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Abstract Asymptotic equivalence in Le Cam’s sense for nonparametric regression
experiments is extended to the case of non-regular error densities, which have jump
discontinuities at their endpoints. We prove asymptotic equivalence of such regression
models and the observation of two independent Poisson point processes which contain
the target curve as the support boundary of its intensity function. The intensity of the
point processes is of order of the sample size n and involves the jump sizes as well as
the design density. The statistical model significantly differs from regression problems
with Gaussian or regular errors, which are known to be asymptotically equivalent to
Gaussian white noise models.
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1 Introduction

The goal of transforming nonparametric regression models into asymptotically equiv-
alent statistical experiments, which describe continuous observations of a stochas-
tic process, has stimulated considerable research activity in mathematical statistics.
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The continuous design in these limiting models simplifies the asymptotic analysis
and makes statistical procedures more transparent because in the regression case the
discrete design points generate distracting approximation errors. Most papers so far
establish asymptotic equivalence of certain nonparametric regression models with
nonparametric Gaussian shift experiments. In that Gaussian white noise experiment,
a process is observed which contains the target function in its drift and a blurring
Wiener process which is scaled with a factor of order n−1/2, where n denotes the
original sample size. The basic equivalence result for standard Gaussian regression
with deterministic design has been established by [1]. Afterwards, many important
extensions have been achieved. The case of random design for univariate design has
been treated by [2]. In [6] the case of unknown error variance and design density
is considered; and [5,26] extend the results to the multivariate setting. Recently, the
model with dependent regression errors has been investigated in [7]. The work by [11]
is the first to consider the important case of non-Gaussian errors which are, however,
supposed to be included in an exponential family. Such classes of error distributions
are also studied in [3] where the regression error is supposed to be non-additive. Gen-
eral regular distributions for the additive error variables are covered in [12] where only
slightly more than standard Hellinger differentiability is required for the error density.

On the other hand, when allowing for jump discontinuities of the error density,
the situation changes completely. Standard examples include uniform or exponential
error densities. These types of error distributions are non-regular and we know from
parametric theory that better rates of convergence and non-Gaussian limit distributions
can be expected. The faster convergence rates are attained only by specific estimators,
e.g. employing extreme value statistics in their construction instead of local averaging
statistics. The Nadaraja–Watson estimator and the local polynomial estimators are
procedures of that latter type, which can be improved significantly under non-regular
errors. Improved minimax rates for regression functions which satisfy some Hölder
condition are established by [24]. In [13] a rigorous theory for the optimal conver-
gence rates is established for nonparametric regression under non-regular errors and
smoothness constraints up to regularity one on the target regression function. Their
nonparametric minimax rates in dimension one are of the form n−s/(s+1) for Hölder
regularity s, which is faster than the usual n−s/(2s+1)-rate for regular regression, but
slower than n−2s/(2s+1), the squared regular rate in analogy with the parametric rates.
At first sight, this is counter-intuitive, but may be explained by a Poisson instead of
Gaussian limiting law. Many applications of non-regular regression models occur in
the field of econometrics, see [8] for an overview and a precise asymptotic investiga-
tion of the parametric likelihood ratio process. Irregular regression problems are also
closely related to nonparametric boundary estimation in image reconstruction, see
the monograph of [18]. Considerable interest has also found the problem of frontier
estimation, see [10] and the references therein.

In [15] weak asymptotic equivalence of the extreme order statistics of a one-
dimensional localization problem with non-regular errors and a Poisson point process
model is derived in a parametric setup. Other results on the asymptotic theory for non-
regular parametric experiments can be found in [14]. Also for the precise asymptotic
analysis of regression experiments with non-regular errors the use of Poisson point
processes and random measures turn out to be useful, see e.g. [17] for parametric linear
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models and [8] for general parametric regression, yet a precise and nonparametric state-
ment lacks. We intend to fill this gap by rigorously proving asymptotic equivalence
of nonparametric regression experiments with non-regular errors with a Poisson point
process (PPP) model. Therein the target parameter occurs as the boundary curve of
the intensity function. Hence, the Gaussian structure of the process experiment is not
kept; nor is the scaling factor n−1/2 which will be changed into n−1 in agreement with
the parametric rate. For a comprehensive review on PPP and their statistical inference
we refer to [16,19]. They discuss image reconstruction from laser radar as a practical
application of support estimation of the intensity function of a PPP, which corresponds
to identifying the target parameter in our PPP experiment. The asymptotic equivalence
result therefore links interesting inference questions in both models which might prove
useful in both directions.

For the basic concept of asymptotic equivalence of statistical experiments we refer
to [20,21]. To grasp the impact let us just mention that asymptotic equivalence between
two sequences of statistical models transfers asymptotical risk bounds for any inference
problem from one model to the other, at least for bounded loss functions. Moreover,
asymptotic equivalence remains valid for the sub-experiments obtained by restrict-
ing the parameter class so that we shall also cover smoother nonparametric or just
parametric regression problems.

The paper is organized as follows. In Sect. 2 we introduce our models, state our
main result in Theorem 2.1 and give a constructive description of the equivalence
maps. In Sect. 3 we construct pilot estimators of the target functions which will be
employed to localize the model in Sects. 4 and 6. The findings of Sect. 5 yield asymp-
totic equivalence of the PPP experiment and the regression model when the target
functions are changed into approximating step functions. In Sect. 7 all the results
are combined to complete the proof of Theorem 2.1. Section 8 discusses limitations
and extensions of the results and gives a geometric explanation of the unexpected
nonparametric minimax rate for Hölder classes.

2 Model and main result

In this section we specify the statistical experiments under consideration. First we
define the joint parameter space � of both the regression and the PPP experiment,
imposing standard smoothness constraints on the target function.

Definition 2.1 For some constants C� > 0 and α ∈ (0, 1] the parameter set � con-
sists of all functions ϑ : [0, 1] → R which are twice continuously differentiable on
[0, 1] with ‖ϑ‖∞ ≤ C� and ‖ϑ ′′‖∞ ≤ C� and where the second derivative satisfies
the Hölder condition

|ϑ ′′(x) − ϑ ′′(y)| ≤ C�|x − y|α, ∀x, y ∈ [0, 1].

In the regression model � represents the collection of all admitted regression func-
tions. This parameter space will remain unchanged for all experiments considered
here.
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Definition 2.2 We define the statistical experiment An in which the data Y j,n, j =
1, . . . , n, with

Y j,n = ϑ(x j,n) + ε j,n (2.1)

are observed. The deterministic design points x1,n, . . . , xn,n ∈ [0, 1] are assumed to
satisfy

x j,n = F−1
D (( j − 1)/(n − 1)), (2.2)

where the distribution function FD : [0, 1] → [0, 1] possesses a Lipschitz continuous
Lebesgue density fD which is uniformly bounded away from zero.

The conditions on the design are adopted from [1]. They imply that

d−1/n ≤ x j+1,n − x j,n ≤ d/n, (2.3)

for all n ∈ N, j = 1, . . . , n and a finite positive constant d.
The error model describes the class of densities which are supported on [−1, 1],

regular within (−1, 1) and which have jumps at their left and right endpoints. Note
that by constant extrapolation the density fε on [−1, 1] can always be written as

fε(x) = 1[−1,1](x) · ϕ(x),

with a strictly positive Lipschitz continuous function ϕ : R → R satisfying for some
constant Cε > 0

sup
t 	=s

|ϕ(t) − ϕ(s)|
|t − s| + sup

t
|ϕ(t)| ≤ Cε. (2.4)

Instead of constant extrapolation, ϕ may alternatively be continued such that ϕ ∈
L1(R) holds in addition.

Hence, experiment An describes a non-regular nonparametric regression model. We
believe that the regularity condition on fε in the interior (−1, 1) can be substantially
relaxed, but at the cost of more involved estimation techniques. We have restricted our
consideration to the specific interval [−1, 1] for convenience.

In the PPP model the target function ϑ occurs as upper and lower boundary curves
of the intensity functions of two independent Poisson point processes X1 and X2.

Definition 2.3 For functions ϑ ∈ �, the design density fD and the noise density fε
from above we define the experiment Bn in which we observe two independent Poisson
point processes X j , j = 1, 2, on the rectangle S = [0, 1]×[−C� −1, C� +1] ⊂ R

2

with respective intensity functions

λ1(x, y) = fD(x) · 1[−C�−1,ϑ(x)](y) · n fε(1),
(2.5)

λ2(x, y) = fD(x) · 1[ϑ(x),C�+1](y) · n fε(−1),

for all (x, y) ∈ S.
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Fig. 1 Left Regression model An with uniform U [−1, 1] errors. Right Asymptotically equivalent Poisson
point process model Bn

Each realisation X j represents a measure mapping from the Borel subsets of S
to N ∪ {0}. Equivalently, X j (·)/X j (S) may be characterized by a two-dimensional
discrete probability distribution, see [16,19] for more details on PPP.

Figure 1 shows on the left the regression function ϑ(x) = 3
10 x cos(10x) and cor-

responding n = 100 equidistant observations of An corrupted by uniform noise on
[−1, 1]. A realisation of the asymptotically equivalent PPP model Bn is shown on the
right, with ‘+’, ‘−’ indicating point masses of X2 and X1, respectively.

We may conceive X j as the random point measure
∑N j

k=1 δ
(x j

k ,y j
k )

where N j is

drawn from a Poisson-distribution with intensity ‖λ j‖L1(S) and the (x j
k , y j

k ) are drawn
according to the bivariate density λ j/‖λ j‖L1(S). The vertical bounds ±(C�+1) for the
domain S are non-informative for ϑ ∈ �, but the boundedness avoids technicalities.
The equivalent unbounded PPP can be described by infinite random point measures
∑∞

k=1 δ
(x j

k ,y j
k )

where the x j
k are drawn according to the density fD and

y1
k = ϑ

(
x1

k

)− (n fε(1))−1
k∑

l=1
z1

l , y2
k = ϑ(x2

k ) + (n fε(−1))−1
k∑

l=1
z2

l

holds with exponentially distributed (z j
k ) of mean one (all independent). In this form,

the PPP already appears in [17], yielding the limiting law for parametric estimators in
the nonregular linear model.

We present the main result of this work in the following theorem.

Theorem 2.1 The statistical experiments An and Bn are asymptotically equivalent in
Le Cam’s sense as n → ∞.

This asymptotic equivalence is achieved constructively by consecutive invertible
(in law) and parameter-independent mappings of the data, which generate new exper-
iments where the observation laws are shown to be asymptotically close (uniformly
over ϑ in total variation norm). In order to highlight the main ideas in the subsequent

123



206 A. Meister, M. Reiß

proof and to indicate how to use our theoretical result in practice, let us give an algo-
rithmic description of these equivalence mappings leading from experiment An to
experiment Bn (in the version with unbounded domain).

1. Take the data Y j,n, j = 1, . . . , n, from experiment An .
2. Split the data and bin one part: consider the odd indices Jn := {1, 3, . . . ,

2�n/2
 − 1} and intervals Ik = [k/m, (k + 1)/m) with some appropriate m.
Put X1 = (Y j+1,n) j∈Jn\{n} and Z̄ = (Z̄ j ) j∈Jn with

Z̄ j = Y j,n − ϑ̂1(ξ j ) − ϑ̂ ′
1(ξ j )(x j − ξ j ), j ∈ Jn,

where ξ j is the centre of that interval Ik with x j,n ∈ Ik and where ϑ̂1 is a (good)
estimator of ϑ based on the data X1.

3. Consider the local extremes in Z̄, i.e. sk = min{Z̄ j : x j ∈ Ik}, Sk = max{Z̄ j :
x j ∈ Ik}, k = 0, . . . , m − 1.

4. Use ϑ̂ on the data X1 again to transform s′′
k = sk+ϑ̂1(ξ̃k)+1, S′′

k = Sk+ϑ̂1(ξ̃k)−1
where ξ̃k denotes the centre of the interval Ik .

5. Randomization to build PPP Xl , Xu : on each interval Ik generate (xl
k, yl

k) with
xl

k having the density fk = fD1Ik /
∫

Ik
fD independent of everything else and

yl
k = S′′

k − ϑ̂ ′
1(xl

k)(ξ̃k − xl
k); define the PPP Xl where independently on each Ik we

observe a point measure in (xl
k, yl

k) plus independently (conditionally on S′′
k , ϑ̂ ′

1)
a PPP with intensity

n

2
fε(1)

⎛

⎜
⎝m

∫

Ik

fD

⎞

⎟
⎠ 1{x ∈ Ik, y ≤ S′′

k − ϑ̂ ′
1(x)(ξ̃k − x)};

analogously generate xu
k with the density fk independently, yu

k = s′′
k −ϑ̂ ′

1(xu
k )(ξ̃k −

xu
k ) and use the intensity

n

2
fε(−1)

⎛

⎜
⎝m

∫

Ik

fD

⎞

⎟
⎠ 1{x ∈ Ik, y ≥ s′′

k − ϑ̂ ′
1(x)(ξ̃k − x)}

to build Xu independently conditionally on s′′
k , ϑ̂ ′

1.
6. Use a (good) estimator ϑ̂2 based on the PPP data X2 = (Xl , Xu) and redo steps (2)–

(5) to transform X1 via Z̄ j+1 = Y j+1,n − ϑ̂2(ξ j+1)− ϑ̂ ′
2(ξ j+1)(x j+1 −ξ j+1), j ∈

Jn , to another couple (X ′
l , X ′

u) of PPP; the final PPP are obtained by X1 = Xl +
X ′

l , X2 = Xu + X ′
u .

In this algorithmic description we could do without substracting and adding the
pilot estimator itself (i.e., only use the derivative) in steps (2) and (4), but in the proof
this localization permits an easy sufficiency argument for the local extremes. Put in a
nutshell, the asymptotic equivalence is achieved by considering block-wise extreme
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values in the regression experiment, in conjunction with a pre- and post-processing
procedure (localization step) performing a linear correction on each block. The easier
block-wise constant approximation approach by [1] does not work here since we need
a much higher approximation order.

Throughout we shall write const. for a generic positive constant which may change
its value from line to line and does not depend on the parameter ϑ nor on the sample
size n. Similarly, the Landau symbols O, o and the asymptotic order symbol � will
denote uniform bounds with respect to ϑ and n.

3 Pilot estimators

In order to prove Theorem 2.1 a localization strategy is required as in [25] for the
density estimation problem. To that end we construct pilot estimators of the target
function ϑ and its derivative in both, experiments An and Bn .

Let us fix the estimation point x0 ∈ [0, 1] and apply a local polynomial estimation
approach. We introduce the neighbourhood Uh = [x0 − h, x0 + h] for x0 ∈ [h, 1 − h]
and the one-sided analogue Uh = [0, 2h] for x0 ∈ [0, h), Uh = [1 − 2h, 1] for
x0 ∈ (1 − h, 1]. We introduce the set 
 := 
2(Uh) of quadratic polynomials on Uh .
Standard approximation theory (by a Taylor series argument) gives for h ↓ 0

γh := sup
ϑ∈�

min
p∈


max
x∈Uh

(h−(2+α)|ϑ(x) − p(x)| + h−(1+α)|ϑ ′(x) − p′(x)|)≤const.<∞,

where the constant does not depend on h.

Definition 3.1 We call ϑ̂ ∈ 
 in experiment An locally admissible at x0 if

max
j :x j,n∈Uh

|Y j,n − ϑ̂(x j,n)| ≤ 1 + γhh2+α

holds. Similarly, in experiment Bn we call ϑ̂ ∈ 
 locally admissible at x0 if

X1({x ∈Uh, y >ϑ̂(x)+γhh2+α}) = 0 and X2({x ∈Uh, y < ϑ̂(x)−γhh2+α}) = 0

hold. Our estimator ϑ̂n,h(x0) is just any locally admissible ϑ̂n,h ∈ 
, evaluated at
x0 and selected as a measurable function of the data (by the measurable selection
theorem).

Note that the byγh enlarged band size guarantees that ϑ̂n,h exists since the minimizer
ϑh ∈ 
 in the definition of γh is eligible. The following result gives the pointwise risk
bounds for the regression function and its derivative with orders O(n−s/(s+1)) and
O(n−(s−1)/(s+1)), respectively, where s = 2 + α denotes the regularity in a Hölder
class. As an application of our asymptotic equivalence we shall show in Sect. 8.2
below the optimality of these rates in a minimax sense. The upper bound proof relies
on entropy arguments and norm equivalences for polynomials and could be easily
extended to more general local polynomial estimation and L p-loss functions.
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Proposition 3.1 Select the bandwidth h such that h � n−1/(3+α). Then we have in
experiment An as well as in experiment Bn

sup
ϑ∈�

sup
x0∈[0,1]

Eϑ(n2(2+α)/(3+α)|ϑ̂n,h(x0)−ϑ(x0)|2+n2(1+α)/(3+α)|ϑ̂ ′
n,h(x0)−ϑ ′(x0)|2)

≤ const.

Proof of Proposition 3.1 We shall need the following bounds in 
 = 
2(Uh)

from [9]: ‖p‖L∞(Uh) ≤ 8h−1‖p‖L1(Uh) (their Theorem IV.2.6); ‖p′‖L∞(Uh) ≤
c0h−1‖p‖L∞(Uh) (their Thm. IV.2.7); their proof of Thm. IV.2.6 establishes |p(x)| ≥
(1 − 4(x − xM )/h)‖p‖∞ for xM := argmaxx∈Uh

|p(x)| and xM ≤ x < xM + h/4,
assuming without loss of generality that xM lies in the left half of Uh , such that uni-
formly over x0

‖p‖n,h,1 := 1

nh

∑

x j,n∈Uh

|p(x j,n)| ≥ const. · |p(xM )| = const. · ‖p‖L∞(Uh)

is derived.
Let us start with considering the regression experiment An . We apply a stan-

dard chaining argument in the finite-dimensional space 
 together with an approx-
imation argument. From above we have ‖p‖L∞(Uh)/‖p‖n,h,1 � 1 as well as
‖p‖n,h,1 ≥ c1|p(x0)| with some c1 > 0 uniformly in p ∈ 
. Fix R > 2. For
every δ > 0 we can find elements (pl)l≥1 that form a δ-net in 
 ∩ {‖p‖n,h,1 ≥
c1 max(1, c0)(R−1)γhh2+α} with respect to the L∞(Uh)-norm satisfying ‖pl‖n,h,1 �
δl1/3 as l → ∞ ; for this note that, by the above norm equivalences, 
 ∩ {‖p‖n,h,1 ≥
c1 max(1, c0)(R − 1)γhh2+α} with maximum norm is isometric to R

3 ∩ {|x | ≥
c1 max(1, c0)(R − 1)γhh2+α} with the Euclidean metric uniformly for h → 0 and
nh → ∞ and use standard coverings of Euclidean balls, e.g. Lemma 2.5 in [29]. We
obtain

Pϑ

(

∃p ∈ 
 : max
j :x j,n∈Uh

|Y j,n − p(x j,n)| ≤ 1 + γhh2+α,

max(h−(2+α)|p(x0) − ϑ(x0)|, h−(1+α)|p′(x0) − ϑ ′(x0)|) ≥ Rγh

)

= Pϑ

(

∃p ∈ 
 : max
j :x j,n∈Uh

|ε j,n − (p(x j,n) − ϑ(x j,n))| ≤ 1 + γhh2+α,

max(h−(2+α)|p(x0) − ϑ(x0)|, h−(1+α)|p′(x0) − ϑ ′(x0)|) ≥ Rγh

)

≤ Pϑ

(

∃p ∈ 
 : max
j :x j,n∈Uh

|ε j,n − (p(x j,n) − ϑh(x j,n))| ≤ 1 + 2γhh2+α,

‖p − ϑh‖n,h,1 ≥ max(1, c0)c1(R − 1)γhh2+α

)
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≤ Pϑ

(

∃l ≥ 1 : max
j :x j,n∈Uh

|ε j,n − pl(x j,n)| ≤ 1 + 2γhh2+α + δ

)

≤
∑

l≥1

Pϑ

(

max
j :x j,n∈Uh

|ε j,n − pl(x j,n)| ≤ 1 + 2γhh2+α + δ

)

.

From fε(−1) > 0, fε(+1) > 0 and the Lipschitz continuity of fε within [−1, 1]
we infer that any ε j,n satisfies

min(P(ε j,n ≥ 1 − κ), P(ε j,n ≤ −1 + κ)) ≥ cκ

for some constant c > 0 and all κ ∈ (0, 1). We derive an exponential inequality for
any f : Uh → R and 
 > 0:

P

(

max
j :x j,n∈Uh

|ε j,n − f (x j,n)| ≤ 1 + 


)

≤
∏

j :x j,n∈Uh

(

1−min

(

P(ε j,n > 1+
 − | f (x j,n)|), P(ε j,n < −1 − 
 + | f (xi )|)
))

≤ exp

⎛

⎝
∑

j :x j,n∈Uh

log(1 − c(| f (xi )| − 
)+)

⎞

⎠

≤ exp

⎛

⎝−c
∑

j :x j,n∈Uh

(| f (xi )| − 
)+

⎞

⎠

≤ exp(−cnh(‖ f ‖n,h,1 − 
)),

using log(1 + h) ≤ h. We therefore choose δ = Rγhh2+α and arrive at

Pϑ(∃p ∈ 
 : p is locally admissible,

max(h−(2+α)|p(x0) − ϑ(x0)|, h−(1+α)|p′(x0) − ϑ ′(x0)|) ≥ Rγh)

≤
∑

l≥1

exp(−const. · nh(δ + γhh2+α)l1/3) = O(exp(−const. · Rnh3+α)).

We conclude, substituting h � n−1/(3+α), that uniformly over R ≥ 2

Pϑ(h−(2+α)|ϑ̂n,h(x0) − ϑ(x0)| ≥ Rγh) = O(exp(−const. · R)),

Pϑ(h−(1+α)|ϑ̂ ′
n,h(x0) − ϑ ′(x0)| ≥ Rγh) = O(exp(−const. · R)).

Integrating out these exponential tail bounds yields the desired moment bound in
experiment An .

All the results obtained so far remain valid for the PPP experiment Bn when the
empirical norm ‖·‖n,h,1 is replaced by the rescaled L1(Uh)-norm ‖g‖1,Uh := 1

h

∫
Uh

|g|,
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the admissibility conditions are exchanged and the following (easier) exponential
inequality is used:

Pϑ(X1({x ∈Uh, y > ϑ(x)+ f (x)−
})=0, X2({x ∈Uh, y <ϑ(x)+ f (x)+
})=0)

= P0(X1({x ∈ Uh, y > f (x) − 
}) = 0)P0(X2({x ∈ Uh, y < f (x) + 
}) = 0)

= exp

⎛

⎜
⎝−n fε(1)

∫

Uh

( f (x) − 
)+ fD(x) dx

⎞

⎟
⎠

· exp

⎛

⎜
⎝−n fε(−1)

∫

Uh

(− f (x) − 
)+ fD(x) dx

⎞

⎟
⎠

≤ exp(−c′nh(‖ f ‖1,Uh − 
))

with some constant c′ > 0. ��

4 Design adjustment for the regression experiment

We use a piecewise constant approximation strategy and introduce the intervals

Ik,n = [k/m, (k + 1)/m), k = 0, . . . , m − 2, and Im−1,n = [(m − 1)/m, 1]
(4.1)

for some integer m. For any design point x j,n ∈ Ik,n we introduce the centre of the
interval

ξ j,n := (k + 1/2)/m for x j,n ∈ Ik,n . (4.2)

Now we apply a sample splitting scheme and write Jn for the collection of odd j ∈
{1, . . . , n}. The experiment An is considered as the totality of the two independent
data sets X = (Y j+1,n) j∈Jn , j<n and Y′ = (Y j,n) j∈Jn .

Subsequently, we shall not touch upon X to establish asymptotic equivalence, but
just assume the existence of sufficiently good estimators based on the data X. There-
fore, we forget about the specific definition of X and write X∗ instead.

Definition 4.1 Let X∗ be an arbitrary observation in a Polish space, which is inde-
pendent of Y′. We generalize the experiment An to An

∗, which consists of the data
Y′ and X∗.

The original experiment An is still included by putting X∗ = X. This enables us to
repeatedly use the following results later also when X∗ will denote a PPP observation.

In a first step we show asymptotic equivalence for the regression experiment An
∗

with the same experiment, but where for j ∈ Jn the regression function is observed
at the interval centres ξ j,n .

123



Asymptotic equivalence for nonparametric regression 211

Definition 4.2 In experiment Cn we observe independently the vectors X∗ as under
experiment An

∗ and, independently, the vector Z with the components

Z j,n = ϑ(ξ j,n) + ε j,n, j ∈ Jn .

Lemma 4.1 Choose m ∈ N such that m−1 = o(n−1/2) holds and assume that an
estimator ϑ̂ ′ can be constructed based on the data set X∗ with

sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂ ′(x) − ϑ ′(x)| = o(mn−1).

Then the experiments An
∗ and Cn are asymptotically equivalent.

Proof of Lemma 4.1 The observations Y′ from the experiment An
∗ are transformed

into the data set Ỹ with the components

Ỹ j,n = Y j,n − ϑ̂ ′(ξ j,n)(x j,n − ξ j,n)

= ϑ(x j,n) − ϑ ′(ξ j,n)(x j,n − ξ j,n) − [ϑ̂ ′(ξ j,n) − ϑ ′(ξ j,n)](x j,n − ξ j,n) + ε j,n,

for all j ∈ Jn . The data set X∗ is not affected by this transformation. As ϑ̂ ′ is based
on the data X∗, this transformation is invertible so that the original data are uniquely
reconstructable from the transformed ones; and observing (X∗, Y′) on the one hand
and (X∗, Ỹ) on the other hand is equivalent. Therefore, for any measurable functional
R with ‖R‖∞ ≤ 1 we observe that

|Eϑ R(X∗, Ỹ) − Eϑ R(X∗, Z)| ≤ Eϑ |Eϑ {R(X∗, Ỹ)|X∗} − Eϑ {R(X∗, Z)|X∗}|
(4.3)

≤
∑

j∈Jn

Eϑ‖ fỸ j,n |X∗ − fZ j,n |X∗‖1, (4.4)

where ‖ · ‖1 denotes the L1(R)-norm; in general, fY |X stands for the conditional den-
sity of Y given X . The conditional independence of the Ỹ j,n and the Z j,n given X∗ as
well as an elementary telescopic sum argument with respect to the L1(R)-distance of
the multivariate conditional densities of Ỹ and Z given X∗ have been exploited. We
obtain by the Lipschitz continuity of ϕ

‖ fỸ j,n |X∗ − fZ j,n |X∗‖1 ≤ 2‖ϕ‖∞ · |
1, j,n| +
1∫

−1

|ϕ(x + 
1, j,n) − ϕ(x)|dx

≤ 4Cε · |
1, j,n|, (4.5)

where


1, j,n =ϑ(x j,n)−ϑ(ξ j,n)−ϑ ′(ξ j,n)(x j,n −ξ j,n)−[ϑ̂ ′(ξ j,n)−ϑ ′(ξ j,n)](x j,n −ξ j,n).
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We conclude that the total variation distance between (X∗, Ỹ) and (X∗, Z) is bounded
from above by

const. ·
∑

j∈Jn

Eϑ(|
1, j,n|).

By the Hölder constraints imposed on the parameter class � we derive that

|
1, j,n| ≤ const. · (m−2 + |ϑ̂ ′(x j,n) − ϑ ′(x j,n)|m−1).

Using m−2 = o(n−1) and the convergence rate of ϑ̂ ′, we conclude that the Le Cam
distance between the experiments An

∗ and Cn tends to zero uniformly in ϑ , which
gives the assertion of the lemma. ��

Usually, the bound on the total variation of product measures which is used in the
proof is suboptimal, but here the order is optimal due to the jumps of the density. Note
also that the data Z j,n may be viewed as random responses drawn from a regression
function which is locally constant on the intervals Ik,n with the values ϑ(ξ j,n) when
x j,n ∈ Ik,n .

5 Asymptotic equivalence for step functions

We revisit the experiment Cn from Definition 4.2. The data Z j,n may be transformed
into

Z̃ j,n = Z j,n − ϑ̂(ξ j,n),

where ϑ̂ denotes a preliminary estimator of ϑ which is based on the data from X∗
as contained in the experiment Cn . Again this transformation is invertible so that the
experiment Cn is equivalent to the experiment Cn

′ under which one observes the data
X∗ and the vector Z̃ = (Z̃ j,n) j∈Jn . The Z̃ j,n, j ∈ Jn , are conditionally independent
given X∗ and have the conditional densities

fε(x − 
0, j,n) = ϕ(x − 
0, j,n)1[
0, j,n−1,
0, j,n+1](x) with 
0, j,n

= ϑ(ξ j,n) − ϑ̂(ξ j,n). (5.1)

The next key step is to replace these densities by those with unshifted ϕ where local
minima and maxima will turn out to be sufficient statistics.

Definition 5.1 Let W j,n, j ∈ Jn , conditionally on X∗ be independent random vari-
ables with respective densities

fW, j (x) = ϕ(x)

⎛

⎜
⎝


0, j,n+1∫


0, j,n−1

ϕ(t)dt

⎞

⎟
⎠

−1

1[
0, j,n−1,
0, j,n+1](x), j ∈ Jn,
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where 
0, j,n is given in (5.1). The experiment in which X∗ and the W j,n, j ∈ Jn , are
observed for ϑ ∈ � is denoted by Dn .

Lemma 5.1 Suppose that an estimator ϑ̂ of ϑ can be constructed based on the data
set X∗ such that

sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂(x) − ϑ(x)|2 = O(n−1−δ), (5.2)

for some δ > 0. Then the experiments Cn and Dn are asymptotically equivalent.

Proof of Lemma 5.1 By Le Cam’s inequality and the subadditivity of the squared Hel-
linger distance H for product measures (cf. Section 2.4 in [28]) we deduce that for
any measurable functional R with ‖R‖∞ ≤ 1 we have

|Eϑ R(X∗, Z̃)−Eϑ R(X∗, W)| ≤ Eϑ

∫

· · ·
∫
∣
∣
∣
∣
∣
∣

∏

j∈Jn

fε(y j −
0, j,n)−
∏

j∈Jn

fW, j (y j )

∣
∣
∣
∣
∣
∣
dy

≤ 2
∑

j∈Jn

Eϑ H2( fW, j , fε(· − 
0, j,n)), (5.3)

where the expectation is taken over 
0, j,n . Hence, it remains to be shown that the sum
converges to zero uniformly with respect to ϑ ∈ �. That sum equals

∑

j∈Jn

Eϑ


0, j,n+1∫


0, j,n−1

⎛

⎜
⎝
√

ϕ(x)

⎛

⎜
⎝


0, j,n+1∫


0, j,n−1

ϕ(t)dt

⎞

⎟
⎠

−1/2

−
√

ϕ(x − 
0, j,n)

⎞

⎟
⎠

2

dx

≤ 4C2
ε

(

2 +
{

inf|x |≤1
ϕ(x)

}−1
)
∑

j∈Jn

Eϑ
2
0, j,n,

since ϕ is strictly positive, continuous and satisfies the condition (2.4). The imposed
convergence rate of the estimator ϑ̂ yields that the supremum taken over ϑ ∈ � tends
to zero at the rate O(n−δ) and the proof is complete. ��

The conditional joint density of the W j,n, j ∈ Jn , given X∗ from the experiment
Dn can be represented by

fW (w) =
∏

j∈Jn

fW, j (w j ) =
⎛

⎝
∏

j∈Jn

ϕ(w j )

⎞

⎠

⎛

⎜
⎝
∏

j∈Jn


0, j,n+1∫


0, j,n−1

ϕ(t)dt

⎞

⎟
⎠

−1

·
(

m−1∏

k=0

1(min{w j : x j,n ∈ Ik,n} ≥ 
0, j (k),n − 1) · 1(max{w j : x j,n ∈ Ik,n}

≤ 
0, j (k),n + 1)

)

, (5.4)
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where the Ik,n are as in Sect. 4 and j (k) = min{l ∈ Jn : xl,n ∈ Ik,n}, w = (w j ) j∈Jn .
Note that the parameter ϑ is included in the term 
0, j (k),n .

Definition 5.2 In experiment En only the data (X∗, sk,n, Sk,n), k = 0, . . . , m − 1,
with

sk,n = min{W j,n : x j,n ∈ Ik,n},
Sk,n = max{W j,n : x j,n ∈ Ik,n},

are observed for ϑ ∈ �.

An inspection of (5.4) yields that (X∗, sk,n, Sk,n), k = 0, . . . , m−1, provides a suf-
ficient statistic for the whole empirical information contained in (X∗, {W j,n : j ∈ Jn})
by the Fisher–Neyman factorization theorem. Sufficiency implies equivalence (e.g.
Lemma 3.2 in [1]) and we have

Lemma 5.2 Experiments Dn and En are equivalent.

In the following we study the conditional distribution of (sk,n, Sk,n) given X∗. Note
that, conditionally on X∗, the (sk,n, Sk,n) are independent for k = 0, . . . , m − 1 as the
intervals Ik,n are disjoint. We derive that

P[sk,n > x, Sk,n ≤ y|X∗] = P[W j,n ∈ (x, y], ∀ j ∈ Jn with x j,n ∈ Ik,n|X∗]

=
⎛

⎝

y∫

x

fW, j (k)(t)dt

⎞

⎠

lk,n

,

for y > x where lk,n := #{ j ∈ Jn : x j,n ∈ Ik,n}. Thus we obtain the conditional joint
density of (sk,n, Sk,n) via

f(sk,n ,Sk,n)(x, y) = − ∂2

∂x∂y
P[sk,n > x, Sk,n ≤ y|X∗]

= Ak,n(x, y) · lk,n(lk,n − 1) fW, j (k)(x) fW, j (k)(y)1{y≥x},

where

Ak,n(x, y) =
⎛

⎜
⎝1 −

x∫


0, j (k),n−1

fW, j (k)(t)dt −

0, j (k),n+1∫

y

fW, j (k)(t)dt

⎞

⎟
⎠

lk,n−2

.

Definition 5.3 Consider for each k two conditionally on X∗ independent random vari-
ables s′

k,n and S′
k,n with conditional exponential densities

fs′
k,n

(x) = (lk,n − 2) fW, j (k)(
0, j (k),n − 1) exp(−(lk,n − 2) fW, j (k)(
0, j (k),n − 1)

·(x − 
0, j (k),n + 1)) 1[
0, j (k),n−1,∞)(x),

fS′
k,n

(x) = (lk,n − 2) fW, j (k)(
0, j (k),n + 1) exp(−(lk,n − 2) fW, j (k)(
0, j (k),n + 1)

·(−x + 
0, j (k),n + 1)) 1(−∞,
0, j (k),n+1](x),
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and the conditional joint density f(s′
k,n ,S′

k,n). Then the experiment Fn is obtained by

observing X∗ as well as conditionally on X∗ independent tuples (s′
k,n, S′

k,n), k =
0, . . . , m − 1.

Lemma 5.3 Assume that m ≤ const. · n1−δ for some δ > 0 and that

sup
k=0,...,m−1

|
0, j (k),n| ≤ 2C�, a.s., ∀ϑ ∈ �. (5.5)

Conditionally on the data set X∗, the squared Hellinger distance between f(s′
k,n ,S′

k,n)

and f(sk,n ,Sk,n) satisfies

H2( f(s′
k,n ,S′

k,n), f(sk,n ,Sk,n)) ≤ const. · {log(n/m)}4(m/n)2,

where const. is uniform with respect to n, X∗, ϑ and k.

Remark 5.1 This approximation result together with the ensuing corollary tells us that
we need to choose the number m of intervals of polynomially smaller order than n2/3.
To see that we cannot hope for a better approximation order, note that already in the
most simple univariate case where s := min(Ui , i = 1, . . . , I ) with Ui i.i.d. uniform
on [0, 1] and s′ exponentially distributed with intensity I ∈ N, we have for I → ∞

H2( fs, fs′) ≥
1/I∫

0

(√
I (1 − x)I−1 −√I exp(−I x)

)2
dx

≈ ((1 − 1/I )(I−1)/2 − exp(−1/2))2 � I −2.

Corollary 5.1 Assume that an estimator ϑ̂ of ϑ can be constructed from the data X∗
such that (5.5) holds. Then for m = O(n2/3−δ) with some δ > 0 as n → ∞ the
experiments En and Fn are asymptotically equivalent.

Proof of Corollary 5.1 Focussing on the total variation distance between the distri-
butions of the data (X∗, {(s′

k,n, S′
k,n) : k = 0, . . . , m − 1}) and (X∗, {(sk,n, Sk,n) :

k = 0, . . . , m − 1}) we consider for any measurable functional R on an appropriate
domain and ‖R‖∞ ≤ 1 that

|Eϑ R(X∗, s0,n, S0,n, . . . , sm−1,n, Sm−1,n) − Eϑ R(X∗, s′
0,n, S′

0,n, . . . , s′
m−1,n, S′

m−1,n)|

≤ 2
m−1∑

k=0

Eϑ H2( f(sk,n ,Sk,n), f(s′
k,n ,S′

k,n))

≤ const. · n−3δ log4 n,

using the conditional independence of the (sk,n, Sk,n), k = 0, . . . , m − 1, on the one
hand and the (s′

k,n, S′
k,n), k = 0, . . . , m − 1, on the other hand and arguments as in

the proof of Lemma 5.1; as well as Lemma 5.3 in the last line. Thus the total variation
distance between the distributions of the data (X∗, {(s′

k,n, S′
k,n) : k = 0, . . . , m − 1})
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and (X∗, {(sk,n, Sk,n) : k = 0, . . . , m − 1}) converges to zero as n → ∞, which
proves the claim of the corollary. ��
Proof of Lemma 5.3 First we mention that, although the arguments of the Hellinger
distance are most usually densities, its definition H2( f, g) = ∫ (

√
f (x)−√

g(x))2dx
may easily be extended to all nonnegative functions f, g ∈ L1(R). This fact will be
used in the sequel. Moreover, note that lk,n � n/m ≥ const. · nδ holds uniformly over
k by our design assumption (2.3). We set

f1,k,n(x, y) = (lk,n − 2)2

lk,n(lk,n − 1)
f(sk,n ,Sk,n)(x, y),

so that

H2( f1,k,n, f(sk,n ,Sk,n)) ≤ (4 − 3lk,n)2

lk,n(lk,n − 1)(lk,n − 2)2 � l−2
k,n . (5.6)

Note that the support of f(sk,n ,Sk,n) and hence of f1,k,n is included in the square Qk,n =
[
0, j (k),n − 1,
0, j (k),n + 1]2. A sub-square is defined by

Q1,k,n = [
0, j (k),n − 1,
0, j (k),n − 1 + ak,n]
×[
0, j (k),n + 1 − ak,n,
0, j (k),n + 1] ⊆ Qk,n,

which will contain most probability masses, and we set Q2,k,n = Qk,n\Q1,k,n where
ak,n = d0l−1

k,n log lk,n with a constant d0 > 0 for n sufficiently large. We split the
Hellinger distance into integrals over disjoint domains so that

H2( f1,k,n, f(s′
k,n ,S′

k,n)) ≤
∫

Q1,k,n

(
√

f1,k,n(x, y) −
√

f(s′
k,n ,S′

k,n)(x, y)

)2

dx dy

+ 2
∫

Q2,k,n

f1,k,n(x, y)dx dy

+2P[s′
k,n > 
0, j (k),n − 1 + ak,n|X∗]

+ 2P[S′
k,n < 
0, j (k),n + 1 − ak,n|X∗]

=: T1 + T2 + T3 + T4. (5.7)

The conditions (2.4) and (5.5) combined with the positivity of ϕ imply that
‖ fW, j (k)‖∞ ≤ const. and that

x∫


0, j (k),n−1

fW, j (k)(t)dt ≥ const. · (x − 
0, j (k),n + 1),

∀x ∈ [
0, j (k),n − 1,
0, j (k),n + 1],
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0, j (k),n+1∫

y

fW, j (k)(t)dt ≥ const. · (
0, j (k),n + 1 − y),

∀y ∈ [
0, j (k),n − 1,
0, j (k),n + 1].

As the Lebesgue measure of Qk,n is equal to 4, thus bounded, we deduce by the
definition of f1,k,n and f(sk,n ,Sk,n) that

T2 ≤ cνn−ν,

for each ν > 0 when selecting the constant d0 in the definition of ak,n sufficiently
large where cν denotes a finite constant which depends on neither the data X∗, ϑ nor
x, y.

Concerning terms T3 and T4, easy calculations yield that these terms are equal to
2 exp{−ak,n(lk,n − 2) fW, j (k)(
0, j (k),n ∓ 1)}, respectively. We may use (2.4), (5.5)
and ϕ > 0 to show that fW, j (k)(
0, j (k),n ∓ 1) ≥ const. Again choosing the constant
d0 sufficiently large implies that max{T3, T4} ≤ c′

νn−ν , for any ν > 0 with a constant
c′
ν which has the same properties as cν .

Let us focus on the main term T1. For (x, y) ∈ Q1,k,n , we have

log Ak,n(x, y) = (lk,n − 2)

⎛

⎜
⎝−

x∫


0, j (k),n−1

fW, j (k)(t)dt −

0, j (k),n+1∫

y

fW, j (k)(t)dt

⎞

⎟
⎠

+R1,k,n(x, y),

where sup(x,y)∈Q1,k,n
maxk=0,...,m−1 |R1,k,n(x, y)| ≤ const. · lk,na2

k,n � l−1
k,n log2 lk,n

by the Taylor expansion of the logarithm. Furthermore, the functions to be integrated
are locally approximated by constant functions,

−
x∫


0, j (k),n−1

fW, j (k)(t)dt −

0, j (k),n+1∫

y

fW, j (k)(t)dt

= − fW, j (k)(
0, j (k),n − 1) · (x − 
0, j (k),n + 1)

− fW, j (k)(
0, j (k),n + 1) · (−y + 
0, j (k),n + 1) + R2,k,n(x, y),

where sup(x,y)∈Q1,k,n
maxk=0,...,m−1 |R2,k,n(x, y)| ≤ const. · l−2

k,n log2 lk,n , using the
Lipschitz continuity of ϕ.

We introduce Bk,n(x, y) := Ak,n(x, y) fW, j (k)(x) fW, j (k)(y)(lk,n − 2)2 so that
Bk,n(x, y) coincides with f1,k,n(x, y) on its restriction to (x, y) ∈ Q1,k,n for n large
enough, as well as

B̃k,n(x, y) := f(s′
k,n ,S′

k,n)(x, y)
fW, j (k)(x) fW, j (k)(y)

fW, j (k)(
0, j (k),n − 1) fW, j (k)(
0, j (k),n + 1)
.
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We obtain

B1/2
k,n (x, y) = B̃1/2

k,n (x, y) exp(R1,k,n(x, y)/2 + (lk,n − 2)R2,k,n(x, y)/2)

= B̃1/2
k,n (x, y) + B̃1/2

k,n (x, y)R3,k,n(x, y),

where sup(x,y)∈Q1,k,n
maxk=0,...,m−1 |R3,k,n(x, y)| ≤ const. · l−1

k,n log2 lk,n so that

B̃1/2
k,n (x, y) = f 1/2

(s′
k,n ,S′

k,n)
(x, y) + f 1/2

(s′
k,n ,S′

k,n)
(x, y)R4,k,n(x, y),

where

|R4,k,n(x, y)| ≤ const. · (| fW, j (k)(x) − fW, j (k)(
0, j (k),n − 1)|
+| fW, j (k)(y) − fW, j (k)(
0, j (k),n + 1)|)

≤ const. · ak,n � l−1
k,n log lk,n,

where the conditions (5.5), (2.4) and their consequences have been used. We conclude
that

B1/2
k,n (x, y) = f 1/2

(s′
k,n ,S′

k,n)
(x, y) + f 1/2

(s′
k,n ,S′

k,n)
(x, y)R5,k,n(x, y),

where sup(x,y)∈Q1,k,n
maxk=0,...,m−1 |R5,k,n(x, y)| ≤ const. · l−1

k,n log2 lk,n . Hence, the
term T1 is bounded from above by

T1 ≤
∫

Q1,k,n

R2
5,k,n(x, y) f(s′

k,n ,S′
k,n)(x, y) dx dy ≤ const. · (log4 lk,n)l−2

k,n,

as the density f(s′
k,n ,S′

k,n) integrates to one. By inserting the upper bounds on T1, . . . , T4

into (5.7) and combining that result with (5.6), we complete the proof. ��
Definition 5.4 In experiment Gn we observe the data (X∗, (dk,n, Dk,n)k=0,...,m−1) for
ϑ ∈ � where d0,n, D0,n, . . . , dm−1,n, Dm−1,n are independent random variables, also
independent of X∗, with densities

fdk,n (x) = ρk,nϕ(−1) exp(−ρk,nϕ(−1) · [x − ϑ(ξ j (k),n)]) 1[ϑ(ξ j (k),n),∞)(x),

fDk,n (x) = ρk,nϕ(1) exp(ρk,nϕ(1) · [x − ϑ(ξ j (k),n)]) 1(−∞,ϑ(ξ j (k),n)](x),

where ρk,n = (n/2)
∫

Ik,n
fD(t)dt with fD as in (2.2).

Lemma 5.4 We select m such that m = o(n2/3). Also we assume the existence of an
estimator ϑ̂ of ϑ based on X∗ such that (5.5) and

sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂(x) − ϑ(x)|2 = o(m−1)
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are fulfilled. Then the experiments Fn and Gn are asymptotically equivalent as n → ∞.

Proof of Lemma 5.4 As the estimator ϑ̂ is based on the data set X∗ the transfor-
mation T which maps the observations (X∗, {(s′

k,n, S′
k,n) : k = 0, . . . , m − 1})

to (X∗, {(s′′
k,n, S′′

k,n) : k = 0, . . . , m − 1}) with s′′
k,n = s′

k,n + ϑ̂(ξ j (k),n) + 1 and

S′′
k,n = S′

k,n + ϑ̂(ξ j (k),n) − 1 is invertible. Therefore, the experiment under which
the data (X∗, {(s′′

k,n, S′′
k,n) : k = 0, . . . , m − 1}) are observed is equivalent to the

experiment Fn .
The squared Hellinger distance between the exponential densities with the same

endpoint and the scaling parameters μ1 and μ2 turns out to be 2(μ1 − μ2)
2(μ1 +

μ2)
−1(

√
μ1 + √

μ2)
−2.

Also, (2.2) implies that |lk,n − ρk,n| ≤ 3 for all k = 0, . . . , m − 1. We may set

μ1,± = ρk,nϕ(±1)
∫
0, j (k),n+1

0, j (k),n−1 ϕ(t)dt and μ2,± = (lk,n − 2)ϕ(
0, j (k),n ± 1). Hence,

H2( fS′′
k,n

, fDk,n ) + H2( fs′′
k,n

, fdk,n ) ≤ const. · {l−2
k,n + 
2

0, j (k),n},

where the constant does not depend on X∗. Therein we have utilized condition (5.5) as
well as the Lipschitz continuity, positivity and boundedness of ϕ. We take the expec-
tation of the sum of these terms over k = 0, . . . , m − 1 which converges to zero
uniformly in ϑ ∈ � by the assumption on m and the imposed convergence rates of the
estimator ϑ̂ . Then the asymptotic equivalence is evident by the argument (5.3) from
the proof of Lemma 5.1 when replacing the data sets Z̃ and W by the data samples
(dk,n, Dk,n)k=0,...,m−1 and (s′′

k,n, S′′
k,n)k=0,...,m−1, respectively, and inserting the con-

ditional densities of their components given X∗. The sum is, of course, to be taken
over k = 0, . . . , m − 1 instead of j ∈ Jn . ��

Now we go over to experiments involving Poisson point processes (PPP).

Definition 5.5 In experiment Hn we observe X∗ and independently two independent
Poisson point processes Xl and Xu whose domain is the Borel σ -algebra of R

2 and
whose intensity functions equal

λl(x, y) = mϕ(1)

m−1∑

k=0

ρk,n1Ik,n (x)1[−C�−1,ϑ(ξ j (k),n)](y),

λu(x, y) = mϕ(−1)

m−1∑

k=0

ρk,n1Ik,n (x)1[ϑ(ξ j (k),n),C�+1](y),

and are hence locally constant. We recall that C� is the uniform upper bound on |ϑ |
in the parameter set �.

We define the extreme points of Xl and Xu in the strip Ik,n × R by

Xl,k = inf{y ∈ R : Xl(Ik,n × [y,∞)) = 0},
Xu,k = sup{y ∈ R : Xu(Ik,n × (−∞, y]) = 0}.
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Lemma 5.5 (a) The statistic (Xl,k, Xu,k), k = 0, . . . , m−1, is sufficient for the whole
empirical information contained in Xl and Xu.
(b) The distribution functions of Xl,k and Xu,k are equal to those of max{−C� −
1, Dk,n} and min{C� + 1, dk,n}, respectively where dk,n and Dk,n are as in experi-
ment Gn. Moreover, all Xl,k, k = 0, . . . , m − 1, on the one hand and all Xu,k, k =
0, . . . , m − 1 on the other hand are independent.

Proof of Lemma 5.5 (a) Let X0 denote the PPP with the intensity function λ0 =
1[0,1]×[−C�−1,C�+1]. The probability measures generated by X0, Xl , Xu are denoted
by P0, Pl , Pu , respectively. As the functions λ0, λl , λu are piecewise constant and the
support of λl and λu is included in that of λ0 the measure P0 dominates Pl and Pu and
the corresponding Radon–Nikodym derivatives are equal to

dPl

dP0
(X) = exp

{∫

log
λl(x, y)

λ0(x, y)
d X (x, y) −

∫ (
λl(x, y)

λ0(x, y)
− 1

)

λ0(x, y) dx dy

}

,

dPu

dP0
(X) = exp

{∫

log
λu(x, y)

λ0(x, y)
d X (x, y) −

∫ (
λu(x, y)

λ0(x, y)
− 1

)

λ0(x, y) dx dy

}

,

see e.g. Theorem 1.3 in [19] which apparently goes back to [4]. Therein X may be
viewed as an arbitrary counting process on the Borel σ -algebra of [0, 1] × [−C� −
1, C� + 1]. We write �ϑ =⋃m−1

k=0 Ik,n × (ϑ(ξ j (k),n), C� + 1] and � =⋃m−1
k=0 Ik,n ×

[−C� − 1, X̃l,k] where X̃l,k equals Xl,k except that Xl is changed into the general
process X in the definition. Then dPl/dP0 is equal to

dPl

dP0
(X) = 1{∅}(�ϑ ∩ �) · exp

{
m−1∑

k=0

log[ρk,nmϕ(1)]X (Ik,n × [−C� − 1, C� + 1])
}

· exp

{

−
m−1∑

k=0

(ϑ(ξ j (k),n) + C� + 1)ρk,nϕ(1)

}

exp(2C� + 2),

where we have used that X (Ik,n × [−C� − 1, C� + 1]) = X (Ik,n × [−C� −
1, ϑ(ξ j (k),n)]) whenever X (�ϑ) = 0; and that �ϑ and � are disjoint if and only
if X (�ϑ) = 0. It follows from the Fisher–Neyman factorization theorem that the
Xl,k, k = 0, . . . , m − 1 represent a sufficient statistic for Xl . The corresponding
assertion for the Xu,r is proved analogously.

(b) We consider for x ∈ [−C� − 1, ϑ(ξ j (k),n)] that

P[Xl,k ≤ x] = P[Xl(Ik,n × (x,∞)) = 0] = exp(−(ϑ(ξ j (k),n) − x)ρk,nϕ(1))

= P[Dk,n ≤ x].

Clearly we have P[Xl,k > ϑ(ξ j (k),n)] = P[Dk,n > ϑ(ξ j (k),n)] = 0 and P[Xl,k <

−C� − 1] = 0 so that the distribution functions of Xl,k and max{−C� − 1, Dk,n}
coincide. The claim that Xu,k and min{C�+1, dk,n} are identically distributed follows
analogously. Finally the independence of the data Xl,k, k = 0, . . . , m − 1 as well as
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of the data Xu,k, k = 0, . . . , m − 1 follows from the fact that X (A0), . . . , X (Am−1)

are independent for all Ak ⊆ Ik,n × [−C� − 1, C� + 1] by the definition of the PPP.
��

Lemma 5.6 For m = O(n1−δ), δ > 0, the total variation distance between the dis-
tributions of ((min{C� + 1, dk,n}, max{−C� − 1, Dk,n}) : k = 0, . . . , m − 1) and
((dk,n, Dk,n) : k = 0, . . . , m − 1) converges to zero.

Proof of Lemma 5.6 Due to the independence of the data the desired total variation
distance is bounded from above by the sum of the total variation distances between the
distributions of dk,n and min{C� + 1, dk,n} plus the corresponding distances between
the distributions of Dk,n and max{−C� −1, Dk,n} where k = 0, . . . , m −1. The total
variation distance between dk,n and min{C� + 1, dk,n} is bounded by

2P[dk,n ≥ C� + 1] ≤ 2 exp(−const. · n/m),

so that, because of m ≤ const. · n1−δ , the sum of these terms for k = 0, . . . , m − 1
tends to zero exponentially fast. The distributions of max{−C� − 1, Dk,n} and Dk,n

are treated in the same way. ��
Combining these two lemmata we obtain directly asymptotic equivalence.

Corollary 5.2 Experiments Gn and Hn are asymptotically equivalent for m as in
Lemma 5.6.

We observe that the choice m � n2/3−δ for some δ ∈ (0, 1/6) meets all require-
ments imposed on m so far and we summarize our results.

Proposition 5.1 Select m � n2/3−δ for some δ ∈ (0, 1/6) and suppose that there is
an estimator ϑ̂ , based on the data X∗ alone, which satisfies (5.5) and

sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂(x) − ϑ(x)|2 = O(n−1−δ).

Then we have asymptotic equivalence between experiments Cn and Hn. Moreover, if
we have additionally

sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂ ′(x) − ϑ ′(x)| = o(n−1/3−δ),

for an estimator ϑ̂ ′, which is not necessarily the derivative of ϑ̂ , then also An
∗ and

Hn are asymptotically equivalent.

6 Localization of the PPP model

The processes Xl and Xu in the experiment Hn have step functions as their intensity
boundaries which approximate continuous functions as m tends to infinity. Therefore
we consider now the experiment where X∗ and independently two PPP with boundary
function ϑ are observed.
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Definition 6.1 In experiment In we observe X∗ and independently two independent
PPP X1,0 and X2,0 with intensities

λ1,0(x, y) = (n/2) fε(1) fD(x)1[−C�−1,ϑ(x)](y),
(6.1)

λ2,0(x, y) = (n/2) fε(−1) fD(x)1[ϑ(x),C�+1](y).

Proposition 6.1 We impose the conditions of Lemma 4.1 and, in addition, that for all
ϑ ∈ �, we have

sup
x∈[0,1]

|ϑ̂ ′(x)| ≤ 2 sup
ϑ∈�

sup
x∈[0,1]

|ϑ ′(x)|, a.s. (6.2)

Then the experiments Hn and In are asymptotically equivalent.

Proof of Proposition 6.1 First, we show asymptotic equivalence of the experiment Hn

with the experiment Hn
′ in which one observes the data (X∗, X̃1, X̃2) where X̃1 and

X̃2 are PPP with the intensity functions

λ̃1(x, y) = (n/2) fε(1) fD(x)1[−C�−1,ϑ(x)+ϑ̂ ′(x)(ξ(x)−x)](y),

λ̃2(x, y) = (n/2) fε(−1) fD(x)1[ϑ(x)+ϑ̂ ′(x)(ξ(x)−x),C�+1](y),

conditionally on X∗, respectively. As ϑ̂ ′ we may choose the pilot estimator from
Lemma 4.1 based on the data set X∗ under appropriate truncation such that (6.2) is
satisfied; and we write ξ(x) for the centre of that interval Ik,n which contains the
element x .

By a similar argument as in (4.3), it suffices to show that the expected Hellinger
distance between the distribution of X̃1 and Xl on the one hand and X̃2 and Xu on the
other hand converges to zero. We shall now employ a general formula bounding the
Hellinger distance between two PPP laws P1, P2 with respective intensities λ1, λ2 by
the (generalized) Hellinger distance of the intensities ; when P denotes the law of the
PPP with intensity λ = λ1 + λ2, we derive from the likelihood expression

H2(P1, P2) = 2

(

1 − exp

(

−
∫ (√

λ1 −√λ2

)2
/2

))

≤
∫ (√

λ1 −√λ2

)2
, (6.3)

see e.g. Theorem 3.2.1 in [27] or [22,23]. Thus we bound the Hellinger distance
between the intensities of X̃1 and Xl by

∫

(
√

λl −
√

λ̃1)
2 ≤ const. · n

m−1∑

k=0

⎧
⎪⎨

⎪⎩

∫

Ik,n

|ϑ(ξ(x)) − ϑ(x) − ϑ̂ ′(x)(ξ(x) − x)|dx
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+
∫

Ik,n

∣
∣
∣
∣
∣
∣
∣

fD(x) − m
∫

Ik,m

fD(y)dy

∣
∣
∣
∣
∣
∣
∣

2

dx

⎫
⎪⎬

⎪⎭
,

where the constant does not depend on X∗. As fD is assumed to be Lipschitz on [0, 1]
the latter term contributes to the asymptotic order by the deterministic upper bound
O(nm−2) independently of ϑ . Then we apply the expectation to the above expression
and we obtain

O(nm−2) + const. · nm−1 sup
ϑ∈�

sup
x∈[0,1]

Eϑ |ϑ̂ ′(x) − ϑ ′(x)| = o(1),

as a uniform upper bound. Together with the same bound for the Hellinger distance,
conditionally on X∗, between the intensities of X̃2 and Xu this implies asymptotic
equivalence between Hn and Hn

′ again by arguments as in (5.3).
For any two-dimensional Borel set B let us define the pointwise shifted version

B̂ = {(x, y) ∈ R
2 : (x, y + ϑ̂ ′(x)[ξ(x) − x]) ∈ B},

and the processes X j (B) = X̃ j (B̂), j = 1, 2, conditionally on the data set X∗. Note
that B̂ is a Borel set as well as the shift function ϑ̂ ′(·)[ξ(·) − ·] is measurable. Then
X j represents a PPP with the shifted intensity function

λ1(x, y) = (n/2)ϕ(1) fD(x)1[−C�−1−ϑ̂ ′(x)(ξ(x)−x),ϑ(x)](y)

λ2(x, y) = (n/2)ϕ(−1) fD(x)1[ϑ(x),C�+1−ϑ̂ ′(x)(ξ(x)−x)](y).

Note that this transformation is invertible as long as the data set X∗ is available.
Therefore, the experiment Hn

′′ of observing X∗ and X j , j = 1, 2 independently is
equivalent to the experiment Hn

′.
By the imposed upper bound on the estimator ϑ̂ ′ we may assume that

sup
x∈[0,1]

|ϑ̂ ′(x)||ξ(x) − x | ≤ 1/2, Pϑ -a.s. for all ϑ ∈ �,

for m sufficiently large. Hence, the observation of X j , j = 1, 2, is equivalent with the
observation of two conditionally independent Poisson processes X j,1 and X j,2 with
the intensity functions

λ1,1(x, y) = (n/2)ϕ(1) fD(x)1[−C�−1/2,ϑ(x)](y),

λ1,2(x, y) = (n/2)ϕ(1) fD(x)1[−C�−1−ϑ̂ ′(x)(ξ(x)−x),−C�−1/2)
(y),

λ2,1(x, y) = (n/2)ϕ(−1) fD(x)1[ϑ(x),C�+1/2](y),

λ2,2(x, y) = (n/2)ϕ(−1) fD(x)1
(C�+1/2,C�+1−ϑ̂ ′(x)(ξ(x)−x)](y),
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Thus all processes X j,i , i, j = 1, 2, are independent. Also we realize that the pro-
cesses X1,2 and X2,2 represent conditionally ancillary statistics given the data set X∗
as λ1,2 and λ2,2 do not explicitly depend on ϑ , but are fixed by knowledge of X∗ for
n sufficiently large. Therefore, the observation of X∗ and X j,1, j = 1, 2 is sufficient
for complete empirical information contained in experiment Hn

′′. On the other hand
we may also add two independent PPP X j,3, j = 1, 2 with the intensity functions

λ1,3(x, y) = (n/2)ϕ(1) fD(x)1[−C�−1,−C�−1/2)(y),

λ2,3(x, y) = (n/2)ϕ(−1) fD(x)1(C�+1/2,C�+1](y),

which are totally uninformative. Combining the independent processes X j,1 and X j,3
whose intensity functions are supported on (almost) disjoint domains for both j = 1, 2,
the considered experiment is equivalent to the experiment In . ��

7 Final proof

In this section, we combine all results derived in the previous sections in order to
complete the proof of Theorem 2.1. For simplicity we suppose that n is even. By
Proposition 3.1 with sample size n/2, there exists an estimator ϑ̂ based on the data
X = X∗ from experiment An which satisfies the conditions of Proposition 5.1, e.g. by
choosing δ = α/2. Therefore, experiments An and In are asymptotically equivalent by
Propositions 5.1 and 6.1. The conditions (5.5) and (6.2) are satisfied when truncating
the range of ϑ̂ and ϑ̂ ′ suitably without losing validity of Proposition 3.1. Therein, note
that the uniform upper bounds on ϑ ∈ � as well as on its derivative are known. Then
we set An

∗ = In by using the processes X1,0 and X2,0 as the data set X∗ and let X take
the role of the data Y′ from experiment An . Note that all of our arguments from the
previous sections remain valid when transforming the responses with even instead of
odd observation number. Applying Propositions 5.1 and 6.1 again, we obtain asymp-
totic equivalence of the experiments In and Jn where the latter model just consists
of X1,0 and X2,0 and two independent copies X∗

1,0 and X∗
2,0. The likelihood process

of experiment Jn and experiment Bn turns out to be the same, using Theorem 1.3 in
[19] as in the proof of Lemma 5.5, such that Jn and Bn are equivalent experiments.
The concrete equivalence mapping is given by looking at the sum of the processes
X j = X j,0 + X∗

j,0, j = 1, 2, in one direction and by splitting the point masses in X j

randomly and independently with probability one half into point masses for X j,0 and
X∗

j,0 (thinning of a PPP) for the other equivalence direction.

8 Discussion

8.1 General remarks

We have shown asymptotic equivalence of nonparametric regression with non-reg-
ular additive errors and the observation of two specific independent PPP. Our result
also yields that those nonparametric regression models are asymptotically equivalent

123



Asymptotic equivalence for nonparametric regression 225

to each other as long as the corresponding error densities have the same jump sizes
at −1 and +1 and are Lipschitz continuous and positive within the interval (−1, 1)

– regardless of the specific shape of the density inside its support. This unifies the
asymptotic theory for these experiments and properties such as asymptotic minimax
bounds, adaptation, superefficiency can be studied simultaneously for those models.
At least after suitable linear correction by a pilot estimator, local minima and maxima
are asymptotically sufficient for inference in these models.

The limiting Poisson point process model Bn exhibits a fascinating new geometric
structure. According to (6.3), the squared Hellinger distances between observations
with parameters ϑ1, ϑ2 ∈ � is given by

H2(Pϑ1 , Pϑ2)=2

(

1 − exp

(

−n

2
( fε(−1)+ fε(+1))

∫

|ϑ1(x)−ϑ2(x)| fD(x) dx

))

.

Setting ‖g‖L1
X

:= ∫ |g(x)| fD(x) dx , the squared Hellinger distance is thus equivalent

to an L1-distance

H2(Pϑ1 , Pϑ2) � n{ fε(−1) + fε(+1)}‖ϑ1 − ϑ2‖L1
X
. (8.1)

In contrast, for nonparametric regression with regular errors the continuous limit model
is a Gaussian shift where the corresponding squared Hellinger distance is equivalent to
nσ−2‖ϑ1 −ϑ2‖2

L2
X

with σ 2 = Var(ε j,n). While it is well known that the standard para-

metric rate improves from n−1/2 to n−1, the nonparametric view reveals that we face
here an L1

X -topology instead of the usual Hilbert space L2
X -structure. As discussed

below, this different Banach space geometry is even visible at the level of minimax
rates, which are in general worse than for regular nonparametric regression with sam-
ple size n2. A boundary behaviour of the error density fε other than finite jumps will
imply a different Hellinger topology, in particular the whole range of L p

X -geometries,
p ∈ (0,∞), might arise, whose statistical consequences will be far-reaching and
remain to be explored in detail.

8.2 A nonparametric lower bound

Let us apply the asymptotic equivalence result to study nonparametric lower bounds for
all models in An and for Bn , simultaneously. We restrict our investigation to rate results,
but we track explicitly the dependence on the total jump size J := fε(−1) + fε(1)

and the design density fD .

Proposition 8.1 In the PPP model Bn, but with ϑ from the parameter space

�s,L := {ϑ ∈ Cs([0, 1]) | ‖ϑ‖s ≤ L}, s, L > 0

123



226 A. Meister, M. Reiß

with generalized Hölder norm

‖g‖s := max
k=0,1,...,�s�‖g(k)‖∞ + sup

x 	=y

|g(x) − g(y)|
|x − y|s−�s�

the following lower bound for the pointwise loss in estimating ϑ and its derivatives at
x0 ∈ [0, 1] holds uniformly in J := fε(−1) + fε(1), x0 and fD(x0)

lim inf
n→∞ inf

ϑ̂n

sup
ϑ∈�s,L

Pϑ

(

|ϑ̂ (k)
n (x0) − ϑ(k)(x0)| ≥ c0

L(k+1)/(s+1)

(n J fD(x0))(s−k)/(s+1)

)

≥ 2 − √
3

4
> 0

with c0 > 0, where the infimum is taken over all estimators in Bn and k =
0, 1, . . . , �s�.

By asymptotic equivalence and the boundedness of the involved loss function
1{|ϑ̂ (k)

n (x0) − ϑ(k)(x0)| ≥ cL(k+1)/(s+1)(n J fD(x0))
−(s−k)/(s+1)}, this result immedi-

ately generalizes to the regression experiments An provided the regularity s is larger
than two. Moreover, by Markov’s inequality it also applies to pth moment risk. We
thus have:

Corollary 8.1 For estimators ϑ̂n in experiment An with ϑ ∈ �s,L ⊂ � and s > 2,

L > 0 we have for all p > 0, k = 0, 1, . . . , �s� the lower bound

lim inf
n→∞ L−(k+1)/(s+1)(n J fD(x0))(s−k)/(s+1) inf

ϑ̂n

sup
ϑ∈�s,L

(
Eϑ |ϑ̂(k)

n (x0) − ϑ(k)(x0)|p
)1/p

≥ c1

for some constant c1 > 0.

Proof of the Proposition 8.1 Let us fix k ∈ {0, 1, . . . �s�}. By Theorem 2.2(ii) in [28]
it suffices to find ϑ1, ϑ2 ∈ �s,L with

|ϑ(k)
1 (x0) − ϑ

(k)
2 (x0)| ≥ L(k+1)/(s+1)(n J fD(x0))

−(s−k)/(s+1)

and Hellinger distance of the corresponding observation laws satisfying H(Pϑ1 , Pϑ2)

≤ 1.
We choose some kernel function K ∈ �s,1 with

∫ 1
−1 K (x) dx = 1, K (k)(0) > 0

and support in [−1/2, 1/2] and we set ϑ1(x) = 0, ϑ2(x) = Lhs K ((x − x0)/h) with
h = (Ln J fD(x0))

−1/(s+1) (using one-sided kernel versions near the boundary). Then
for n sufficiently large we have ϑ1, ϑ2 ∈ �s,L and moreover by (8.1)

H2(Pϑ1 , Pϑ2) = (1 + o(1))n J

1∫

−1

|ϑ1(x) − ϑ2(x)| fD(x) dx
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and the integral satisfies
∫ 1
−1|ϑ2(x)| fD(x) dx = (L +o(1))hs+1 fD(x0) as h → 0. We

conclude that H(Pϑ1 , Pϑ2) converges to one for n → ∞. The result therefore follows
from

|ϑ(k)
2 (x0) − ϑ

(k)
2 (x0)| = K (k)(0)L(k+1)/(s+1)(n J fD(x0))

−(s−k)/(s+1).

��
The rate L(k+1)/(s+1)n−(s−k)/(s+1) instead of L(k+1/2)/(s+1/2)

√
n−(s−k)/(s+1/2) for

regular nonparametric regression is obviously due to the L1
X -bound on ϑ2 instead of

the squared L2
X -bound. Let us mention that a careful study of our upper bound proof in

Proposition 3.1 will also yield the same dependence on L = C� for regularity s = 2+α

and k ∈ {0, 1}. More geometrically, we can establish a lower bound for estimating a
linear functional L(ϑ) by maximising L(ϑ) over ϑ ∈ �s,L with ‖ϑ‖L1

X
≤ 1/(n J ).

In the scale of Besov spaces Bα
p,p with norms ‖·‖α,p, α ∈ R, 1 ≤ p ≤ ∞, we have

‖ϑ‖L1 ≥ ‖ϑ‖−1,∞ by duality from ‖ϑ‖L∞ ≤ ‖ϑ‖1,1. Here, we can therefore expect
to maximise L(ϑ) = ϑ(k)(x0) as far as the interpolation inequality

‖ϑ‖k,∞ ≤ ‖ϑ‖(s−k)/(s+1)
−1,∞ ‖ϑ‖(k+1)/(s+1)

s,∞ ≤ const.(n J )−(s−k)/(s+1)L(k+1)/(s+1)

permits. This is in fact achieved by the choice of ϑ2 above, involving also the local-
ized value fD(x0). In the corresponding regular nonparametric regression model the
Hellinger constraint is given by ‖ϑ‖2

L2
X

≤ σ 2/n and we use ‖ϑ‖L2 ≥ ‖ϑ‖−1/2,∞ by

duality from ‖ϑ‖L2 ≤ ‖ϑ‖1/2,1 to obtain the interpolation inequality

‖ϑ‖k,∞ ≤ ‖ϑ‖(s−k)/(s+1/2)
−1/2,∞ ‖ϑ‖(k+1/2)/(s+1/2)

s,∞
≤ const.(σ−2n)−(s−k)/(2s+1)L(k+1/2)/(s+1/2),

which similarly reveals the minimax rate in the regular case. Very roughly, we might
therefore say that the PPP noise induces a regularity −1 in the Hölder scale, while the
Gaussian white noise leads to the higher regularity −1/2. In analogy with σ/

√
n in

the regular case we might call 1/(n J ) the noise level for the regression problem with
irregular noise and n J fD(x0) the effective local sample size at x0.

8.3 One-sided frontier estimation

In many of the applications mentioned in the introduction, the noise density fε has
just one jump and not two as in our model An . We want to stress that our proof of
asymptotic equivalence can also cover the one-jump case. To make the analogy clear,
let us assume that fε is still a density on [−1, 1] with fε(−1) > 0 and fε(1) = 0.
Instead of positivity and Lipschitz continuity, we now require fε to be Lipschitz con-
tinuous and Hellinger differentiable on [−1, 1], i.e.

√
fε is weakly differentiable with

derivative in L2([−1, 1]). Note that fε can then be extended to a function ϕ on the
real line with the same local properties. All other properties of the model An are kept
the same.
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For the pilot estimator in this model we can obtain the same convergence rates
when we select that admissible local polynomial which is the smallest at x0. Lemma
4.1 remains the same, while in Definition 5.1 of experiment Dn we adjust only the left
boundary of the density and set

fW, j (x) = ϕ(x)

⎛

⎜
⎝


0, j,n+1∫


0, j,n−1

ϕ(t)dt

⎞

⎟
⎠

−1

1[
0, j,n−1,∞)(x), j ∈ Jn .

Lemma 5.1 then remains true as well, using the Hellinger differentiability in the proof
instead of the uniform positivity. From the form of the density of W we conclude this
time that the local minima sk,n = min{W j,n : x j,n ∈ Ik,n}, k = 0, . . . , m − 1, are
conditionally sufficient. Then the remaining results remain all valid if we just consider
sk,n instead of (sk,n, Sk,n) and merely the upper PPP model. Consequently, this estab-
lishes asymptotic equivalence with the PPP X2 of experiment Bn . In this PPP model
the regression function ϑ appears as the lower frontier of a Poisson point process with
intensity fD(x)n fε(−1) on its epigraph. Frontier estimation where the support of fε
is on [−1,∞) or (−∞, 1], respectively, can be treated analogously.

8.4 Counterexample for regularity one

We give a short argument that for equidistant design x j,n = j−1
n−1 and parameter classes

� where the target function ϑ ∈ � is required to satisfy ‖ϑ ′‖ ≤ C for some C > 0
the experiments An and Bn are not asymptotically equivalent. Whether Hölder classes
of order 1 + α instead of 2 + α suffice as parameter sets for establishing asymptotic
equivalence remains a challenging open question.

Let us consider the function fn(x) = C(π(n − 1))−1 sin(π(n − 1)x) so that
‖ f ′

n‖∞ = C holds for all n ≥ 1. Now observe that fn satisfies fn(x j,n) = 0 for
all j = 1, . . . , n. This means in particular that in the regression experiment An the
observations with regression function fn cannot be distinguished from those with
zero regression function. In experiment Bn , however, a test between H0 : ϑ = 0 and
H1 : ϑ = fn of the form Tn = 1{X1([0, 1] × R

+) > 0 or X2([0, 1] × R
−) > 0}

satisfies P0(Tn = 0) = 1 and

Pfn (Tn = 1) = 1 − exp

⎛

⎝−n

1∫

0

| fn(x)|dx

⎞

⎠ = 1 − exp(−2Cπ−2n(n − 1)−1)

→ 1 − exp(−2C/π2) > 0,

for n → ∞. Consequently, testing between H0 and H1 in experiment Bn is possible
with non-trivial power uniformly over n. This implies that experiments An and Bn are
asymptotically non-equivalent.
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