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Abstract A random perturbation of a deterministic Navier–Stokes equation is
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cesses using the Cameron–Martin version of the Wiener chaos expansion. It is shown
that the generalized solution is a Markov process and scales effectively by Catalan
numbers.
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788 R. Mikulevicius, B. L. Rozovskii

1 Introduction

In this paper we will consider a deterministic Navier–Stokes equation1

∂t u0 (t, x) = ∂i

(
a i j (t, x) ∂ j u0 (t, x)

)

−uk
0 (t, x) ∂ku0(t, x)+ ∇ P0 (t, x)+ f (t, x), (1.1)

u0 (0, x) = w(x), div u0 = 0,

and its stochastic perturbations:

∂t v (t, x) = ∂i

(
a i j (t, x) ∂ j v (t, x)

)
− vk (t, x) ∂kv(t, x)

+ ∇ P (t, x)+ f (t, x)

+ [σ i (t, x)∂i v (t, x)+ g (t, x)− ∇ P̃ (t, x)]Ẇt ,

v (0, x) = w (x), div v = 0,

(1.2)

and

∂t u (t, x) = ∂i

(
a i j (t, x) ∂ j u (t, x)

)
− uk (t, x)♦∂ku(t, x)

+ ∇ P (t, x)+ f (t, x)

[σ i (t, x)∂i u (t, x)+ g (t, x)− ∇ P̃ (t, x)]Ẇt ,

u (0, x) = w (x), div u = 0,

(1.3)

where 0 ≤ t ≤ T, x ∈ Rd , d ≥ 2, and Wt is a cylindrical Wiener process in a separa-
ble Hilbert space Y . The coefficients ai j , σ i and the functions f, g are deterministic,
σ i and g are Y -valued. Symbol ♦ stands for Wick product (see Sect. 2.2.1 and refer-
ences [4,27]). Wick product is a stochastic convolution. It could be interpreted as a
generalized Malliavin divergence operator with respect to Gaussian measure associ-
ated with white noise Ẇ (see [16]).

Stochastic PDEs involving Wick product type nonlinearity were originally dis-
cussed in the literature related to the Parisi–Wu program (see [3,12,25] and also [19,
Section 6]). In these papers Wick product was defined by (Gaussian) invariant mea-
sures for the related PDEs. Other related papers include: [2,5,10,13–16,29], etc.).

Equations (1.2) and (1.3) are stochastic perturbations of the deterministic Navier–
Stokes equation (1.1). It is shown in Sect. 3 that the generalized mean, i.e. the zero-order
coefficient in the Wiener chaos expansion (1.8) of the solution of Eq. (1.3), is a solution
of Eq. (1.1), i.e.

Eu (t, x) = u0 (t, x), (1.4)

1 Here and below we assume summation over repeating indices in products.

123



On unbiased stochastic Navier–Stokes equations 789

where u0 (t, x) is a solution of Eq. (1.1). In other words, the solution of stochastic
Navier–Stokes equation (1.3) is a mean preserving (unbiased) random perturbation of
deterministic Navier–Stokes equation (1.1).

Obviously, this nice property does not hold for Eq. (1.2) or other standard stochas-
tic perturbations of Navier–Stokes equation (e.g. random initial conditions, random
forcing, etc.)

In fact, Eq. (1.3) could be viewed as an approximation of stochastic Navier–Stokes
equation (1.2). Indeed, under certain natural assumptions, the following equality holds:

v∇v =
∞∑

n=0

Dnv♦Dn∇v
n! (1.5)

where Dn is the nth power of Malliavin derivative D. Taking into account expansion
(1.5 ), v♦∇v could be viewed as an approximation of the product v∇v. In fact, v♦∇v
is the highest stochastic order approximation of v∇v (see Appendix I, Proposition 4
and Remark 11).

Stochastic Navier–Stokes equation (1.2) is reasonably well understood and there
exists substantial literature on its analytical properties as well as its derivation from
the first principles (see e.g. [22,23] and the references therein). In this paper we will
be focusing mostly on Eq. (1.3).

Burger’s equation with Wick product was considered in [6,8,9], see also the refer-
ences therein.

It was shown in [23] that under reasonable assumptions stochastic Navier–Stokes
equation (1.2) has a square integrable solution. Moreover, this solution can be formally
written in the Wiener chaos expansion form:

v (t, x) =
∑
α

vα (t, x) ξα,

where {ξα, α ∈ J } is the Cameron–Martin basis generated by Ẇt , vα (t, x) =
E (v (t, x) ξα), and J is the set of multiindices α = {αk, k ≥ 1} such that for every
k, αk ∈ N0(N0= {0, 1, 2, . . .}) and |α| = ∑

k αk < ∞.

It was shown in [23] that the Wiener chaos coefficients vα (t, x) satisfy the propa-
gator equation:

∂t vα (t, x) = ∂i

(
a i j∂ j vα (t, x)

)
− ∇ P (t, x)+ f (t, x) I{|α|=0}

−
∑

p

∑
0≤β≤α

c(α, β, p)
(
vβ+p,∇

)
vα+p−β (t, x)

∑
k

√
αk[(σ i , ek)Y ∂i vα(k) (t, x)+ I{|α|=1}(g, ek)Y ];

vα(0, x) = wα(x), div vα = 0,

(1.6)

where α(k) = (α1, α2, ...αk−1, αk − 1, αk+1, ...) and
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790 R. Mikulevicius, B. L. Rozovskii

c(α, β, p) =
[(
α

β

)(
β + p

p

)(
α + p − β

p

)]1/2

.

One advantage of the Wiener chaos representation is that it provides convenient
explicit formulae for computing statistical moments of the random field u(t, x) via
Wiener chaos coefficients (see [22,23]). For example,

Eui (t, x) = ui
0(t, x), E

(
ui (t, x)u

j
(t, y)

)
=

∑
|α|<∞

ui
α(t, x)u j

α(t, y),

In this paper, we prove that the WCE coefficients of a solution of the unbiased
stochastic Navier–Stokes Eq. (1.3) are given by

∂t uα (t, x) = ∂i

(
a i j∂ j uα (t, x)

)
− ∇ P (t, x)+ f (t, x) I{|α|=0}

−
∑

0≤β≤α

√(
α

β

) (
uα−β,∇

)
uβ (t, x)

+
∑

k

√
αk[
(
σ j (t, x), ek(t)

)
Y
∂ j uα(k) (t, x)

+ (g (t, x) , ek(t))Y 1|α|=1]
uα(0, x) = w(x), div uα = 0.

(1.7)

Clearly, this system of equations is much simpler than Eq. (1.6).
If α = 0, then uα(t, x) is a solution of deterministic Navier–Stokes equation (1.1).

The remaining components are governed by Stokes equations and could be solved
sequentially. From the computational point of view this is a substantial advantage.
Indeed, the propagator for Eq. (1.2) is a full nonlinear system while Eq. (1.3) is a
lower triangular system and only the first equation of this system is nonlinear.

An important feature of Eq. (1.3) is that

(
uk (t)♦∂ku(t),u (t)

)
L2(Rd )

�= 0.

Therefore, one could not expect a solution of (1.3) to be square integrable. This effect
is not specific to stochastic Navier–Stokes equation. In fact, it is common for a large
class of stochastic bilinear PDEs (see e.g. [14,15]).

In this paper we consider Eq. (1.3) in the class of formal Wiener chaos expansions
and show that a formal series

u (t, x) =
∑
α∈J

uα (t, x) ξα (1.8)

solves (1.3) if and only if uα (t, x) are given by Eq. (1.7). To make this solution square
integrable, we rescale it using second quantization operators (see Appendix I, 5.1). It is
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On unbiased stochastic Navier–Stokes equations 791

shown that u(t, x) is the limit of square integrable solutions of the rescaled equations
(see Proposition 2).

Convergence of this solution is determined by a system of positive weights
{rα}|α|<∞ such that

‖u‖2
R :=

∑
|α|<∞

r2
α ‖uα (t)‖2

L2((0,T );Rd)
< ∞. (1.9)

It turned out, that Catalan numbers (see [9,28]) are critical for an appropriate choice
of the weights rα in (1.9) (see Proposition 1).

In addition, it was shown that a solution of Eq. (1.3) belongs to the intersection
of Sobolev spaces H

2
2

(
Rd
) ∩ H

2
p

(
Rd
)

for p > d. We have also demonstrated that
uniqueness of a solution of Eq. (1.3) holds under the same assumptions that guarantee
uniqueness for the related deterministic Navier–Stokes equation. Although ξα in (1.8)
are not (FW

t )-adapted, we prove that the generalized solution is (FW
t )-adapted and

Markov (see Theorem 2 and Corollary 5).
It is not clear how, if at all, the unbiased Navier–Stokes equation fits into classical

fluid mechanics. Nevertheless, Eq. (1.3) is “physical” in that it could be derived from
the second Newton law (under appropriate assumptions on the velocity field), much
the same way as the classical Navier–Stokes equation (see Appendix I, 5.2). Also,
it was shown recently (see [11]) that, after Catalan type rescaling, finite dimensional
projections of unbiased Navier–Stokes equation present an accurate and numerically
inexpensive approximation of stochastic Navier–Stokes Eq. (1.2)

We conclude this section with an outline of some notations that will be used in the
paper.

1.1 Notation

Let us fix a separable Hilbert space Y . The scalar product of x, y ∈ Y will be denoted
by (x, y)Y .

If u is a function on Rd , the following notational conventions will be used for its
partial derivatives: ∂i u = ∂u/∂xi , ∂

2
i j = ∂2u/∂xi∂x j , ∂t u = ∂u/∂t , and ∇u = ∂u =

(∂1u, . . . , ∂du), and ∂2u = (∂2
i j u) denotes the Hessian matrix of second derivatives.

Let α = (α1, ..., αd) be a multi-index, αi ∈ N0= {0, 1, 2, . . .} , i = 1, . . . , d, then
∂αx = �d

i=1∂
αi
xi .

Vector fields on Rd are denoted by boldface letters. This convention also applies if
the entries of the vector field are taking values in a Hilbert space.

We denote N = {1, 2, . . .}.
For a Banach space E , we denote C ([0, T ], E) the space of continuous E-valued

functions.
C∞

0 = C∞
0 (R

d) denotes the set of all infinitely differentiable functions on Rd with
compact support.

For s ∈ (−∞,∞), write �s = �s
x =

(
1 −∑d

i=1 ∂
2/∂x2

i

)s/2
. For p ∈ [1,∞)

and s ∈ (−∞,∞), we define the space Hs
p = Hs

p(R
d) as the space of generalized

real valued functions u with the finite norm
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792 R. Mikulevicius, B. L. Rozovskii

|u|s,p = |�su|p,

where | · |p is the L p norm. Obviously, H0
p = L p. Note that if s ≥ 0 is an integer, the

space Hs
p coincides with the Sobolev space W s

p = W s
p(R

d).
The spaces C∞

0 (R
d), Hs

p

(
Rd
)

can be extended to vector functions (denoted by
bold-faced letters). For example, the space of all vector functions u = (u1, . . . , ud)

such that �sul ∈ L p, l = 1, . . . , d, with the finite norm

|u|s,p =
(∑

l

|ul |p
s,p

)1/p

,

is denoted by H
s
p = H

s
p(R

d). Similarly, we denote by H
s
p(Y ) = H

s
p(R

d ,Y ) the space
of all vector functions g = (gl)1≤l≤d , with Y -valued components gl , 1 ≤ l ≤ d, so
that ||g||s,p = (

∑
l |gl |p

s,p)
1/p < ∞. Also, for brevity, the norm ||g||0,p is denoted by

||g||p.

When s = 0, H
s
p(Y ) = Lp( Y ) = Lp(Rd , Y ).To forcefully distinguish L p-norms

in spaces of Y -valued functions, we write || · ||p, while in all other cases a norm is
denoted by |·|p . The duality 〈·, ·〉s between H

s
q

(
Rd
)
, and H

−s
p

(
Rd
)

where p ≥ 2
and q = p/ (p − 1) is defined by

〈φ,ψ〉s = 〈φ,ψ〉s,p =
d∑

i=1

∫

Rd

(�sφi ) (x) (�−sψ i ) (x) dx, φ ∈ H
s
q , ψ ∈ H

−s
p .

2 Generalized random variables and processes

2.1 Wiener chaos

To begin with, we shall introduce some basic notation and recall a few fundamental
facts of infinite-dimensional stochastic calculus. Let us fix a separable Hilbert spaces
Y and H = L2([0, T ],Y ). Let {�i , i ≥ 1} be a complete orthonormal basis (CONS) in
Y and {mi , i ≥ 1} be a CONS in L2 ([0, T ]). Denote by B the class of all CONS in H of
the form

{
ek = ek(s) = mk1(s)�k2

}
and such that for each k, sup0≤s≤T |mk(s)| < ∞.

Obviously, for each k, sup0≤s≤T |ek(s)|Y < ∞.Let us fix a CONS b = {ek, k ≥1}∈B.
Let (�,FW ,P) be a probability space with a cylindrical Brownian motion Wt in

Y and FW be the σ -algebra generated by W . Let F
W be the right continuous filtra-

tion of σ -algebras (FW
t )t≥0 generated by Wt . All the σ -algebras are assumed to be

P-completed. Hence

Wt =
∞∑

k=1

wk
t �k,
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On unbiased stochastic Navier–Stokes equations 793

where
{
wk

t , k ≥ 1
}

is a sequence of independent standard one-dimensional Brownian

motions in (�,F ,P). We write W (ek) = ∫ T
0 ek(t)dWt . For ek = ek(s) = mk1(s)�k2 ,

W (ek) =
T∫

0

ek(t)dWt =
T∫

0

mk1(t)dw
k2
t ,

and

Wt =
∞∑

k=1

⎛
⎝

t∫

0

ek(s)ds

⎞
⎠W (ek), 0 ≤ t ≤ T . (2.1)

Let α = {αk, k ≥ 1} be a multiindex, i.e. for every k, αk ∈ N0 = {0, 1, 2, . . .}. We
shall consider only such α that |α| = ∑

k αk < ∞, i.e., only a finite number of αk is
non-zero, and we denote by J the set of all such multiindices. For α, β ∈ J , we define

α + β = (α1 + β1, α2 + β2, . . .), α! =
∏
k≥1

αk !.

By εk we denote the multi-index α with αk = 1 and α j = 0 for j �= k. Write

α (k)=α − εk (2.2)

For α ∈ J, write Hα := ∏∞
k=1 Hαk (W (ek)), where Hn is the nth Hermite polyno-

mial defined by Hn(x) = (−1)N
(

dne−x2/2/dxn
)

ex2/2.

Let ξα = Hα/
√

a!.
Theorem 1 (Cameron and Martin [1]) The set� = {ξα = ξα(b), α ∈ J } is an ortho-
normal basis in L2

(
�,FW ,P

)
, where FW is the σ -algebra generated by W . If E is

a Hilbert space, η ∈ L2
(
�,FW ,P;E

)
and ηα = E(ηξα), then η = ∑

α∈J ηαξα and
E|η|2E = ∑

α∈J |ηα|2E .
The expansion η = ∑

α∈J ηαξα is often referred to as Wiener chaos expansion.

Remark 1 The basis ξα, α ∈ J, can be obtained by differentiating stochastic exponent.
Let Z be the set of all real-valued sequences z = (zk) such that only finite number of
zk is not zero. For α ∈ J , denote ∂αz = �k∂

αk/ (∂zk)
αk and let

ez = ez(t) =
∑

k

zkek(t), 0 ≤ t ≤ T,

pt (z) = pt (ez) = pt (z,b) = exp

⎧
⎨
⎩

t∫

0

ez(s)dWs − 1

2

t∫

0

|ez(s)|2Y ds

⎫
⎬
⎭ ,

p(z) = pT (z), z ∈ Z, 0 ≤ t ≤ T .

(2.3)
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794 R. Mikulevicius, B. L. Rozovskii

It is a standard fact (see, for example, [20]) that Hα = ∂αz p(z)|z=0, ξα = Hα/
√
α!.

Since p(z) is analytic, it follows by (4.2),

p(z) = p(z,b) =
∑
α

Hα
α! zα =

∑
α

zα√
α!ξα. (2.4)

2.2 Generalized random variables and processes

Let b ∈B, and ξα = ξα(b), α ∈ J . Let

D = D(b)

=
{
v =

∑
α

vαξα : vα ∈ R and only finite number of vα are not zero

}
.

Definition 1 A generalized D-random variable with values in a convex topological
vector (linear) space E with Borel σ -algebra is a formal series u = ∑

α uαξα , where
uα ∈ E, ξα = ξα(b), and b = {ek, k ≥ 1} ∈ B is a CONS in H = L2([0, T ],Y ).

Denote the vector space of all generalized D-random variables by D′ = D′(b) =
D′(b;E). The elements of D are the test random variables for D′.We define the action
of a generalized random variable u on the test random variable v by 〈u, v〉 = ∑

α vαuα.
For a sequence un ∈ D′ and u ∈ D′, we say that un → u, if for every v ∈

D, 〈u, vn〉 → 〈u, v〉 . This implies that un = ∑
α un

αξα → u = ∑
α uαξα if and only

if un
α → uα as n → ∞ for all α.

Remark 2 Obviously, if u = ∑
α uαξα ∈ D′(b; E), F is a vector space and f : E →

F is a linear map, then

f (u) =
∑
α

f (uα)ξα ∈ D′(b; F).

Definition 2 An E-valued generalized D- process u(t) in [0, T ] is a D′(b; E)-valued
function on [0, T ] such that for each t ∈ [0, T ]

u(t) =
∑
α

uα(t)ξα ∈ D′(b; E);

and uα(t) are deterministic measurable E-valued functions on [0, T ]. We denote the
linear space of all such processes by D′(b;[0, T ], E). If E is a topological vector space
and a generalized D-process u(t) is continuous we write u ∈ CD′([0, T ],b, E) (note
that u(t) is continuous if and only if all coefficient functions uα are continuous in E .

If there is no room for confusion, we will often say D-process (D-random variable)
instead of generalized D-process (generalized D-random variable).
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On unbiased stochastic Navier–Stokes equations 795

If E is a normed vector space, we denote

L1(D′(b; [0, T ], E))

=
⎧⎨
⎩u(t) =

∑
α

uα(t)ξα ∈ D′(b; [0, T ], E) :
T∫

0

|uα(t)|E dt < ∞, α ∈ J

⎫⎬
⎭ .

For u(t) = ∑
α uα(t)ξα ∈ L1(D′(b; [0, T ], E)) we define

∫ t
0 u(s)ds, 0 ≤ t ≤ T, in

D′(b; [0, T ], E) by

t∫

0

u(s)ds =
∑
α

⎛
⎝

t∫

0

uα(s)ds

⎞
⎠ ξα, 0 ≤ t ≤ T .

If u(t) = ∑
α uα(t)ξα ∈ D′(b; [0, T ], E), then u(t) is differentiable in t if and

only if uα(t) are differentiable in t . In that case,

d

dt
u(t) = u̇(t) =

∑
α

u̇α(t)ξα ∈ D′([0, T ],b, E).

Example 1 A cylindrical Wiener process Wt , 0 ≤ t ≤ T, in a Hilbert space Y, and its
derivative dWt/dt = Ẇt are generalized Y -valued stochastic processes. Indeed, by
(2.1),

Wt =
∑

k

t∫

0

ek(s)dsξεk , 0 ≤ t ≤ T,

and Wt = ∫ t
0 Ẇsds, where Ẇt = ∑

k ek(t)ξεk , 0 ≤ t ≤ T .

2.2.1 Wick Product and Skorokhod Integral

Definition 3 For ξα, ξβ from �, define the Wick product

ξα♦ξβ :=
√(

(α + β)!
α!β!

)
ξα+β. (2.5)

In particular, taking in (2.5) α = kεi and β = nεi we get

Hk(ξi )♦Hn(ξi ) = Hk+n(ξi ). (2.6)
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796 R. Mikulevicius, B. L. Rozovskii

For a Hilbert space E and arbitrary v = ∑
α vαξα and u = ∑

α uαξα in D′(b; E), we
define their Wick product as a D-generalized real valued random variable given by

v♦u =
∑
α

∑
β≤α

(uβ, vα−β)E

√
α!

β!(α − β)!ξα ∈ D′(b; R). (2.7)

Definition 4 Skorokhod integral (Maliavin divergence operator) of v ∈ L1(D′(b;
[0, T ],Y )) is a generalized random variable (element of D′ (b; R)) such that

δ(v) =
T∫

0

v(s)dWs =
∑
α

δ(v)αξα,

with

δ(v)α =
∑

k

√
αk

T∫

0

(
vα(k)(t), ek(t)

)
Y dt. (2.8)

and α(k) is given by (2.2).

If v ∈ L1(D′(b; [0, T ],Y )), then δt (v) = ∫ t
0 v(s)dWs = δ

(
v1[0,t]

)
, 0 ≤ t ≤ T,

is a process in D′ (b; [0, T ],Y ). We have

δt (v)α =
∑

k

√
αk

t∫

0

(
vα(k)(s), ek(s)

)
Y ds.

Since Ẇt = ∑
k ek(t)ξεk , it follows by (2.7) that

vt♦Ẇt =
∑
α

∑
k

(vα(k)(t), ek(t))Y
√
αkξα,

and

δ (v) =
T∫

0

vt♦Ẇt dt, δt (v) =
t∫

0

v(s)♦Ẇsds, 0 ≤ t ≤ T .

Remark 3 Skorokhod integral is an extension of the Itô integral2; (2.9) below moti-
vates the definition of the Skorokhod integral.

2 Of course, this statement is well known. However, the proof given here is short and straightforward.
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On unbiased stochastic Navier–Stokes equations 797

If u(t) = ∑
α uα(t)ξα is F

W -adapted Y -valued such that

E

T∫

0

|u(t)|2H dt < ∞,

then v = ∫ T
0 u(t)dW (t) = ∑

α vαξα is square integrable. By Ito formula for the
product of

∫ t
0 u(s)dW (s) and stochastic exponent pt (z) from Remark 1, we obtain

Evp(z) = E

T∫

0

u(t)dW (t)pT (z) =
T∫

0

E[pt (z)(u(t), ez(t))Y ]dt

=
T∫

0

E[p(z)(u(t), ez(t))Y ]dt, z ∈ Z.

So,

∂ |α|Evp(z)

∂zα
=
∑

k

αk

T∫

0

∂ |α(k)|

∂zα(k)
(Ep(z)u(t), ek(t))Y ]dt,

vα = (
√
α!)−1 ∂

|α|Evp(z)

∂zα
|z=0 =

∑
k

T∫

0

√
αk(uα(k)(t), ek(t))Y ]dt.

(2.9)

Comparing (2.9) and (2.8), we see that Ito and Skorokhod integrals are equal in this
case.

3 Wick product Navier–Stokes equation

For T > r ≥ 0, let us consider the following Navier–Stokes equation:

∂t u (t, x) = ∂i

(
a i j (t, x) ∂ j u (t, x)

)
+ bi (t, x)∂i u(t, x)

− uk (t, x)♦∂ku(t, x)+ ∇ P (t, x)+ f (t, x)

[σ i (t, x)∂i u (t, x)+ g (t, x)− ∇ P̃ (t, x)]♦Ẇt ,

u (r, x) = w (x) , div u = 0.

(3.1)

The unknowns in the Eq. (3.1) are the functions u = (
ul
)

1≤l≤d , P, P̃ . It is assumed

that ai j , bi , f = (
f i
)
, are measurable deterministic functions on [0,∞) × Rd , and

the matrix
(
ai j
)

is symmetric. Let us assume also that σ i , g = (
gi
)

be Y -valued mea-
surable deterministic functions on [0,∞) × Rd . Let w be a random initial velocity
field.
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In addition, we will need the following assumptions.

A1. For all t ≥ 0, x ∈ Rd ,λ ∈ Rd ,

K |λ|2 ≥ ai j (t, x)λiλ j ≥ δ|λ|2,

where K , δ are fixed strictly positive constants.
A2. For all t ≥ 0, x,

max|α|≤2
|∂αai j (t, x)| + max|α|≤1

(|∂α bi (t, x)| + |∂α σ i (t, x)|Y ) ≤ K .

A3. The functions f(t, x) and g(t, x) are measurable deterministic, p > d, and for
all t > 0,

t∫

0

∑
l=2,p

[|f(r)|l1,l + ||g(r)||2l
1,l ]dr < ∞

(recall |f(r)|1,l , ||g(r)||1,l are H
1
p(R

d) and H
1
p(R

d ,Y )-norms respectively).

We will seek a solution to (3.1) in the form

u(t)=
∑
α

uα(t)ξα ∈ D′(b; [0, T ],H2
p), p ≥ 2.

In this case, denoting by P(v) the solenoidal projection of the vector field v, we can
rewrite (3.1) in the following equivalent form:

∂t u (t) = P
[
∂i

(
a i j (t) ∂ j u (t)

)
+ bi (t)∂i u(t)

−uk (t) ∂ku(t)+ f (t)
]

+ P[σ i (t)∂i u (t)+ g (t)]♦Ẇt , (3.2)

u (r) = w, div u(t) = 0, t ∈ [r, T ].

If η = ∑
α ηαξα with ηα ∈ H

k
p, then (see Remark 2) P(η) = ∑

α P(ηα)ξα .
We start our analysis of Eq. (3.2) by introducing the definition of a solution in the

“weak sense”.

Definition 5 We say that a generalized D-process u(t) = ∑
α uα(t)ξα ∈ CD′(b;

[r, T ],Hk
p) is D − H

k
p solution of Eq. (3.1) in [r, T ], if the equality

u(t) = w +
t∫

r

P[−ui (s)♦∂i u (s)+ ∂i (a
i j (s)∂ j u (s) )

+bi (s)∂i u(s)+ f(s)]ds (3.3)
t∫

r

P[σ k(s)∂ku (s)+ g(s)]♦Ẇsds
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holds in D(b; H
k−2
p (Rd)) for every r ≤ t ≤ T . If an D − H

k
p-solution in [r, T ] is also

D − H
k′
q -solution in [r, T ], we call it D − H

k
p ∩ H

k′
q -solution in [r, T ].

In the future, we simply say D-solution if there is no risk of confusion.

Remark 4 1. Assume A1-A3 hold, p ≥ 2,w =∑
α wαξα ∈ D′(b,Hk

p). Applying
Remark 2 and definition of the Wick product we see that u(t) = ∑

α uα(t)ξα ∈
CD′([r, T ],b,Hk

p) is an D − H
k
p solution in [r, T ] if and only if for each α,uα ∈

C([0, T ],Hk
p) and for t ∈ [[r, T ] the following equality holds in H

k−2
p :

uα (t) = wα +
t∫

r

P{∂i

(
a i j (s) ∂ j uα (s)

)
+ bi (s)∂i uα(s)}

−
∑
γ≤α

√(
α

γ

)
uk
α−γ (s) ∂kuγ (s)+ f (s) 1α=0

+
∑

k

√
αk

[(
σ i (s), ek(s)

)
Y
∂i uα(k) (s)

+ (g (s) , ek(s))Y 1|α|=1

]
ds. (3.4)

2. If α = 0, the zero term uα(t, x) = u0(t, x) of an D−H
k
p solution in [r, T ] satisfies

Navier–Stokes equation:

u0 (t) = w0 +
t∫

r

P[∂i

(
a i j (s) ∂ j u0 (s)

)
+ bi (s)∂i u0(s)

−uk
0 (s) ∂ku0(s)+ f (s)]ds. (3.5)

For the remaining components we have to solve Stokes equations. For |α| ≥ 1, we
can rewrite (3.4) as

uα (t) = wα +
t∫

r

P[∂i

(
a i j (s) ∂ j uα (s)

)
+ Fα(s)

+[bi (s)− ui
0(s)]∂i uα(s)− uk

α (s) ∂ku0(s)]ds, (3.6)

with

Fα(s) =
∑

γ≤α,|α|−1≥|γ |≥1

√(
α

γ

)
uk
α−γ (s) ∂kuγ (s)

+
∑

k

√
αk

[(
σ i (s), ek(s)

)
Y
∂i uα(k) (s)+ (g (s) , ek(s))Y 1|α|=1

]
. (3.7)
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800 R. Mikulevicius, B. L. Rozovskii

Since for |α| ≥ 1,Eξα = 0, Eq. (3.2) (or (3.3)) can be regarded as a random
perturbation of the deterministic Navier–Stokes Eq. (3.5).

Lemma 1 Let A1–A3 hold, |w0|2,p +|w0|2,2 < ∞. Then there is T1 > 0 and a unique
u0 ∈ C([0, T1),H

2
2 ∩ H

2
p) solving (3.5) in [0, T1).

Proof According to Theorem 3 in [22], there is T1 > 0 and a unique u0 ∈
C ([0, T1) ,H

1
p ∩ H

1
2) such that for each t < T1

sup
0≤s≤t

|u0(s)|l1,l +
t∫

r

|∂2u0(r)|lldr < ∞, l = 2, p,

and (3.5) holds in H
−1
l , l = 2, p. By Sobolev embedding theorem, for all t < T1,

sup
x,s≤t

|u0(s, x)| +
t∫

0

sup
x

|∇u0(s, x)|pds < ∞.

and there is a constant C such that for all s ∈ [0, T1),

|uk
0(s)∂ku0(s)|1,p ≤ C |uk

0(s)|1,p|∂ku0(s)|1,p.

So, for each t < T1,

t∫

0

|uk
0(s)∂ku0(s)|p

1,pds ≤ C

t∫

0

|uk
0(s)|p

1,p|∂ku0(s)|p
1,pds

≤ C sup
s≤t

|u0(s)|1,p
t∫

0

|∂ku0(s)|p
1,pds < ∞.

Also,

t∫

0

|uk
0(s)∂ku0(s)|21,2ds < ∞.

Indeed,

t∫

0

|uk
0(s)∂ku0(s)|22ds ≤ sup

s≤t,x
|uk

0(s, x)|2
t∫

0

|∇u0(s)|22ds < ∞,
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and also

t∫

0

∣∣∣∇
(

uk
0(s)∂ku0(s)

)∣∣∣
2

2
ds = I1 + I2

=
t∫

0

|∇u0(s)|44ds +
t∫

0

|uk
0(s)∂k∇u0(s)|22ds

with

I1 ≤
t∫

0

sup
x

|∇u0(s, x)|2|∇u0(s)|22ds

≤ sup
s≤t

|∇u0(s)|22
t∫

0

|u0(s)|22,p < ∞,

and

I2 ≤ sup
s≤t,x

|u0(s, x)|2
t∫

0

|∂2u0(s)|22ds < ∞.

By Proposition 5 in Appendix II, u0 ∈ C
(
[0, T ],H2

p ∩ H
2
2

)
for every T < T1 and

(3.5) holds in Ll , l = 2, p. ��
Now we fix an arbitrary T < T1(T1 comes from Lemma 1) and prove the existence

and uniqueness of D-solutions to (3.2) in [r, T ], r < T .

Lemma 2 Assume that A1–A3 hold, b ∈ B,w = ∑
α wαξα ∈ D′(b; H

2
p ∩ H

2
2).

Then for each r ≤ T < T1 there is a unique D − H
2
p ∩ H

2
2-solution u(t) =

∑
α uα(t)ξα ∈ CD′

(
b;[0, T ],H2

p ∩ H
2
2

)
of (3.1) in [r, T ].

Equivalently, for eachα,uα ∈ C
(
[0, T ],H2

p ∩ H
2
2

)
and (3.5)–(3.6) hold in Ll , l =

2, p.

Proof According to Remark 4, it suffice to prove the existence and uniqueness of a
solution for the deterministic system (3.4). For α = 0, the existence and uniqueness
of a solution to (3.5) follows from Lemma 1. We proceed by induction. Assume there
are unique uα ∈ C([0, T ],H2

p ∩ H
2
2), |α| ≤ n, such that (3.4) holds in Ll , l = 2, p.

By Sobolev embedding theorem, it implies that

sup
x,r≤s≤T

|uα(s, x)| +
T∫

r

sup
x

|∂uα(s, x)|pds < ∞, (3.8)

if |α| ≤ n. Then for |α| = n +1, the Eq. (3.6) for uα is Stokes and it is readily checked
(see (3.6)) that
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802 R. Mikulevicius, B. L. Rozovskii

T∫

r

|Fα(s)|l1,lds < ∞, l = 2, p.

According to Proposition 5, there is a unique uα ∈ C
(
[0, T ],H2

p ∩ H
2
2

)
so that (3.6)

holds in Ll , l = 2, p. ��
Because of the uniqueness, the D-solution has a restarting property. More specifi-

cally, the following statement holds.

Corollary 1 Assume that A1–A3 hold, b ∈ B,w = ∑
α wαξα ∈ D′(b; H

2
p ∩H

2
2). Let

ur,w(t) be the unique D − H
2
p ∩ H

2
2 solution to (3.1)in [r, T ], T < T1, starting at w.

Let r ≤ r ′ ≤ t ≤ T . Then

ur,w(t) = ur ′,u(r ′)(t).

Proof Indeed for u(t) = ur,w(t), and r ≤ r ′ ≤ t ≤ T, we have for t ∈ [r, T ]

u (t) = u(r ′)+
t∫

r ′
P
{
∂i

(
a i j (s) ∂ j u (s)

)
+ bi (s)∂i u(s)

−uk (s)♦∂ku(s)+ f (s)

+[σ i (s)∂i u (s)+ g (s)− ∇ P̃ (s)]♦Ẇs

}
ds,

and the statement follows by Lemma 2. ��

3.1 Rescaling and approximation of the generalized solution

To begin with, we will derive more precise estimates for D − H
2
p ∩ H

2
2 solutions of

Eq. (3.2). One could hardly expect that the D −H
2
p ∩H

2
2 solution of unbiased Navier–

Stokes equation has finite variance, i.e.
∑
α |uα(t)|2 < ∞.However, in this subsection

we will show that the solution could be obtained as the limit of square integrable solu-
tions of the equations rescaled in a special way using a second quantization operator
(see [27], and Appendix I, 5.1).

Fix b = {en} ∈B and define an unbounded operator

Aek = 2kek, k ≥ 1.

Obviously, the projective limit of the domains Hn ⊆ H = L2 ([0, T ],Y ) of An with
the norm

||y||Hn = ||An y|| =
(∑

k

(2k)2n y2
k

)1/2

, y =
∑

k

ykek ∈ Hn,
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is a nuclear space denoted N = N (b). For n ∈ N, let H−n be the completion of H
with respect to the norm

||y||H−n = ||A−n y|| =
(∑

k

(2k)−2n y2
k

)1/2

, y =
∑

k

ykek ∈ H−n .

The inductive limit N ′ = N ′(b) of H−n is the dual of N . For a Banach space E and
ρ ∈ [0, 1], let Sρ(E) = Sρ(b; E) be the space of all η = ∑

α aαξα ∈ D′(b, E) such
that

||η||Sρ,q = ||η||ρ,q =
(∑

α

(|α|!)ρ(2N)2qα|aα|2E
)1/2

< ∞ for every q ≥ 0,

where

(2N)2qα =
∞∏

k=1

(2k)2qαk = 22q|α|
∞∏

k=1

k2qαk

(see [8]). We consider Sρ(E) = Sρ(b, E) with a family of seminorms ||η||Sρ ;q .
Similarly, for ρ ∈ [0, 1], let S−ρ(E) be the space of all η ∈ D′(b; E) such that
||η||S−ρ,−q = ||η||−ρ,−q < ∞ for some q > 0. It is dual of S−ρ(E) if E is Hilbert.

If E = R, Kondratiev test function space (N )1 = S1(R) and Kondratiev distribution
space (N )−1 = S−1(R) (see [6,8, p. 39]).

We will show that the solution found in Lemma 2 belongs to the Kondratiev space
S−1(H

2
p ∩ H

2
2) = (N )−1 ⊗ (H2

p ∩ H
2
2).

Proposition 1 Let A1–A3 hold, sups,k |ek(s)|Y < ∞ and w ∈ H
2
p ∩ H

2
2 be determin-

istic. Assume that

u(t) =
∑
α

uα(t)ξα ∈ CD′(b; [0, T ],H2
p ∩ H

2
2)

solve (3.2) in Ll , l = 2, p. Denote

L̃α = sup
t≤T

|uα(t)|2,p + sup
t≤T

|uα(t)|2,2, α ∈ J.

Then there is a constant B0 such that

L̃α ≤ √
α!C|α|−1

(|α|
α

)
B|α|−1

0 K |α|, |α| ≥ 2,

where K = 1 + supi L̃εi , and

C|α|−1 = 1

|α| − 1

(
2(|α| − 1)

|α| − 1

)
, |α| ≥ 2
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804 R. Mikulevicius, B. L. Rozovskii

are the Catalan numbers (see e.g. [9,28]). Moreover, there is a number q > 1 so that

sup
r≤t≤T

||u(t)||2S−1,−q
≤
∑
α

(2N)−2qα L̃2
α

|α|! < ∞,

i.e., the solution u(t) belongs to the Kondratiev space of generalized random functions
S−1(H

2
p ∩ H

2
2) = (N )−1 ⊗ (H2

p ∩ H
2
2).

Proof For |α| ≥ 1,uα ∈ C
(
[0, T ],H2

p ∩ H
2
2

)
, are solutions to the Stokes equations

(3.6):

uα (t) = wα +
t∫

r

P[∂i

(
a i j (s) ∂ j uα (s)

)
+ Fα(s)

+[bi (s)− ui
0(s)]∂i uα(s)− uk

α (s) ∂ku0(s)]ds,

with Fα(s) defined by (3.7). Finally, by Proposition 5 in Appendix II,

L̃α ≤ C
∑

l=2,p

⎛
⎝

T∫

0

|Fα(s)|l1,lds

⎞
⎠

1/ l

.

Since

|uk
α−γ (s) ∂kuγ (s)|1,l ≤ C |uα−γ (s) |2,p|∇uγ (s)|1,l ,

it follows that

|Fα(s)|1,l ≤ C

⎡
⎣ ∑
γ≤α,|α|−1≥|γ |≥1

√(
α

γ

)
L̃α−γ L̃γ

+
∑

k

1σ �=0
√
αk L̃α(k) + 1|α|=1|g(s)|1,l

⎤
⎦ .

For |α| ≥ 2

L̃α ≤ C

⎡
⎣ ∑
γ≤α,1≤|γ |≤|α|−1

√(
α

γ

)
L̃α−γ L̃γ + 1σ �=0

∑
k

√
αk L̃α(k)

⎤
⎦ .

So, there is a constant B0 so that for |α| = n ≥ 2, L̂α = (α!)−1/2 L̃α, L̂εi = L̃εi we
have
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L̂α ≤ B0

⎛
⎝ ∑
γ≤α,1≤|γ |≤|α|−1

L̂α−γ L̂γ + 1σ �=0

∑
k

L̂α(k)1αk �=0

⎞
⎠ .

Denoting Lα = L̂α if |α| > 1, Lα = 1 + L̂α if |α| = 1, we get

Lα ≤ B0

∑
γ≤α,1≤|γ |≤|α|−1

Lα−γ Lγ

and by [9] for |α| ≥ 2

Lα ≤ C|α|−1 B|α|−1
0

(|α|
α

)∏
i

(1 + L̃εi )
αi

≤ C|α|−1

(|α|
α

)
B|α|−1

0 K |α|

with

K = 1 + C

⎡
⎢⎣L̃0 +

∑
l=2,p

⎛
⎝

T∫

0

||g(s)||l1,lds

⎞
⎠

1/ l⎤
⎥⎦ .

So,

L̃α ≤ √
α!C|α|−1

(|α|
α

)
B|α|−1

0 K |α|,

L̃2
α ≤ α!C2|α|−1

(|α|
α

)
(2N)αB2(|α|−1)

0 K 2|α|

and

rα L̃2
α

α! ≤ C2|α|−1

(|α|
α

)
(2Nr)αB2(|α|−1)

0 K 2|α|.

Therefore with r = (ri ), ri = (2i)−2q , q > 1,

∑
|α|=n

rα L̃2
α

α! = C2
n−1 B2(n−1)

0 K 2n
∑
|α|=n

(|α|
α

)
(2Nr)α

≤ C2
n−1 B2(n−1)

0 K 2n2n2−2qn

( ∞∑
i=1

1

i2q−1

)n

.
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For large n, the Catalan numbers

Cn−1 ≈ 4n−1

√
π(n − 1)3/2

and there is a number q > 1 such that

∞∑
n=0

∑
|α|=n

rα L̃2
α

α! < ∞.

Therefore, the solution u(t) belongs to Kondratiev’s space S−1(H
2
p ∩ H

2
2). ��

Remark 5 If u(t) is the solution (3.2) with a deterministic w ∈ H
2
p ∩ H

2
2, and q > 1

is the number in Proposition 1, then the action of u(t) = ∑
α uα(t)ξα can be extended

from D(b) to

S1,q(R) =
{
η =

∑
α

aαξα ∈ S1(R) : ||η||S1,q < ∞
}

as

〈u(t), η〉 =
∑
α

uα(t)aα, η =
∑
α

aαξα ∈ S1,q(R).

Note that the stochastic exponent p(z) = p(ez) (see Remark 1) belongs to S1,q(R)
in (a) provided

|Aqez |2Y =
∑

k

(zk2qkq)2 < 1.

For ε > 0 define a self-adjoint positive operator Dε on H such that Dεek = 2−εkek

and a sequence of positive numbers κε,n = e−εen
. Set Cε = ∑∞

n=0 κε,n D⊗n
ε . It is a sec-

ond quantization operator in the Fock space H = ∑
n Hn,Hn = H⊗̂n (see Appendix

I, 5.1). Clearly,

Cεeα = κε,|α|D⊗n
ε eα = κε,|α|

(
2−εN)α eα, (3.9)

where

(
2−εN)α =

∞∏
k=1

2−εkαk .

Proposition 2 Assume A1–A3 hold and sups,k |ek(s)|Y < ∞. Let u(t) = ∑
α uα(t)ξα

∈ CD′([0, T ],b,H2
p ∩ H

2
2) be a generalized D − H

2
p ∩ H

2
2-solution of Eq. (3.1) in

[0, T ] with a deterministic w ∈ H
2
p ∩ H

2
2 and

uε(t) = Cεu(t) =
∞∑

n=0

κε,n
∑
|α|=n

uα(t)(2−εN)αξα,
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where Cεu is rescaling based on the second quantization operator Cε (see Appendix
I, 5.1).

Then uε(t) is H
2
2-valued square integrable process satisfying the equation

∂t uε (t) = P
{
∂i

(
a i j (t) ∂ j uε (t)

)
+ bi (t)∂i uε(t)

− Cε(Cε
−1uk

ε (t))♦(Cε−1∂kuε(t))+ f (t)

+Cε[(σ i (t)Cε
−1∂i uε (t)+ g (t))♦(Cε−1Ẇ ε

t )]
}
,

uε (0) = w, div uε = 0.

(3.10)

Moreover, uε(t) ∈ S1(H
2
p ∩ H

2
2) = (N )1 ⊗ (H2

p ∩ H
2
2), t ∈ [0, T ],u(t) = Cε−1uε(t)

and

sup
t≤T

||uε(t)− u(t)||S−1,−q → 0

as ε → 0, where q is a number in Proposition 1.

Proof Let L̃α = supt≤T |uα(t)|2,p+supt≤T |uα(t)|2,2. Since uε,α(t) = κε,|α|
(
2−εN)α

uα(t),

L̃ε,α = sup
t≤T

|uε,α(t)|2,p + sup
t≤T

|uε,α(t)|2,2 = κε,|α|
(

2−εN)α L̃α.

Since for each q ′ ≥ 0, there is a constant C(ε, q ′, q) independent of α so that

(|α|!)2 (2N)2(q
′+q) κ2

ε,|α|
(

2−2εN
)α

≤
∑

k

(2k)2(q
′+q) 2−2εk)|α|e−2εe|α|

(|α|!)2

≤ C(ε, q ′, q) < ∞,

it follows by Proposition 1 that

||uε(t)||2S1,q′ ≤ C(ε, q ′, q)
∑
α

(2N)−2qα L̃2
α

|α|! < ∞.

So, uε(t) ∈ S1(H
2
p ∩ H

2
2), t ∈ [0, T ]. In particular,

E|uε(t)|22,2 =
∑
α

|uε,α(t)|22,2 < ∞, t ∈ [0, T ].

Therefore uε(t) is H
2
2-valued square integrable process and (3.10) follows by Remark

10 in Appendix I, 5.1. Obviously, u(t) = (Cε)−1uε(t). Since
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808 R. Mikulevicius, B. L. Rozovskii

uε(t)− u(t) =
∑
α

[1 − κε,|α|
(

2−εN)α]uα(t, x)ξα,

it follows that

||uε(t)− u(t)||2S−1,−q
≤
∑
α

|1 − κε,|α|
(

2−εN)α |2 (2N)−2qα L̃2
α

|α|! → 0

as ε → 0 by Lebesgue’s dominated convergence theorem uniformly in t . ��

Remark 6 The solution u in Proposition 1 depends on a fixed uniformly bounded basis
b in H. It belongs to the Kondratiev space

S−1(H
2
p ∩ H

2
2) = (N )−1 ⊗ (H2

p ∩ H
2
2)

constructed using a Gelfand triple N ⊆ H = L2 ([0, T ],Y ) ⊆ N ′ which depends
on b.

In [7], a class G−1 ⊆ (N )−1 of regular generalized functions was introduced that
does not depend on a fixed Gelfand triple or a basis in H. Unfortunately, the estimates
in Proposition 1 (because of the factor N−qα = �kk−qαk ) do not imply that u is a
regular generalized function of class G−1. Also, the space

S−1,−q(H
2
p ∩ H

2
2) =

{
η ∈ S−1(H

2
p ∩ H

2
2) : ||η||S−1,−q < ∞

}
,

with some q > 1, to which the solution in Proposition 1 belongs, cannot be embed-
ded into any space with weights depending only on |α| (for example, into the spaces,
like G−1,−q in [7], that do not dependent on a fixed basis or Gelfand triple in H):
inf |α|=n (N)−qα = 0.

4 Markov property and independence of basis

In this Section we will show that a generalized D − H
2
p ∩ H

2
2-solution of Eq. (3.2) has

the following properties: it is adapted with respect to the filtration (FW
t ) generated

by the Wiener process Wt ; it is independent of the choice of the basis b, and it is a
generalized Markov process.

4.1 Equivalent characterization of D-generalized processes

A more convenient characterization of D-solution to (1.2) (see Definition 5) is based
on another (equivalent) description of D(b). It allows to introduce the notion of an
adapted solution and extend it from D(b) to a space of test functions that is independent
of b ∈ B.
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On unbiased stochastic Navier–Stokes equations 809

4.1.1 Equivalent description of test function space

Often it is convenient to use the exponents p(z), z ∈ Z, defined in Remark 1 to
describe the test function space D(b).

To each multi-index α of length n we relate a set Kα whose elements are pos-
itive integers ki , i = 1, . . . , n, such that each k is represented there by αk-copies.
An ordered n-tuple Kα = {k1, . . . , kn} with k1 ≤ k2 ≤ · · · ≤ kn characterizes the
locations and the values of the non-zero components of α. For example, k1 is the index
of the first non-zero element of α, followed by max

(
0, αk1 − 1

)
of entries with the

same value (see [20]).
For an orthonormal basis {ek, k ≥ 1} in L2 ([0, T ],Y ) and α ∈ I with Kα =

{k1, . . . , kn}, we denote

Eα =
∑
σ∈Gn

ekσ(1) ⊗ · · · ⊗ ekσ(n) , α ∈ J,

where Gn is a permutation group of {1, . . . , n}. The set

{
eα = Eα√

α!|α|! , α ∈ J

}
(4.1)

is a CONS for the symmetric part H⊗̂n of H⊗n .

For |α| = n,

ξα = √|α|!W (eα), (4.2)

where

W (eα) =
T∫

0

sn∫

0

. . .

s2∫

0

eα(s1, . . . , sn)dWs1 . . . dWsn . (4.3)

If α = εk , then W (eεk ) = W (ek) = ∫ T
0 ek(t)dWt .

According to (2.4),

p(z) = p(ez) = p(z,b) =
∞∑

n=0

∑
|α|=n

zα
√ |α|!
α! W (eα)

=
∞∑

n=0

∑
|α|=n

zα√
α!ξα.

Denote

pn(z) = pn(ez) =
∑
|α|=n

zα√
α!ξα
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810 R. Mikulevicius, B. L. Rozovskii

=
T∫

0

sn−1∫

0

. . .

s2∫

0

ez(s1) . . . ez(sn)dWs1 . . . dWsn , n ≥ 2, (4.4)

p1(z) = p1(ez) =
T∫

0

ez(s1)dWs1 , p0(z) = p0(ez) = 1.

Lemma 3 For b ∈B, let V = V(b) be the linear space of random variables that con-
sists of all finite linear combinations of pn(z), z ∈ Z, n ≥ 0. Then V(b) = D(b) (in
particular, ξα ∈ V(b)).

Proof Obviously, V = V(b) ⊆ D = D(b). For α ∈ I, denote κ(α) =
max {k : αk �= 0}. Fix N , n and α = (αk) ∈ I such that |α| = N , κ(α) = n. Consider
a finite dimensional Hilbert space

G =
⎧⎨
⎩

∑
|α|=N ,κ(α)≤n

vαξα : vα ∈ R

⎫⎬
⎭ .

with inner product

(∑
a

vαξα,
∑

a

v′
αξα

)

G

=
∑
α

vαv
′
α.

Let G̃ be a vector subspace of G generated by pN (z), z = (z1, . . . , zn, 0, . . .) ∈ Z.
It is enough to show that G̃ = G. Indeed, the subspace G̃ is finite-dimensional and
obviously closed. Assume there is a vector

∑
α vαξα ∈ G which is orthogonal to G̃.

So, for all z = (z1, . . . , zn, 0, . . .) ∈ Z,
(∑

α

vαξα, pN (z)

)

G

=
∑
α

vα
zα√
α! = 0

which implies that all vα = 0. Therefore G̃ = G. This completes the proof. ��
Due to Lemma 3, we can characterize convergence in D′ = D′(b) by test functions

of the form pm (z). Indeed, for z ∈ Z, v ∈ D, and m ≥ 0, we have

〈pm (z) , v〉 =
∑

|α|=m

vα
zα√
α! . (4.5)

Therefore we have the following necessary and sufficient condition:

Corollary 2 A sequence vn → v in D′ if and only if for all z ∈ Z and all m ≥ 0

〈
pm (z) , v

n 〉 → 〈pm (z) , v〉.
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On unbiased stochastic Navier–Stokes equations 811

4.1.2 Action of a Skorokhod integral on pM (z)

Consider v(t) = ∑
α vα(t)ξα ∈ D′ (b; [0, T ],Y ) such that for all α, k,

∫ T
0 | (vα(s),

ek(s))Y |ds < ∞. Recall that the Skorokhod integral assigns to such v a generalized
random process

δt (v) =
t∫

0

v(s)dWs = δ
(
v1[0,t]

) =
∑
α

δt (v)αξα, 0 ≤ t ≤ T,

δt (v)α =
∑

k

√
αk

t∫

0

(
vα(k)(s), ek(s)

)
Y ds.

Remark 7 For pM (z) ∈ D(b), z ∈ Z ,M ≥ 1, it is easy to show that

〈pM (z) , δt (v)〉 =
t∫

0

(〈pM−1 (z) , v(s)〉 , ez(s))Y ds.

4.1.3 Action of a Wick product on pM (z)

Recall that for a Hilbert space E and arbitrary v = ∑
α vαξα and u = ∑

α uαξα in
D′(b, E), we define

v♦u =
∑
α

∑
β≤α

(uβ, vα−β)E

√
α!

β!(α − β)!ξα ∈ D′(b,R).

In particular,

ξα♦ξβ = ξα+β

√
(α + β)!
β!α! .

The following statement holds.

Lemma 4 For a Hilbert space E, arbitrary elements v = ∑
α vαξα and u = ∑

α uαξα
from D′(b, E), and z ∈ Z,M ≥ 0,

〈pM (z), v♦u〉 =
∑

K+L=M

〈pK (z), v〉 〈pL(z), u〉 ;

In particular,

〈1, v♦u〉 = (〈1, v〉 , 〈1, u〉)E

(the generalized expected value of v♦u is the product of expected values).
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812 R. Mikulevicius, B. L. Rozovskii

Proof According to (4.5),

〈pM (z), v♦u〉 =
∑

|α|=M

∑
β≤α

(
zβ√
β!uβ,

zα−β
√
(α − β)!vα−β)E

=
⎛
⎝ ∑

K+L=M

∑
|β|=K

zβ√
β!uβ,

∑
|γ |=L

zγ√
γ !uγ

⎞
⎠

E

= (〈p(z), v〉 , 〈p(z), u〉)E .

��

4.1.4 An equivalent characterization of the solution

Now, we will characterize the solution of Eq. (3.1) by its action on test functions
pM (z), z ∈ Z,M ≥ 0. The following statement holds.

Remark 8 Assume A1-A3 hold, w = ∑
α wαξα ∈ D′(b,H2

p ∩ H
2
2), div w = 0 and

u(t) = ∑
α uα(t)ξα ∈ CD′(b; [r, T ],H2

p ∩ H
2
2). Then u(t) is D − H

2
p ∩ H

2
2 solution

of (3.1) in [r, T ] if and only if for all z ∈ Z and M ≥ 0,

uM,z(t) = 〈u(t), pM (z)〉 =
∑

|α|=M

uα(t)zα√
α!

is continuous in H
2
p ∩ H

2
2 and the following equality holds in Ll , l = 2, p,

uM,z (t) = wM,z +
t∫

r

P[∂i

(
a i j (s) ∂ j uM,z (s)

)

+bi (s)∂i uM,z(s)−
∑

K+L=M

uk,K ,,z (s) ∂kuL ,z(s)

+1M=0f (s)+
(
σ i (s), ez(s)

)
Y
∂i uM−1,z(s)

+1M=1(g (s) , ez(s))Y ]ds, (4.6)

where M ≥ 0,wM,z(x) = 〈w(x), pM (z)〉 = ∑
|α|=M wα(x)zα/

√
α!, and

u−1,z(t, x) = 0. If M ≥ 1, Eq. (4.6) is Stokes equation; if M = 0, it is Navier–
Stokes equation. Indeed, we obtain (4.6) by multiplying both sides of (3.4) by zα/

√
α!

and adding.

4.2 Adapted and independent of basis generalized processes

Let L∞ ([0, T ] ,Y ) be the space of measurable Y -valued bounded functions on [0, T ].
For h ∈ L∞ ([0, T ] ,Y ) ,M ≥ 0, we denote
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On unbiased stochastic Navier–Stokes equations 813

pM,t (h) =
t∫

0

sM∫

0

. . .

s2∫

0

h(s1) . . . h(sM )dWs1 . . . dWsM , 0 ≤ t ≤ T .

By (4.4), pM (z) = pM (ez) = pM,T (ez), z ∈ Z.

Lemma 5 (i) If {mk, k ≥ 1} is a CONS in L2 (0, T ) , and {�k, k ≥ 1} is a CONS
in Y, h ∈ L∞ ([0, T ] ,Y ), then for each n, n′ ≥ 1, there is z ∈ Z such that

hn,n′(t) =
n′∑

i=1

n∑
k=1

T∫

0

(h(s), �k)mi (s)ds�kmi (t) = ez(t),

0 ≤ t ≤ T . Obviously, pM,T (hn,n′) ∈ D(b),b = {
ek = mik� jk , k ≥ 1

}
,

hn,n′ → h in L2([0, T ],Y ),

pM,T (hn,n′) → pM,T (h) in L2(�,P),

as n, n′ → ∞.

(ii) Assume (mi ) is trigonometric basis or unconditional L p ([0, T ])-basis (for
example, Haar basis, see [18]), h ∈ L∞([0, T ],Y ). Then there is a sequence
z(n) ∈ Z such that ez(n) → h in L p ([0, T ],Y ) for all p ≥ 2, as n → ∞.

Proof We prove the second part of the statement. Let

hn(s) =
n∑

k=1

(h(s), �k)Y �k, n ≥ 1.

Then |hn(s)|Y ≤ |h(s)|Y and for all p ≥ 2,

T∫

0

|hn(s)− h(s)|p
Y ds → 0

as n → ∞. If (mi ) is trigonometric basis or unconditional L p ([0, T ])-basis (for
example, Haar basis), then for each n

T∫

0

|hn,n′(s)− hn(s)|p
Y ds → 0

as n′ → ∞. So, there is a subsequence ln such that

T∫

0

|hn,ln (s)− h(s)|p
Y ds → 0

as n → ∞, and (ii) follows according to part (i) of this remark. ��
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814 R. Mikulevicius, B. L. Rozovskii

Let T be the space of all linear combinations of pM,T (h), h ∈ L∞([0, T ],Y ),
M ≥ 0. Obviously, ∪b∈BD(b) ⊆ T , and T does not depend on any particular b ∈ B.

We say that hn → h in L∞([0, T ],Y ) if hn → h in L p([0, T ],Y ) for all p ≥ 2.

Definition 6 Given a Banach space E , let T ′ = T ′(E) be the space of all linear
E-valued functions v on T such that v(pM,T (hn)) → v(pM,T (h)) for all M ≥ 0 if
hn → h in L∞([0, T ],Y ). We say v ∈ T ′(E) is a generalized E-valued r.v.

Denote T ′(b) = T ′(b,E) the set of all v ∈ D′(b, E) such that for each
h ∈ L∞([0, T ],Y ) and any sequence ez(n) → h in L∞([0, T ],Y ), the limit
limn→∞

〈
pM,T (z(n)) , v

〉
exists in E for all M ≥ 0, and does not depend on a partic-

ular sequence z(n) such that ez(n) → h in L∞([0, T ],Y ). We define

〈
pM,T (h) , v

〉 = lim
n→∞ 〈pM (z(n)) , v〉.

Lemma 6 Let b ∈ B. Then

(a) T ′(b) ⊆T ′(E).
(b) For v ∈ T ′(E), there are aα ∈ E such that the restriction

v|D(b) =
∑
α

aαξα(b) ∈ T ′(b, E).

Proof (a) Let v ∈ T ′(b), hn → h in L∞([0, T ],Y ). For each n there is a sequence
zk(n) such that ezk (n) → hn in L∞[0, T ] and v(zk(n)) → v(hn) as k → ∞.
Therefore there is a subsequence zkn (n) such that

|ezkn (n) − hn|Ln([0,T ],Y ) + |v(ezkn (n))− v(hn)| ≤ 1/n.

Then for each p ≥ 2, n ≥ p,

|ezkn (n) − h|L p([0,T ],Y )
≤ |ezkn (n) − hn|L p([0,T ],Y ) + |hn − h|L p([0,T ],Y )

≤ T
1
p − 1

n |ezkn (n) − hn|Ln([0,T ],Y ) + |hn − h|L p([0,T ],Y )

So, ezkn (n) → h in L∞ ([0, T ],Y ) and

|v(hn)− v(h)|
≤ |v(hn)− v(ezkn (n)

)| + |v(ezkn (n)
)− v(h)| → 0

as n → ∞.
(b) Let v ∈ T ′(E),b = {en} , ξα = ξα(b), N ≥ 1,

pN (z) = pN (z,b) = pN (ez) =
∑

|α|=N

zα√
α!ξα.
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By Lemma 3, ξα ∈ T and by linearity

v(pN (z)) =
∑

|α|=N

zα√
α!v(ξα).

Denoting vα = v(ξα) set v̄ = ∑
α vaξα ∈ D′(b).Obviously,

v(pN (z)) =
∑

|α|=N

zα√
α!v(ξα) = v̄(pN (z))

and (b) holds. ��
Let T ′(b; [r, T ]) = T ′(b; [r, T ], E) be the space of all v ∈ D′(b; [r, T ], E) such

that v(t) ∈ T ′(b,E), r ≤ t ≤ T .

Definition 7 Given a Banach space E , let T ′ = T ′([r, T ], E) be the space of all
T ′(E)-valued functions v(t) on [r, T ]. We say v ∈ T ′([r, T ], E) is a generalized
E-valued stochastic process. We denote CT ′([r, T ], E) the set of all continuous u ∈
T ′([r, T ], E).

The following obvious consequence of Lemma 6 holds.

Corollary 3 Let b ∈ B, r < T . Then

(a) T ′(b;[r, T ], E) ⊆T ′([r, T ], E).
(b) For v ∈ T ′([r, T ], E), there are E-valued functions aα(t), 0 ≤ t ≤ T, such that

the restriction

v|D(b) =
∑
α

aα(t)ξα(b) ∈ T ′(b;[r, T ], E).

Now, we introduce the notion of an adapted generalized process.

Definition 8 (a) We say v ∈ T ′(E) is FW
t0 -measurable if

〈
pM,T (h), v

〉 = 〈
pM,t0(h), v

〉

for all h ∈ L∞ ([0, T ] ,Y ) , M ≥ 0.
(b) We say v ∈ T ′([0, T ], E) is F

W -adapted if v(t) is FW
t -measurable for each t .

Example 2 Let Wt be a cylindrical Wiener process in a Hilbert space Y and Ẇt =
d
dt Wt . Then (see Example 1 as well) Wt and Ẇt are generalized Y -valued adapted
stochastic processes. For any h ∈ L∞([0, T ] ,Y ),

〈
Wt , pM,T (h)

〉 =
t∫

0

h(s)ds = 〈
Wt , pM,t (h)

〉
,

〈
Ẇt , pM,T (h)

〉 = h(t) = 〈
Ẇt , pM,t (h)

〉

if M = 1, and
〈
Wt , pM

s (h)
〉 = 〈

Ẇt , pM
s (h)

〉 = 0, 0 ≤ s ≤ T, otherwise.
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4.3 Independence of basis and Markov property of the solution

Remark 8 suggests the following definition of a generalized solution to (3.2).

Definition 9 Given w ∈ T ′(H2
p ∩ H

2
2), div w = 0, T ≥ r, a generalized process

u ∈ CT ′([r, T ],H2
p ∩ H

2
2) is called H

2
p ∩ H

2
2-solution of Eq. (3.1) in [r, T ], if for

each h ∈ L∞([0, T ],Y ),M ≥ 0, the function uM,h(t, x) = 〈
pM,T (h),u(t, x)

〉
is an

H
2
p ∩ H

2
2-valued continuous functions satisfying in Ll , l = 2, p, Stokes (M ≥ 1) or

Navier–Stokes (M = 0) equation

uM,h (t) = wM,h +
t∫

r

P[∂i

(
a i j (s) ∂ j uM,h (s)

)

+bi (s)∂i uM,h(s)−
∑

K+L=M

uk,K ,,h (s) ∂kuL ,h(s)

+1M=0f (s)+
(
σ i (s), h(s)

)
Y
∂i uM−1,h(s)

+1M=1(g (s) , h(s))Y ]ds, (4.7)

where M ≥ 0,wM,h(x) = 〈
pM,T (h),w(x)

〉
, and u−1,h(t, x) = 0.

Obviously, a generalized solution is a D-solution. Now we are in a position to prove
the main result.

Theorem 2 Assume that A1–A3 hold, w ∈ T ′(H2
p ∩ H

2
2). Then for each r < T < T1

there is a unique H
2
p ∩ H

2
2-solution u ∈ CT ′([r, T ],H2

p ∩ H
2
2) of (3.2) in [0, T ].

Moreover, if w is FW
r -measurable, then the solution is F

W = (
FW

t

)
t≥r -adapted and

it extends all D(b)-solutions, b ∈ B.

Before proceeding with the proof of Theorem 2 we shall prove the following aux-
iliary statement.

Lemma 7 Let A1–A3 hold, w ∈ T ′(H2
p ∩ H

2
2), div w = 0, h ∈ L∞ ([0, T ],Y ). Then

the infinite system (4.7) with wM,h = 〈
w, pM,T (h)

〉
has a unique solution vM,h ∈

C
(
[r, T ],H2

p ∩ H
2
2

)
,M ≥ 0. Moreover, for each N ≥ 1 there is a constant C inde-

pendent of h so that

RN ≤ C

⎧⎪⎪⎨
⎪⎪⎩

∑
K+L=N ,
K ,L≤N−1

RK RL +
∑

l=2,p

⎡
⎣|wN ,h |2,l + RN−1(

T∫

r

|h(s)|lds)1/ l

+1N=1

⎛
⎝

T∫

r

|h(s)|2lds

⎞
⎠

1/2l ⎛
⎝

T∫

r

||g(s)||2l
1,lds

⎞
⎠

1/2l⎤
⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
, (4.8)

where RN = supr≤s≤T

[|vN ,h(t)|2,p + |vN ,h(t)|2,2
]
.
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Proof If M = 0, then (4.7) is Navier–Stokes equation (3.5) and, by Lemma 1 there
is a unique H

2
p ∩ H

2
2-valued continuous solution v0 = u0. We proceed by induction.

Assume there are unique vM = vM,h ∈ C([0, T ],H2
p ∩ H

2
2) solving the system for

M = 0, . . . , N − 1. Consider the equation for vN :

vN (t) = wN ,h +
t∫

r

P[∂i

(
a i j (s) ∂ j vN (s)

)
+ bi (s)∂i vN (s)

−v0,k (s) ∂kvN (s)− vN ,k (s) ∂kv0(s)+ fh
N (s)]ds (4.9)

with

fh
N (s) = −

∑
K+L=N ,
K ,L≤N−1

vK ,k (s) ∂kvL(s)+ 1M=1(g (s) , h(s))Y

+
(
σ i (s), h(s)

)
Y
∂i vN−1(s)

Since

T∫

r

|fh
N (s)|l1,lds < ∞, l = 2, p,

the existence and uniqueness follows by Proposition 5. Also, by Proposition 5, for
each N ≥ 1 there is a constant C independent of h such that, denoting Rh

N =
sups≤T

[|vM,h(s)|2,p + |vM,h(s)|2,2
]
. Since for l = 2, p,

|fh
N (s)|1,l ≤ C

⎡
⎢⎢⎣

∑
K+L=N ,
K ,L≤N−1

|vK (s) |2,l |vL(s)|2,p + |h(s)|Y |vM−1(s)|2,l

+|h(s)|Y ||g(s)||1,l

⎤
⎥⎥⎦ ,

the inequality (4.8) follows by Cauchy–Scwarz inequality. ��

4.3.1 Proof of Theorem 2

Fix T < T1 and choose a special CONS b = {en} ∈ B such that for each h ∈
L∞([0, T ],Y ) there is a sequence z(n) ∈ Z (see Lemma 5) for which ez(n) → h
in L p ([0, T ],Y ) , for all p ≥ 2, as n → ∞ (for example, taking in L2 ([0, T ])
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a trigonometric basis or unconditional L p ([0, T ])-basis (Haar basis), see [18]). By
Lemma 6 with ξα = ξα(b),

w|D(b) =
∑
α

wαξα.

According to Lemma 2, there is a unique D − H
2
p ∩ H

2
2-solution

u(t, x) =
∑
α

uα(t, x)ξα ∈ CD′ (b; [r, T ],H2
p ∩ H

2
2

)

of (3.2) in [0, T ]. The coefficients uα(t, x) satisfy (3.4) and, by Remark 8 (4.6) holds
for all M ≥ 0, z ∈ Z . Fix h ∈ L∞([0, T ],Y ) and consider an arbitrary ez(n) → h in
L p ([0, T ],Y ) , for all p ≥ 2, as n → ∞.

Then

wM,z(n) = 〈w, pM (z(n))〉
=

∑
|α|=M

wα(t, x)z(n)α/
√
α! ∈ H

2
p ∩ H

2
2,

and

uM,z(n)(t, x) = 〈u(t, x), pM (z(n))〉
=

∑
|α|=M

uα(t, x)z(n)α/
√
α! ∈ C

(
[0, T ],H2

p ∩ H
2
2

)
,

M ≥ 0, is the unique solution to the system (4.7) corresponding to h = ez(n) and
wM,h = wM,z(n). Recall, u−1,z(n) = 0 and u0,z(n) coincides with the solution of
Navier–Stokes equation u0 in Lemma 1. By Lemma 7, there is a unique vM,h ∈
C
(
[r, T ],H2

p ∩ H
2
2

)
,M ≥ 0, solving (4.7 with wM,h = 〈w, pM (h)〉 ∈ H

2
p ∩ H

2
p.

We have v−1,h(t) = 0, and v0,h coincides with the solution of Navier–Stokes equa-
tion u0 in Lemma 1. By Lemma 7 (see (4.8)), for every M ≥ 1 there is a constant C0
independent of n such that

sup
r≤t≤T

∑
l=2,p

[|uM,z(n)(t)|2,l+|vM,h(t)|2,l ] ≤ C0. (4.10)

For VM
n = vM,h − uM,z(n),M ≥ 1, the following equation holds (M ≥ 1):

VM
n (t) = wM − wM,z(n) +

t∫

r

P[∂i

(
a i j (s) ∂ j VM

n (s)
)

+[bi (s)− ui
0 (s)]∂i VM

n (s)+ V i
n (s)∂i u0(s)+ Gn(s)]ds,
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where Gn(s) = G1
n(s)+ G2

n(s) with

G1
n(s) = −

∑
K+L=M,

K ,L≥1

[V K ,k
n (s)∂kuL ,z(n)(s)+ uK ,z(n),k (s) ∂kVL

n (s)]

and

G2
n(h, s) = 1M=1(g(s), hn(s))Y +

(
σ i (s), h(s)

)
Y
∂i VM−1,h

n (s)

+
(
σ i (s), hn(s)

)
Y
∂i uM−1,z(n)(s).

By Proposition 5 in Appendix II, for Ln
M = sups≤T

[|VM
n (t)|2,p+|VM

n (t)|2,2
]
,

with M ≥ 1,

Ln
M ≤ C

⎡
⎢⎣An +

∑
l=2,p

⎛
⎝

T∫

r

|Gn(s)|l1,lds

⎞
⎠

1/ l⎤
⎥⎦ ,

where An = ∑
l=2,p |wM − wM,z(n)|2,l . We estimate

|G1
n(s)|1,l ≤ CC0

∑
1≤K≤M−1

Ln
K ,

|G2
n(h, s)|1,l ≤ C[1M=1|hn(s)|Y |g(s)|1,l

+Ln
M−1 + C0|hn(s)|],

where hn = h − ez(n). So, for each M ≥ 1 there is a constant independent of n such
that

Ln
M ≤ C

⎧⎨
⎩An +

∑
1≤K≤M−1

Ln
K +

∑
l=2,p

⎡
⎣

T∫

0

|hn(s)|lds)1/ l

+
⎛
⎝

T∫

0

|hn(s)|2lds

⎞
⎠

1/2l (∫
|g(s)|2l

1,lds

)1/2l

⎤
⎥⎦

⎫
⎪⎬
⎪⎭
.

Starting with M = 0, Ln
0 = 0 for all n, it follows by induction that

Ln
M = sup

r≤s≤T

∑
l=2,p

|vM,h(s)− uM,z(n)(s)|2,l → 0

as n → ∞,M ≥ 1.
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Since h ∈ L∞([0, T ],Y ) is arbitrary,

u(t) =
∑
α

uα(t)ξα ∈ CT ′(b; [r, T ],H2
p ∩ H

2
2) ⊆ CT ′([r, T ],H2

p ∩ H
2
2)

is the unique solution to (3.1). Obviously,

vM,h(t, x) = 〈
pM,T (h),u(t, x)

〉
, h ∈ L∞([0, T ],Y )

satisfies (4.7). Since for each CONS b′ = (e′
k) ∈ B any linear combination of e′

k
belongs to L∞([0, T ],Y ), the generalized solution u(t) extends any D-solution.

Now we will prove that the unique generalized H
2
p ∩ H

2
2-solution of (3.1) in [0, T ]

is F
W -adapted. We fix t∗ ∈ (0, T ), r ≤ t∗ and consider a special basis b̄ ∈ B with

m̄i (t) in L2((0, T )) so that each m̄i is supported either in [0, t∗] or in [t∗, T ] and such
that for each h ∈ L∞([0, T ],Y ) there is a sequence z(N ) ∈ Z (see Lemma 5) for
which ez(N ) → h in L p ([0, T ],Y ) , for all p ≥ 2, as N → ∞ (for example, (m̄k) is a
combination of two trigonometric or unconditional L p ([0, T ])-basis (Haar basis) on
(0, t∗) and (t∗, T )). Let ξ̄α = ξ̄α(b̄), α ∈ J , the corresponding orthonormal basis in
L2(F

W
T ). Let

u(t) =
∑
α

ūα(t)ξ̄α ∈ CT ′(b̄; [0, T ],H2
p ∩ H

2
2)

be the unique solution to (3.1) constructed using the representation

w|D(b̄) =
∑
α

w̄αξ̄α ∈ T ′(b̄; H
2
p ∩ H

2
2).

So, ūα ∈ C
(
[0, T ],H2

p ∩ H
2
2

)
satisfy (3.4) in Ll , l = 2, p, with wα = w̄α, α ∈ J .

Let J ′ = α ∈ J : α has a non zero component corresponding to m̄k whose support is
in (t∗, T ). Since w is FW

r -measurable, w̄α = 0 if α ∈ J ′. Indeed, if α ∈ J ′, there are
ci ∈ R,zi ∈ Z, i,= 1 . . . , n, so that

ξα =
n∑

i=1

ci pT (zi ).

Then

w̄α =
〈

w,
n∑

i=1

ci pT (zi )

〉
=

n∑
i=1

ci 〈w, pT (zi )〉

=
n∑

i=1

ci 〈w, pr (zi )〉 =
〈

w,
n∑

i=1

ci pr (zi )

〉
= 0,
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because, by (4.3),

n∑
i=1

ci pr (zi ) = E[
n∑

i=1

ci pT (zi )|FW
r ] = E

[
ξα|FW

r

]
= 0.

We claim that, similarly, for t ∈ (0, t∗), ūα(t) = 0 if α ∈ J ′. Indeed if α ∈ J ′ and
|α| = 1, we have w̄α = 0 and in the Eq. (3.6) for ūα we have the input function
Fα(t) = 0 for t ∈ (0, t∗). Therefore the unique solution ūα(t) = 0 if t ∈ (0, t∗). Then
we simply apply induction on |α| = n and use (3.6) (note that if |α| = n + 1, then
α = α̃+ εk for some k and without any loss of generality we can assume that α̃ ∈ J ′).
As a result,

u(t) =
∑
α∈J

ūα(t)ξ̄α =
∑
α/∈J ′

ūα(t)ξ̄α, t ∈ [r, t∗].

Obviously, ξ̄α are FW
t∗ -measurable for α /∈ J ′. Also, for any z ∈ Z,M ≥ 1, t ≤ t∗,

〈pM (z),u(t)〉 =
∑
α/∈J ′

ūα(t)
zα√
α! = 〈

pM,t∗(z),u(t)
〉

= 〈
pM (ez1(0,t∗)),u(t)

〉

(note that ez = ∑
k zkek, ez1(0,t∗) = ∑

k /∈G zkek , where G is the set of all k such that
m̄ jk in ek = m̄ jk l jk has its support in (t∗, T )). The statement of Theorem 2 is proved.

The solution above has the restarting property as well. By the same arguments as
in Corollary 1 we have

Corollary 4 Let w ∈ T ′(H2
2 ∩H

2
2) and A1–A3 hold. Let ur,w(t) be H

2
p ∩H

2
2-solution

to (3.1)in [r, T ], T < T1, and r ≤ r ′ ≤ t ≤ T . Then

ur,w(t) = ur ′,u(r ′)(t). (4.11)

Corollary 5 (Markov Property) Assume that the assumptions of Corollary 4 hold
true and, in addition, w is FW

r −measurable, then ur,w(t) is (FW
t )t≥r -adapted. This

together with (4.11) can be interpreted as Markov property.

Let choose a uniformly bounded basis b = {en} ( supk,s |ek(s)|Y < ∞) and rescale
the solution in Theorem 2

u|D(b) =
∑
α

uα(t)ξα,

using the second quantization Cε operator in (3.9) in the Fock space H = ∑
n Hn

(Hn = H⊗̂n, see Appendix I, 5.1). Recall,

Cε =
∞∑

n=0

κε,n D⊗n
ε ,
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822 R. Mikulevicius, B. L. Rozovskii

where Dεek = 2−εkek and κε,n = e−εen
. According to Proposition 2,

uε(t) = Cεu(t) =
∞∑

n=0

∑
|α|=n

κε,n(2
−εN)αuα(t)ξα (4.12)

is H
2
2-valued continuous. The following statement holds.

Proposition 3 Let b = {en} be uniformly bounded and A1–A3 hold. Let u ∈
T ′([0, T ],H2

p ∩ H
2
2) be the solution to (3.2) in [0, T ] with the deterministic initial

w ∈ H
2
p ∩ H

2
2. Then the rescaled H

2
2-valued square integrable continuous process

uε(t) (defined by (4.12), see Proposition 2) is adapted and Markov (in a standard,
rather than generalized, sense).

Proof For each M ≥ 1, z ∈ Z ,

EpT,M (z)uε(t) = 〈
pT,M (z),uε(t)

〉 = κε,M
〈
pT,M (z

ε),u(t)
〉

= κε,M
〈
pt,M (z

ε),u(t)
〉 = 〈

pt,M (z),uε(t)
〉

= Ept,M (z)uε(t).

Since uε(t) is square integrable, E
[
uε(t)|FW

t

] = uε(t). So uε(t) is adapted in a
standard sense.

For any 0 ≤ s ≤ t, by Corollary 4, u(t) = us,u(s)(t). Therefore,

uε(t) = Cεu(t) = Cε(us,u(s)(t)) = (uε)s,u
ε(s)(t)

and the standard Markov property follows. ��
Acknowledgments The authors are grateful to S. V. Lototsky and S. Kaligotla for many fruitful discus-
sions.

5 Appendix I. Wiener chaos

In the first part of Appendix we present some facts of white noise analysis.

5.1 Rescaling of Wiener chaos by second quantization operator

Consider a generalized random variable u = ∑
α uαξα = ∑

α uα
√|α|!W (eα) ∈

D′(b),b = {ek, k ≥ 1} ∈ B, where

W (eα) = W ⊗n(eα) =
T∫

0

sn∫

0

. . .

s2∫

0

eα(s1, . . . , sn)dWs1 . . . dWsn ,
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if |α| = n and {eα, α ∈ J } defined by (4.1) is a CONS of the symmetric part Hn = H⊗̂n

of H⊗n (recall H = L2(0, T ])× Y ). We can interpret

u =
∑
α

uαξα =
∞∑

n=0

∑
|α|=n

uα
√

n!W ⊗n(eα)

as a result of the noise W acting on an element of the Fock space: W (û) = u with

û =
∑
α

uα
√|α|!eα =

∞∑
n=0

∑
|α|=n

uα
√

n!eα

=
∞∑

n=0

û(n) ∈ H =
∞∑

n=0

Hn =
∞∑

n=0

H⊗̂n .

Here H⊗̂0 = R and the norm in the Fock space H is defined as

||û||2H =
∥∥∥∥∥

∞∑
n=0

û(n)
∥∥∥∥∥

2

H
=

∞∑
n=0

||û(n)||2Hn

n! .

Obviously, E[W (û)2] = ||û||2H. Let A = (An)n≥0. be a self-adjoint positive opera-
tor in H such that Aneα = λ (α) eα , where |α| = n and λ (α) , α ∈ J , are positive
numbers.

Remark 9 The operator A in the Fock space H can be used to rescale a generalized
r.v. For

u =
∑
α

uαξα = W (û) ∈ D′(b),

we define Au = u A ∈ D′(b) by

Au = u A = W (Aû) =
∑
α

uα
√|α|!W (Aeα)

=
∑
α

uαλ(α)
√|α|!W (eα) =

∑
α

uαλ(α)ξα.

Definition 10 Since λ(α) > 0, we can define

A−1u = u A−1 =
∑
α

uαλ(α)
−1ξα.

Example 3 1. (Second quantization operator in space-time) Consider a self-adjoint
positive operator B in H such that Bek = λkek . The second quantization operator
A =�(B) = (

B⊗n
)

in H is defined as
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824 R. Mikulevicius, B. L. Rozovskii

Aeα = �(B)eα = B⊗neα = λαeα, |α| = n,

where λ = (λk) and λα = �kλ
αk
k . We have

�(B)u =
∑
α

uαλ
αξα.

2. (Second quantization operator in space) Consider a self-adjoint positive operator
B on Y such that the sequence of its eigenvectors

(
�p
)

p≥1 (B�p = λp�p, λp > 0)
is a CONS in Y . Let b = {ek, k ≥ 1} , where ek(s) = mik (s)� jk . We extend B to
H by

Bek = B(mik� jk ) = mik B� jk = λ jk ek

and rescale in space-time using A = (
B⊗n

)
. For u = ∑

α uαξα we have

�(B)u =
∑
α

uαλ
αξα,

where λα = �kλ
αk
jk
.

3. Consider a self-adjoint positive operator B on H such that Bek = λkek and
a sequence of positive numbers qn . Let A = ∑∞

n=0 qn B⊗n . Then Aeα =
qn B⊗neα = qnλ

αeα, |α| = n. In this case,

Au =
∞∑

n=0

qn

∑
|α|=n

uαλ
αξα.

For the Wick product we have the following obvious statement.

Remark 10 1. Assume A = (An) is a self-adjoint positive operator on H such that
Aeα = Aneα = λ(α)eα, |α| = n and λ(α),α ∈ I, are positive numbers, u, v ∈
D′(b). Then, denoting Au = u A, Av = vA, we have

A(u♦v) = A
(

A−1u A♦A−1vA
)

=
∑
α

cαξα,

where

cα =
∑
β≤α

λ(α)

λ(β)λ(α − β)
u A
β v

A
α−β

√
α!

β!(α − β)! .
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In particular, if �(B) is the second quantization operator in space-time, then

λ(α)

λ(β)λ(α − β)
= λα

λβλα−β = 1

and �(B)(u♦v) = u B♦vB .

2. For the Skorokhod stochastic integral, we have

A (δ(u)) = A

T∫

0

us♦Ẇsds =
T∫

0

A
(

A−1u A
s ♦A−1Ẇ A

s

)
ds

=
T∫

0

A
(

A−1u A
s ♦Ẇs

)
ds;

for the coefficients

(Aδ(u))α =
∑

k

T∫

0

(u A
α(k)(t), λ(εk)ek(t))Y dt

√
αk

λ(α)

λ(α(k))λ(εk)
ξα

=
∑

k

T∫

0

(u A
α(k)(t), ek(t))Y dt

√
αk

λ(α)

λ(α(k))
ξα,

(
A(u(t)♦Ẇt )

)
α

=
∑

k

(vA
α(k)(t), ek(t))Y

√
αk

λ(α)

λ(α(k))
ξα.

5.2 Product, Wick product, and Malliavin derivatives

Consider Hilbert space H = L2([0, T ],Y ), CONS b = {ek, k ≥ 1} ∈ B, cylindrical
Brownian motion Wt , and Cameron–Martin basis {ξα}α∈J introduced in Sect. 2.1. The
Malliavin derivative D (see e.g. [26]) is defined in D(b) as follows (it assigns to ξα
an element of D(b; H)):

D(ξμ) =
∑
k≥1

√
μk ξμ−εk ek =

∑
α

∑
μ=α+εk

√
μkekξα. (5.1)

By induction,

Dn(ξμ) =
∑
α

⎛
⎝∑

|p|=n

1p+α=μ
√
(α + p)!
α! u p

⎞
⎠ ξα, (5.2)

where u p = ∑
k1,...,kn

∑
εk1+···+εkn =p ek1 ⊗ · · · ⊗ ekn ∈ H⊗n .
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Proposition 4 Let ξθ and ξκ be elements of the Cameron–Martin basis. Then, with
probability 1,

ξθ ξκ =
∞∑

n=0

Dnξθ♦Dnξκ

n! . (5.3)

Proof It is a standard fact (see e.g. [17]) that

ξθ ξκ =
∑

p≤θ∧κ

√(
θ

p

)(
k

p

)(
θ + κ − 2p

κ − p

)
p!ξθ+κ−2p.

Let us rewrite this expression as follows:

ξθ ξκ =
∑

p,β,γ :
p+γ=κ,p+β=θ

√
θ !κ!(β + γ )!
p!(β)!(γ )! ξβ+γ

where the summation goes over all triples (p, β, γ ) ∈ J × J × J such that p + γ =
κ, p +β = θ . Changing variables (1-to-1 mapping that assigns to (p, β, γ ) the vector
(p, β, α) with α ≥ β) of summation by p = p, β = β, γ + β = α, we get

ξθ ξκ =
∑

p, β≤α:
p+α−β=κ,p+β=θ

√
θ !κ!α!

p!(β)!(α − β)!ξα

=
∑
α

∑
β≤α

∞∑
n=0

∑
|p|=n

1p+α−β=κ1p+β=θ
√
θ !κ!α!

p!(β)!(α − β)!ξα (5.4)

By definition of the Wick product and (5.2), and taking into account that |p|!/p! is
the number of different orthogonal unit vectors in u p ∈ H⊗n , we arrive at

Dnξθ♦Dnξκ

=
∑
α

∑
β≤α

n!
∑

|p|=n

1p+α−β=κ1p+β=θ
√
θ !κ!α!

p!(β)!(α − β)!ξα. (5.5)

Comparing (5.4) with (5.5), we get (5.3). ��
Remark 11 Proposition 4 implies that ξθ ξκ = ξθ♦ξk +∑γ<θ+κ cγ ξγ . In other words,
ξθ♦ξk = ξθ+k is the highest stochastic order component of the Wiener chaos expan-
sion of ξθ ξκ .

By linearity, the statement of the Proposition could be extended to

XY =
∞∑

n=0

(Dn X)♦(DnY )

n! , (5.6)
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where X and Y are finite linear combinations of elements of Cameron–Martin basis.
If X and Y finite second moments, relation (5.6) could be derived from the former
case by passing to the limit in L1.By linearity, the statement of Proposition could be
extended to

XY =
∞∑

n=0

(Dn X)♦(DnY )

n! ,

where X and Y are finite linear combinations of elements of Cameron–Martin basis.

5.3 Derivation of unbiased Navier–Stokes equation

To simplify discussion, we will consider a velocity field which depends only on one
standard Gaussian random variable η ∼ N (0, 1) , rather than a trajectory of the
Wiener process Wt . An interested reader would have little difficulties extending the
arguments below to the setting with Wiener process.

Consider a velocity field

u (t, x) =
∞∑

n=0

un (t, x) ξn (η).

Note that in our setting the Cameron–Martin expansion (see Theorem 1) is indexed
by integers rather than multi-indexes. Assume that for every n, un is analytic in x in
that it could be written as

un (t, x) =
∑

γ∈Nd

cn,γ (t) xγ .

Let Z = (Z1, . . . , Zd) be a Fη-measurable. Then by substituting Z into u we get

u (t, Z) :=
∑

n

⎛
⎝∑

γ

cn,γ (t) Zγ

⎞
⎠ ξn (η). (5.7)

Now, let us introduce the Wick-powers of Z : Z♦γ := Z♦γ1
1 ♦ · · · ♦Zγd

d , γ =
(γ1, . . . , γd) ∈ Nd .

Next we will replace the standard algebra in (5.7) by the Wick algebra:

u♦
n (t, Z) :=

∑
γ

cn,γ (t) Z♦γ

Consider now the following random field

u♦ (t, Z) :=
∑
n≥0

u♦
n (t, Z)♦ξn (η)
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828 R. Mikulevicius, B. L. Rozovskii

Remark 12 Note that Wick algebra on nonrandom elements reduces to the standard
deterministic algebra.

Let Xt = (X1
t , . . . , Xd

t ) be a solution of the following dynamic equation

Ẋt = u♦ (t, Xt ).

Then by the Wick chain rule

..

Xt = d

dt
u♦ (t, Xt ) = ∂t u♦ (t, Xt )+ ∇u♦ (t, Xt )♦Ẋt ,

= ∂t u♦ (t, Xt )+ u♦ (t, Xt )∇♦u♦ (t, Xt ).

If F = F(t, x) is an acting force, this yields (Wick) Euler equation

∂t u♦ (t, x) = −u♦ (t, x)∇♦u♦ (t, x)+ F (t, x)

If there is no randomness, due to Remark 12, this equation reduces to the standard
Euler equation:

∂t u (t, x) = −u (t, x)∇u (t, x)+ F (t, x).

Now, by taking F = �u − ∇ P, where P stands for pressure, we get the unbiased
Navier–Stokes equation

∂t u♦ (t, x) = �u − u♦ (t, x)∇♦u♦ (t, x)− ∇ P + F (t, x).

6 Appendix II. Stokes equation

Consider a deterministic Stokes equation for u =(ul)1≤l≤d , and scalar functions P,

∂t u (t, x) = ∂i

(
a i j (t, x) ∂ j u (t, x)

)
+ bi (t, x)∂i u(t, x)

+G(t, x)u(t, x) + f (t, x)+ ∇ P(t, x), div u(t) = 0,

u (r, x) = w(x), x ∈ Rd , r ≤ t ≤ T .

equivalently,

∂t u (t) = S[∂i

(
a i j (t) ∂ j u (t)

)
+ bi (t)∂i u(t)+ G(t)u(t)+ f(t)]

u(r) = w,t ∈ [r, T ], (6.1)

where S is the solenoidal projection of the vector fields,

a(t, x)=
(

ai j (t, x)
)

1≤i, j≤d
,b(t, x)=

(
bi (t, x)

)
1≤i<d

,G(t, x)=
(

gi j (t, x)
)

1≤i, j≤d

are measurable bounded functions. The matrix a is symmetric and positive.
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We will need the following assumption.
B. For all t ≥ 0, x, λ ∈Rd , K |λ|2 ≥ ai j (t, x)λiλ j ≥ δ|λ|2,where K , δ are fixed

strictly positive constants. Also, for all (t, x) ∈ [r, T ] × Rd ,

max
t,x,|α|≤2

|∂αx a(t, x)| + max
t,x,|α|≤1

|∂αx b(t, x)| + sup
t,x

|G(t, x)| ≤ K .

Definition 11 A function u ∈ C([r, T ],Hs
p(R

d)) is an H
s
p-solution of (6.1) if the

equality

u(t) = w +
t∫

r

S[∂i (a
i j (s)∂ j u(s))+bi (s)∂i u(s)+ f(s)]ds, (6.2)

holds in H
s−2
p (Rd) for every t ∈ [r, T ].

Proposition 5 Let p > d, assumption B hold, w ∈ H
2
p ∩ H

2
2,

T∫

r

|f(s)|l1,lds +
T∫

r

|∇G(s)|llds < ∞, l = 2, p.

Then there is a unique H
2
p ∩ H

2
2-valued continuous solution to (6.1). Moreover, there

is a constant C independent of f,w,u so that

sup
r≤t≤T

[|u(t)|2,2 + |u(t)|2,p]

≤ C

⎛
⎜⎜⎝|w|2,2 + |w|2,p +

⎛
⎝

T∫

r

|f(s)|p
1,pds

⎞
⎠

1
p

+
⎛
⎝

T∫

r

|f(s)|21,2ds

⎞
⎠

1/2
⎞
⎟⎟⎠ . (6.3)

Proof Let w ∈ H
3
p ∩ H

2
2. By Proposition 4.7 and Corollary 4.6 in [21] (applied for

s = 0), there is a unique H
1
p ∩ H

1
2-valued continuous solution u of (6.1), and

T∫

r

|u(s)|l2,lds < ∞, l = 2, p.

Moreover,

sup
s≤T

|u(s)|l1,l ≤ C[|w|l2,l +
T∫

r

|f(s)|llds], l = 2, p, (6.4)
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Consider Stokes equation

ξ (t) = wα +
t∫

r

P[∂i

(
a i j (s) ∂ jξ (s)

)
+ F(s)]ds

div ξ(t) = 0, t ∈ [r, T ],
(6.5)

where

F(s) = bi (s)∂i u(s)+ G(s)u(s)+ f(s).

It is readily checked (using Sobolev embedding theorem) that

|F(s)|1,l ≤ C[K (|u(s)|2,l + |∇G(s)|l |u(s)|1,p
(6.6)+|f(s)|1,l ], l = 2, p.

and

T∫

r

|F(s)|l1,lds < ∞, l = 2, p.

By Corollary 4.6 and Proposition 4.7 in [21] (applied to (6.5) with s = 1), there is a
unique H

2
2 ∩ H

2
p-valued continuous solution of (6.5) ξ = u (by uniqueness) such that

T∫

r

|u(s)|l3,lds < ∞, l = 2, p.

Let α be a multiindex such that |α| ≤ 2. Then uα = ∂αu is Lp ∩ L2-valued
continuous and satisfies the equation

∂t uα(t) = S{∂α[∂i (a
i j (t)∂ j u(t))+ F(t)],

uα(0) = ∂αw.

Differentiating the product, we obtain

∂α∂i (a
i j (t)∂ j u(t)) = ∂i (a

i j (t)∂ j uα(t))+∂i Dα(t) (6.7)

with

|Dα(t)|l ≤ C |u(t)|2,l , l = 2, p. (6.8)
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By Lemma 3 in [24], yl,α(t) = |uα(t)|ll , l = 2, p, is differentiable:

yl,α(t) = yl,α(r)+
t∫

r

hl,α(s) ds,

with

hl,α(s) = l{〈|uα(s)|l−2uα(s), ∂αF(s)]〉1,l

−
∫

ai j (s)∂i (|uα(s)|l−2uk
α(s))∂ j u

k
α(s) dx

−
∫
∂i (|uα(s)|l−2uk

α(s))D
k
α(s) dx}.

Notice ∂αF(s) ∈ H−1,l and, by our assumptions, there is a constant C so that for all
s ∈ [r, T ]

|∂αF(s)|−1,l ≤ C |F(s)|1,l , l = 2, p.

We have hl,α(s) = lh1
l,α(s)+ lh2

l,α(s), where

h1
l,α(s) = −

∫
ai j (s)∂i (|uα(s)|l−2uk

α(s))∂ j u
k
α(s) dx .

Then

h1
l,α(s) ≤ −δ

∫
|uα(s)|l−2|∇u(s)|2 dx,

and for each ε > 0 there is a constant Cε such that

|h2
l,α(s)| ≤ ε

∫
|uα(s)|l−2|∇uα(s)|2 dx

+Cε

∫
[|uα(s)|l−2(|∇F(s)|2 + |Dα(s)|2)

+|uα(s)|l−1|F(s)|]dx,

So, we obtain that

yl(t) =
∑
|α|≤2

yl,α(t) = yl(r)+
t∫

r

hl(s) ds

with

hl(s) =
∑
|α|≤2

hl,α(s) ≤ C(yl(s)+ fl(s)),
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where fl(s) = |F(s)|l1,l + |Dα(s)|ll . Therefore, by (6.8), (6.6),

hl(s) ≤ C[yl(s)+ |f(s)|l1,l + |∇G(s)|ll |u(s)|l1,p.

By Gronwall’s inequality,

sup
r≤s≤T

yp(s) ≤ C

⎡
⎣yp(r)+

T∫

r

|f(s)|p
1,pds

⎤
⎦ ,

and

sup
r≤t≤T

|u(t)|p
2,p ≤ C

⎛
⎝|w|p

2,p +
T∫

r

|f(s)|p
1,pds

⎞
⎠ , (6.9)

where C is independent of w and f . Similarly, by Gronwall’s inequality

sup
r≤s≤T

y2(s) ≤ C[y2(r)+ sup
s≤T

|u(s)|21,p
T∫

r

|∇G(s)|22ds +
T∫

r

|f(s)|21,2ds],

and (see (6.4))

sup
r≤t≤T

|u(t)|22,2 ≤ C

⎛
⎝|w|22,2 + |w|22,p + (

T∫

r

|f(s)|p
pds)

2
p +

T∫

r

|f(s)|21,2ds

⎞
⎠ ,

(6.10)

where C is independent of w, f and u. Combining (6.9) and (6.10) we have (6.3) with
C is independent of w, f and u.

Given w ∈ H
2
p ∩ H

2
2, there is a sequence wn ∈ H

3
p ∩ H

2
2 so that wn → w in

H
2
p ∩ H

2
2. For every n there is a unique H

2
p ∩ H

2
2-valued continuous solution un of

(6.2) with the initial condition u(r) = wn . By (6.3)

∑
l=2,p

sup
r≤t≤T

|un(t)− um(t)|2,l ≤ C
∑

l=2,p

|wn − wm |2,l → 0

as n,m → ∞. There is a continuous H
2
p ∩ H

2
2-valued u(t) such that

∑
l=2,p

sup
r≤t≤T

|un(t)− u(t)|2,l → 0

as n → ∞. Obviously, u is H
2
p ∩ H

2
2-valued continuous solution of (6.2) with initial

condition u(r) = w and (6.3) holds. ��
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