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Abstract Let (nk)k≥1 be an increasing sequence of positive integers. Bobkov and
Götze proved that if the distribution of

cos 2πn1x + · · · + cos 2πnN x√
N

(1)

converges to a Gaussian distribution, then the value of the variance is bounded from
above by 1/2 − lim sup k/(2nk). In particular it is impossible that for a sequence
(nk)k≥1 with bounded gaps (i.e. nk+1 − nk ≤ c for some constant c) the distribution
of (1) converges to a Gaussian distribution with variance σ 2 = 1/2 or larger. In this
paper we show that the situation is considerably different in the case of the law of
the iterated logarithm. We prove the existence of an increasing sequence of positive
integers satisfying

nk+1 − nk ≤ 2
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such that

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= +∞ a.e.

Keywords Law of the iterated logarithm · Bounded gaps
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1 Introduction and statement of results

Let (nk)k≥1 be an increasing sequence of positive integers. It is well known that
the system (cos 2πnk x)k≥1 behaves similar to a system of independent, identically
distributed (i.i.d.) random variables if (nk)k≥1 is growing fast. For example, Salem
and Zygmund [23] proved that the distribution of

∑N
k=1 cos 2πnk x√

N
(2)

converges to the normal (0,1/2) distribution if (nk)k≥1 satisfies

nk+1

nk
≥ q > 1, k ≥ 1. (3)

Condition (3) is called “Hadamard’s gap condition”, and a sequence satisfying this
condition is called a “lacunary” sequence. Erdős and Gál [10] proved that the sys-
tem (cos 2πnk x)k≥1, where (nk)k≥1 is lacunary, also satisfies the law of the iterated
logarithm (LIL). They showed that

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= 1√
2

a.e.,

which is in perfect accordance with the behavior of systems of i.i.d. random variables
(cf. also [26]).

The situation gets much more involved if the function cos 2πx is replaced by
a general 1-periodic function (cf. [4,11,21]), or if the sequence (nk)k≥1 is of sub-
lacunary growth (cf. [1,6,7,17,22]). There are only very few precise results which
hold for general sequences (nk)k≥1 without any growth conditions, except for the case
nk = k, k ≥ 1, where the theory of continued fractions can be used to obtain precise
estimates (cf. [18,25]).

Though it is not possible to determine the precise asymptotic behavior of systems
(cos 2πnk x)k≥1 for slowly growing (nk)k≥1, it turns out that random constructions
can be used to prove the existence of slowly growing sequences (nk)k≥1 for which
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On the law of the iterated logarithm for trigonometric series with bounded gaps 609

(cos 2πnk x)k≥1 exhibits a certain probabilistic behavior. For example, Salem and
Zygmund [24] showed that if Xk(ω) are independent random variables taking the val-
ues ±1 which probability 1/2 each, then for the sequence (nk(ω))k≥1 which consists
of all number k for which Xk(ω) = 1 the distribution of (2) converges to the normal
(0,1/4) distribution for almost all ω. Observe that the sequences constructed in such a
way satisfy

lim nk/k → 2 and sup
k≥1

(nk+1 − nk) = ∞

for almost all ω. This is in accordance with a result of Bobkov and Götze [8],
which states that whenever the system (cos 2πnk x)k≥1 satisfies the CLT for
a sequence (nk)k≥1, the variance of the limiting distribution can be at most
1/2 − lim supk→∞ k/(2nk). In particular this implies that no sequence (nk)k≥1, for
which the distribution of (2) converges to a normal (0,1/2) distribution, can have
bounded gaps. Recently, it was proved [12,14,15] that a CLT for (cos 2πnk x)k≥1 with
variance arbitrarily close to 1/2 is possible for sequences with bounded gaps. On the
other hand, Berkes [5] proved that if we allow nk+1 − nk → ∞, then a variance of
1/2 of the limiting distribution is possible.

Less investigations have been made concerning the law of the iterated logarithm in
the case of slowly growing (nk)k≥1. Salem and Zygmund [24] showed that if Xk(ω)

are independent random variables taking the values ±1 which probability 1/2 each,
then, writing (nk(ω))k≥1 for the sequence which consists of all the numbers k for
which Xk = 1, for almost all ω

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= 1

2

for almost all x (in fact they proved a result for more general trigonometric series,
which contains the above result as a special case). As mentioned before, the sequences
constructed by Salem and Zygmund have (almost surely) an asymptotic density of 1/2
and contain arbitrarily large gaps.

Very recently, it was shown that there exist sequences (nk)k≥1 with bounded gaps
for which the lim sup in the LIL for the discrepancy DN of (〈nk x〉)k≥1 (where 〈 · 〉
denotes the fractional part) is not a constant almost everywhere (see [13]), and that
for any ε > 0 there exists a sequence (nk)k≥1 with bounded gaps such that the value
of the lim sup in the LIL for DN (〈nk x〉) is larger than 1/2 − ε for almost all x (see
[12]). The same methods could be used to show that there exist sequences (nk)k≥1
with bounded gaps such that the value of

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

(4)

is not a constant a.e., or larger than 1/
√

2 − ε a.e.
The purpose of this paper is to show that there even exist sequences (nk)k≥1 with

bounded gaps for which (4) equals +∞ for almost all x . We can limit the maximal
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610 C. Aistleitner, K. Fukuyama

distance between two consecutive elements of (nk)k≥1 to the smallest possible value,
i.e. we can require that

nk+1 − nk ≤ 2, k ≥ 1.

Theorem 1 There exists a strictly increasing sequence (nk)k≥1 of positive integers
satisfying

nk+1 − nk ≤ 2

such that

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= ∞ a.e.

Combining this theorem with Koksma’s inequality (see [9] or [19]) we get the
following corollary:

Corollary 1 There exists a strictly increasing sequence (nk)k≥1 of positive integers
satisfying

nk+1 − nk ≤ 2

such that

lim sup
N→∞

N DN (〈nk x〉)√
2N log log N

= ∞ a.e.

The main idea in the proof is based on the observation that for arbitrary l there
exists a slowly growing sequence (nk)k≥1 such that

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

≥ l (5)

holds for all x contained in a set Al of positive measure (the measure depending on l),

and that it is possible to find slightly modified versions
(

n(l,m)
k

)

k≥1
of this sequence

for which the sets A(1)
l , A(2)

l , . . . , A(m)
l , . . ., where (5) holds, fill (almost) the whole

interval (0,1). Mixing a sequence (nk)k≥1 out of all these sequences (n(l,m)
k )k≥1 for

l, m ≥ 1, which contains “large” subblocks of elements of each of these sequences,
will yield

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= ∞

for almost all x . We believe that this idea of obtaining a sequence with a globally large
value of the lim sup in the LIL by mixing sequences having locally a large value of
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On the law of the iterated logarithm for trigonometric series with bounded gaps 611

the lim sup could also be used in other circumstances to construct sequences having
a large value of the lim sup in the LIL, e.g. in the case of lacunary sequences. This
technique might be particularly useful if there already exist constructions of sequences
(nk)k≥1 for which the lim sup in (4) or in the LIL for the discrepancy is non-constant
(cf. [2,3,16]).

2 Preliminaries

The following Lemma 1 can be found in [20, Theorem 5.4, p. 149]. Lemma 2 is
standard.

Lemma 1 (Esseen’s inequality) Let X1, . . . , X N be independent random variables
satisfying

EXk = 0, E|Xk |3 < +∞, k = 1, . . . , N .

Set

BN =
N∑

k=1

VXk, FN (y) = P

(

B−1/2
N

N∑

k=1

Xk < y

)

.

Then

sup
y

|FN (y) − �(y)| ≤ cB−3/2
N

N∑

k=1

E|Xk |3,

where c is an absolute constant, and � is the normal (0,1) distribution function.

Lemma 2 For any integers A and B 	= 0,

N∑

k=1

cos 2π(A + Bk)x = cos π(2A + N B)x sin π(N + 1)Bx

sin π Bx
= O(1)

except for finitely many real numbers x. Especially

∣
∣
∣
∣
∣

N∑

k=1

cos 2πkx

∣
∣
∣
∣
∣
= O(1) and

∣
∣
∣
∣
∣
∣

∑

1≤k≤N : k odd

cos 2πkx

∣
∣
∣
∣
∣
∣
= O(1), a.e. x
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612 C. Aistleitner, K. Fukuyama

3 Proof of Theorem 1

Lemma 3 There exists an increasing sequence (nk)k≥1 of positive integers having
asymptotic density 1/2 such that

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= ∞ a.e.

Theorem 1 is an easy consequence of Lemma 2 and Lemma 3: Let (nk)k≥1 be
the sequence in Lemma 3. Define a new sequence (mk)k≥1, which consists of all odd
positive integers and all even numbers j for which j/2 ∈ (nk)k≥1, sorted in increasing
order. Since the sequence (mk)k≥1 contains all odd integers, we obviously have

mk+1 − mk ≤ 2, k ≥ 1.

Let

M(N ) = #{ j ≤ N : m j/2 ∈ (nk)k≥1}.

Then

{mk : 1 ≤ k ≤ N } = {2nk : 1 ≤ k ≤ M(N )} ∪ {1 ≤ k ≤ 2(N − M(N )) : k odd}.

Therefore

N∑

k=1

cos 2πmk x =
M(N )∑

k=1

cos 4πnk x +
∑

1≤k≤2(N−M(N ))
k odd

cos 2πkx,

and

lim sup
N→∞

∑N
k=1 cos 2πmk x√
2N log log N

≥ lim sup
N→∞

∑M(N )
k=1 cos 4πnk x√
2N log log N

− lim sup
N→∞

∣
∣
∣
∑

1≤k≤2(N−M(N )): k odd cos 2πkx
∣
∣
∣

√
2N log log N

,

By assumption

nk

k
→ 2,

which implies

M(N )

N
→ 1

3
.
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On the law of the iterated logarithm for trigonometric series with bounded gaps 613

Since by Lemma 3

lim sup
N→∞

∑M(N )
k=1 cos 4πnk x√
2N log log N

= lim sup
N→∞

∑M(N )
k=1 cos 4πnk x

√
6M(N ) log log M(N )

= ∞ a.e.,

and since by Lemma 2

lim sup
N→∞

∣
∣
∣
∑

1≤k≤2(N−M(N )): k odd cos 2πkx
∣
∣
∣

√
2N log log N

= 0 a.e.,

we conclude

lim sup
N→∞

∑N
k=1 cos 2πmk x√
2N log log N

= ∞ a.e.,

which is Theorem 1. �

Proof of Lemma 3 We write Ih for the set of integers in the interval [2(h2) +
1, 2((h+1)2)]. Then |Ih | = 2(h2+2h+1)−2(h2), where |·| denotes the number of elements
of a set.

We write Ji for the set of integers in the interval

[
(i − 1)i(2i − 1)

6
+ 1,

i(i + 1)(2i + 1)

6

]

.

Then |Ji | = i2, and every positive integer h is contained in exactly one set Ji for
appropriate i . If h ∈ Ji , then h has a unique representation of the form

h = (i − 1)i(2i − 1)

6
+ 1 + li + m, where 0 ≤ l, m ≤ i − 1.

We call the pair (l, m), which is defined in this way, the “type” of h and of the interval
Ih . If h is of type (l, m), then necessarily

l, m ≤ (4h)1/3. (6)

We define a sequence of independent random variables X1, X2, . . . over a
probability space (�,A, P) which have the following properties:

For any number k ≥ 1 there exists a uniquely defined number h such that k ∈ Ih .
Assume that Ih is of type (l, m). If (k mod 2l+m) ∈ {1, . . . , 2m}, then

Xk = Xk(x, ω) =
{

1
2

∑2l−1
j=0 cos 2π (k + j2m) x with probability P = 1/2

− 1
2

∑2l−1
j=0 cos 2π (k + j2m) x with probability P = 1/2

(7)

123



614 C. Aistleitner, K. Fukuyama

If (k mod 2l+m) 	∈ {1, . . . , 2m}, then

Xk ≡ 0.

If k ∈ Ih for some h and the interval Ih is of type (l, m), then we say that the
random variable Xk is of type (l, m). We will use the symbols E, V, P with respect
to the probability space (�,A, P), and write λ for the Lebesgue measure on (0, 1).
The notation “a.s” will always be used with respect to P, while “a.e.” is meant with
respect to λ.

Observe that for any j ∈ Ih the function cos 2π j x appears in the definition of
exactly one random variable Xk, k ∈ Ih , and that

∑

k∈Ih

Xk = 1

2

∑

k∈Ih

± cos 2πkx .

By construction

EXk = 0 k ≥ 1.

We write 	∗ for the set of indices k for which Xk ≡ 0, and 	 = N\	∗. For k ∈ 	∗

VXk = 0,

and for k ∈ 	

VXk = 1

4

⎛

⎝
2l−1∑

j=0

cos 2π
(
k + j2m) x

⎞

⎠

2

= 1

4

(
sin(π2l2m x) cos(π(2k + (2l − 1)2m)x)

sin π2m x

)2

, (8)

if Xk is of type (l, m).
Let

BN = BN (x) =
N∑

k=1

VXk .

If Xk is of type (l, m), then

|Xk | ≤ 2l .

By (6) this implies

|Xk | ≤ 2(4h)1/3
(9)
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On the law of the iterated logarithm for trigonometric series with bounded gaps 615

and

Bk ≤ 2(h+1)2+(4h)1/3 = o(2(h+2)2
) (10)

for k ∈ Ih .
We define

Al,m =
2m−1⋃

j=0

[
j

2m
− 1

2l+m+1 ,
j

2m
+ 1

2l+m+1

]

, l, m ≥ 0.

For x ∈ Al,m we have

sin
(
π2l2m x

)

sin π2m x
≥ 2l−1. (11)

For any h, we write its type by (l(h), m(h)). By the orthogonality of the trigonometric
system,

∫ 1

0

∑

k∈Ih

(
cos(π(2k + (2l(h) − 1)2m(h)x)

)2
dx = |Ih |

2
,

and

∫ 1

0

⎛

⎝

⎛

⎝
∑

k∈Ih

(cos(π(2k + (2l(h) − 1)2m(h))x)2

⎞

⎠− |Ih |/2

⎞

⎠

2

dx

=
∫ 1

0

⎛

⎝
∑

k∈Ih

cos(2π(2k + (2l(h) − 1)2m(h))x)

⎞

⎠

2

dx

= |Ih |/2.

Therefore, by Chebyshev’s inequality,

λ

⎛

⎝

⎧
⎨

⎩

∑

k∈Ih

(cos(π(2k + (2l(h) − 1)2m(h))x)2) < |Ih |/4

⎫
⎬

⎭

⎞

⎠ ≤ 8

|Ih | .

Obviously we have

∞∑

h=1

8

|Ih | < +∞,

123



616 C. Aistleitner, K. Fukuyama

so by the Borel–Cantelli lemma there exist a set A with λ(A) = 1 such that for all
x ∈ A there exists an H = H(x) such that for all h ≥ H

∑

k∈Ih

(cos(π(2k + (2l(k) − 1)2m(k))x)2) ≥ |Ih |/4. (12)

Combining (8), (11) and (12) we obtain for all x ∈ A ∩ Al,m and h ≥ H

∑

k∈Ih

VXk(x) > 22l(h)−4|Ih |. (13)

We write

B(h) =
∑

k∈Ih

VXk .

For N ∈ Ih and x ∈ A ∩ Al,m , by (13) we have

BN ≥ B(h−1) ≥ 2−4|Ih−1| ≥ 2−52
(
h2
)

.

Combining this with (9) we can verify the condition

BN → ∞ and ‖X N ‖∞ = o

(√
BN

log log BN

)

as N → ∞.

of Kolmogorov’s law of the iterated logarithm, and have

lim sup
N→∞

∣
∣
∣
∑N

k=1 Xk

∣
∣
∣

√
2BN log log BN

= 1 a.s.

By noting (10), we conclude

lim
h→∞

∣
∣
∣
∣
∑2(h2)

k=1 Xk

∣
∣
∣
∣

√
2(h+1)2 log log 2(h+1)2

= 0 (14)

Let l, m and x ∈ A ∩ Al,m be fixed, and assume that h ≥ H is of type (l, m). By
(13) we can assume that

B(h) ≥ 22l−4|Ih |.

Then by (9)

(B(h))−3/2
∑

k∈Ih

E|Xk |3 ≤ 2−3l+6|Ih |−1/223(16 log2 k)1/6
. (15)
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On the law of the iterated logarithm for trigonometric series with bounded gaps 617

Set

Uh =
{∑

k∈Ih

Xk > 2l−3
√|Ih | log log |Ih |

}

.

By Lemma 1, (3) and (15), for some constant c,

P(Uh) ≥ P

⎛

⎝
∑

k∈Ih

Xk > 2−1
√

B(h) log log |Ih |
⎞

⎠

≥ 1√
2π

∫ ∞
√

log log |Ih |/2
e−t2/2dt − c2623(16 log2 k)1/6−3l |Ih |−1/2

≥ e−(
√

log log |Ih |/2)
2
/2

√
log log |Ih | − c2626(h+1)1/3

(
2(h2+2h+1) − 2(h2)

)−1/2

� 1

h1/4(log h)1/2 .

For every pair (l, m) and every sufficiently large i , there is a number h of type
(l, m) in every interval Ji . Since the size of the integers in Ji is somewhere between
i3/3 and (i + 2)3/3, this implies

∑

h≥1
h is of type (l,m)

1

h1/4(log h)1/2 = ∞.

Since the sets Uh are independent this implies by the second Borel–Cantelli lemma

lim sup
h→∞

∑
k∈Ih

Xk

2l−3
√|Ih | log log |Ih | ≥ 1 a.s.

and, since |Ih |/2((h+1)2) → 1,

lim sup
h→∞

∑
k∈Ih

Xk

2l−3
√

2(h+1)2 log log 2(h+1)2
≥ 1 a.s.

Finally, by (14)

lim sup
N→∞

∑N
k=1 Xk

2l−3
√

N log log N
≥ lim sup

h→∞

∑2(h2)

k=1 Xk +∑
k∈Ih

Xk

2l−3
√

2(h+1)2 log log 2(h+1)2
≥ 1 a.s.,

and therefore for every x ∈ A ∩ Al,m
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618 C. Aistleitner, K. Fukuyama

lim sup
N→∞

∑N
k=1 Xk√

2N log log N
≥ 2l−4 a.s.

Let

Al =
∞⋃

m=1

Al,m .

Then P(Al) = 1. In fact, x ∈ Al,2 if and only if 〈2x〉 ∈ Al,1. Similarly, x ∈ Al,m

if and only if 〈2m−1x〉 ∈ Al,1, and generally

x ∈
∞⋃

m=1

Al,m

if and only if at least one element of the sequence (〈2m−1x〉)m≥1 is contained in Al,1.
Since the sequence (〈2m−1x〉)m≥1 is uniformly distributed modulo 1 for almost all
real x , this implies

P(Al) = P

( ∞⋃

m=1

Al,m

)

= 1.

Since there are only countably many choices for m we have for every x ∈ Al ∩ A,

lim sup
N→∞

∑N
k=1 Xk√

2N log log N
≥ 2l−4 a.s. (16)

Now let

A∗ =
( ∞⋂

l=1

Al

)

∩ A.

Then P(A∗) = 1, and since there are only countable many values for l we have for
almost all x ∈ (0, 1)

lim sup
N→∞

∑N
k=1 Xk√

2N log log N
= ∞ a.s.

By Fubini’s theorem this also implies

lim sup
N→∞

∑N
k=1 Xk√

2N log log N
= ∞ a.e.,

P-almost surely.
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On the law of the iterated logarithm for trigonometric series with bounded gaps 619

We define sets 	+ = 	+(ω) and 	− = 	−(ω) in the following way:

	+ = {k ∈ 	 : Xk(ω, 0) > 0} and 	− = 	\	+.

In other words, 	+ contains those indices in 	 for which Xk has sign “+” in (7),
and 	− the indices where Xk has sign “−” (depending on ω). We can choose an ω̂

for which

lim sup
N→∞

∑N
k=1 Xk(ω̂, x)√
2N log log N

= ∞ a.e.

and (by the strong law of large numbers)

#{k ∈ 	+, k ≤ N }
#{k ∈ 	−, k ≤ N } → 1 as N → ∞ (17)

hold. In the sequel we will always assume that this particular ω̂ has been chosen, and
write Xk = Xk(ω̂).

For all k ∈ N\	 we have Xk ≡ 0. This means

∑

k≤N

Xk =
∑

k∈	,k≤N

Xk,

and

∑

k≤N

(

Xk + 1

2
cos 2πkx

)

= 2
∑

k∈	+, k≤N

Xk

The function
∑

k∈	+ is an infinite cosine-series. We write (nk)k≥1 for the sequence
which consists of all frequencies which are contained in this series, sorted in increasing
order. Then by (17) the sequence (nk)k≥1 has asymptotic density 1/2, and since

lim sup
N→∞

2
∑

k∈	+, k≤N Xk√
2N log log N

≥ lim sup
N→∞

∑
k≤N Xk√

2N log log N
− lim sup

N→∞

1
2

∣
∣
∑

k≤N cos 2πkx
∣
∣

√
2N log log N

︸ ︷︷ ︸
=0 a.e. by Lemma 2

we have

lim sup
N→∞

∑N
k=1 cos 2πnk x√
2N log log N

= ∞ a.e.,

which proves Lemma 3. �
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Hung. (in press)

17. Fukuyama, K., Nakata, K.: A metric discrepancy result for the Hardy-Littlewood-Pólya
sequences. Monatsh. Math. 160(1), 41–49 (2010)

18. Kesten, H.: The discrepancy of random sequences {kx}. Acta Arith. 10:183–213 (1964/1965)
19. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. In: Pure and applied Mathematics,

Wiley-Interscience, Wiley, New York (1974)
20. Petrov, V.V.: Limit theorems of probability theory. Oxford studies in probability. Sequences of inde-

pendent random variables, vol. 4. The Clarendon Press Oxford University Press, New York (1995)
21. Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26(3):241–

251 (1974/75)
22. Philipp, W.: Empirical distribution functions and strong approximation theorems for dependent random

variables. A problem of Baker in probabilistic number theory. Trans. Amer. Math. Soc. 345(2), 705–727
(1994)

23. Salem, R., Zygmund, A.: On lacunary trigonometric series. Proc. Nat. Acad. Sci. USA 33, 333–338
(1947)

24. Salem, R., Zygmund, A.: Some properties of trigonometric series whose terms have random signs. Acta
Math. 91, 245–301 (1954)

25. Schoissengeier, J.: A metrical result on the discrepancy of (nα). Glasgow Math. J. 40(3), 393–425
(1998)

26. Weiss, M.: The law of the iterated logarithm for lacunary trigonometric series. Trans. Am. Math.
Soc. 91, 444–469 (1959)

123


	On the law of the iterated logarithm for trigonometric series with bounded gaps
	Abstract
	1 Introduction and statement of results
	2 Preliminaries
	3 Proof of Theorem 1
	References


