := (Ut )t≥0 be the tree-valued Moran dynamics of population size N, and let
U = (Ut )t≥0 be the tree-valued Fleming–Viot dynamics. If U N

0 ⇒ U0 weakly with
respect to the Gromov-weak topology, as N →∞, then
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U N ⇒
N→∞U , (2.39)

weakly with respect to the Skorohod topology on DU([0,∞)).

Remark 2.20 (Connection with the look-down process) Since all the information about
trees seems to be contained in the look-down construction of [9], one might won-
der whether one could read off the tree-valued Fleming–Viot dynamics from there.
This works for the well-posedness of the Fleming–Viot martingale problem as we
want to sketch here shortly. Recall that the look-down construction contains the tree-
valued Moran dynamics for different population sizes on the same probability space
as follows: Put I ≡ N. Choose a partial order �0 on (−∞, 0] × N which satis-
fies (iii) in Definition 2.18. Consider an independent family of rate γ -Poisson pro-
cesses η := {ηi, j ; 1 ≤ i < j}. As in Definition 2.19, let for any 0 ≤ s ≤ t and
is, it ∈ N, (is, s) �t (it , t) iff there is a path of descent from (is, s) to (it , t). As in
(2.37) we can define a process (R

t
)t≥0 with R

t
:= (Rt (i, j))1≤i< j which satisfy for

all 1 ≤ i < j ,

Rt (i, j) grows linearly at speed 2,

Rt (i, j) = 0 if t ∈ ηi, j ,

Rt (i, j) = Rt−(k, j) if t ∈ ηk,i for some k < i,

Rt (i, j) = Rt−(i ∧ k, i ∨ k) if t ∈ ηk, j for some i �= k < j .

(2.40)

If�0 is exchangeable, the tree-valued population dynamics (U N
t )t≥0 read off from the

restricted graphical representation ({1, 2, 3, . . . , N },�) equals the tree-valued Moran
dynamics, for each N ∈ N. Moreover, the almost sure limit

U∞
t := lim

N→∞U N
t (2.41)

exists for all t ≥ 0. (Compare with Theorem 4 in [30]). This limit easily extends
to finitely many time points. By the Kolmogorov extension theorem, existence of a
process (U∞

t )t≥0 with these finite dimensional distributions follows, as well as con-
vergence of finite Moran models in finite dimensional distributions. In addition, with
a bit more effort it is possible to show that there is a modification of (U∞

t )t≥0 with
continuous sample paths, as an estimate of E[(	(Ut )−	(Us))

4] for 	 ∈ �1 reveals.
The process (U∞

t )t≥0 solves the martingale problem for �↑. Indeed, if P0 ∈
M1(U) is independent of the Poisson processes and its first moment measure equals
the distribution of (R0(i, j))1≤i< j , then the process (R

t
)t≥0 is the unique strong Mar-

kov process with generator �̃ acting on functions φ ∈ Cb
1

(
R

(N

2)+
)

which depend only
on finitely many coordinates given by

�̃φ := 〈∇φ, 2〉 + γ
∑

1≤k<l

(
φ ◦ θk,l − φ

)
(2.42)
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with θk,l as in (2.29). That is, for 	 = 	φ,n ∈ �1,

�↑	φ,n(u) = 	�̃φ,n(u) = 〈νu, �̃φ〉 (2.43)

and therefore by exchangeability, for all φ ∈ Cb(R(N

2)),

E
[〈νU∞

t , φ〉] = E
[
φ
(
R

t

)]
. (2.44)

Since distance matrix distributions are determined uniquely by their first moment
measure (this follows since polynomials are separating, see Remark 2.8), the process
(U∞

t )t≥0 solves the (P0, �↑, �1)-martingale problem.
However, the above arguments establish convergence of Moran models to the tree-

valued Fleming–Viot dynamics only in finite-dimensional distributions. A proof of
tightness of Moran models in DU([0,∞)) must be carried out to obtain a full con-
vergence result as stated in Theorem 2. We therefore follow a different route, which
also has the advantage of not explicitly relying on an exchangeable population model.
Hence our approach allows also for the construction of tree-valued dynamics coming
from population models with selection and recombination, or more generally, also
from tree-valued Markov chains arising outside the context of population models.

Remark 2.21 (Universality) The measure-valued Fleming–Viot process is universal
in the sense that it is the limit point of frequency paths of various exchangeable pop-
ulation models of constant size. (A precise condition is found in [38].) We conjecture
that the same universality holds on the level of trees, i.e., the tree-valued Fleming–Viot
dynamics is the point of attraction of various exchangeable tree-valued dynamics. The
crucial step for convergence of tree-valued processes is tightness of the finite models;
see Sect. 6.3 in the case of the tree-valued Moran dynamics.

The proof of Theorem 2 relies on a criterion for the compact containment con-
dition in U to hold. We state it here for the class of population dynamics given in
Definition 2.18. It is based on the number of ancestors and descendants.

For t ∈ [0, τ ) and ε > 0, denote by

S2ε(Ut ) := #
{

At−ε(i, t) : i ∈ It
}

(2.45)

the number of ancestors of It at time t − ε, and by

S̃2ε(Ut ) := inf
J⊆It : #J≤2ε#It

#
{

At−ε(i, t) : i ∈ It\J
}

(2.46)

the minimal number of ancestors at time t−ε whose descendants cover a fraction of at
least 1−2ε of the time-t-population. For t ≥ τ and ε > 0, set S̃2ε(Ut ) = S2ε(Ut ) = 0.
Moreover, for J ⊆ Is and s ≤ t , let

Dt (s, J ) := #
{
i ∈ It : As(i, t) ∈ J } (2.47)

denote the number of descendants of the set J at time t .
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The following criterion for a compact containment condition will be proved in
Sect. 6. It uses the setting of finite population models from Definition 2.18. Recall that
the population size is in general not constant and τ refers to the time the population
goes extinct.

Proposition 2.22 (Compact containment for population dynamics) For each N ∈
N, let (�N , (AN

t )t∈R, PN ), (IN ,�N ), and τ N be as in Definition 2.18. Let U N =
(U N

t )t∈[0,τ N ) be the tree-valued population dynamics read off from (IN ,�N ).
Assume that the family {U N

0 ; N ∈ N} is tight in U. Furthermore fix T > 0, and
consider the following assumptions:

(i) For all 0 < ε < T there exists a δ = δ(ε) > 0 such that for all s ∈ [0, T ),
N ∈ N and AN

s -measurable random subsets J N ⊂ IN
s with #J N ≤ δ · #IN

s ,

lim sup
N∈N

PN

{

sup
t∈[s,T∧τ N )

DN
t (J N ,s)

#IN
t

> ε

}

≤ ε. (2.48)

(ii.i) For all 0 < ε ≤ t < T , the family {S2ε(U N
t ) : N ∈ N} is tight.

(ii.ii) For all 0 < ε ≤ t < T , the family {S̃2ε(U N
t ) : N ∈ N} is tight.

Then, the following compact containment conditions hold:

(a) Under (i) and (ii.i), for all ε > 0 there exists a set �ε,T ⊆ Uc which is compact
in Uc such that

inf
N∈N

PN{U N
t ∈ �ε,T for all t ∈ [ε, T ∧ τ N )

}
> 1 − ε. (2.49)

(b) Under (i) and (ii.ii), for all ε > 0 there exist a set �̃ε,T ⊆ U which is compact
in U such that

inf
N∈N

PN{U N
t ∈ �̃ε,T for all t ∈ [0, T ∧ τ N )

}
> 1 − ε. (2.50)

2.4 Long-term behavior (Theorem 3)

Genealogical relationships in neutral models are frequently studied since the introduc-
tion of the Kingman coalescent in [34]. This stochastic process describes the genealogy
of a Moran population in equilibrium and its projective limit as the population size
tends to infinity. In this section we formulate the related convergence result for the
tree-valued resampling dynamics.

Recall that a partition of N is a collection p = {π1, π2, . . .} of pairwise disjoint
subsets of N, also called blocks, such that N = ∪i πi . The partition p defines an
equivalence relation ∼p on N by i ∼p j if and only if there exists a partition ele-
ment π ∈ p with i, j ∈ π . We denote by S the set of partitions of N and define
for each k ∈ N the restriction ρk on S to the set Sk of partitions of {1, 2, . . . , k} by
ρk ◦ p := {πi ∩ {1, . . . , k} : πi ∈ p}. Each p ∈ S can be identified with the sequence
(ρ1 ◦ p, ρ2 ◦ p, . . .) ∈ S1 × S2 × · · · . Give S the topology it inherits as a subset of
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S1 ×S2 ×· · · with the product of discrete topologies. So S is compact and metrizable
and hence Polish.

Starting in P0 = p ∈ S, the Kingman coalescent is the unique S-valued strong
Markov process K = (Ks)s≥0 such that any pair of blocks merges at rate γ (see, for
example, [35,39]). Every realization k = (ks)s≥0 of K gives a pseudo-metric r k on N

defined by

r k
(
i, j
) := 2 · inf

{
s ≥ 0 : i ∼ks j

}
, (2.51)

i.e., r k
(
i, j
)

is proportional to the time needed for i and j to coalesce. Note that (N, r k)

is ultra-metric and that r k(i, j) can be thought of as a genealogical distance. Denote
then by (Lk, r k) the completion of (N, r k). Clearly, (Lk, r k) is also ultra-metric. Define
HN to be the map which takes a realization of the S-valued coalescent and maps it to
(an equivalence class of) a pseudo-metric measure space by

HN : k 
→
(

Lk, r k, μK
N := 1

N

∑N

i=1
δi

)
. (2.52)

Notice that for each N , the map HN is continuous.
By Theorem 4 in [30], there exists a U-valued random variable U∞ such that

HN (K ) ⇒
N→∞U∞, (2.53)

weakly with respect to the Gromov-weak topology. The limit object U∞ is called the
Kingman measure tree. Since the Kingman coalescent comes immediately down from
∞, the Kingman measure tree is compact (see [23]).

Theorem 3 (Convergence to the Kingman measure tree) Let U = (Ut )t≥0 be the
tree-valued Fleming–Viot dynamics starting in U0 and U∞ the Kingman coalescent
measure tree. Then

Ut ⇒
t→∞U∞. (2.54)

In particular, the distribution of U∞ is the unique equilibrium distribution of the
tree-valued Fleming–Viot dynamics.

Remark 2.23 (Exchange of limits) Recall from Definition 2.19 the tree-valued Moran
dynamics {U N = (U N

t )t≥0; N ∈ N}. It is straightforward to check that for all N ∈ N

and for all possible initial states, U N
t ⇒

t→∞HN (K), and therefore the limits N → ∞
(see Theorem 2) and t →∞ (see Theorem 3) can be exchanged due to (2.53).

Outline The rest of the paper is organized as follows. As an application we study the
evolution of subtree length distributions in Sect. 3. A duality relation of the tree-val-
ued Fleming–Viot dynamics to the tree-valued Kingman coalescent is given in Sect. 4.
In Sect. 5 we give a formal construction of tree-valued Moran dynamics using well-
posed martingale problems. The Moran models build, as shown in Sect. 6, a tight
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sequence. Duality and tightness provide the tools necessary for the proof of Theo-
rems 1 through 3, which are carried out in Sect. 8. In Sect. 9 we give the proofs of the
applications of Sect. 3.

3 Application: Subtree length distribution (Theorems 4 and 5)

In this section we investigate the distribution of the vector containing the lengths of the
subtrees spanned by subsequently sampled points, which is referred to as the subtree
length distribution. All proofs are given in Sect. 9.

The main result in Sect. 3.1 is that the subtree length distribution uniquely deter-
mines ultra-metric measure spaces (Theorem 4). In Sect. 3.2 the corresponding mar-
tingale problem and its well-posedness is stated (Theorem 5). In Sect. 3.3 we study
with the mean sample Laplace transform a special functional of the subtree length
distribution.

3.1 The subtree length distribution (Theorem 4)

Recall from Remark 2.2 that we can isometrically embed any ultra-metric space
(U, rU ) via a function ϕ into a path-connected space (X, rX ) which satisfies the
four-point condition (2.8) such that X\X◦ is isometric to (U, rU ). For a sequence
u1, . . . , un ∈ U with n ∈ N, let

L(U,rU )
n

({u1, . . . , un}
) := L(X,rX )

n

({ϕ(u1), . . . , ϕ(un)})
:= length of the subtree of (X, r) spanned by {ϕ(u1), . . . , ϕ(un)}, (3.1)

where for an R-tree (X, rX ) with finitely many leaves the length of the tree is defined
as the total mass of the one-dimensional Hausdorff measure on (X, B(X)).

Note that the length of the tree spanned by a finite sample is a function of their
mutual distances as we state next.

Lemma 3.1 (Total length of a sub-tree spanned by a finite subset) For a metric space
(X, rX ) satisfying the four point condition (2.8) and for x1, . . . , xn ∈ X,

L(X,rX )
n

({x1, . . . , xn}
) = 1

2
inf

{
n∑

i=1

r(xi , xσ(i)); σ ∈ 1
n

}

, (3.2)

where 1
n := {permutations of {1, . . . , n} with one cycle}.

To specify the distribution of the length of the subtrees of subsequently sampled
points we consider the map

� :
{

R
(N

2)+ → R
N+

r 
→ (0, �2(r), �3(r), . . .),
(3.3)
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where for each n ∈ N,

�n(r) := 1

2
inf

{
n∑

i=1

ri,σ (i); σ ∈ 1
n

}

. (3.4)

We then define the subtree length distribution of u ∈ U by

ξ(u) := �∗νu ∈ M1(RN+). (3.5)

The first key result states that the subtree length distribution uniquely characterizes
ultra-metric measure spaces.

Theorem 4 (Uniqueness and continuity of tree lengths distribution) The map ξ :
U → M1(RN+) from (3.5) is injective. Let ξ(U) ⊆ M1(RN+) be equipped with the
weak topology and R

N+ with the product topology. Then, ξ and ξ−1 : ξ(U) → U are
continuous.

Remark 3.2 (ξ(U) is Polish) Take a complete metric dU on U. Using the injectivity
of ξ , we define a metric dξ(U) on ξ(U) by setting

dξ(U)(λ1, λ2) := dU(ξ−1(λ1), ξ−1(λ2)), λ1, λ2 ∈ ξ(U). (3.6)

Since both, ξ and ξ−1, are continuous (with respect to the weak topology on M1(U)),
we see that dξ(U) generates the weak topology on ξ(U). Since ξ(U) inherits the sepa-
rability from U, we conclude that ξ(U) is Polish. ��
Remark 3.3 (Conjecture about general tree spaces) Theorem 4 shows uniqueness of
the tree length distribution on the space of ultra-metric spaces. We conjecture that
uniqueness still holds on the space of metric measure spaces satisfying the four-point
condition (2.8).

3.2 Martingale problem of subtree length distribution (Theorem 5)

We investigate the evolution of the subtree length distribution under the tree-val-
ued Fleming–Viot dynamics. That is, given the tree-valued Fleming–Viot dynamics
U = (Ut )t≥0, we consider

� = (�t )t≥0, �t := ξ(Ut ). (3.7)

To describe the process � via a martingale problem, we define the operator �↑,� on
the algebra �� := {	 ◦ ξ−1 : 	 ∈ �} with domain �1,� := {	 ◦ ξ−1 : 	 ∈ �1} by

�↑,�(	 ◦ ξ−1)(λ) := �↑	(ξ−1(λ)), (3.8)

for all λ ∈ ξ(U).
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In �1,� we find, in particular, functions � ∈ �1,� which are of the form

�ψ(λ) = 〈λ, ψ〉 :=
∫

RN+

λ(dl) ψ
(
l
)
, (3.9)

for a test function ψ ∈ C1
b(RN+) which depends on finitely many entries only. Indeed,

if ψ depends only on the first k entries, then �ψ = 	k,ψ◦� ◦ ξ−1.
The main result of the section is the following.

Theorem 5 (The subtree lengths distribution process) For P0 ∈ M1(U), let U be the
tree-valued Fleming–Viot dynamics with initial distribution P0.

(i) The (ξ∗P0, �↑,�, �1,�)-martingale problem is well-posed. Its unique solution
is given by � = (�t )t≥0 with �t = ξ(Ut ), for t ≥ 0. The process � has the
Feller property. In addition, P-almost surely, it has continuous sample paths,
where ξ(U) ⊆ M1(RN+) is equipped with the weak topology.

(ii) The action of �↑,� on a function �ψ of the form (3.9) is given by

�↑,��ψ(λ) =
∑

n≥2

n
〈
λ,

∂

∂ln
ψ
〉+ γ

∑

n≥1

n
〈
λ, ψ ◦ βn − ψ

〉
(3.10)

where
βn : {0} × R

N+ → {0} × R
N+ is given by

βn : (l1 = 0, l2, l3, . . .) 
→ (l1 = 0, l2, . . . , ln−1, ln, ln, ln+1, . . .).

(3.11)

3.3 Explicit calculations

We consider in this section the mean sample Laplace transforms, i.e., functions of the
form (3.9) with test functions

ψ(l) = e−σ ln (3.12)

for some n ∈ N and σ ∈ R+ in (3.9) for each n ∈ N. Using (3.10) we obtain the
following explicit expressions.

Corollary 3.4 (Mean sample Laplace transforms) Let � = (�t )t≥0 be the solution
of the (ξ∗P0, �↑,�, �1,�) martingale problem. For all σ ∈ R+ and n ≥ 2, set

gn(t, σ ) := E
[ ∫

�t (dl) e−σ ln
]
. (3.13)

Then,

gn(t, σ )

=
�(n)�

(
2
γ

σ + 1
)

�
(

2
γ

σ + n
) + n!

n∑

k=2

(n−1
k−1

)
(−1)k

(
2
γ

σ + 2k − 1
)

�
(

2
γ

σ + n + k
) · e−k(σ+ γ

2 (k−1))t
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·
⎧
⎨

⎩

⎛

⎝
k∑

m=2

( k−1
m−1

)
(−1)m�

(
2
γ

σ + k + m − 1
)

m! gm(0; σ)

⎞

⎠

− k − 1

k
(

2
γ

σ + k − 1
)�
(

2
γ

σ + k + 1
)
⎫
⎬

⎭
. (3.14)

In particular, if gn(σ ) = limt→∞ gn(t; σ) then

gn(σ ) = E
[
e−σ

∑n
k=2 Ek ]

, (3.15)

where {Ek; k = 2, . . . , n} are independent and Ek is exponentially distributed with
mean 2

γ (k−1)
, k = 2, . . . , n.

Remark 3.5 (Length of n-Kingman coalescent) Consider the Kingman coalescent
started with n individuals, and let Ln denote the total length of the corresponding
genealogical tree. Note that (3.15), together with Theorem 3 implies the well-known
fact (implicitly stated already in [44]) that

Ln
d=

n∑

k=2

Ek . (3.16)

��

4 Duality

Duality is an extremely useful technique in the study of Markov processes. It is
well-known that the Kingman coalescent is dual to the neutral measure-valued Flem-
ing–Viot process (see, for example, [5,22]). In this section this duality is lifted to
the tree-valued Fleming–Viot dynamics. We apply the duality to show uniqueness
of the martingale problem for the tree-valued Fleming–Viot process and its relaxation
to the equilibrium Kingman measure tree in Sect. 8.

The dual process Recall from Sect. 2.4 the Kingman coalescent K = (Ks)s≥0 and
its state space S of partitions of N. Since we are constructing a dual to the U-valued
dynamics, we add a component which measures genealogical distances. The state
space of the dual tree-valued Kingman coalescent therefore is

K := S× R
(N

2)+ , (4.1)

equipped with the product topology. In particular, since S and R
(N

2)+ are Polish, K is
Polish as well.

In the following we call the K-valued stochastic process K = (Ks)s≥0, with

Ks = (Ks, r ′
s
) (4.2)

the tree-valued Kingman coalescent, if it follows the dynamics:
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810 A. Greven et al.

Coalescence K = (Ks)s≥0 is the S-valued Kingman coalescent with pair coalescence
rate γ .
Distance growth At time t , for all 1 ≤ i < j with i �∼Ks j , the genealogical
distance r ′·(i, j) grows with constant speed 2.

To state the duality relation it is necessary to associate a martingale problem with
the tree-valued Kingman coalescent. Consider for p ∈ S, the coalescent operator
κp : p2 → S such that for π, π ′ ∈ p,

κp(π, π ′) := (p\{π, π ′}) ∪ {π ∪ π ′}, (4.3)

i.e., κp sends two partition elements of the partition p to the new partition obtained by
coalescence of the two partition elements into one.

We consider the space (recall ρk from Sect. 2.4)

G := {G ∈ B(K) : G(·, r ′) ∈ C(S), G(·, r ′) depends on p only through

ρk ◦ p for some k ∈ N; ∀r ′ ∈ R
(N

2)+
}

(4.4)

and the domain

G1,0 := {G ∈ G : 〈∇r ′
p G, 2〉 exists,∀p ∈ S

}
(4.5)

with

〈∇r ′
p ·, 2〉 := 2

∑

i �∼p j,i< j

∂

∂r ′i, j
=
∑

i �∼p j

∂

∂r ′i∧ j,i∨ j
. (4.6)

We then consider the martingale problem associated with the operator �↓ on G
with domain G1,0, where �↓ := �↓,grow +�↓,coal, with

�↓,growG(p, r ′) := 〈∇r ′
p G, 2〉(p, r ′) (4.7)

and

�↓,coalG(p, r ′) := γ
∑

{π,π ′}⊆p
π �=π ′

(
G(κp(π, π ′), r ′)− G(p, r ′)

)
. (4.8)

Fix P0 ∈ M1(K). By construction, the tree-valued Kingman coalescent solves the
(P0, �↓, G1,0)-martingale problem.

The duality relation We are ready to state a duality relation between the tree-valued
Fleming–Viot dynamics and the tree-valued Kingman coalescent.

To introduce a class H of duality functions, we identify every partition p ∈ S with
the map p which sends i ∈ N to the block π ∈ p iff i ∈ π , and put for p ∈ S,
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(r)p := (rmin p(i),min p( j)
)

1≤i< j . (4.9)

Let then for each n ∈ N and φ ∈ C1
b(R

(N

2)+ ) depending on the coordinates (ri, j )1≤i< j≤n

only, the function Hn,φ : U×K → R be defined as

Hn,φ
(
u, (p, r ′)

) :=
∫

νu(dr) φ
(
(r)p + r ′

)
. (4.10)

Notice that then the collection of functions

H = {Hn,φ(·, k) : n ∈ N, k ∈ K, φ ∈ C1
b(R(N

2))
}

(4.11)

is equal to �1, and thus separates points in M1(U), see Remark 2.8.

Proposition 4.1 (Duality relation) For P0 ∈ M1(U) and k ∈ K, let U = (Ut )t≥0 and
K = (Kt )t≥0 be solutions of the (P0, �↑, �1) and (δk, �↓, G1,0)-martingale problem,
respectively. Then, if U and K are independent,

E
[
H(Ut , k)

] = E
[
H(U0, Kt )

]
, (4.12)

for all t ≥ 0 and H ∈ H.

Proof We shall establish that for Hn,φ ∈ H,

�↑Hn,φ(·, k)(u) = �↓Hn,φφ(u, ·)(k). (4.13)

Using the fact that Hn,φ is bounded the assertion then follows from Theorem 4.4.11
(with α = β = 0) in [16].

We verify (4.13) for the two components of the dynamics separately. Observe first
that by (2.27) and (4.7),

�↑,grow Hn,φ(·, (p, r ′))(u) = 2 ·
∫

νu(dr)
∑

1≤i< j

∂

∂ri, j
φ
(
(r)p + r ′

)

=
∫

νu(dr) 〈∇r ′
p φ, 2〉((r)p + r ′

)

= �↓,grow Hn,φ
(
u, ·)(p, r ′), (4.14)

where we have used in the second equality that ∂
∂ri, j

φ((r)p+r ′) = 0, whenever i ∼p j .
Similarly, using θk,l from (2.29),

�↑,res Hn,φ
(·, (p, r ′)

)
(u)

= γ

2

∫
νu(dr)

∑

1≤k,l

(
φ
(
θk,l(r)p + r ′

)− φ
(
(r)p + r ′

))
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= γ

∫
νu(dr)

∑

{π,π ′}⊆p
π �=π ′

(
φ
(
(r)κp(π,π ′) + r ′

)− φ
(
(r)p + r ′

))

= �↓,coal Hn,φ
(
u, ·)(p, r ′). (4.15)

Combining (4.14) with (4.15) yields (4.13) and thereby completes the proof. ��

5 Martingale problems for tree-valued Moran dynamics

Fix N ∈ N, and recall from Definition 2.19 the tree-valued Moran dynamics U N =
(U N

t )t≥0 of population size N . In this section we characterize the tree-valued Moran
dynamics as unique solutions of a martingale problem in Subsection 5.1. We then use
an approximation argument to establish the existence of the solution to the Fleming–
Viot martingale problem in Sect. 5.2. Section 5.3 establishes a coupling of tree-valued
Moran models needed to establish the Feller property of the tree-valued Fleming–Viot
dynamics.

Notice that the states of the tree-valued Moran dynamics with population size N
are restricted to

UN := {u = (U, r, μ) ∈ U : Nμ ∈ N (U )
} ⊂ Uc, (5.1)

where N (U ) is the set of integer-valued measures on U . Moreover, if u ∈ UN , then u

can be represented by the pseudo-metric measure space

(

{1, 2, . . . , N }, r ′, N−1
N∑

i=1

δi

)

, (5.2)

for some pseudo-metric r ′ on {1, . . . , N }. In the following we refer to the elements
i ∈ {1, 2, . . . , N } as the individuals of the population of size N .

By construction, the tree-valued Moran dynamics are derived from the following
particle dynamics on the representative (5.2):

Resampling At rate γ
2 > 0, a resampling event occurs between two individuals k, l

such that distances to l are replaced by distances to k. This implies, in particular,
that the genealogical distance between k and l is set to be zero. Equivalently, the
measure changes from μ to μ+ 1

N δk − 1
N δl .

Distance growth The distance between any two different individuals i, j grows at
speed 2.

5.1 The Martingale problem for a fixed population size N

In this subsection we characterize the resampling and distance growth dynamics by a
martingale problem.

Fix N ∈ N. Similarly as in (2.3), for a metric space (U, r), define a map which
sends a sequence of N points to the matrix of mutual distances
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RN ,(U,r) :
{

U N → R(N
2)

(x1, . . . , xN ) 
→ (r(xi , x j ))1≤i< j≤N
. (5.3)

For a pseudo-metric measure space (U, r, μ) with Nμ ∈ N (U ), let

μ⊗↓N (d(u1, . . . , uN ))

:= μ(du1)⊗ μ− 1
N δu1

1 − 1
N

(du2)⊗ · · · ⊗ μ− 1
N

∑N−1
k=1 δuk

1 − (N−1)
N

(duN ), (5.4)

the sampling (without replacement) measure and define the N distance matrix distri-
bution (without replacement) νN ,(U,r,μ) of u = (U, r, μ) ∈ UN by

νN ,u := (RN ,(U,r)
)
∗μ

⊗↓N ∈ M1(R
(N

2)+ ). (5.5)

Observe that u ∈ UN is uniquely characterized by its N distance matrix distribution.
Once more, it is obvious that νN ,(U,r,μ) depends on (U, r, μ) only through its equiv-

alence class (U, r, μ) ∈ UN leading to the following definition.

Definition 5.1 (N-distance matrix distribution) For N ∈ N, the N distance matrix
distribution νN ,u (without replacement) of u ∈ UN is defined as the N distance matrix
distribution νN ,(U,r,μ) of an arbitrary representative (U, r, μ) of the equivalence class
u = (U, r, μ).

For a measurable, bounded φ : R
(N

2)+ → R, introduce the polynomial 	
φ
N by

	
φ
N (u) = 〈νN ,u, φ〉 :=

∫

R
(N

2 )
+

νN ,u(dr) φ
(
r
)

(5.6)

and set

�N := {	φ
N : φ ∈ B(R

(N
2)+ )
}
, (5.7)

and

�1
N := {	φ

N : φ ∈ C1
b(R

(N
2)+ )
}
. (5.8)

In contrast to �1, the space �1
N does not form an algebra. However, we only require

that �1
N is separating on UN , which can easily be shown.

We define an operator �↑,N := �↑,grow,N +�↑,res,N on �N with domain �1
N by

independent superposition of resampling and distance growth.
We begin with the distance growth operator �↑,grow,N . Since distances of any pair

of distinct points grow at speed 2 in periods without resampling, we put

�↑,grow,N 	
φ
N := 〈νN ,u, 〈∇φ, 2〉〉, (5.9)

with 〈∇φ, 2〉 from (2.20).
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For the resampling operator �↑,res,N , consider first the action on a representative
(U, r, μ) of the form (5.2). Any resampling event in which the individual l is replaced
by a copy of the individual k changes the measure from μ to μ+ 1

N δk − 1
N δl .

Therefore, since

∑

1≤k,l≤N

(RN ,(U,r))∗
(
μ+ 1

N δk − 1
N δl
)⊗↓N =

∑

1≤k,l≤N

(θk,l)∗νN ,u (5.10)

we obtain for u = (U, r, μ) that

�↑,res,N 	
φ
N (u)

= γ

2

∑

1≤k,l≤N

(
〈(RN ,(U,r))∗

(
μ+ 1

N δk − 1
N δl
)⊗↓N

, φ〉 − 〈(RN ,(U,r))∗μ⊗↓N , φ〉
)

= γ

2

∑

1≤k,l≤N

(〈νN ,u, φ ◦ θk,l〉 − 〈νN ,u, φ〉). (5.11)

It is easy to see that for given N ∈ N, �1
N is separating in UN . We can therefore use

the operator (�↑,N , �1
N ) to characterize the tree-valued Moran models analytically.

Proposition 5.2 (Tree-valued Moran dynamics) For all N ∈ N and PN
0 ∈ M1(UN ),

the (PN
0 , �↑,N , �1

N )-martingale problem is well-posed.

Proof Let (IN ,�N ) in Definition 2.18 be such that the law of U N
0 equals PN

0 . Then
the tree-valued Moran dynamics given by Definition 2.19 solve the (PN

0 , �↑,N , �1
N )-

martingale problem, by construction. This proves existence.
For uniqueness—following the same line of argument as given in Sect. 4—one can

check that the (PN
0 , �↑,N , �1

N )-martingale problem is dual to the tree-valued King-
man coalescent where the duality functions 	 ∈ �1

N are smooth polynomials that
involve sampling without replacement (see, for example, Corollary 3.7 in [29] where
a similar duality is proved on the level of the measure-valued processes). ��

5.2 Convergence to the Fleming–Viot generator

The goal of this subsection is to show that the operator for the tree-valued Fleming–Viot
martingale problem is the limit of the operators for the tree-valued Moran martingale
problems. This is one ingredient for the proof of Theorem 2 given in Sect. 8.

Proposition 5.3 Let 	 ∈ �1. There exist 	1 ∈ �1
1, 	2 ∈ �1

2, . . . such that

lim
N→∞ sup

u∈UN

∣
∣	N (u)−	(u)

∣
∣ = 0, (5.12)

and

lim
N→∞ sup

u∈UN

∣∣�↑,N 	N (u)−�↑	(u)
∣∣ = 0. (5.13)
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Proof First, define the extension operator

ιN :
{

R(N
2) 
→ R(N

2)

(ri, j )1≤i< j≤N 
→ (ri"N∧ j"N , ri"N∨ j"N )1≤i< j ,
(5.14)

where i"N := 1 + ((i − 1) mod N ). Fix 	 = 	n,φ ∈ �1 for n ∈ N, φ ∈ C1
b(R

(N

2)+ ).

For N ≥ n set 	N := 	
φ◦ιN
N ∈ �1

N . By the definition of the N -distance matrix
distribution of a representative (5.5), there is a C > 0 such that

sup
u∈UN

∣∣	N (u)−	(u)
∣∣ = sup

u∈UN

∣∣〈νN ,u, φ ◦ ιN 〉 − 〈νu, φ〉∣∣

= sup
u∈UN

∣∣〈(ιN )∗νN ,u − νu, φ〉∣∣

≤ C

N
||φ|| (5.15)

for all N ≥ n. This shows (5.12). For (5.13) observe that �↑	(u) = 〈νu, ψ〉 and
�↑,N 	N (u) = 〈νN ,u, ψ̃〉 for continuous, bounded functions ψ and ψ̃ satisfying ψ̃ =
ψ ◦ ιN . Hence, (5.13) follows from (5.15). ��

5.3 Coupling tree-valued Moran dynamics

In this section we show how to couple two tree-valued Moran dynamics. In particular,
using a metric on ultra-metric measure spaces introduced in [30], we show that the
coupled processes become closer as time evolves (Proposition 5.8). This will be an
important ingredient in showing the Feller property of the tree-valued Fleming–Viot
dynamics stated in Theorem 1.

We fix N ∈ N and IN := {1, . . . , N }. Informally, we couple two tree-valued
Moran dynamics by using the same resampling events. For this, recall the Poisson
processes η = {ηi, j ; i, j ∈ IN } from Definition 2.19 which determine resampling
events. Recall from Definition 2.18 the notion of ancestors As(i, t), i ∈ IN and s ≤ t .

In order to be in a position to compare coupled Moran models, we use the following
metric on U introduced in [30, Section 10].

Definition 5.4 (Modified Eurandom metric) The modified Eurandom distance betw-
een u1 = (U1, r1, μ1) and u2 = (U2, r2, μ2) ∈ U is given by

d ′Eur(u1, u2)

:= inf
μ̃

∫

U 2
1

∫

U 2
2

μ̃(d(i1, i2))μ̃(d( j1, j2))
∣∣r1(i1, j1)− r2(i2, j2)

∣∣ ∧ 1 (5.16)

where the infimum is taken over all couplings of μ1 and μ2, i.e.,

μ̃ ∈ {μ̃′ ∈ M1(U1 ×U2) : (πk)∗μ̃′ = μk, k = 1, 2
}
, (5.17)

with πk : U1 ×U2 → Uk denoting the projection on the kth coordinate, k = 1, 2.
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Remark 5.5 (Connection to the Gromov-weak topology) By Proposition 10.5 in [30],
the distance d ′Eur is indeed a metric and generates the Gromov-weak topology but is
not complete. In particular, for U-valued random variables U , U1, U2, . . . which are
all defined on the same probability space, we find that Un ⇒ U , as n → ∞, iff
E[d ′Eur(Un, U)] → 0, as n →∞. ��
Remark 5.6 (Modified Eurandom metric on UN ) Recall UN from (5.1), and let uk =
(IN , r̃k, μk), k = 1, 2, be two UN -valued random variables. Since μk has atoms of
size 1/N , k = 1, 2, the modified Eurandom metric is given by

d ′Eur(u1, u2) = inf
σ∈IN

1

N 2

∑

i, j∈IN

|̃r1(i, j)− r̃2(σ (i), σ ( j))| ∧ 1, (5.18)

where IN is the set of permutations of IN . Moreover, there exist (IN , rk, μk) ∈
uk, k = 1, 2 such that

d ′Eur(u1, u2) = 1

N 2

∑

i, j∈IN

|r1(i, j)− r2(i, j)| ∧ 1. (5.19)

Definition 5.7 (Coupled tree-valued Moran dynamics) For I = (It )t≥0 and It :=
IN := {1, . . . , N }, let�1

0,�2
0 be two partial orders on (−∞, 0]×IN , both satisfying

(iii) in Definition 2.18. Moreover, let η be a realization of the Poisson processes given
in Definition 2.19, defining the processes �1:= (�1

t )t≥0 and �2:= (�2
t )t≥0 as in

Definition 2.19. Then, for (U N ,k
t )t≥0, read off from (I,�k), k = 1, 2, the process

(U N ,1
t , U N ,2

t )t≥0 is referred to as the coupled tree-valued Moran dynamics started in
(U N ,1

0 , U N ,2
0 ).

Proposition 5.8 (Contraction of coupled tree-valued Moran dynamics) Let (U N ,1
t ,

U N ,2
t )t≥0 be the coupled tree-valued Moran dynamics started in (U N ,1, U N ,2). Then

for all t > 0,

E[d ′Eur

(U N ,1
t , U N ,2

t
)] = e−γ t d ′Eur

(U N ,1
0 , U N ,2

0

)
. (5.20)

Proof Recall from Definition 2.18 that As(i, t) is the ancestor of (i, t) by time s and
from (2.37) that r1

t , r2
t are the metrics given by the coupled Moran dynamics by time

t ≥ 0.
By the definition of the coupled tree-valued Moran dynamics, for i, j ∈ IN ,

∣∣r1
t (i, j)− r2

t (i, j)
∣∣ = ∣∣r1

0 (A0(i, t), A0( j, t))− r2
0 (A0(i, t), A0( j, t))

∣∣. (5.21)

Let I, J be independent, uniformly distributed on IN and independent of all other
random variables. Given I �= J , we distinguish two cases: (i) s ∈ ηAs (I,t),As (J,t) ∪
ηAs (J,t),As (I,t) for some 0 ≤ s ≤ t . Here, the ancestral lines of I and J were affected
by a joint resampling event, resulting in A0(I, t) = A0(J, t). This event happens with
probability 1 − e−γ t . (ii) In the other case, occurring with probability e−γ t , we find
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that A0(I, t) and A0(J, t) are again distributed as I and J . Hence, for all t ≥ 0, by
(5.19),

E[d ′Eur(U N ,1
t , U N ,2

t )] = E[|r1
t (I, J )− r2

t (I, J )| ∧ 1]
= E[|r1

0 (A0(I, t), A0(J, t))− r2
0 (A0(I, t), A0(J, t))| ∧ 1]

= e−γ t E[|r1
0 (I, J )− r2

0 (I, J )| ∧ 1]
= e−γ t d ′Eur(U N ,1, U N ,2), (5.22)

as claimed. ��

6 Limit points are compact

Recall from Definition 2.19 the tree-valued Moran dynamics U N with population size
N ∈ N. In this section we show that potential limit points of the sequence {U N ; N ∈ N}
have càdlàg sample paths in U and take values in the space Uc of compact ultra-metric
measure spaces for t > 0. In Sect. 6.1 we state a sufficient condition for relative
compactness in Mc and give in Sect. 6.2 a criterion for a sequence of population mod-
els to satisfy the compact containment condition. In Sect. 6.3 we apply this criterion
to show that the sequence of tree-valued Moran dynamics U N satisfies the compact
containment condition.

6.1 Relative compactness in Mc

We give a criterion for a set to be relatively compact in Mc. In this subsection we
are dealing with general (not necessarily ultra-) metric measure spaces. We define for
x ∈ M the distance distribution wx ∈ M1(R+) by

wx(A) := νx

{
r ∈ R

(N

2)+ : r1,2 ∈ A

}
, (6.1)

for all A ∈ B(R+). Recall from [30, Proposition 7.1] the following characterization
of relative compactness.

Proposition 6.1 (Characterization of relative compactness in M) A set � ⊆ M is rel-
atively compact in the Gromov-weak topology iff the following two conditions hold:

(i) {wx : x ∈ �} is tight in M1(R+).
(ii) For all ε > 0 there exists Cε > 0 such that supx∈� S̃ε(x) ≤ Cε,

where for (X, r, μ) ∈ x ∈ M

S̃ε(x) := min

{

K : ∃x1, . . . , xK ∈ X : μ

(
K⋃

k=1

Bε(xi )

)

> 1 − ε

}

. (6.2)

The relative compactness criterion in Mc reads as follows:
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Proposition 6.2 (Criterion for relative compactness in Mc) A set � ⊆ Mc is rela-
tively compact in the Gromov-weak topology on Mc if the following two conditions
are satisfied.

(i) {wx : x ∈ �} is tight in M1(R+).
(ii) For all ε > 0 there exists Nε ∈ N such that supx∈� Sε(u) ≤ Nε, where Sε is the

minimal number of open ε-balls needed to cover (supp(μ), r) for (X, r, μ) ∈
x ∈ M.

Remark 6.3 (Relative compactness criterion is only sufficient) By Proposition 6.1, (i)
is a necessary condition for relative compactness in M. Note that (ii) is not necessary
for relative compactness in Mc: Consider, for example,

� = {xn = ({0, 1, . . . , n}, reucl, Bin(n, 1
n2 )) : n ∈ N} ⊂ Mc. (6.3)

Since xn → (N, reucl, δ0), as n →∞, the set � is relatively compact, but (ii) does not
hold. ��

The proof of Proposition 6.2 is based on two Lemmata. Recall that for a metric
space (X, r) an ε-separated set is a subset X ′ ⊆ X such that r(x ′, y′) > ε, for all
x ′, y′ ∈ X ′ with x ′ �= y′.

Lemma 6.4 (Relation between ε-balls and ε-separated nets) Fix N ∈ N, a metric
space (X, r) with #X ≥ N + 1 and ε > 0. The following hold.

(i) If (X, r) can be covered by N open balls of radius ε, then (X, r) has no 2ε-
separated sets of cardinality k ≥ N + 1.

(ii) If (X, r) has no ε-separated set of cardinality N+1, then (X, r) can be covered
by N closed balls of radius ε.

Proof (i) Assume that x1, . . . , xN ∈ X are such that X = ⋃N
i=1 Bε(xi ), where we

denote by Bε(x) the open ball around x ∈ X of radius ε > 0. Choose (N + 1) distinct
points y1, . . . , yN+1 ∈ X . By the pigeonhole principle, two of the points must fall into
the same ball Bε(xi ), for some i = 1, . . . , N , and are therefore in distance smaller
than 2ε. Hence {y1, . . . , yN+1} is not 2ε-separated. Since y1, . . . , yN+1 ∈ X were
chosen arbitrarily, the claim follows.

(ii) Again, we proceed by contradiction. Let K be the maximal possible cardi-
nality of an ε-separated set in (X, r). By assumption, K ≤ N . Assume that SK

ε :=
{x1, . . . , xK } is an ε-separated set in (X, r). We claim that X = ⋃K

i=1 Bε(xi ) with
Bε(x) := {x ′ ∈ X : r(x, x ′) ≤ ε}. Indeed, assume, to the contrary, that y ∈ X is
such that r(y, xi ) > ε, for all i = 1, . . . , K , then SK

ε ∪ {y} is an ε-separated set of
cardinality K + 1, which gives the contradiction. ��
Lemma 6.5 (Bounds on the number of balls to cover a limit point) Fix ε > 0 and
N ∈ N. Let x = (X, r, μ), x1 = (X1, r1, μ1), x2 = (X2, r2, μ2), …be elements of
M such that xn → x in the Gromov-weak topology, as n → ∞. If (supp(μ1), r1),
(supp(μ2), r2), …can be covered by N open balls of radius ε then (supp(μ), r) can
be covered by N closed balls of radius 2ε.
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Proof Define the restriction operator ρN
(
(ri, j )1≤i< j

) := (ri, j )1≤i< j≤N . By
Lemma 6.4(i), there is no n ∈ N for which (supp(μn), rn) has a 2ε-separated set

of cardinality N + 1. Set B2ε := (2ε,∞)(
N+1

2 ). Notice that ρ−1
N+1(B2ε) is open.

Moreover, (supp(μ), r) has a 2ε-separated set of cardinality N + 1 if and only if
(ρN+1)∗νx(B2ε) > 0. However,

0 ≤ (ρN+1)∗νx(B2ε) ≤ lim inf
n→∞ (ρN+1)∗νxn (B2ε) = 0 (6.4)

by Theorem 5(b) in [30] together with the Portmanteau theorem, therefore (ρN+1)∗νx

(B2ε) = 0. By Lemma 6.4(ii), (supp(μ), r) can therefore be covered by N closed
balls of radius 2ε. ��
Proof of Proposition 6.2 Assume (i) and (ii) hold for a set � ⊆ Mc. First note that
by Theorem 2 in [30] the set � is relatively compact in M. It remains to show that
every limit point of � is compact. To see this take x ∈ M and x1, x2, . . . ∈ � such that
xn → x in the Gromov-weak topology, as n →∞, and let ε > 0. By Assumption(ii)
together with Lemma 6.5, (supp(μ), r) can be covered by Nε/2 closed balls of radius
ε. Therefore, x is totally bounded which implies x ∈ Mc, and we are done. ��

6.2 Compact containment (Proof of Proposition 2.22)

Recall that Proposition 2.22 is based on the general notion of a finite population model;
see Definition 2.18. In particular �= (�t )t≥0 is the process of partial orderings con-
nected to genealogical relationships, IN = (IN

t )t≥0 is the process of population sizes
and τ is the lifetime of the population. Moreover, let for each N ∈ N, (U N

t )t∈[0,τ N ) be
the tree-valued population dynamics read off from (IN ,�N ).

As a preparation we show two auxiliary lemmata which discuss the consequences
of the assumptions made in Proposition 2.22. Recall the distance distribution wu from
(6.1).

Lemma 6.6 (Bounds on the distance distribution under Assumption (i)) Fix T > 0,
and assume that {U N

0 : N ∈ N} is tight in U. If condition (i) of Proposition 2.22 holds,
then for all ε > 0 there is a Cε > 0 such that

lim sup
N→∞

PN

{

sup
t∈[0,T∧τ N )

wU N
t

([Cε,∞)) > ε

}

≤ ε. (6.5)

Proof Let ε > 0. Choose δ = δ( ε
4 ) > 0 such that (2.48) holds for and N ∈ N and ε/4

(instead of ε) and any J N such that J N ⊆ IN
0 is AN

0 -measurable with μN (J N ) ≤ δ.
Since {U N

0 : N ∈ N} is tight in U, we can find such AN
0 -measurable J N ⊆ IN

0 ,
N ∈ N, and a constant C̃ε > 0 such that μN

0 (J N ) ≤ δ, almost surely, and

lim inf
N→∞ PN

{
IN

0 \J N has diameter at most C̃ε

}
> 1 − ε

2 (6.6)

123



820 A. Greven et al.

(see (i) in Proposition 6.1). Clearly, on the event that IN
0 \J N has diameter at most

C̃ε, the set Dt (0, In
0 \J N ) of descendants of In

0 \J N at time t has diameter at most
C̃ε + 2t . Hence

lim sup
N→∞

PN

{

sup
t∈[0,T∧τ N )

wU N
t

([C̃ε + 2T,∞)) > ε

}

≤ lim sup
N→∞

PN

{

sup
t∈[0,T∧τ N )

μN
t (Dt (0, J N )) > ε

4

}

+PN
{
IN

0 \J N has diameter at least C̃ε

}

≤ ε (6.7)

by Assumption (i). The claim follows. ��
For the next lemma recall that for all ε > 0 and Ut = u = (U, r, μ) ∈ U, S2ε(Ut )

from (2.45) and S̃2ε(Ut ) from (2.46) denote the minimal numbers of 2ε-balls needed
to cover supp(μ) or to cover supp(μ)\V where the exceptional set V ⊆ U satisfies
μ(V ) ≤ 2ε. In particular, these definitions coincide with the same notions introduced
in Propositions 6.1 and 6.2.

Lemma 6.7 (Uniform bounds on S2ε and S̃2ε) Fix T > 0.

(a) Assume Condition (ii.i) from Proposition 2.22. Then for all ε > 0 we can find
Cε > 0 such that

lim sup
N→∞

PN

{

sup
t∈[ε,T )

S2ε(U N
t ) > Cε

}

≤ 2ε. (6.8)

(b) Assume that the family {U N
0 ; N ∈ N} is tight in U and Conditions (i) and (ii.ii)

from Proposition 2.22. Then for all ε > 0 we can find Cε > 0 such that

lim sup
N→∞

PN

{

sup
t∈[0,T )

S̃2ε(U N
t ) > Cε

}

≤ 2ε. (6.9)

Proof (a) The proof relies heavily on the fact that for all t , t ′, ε, and ε′ such that
[t − ε, t] ⊆ [t ′ − ε′, t ′]

S2ε(U N
t ) ≥ S2ε′(U N

t ′ ). (6.10)

Fix ε > 0. Without loss of generality, we assume that T = kε for some k ∈ N.
Since for all t ∈ [ε, T ), the family {S2ε(U N

t ); N ∈ N} is tight by assumption, there
exists a Cε > 0 such that for all N ∈ N,

2k−1∑

i=2

PN
{

Sε(U N
i ε

2
) > Cε

}
≤ 2ε. (6.11)
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Applying (6.10) therefore yields that for all N ∈ N,

PN

{

sup
t∈[ε,T )

S2ε(U N
t ) > Cε

}

≤
2k−1∑

i=2

PN

⎧
⎨

⎩
sup

t∈[i ε
2 ,(i+1)

ε
2 )

S2ε(U N
t ) > Cε

⎫
⎬

⎭

≤
2k−1∑

i=2

PN
{

Sε(U N
i ε

2
) > Cε

}
≤ 2ε (6.12)

and the assertion follows.
(b) We extend the notion introduced in (2.46) by setting for ε > 0 and 0 < ζ < 1,

S̃2ε,ζ (U N
t ) := inf

J⊆It : μN
t (J )≤ζ

#{At−ε(i, t) : i ∈ I\J }. (6.13)

In particular, S̃2ε(U N
t ) = S̃2ε,2ε(U N

t ), and thus for all 0 < ζ < 1 and t ∈ [ε, T ), the
family {S̃2ε,ζ (U N

t ) : N ∈ N} is tight by Assumption (ii.ii).
Let t , t ′, δ and δ′ be such that [t−δ, t] ⊆ [t ′−δ′, t ′]. By definition of S̃2δ,ζ (U N

t ), for
all 0 < ζ < 1, t < τ N and N ∈ N there is a AN

t -measurable subset J N ,ζ,t ⊆ IN
t such

that μN
t (J N ,ζ,t ) ≤ ζ and IN

t \J N ,ζ,t can be covered by S̃2δ,ζ (U N
t ) balls of radius 2δ.

Moreover, for all ζ, ζ ′ ∈ (0, 1),

{
S̃2δ,ζ (U N

t ) < S̃2δ′,ζ ′(U N
t ′ )
} ⊆ {μN

t ′
(
Dt ′(J N ,ζ,t , t)

)
> ζ ′

}
, (6.14)

and hence

PN

{

S̃2δ,ζ (U N
t ) < sup

t ′∈[t,(t−δ)+δ′)
S̃2δ′,ζ ′(U N

t ′ )

}

≤ PN

{

sup
t ′∈[t,(t−δ)+δ′)

μN
t ′
(
Dt ′(J N ,ζ,t , t)

)
> ζ ′

}

. (6.15)

Fix T > 0 and ε > 0. Without loss of generality, we assume that T = kε for some
k ∈ N as well as τ N ≥ T . By Condition (i) of Proposition 2.22 applied (2k times)
with s := 1

2 iε, i = 0, . . . , 2k − 1, we can choose a ζ = ζ(ε, T ) suitably small such

that for each i = 0, . . . , 2k − 1 and for all AN
i ε

2
-measurable sets J N ,ζ,

1
2 iε ⊆ IN

1
2 iε

with μN
s (J N ,ζ,

1
2 iε

) ≤ ζ ,

lim sup
N→∞

PN

⎧
⎪⎨

⎪⎩
sup

t∈[ 1
2 iε,

1
2 (i+1)ε)

μN
t (Dt (J N ,ζ,

1
2 iε

, 1
2 iε)) > ε

⎫
⎪⎬

⎪⎭
≤ ε

2k . (6.16)

Thus, inserting (6.16) into (6.15) applied with t = 1
2 iε, δ = ε

2 , δ′ := ζ ′ := ε, and
ζ from (6.16),

123



822 A. Greven et al.

lim sup
N→∞

PN

⎧
⎪⎨

⎪⎩
S̃ε,ζ (U N

1
2 iε

) < sup
t∈[ 1

2 iε,
1
2 (i+1)ε)

S̃2ε,2ε(U N
t )

⎫
⎪⎬

⎪⎭
≤ ε

2k . (6.17)

Since for all ζ ∈ (0, 1), t ∈ [ε, T ), the family {S̃2ε,ζ (U N
t ); N ∈ N} is tight by

assumption (ii.ii), and {U N
0 : N ∈ N} is assumed to be tight as well, there exists a

Cε > 0 such that for all N ∈ N,

2k−1∑

i=0

PN
{

S̃ε,ζ (U N
1
2 iε

) > Cε

}
≤ ε. (6.18)

Therefore

lim sup
N→∞

PN

{

sup
t∈[0,T )

S̃2ε(U N
t ) > Cε

}

≤ lim sup
N→∞

2k−1∑

i=0

PN

⎧
⎪⎨

⎪⎩
sup

t∈[ 1
2 iε,

1
2 (i+1)ε)

S̃2ε(U N
t ) > Cε

⎫
⎪⎬

⎪⎭

≤ lim sup
N→∞

2k−1∑

i=0

PN

⎧
⎪⎨

⎪⎩
S̃ε,ζ (U N

1
2 iε

) < sup
t∈[ 1

2 iε,
1
2 (i+1)ε)

S̃2ε(U N
t )

⎫
⎪⎬

⎪⎭

+
2k−1∑

i=0

PN
{

S̃ε,ζ (U N
1
2 iε

) > Cε

}

≤ 2ε, (6.19)

which finally shows the assertion. ��
Proof of Proposition 2.22 Fix T > 0 and δ > 0.

(a) Since Conditions (i) and (ii.i) from Proposition 2.22 hold, we find for all n ∈ N

a Cδ2−n > 0 such that (6.5) and (6.8) hold with ε = δ2−n . Put

�1,δ :=
{

u ∈ U : wu([Cδ2−n ,∞)) ≤ δ2−n, for all n ∈ N}, (6.20)

and

�2,δ :=
{

u ∈ Uc : S2δ2−n (u) ≤ Cδ2−n , for all n ∈ N
}
, (6.21)

where we denote by S2δ2−n (u) the number of balls of radius δ2−n needed to cover
u. Then �1,δ ∩ �2,δ is relatively compact in Uc by Proposition 6.2. Moreover, by
Lemma 6.6,
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inf
N∈N

PN{U N
t ∈ �1,δ, for all t ∈ [0, T ∧ τ N )

}

≥ 1 −
∞∑

n=1

sup
N∈N

PN

{

sup
t∈[0,T∧τ N )

wU N
t

([C2−nδ,∞)) > 2−nδ

}

≥ 1 −
∞∑

n=1

2−nδ = 1 − δ. (6.22)

Similar calculations based on Lemma 6.7 show that

inf
N∈N

PN{U N
t ∈ �2,δ, for all t ∈ [δ, T )

} ≥ 1 − 2δ. (6.23)

Hence

inf
N∈N

PN (U N
t ∈ �1,δ ∩ �2,δ, for all δ ∈ [t, T ∧ τ N )) ≥ 1 − 3δ, (6.24)

and (2.49) follows.
(b) Assume the conditions (i) and (ii.ii) from Proposition 2.22. Then for all n ∈ N

there is a Cδ2−n > 0 such that (6.7) and (6.9) hold with ε = δ2−n . Put

�3,δ :=
{

u ∈ Uc : S̃2δ2−n (u) ≤ Cδ2−n , for all n ∈ N
}
, (6.25)

where S̃2δ2−n (u) denotes the number of 2δ2−n-balls needed to cover a frequency of
(1 − 2δ2−n) of u. By Proposition 6.1, �1,δ ∩ �3,δ is compact in U. Moreover, by a
similar argument as above we find that

inf
N∈N

PN{U N
t ∈ �3,δ, for all t ∈ [0, T ∧ τ N )

} ≥ 1 − 2δ, (6.26)

which gives (2.50). ��

6.3 The compact containment condition for Moran models

The following result is an important step in the proof of tightness of the family of
tree-valued Moran dynamics. Recall the distance distribution wx from (6.1). The next
result states that the family {U N ; N ∈ N} satisfies all assumptions from Proposition
2.22.

Proposition 6.8 (Compact containment) Let for each N ∈ N, U N = (U N
t )t≥0

be the tree-valued Moran dynamics of population size N. Assume that the family
(U N

0 )N=1,2,... is tight in M1(U). Then, the family {U N : N ∈ N} satisfies the Condi-
tions (i), (ii.i) and (ii.ii) from Proposition 2.22.

Proof Fix T > 0, ε ∈ (0, T ) and N ∈ N, and note that τ N = ∞. As for Condition (i),
let s ∈ [0, T ) and consider a AN

s -measurable sequence (J N )N∈N with J N ⊆ I.

Then the process Y N := (Y N
t )t∈[s,T ), defined for t ∈ [s, T ) as Y N

t := #Dt (s,J N )
#I , is
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a {0, 1
N , . . . , 1}-valued birth-death process with transitions y 
→ y ± 1

N (each) with
rate 1

2 N 2γ y(1− y). In particular, Y N is a martingale, and therefore the claim follows
by Doob’s maximum inequality.

To verify Condition (ii.i), notice that the family {SN
2ε(t); N ∈ N} is stochastically

uniformly bounded by Kε, where K = (Kt )t≥0 denotes the process for the number
of lines in a rate γ Kingman coalescent. In particular, the family {SN

ε (t); N ∈ N} is
tight.

Condition (ii.ii) directly follows from Condition (ii.i). ��

7 Limit points have continuous paths

It is well-known that the measure-valued Fleming–Viot process has continuous paths
(e.g., [5]). In this section we show that the same is true for the tree-valued Fleming–
Viot dynamics by controlling the jump sizes in the approximating sequence of Moran
models.

Recall from Definition 2.19 the tree-valued Moran model U N of population size
N ∈ N.

Proposition 7.1 (Limit points have continuous paths) If U N ⇒
N→∞U for some pro-

cess U with sample paths in the Skorohod space, DU([0,∞)), of càdlàg functions
from [0,∞) to U, then U ∈ CU([0,∞)), almost surely.

Proof Recall from Sect. 2.3 the construction of the tree-valued Moran dynamics U N =
(U N

t )t≥0, U N
t = (I, r N

t , 1
N

∑
δi ) with I = {1, . . . , N } based on Poisson point pro-

cesses {ηi, j ; 1 ≤ i, j ≤ N }. (Compare also with Fig. 1). In addition, recall the modi-
fied Eurandom metric from Definition 5.4. Note that the tree-valued Moran dynamics
has paths in DUc(R+), almost surely.

If ηk,l{t} = 0 for all k, l ∈ I, then U N
t− = U N

t . Otherwise, if ηk,l{t} = 1, for some
k, l ∈ I, then

d ′Eur

(U N
t−, U N

t

) ≤ 1

N 2

∑

i, j

|r N
t−(i, j)− r N

t (i, j)| ∧ 1

= 1

N 2

∑

i=l or j=l

|r N
t−(i, j)− r N

t (i, j)| ∧ 1

≤ 2

N
(7.1)

and therefore

∞∫

0

dT e−T sup
t∈[0,T ]

d ′Eur

(U N
t−, U N

t

) ≤ 2

N
, (7.2)

for all T > 0 and almost all sample paths U N . Hence the assertion follows by Theo-
rem 3.10.2 in [16]. ��
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8 Proofs of the main results (Theorems 1, 2, 3)

In this section we give the proof of the main results stated in Sect. 2. Theorems 1 and 2
are proved simultaneously.

Proof of Theorems 1 and 2 Recall, for each N ∈ N, the state-space UN , and the UN -
valued Moran dynamics, U N = (U N

t )t≥0, from (5.1) and Definition 2.19, respectively.
Let P0 ∈ M1(U) be the distribution of U0 and PN

0 ∈ M1(UN ) be the distribution of
U N

0 such that U N
0 ⇒ U0 as N →∞.

By Proposition 5.2, the (PN
0 , �↑,N , �1

N )-martingale problem is well-posed, and is
solved by U N . Proposition 5.3 implies with a standard argument (see, for example,
Lemma 4.5.1 in [16]) that if U N ⇒ U , for some U ∈ DU([0,∞)), as N →∞, then
U solves the (P0, �↑, �1)-martingale problem. Hence for existence we need to show
that the sequence {U N ; N ∈ N} is tight, or equivalently by Remark 2.8 combined with
Remark 4.5.2 in [16] that the compact containment condition in U holds. However,
the latter follows directly from Propositions 6.8 and 2.22.

By standard theory (see, for example, Theorem 4.4.2 in [16]), uniqueness of the
(P0, �↑, �1)-martingale problem follows from uniqueness of the one-dimensional
distributions of solutions of the (P0, �↑, �1)-martingale problem. The latter can be
verified using the duality of the tree-valued Fleming–Viot dynamics to the tree-valued
Kingman coalescent, K := (Kt )t≥0, as defined in (4.2). That is, if U = (Ut )t≥0 is
a solution of the (P0, �↑, �1)-martingale problem, then (4.12) holds for all κ ∈ K,
t ≥ 0 and H ∈ H. Since H is separating in M1(U) by Proposition 4.1(i), uniqueness
of the one-dimensional distributions follows.

So far we have shown that the (P0, �↑, �1)-martingale problem is well-posed and
its solution arises as the weak limit of the solutions of the (PN

0 , �↑,N , �1
N )-martingale

problems. In particular, the tree-valued Moran dynamics converge to the tree-valued
Fleming–Viot dynamics. Hence we have shown Theorem 1 and Theorem 2. ��
Proof of Proposition 2.11 (i), (ii) The tree-valued Fleming–Viot dynamics is the weak
limit of tree-valued Moran dynamics. Hence, Propositions 6.8 and 2.22 imply that the
tree-valued Fleming–Viot dynamics have values in the space of compact ultra-metric
measure spaces for each t > 0, almost surely. In addition, the tree-valued Fleming–
Viot dynamics has continuous paths by Proposition 7.1, almost surely. ��
Proof of Proposition 2.12 Note that the strong Markov property follows from the
Feller property, [16, Theorem 4.2.7]. (By completeness, we can assume the filtration
generated by the tree-valued Fleming–Viot dynamics is right-continuous, as needed
in this Theorem.) Let U u = (U u

t )t≥0 be the solution of the (δu, �↑, �1)-martingale
problem, i.e. the tree-valued Fleming–Viot dynamics, started in U0 = u. For the Feller
property, it suffices to show that u′ → u implies that U u′

t ⇒ U u
t for all u ∈ U and

t > 0. Recall the coupled tree-valued Moran dynamics from Section 5.3. For u, u′ ∈ U,
take uN , u′N ∈ UN with uN → u and u′N → u′ in the Gromov-weak topology. Let

(U N ,1
t , U N ,2

t )t≥0 be the coupled tree-valued Moran dynamics, started in (uN , u′N ). Since

{(U N ,k
t )t≥0, N ∈ N} is tight in U by Theorem 2, k = 1, 2, {(U N ,1

t , U N ,2
t )t≥0 : N ∈ N}

is tight in U × U. Let (U u
t , U u′

t )t≥0 be a weak limit point which must be a coupling
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of tree-valued Fleming–Viot dynamics by construction. Moreover, since the modified
Eurandom metric (see Definition 5.4) is continuous in the Gromov-weak topology and
bounded

E[d ′Eur(U u
t , U u′

t )] = lim
N→∞E[d ′Eur(U N ,1

t , U N ,2
t )]

≤ lim
N→∞ d ′Eur(uN , u′N )

= d ′Eur(u, u′) (8.1)

by Proposition 5.8. In particular, u′n → u, as n →∞, implies that

E[d ′Eur(U u
t , U u′n

t )]−→
n→∞0,

which in turn implies U u′n
t ⇒ U u

t , as n →∞, by Remark 5.5. ��

Proof of Corollary 2.13 For 	 = 	n,φ as in the Corollary, observe that 〈νu, φ〉2 =
〈νu, (φ, φ)n〉with (φ, φ)n from (2.25). Therefore, given Ut = u, we compute (compare
with [26, Proof of Theorem 1.1])

d〈	(U)〉t
dt = �↑	2(u)− 2	(u)�↑	(u)

= 〈νu, 〈∇(φ, φ)n, 2〉 − 2(φ, 〈∇φ, 2〉)n〉

+γ

2

n∑

k,l=1

〈νu, (φ ◦ θk,l , φ)n + (φ, φ ◦ θk,l)n − 2(φ, φ ◦ θk,l)n〉

+γ

n∑

k,l=1

(〈νu, (φ, φ)n ◦ θk,n+l〉 − 〈νu, (φ, φ)n〉
)

(8.2)

and the result follows from the first two terms vanishing and

n∑

k,l=1

〈νu, (φ, φ)n ◦ θk,n+l〉 =
n∑

k,l=1

〈νu, (φ̄, φ̄)n ◦ θk,n+l〉

= n2〈νu, (φ̄, φ̄)n ◦ θ1,n+1〉 (8.3)

with the symmetrization φ̄ introduced in Remark 2.7(iii) and 	n,φ = 	n,φ̄ . ��

Proof of Theorem 3 In order to prove Theorem 3 we need two ingredients:

• The family {Ut ; t > 1} is tight.
• Eδu [	(Ut )] → E[	(U∞)], as t →∞, for all 	 ∈ �1 and u ∈ U.

Then, Theorem 3 follows from Lemma 3.4.3 together with Theorem 3.4.5 of [16].
We show tightness of {Ut ; t > 1} in U using Theorem 3 and (3.3) of [30]. First,

recalling (6.1) and when E[wUt ] is the first moment measure of wUt ∈ M1(M1(R+)),
for t and C > 0,

123
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E[wUt ]([C,∞)) =
{

e−γ t E[wU0 ]([C − t,∞)), C ≥ t

e−γ C , C < t.
(8.4)

Indeed, by exchangeability E[wUt ]([C,∞)) equals the probability that a “typical” pair
of individuals drawn from the population at time t has distance at least C , if t ≤ C
then this event equals the event that their ancestral lines do not coalesce in the time
window [0, t] and that the distance of their ancestors at time 0 is at least C . This event
has probability e−γ t (no coalescence for at least time t) times E[wU0 ]([C − 2t,∞)).
If t > C then the distance between a “typical” pair of individuals to be at least C is
equivalent to that their ancestral lines do not coalesce in the time window [0, C]which
has probability e−γ C .

So, for given ε > 0, choose C > 0 large enough such that E[wU0 ]([C,∞)) < ε

and e−γ C < ε. Then, E[wUt ]([2C,∞)) < ε for all t > 0 and so, {E[wUt ], t > 1} is
tight.

Secondly, for Ut = (Ut , rt , μt ), we have to show that for 0 < ε < 1 there is δ > 0
with

sup
t>1

E[μt {u : μt (Bε(u)) ≤ δ}] < ε. (8.5)

Note that the expectation on the left hand side does not depend on t . Using that U∞
is determined by � = γ · δ0 in (4.7) of [30] we find

lim
δ→0

sup
t>1

E[μt {u : μt (Bε(x)) ≤ δ}]= lim
δ→0

E[μ∞{u : μ∞(Bε(x)) ≤ δ}]=0 (8.6)

by (4.9) and (4.11) of [30]. So, tightness follows.
The fact that the Kingman tree is a unique equilibrium distribution is an application

of the duality relation from Proposition 4.1. Fix φ ∈ C1
b(R

(N

2)+ ). We apply the duality
relation (4.12) between the tree-valued Fleming–Viot dynamics and the tree-valued
Kingman coalescent which starts in k0 = (p0, r ′

0
) with p0 := {{n}, n ∈ N} and r0

′ ≡ 0.

By construction of the dual process K, Eδk0 [φ(r
t
)] → E[〈νU∞ , φ〉] and Pt → {N},

as t → ∞ where U∞ is the (rate γ ) Kingman measure tree from (2.53). Hence, by
(4.12),

lim
t→∞Eδu

[〈νUt , φ〉] = lim
t→∞Eδk0

⎡

⎢
⎢⎢
⎣

∫

R
(N

2)
+

νu(dr) φ
(
(r)Pt + rt

′)

⎤

⎥
⎥⎥
⎦

= lim
t→∞Eδk0

[
φ
(
r ′

t

)]

= E
[〈νU∞ , φ〉]. (8.7)

Since φ ∈ C1
b(R

(N

2)+ ) was chosen arbitrarily, (ii) follows and we are done. ��
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9 Proof of the applications (Proof of Theorems 4 and 5)

In this section we prove the results stated in Sect. 3.

Proof of Lemma 3.1 Consider the traveling salesperson problem for a salesperson
who must visit all x1, . . . , xn and who starts at one xi to which she comes back at the
end of the trip. It is easy to see that such a path must pass all edges of the subtree
spanned by x1, . . . , xn in both directions, so the length of the path is at least twice the
tree length. It is also easy to see that taking an optimal path and leaving out xi gives
an optimal path for the remaining leaves x1, . . . , xi−1, xi+1, . . . , xn .

We claim that there is one path connecting the set of leaves such that each edge in
the tree is passed exactly twice, which is equivalent to the assertion of the Lemma.
Assume to the contrary that such an order does not exist. We take a path of mini-
mal length. There must be one edge which is visited at least four times. W.l.o.g. we
assume that this edge is internal, i.e. not adjacent to any xi . So there are four points
xi , x j , xk, xl ∈ X , visited in the order xi , x j , xk, xl , xi , such that [xi , x j ] ∩ [xk, xl ] is
visited at least four times, where [x, y] is the path from x to y in X . Since leaving
out leaves gives again an optimal path, leaving out all leaves except xi , x j , xk, xl must
lead to an optimal path connecting these four points. However, this optimal path must
be xi , x j , xl , xk, xi (or its reverse), since this path passes all edges only twice. Hence,
we have a contradiction and the assertion is proved. ��
Proof of Theorem 4 We first show injectivity of ξ . Assume we are given a compact
ultra-metric measure space (U0, r0, μ0) and its equivalence class u0 = (U0, r0, μ0).
We show that if λ := ξ(u0), then ξ−1({λ}) = {u0}. We do this by explicitly recon-
structing u0 from λ.

We proceed in three steps. In the first two steps we consider the case where μ0 is
supported by finitely many atoms. In Step 1 we follow an argument provided to us by
Steve Evans which explains how to recover the isometry class of (supp(μ0), r0) from
λ. In Step 2 we then recover the measure μ0. Finally, the case of a general element in
U is obtained by approximation via finite ultra-metric measure spaces in Step 3.

Step 1 (Evans’s reconstruction procedure for finite trees) Assume that u ∈ ξ−1({λ})
and that u = (U, r, μ) with #supp(μ) < ∞. Put

AN := {(l1 := 0, l2, . . .) : lk > lk−1 for exactly N − 1 different k
}
. (9.1)

First observe that #supp(μ) = N if and only if λ is supported on AN . That is, we can
recover #supp(μ) from λ. So, assume that μ has N atoms and w.l.o.g.U := {1, . . . , N }.
We now recover r = (ri, j )1≤i< j≤N from λ.

For that purpose, introduce on R
N+ the lexicographic ordering ≺, i.e., l ≺ l ′ iff for

k∗ := min{k : lk �= l ′k} we have lk∗ < l ′k∗ . Let

B := {l ∈ supp(λ) : l1 < · · · < lN
}

(9.2)

be the space of all vectors l which are accessible by sequentially sampling the N
different points of U and evaluating subsequently the lengths of the sub-trees spanned
by them. Moreover, let
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l∗ := min≺B, (9.3)

i.e., l∗ := (l∗k )k∈N is the minimal element in B with respect to the order relation ≺.
W.l.o.g. we assume that U = {1, . . . , N } and that for all n ∈ {1, . . . , N },

l∗n := L(U,r)
n ({1, . . . , n}). (9.4)

Notice that if d∗n denotes the depth of the sub-tree spanned by {1, . . . , n}, i.e., d∗n :=
1
2 max{r(i, j); 1 ≤ i, j ≤ n}, for n ∈ N, then d∗1 = 0 and the recursion

d∗n =
1

2

(
d∗n−1 + (l∗n − l∗n−1) ∨ d∗n−1

)
. (9.5)

holds for n ≥ 2.
We claim that we can even recover (ri, j )1≤i< j≤N from (l∗n )n=1,...,N . In fact, for all

n ∈ N,

rn−1,n = min
1≤k≤n−1

rk,n, (9.6)

To see this, assume to the contrary that there is a minimal n ∈ N for which we find
a k < n − 1 such that rk,n is minimal and rk,n < rn−1,n . Choose the minimal i with
k < i ≤ n − 1 and rk,n < ri,n . Then, sampling the i points 1, 2, . . . , k, . . . , i − 1, n
(in that order) leads to the sequence of tree lengths l∗1 , l∗2 , . . . , l∗i−1, l∗i−1+ 1

2rk,n . How-
ever, by the minimality of i we have that rk,n ≥ ri−1,n and by the ultra-metric property
rk,n < ri,n ∨ ri−1,n = ri−1,i . Hence, the above tree lengths are smaller (with respect
to ≺) than l∗1 , l∗2 , . . . , l∗i−1, l∗i since l∗i ≥ l∗i−1 + 1

2ri−1,i . So, assuming that (9.6) does
not hold contradicts the assumption that l∗ is minimal.

However, from (9.6) we conclude the following recursion: for all n ∈ {2, . . . , N }
and 1 ≤ k ≤ n − 1,

rk,n = rk,n−1 ∨ 2
(
l∗n − l∗n−1 − (d∗n − d∗n−1)

)
. (9.7)

The latter together with the necessary requirements that rn,n := 0 and r1,2 := 1
2 l∗2

determines the metric on U uniquely.

Step 2 (Reconstruction of weights in finite trees) In this step we reconstruct weights
(p1, . . . , pN ) on ({1, . . . , N }, r) from the given λ. Denote by � ⊆ N the set of per-
mutations of {1, . . . , N } for which the metric r given in Step 1 satisfies ri, j = rσ(i),σ ( j),
for all 1 ≤ i, j ≤ N . Since we are interested in measure-preserving isometry classes
only, we need to show that (p1, . . . , pN ) are uniquely determined up to permutations
σ ∈ �.

For all k = (k1, . . . , kN−1, kN ) ∈ {0, 1, . . .}N−1 × {∞}, define

l∗k :=
⎛

⎜
⎝l∗1 = 0, l∗1 , . . . , l∗1︸ ︷︷ ︸

k1-times

, l∗2 , l∗2 , . . . , l∗2︸ ︷︷ ︸
k2-times

, l∗3 , l∗3 , . . . , l∗3︸ ︷︷ ︸
k3-times

, . . .

⎞

⎟
⎠ (9.8)
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where l∗ is the minimal subtree length vector in the support of λ from Step 1. Observe
that sampling from the subtree length distribution first the point 1 a number of k1 + 1
times, then the point 2, then one of the points in {1, 2} a number of k2 times, and so
on, results exactly in the vector l∗k . Hence, taking all possible permutations σ ∈ � into

account, and since λ({l∗}) = |�| ·∏N
i=1 pi ,

λ({l∗k}) =
(

N∏

i=1

pi

)

·
∑

σ∈�

N−1∏

i=1

⎛

⎝
∑

1≤ j≤i

pσ( j)

⎞

⎠

ki

= 1

|�|λ({l∗}) ·
∑

σ∈�

N−1∏

i=1

⎛

⎝
∑

1≤ j≤i

pσ( j)

⎞

⎠

ki

. (9.9)

We claim that (9.9) determines (p1, . . . , pN ) uniquely up to permutations σ ∈ �.
To see this, observe that the algebra of functions on the N −1-dimensional simplex

SN , generated by the functions

⎧
⎪⎨

⎪⎩
f ((p1, . . . , pN )) :=

N−1∏

i=1

⎛

⎝
∑

1≤ j≤i

p j

⎞

⎠

ki

; k1, . . . , kN−1 ∈ N0

⎫
⎪⎬

⎪⎭
(9.10)

separates points. Hence, f ∈ Cb(SN ) can be approximated uniformly by functions in
this algebra by the Stone-Weierstrass Theorem. Hence, by knowing λ({l∗k})/λ({l∗})
for all k, using (9.9), we also know the values of

1

|�|
∑

σ∈�

f ((pσ(1), . . . , pσ(n)) (9.11)

by an approximation argument.
In particular, we can find the set A := {(pσ(1), . . . , pσ(N )) : σ ∈ �}. By setting

μ{i} = pi for an arbitrary (p1, . . . , pN ) ∈ A we have recovered μ uniquely up to
isometries such that ξ−1({λ}) = {u} by construction.

Step 3 (General ultra-metric measure spaces) Let u = (U, r, μ) ∈ ξ−1({u0}) not nec-
essarily finite anymore. We shall approximate u by finite ultra-metric measure spaces
which we then treat as described in the first two steps.

For that purpose, let for all ε > 0, the (ε-shrunken) pseudo-metric rε on U by
putting

rε := 0 ∨ (r − ε). (9.12)

Notice that since (supp(μ), r) is ultra-pseudo-metric, (supp(μ), rε) is ultra-pseudo-
metric as well, for all ε.
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Moreover, for all ε > 0 there is a covering of U of disjunct balls B1, B2, . . . ⊆ U of
radius ε with μ(B1) ≥ μ(B2) ≥ . . .. Take Nε large enough such that for Bε =⋃Nε

i=1 Bi

we have μ(Bε) > 1 − ε. Set με(·) := μ(·|Bε) and

uε := (U, rε, με). (9.13)

Then uε is a finite metric measure space and uε → u in the Gromov-weak topology, as
ε → 0.

Given u1, u2, . . . ∈ U , set ln := L(U,r)
n ({u1, . . . , un}) leading to the subtree length

vector (l1, l2, . . .) ∈ R
N+. We define the map �ε : R

N+ → R
N+ given by

�ε : (l1, l2, . . .) 
→ (lε
1, lε

2, . . .) (9.14)

with lε
1 = 0 and lε

2 = 0 ∨ (l2 − ε) and for n ≥ 3, recursively,

lε
n := lε

n−1 +
(
ln − ln−1 − 1

2 ε
)+

. (9.15)

Moreover, set

Aε,n :={(l1 = 0, l2, . . .) : li > li−1 for exactly Nε−1 different i ∈ {1, 2, . . . , n}},

(9.16)

and we observe that

ξ(uε)(·) = (�)∗νuε = lim
n→∞(�ε∗λ)

( · |Aε,n). (9.17)

Now, take u, ũ ∈ ξ−1({λ}). Observe that ũε → ũ and uε → u in the Gromov-weak
topology, as ε > 0. Hence we are in a position to apply Steps 1 and 2 to find that
ũε ∈ ξ−1(limn→∞ �ε∗λ(·|Aε,n)) = {uε}, for all ε > 0. This shows that u = limε→0 uε =
limε→0 ũε = ũ.

As for continuity of ξ , assume that (uk)k∈N is a sequence in U such that uk → u,
for some u ∈ U, in the Gromov-weak topology, as k → ∞. Then by definition,
	(uk) → 	(u), for all 	 ∈ �0, as k →∞. In particular, since the map r 
→ �n(r) is
continuous as it is the minimum of finitely many continuous functions, for all n ∈ N,
〈ξ(uk), ψ〉 → 〈ξ(u), ψ〉, for all ψ ∈ Cb(RN+), or equivalently, ξ(uk) ⇒ ξ(u) in the
weak topology on M1(RN+), as k →∞.

In order to show continuity of ξ−1, we take λ, λ1, λ2,…in ξ(U) such that
λm ⇒ λ, as m → ∞. We have to show that um := ξ−1(λm) → ξ−1(λ) =: u in
the Gromov-weak topology, as m →∞. For this, we need to show that the three steps
in the proof of injectivity of ξ hold under weak limits.

For Steps 1 and 2, assume that u is finite with #supp(μ) = N . Then the same holds
for all large m ∈ N. Define for all m ∈ N (based on um) sets Bm ⊆ R

N+, minimal
elements l∗,m ∈ Bm , (d∗,mn )n≥1 and rm as in (9.2), (9.3), (9.5) and (9.7), respectively.
Then we can clearly recover that the mutual distances r in u as the limit of rm , as
m → ∞. Moreover, note that the set of functions (9.10) is not only separating, but
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also convergence determining. Hence since all metric measure spaces are finite, we
find that um → u.

For the general case considered in Step 3, recall the notions uε, �ε and Aε,n from
(9.13), (9.14) and (9.16). Note then that um → u as m →∞ if and only if uε

m → uε as
m →∞ for all ε > 0. Moreover, for all ε > 0,

uε
m = �∗νuε

m (·) = lim
n→∞ �ε∗λm(·|Aε,n) → lim

n→∞ �ε∗λ(·|Aε,n) = uε. (9.18)

The interchange of limits is justified, because �ε∗λm(·|Aε,n) ⇒ �ε∗λ(·|Aε,n) as m →∞,
if n is large enough, and we have shown continuity of ξ−1. ��
Proof of Theorem 5 (i) Since ξ is bijective on ξ(U), it is a consequence of Theorem 3.2
in [36] that the martingale problem for (ξ∗P(U), �↑,�, �1,�) is well-posed. More-
over, by construction, (ξ(Ut ))t≥0 solves the martingale problem. In addition, since
U has the Feller property and ξ and also ξ−1 (see Theorem 4) are continuous, � is
Feller, too. The last assertion follows from the continuity of the sample paths of the
tree-valued Fleming–Viot dynamics and the continuity of ξ .

(ii) With � from (3.3),

�↑(� ◦ ξ)
(
u
)

= 〈νu, 〈∇ψ ◦ �, 2〉〉 + γ
∑

1≤k<l

〈νu, ψ ◦ � ◦ θk,l − ψ ◦ �
〉

=
∑

n≥2

n〈νu,
∂

∂�n
(ψ ◦ �)〉 + γ

∑

n≥2

(n − 1)〈νu, ψ ◦ βn−1 ◦ �− ψ ◦ �〉

=
∑

n≥2

n〈ξ(u),
∂

∂�n
ψ〉 + γ

∑

n≥1

n〈ξ(u), ψ ◦ βn − ψ
〉

(9.19)

and we are done. ��
To prepare the proof of Corollary 3.4 we investigate for each time t ≥ 0 the mean

sample Laplace transform,

g(t; σ) := E
[
�σ (�t )

]
, (9.20)

of the subtree lengths distribution �t , where for σ ∈ R
N+,

�σ (�) :=
∫

RN+

�(dl)ψσ (l) (9.21)

with the test function

ψσ (l) := exp(−〈σ , l〉). (9.22)

As usual, 〈·, ·〉 denotes the inner product.
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Lemma 9.1 (ODE system for the mean sample Laplace transforms) For σ ∈ R
N+

having only finitely many non-zero entries, the functions g(.; σ) satisfy the following
system of differential equations:

d

dt
g(t; σ) = −

( ∞∑

k=2

kσk

)

g(t; σ)+ γ

∞∑

k=1

k
(
g(t; τkσ)− g(t; σ)

)
(9.23)

with the merging operator

τk : (σ1, . . . , σk−1, σk, σk+1, σk+2, . . .) 
→ (σ1, . . . , σk−1, σk + σk+1, σk+2, . . .).

(9.24)

Proof By standard arguments, �σ ∈ �� and

d

dt
g(t; σ) = E

[
�↑,��σ (�t )

]
. (9.25)

Hence, inserting (9.19), and using ψσ (βkl) = ψτkσ (l) for all k = 1, 2, . . ., with
βk from (3.11) and τk from (9.24), we find

d

dt
g(t, σ )

= E

[

−
∫

�t (dl)
∞∑

k=2

kσkψσ (l)+ γ

∫
�t (dl)

∞∑

k=1

k
(
ψσ (βkl)− ψσ (l)

)
]

= −
( ∞∑

k=2

kσk

)

g(t, σ )+ γ

∞∑

k=1

k
(
g(t, τkσ)− g(t, σ )

)
, (9.26)

as claimed. ��
Remark 9.2 Recall, for each n ∈ N, the function gn from (3.13). For each n ≥ 2 and
σ ≥ 0, applying (9.23) to σ = (σδk,n)k≥2 yields, setting g1(t; σ) := 1,

d

dt
gn(t; σ) = −nσgn(t; σ)+ γ

(
n

2

)(
gn−1(t; σ)− gn(t; σ)

)

= γ

2
n(n − 1)gn−1(t; σ)− γ

2
n
( 2

γ
σ + n − 1

)
gn(t; σ), (9.27)

i.e.,

d

dt

(
g2(t; σ), g3(t; σ), . . .

)= γ

2

[
A
( 2

γ
σ
)(

g2(t; σ), g3(t; σ), . . .
)%+b%

]
, (9.28)

where

b% := (2, 0, . . .)% (9.29)
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and for σ̃ ≥ 0 the matrix A := A(̃σ ) is defined by

Ak,l :=

⎧
⎪⎨

⎪⎩

k(k − 1), if k = l + 1,

−k (̃σ + k − 1), if k = l,

0, else,

(9.30)

for all k, l ≥ 2. ��
The proof of Corollary 3.4 uses the following preparatory lemma.

Lemma 9.3 Fix σ̃ ≥ 0. Let B = (Bk,l)k,l≥2 and B−1 = (B−1
k,l )k,l≥2 be matrices

defined by

Bk,l :=
k!
l!
(k−1

l−1

)
�(̃σ + 2l)

�(̃σ + k + l)
, and B−1

k,l =
(−1)k+l k!

l!
(k−1

l−1

)
�(̃σ + k + l − 1)

�(̃σ + 2k − 1)
.

(9.31)

(i) The matrices B and B−1 are inverse to each other.
(ii) The matrix A = A(̃σ ) = (Ak,l)k,l≥2 has eigenvalues

λk := −k (̃σ + k − 1), k ≥ 2. (9.32)

(iii) If D = (λkδk,l)k,l≥2 then

f (A) = B f (D)B−1 (9.33)

for all analytical functions f : R
N2 → R

N2
. Specifically, A−1 = B D−1 B−1

and eAt = BeDt B−1 for all t ≥ 0.
(iv) For σ̃ > 0, let A−1(̃σ ) = (A−1

k,l )k,l≥2 be given by A−1
k,l = 0 for k < l and

A−1
k,l := − (k − 1)!�(̃σ + l − 1)

l!�(̃σ + k)
, k ≥ l. (9.34)

Then A−1 and A are inverse to each other.

Proof First, we note that A, A−1, B, B−1 are lower triangular infinite matrices. This
implies that the domain of the maps induced by these matrices is R

N. In particular,
we do not have to distinguish between left- and right inverse matrices of A and B.

(i) We need to show that

(B · B−1)k,l = δk,l (9.35)

for k ≥ l ≥ 2. This is clear in the case where k ≤ l. For k > l ≥ 2, with constants C
changing from line to line, and using the abbreviations k̂ := k− l and σ̂ := σ̃ +2l−1,
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(B · B−1)k,l =
k∑

m=l

Bk,m B−1
m,l

=
k∑

m=l

k!
m!
( k−1

m−1

)
�(̃σ + 2m)

�(̃σ + k + m)
· (−1)m+l m!

l!
(m−1

l−1

)
�(̃σ + m + l − 1)

�(̃σ + 2m − 1)

= C
k∑

m=l

(−1)m+l (̃σ + 2m − 1)�(̃σ + m + l − 1)

(k − m)!(m − l)!�(̃σ + k + m)

= C
k̂∑

m=0

(−1)m (̂σ + 2m)�(̂σ + m)

�(̂k − m + 1)�(m + 1)�(̂σ + k̂ + m + 1)

= C
k̂∑

m=0

(−1)m (̂σ + 2m)�(̂σ + m)

�(m + 1)
· �(̂σ + 2̂k + 1)

�(̂σ + k̂ + m + 1)�(̂k − m + 1)

= 0, (9.36)

where we have used that

C · (̂σ + 2m)�(̂σ + m)

�(m + 1)
= �(̂σ + m + 1)

�(m + 1)�(̂σ + 1)
+ �(̂σ + m)

�(m)�(̂σ + 1)
(9.37)

and then applied Formula (5d) on page 10 in [42].
(ii) Since A is lower triangular, this is obvious.
(iii) Note that

(A · B)2,l − λl B2,l = 0 (9.38)

and

λl − λk = σ̃ (k − l)+ (k2 − k − l2 + l)

= (k − l)
(
σ̃ + k + l − 1

)
. (9.39)

Thus for all k ≥ 3 and l ≥ 2,

Bk,l = k(k − 1)

(k − l)(̃σ + k + l − 1)
Bk−1,l , (9.40)

and since Ak,k = λk ,

(
A · B

)
k,l − λl Bk,l = Ak,k−1 Bk−1,l + (λk − λl)Bk,l

= (k(k − 1)− k(k − 1)
)
Bk−1,l

= 0, (9.41)

which proves that B contains all eigenvectors of A. Hence the claim follows by stan-
dard linear algebra.
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(iv) It is clear that (A · A−1)k,k = 1, while for k �= l,

(A · A−1)k,l = Ak,k−1 · A−1
k−1,l + Ak,k · A−1

k,l

= k(k−1)
(k − 2)!�(̃σ + l − 1)

l!�(̃σ + k − 1)
− k (̃σ+k − 1)

(k − 1)!�(̃σ + l − 1)

l!�(̃σ+k)

= 0. (9.42)

��

Proof of Corollary 3.4 Fix n ∈ N and σ ≥ 0. Put

hσ,n(t) := gn( 2t
γ
; σ ). (9.43)

By (9.27), the vector h := (hσ,2, hσ,3, . . .)% satisfies the linear system of ordinary
differential equations

d

dt
h = Ah + b, (9.44)

or equivalently,

h(t) = eAt h(0)+ eAt A−1b − A−1b, (9.45)

with b = (2, 0, 0, . . .)% and A = (Ak,l)k,l≥2 as defined in (9.30). Consequently, if B,
B−1 and D are as in Lemma 9.3, then

h(t) = −A−1b + BeDt(B−1h(0)+ D−1 B−1b
)
. (9.46)

Combining (9.43) with (9.46) yield the explicit expressions given in (3.14).
Finally, by (9.46),

gn(t; σ ) −→
t→∞ −2

(
A
( 2

γ
σ
)−1
)

n,2

= �(n)�(̃σ + 1)

�(n + σ̃ )

= E
[
e−σ

∑n
k=2 Ek ]

. (9.47)

��
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