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Abstract We consider a branching particle model in which particles move inside a
Euclidean domain according to the following rules. The particles move as indepen-
dent Brownian motions until one of them hits the boundary. This particle is killed but
another randomly chosen particle branches into two particles, to keep the population
size constant. We prove that the particle population does not approach the boundary
simultaneously in a finite time in some Lipschitz domains. This is used to prove a limit
theorem for the empirical distribution of the particle family.
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1 Introduction

The paper is concerned with a branching particle system Xt = (X1
t , . . . , X N

t ) in
which individual particles X j move as N independent Brownian motions and die
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when they hit the complement of a fixed domain D ⊂ R
d . To keep the population

size constant, whenever any particle X j dies, another one is chosen uniformly from all
particles inside D, and the chosen particle branches into two particles. Alternatively,
the death/branching event can be viewed as a jump of the j-th particle. See Sect. 5 for
a more detailed description of the construction.

Let τk be the time of the k-th jump of Xt . Since the distribution of the hitting
time of ∂ D by Brownian motion has a continuous density, only one particle can hit
∂ D at time τk, for every k, a.s. The construction of the process is elementary for all
t < τ∞ = limk→∞ τk . However, there is no obvious way to continue the process Xt

after the time τ∞ if τ∞ < ∞. Hence, the question of the finiteness of τ∞ is interesting.
Theorem 1.1 in [10] asserts that τ∞ = ∞, a.s., for every domain D. Unfortunately,
the proof of that theorem contains an irreparable error (see Example 5.7 below).
The cited theorem might be true but it appears to be much harder to prove than the
original incorrect argument might have suggested. Example 5.7 given below shows
that result cannot be generalized to arbitrary Markov processes. We will show in
Remark 5.6 that the other main results in [10], i.e., Theorems 1.3 and 1.4 hold true
and an argument showing that τ∞ = ∞, a.s., in domains satisfying the internal ball
condition is implicit in the proof of Theorem 1.4 of [10].

In this article, we will prove that τ∞ = ∞, a.s., if the domain D ⊂ R
d is Lips-

chitz with a Lipschitz constant c depending on d and the number N of particles—see
Theorem 5.4 and Remark 5.5 below. In addition, we prove theorems on existence
and the form of the stationary distribution of the process Xt , generalizing those in
[10]—see Sect. 7.

We use this attempt to rectify an error in an earlier paper to introduce two new
techniques. In the end, these techniques may have greater interest or significance than
the main theorems. The first technique, developed in Sect. 4, is the construction of a
process of Brownian excursions in a cone, with all excursions starting at the vertex.
Such a process exists only in cones with certain angles. The construction is combined
with a coupling argument to provide a “lower bound” for Xt , in an appropriate sense.
The process constructed from Brownian excursions is simpler to analyze than Xt .

The second technique is a new type of boundary Harnack principle (see Sect. 3).
The standard boundary Harnack principle compares two functions satisfying a PDE
with the same operator, for example, Laplacian, and different boundary conditions.
Our new version of the boundary Harnack principle compares a harmonic function
with a function u satisfying �u = −1. The reason for proving the new form of the
boundary Harnack principle is that it allows one to compare certain probabilities and
expectations, and then use a method of proof that goes back at least to Davis [12]. The
“new boundary Harnack principle” has been proved independently by Atar et al. [3],
together with a number of other interesting theorems. We include a full proof of the
new boundary Harnack principle because it is different from that in [3], and ours is
amenable to generalizations that will be the subject of a forthcoming article.

Both techniques mentioned above—the Brownian excursion process and the bound-
ary Harnack principle—are limited to Lipschitz domains and, moreover, the Lipschitz
constant has to satisfy a certain inequality. A natural question arises whether such
special Lipschitz domains are the largest natural family of sets where our results hold.
It turns out that they are not. In the last section of the paper we will show that, for the
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Non-extinction of a Fleming-Viot particle model 295

two particle process, τ∞ = ∞, a.s., in all polyhedral domains, with arbitrary angles
between the faces of the boundary. Unfortunately, our method cannot be easily adapted
to the multiparticle case, so we leave this generalization as an open problem.

For some related results on Fleming-Viot type models in smooth domains, see [16]
and references therein. The discrete version of the model is studied in [2]; see also
references in that paper.

2 Preliminaries

For y = (y1, . . . , yd) ∈ R
d , let |y| denote the Euclidean norm of y and let ỹ =

(y1, . . . , yd−1). We will denote the open ball with center x and radius r by B(x, r).
The closure of a set A will be denoted A and its interior will be denoted Int A. All
constants, typically denoted by c with or without subscript, are assumed to be strictly
positive and finite.

A function F : R
d−1 → R is called Lipschitz if there exists a constant L such that

|F(x) − F(y)| ≤ L|x − y|, x, y ∈ R
d−1.

Any constant L satisfying the above condition will be called a Lipschitz constant of F .
Consider a bounded connected open set D ⊂ R

d , d ≥ 2. We will call D a Lipschitz
domain with Lipschitz constant L if ∂ D can be covered by a finite number of open
balls B1, . . . , Bn such that for every i = 1, . . . , n, there exists a Lipschitz function
Fi : R

d−1 → R with Lipschitz constant L , and an orthonormal coordinate system
C Si such that

D ∩ Bi =
{

(y1, . . . , yd) in C Si : yd > Fi (ỹ)
}

∩ Bi .

The following Harnack principles can be found in [5].

Theorem 2.1 (Harnack inequality)

(a) Suppose 0 < r < R. There exists c = c(r, R, d) such that if u is nonnegative
and harmonic in B(0, R) ⊂ R

d and x, y ∈ B(0, r), then

u(x) ≤ c u(y).

(b) Suppose that D ⊂ R
d is a domain and x, y ∈ D can be connected by a curve

γ ⊂ D such that inf z∈γ dist(z, ∂ D) ≥ R. There exists c = c(γ, R, d) such that
if u is nonnegative and harmonic in D, then

u(x) ≤ c u(y).

Theorem 2.2 (Boundary Harnack principle) Suppose D is a connected Lipschitz
domain. Suppose V is open, M is compact and M ⊂ V . Then there exists a con-
stant c = c(M, V, D) such that if u and v are two positive and harmonic functions
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on D that both vanish continuously on V ∩ ∂ D, then

u(x)

v(x)
≤ c

u(y)

v(y)
, x, y ∈ M ∩ D.

The next theorem is a simplified version of Theorem 1 of [1].

Theorem 2.3 Assume that D is a Lipschitz domain. Then there exist constants r0 =
r0(D) > 0, c = c(D) < ∞ and a = a(D) > 1 such that if z ∈ ∂ D and 0 < r ≤ r0
then for all functions u and v that are bounded, positive and harmonic on D∩B(z, ar),

and vanishing continuously on ∂ D ∩ B(z, ar), we have

u(x)

v(x)
≤ c

u(y)

v(y)
, x, y ∈ D ∩ B(z, r).

Remark 2.4 Theorem 2.3 can be used to estimate the constant c(M, V, D) in
Theorem 2.2 as follows. Suppose that r0 and a are as in Theorem 2.3 and we can find
balls Bi (xi , ri ), i = 1, . . . , n, and B ′

j (y j , ρ), j = 1, . . . , m, ρ > 0, ri ≤ r0, xi ∈
∂ D, y j ∈ D, M ⊂ ⋃i Bi (xi , ri ) ∪ ⋃ j B ′

j (y j , ρ), and
⋃

i Bi (xi , ari ) ⊂ V and
⋃

j B ′
j (y j , 2ρ) ⊂ D. A simple chaining argument based on Theorems 2.1 and 2.3

then shows that the constant c(M, V, D) in Theorem 2.2 depends only on n, m and D.

Next we recall some notation and results from [11]. Fix d ≥ 2 and p > 0. Let

h(θ) = h p,d(θ) = F (−p, p + d − 2; (d − 1)/2; (1 − cos θ)/2) , (2.1)

where

F(a, b; c; x) =
∞
∑

k=0

(a)k(b)k

(c)kk! xk, |x | < 1,

denotes the hypergeometric function and (a)k = a(a + 1) . . . (a + k − 1), (a)0 = 1.
The function h has at least one zero in (0, π); let θp,d denote the smallest one. The
quantity θp,d is strictly decreasing in p for any fixed d ≥ 2, and strictly increasing to
π/2 in d for any fixed p > 1. In particular, if p = 2, then

h2,d(θ) = 1 − d

d − 1
sin2 θ,

θ2,d = arccos 1√
d

and cot θ2,d = 1√
d−1

. Therefore θ2,2 = π/4 and p < 2 is equivalent

to cot θp,d < 1√
d−1

.
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For d ≥ 2 and p > 0 we let θ be the angle between y and (0, . . . , 0, 1),

K p,d =
{

y ∈ R
d : y �= 0, 0 ≤ θ < θp,d

}

,

and let O denote the axis of K p,d . Obviously p < p′ implies K p′,d ⊂ K p,d . We will
drop the subscripts p and d and write K instead of K p,d whenever there is no danger
of confusion.

The function v(x) = |x |ph(θ), where h is given by (2.1), is positive and harmonic
inside K and continuous on K with v(x) = 0 for x ∈ ∂K .

Let (Px , Xt ) be d-dimensional Brownian motion and for a Borel set A ⊂ R
d define

TA = inf {t > 0 : Xt ∈ A}. (2.2)

Lemma 2.5 Let F denote the intersection of K = K p,d and a hyperplane orthogonal
to O. Let z0 be the point of intersection of O with F and assume that z0 ∈ K . There
exists c = c(p, d) such that for all z1, z2 ∈ O with |z0| < |z1| < |z2|, we have

P
z2 (TF < T∂K )

Pz1 (TF < T∂K )
≥ c

( |z2|
|z1|
)2−d−p

. (2.3)

Proof Let K∗ be the unbounded component of K \ F and

u(z) = P
z (TF < T∂K ) , z ∈ K∗.

Then u is positive and harmonic in K∗ and continuous on K ∗\(F∩∂K ), with u(z) = 0
for z ∈ ∂K \ F . It is easy to see that u(x) → 0 as |x | → ∞.

If I (x) = x/|x |2, then the function ũ(x) = |x |2−du (I (x)) is positive and har-
monic in ˜K = I (K∗) (see Lemma 1.18 of [5]). The function ũ vanishes continuously
on ∂ ˜K \ I (F). Let K ′ = (1/2)˜K . Recall that v(x) = |x |ph(θ) is positive and har-
monic inside K and continuous on K with v(x) = 0 for x ∈ ∂K . By the boundary
Harnack principle,

ũ(z)

ũ(z′)
≥ c

v(z)

v(z′)
, (2.4)

for z, z′ ∈ K ′, where c depends on ˜K and K ′ and does not depend on z and z′. Note
that u(x) = |x |2−d ũ (I (x)). Hence, for z1, z2 ∈ O ∩ I (K ′),

u(z2)

u(z1)
= |z2|2−d ũ(I (z2))

|z1|2−d ũ(I (z1))
≥ c

|z2|2−dv(I (z2))

|z1|2−dv(I (z1))
= c

|z2|2−d |z2|−ph(0)

|z1|2−d |z1|−ph(0)
= c

( |z2|
|z1|
)2−p−d

.

The inequality holds for all z1, z2 ∈ O ∩ I (K∗) (possibly with a different value of c)
because the function u is bounded below and above on O \ I (K ′) by strictly positive
and finite constants. This completes the proof of (2.3). ��
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We will use the following estimate in the proof of Lemma 4.1.

Lemma 2.6 There exists a cone K ′ ⊂ K = K p,d and a constant c = c(K , K ′) such
that for x ∈ K ′ and t ≥ |x |2,

c−1
(

t

|x |2
)− p

2 ≤ P
x (T∂K > t) ≤ c

(

t

|x |2
)− p

2

. (2.5)

Proof See [4,6,14] or [22]. ��

3 A boundary Harnack principle

Let D ⊂ R
d , d ≥ 2, be a bounded Lipschitz domain and let A ⊂ D be a compact set

with Int A �= ∅. For x ∈ D, define

f (x) = P
x (TA < T∂ D),

g(x) = E
x T∂ D.

Theorem 3.1 Assume that the Lipschitz constant L of D satisfies L < 1√
d−1

. Then

there exists a constant c = c(A, D) such that for all x ∈ D,

1

c
≤ f (x)

g(x)
≤ c. (3.1)

Remark 3.2 The condition L < 1√
d−1

is sharp. See Example 3.3 below.

Proof of RHS of (3.1) Since A is compact, infx∈A dist(x, Dc) = c1 > 0. Therefore,

inf
x∈A

E
x T∂ D ≥ inf

x∈A
E

x T∂ B(x,c1) = c2 > 0.

By the strong Markov property applied at TA, we have for x ∈ D,

E
x T∂ D ≥ c2P

x (TA < T∂ D),

which implies the RHS of (3.1). ��
Proof of LHS of (3.1) Since D is a bounded Lipschitz domain with Lipschitz con-

stant L < 1√
d−1

, it is easy to see that there exist p ∈ (0, 2) and ρ > 0 with the
following properties.

(i) dist(A, ∂ D) > 2ρ.
(ii) Consider any x ∈ D with dist(x, ∂ D) < ρ2−5. Then there exists x0 ∈ ∂ D and

an orthonormal coordinate system C S = C Sx0 with the following properties.
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The origin of C S is x0, K p,d ∩ B(x0, 2ρ) ⊂ D ∩ B(x0, 2ρ), and x ∈ O (that
is, x belongs to the axis of K p,d ). For r > 0 and integer k, let

E∗
r =
{

y ∈ R
d in C S : |̃y − x̃0| ≤ r tan(θp,d), |yd − xd

0 | ≤ r
}

,

˜Ek = E∗
2−k .

We can choose x0 and C S so that for some Lipschitz function F = Fx0 :
R

d−1 → R with Lipschitz constant L , and all k such that 2−k ≤ ρ,

D ∩ ˜Ek =
{

(y1, . . . , yd) in C S : yd > F(ỹ)
}

∩ ˜Ek .

We fix x ∈ D with dist(x, ∂ D) < ρ2−5 and the corresponding coordinate system C S
for the rest of the proof.

Let Ek = ˜Ek \ ˜Ek+1 and Ck = Int(D ∩ Ek) for k = N0, . . . , N1, where

N0 = min{k : 2−k ≤ ρ}, N1 = max
{

k : |x | = xd ≤ 2−k−3
}

.

Also let CN0−1 = Int
(

D \ ˜EN0

)

and CN1+1 = Int(D ∩ ˜EN1+1).
Note that Ci ∩ C j = ∅ if i �= j, and D = C N0−1 ∪ · · · ∪ C N1+1.
Let G(x, y) denote the Green function for Brownian motion killed on exiting D.

Then

g(x) = E
x T∂ D =

∫

D

G(x, y) dy =
N1+1
∑

k=N0−1

∫

Ck

G(x, y) dy. (3.2)

For k = N0, . . . , N1 denote by yk the midpoint of the line segment being the inter-
section of Ck with xd -axis in C S. In other words, {yk} = ∂ E∗

(3/4)2−k ∩ O . Fix k and j
such that j ≥ 1, k ≥ N0, j + k ≤ N1 and consider the points yk and yk+ j .

Let

Fk = Ck ∩ Ck+1 ∩ K p,d ,

and

u(z) = P
z
(

TFk+ j < T∂K p,d

)

.

By Lemma 2.5,

u(yk) ≥ c1u(yk+ j )

(

2−k

2−k− j

)2−p−d

= c1u(yk+ j )2
j (2−p−d),
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where c1 = c1(p, d). By scaling properties of Brownian motion, u(yk+ j ) = c2 =
c2(p, d), that is, u(yk+ j ) depends only on p and d. We obtain

P
z
(

TFk+ j < T∂K p,d

)

≥ c32− j (p+d−2), (3.3)

where c3 = c3(p, d).
Let

v(z) = P
z (TFk+ j < T∂ D

)

.

Note that v(yk+ j ) ≤ 1 and v(yk) ≥ u(yk) ≥ c32− j (p+d−2), by (3.3).
We will apply Theorem 2.2 with M = ∂ E∗

(3/4)2−k− j and V = Ek+ j . It follows from
Remark 2.4 that the constant c5 = c(M, V, D) may be chosen independent of k and j .
The boundary Harnack principle implies that

G(x, z)

G(x, yk+ j )
≥ c5

v(z)

v(yk+ j )
, (3.4)

for z ∈ D ∩ M . The harmonic functions G(x, · ) and v have zero boundary values
on ∂ D \ E

∗
(3/4)2−k− j , so the inequality (3.4) extends to all z ∈ D \ E∗

(3/4)2−k− j , in
particular, it applies to z = yk . Hence,

G(x, yk)

G(x, yk+ j )
≥ c5

v(yk)

v(yk+ j )
≥ c5c32− j (p+d−2) = c62− j (p+d−2). (3.5)

Now consider the function

hm(z) = P
z
(

T
˜Em+2

< T∂ D

)

.

By the scaling properties of Brownian motion, hm(ym) ≥ c7 > 0 for all m =
N0, . . . , N1. By the boundary Harnack principle (Theorem 2.2) applied to u(z) =
G(x, z), v(z) = hm(z), M = Cm and V = Int(˜Em−1 \ E∗

(3/4)2−m−1), we have

G(x, y)

hm(y)
≤ c8

G(x, ym)

hm(ym)

for y ∈ Cm, where c8 depends only on D, by Remark 2.4. Therefore, for y ∈ Cm,

G(x, y) ≤ c8 G(x, ym)
hm(y)

hm(ym)
≤ c8

1

c7
G(x, ym) = c9 G(x, ym). (3.6)

This implies

∫

Ck+ j

G(x, y) dy ≤ c9G(x, yk+ j ) vol(Ck+ j ) ≤ c10 2−d(k+ j)G(x, yk+ j ), (3.7)

where c10 depends only on D.
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On the other hand, by the usual Harnack inequality,

G(x, y) ≥ c11G(x, yk)

for y ∈ Bk = B(yk, 2−k−1), because B(yk, 2−k−1) ⊂ D \ {x}. This implies that

∫

Ck

G(x, y) dy ≥ c11G(x, yk) vol(Bk) = c122−kd G(x, yk), (3.8)

where c12 does not depend on k.
Combining (3.5), (3.7) and (3.8) we have

∫

Ck+ j

G(x, y) dy ≤ c132 j (p−2)

∫

Ck

G(x, y) dy,

where c13 = c13(D). Fix q < 1. Since p ∈ (0, 2), we may choose j so large that
c132 j (p−2) ≤ q < 1. Let ak = ∫Ck

G(x, y) dy, then

ak+ j ≤ qak, k = N0, . . . , N1 − j.

Let N2 = min(N1, N0 + j − 1). The last inequality implies that

N1
∑

k=N0

ak =
N2
∑

k=N0

∞
∑

m=0

ak+mj 1{k+mj≤N1} ≤
N2
∑

k=N0

∞
∑

m=0

akqm = c14

N2
∑

k=N0

ak . (3.9)

Recall that G(x, · ) has zero boundary values on ∂ D, so it is bounded by
supz∈CN0

G(x, z) on the set D \ ˜EN0 . This and (3.6) imply that supz∈D\˜EN0
G(x, z) ≤

c15G(x, yN0). We use (3.8) to see that

aN0−1 =
∫

CN0−1

G(x, y) dy ≤ c15G(x, yN0) vol(CN0−1)

≤ c15 vol(CN0−1)c
−1
12 2N0d

∫

CN0

G(x, y) dy = c16aN0 . (3.10)

Recall the definition of N0 to see that c16 depends only on D.
The following calculation is presented in the case d ≥ 3 only. The case d = 2

requires minor modifications and is left to the reader.
Let ˜G(x, y) denote the Green function for Brownian motion in R

d , and let G(x, y)

be the Green function for Brownian motion in B(x, 2−N1−4). It is well known that
for d ≥ 3, ˜G(x, y) = c17|x − y|2−d , where c17 depends on d, and G(x, y) =
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˜G(x, y) − ˜G(x, z), for y ∈ B(x, 2−N1−4) and z ∈ ∂ B(x, 2−N1−4). It follows that for
|y − x | ≤ 2−N1−5,

G(x, y) ≥ c18˜G(x, y). (3.11)

We have G(x, y) ≤ ˜G(x, y) for y ∈ D, and
∫

B(x,r)
˜G(x, y)dy = c19r2. Therefore,

aN1+1 =
∫

CN1+1

G(x, y)dy ≤
∫

CN1+1

˜G(x, y)dy

≤
∫

B(x,diam(˜EN1+1))

˜G(x, y)dy = c202−2N1 . (3.12)

Since B(x, 2−N1−4) ⊂ D,

G(x, y) ≥ G(x, y). (3.13)

Put yN1+1 = (̃x, xd + 2−N1−5). Then by (3.11) and (3.13),

G(x, yN1+1) ≥ c18˜G(x, y) = c21(2
−N1)2−d .

Moreover, by the usual Harnack inequality,

G(x, y) ≥ c22G(x, yN1+1),

for y ∈ B(yN1 , 2−N1−2). Therefore,

aN1 =
∫

CN1

G(x, y)dy ≥
∫

B(yN1 ,2−N1−2)

G(x, y) dy

≥ c22G(x, yN1+1) vol(B(yN1 , 2−N1−2)) ≥ c23(2
−N1)2−d · 2−N1d = c242−2N1 .

(3.14)

Combining (3.12) and (3.14), we obtain

aN1+1 ≤ c25aN1 . (3.15)

Let C∗ = CN0−1 ∪ · · · ∪ CN2 and note that A ⊂ C∗. Let σC∗ = ∫ T∂ D
0 1{Xs∈C∗} ds.

Then (3.9), (3.10) and (3.15) imply that

E
x T∂ D ≤ c26E

xσC∗ . (3.16)
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Since D is bounded, supz∈D E
zT∂ D = c27 < ∞. By the strong Markov property

applied at the hitting time of C∗, for z ∈ D,

E
zσC∗ ≤ c27 P

z(TC∗ < T∂ D).

This and (3.16) yield

E
x T∂ D ≤ c28P

x (TC∗ < T∂ D). (3.17)

Consider functions

ξ1(z) = P
z(TA < T∂ D),

ξ2(z) = P
z(TC∗ < T∂ D).

Both functions are positive and harmonic in D \ C∗, and continuous on D \ C∗ with
u(z) = v(z) = 0 for z ∈ ∂ D \ C∗. We apply the boundary Harnack principle with
V = D \ C∗ and M = ˜EN2+1 to see that

ξ1(x)

ξ2(x)
≥ c29

ξ1(yN2+1)

ξ2(yN2+1)
. (3.18)

We use Remark 2.4 to see that c29 may be chosen so that it depends only on D. It
follows from the definitions of N0, N2 and j that for some constant c30, we have
dist(yN2+1, ∂ D) > c30. This implies that ξ1(yN2+1) = P

yN2+1(TA < T∂ D) ≥ c31, for
some c31 depending only on D. We obtain from (3.18) that ξ1(x)/ξ2(x) ≥ c29c31, and
this combined with (3.17) gives

E
x T∂ D ≤ (c28/c29c31)P

z(TA < T∂ D).

We have proved the LHS of (3.1) for x satisfying dist(x, ∂ D) ≤ ρ2−5.
It is easy to check that inf{ f (x) : dist(x, ∂ D) ≥ ρ2−5} > 0 and sup{g(x) : x ∈ D}

< ∞, so the LHS of (3.1) holds for all x ∈ D. ��
Example 3.3 The condition L < 1√

d−1
in Theorem 3.1 is sharp. To see this, note that

for any L > 1√
d−1

there is a p > 2, such that the cone K = K p,d is a Lipschitz domain

with the Lipschitz constant L . Let r > 0 be such that for every x ∈ O, B(x, r |x |) ⊂ K .
Then g(x) = E

x T∂K ≥ E
x T∂ B(x,r |x |) ≥ c1r2|x |2. Recall that f (x) = P

x (TA < T∂K )

and let u(x) = |x |ph p,d(θ). By the boundary Harnack principle applied to f and u
in a neighborhood of 0, f (x) ≤ c2|x |p for x ∈ O, |x | < 1. Since p > 2, we cannot
have f (x) ≥ c3g(x) in a neighborhood of 0. The domain K is unbounded but it is
easy to extend the argument to K ∩ B(0, 1).

4 Construction of an auxiliary process from Brownian excursions

Let � denote the family of all functions ω : [0,∞) → R
d ∪ {δ} continuous up to

their lifetime R(ω) = inf {t ≥ 0 : ω(t) = δ} and constantly equal to δ for t ≥ R,
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where δ denotes the coffin state outside R
d . Let X be the canonical process on �,

i.e., Xt (ω) = ω(t) and let P
x denote the distribution of Brownian motion starting

from x ∈ R
d . As in (2.2), for a Borel set A ⊂ R

d let TA = inf {t > 0 : Xt ∈ A}. Let
K = K p,d for some p > 0, and let X ′ denote the process

X ′
t =
{

Xt , for t < T∂K ,

δ, otherwise,

i.e., X ′ is the process X killed on exiting K . If X has the distribution P
x , then X ′ is

called Brownian motion in K and its distribution is denoted by P
x
K .

Let U denote the family of all functions ω : [0,∞) → K ∪{δ} such that ω(0) = 0,

continuous up to their lifetime R. Let H0 denote a standard excursion law of Brownian
motion in K p,d starting from 0. Namely, H0 is a nonnegative and σ -finite measure
on � such that X is strong Markov under H0 with the PK transition probabilities and
H0 (limt→0 Xt �= 0) = 0. We have H0(� \ U ) = 0. The existence of H0 follows
from results of [8] and [20].

Lemma 4.1 There exists c ∈ (0,∞) such that

H0(R > t) = c t−
p
2 , t > 0. (4.1)

Proof Let yε = (0, . . . , 0, ε) ∈ R
d and let G K (x, y) denote the Green function for K .

By Theorem 4.1 of [8],

H0 (R > t) = c1 lim
z→0
z∈K

P
z(T∂K > t)

G K (z, y1)
. (4.2)

By Theorem 2.2 of [8], which is an improvement of the boundary Harnack princi-
ple, there exists c(K , ε) such that for all functions h1 and h2 which are positive and
harmonic in K and vanish continuously on ∂K , we have

c(K , ε)−1 h1(y)

h2(y)
≤ h1(x)

h2(x)
≤ c(K , ε)

h1(y)

h2(y)
,

for all x, y ∈ K ∩ B(0, ε), and limε→0 c(K , ε) = 1. Therefore, the limit

lim
z→0
z∈K

h1(z)

h2(z)

exists and belongs to (0,∞) for all functions h1, h2 satisfying the above assumptions.
We apply this claim to h1(z) = G K (z, y1) and h2(z) = |z|ph(θ), to conclude that

lim
ε→0

G K (yε, y1)

ε p
= c ∈ (0,∞),
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and

H0(R > t) = c lim
ε→0

P
yε (T∂K > t)

ε p
. (4.3)

By Lemma 2.6,

c−1t−
p
2 ≤ P

yε (T∂K > t)

ε p
≤ ct−

p
2 ,

for t ≥ ε2 which implies c−1t−
p
2 ≤ H0(R > t) ≤ ct−

p
2 , for t ≥ 0. Therefore

H0(R > 1) is a positive and finite number.
Now mimicking the proof of Proposition 5.1 of [8], using (4.3) instead of (4.2),

we easily see that if {X (t), t ≥ 0} has the distribution H0, then for every a > 0
the scaled process

{√
a X (t/a), t ≥ 0

}

has the distribution a p/2 H0. In particular, for
every a > 0

H0(R > t) = a p/2 H0(R > at), t ≥ 0,

and putting a = 1/t we obtain (4.1) with c = H0(R > 1). ��
Let λ denote the Lebesgue measure on R+ = [0,∞) and let P be a Poisson

point process on R+ × U with characteristic measure λ × H0, i.e., P is a random
subset of R+ × U such that for every pair A1, A2 of disjoint nonrandom subsets of
R+ × U, card(P ∩ A1) and card(P ∩ A2) are independent random variables with
Poisson distributions with means (λ× H0)(A1) and (λ× H0)(A2), respectively [18].
With probability 1, there are no two points with the same first coordinate, and therefore
the elements of P may be unambiguously denoted by (t, et ). Let

Rt = inf {s > 0 : et (s) = δ}.

By abuse of notation, for a generic element e of U we will write

R(e) = inf {s > 0 : e(s) = δ}.

Lemma 4.2 If p ∈ (0, 2), then for every s > 0,

∑

t≤s

Rt < ∞, a.s.

Proof We use Theorem 4.6 of [18]: if ϕ : R+ × U → R+ is a measurable function,
then

∑

t

ϕ(t, et ) < ∞, a.s.
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iff

∫∫

R+×U

(ϕ(t, e) ∧ 1)dt H0(de) < ∞.

In particular, if ϕ(t, e) = R(e)1[0,s](t), then

∑

t≤s

Rt < ∞, a.s.

iff

∫∫

[0,s]×U

(R(e) ∧ 1)dt H0(de) < ∞.

If we let U− = {e ∈ U : R(e) ≤ 1} and U+ = {e ∈ U : R(e) > 1} then

∫∫

[0,s]×U

(R(e) ∧ 1)dt H0(de) = s
∫

U−
R(e)H0(de) + s H0(U+).

By Lemma 4.1,

H0(U+) =
∞
∫

1

H0(R ∈ dt) = c

∞
∫

1

t−p/2−1dt < ∞,

because p > 0, and

∫

U−
Rd H0 =

1
∫

0

t H0(R ∈ dt) = c

1
∫

0

t · t−p/2−1dt < ∞,

because p < 2. ��
Let σv = ∑s≤v Rs and σv− = ∑u<v Ru for v ≥ 0. By Lemma 4.2, if p ∈ (0, 2)

then σv < ∞ for all v < ∞, a.s.

Lemma 4.3 The process σ is a stable subordinator with index p/2.

Proof The process σ is increasing and has values in [0,∞). Its paths are right-
continuous with left limits. Note that {(t, R(et ))}e∈P is a Poisson point process on
R+ × R+ with characteristic measure λ × �, where � is given by

�(dx) = H0(R ∈ dx) = c x−p/2−1dx,
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where the last formula follows from Lemma 4.1. This implies that σ is a process with
independent and stationary increments, so σ is a Lévy process. Moreover σ is a sub-
ordinator, since it has values in [0,∞) only. We use calculations that can be found in
Section 0.5 and on page 73 of [7] to see that the Laplace transform of σ is

E exp(−λσt ) = exp

⎧

⎨

⎩

−t

∞
∫

0

(1 − e−λx )�(dx)

⎫

⎬

⎭

= exp

⎧

⎨

⎩

−ct

∞
∫

0

(1 − e−λx )x−p/2−1dx

⎫

⎬

⎭

= exp(−ctλp/2).

Therefore σ is stable with index p/2. ��
It is well known that for a stable subordinator σ we have limv→∞ σv = ∞, a.s.

So with probability 1, for every t ≥ 0, the formula r = inf {v ≥ 0 : σv ≥ t} defines a
unique r ≥ 0. For t ≥ 0 let

Zt =
{

er (t − σr−), if σr− < σr and t ∈ (σr−, σr ),

0, otherwise.
(4.4)

The process Z takes values in K ∪ {0}.
Remark 4.4 The above construction is similar to the classical Itô representation of
Brownian motion using the Poisson point process of excursions, see [24, Chap. XII].
The construction of a Markov process from excursions is presented in [25]. The history
of the idea, related papers and results are discussed in that article. The process Z is
strong Markov by [25, Thm. 4.1]—it is straightforward to check that the assumptions
of that theorem are satisfied in our case.

Corollary 4.5 Let Z1
t , . . . , Z N

t be jointly independent copies of Zt defined in (4.4).
If p < 2 − 2

N and T ∈ (1,∞) then inf1/T ≤t≤T max1≤i≤N |Zi
t | > 0, a.s.

Proof For each i, let σ i
t be a stable subordinator associated with the process Zi

t as in
Lemma 4.3 and let Ai = {t ∈ [ 1

T , T ] : Zi
t = 0}. In other words, Ai is the range of σ i

t

over [ 1
T , T ]. We use the following result of Hawkes [17]: The ranges of two indepen-

dent stable subordinators with indices α and β intersect if and only if α + β > 1, in
which case the intersection is stochastically equivalent to the range of a stable subor-
dinator of index α + β − 1. Therefore, by induction, A1 ∩ · · · ∩ AN = ∅, a.s., if and
only if N p

2 − N + 1 < 0. This condition holds since p < 2 − 2
N .

It is easy to see that t → |Zi
t | is lower semicontinuous. Hence, t → max1≤i≤N |Zi

t |
is also lower semicontinuous and, therefore, it attains its infimum on [ 1

T , T ]. It follows
that {inf1/T ≤t≤T max1≤i≤N |Zi

t | > 0} = {A1 ∩ · · · ∩ AN = ∅}. We have shown that
the last event has probability one if p < 2 − 2

N . ��
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5 Construction of a Fleming-Viot process

We recall the following description of a Fleming-Viot-type particle system from [10].
Consider an open set D ⊂ R

d and an integer N ≥ 2. Let Xt = (X1
t , . . . , X N

t ) be
a process with values in DN defined as follows. Let X0 = (x1, . . . , x N ) ∈ DN .
Then the processes X1

t , . . . , X N
t evolve as independent Brownian motions until the

time τ1 when one of them, say, X j hits the boundary of D. At this time one of the
remaining particles is chosen uniformly, say, Xk, and the process X j jumps at time
τ1 to Xk

τ1
. The processes X1

t , . . . , X N
t continue evolving as independent Brownian

motions after time τ1 until the first time τ2 > τ1 when one of them hits the bound-
ary of D. Again at the time τ2 the particle which approaches the boundary jumps to
the current location of a particle chosen uniformly at random from amongst the ones
strictly inside D. The subsequent evolution of X proceeds in the same way. The total
number of jumps may be finite or infinite. The above recipe defines the process Xt

only for t < τ∞ = limk→∞ τk . There is no natural way to define the process Xt for
t ≥ τ∞. Hence, we add a cemetery state δ to the state space and we let Xt = δ for
all t ≥ τ∞. We define Xt so that it is right-continuous with left limits on the interval
[0, τ∞). We do not make any a priori claims about existence or non-existence of the
left limit Xτ∞−.

Remark 5.1 The proof of the main theorem in this section, Theorem 5.4, involves an
inductive construction of the Fleming-Viot process. In particular the proof relies on
a special construction of a Brownian motion started in D and stopped on hitting ∂ D.
In preparation we introduce a sequence of stopped processes which may be used as
an alternative construction of a Fleming-Viot process. Let Xt = (X1

t , . . . , X N
t ) be a

Fleming-Viot process in D. For each particle Xi
t and n ∈ N we name a sequence of stop-

ping times si
n = inf{t ≥ τn : Xi

t− ∈ ∂ D}. Notice there is exactly one j ∈ {1, . . . , N }
for which s j

n = τn . For every i �= j, si
n is the first time after τn that Xi

t hits ∂ D. Notice
that si

n+1 = si
n for every i �= j . Now let Qn be the distribution of the stopped process

(X1
t∧s1

n
, . . . , X N

t∧s N
n
). Informally we allow the process to evolve until τn, at which point

all but one of the particles are in the interior of D. After τn the remaining particles
continue as independent Brownian motions until they are stopped on exiting D. It is
easy to construct a process X1

t distributed as Q1 because trivially each particle evolves
independently as a Brownian motion stopped on exiting D. Now suppose that we have
constructed X�

t = (X�,1
t , . . . , X�,N

t ) distributed as Q�. There is exactly one particle,

say X�, j such that s j
� = τ� and X�, j

τ−
�

∈ ∂ D. For every i �= j we have si
�+1 = si

�.

Therefore to construct Q�+1 from Q� we need only to extend the lifetime of X j
t until

s j
�+1 in accordance with the rules of Fleming-Viot. So choose λ� ∈ {1, . . . , N} \ { j}

uniformly and independently of X�. Set x� = X�,λ�
τ�

and let ˜X�
t be a Brownian motion

independent of everything else, started at x� and stopped on exiting D. We may con-
struct X�+1 distributed as Q�+1 by setting X�+1,i

t = X�,i
t whenever t ≤ si

�, i �= j, and

X�+1, j
t = ˜X�

t−τ�
for t ∈ [τ�, s j

�+1). By an application of the Kolmogorov extension
theorem there is a unique process Xt with Xt = X�

t whenever t < τ� and Xt agrees in
distribution with the construction at the start of this section.
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The following lemma shows that if τ∞ < ∞ then all processes X1
t , . . . , X N

t
approach ∂ D at time τ∞. This result does not require any assumptions on the smooth-
ness or regularity of ∂ D, unlike our main results, so it may have independent interest.

Lemma 5.2 Let Rt = max1≤i≤N dist(Xi
t , ∂ D). If D ⊂ R

d is an open set and N ≥ 2
then

P ({τ∞ = inf{t > 0 : Rt− = 0} < ∞} ∪ {τ∞ = ∞}) = 1. (5.1)

Proof Let � j be the closure of the set {t ≥ 0 : X j
t− ∈ ∂ D}. Suppose that τ∞ < ∞

with positive probability. Then at least one of the processes X j
t must have an infinite

number of jumps before τ∞. For every j with this property we have τ∞ ∈ � j . We

will show that there are no processes X j
t with only a finite number of jumps before

τ∞, a.s.
Let τ

j
k denote the time of the k-th jump of X j

t for j ∈ {1, . . . , N }. Let ̂X j
t = X j

t for

t ∈ [0, τ
j

1 ). Then we define inductively ̂X j
t = X j

t +̂X j

τ
j

k −−X j

τ
j

k

for t ∈ [τ j
k , τ

j
k+1), k ≥1.

It is easy to see that {̂X j
t , 0 ≤ t ≤ τ

j
k } is a d-dimensional Brownian motion for every k.

Hence, {̂X j
t , 0 ≤ t < τ∞} is also a Brownian motion defined on a random time inter-

val. Let m j be the number of jumps of X j
t before τ∞. Suppose that τ∞ < ∞ and

mn = ∞ for some n. Assume that lim supk→∞ dist(Xn
τ n

k
, ∂ D) > r for some r > 0.

Then ̂Xn
t has an infinite number of oscillations of size greater than or equal to r on

every time interval of the form (τ∞ − ε, τ∞), for every ε > 0. This implies that ̂Xn
t

does not have a left limit at τ∞. The last event has zero probability, so we conclude
that, for all rational r > 0 and all n ∈ {1, . . . , N } ,

P

(

{τ∞ < ∞} ∩ {mn = ∞} ∩
{

lim sup
k→∞

dist(Xn
τ n

k
, ∂ D) ≥ r

})

= 0.

Hence, for all n ∈ {1, . . . , N } ,

P

(

{τ∞ < ∞} ∩ {mn = ∞} ∩
{

lim
k→∞ dist(Xn

τ n
k
, ∂ D) �= 0

})

= 0. (5.2)

Next suppose that m j < ∞ for some j ∈ {1, . . . , N }. By continuity of Brownian

motion, the left limit X j
τ∞− exists on the event {τ∞ < ∞, m j < ∞}. We will prove

that

P

(

{τ∞ < ∞} ∩ {m j < ∞} ∩
{

X j
τ∞− /∈ ∂ D

})

= 0 (5.3)

for every j . Suppose to the contrary that for some j,

P

(

{τ∞ < ∞} ∩ {m j < ∞} ∩
{

X j
τ∞− /∈ ∂ D

})

> 0. (5.4)
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Then there exists a rational r > 0 such that

P

(

{τ∞ < ∞} ∩ {m j < ∞} ∩
{

X j
τ∞− ∈ Dr

})

> 0,

where Dr = {x ∈ D : dist(x, ∂ D) > r}. Recall that each process Xn
t jumps at times

τ n
k to the location of another process Xi , i �= n, chosen in a uniform way. Let n be

such that mn = ∞ (there exists at least one such n, a.s.). There exists an infinite
subsequence {sk}k≥1 of {τ n

k }k≥1, such that Xn
sk

= X j
sk . It follows that, on the event

{X j
τ∞− ∈ Dr }, it is not true that limk→∞ dist(Xn

τ n
k
, ∂ D) = 0. This contradicts (5.2), so

we conclude that (5.4) is false. This completes the proof of (5.3). The lemma follows
from (5.2) and (5.3). ��

Remark 5.3 The proof of Theorem 5.4, the main result of this paper, is quite compli-
cated so we will outline the proof of a similar result in the 1-dimensional case to help
the reader follow the main argument. The structure of the proof in the 1-dimensional
case is the same as in the higher dimensional case but there are fewer technical details
to deal with. See [26] for a more general argument based on a similar idea.

Let Y be one dimensional Brownian motion starting from Y0 = 0 and v0 ≥ 0.
It is well known ([19, Sect. 3.6 C]) that, a.s., there exist unique continuous processes
V and L such that V0 = v0 and

dVt = dYt + d Ls, for t ≥ 0. (5.5)

Here L is the local time of V at 0. In other words, L is a non-decreasing continuous
process which does not increase when V is 0, i.e.,

∫∞
0 1{0}(Vt )d Lt = 0, a.s. The

process V is called reflected Brownian motion driven by Y . The construction of V
is based on deterministic Skorokhod lemma [19, Lemma 3.6.14] so we have strong
existence and uniqueness for (5.5).

Let D = (0,∞), N ≥ 2, let Y k, k = 1, . . . , N , be independent 1-dimensional
Brownian motions and x1, . . . , xN ∈ D. Let (V k, Lk) be the solution to (5.5) driven
by Y k, with V k

0 = xk, for k = 1, . . . , N .

Let τ1 be the first time when one of the processes V k hits 0. Suppose that V j
τ1 = 0.

We let Xk
t = V k

t for t ∈ [0, τ1] and k �= j, and X j
t = V j

t for t ∈ [0, τ1). We choose

uniformly an integer M1 in the set {1, . . . , N } \ { j} and let X j
τ1 = X M1

τ1 . Note that
Xk

t ≥ V k
t for t ∈ [0, τ1] and all k. We proceed by induction. Suppose that τ1, . . . , τn

have been defined and {Xk
t , t ∈ [0, τn]} have also been defined. Assume that Xk

t ≥ V k
t

for t ∈ [0, τn] and all k. Let {(V k,n
t , Lk,n

t ), t ≥ τn} be the solution to (5.5) driven by Y k,

with V k,n
τn

= Xk
τn

for all k. Note that V k,n
τn

≥ V k
τn

for all k. Then, by the strong unique-

ness of solutions to (5.5), we have V k,n
t ≥ V k

t for all t ≥ τn and k. Let τn+1 be
the first time t ≥ τn when one of the processes {V k,n

t , t ≥ τn} hits 0. Suppose that
V m

τn+1
= 0. We let Xk

t = V k,n
t for t ∈ (τn, τn+1] and k �= m, and Xm

t = V m,n
t for

t ∈ (τn, τn+1). We choose uniformly an integer Mn+1 in the set {1, . . . , N } \ {m} and
let Xm

τn+1
= X Mn+1

τn+1 .
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Let τ∞ = limn→∞ τn . The process (X1
t , . . . , X N

t ) is well defined on the interval
(0, τ∞). The process Rt = ((V 1

t )2 + · · · + (V N
t )2)1/2 is N -dimensional Bessel pro-

cess and, therefore, it never hits 0. On the event {τ∞ < ∞} we have Rτ∞ > 0 and,
therefore, lim supt↑τ∞ Xk

t > 0 for at least one k. In view of Lemma 5.2, we conclude
that the probability of the event {τ∞ < ∞} is 0.

The above argument is more complicated in higher dimensions because it is much
harder to construct a process which always lies “closer to the boundary” of D than
Xk and has a structure that can be easily analyzed. The construction of such a process
uses the process Z defined in (4.4).

Theorem 5.4 There exists a constant c = c(N , d) such that if D ⊂ R
d is a bounded

Lipschitz domain with the Lipschitz constant L < c(N , d), then τ∞ = ∞, a.s. More-
over, c(N , d) increases in N , decreases in d and

lim
N→∞ c(N , d) = c(d) = 1√

d − 1
. (5.6)

Proof Part 1. We start by defining c(N , d) and some other constants used in the
proof. Recall the definition of θp,d and K p,d . Let p′ = 2 − 2/N and c(N , d) =
cot θp′,d , and fix a p such that L < cot θp,d < c(N , d). Recall that Dr =
{x ∈ D : dist(x, ∂ D) > r}. Since D is bounded and Lipschitz, there exists a small
r > 0 for which the following is true. For every x ∈ D \ Dr there exist an orthonormal
coordinate system C Sx ,Ox ∈ ∂ D, a Lipschitz function Fx : R

d−1 → R and a cone
Kx , such that Ox is the origin of C Sx , Kx has vertex Ox and axis passing through
x, Kx can be described in C Sx as K p,d , and

D ∩ B(Ox , r) ⊂
{

y in C Sx : yd > Fx (ỹ)
}

∩ B(Ox , r),

K p,d ∩ B(Ox , r) ⊂ D ∩ B(Ox , r).

As we have chosen cot θp,d > L , there exists c1 = c1(p, D) > 0 such that
dist(y, ∂ D) > c1|y − Ox | for every y ∈ Kx and x ∈ D \ D2r . We set Tx to be
an isometry that maps K p,d onto Kx .

Part 2. Recall that Rt = max1≤i≤N dist(Xi
t , ∂ D). The process Rt is continuous on

[0, τ∞) because Brownian motion is continuous and Rt does not jump at any stopping
time τk .

We will split the lifetime of the process Xt into two phases, a ‘safe’ phase where
Rt is large and an ‘unsafe’ phase where Rt is small. The main part of the proof will
involve a special construction of Xt in the unsafe phase that ensures the process can-
not terminate. The two phases are defined using two sequences of stopping times
V r

i , ̂V r
i , i ≥ 0. Fix r > 0 as in Part 1 of the proof. Set V r

0 = 0 and for i ≥ 0 let

̂V r
i = inf{t > V r

i : Rt ≤ r
2 },

V r
i+1 = inf{t > ̂V r

i : Rt ≥ r},

with the convention that inf ∅ = ∞.
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If for some i we have ̂V r
i = ∞ then ̂V r

j = ∞ and V r
j = ∞ for all j > i . Hence,

limi→∞ V r
i = ∞. Similarly, if V r

i = ∞ for some i then ̂V r
j = ∞ and V r

j+1 = ∞ for
all j ≥ i . In this case we also have limi→∞ V r

i = ∞.
Next suppose that ̂V r

i < ∞ and V r
i < ∞ for all i .

Recall Brownian motions ̂X j
t from the proof of Lemma 5.2. On any interval

[V r
i , ̂V r

i ), i ≥ 1, at least one of the processes X j
t must travel a distance of r

2 . Thus,

at least one of the processes ̂X j
t must travel a distance of r

2 on this interval. Since

Brownian motions ̂X j
t cannot make infinitely many such oscillations on a finite time

interval and the number N of processes ̂X j
t is finite, we have limi→∞ V r

i = ∞, a.s.
In view of (5.1), the probability that τ∞ < ∞ and τ∞ ∈ [V r

i , ̂V r
i ] for some i

is zero. So if τ∞ < ∞ with positive probability then there exists i ≥ 0 such that
P(τ∞ ∈ [̂V r

i , V r
i+1)) > 0.

Note that ̂V r
0 = 0 if X0 ∈ (D \ Dr/2)

N . Suppose that we can show that

P(τ∞ ∈ [̂V r
i , V r

i+1)) = 0 (5.7)

for i = 0 and arbitrary X0 ∈ (D \ Dr/2)
N . Then, by the strong Markov property

applied at ̂V r
i ’s, (5.7) holds for all i ≥ 0, a.s., and this implies the theorem.

Part 3. We present an informal overview of the remaining part of the proof.
Our aim is to construct a coupling of a process Xt with a vector of independent copies

of the excursion process Zt constructed in such a way that dist(X j
t , ∂ D) ≥ c2|Z j

t | for
some fixed constant c2 = c2(N , D), at least up until the stopping time V 1

r .
The construction consists of three consecutive inductive constructions. The first

inductive construction generates a coupling of a Brownian motion Yt in the cone K p,d

and a copy of the process Zt . The key point is to couple Y and Z in such a way that
Z is at the vertex of K p,d when Y hits the boundary of K p,d . In addition the details of
the construction give the bound |Yt | ≥ |Zt | cos θp,d .

In the second level of the inductive construction we map processes Yt from the
first level of the construction into D \ Dr using the maps Tx described in Part 1. As
|Zt | = 0 when Yt exits the cone we may concatenate a sequence of such processes to
define a Brownian motion Xt stopped on exiting D \ Dr , coupled with an excursion
process Zt . Using estimates in Parts 1 and 4 we may bound dist(Xt , ∂ D) away from
zero by c2|Zt |. If Xt enters Dr then a Fleming Viot process constructed using Xt has
survived until V 1

r and is safe. The coupling with Zt is no longer needed and Xt is
allowed to continue independently of Zt until exiting D.

The second level of the construction produces a Brownian motion started anywhere
in D \ Dr coupled appropriately with a copy of Zt . For the third and last level we fol-
low the construction in Remark 5.1 using the products of the second level as building
blocks. If a particle X j

t exits D at time τn < V 1
r its sister process Zi

t must be at the
origin at time τi and we may extend the lifetime of the particle using the construc-
tion in Part 5. The resulting construction gives us the desired coupling of Xt with N
independent copies of Zt until at least V 1

r . After which the processes are allowed to
decouple to give us the full process Xt as required.
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Combining this coupling with Corollary 4.5, we may bound Rt away from zero up
until time V 1

r . Therefore the process cannot terminate before V 1
r and we must have

τ∞ = ∞ by observations in Part 2.
Part 4. We now present a detailed description of the first level of construction. For

yd > 0 we construct a coupling of the excursion process Zt with a Brownian motion
Yt , started at Y0 = y = (0, 0, . . . , yd) and stopped on exiting the cone K p,d . Let Yt be
a Brownian motion started at Y0 = y and consider the moving cone Ct = Yt − K p,d .
Then 0 ∈ Ct as long as Yt ∈ K p,d so we may let Yt and Zt evolve independently until
the first time Zt hits ∂Ct . At this point Zt ‘sticks’ to ∂Ct and Y and Z evolve together
with d Zt = dYt until the next time Zt exits K p,d , after which Zt starts again from
zero evolving independently from Yt . The process is repeated until Yt exits K p,d .

More formally, let Wt be a d-dimensional Brownian motion started at the origin
and independent of Zt and define Yt inductively through two sequences of stopping
times ξi , ξ

′
i with ξ0 = 0 and

ξ ′
i = inf{t > ξi : Yt − Zt ∈ ∂K p,d},

ξi+1 = inf{t > ξi : Zt = 0}.

Let Y0 = y = (0, 0, . . . , yd) and

Yt = Yξi + (Wt − Wξi ) for t ∈ [ξi , ξ
′
i ),

Yt = Yξ ′
i
+ (Zt − Zξ ′

i
) for t ∈ [ξ ′

i , ξi+1).

We stop the process Yt at ζ = inf{t : Yt ∈ ∂K p,d}. An induction on i shows that Yt

is well defined and adapted to (Zt , Wt ) up until any stopping time of the form ζ ∧ ξi .
By the strong Markov property of (W, Z), Yt is a Brownian motion on all intervals

[ξi , ξ
′
i ) and [ξ ′

i , ξi+1). Notice that each time ξ ′
i corresponds to a separate excursion of

Zt , and as Yξ ′
i
− Zξ ′

i
∈ ∂K p,d we must have |Zξ ′

i
| ≥ dist(Yξ ′

i
, ∂K p,d). The probability

that Brownian motion hits the vertex of K p,d is zero. For any a > 0 the excursion law
H0 is finite on the set of excursions that exit B(0, a), so as Yt is continuous there may
be only finitely many times ξ ′

i < ζ − ε, for any fixed ε > 0. All these observations
imply that Yt is well defined and a Brownian motion on [0, ζ ]. Furthermore, by con-
struction, we have Yt ∈ Zt + K p,d for all t ∈ [0, ζ ] and so we must have Zζ = 0.
Furthermore Zt ∈ K p,d . Hence by considering the projections of Yt and Zt onto the
axis of the cone it is easy to see that |Yt | ≥ |Zt | cos θp,d .

With probability 1, {Yt , 0 ≤ t ≤ ζ } and ζ are unique functions of y and
{(Wt , Zt ), 0 ≤ t ≤ ζ }. We will denote these functions Yt = Uy(Wt , Zt ) and
ζ = ζy(Wt , Zt ) respectively.

Part 5. We construct a Brownian motion Xt , stopped on exiting D by concatenat-
ing processes constructed in Part 4. To guide the construction we name some stopping
times of Xt .

First set ζ0 = 0 and choose x0 ∈ D \ Dr arbitrarily. Then if Xt is a Brownian
motion started at x0 we may set

τ = inf{t : Xt− ∈ ∂ D}, v = inf{t : Xt− ∈ ∂(D \ Dr )}.
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Next recall the definitions of Kx and Ox from Part 1. Define a sequence of stopping
times ζn ≤ v inductively by setting ζn+1 = v ∧ inf{t > ζn : Xt ∈ ∂Kxn } where
xn = Xζn . Consider the random sequence of cones Kxn . At each time ζn < v the par-
ticle Xt is on the axis of the cone Kxn and on the boundary of the cone Kxn−1 . Hence
we have split the lifetime of the process into a sequence of Brownian motions in cones
isomorphic to K p,d . We construct the Brownian motion Xt by mapping processes Y n

t
constructed as in Part 4 into the random cones Kxn to form a continuous process in
D \ Dr . First we must argue that this construction partitions the entire lifetime of a
Brownian motion in D \ Dr . That is the sequence of times ζn converges to τ ∧ v, the
first exit time of D \ Dr .

By definition ζn ≤ v, notice also that if ζn < τ ∧ v, then Xt ∈ Kxn ∩ D \ Dr for
t ∈ [ζn, ζn+1). As the probability that Xt hits the vertex Oxn is zero and from Part 1
dist(Xt , ∂ D) ≥ c1|Xt −Oxn | in that interval we must have ζn+1 < τ . So as τ is finite
we may set ζ∞ = limn→∞ ζn . By continuity of Brownian motion we have xn → Xζ∞
as n → ∞. We have |xn − xn+1| ≥ |xn − Oxn | sin θp,d whenever ζn+1 < v. As in
addition |xn − Oxn | ≥ dist(xn, ∂ D), the sequence xn cannot converge to any point
in D and we have ζ∞ = τ ∧ v with probability one.

Let (Wt , Zt ) be as in Part 4. Our aim is to construct a Brownian motion Xt in such
a way that Xt is adapted to (Wt , Zt ) and there exists a constant c2 = c2(N , D) such
that dist(Xt , ∂ D) ≥ c2|Zt |.

Suppose we have constructed Xt satisfying the above on the interval [0, ζn) with
ζn < v and Zζn = 0. This is trivial for n = 0. As Xt is adapted to (Wt , Zt ) and
Zζn = 0 we may set W n

t = Wζn+t − Wζn and Zn
t = Zζn+t . The pair (W n

t , Zn
t ) agrees

in distribution with (Wt , Zt ) and by the strong Markov property is independent of
Xt∧ζn .

Recall the maps Tx from Part 1. As ζn < v we have xn ∈ D \ Dr and we may
set yn = T −1

xn
. Now using the construction in Part 4 set Y n

t = Uyn (W n
t , Zn

t ), ζ �
n =

ζyn (W n
t , Zn

t ) and map the process into D by setting ˜Xn
t = Txn (Y

n
t ). If ˜Xn

t hits Dr

at some time v′ < ζ�
n during its lifetime we set ζn+1 = v = ζn + v′, if not we set

ζn+1 = ζn + ζ �
n .

By construction Xn
t is a Brownian motion started at xn and stopped on exiting Kxn ∩

D \ Dr and so dist(Xn
t , ∂ D) > c1|Y n

t |. Recall from Part 4 that |Y n
t | ≥ |Zn

t | cos θp,d

for t < ζ�
n . So, let c2 = c1 cos θp,d and set Xt = Xn

t−ζn
for all t ∈ [ζn, ζn+1). Then Xt

is a concatenation of two independent Brownian motions and is a Brownian motion.
Furthermore we have dist(˜Xn

t , ∂ D) ≥ c2|Zt | on the interval [ζn, ζn+1) as required.
Now if ζn+1 < v then Zζn+1 = Zn

ζ �
n

= 0 by construction and we may repeat the
inductive step. If ζn+1 = v we stop the construction. In this case we have constructed
a Brownian motion until time v with dist(Xt , ∂ D) ≥ c2|Zt |, so we need only continue
Xt until time τ in such a way that it is adapted to (Wt , Zt ). We achieve this by setting
Xt = Xv + Wt − Wv on the interval [v, τ ].

If the construction does not terminate then Xt is a Brownian motion satisfying
the above conditions until any stopping time ζn . Therefore we may take the limit as
n → ∞ and Xt is a Brownian motion up until ζ∞. Arguing as above we have ζ∞ = τ .

So we have constructed a process Xt stopped on exiting D at time τ . As before,
with probability 1, we may express X and τ as functions {Xt , t ≥ 0} = Vx0({Wt ,
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t ≥ 0}, {Zt , t ≥ 0}) and τ = τx0({Wt , t ≥ 0}, {Zt , t ≥ 0}). We will use the following
abbreviations, X = Vx0(W, Z) and τ = τx0(W, Z).

Part 6. In the final stage we construct a coupling of a Fleming-Viot process Xt with
a vector of independent excursion processes. Let Z1

t , . . . , Z N
t be independent copies

of the excursion process Zt and let W 1
t , . . . , W N

t be independent Brownian motions.
We use each pair (W i

t , Zi
t ) as driving noise for a particle Xi

t using the constructions
in Parts 4 and 5.

Recall the stopping times si
n and the distributions Qn of stopped processes from

Remark 5.1. Our strategy is to follow the method outlined in Remark 5.1 and construct
a sequence of processes Xn

t = (Xn,1
t , . . . , Xn,N

t ) with the following properties.

• Xn
t is distributed as Qn and adapted to Ft .

• dist(Xn, j
t , ∂ D) ≥ c2|Z j

t | for every j ∈ 1, . . . , N and t < V 1
r .

• The sequence of processes is coherent in the sense that with probability 1 for every
m > n and t < τn we have Xn

t = Xm
t .

It is easy to construct a process X1
t satisfying the above as Q1 is just the distri-

bution of N independent stopped Brownian motions. For any starting vector X0 =
(x1

0 , . . . , x N
0 ) ∈ (D \ Dr )

N set X1,i = Vxi
0
(W i , Zi ) for each i ∈ {1, . . . , N } and

t < si
1 = τxi

0
(W i , Zi ). As the pairs (W i

t , Zi
t ) are independent and distributed as

(Wt , Zt ) in Part 5 the Brownian motions X1,i
t are independent and satisfy the required

bound on dist(Xi
t , ∂ D).

Now suppose after � inductive steps we have constructed processes X1
t , . . . , X�

t
satisfying the three conditions above. Suppose further that for each j ∈ {0, . . . , N }
the shifted processes Z j,�

t = Z j

t+s j
�

and W j,�
t = W j

t+s j
�

− W j

s j
�

are independent of X�.

This fact is easy to check for � = 1.
Recall from Remark 5.1 that there is exactly one particle, say X�, j

t such that s j
� = τ�.

To construct X�+1 we must extend the lifetime of X�, j
t by adding an independent

Brownian motion with an appropriately chosen starting position.
So as in Remark 5.1, set X�+1,i

t = X�,i
t whenever t < si

�. Next choose, λ�+1 uni-
formly from {1, . . . , N } \ { j} and independent of every other random variable. Then
the particle X�+1, j will jump to x� = X�,λ�

τ�
at time τ�.

If τ� < V 1
r then we must have Z j

τ�
= 0 and x� ∈ D \ Dr so we may set s j

�+1 =
s j
� + τx�

(W �, j , Z�, j ) and X�+1, j = Vx�
(W �, j , Z�, j ) for t ∈ [s j

� , s j
�+1). By construc-

tion we have dist(X�+1, j
t , ∂ D) ≥ c2|Z j

t | on the interval [τ j , s j
�+1 ∧ v).

Alternatively if τ� > V 1
r we do not need to couple X�+1, j

t with Z j
t after time τ� so

we may set X�+1, j
t = x� + W j

t − W j

s j
�

until s j
�+1, the next time X�+1, j

t exits D.

By assumption the pair (W �
t , Z�

t ) is independent of X�
t . In both cases above X�+1, j

t−s j
�

is a Brownian motion adapted to (W �
t , Z�

t ). Arguing as in Remark 5.1, X�+1
t is distrib-

uted as Q�+1 and is adapted to Ft . The independence assumption for X�+1 follows
from the strong Markov property.

Now extend the sequence Xn
t to a Fleming-Viot process by setting Xt = Xn

t when-
ever t < τn .
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Suppose there exists a finite deterministic time T with P(1/T < τ∞ < T ) > 0.
Let A = {1/T < τ∞ < T }. Then from Lemma 5.2 we must have Rτn → 0 as
n → ∞, on A. But from Corollary 4.5 the maximum process maxi∈{1,...,N } |Zi

t | is
bounded below on [1/T, T ] by a strictly positive random variable, a.s. Therefore we
must have dist(Xi

τn
, ∂ D) < c2|Zi

t | for all but finitely many n, for all i, assuming
A holds. According to our construction, this is impossible unless τ∞ > V 1

r on A.
Letting T → ∞, we obtain P(τ∞ > V 1

r ) = 1. Part 2 now implies that we must have
P(τ∞ < ∞) = 0. ��
Remark 5.5 Let D ⊂ R

d be a bounded Lipschitz domain with the Lipschitz
constant L < 1√

d−1
. Then by (5.6) we see that there exists N0 so large that L < c(N , d)

for all N ≥ N0. In consequence, the Fleming-Viot-type particle process Xt in D is
well defined for all t ≥ 0 provided it consists of N particles with N ≥ N0.

Remark 5.6 We will argue that Theorems 1.3 and 1.4 in [10] hold true even though
we do not know whether Theorem 1.1 in that paper is true.

Theorem 1.3 is concerned with a fixed time t > 0. A sequence of processes XN is
considered and it is assumed that the initial empirical distributions (1/N )

∑N
k=1 δXk

0
converge weakly to a probability measure μ0 in D. Let A be a compact subset of
D such that μ0(A) > 0. Since the distance r from A to ∂ D is strictly positive and
Brownian motion can stay in the ball of radius r/2 for time t with a strictly positive
probability p1, it follows that if j Brownian motions start from points in A then with
probability equal to or greater than 1−(1− p1)

j at least one of these Brownian motions
never comes closer to ∂ D than r/2 units on the interval [0, t]. Fix an arbitrarily small
p2 and let j be so large that (1 − p1)

j < p2/2. Let N0 be so large that for N ≥ N0,

the probability that there are at least j processes Xk
0 in A is equal to or greater than

1− p2/2. Then with probability equal to or greater than 1− p2 there exists a process Xk

which never approaches ∂ D closer than r/2 units on the interval [0, t]. By Lemma
5.2, this implies that τ∞ ≥ t with probability equal to or greater than 1 − p2. Hence,
the empirical distribution (1/N )

∑N
k=1 δXk

t
is well defined with probability equal to

or greater than 1 − p2. When the empirical distribution of Xt is not well defined at
time t, we can define it arbitrarily to be the atom at (x0, x0, . . . , x0) for some x0 ∈ D.
Theorem 1.3 of [10] makes an assertion about convergence of (1/N )

∑N
k=1 δXk

t
in

probability. Since p2 > 0 is arbitrarily small, the proof given in [10] and the remarks
given above show that Theorem 1.3 is true.

We will now discuss Theorems 1.4 in [10]. That theorem is concerned with domains
which satisfy the internal ball condition with radius r > 0. The family of such domains
is not contained in the class of Lipschitz domains and neither does it contain all
Lipschitz domains. To see this, consider a square which is a Lipschitz domain but
does not satisfy the internal ball condition. A two-dimensional example illustrating
the opposite claim is D = B((10, 0), 10)∪ B((0, 1), 1)∪ B((0,−1), 1). This example
shows that Theorem 5.4 of the present paper cannot be applied to some domains satis-
fying the internal ball condition. On page 698 of [10] it is shown that dist(Xk

t , Dc) ≥
r − Rk

t , where Rk’s are independent d-dimensional Bessel processes reflected at r .
A claim is made in [10] that this relation holds for all finite t, based on Theorem
1.1. Although Theorem 1.1 has incorrect proof, the argument given in the proof of
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Theorem 1.4 does show that dist(Xk
t , Dc) ≥ r − Rk

t holds for all t < τ∞. The process
�t = ((r − R1

t )2 + · · · + (r − RN
t )2)1/2 has the distribution absolutely continuous

with respect to the distribution of N -dimensional Bessel process on every finite time
interval, by the Girsanov theorem. Hence �t does not hit 0 at any finite time. We now
reason as in Remark 5.3. On the event {τ∞ < ∞} we have �τ∞ > 0 and, therefore,
lim supt↑τ∞ dist(Xk

t , Dc) > 0 for at least one k. In view of Lemma 5.2, we conclude
that the probability of the event {τ∞ < ∞} is 0. This shows that the process Xt is well
defined for all t under assumptions of Theorem 1.4 in [10] and, therefore, Theorem
1.4 is true.

Example 5.7 The proof of Theorem 1.1 in [10] contains an error. Formula (2.1) in
[10] does not follow “by induction” from the previous statement. We will show that
the error is irreparable in the following sense. The proof of Theorem 1.1 in [10] is
based only on two properties of Brownian motion—the strong Markov property and
the fact the the hitting time distribution of a compact set has no atoms (assuming that
the starting point lies outside the set). Hence, if some version of that argument were
true, it would apply to almost all non-trivial examples of Markov processes with con-
tinuous time, and in particular to all diffusions. However we may find a diffusion for
which the analogue of Theorem 1.1 in [10] is false. Let Xt be the diffusion on [0,∞),

started at X0 = 1 and satisfying the SDE

d Xt = dWt − 5

2Xt
dt.

We make 0 absorbing so that it can play the role of the boundary for the domain
D = (0,∞). Notice that although Xt is not a Bessel process, as we have reversed
the drift term, it scales in the same way. That is, for α > 0, αXtα−2 is a diffusion
satisfying the same SDE, but started at α. Let Yi

t = (Y i,1
t , Y i,2

t ), i = 1 . . . ∞, be a
double sequence of independent copies of Xt , and set

σi = inf{t > 0 : Y i,1
t ∧ Y i,2

t = 0},
αi = Y i,1

σi
∨ Y i,2

σi
.

Now, construct a two-particle Fleming-Viot type process Xt = (X1
t , X2

t ) as follows.
First let τ1 = σ1 and set Xt = Y1

t for t ∈ [0, τ1). At τ1 one of the particles hits the
boundary and jumps to ξ1 = α1. To continue the process we use the scaling property
of Yt and set Xt = ξ1Y2

(t−τ1)ξ
−2
1

for t ∈ [τ1, τ2) where τ2 = τ1 + ξ1
2σ2. At τ2 a

second particle hits the boundary and jumps, this time to ξ2 = α2ξ1, and we continue
the process in the same way by setting

ξi =
i
∏

j=1

α j , τi =
i
∑

j=1

ξ j−1
2σ j ,

Xt = ξi Yi
(t−τi )ξ

−2
i

, for t ∈ [τi , τi+1).
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Then Xt evolves as two independent copies of Xt with Fleming-Viot type jumps
when a particle hits the boundary. The process Xt is well defined up until τ∞ and if the
analogue of [10, Theorem 1.1] were to hold for this process we would have τ∞ = ∞
almost surely. In fact the opposite is true. We will show now that Eτ∞ < ∞ and hence
τ∞ < ∞ almost surely. To do this it will be sufficient to show E(α1

2)<1 and Eσ1 <∞.
Let f (x, y) = x4 + y4 − x2 y2 and notice f (x, x) = f (x, 0) = f (0, x) = x4. We
may check using Ito’s formula that f (Y i,1

t∧σi
, Y i,2

t∧σi
) is a positive local martingale and

hence a supermartingale. By the optional stopping theorem

E

(

α1
4
)

= E f
(

Y 1,1
σ1

, Y 1,2
σ1

)

≤ E f
(

Y 1,1
0 , Y 1,2

0

)

= 1.

Furthermore, α1 is not almost surely constant and so by Jensen’s inequality

E(α1
2) <
√

E(α1
4) = 1.

We may use Ito’s formula again to show that Xt
2 + 4t is a local martingale and so

by the optional stopping theorem again we have that E(σ1) ≤ 1
4 .

By independence of the Yi processes we have that E(ξi
2) = E(α1

2)i and so

Eτ∞ =
∞
∑

j=1

E

(

ξ j−1
2σ j

)

≤ 1

4

∞
∑

j=0

E

(

α1
2
) j

< ∞.

6 Hitting probabilities of compact sets

This section is devoted to a technical estimate needed in the proof of Theorem 7.1.
Recall definitions of Dr and Xt = (X1

t , . . . , X N
t ).

Lemma 6.1 Fix N ≥ 2 and let D ⊂ R
d be a bounded Lipschitz domain with the

Lipschitz constant L < c(N , d).

(i) For any fixed k ∈ {1, . . . , N } , and for every r > 0 such that IntDr �= ∅, there
exist c > 0 and t > 0 such that for all x ∈ DN ,

P
x
(

Xk
t ∈ Dr

)

≥ c.

(ii) For every r > 0 such that IntDr �= ∅, there exist c > 0 and t > 0 such that for
all x ∈ DN ,

P
x
(

Xt ∈ DN
r

)

≥ c.

Proof (i) Fix r > 0 such that IntDr �= ∅. Recall that notation such as TDr , T∂ D, etc.
refers to hitting times by Brownian motion. By Theorem 3.1 there exists c0 = c0(r)

such that for all x ∈ D,

P
x (TDr < T∂ D

) ≥ c0E
x T∂ D . (6.1)
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Fix k and let T Xk

Dr
= inf
{

t ≥ 0 : Xk
t ∈ Dr

}

, and

Yt = Xk(t ∧ T Xk

Dr
).

Define T0 = 0 and

Tn+1 = inf

{

t > Tn : lim
s→t−

Ys ∈ ∂ D

}

∧ T Xk

Dr
.

Let M0 = 0 and

Mn = 1

c0
1{Y (Tn)∈Dr } − Tn, n ≥ 1,

and

Fn = σ(Xt , t ≤ Tn).

It is easy to see that ETn < ∞ so E |Mn| < ∞. For x = (x1, x2, . . . , xN ) ∈ DN with
xk �∈ Dr ,

E
x (Mn+1 − Mn | Fn) = 1

c0
E

x (1{Y (Tn+1)∈Dr }(1{Y (Tn)/∈Dr } + 1{Y (Tn)∈Dr })

−1{Y (Tn)∈Dr } | Fn
)− E

x (Tn+1 − Tn | Fn)

= 1

c0
E

x (1{Y (Tn+1)∈Dr }1{Y (Tn)/∈Dr }

+1{Y (Tn)∈Dr } − 1{Y (Tn)∈Dr } | Fn
)− E

x (Tn+1 − Tn | Fn)

= 1

c0
1{Y (Tn) �∈Dr }Px (Y (Tn+1) ∈ Dr | Fn)

−E
x (Tn+1 − Tn | Fn) .

We have on the event {Y (Tn) �∈ Dr },

E
x (Mn+1 − Mn | Fn) ≥ 1

c0
P

Xk (Tn) (T (Dr ) < T∂ D) − E
Xk (Tn)T∂ D ≥ 0,

by (6.1). On the event {Y (Tn) ∈ Dr }, we have Tn+1 = Tn, YTn+1 ∈ Dr , and so

E
x(Mn+1 − Mn | Fn) = 0.

Combining the last two formulas, we conclude that {Mn} is a submartingale with
respect to {Fn}.

Define

S = inf
{

j : Tj ≥ 1
} ∧ inf

{

j : YTj ∈ Dr
}

.
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Fix an x ∈ DN and consider two cases. First, we may have

P
x (S = inf

{

j : YTj ∈ Dr
}) ≥ 1/2.

In this case,

P
x(T Xk

Dr
≤ 1) ≥ 1/2. (6.2)

The second case is when

P
x (S = inf

{

j : YTj ∈ Dr
})

< 1/2.

In this case, P
x(S ≥ 1) ≥ 1/2, so E

xTS ≥ 1/2. The submartingale Mn is bounded
above by 1/c0 so we can apply the optional stopping theorem to obtain

E
x MS ≥ E

x M0 = 0.

Hence

P
x (YTS ∈ Dr

) ≥ c0E
xTS ≥ c0/2. (6.3)

We will show that for some t0,

P
x
(

T Xk

Dr
≤ t0
)

≥ c0/4. (6.4)

If TS > s0 for some s0 > 1 then Xk
t must not hit Dr ∪ ∂ D for t ∈ (1, s0). The prob-

ability of this event is bounded above by the probability of the event that Brownian
motion starting from Xk

1 will not leave the ball B(Xk
1, 2 diam(D)) for s0 − 1 units of

time. The last probability is c1 < 1, depending on s0 > 1, but not depending on Xk
1.

By the Markov property,

sup
x∈DN

P
x (TS > s0) ≤ c1 < 1.

Applying the Markov property repeatedly at times s0, 2s0, . . . , we obtain for any
x ∈ DN ,

P
x(TS > ns0) ≤ cn

1 .

We choose n so large that cn
1 ≤ c0/4 and let t0 = ns0. Then for x ∈ DN ,

P
x(TS > t0) ≤ c0/4. (6.5)
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We use (6.3) and (6.5) to see that

c0/2 ≤ P
x (YTS ∈ Dr

)

= P
x (YTS ∈ Dr , TS > t0

)+ P
x (YTS ∈ Dr , TS ≤ t0

)

≤ P
x(TS > t0) + P

x
(

T Xk

Dr
≤ t0
)

≤ c0/4 + P
x
(

T Xk

Dr
≤ t0
)

.

This implies (6.4). We combine the two cases, that is, (6.2) and (6.4), to see that for
some t1 < ∞ and c2, for all x ∈ DN ,

P
x
(

T Xk

Dr
≤ t1
)

≥ c2. (6.6)

Let r1 be such that 0 < r < r1 and IntDr1 �= ∅. Let t2 and c3 be such that (6.6)
holds with r1, t2 and c3 in place of r, t1 and c2, i.e.,

P
x
(

T Xk

Dr1
≤ t2
)

≥ c3. (6.7)

Let r2 = (r1 − r)/2 and p1 = P
0(T∂ B(0,r2) ≥ t2) > 0. By translation invariance of

Brownian motion, p1 = P
y(T∂ B(y,r2) ≥ t2) for every y. If the process Xk hits Dr1

before time t2 and then stays in the ball B(Xk(T Xk

Dr1
), r2) for at least t2 units of time

then Xk will be inside Dr at time t2. By the strong Markov property applied at the
stopping time T Xk

Dr1
, we obtain, using (6.7), for all x ∈ DN ,

P
x(Xk

t2 ∈ Dr ) ≥ p1P
x
(

T Xk

Dr1
≤ t2
)

≥ p1c3 > 0. (6.8)

This completes the proof of part (i) of the lemma.
(ii) Recall that r > 0 is fixed and such that IntDr �= ∅. Let r3 and r4 be such that

0 < r < r3 < r4 and IntDr4 �= ∅. Let r5 = min(r3 − r, r4 − r3)/2. We choose t3
and c4 so that (6.8) can be applied with r4 in place of r,

P
x(Xk

t3 ∈ Dr4) ≥ c4 > 0.

Let p2 = inf y∈D P
y(T∂ D ≤ t3) and note that p2 > 0. Let p3 =P

y(T∂ B(y,r5) ≥2t3) > 0
and note that p3 does not depend on y.

Let A be the intersection of the following events.

(a) The process X1 is in Dr4 at time t3, and it stays in B(X1
t3 , r5) for all t ∈ [t3, 3t3].

(b) For every j = 2, . . . , N , the process X j jumps at a time s j ∈ [t3, 2t3] to X1
s j

,

and then stays in the ball B(X j
s j , r5) = B(X1

s j
, r5) for all t ∈ [s j , s j + 2t3].
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By the strong Markov property and the definition of the process X, the probability of
A is bounded below by c5 = c4 p3(p2(1/(N −1))p3)

N−1. If A occurs then X3t3 ∈ DN
r .

Hence, for every x ∈ DN ,

P
x
(

X3t3 ∈ DN
r

)

≥ c5 > 0.

This proves part (ii) of the lemma. ��

7 Stationary distribution for the particle system

The two theorems proved in this section generalize the analogous results in [10], where
the proofs were given only for domains satisfying the internal ball condition.

Theorem 7.1 Suppose that D ⊂ R
d is a bounded Lipschitz domain with the

Lipschitz constant L < c(N , d), where c(N , d) is as in Theorem 5.4. Then there
exists a unique stationary probability distribution MN for Xt . The process Xt con-
verges to its stationary distribution exponentially fast, i.e., there exists λ > 0 such that
for every A ⊂ DN ,

lim
t→∞ eλt sup

x∈DN

∣

∣

∣P
x (Xt ∈ A) − MN (A)

∣

∣

∣ = 0. (7.1)

Proof We have shown in Lemma 6.1 (ii) that for any r > 0, with probability higher
than p0 = p0(r) > 0, the process Xt can reach the compact set DN

r within t0 > 0
units of time. This and the strong Markov property applied at times 2t0, 4t0, 6t0, . . .
show that the hitting time of DN

r is stochastically bounded by an exponential random
variable with the expectation independent of the starting point of Xt . Since the tran-
sition densities pX

t (x, y) for Xt are bounded below by the densities for the Brownian
motion killed at the exit time from DN , we see that pX

t (x, y) > c1 > 0 for x, y ∈ DN
r .

Fix arbitrarily small s > 0 and consider the “skeleton” {Xns}n≥0. The properties listed
in this paragraph imply that the skeleton has a stationary probability distribution and
that it converges to that distribution exponentially fast, i.e., (7.1) holds for the skele-
ton, by Theorem 2.1 in [15] or Theorem 16.0.2 (ii) and (vi) of [21]. See the proof of
Proposition 1.2 in [9] for an argument showing how to pass from the the statement
of uniform ergodicity for the skeleton to the analogous statement for the continuous
process t → Xt . We sketch this argument here. Take any ε > 0 and find t1 = n1s
such that

eλt sup
x∈DN

∣

∣

∣P
x (Xt ∈ A) − MN (A)

∣

∣

∣ ≤ ε (7.2)

holds for t ≥ t1 of the form t = ns. Consider an arbitrary t2 > t1, not necessarily of
the form ns. Let m be the integer part of t2/s and let u = t2 − ms. Note that m ≥ n1.
Since (7.2) holds for t = ms, the semigroup property applied at time u shows that
(7.2) holds also at time t2. ��
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Theorem 7.2 Suppose that D is a bounded Lipschitz domain with the Lipschitz con-
stant L < 1√

d−1
. For N ≥ N0 (see Remark 5.5) let X N

M be the stationary empirical

measure. Let ϕ be the first eigenfunction for Laplacian in D with the Dirichlet bound-
ary conditions, normalized so that

∫

D ϕ = 1. Then the sequence of random measures
X N

M, N ≥ N0, converges as N → ∞ to the (non-random) measure with the density ϕ,

in the sense of weak convergence of random measures.

Proof Recall processes Y j defined in the proof of Theorem 5.4. By construction, we
have dist(Y j

t , ∂ D) ≤ dist(X j
t , ∂ D), for all j and t .

It is elementary to see that the process Z constructed in Sect. 4 has the property
that

lim
r↓0

lim sup
t→∞

1

t

t
∫

0

1{dist(Zs ,∂ D)≤r}ds = 0, a.s.

In view of the construction of Y j from independent copies of Z , we also have, for
every j,

lim
r↓0

lim sup
t→∞

1

t

t
∫

0

1{dist(Y j
s ,∂ D)≤r}ds = 0, a.s.

Hence, for every j,

lim
r↓0

lim sup
t→∞

1

t

t
∫

0

1{dist(X j
s ,∂ D)≤r}ds = 0, a.s.

This implies that for every p1 > 0, one can find r > 0 so small that if X has the sta-
tionary measure MN then for every t, P(X j

t /∈ Dr ) ≤ p1. It follows that for any N ,

the mean measure EX N
M of the compact set Dr is not less than 1− p1. Hence, the mean

measures EX N
M are tight in D. Lemma 3.2.7, p. 32, of [13] implies that the sequence

of random measures X N
M is tight and so it contains a convergent subsequence.

One can complete the proof of the claim that the random measures X N
M converge

as N → ∞ to the measure with the density ϕ exactly as in the proof of Theorem 1.4
in [10], starting on line 9 of page 699. ��

8 Polyhedral domains

In this section we show that the Lipschitz constant c(N , d) in Theorem 5.4 is not sharp,
that is, τ∞ = ∞, a.s., in some Lipschtz domains with arbitrarily large Lipschitz con-
stant. Specifically, we will demonstrate the existence of the two particle process for
all times in arbitrary polyhedral domains. Unfortunately, our method cannot be easily
adapted to the multiparticle case, so we leave this generalization as an open problem.
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Definition 8.1 We say an open set D ⊂ R
d is a polyhedral domain if there exist

simplicial complexes K ⊃ ∂K such that D = |K| and ∂ D = |∂K|.
For the remainder of this section we will assume that D = Int|K| is a polyhedral
domain. Let Xt = (X1

t , X2
t ) be a Fleming-Viot process in D and define jump times τi

as before. We will show:

Theorem 8.2 If D is a polyhedral domain and Xt = (X1
t , X2

t ) is a Fleming-Viot
process with jump times τi then τi → ∞ as i → ∞ almost surely.

As Xt is a càdlàg process we have X1
τi

= X2
τi

for each i ∈ N, so we may define

a sequence of jump points ξi = X1
τi

= X2
τi

. Since D is compact, ξi has at least one

limit point in D. To prove Theorem 8.2 we will examine the behavior of Xt when
both particles are close to a limit point of ξi and, assuming that τ∞ < ∞, arrive at a
contradiction.

First we will show that if t ∈ [τi , τi+1) then Xt cannot stray too far from (ξi , ξi ).

Lemma 8.3 Set V 1
t = ‖X1

t − ξi‖, V 2
t = ‖X2

t − ξi‖ for t ∈ [τi , τi+1). If τ∞ < ∞
then V 1

t → 0 and V 2
t → 0 as t → τ∞.

Proof It suffices to consider only V 1
t . Notice that V 1

t is a d-dimensional Bessel pro-
cess (Bes(d), for short), reset to 0 at each τi . So setting �V 1

i = V 1
τ−

i
we may extract

a Brownian motion

Wt = V 1
t +

∑

{i∈N : τi ≤t}
�V 1

i −
t
∫

0

d − 1

2V 1
t

dt.

Consider ε > 0. We will count the number of upcrossings of the interval [ ε
2 , ε]

within a short time interval [t, t + δ], where δ = ε2/(4(d − 1)). Consider times
t < s′ < s < t + δ where V 1

s ≥ ε and s′ = sup{s̃ < s : V 1
s̃ = ε

2 }. Notice as V 1 only
jumps downwards there is no i ∈ N such that s′ < τi ≤ s. We have

Ws − Ws′ = V 1
s − V 1

s′ −
s
∫

s′

d − 1

2V 1
t

dt

≥ ε

2
− (s − s′)d − 1

ε

≥ ε

2
− ε2

4(d − 1)

d − 1

ε
= ε

4
.

So on a short time interval, each upcrossing of [ ε
2 , ε] by V 1 corresponds to an oscilla-

tion of ε
4 by W . As W is a Brownian motion, with probability 1, V 1 makes only finitely

many upcrossings of [ ε
2 , ε] in a given time interval [t, t + δ]. If τ∞ < ∞, we may find

n ∈ N with τn ≥ τ∞−δ. So if V 1
t > ε for some τn < τi < t < τi+1 then as V 1 is reset

to 0 at τi there must be an upcrossing of [ ε
2 , ε] in the interval [τi , τi+1) ⊂ [τn, τn + δ].
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So V 1
t > ε in only finitely many intervals [τi , τi+1) and, as ε is arbitrary, V 1

t → 0 as
t → τ∞. ��
Corollary 8.4 If τ∞ < ∞ then the sequence ξi has no limit point ξ∞ ∈ D.

Proof Fix x ∈ D. As D is open, there exists some ε with B(x, 2ε) ⊂ D. If ξi ∈
B(x, ε) then, as both particles follow continuous paths until one exits D, we must have
V 1

t ∨ V 2
t > ε for some t ∈ [τi , τi+1). So if V 1

t , V 2
t → 0 as t → τ∞ then ξi ∈ B(x, ε)

for only finitely many i . As x is arbitrary we see that so long as V 1
t , V 2

t → 0 as
t → τ∞, ξi can have no limit point in D. ��

It is convenient at this point to introduce some notation that will allow us to consider
the behavior of Xt when it is close to the boundary of a simplicial complex. Let σ be
a k-simplex with vertices {v0, . . . , vk}, that is

σ =
{

k
∑

i=0

λiviλ0, . . . , λk ≥ 0,

k
∑

i=0

λi = 1

}

.

Then define the interior of σ

◦
σ =
{

k
∑

i=0

λiviλ0, . . . , λk > 0,

k
∑

i=0

λi = 1

}

and the span of σ to be the subspace

Sσ =
{

k
∑

i=0

λivi

k
∑

i=0

λi = 0

}

.

For two simplices σ1, σ2 ∈ K we write σ1 ≤ σ2 if σ1 is a face of σ2 and σ1 < σ2 if
σ1 is a proper face of σ2. We name the star of a simplex σ to be the set

St (σ ) = {σ1 ∈ K : σ1 ≥ σ }

and define the neighborhood of σ as

N (σ ) = {x ∈ D : x ∈ ◦
σ1 for some σ1 ≥ σ }.

Given simplices σ ≤ σ1 name the vertices of σ and σ1, {v0, . . . , vk} and
{v0, . . . , vn} respectively. Define the wedges

W(σ, σ1) =
{

n
∑

i=0

λiviλk+1, . . . , λn > 0,

n
∑

i=0

λi = 1

}

,

W(σ ) =
⋃

σ1∈St (σ )

W(σ, σ1).
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Notice that N (σ ) ⊂ W(σ ) and that N (σ ) is open with respect to the subspace topol-
ogy of D. Notice also that W(σ ) is a product space

W(σ ) = C(σ ) × Sσ ,

where the cone C(σ ) is the projection of W(σ ) onto S⊥
σ .

Now, consider σ ∈ ∂K and suppose there exists a subsequence ξin → ξ∞ ∈ ◦
σ .

As ξ∞ ∈ ◦
σ ⊂ N (σ ) and N (σ ) is open in D we may assume without loss of gen-

erality that ξin ∈ N (σ ) for each n. So consider Xt started at (ξin , ξin ) at time τin

and stopped at the first time T > τin where one of X1
t , X2

t exits N (σ ). Of course,
as N (σ ) ⊂ W(σ ) ∩ D, this has the same distribution as a Fleming-Viot process in
W(σ ) started and stopped in the same way.

So, let P
x
σ and E

x
σ be the probability measure and expectation operator associated

with a Fleming-Viot process in W(σ ) started at X0 = (x, x). The Sσ and S⊥
σ compo-

nents are not quite independent as they have the same jumps, but Pσ allows a partial
factorization as follows.

Lemma 8.5 If Xt is a Fleming-Viot process in W(σ ) then there is a well defined
decomposition Xt = Yt +Zt with Yt = (Y 1

t , Y 2
t ) ∈ C(σ )2, Zt = (Z1

t , Z2
t ) ∈ S2

σ with
the following properties

• Yt is a Fleming-Viot process in C(σ );
• there exists a Brownian motion Z̃t in Sσ (not adapted to the filtration of Xt ), inde-

pendent of Yt , such that for each i ∈ N we have Z̃τi = ζi with ζi = Z1
τi

= Z2
τi

.

Proof Obviously, as C(σ ) ⊂ S⊥
σ , the factorization Xt = Yt + Zt is unique. Further,

on each interval [τi , τi+1), the processes Y 1
t , Y 2

t , Z1
t and Z2

t evolve as independent
Brownian motions on S⊥

σ and Sσ respectively. So as Sσ is a subspace and has no bound-

ary, X j
t jumps when and only when Y j

t hits ∂C(σ ), and so Yt is indeed a Fleming-Viot
process on C(σ ).

Now for each i ∈ N only one of X1
t , X2

t has a discontinuity at τi+1, so there is a
well defined sequence of random variables Ji ∈ {1, 2} such that X Ji

t is continuous on
the closed interval [τi , τi+1] and we may define a continuous process

Z̃t = Z Ji
t , t ∈ [τi , τi+1

]

.

Then Z̃τi = ζi for every i and it remains to show that Z̃t is a Brownian motion inde-
pendent of Yt . Of course Z̃t is only defined up to τ∞. But we may continue Z̃t after τ∞
with an independent Brownian motion if necessary.

Now as Z̃t follows either Z1
t or Z2

t then the quadratic variation 〈Z̃〉t = t and, by
Lévy’s characterization, we need only check that Z̃t is a martingale with respect to
its own natural filtration and is independent of Yt . Furthermore, although Z̃t is not
adapted to Xt , for each τi , the path Z̃ |[0,τi ] is measurable with respect to X|[0,τi ].
Therefore, by the strong Markov property, it is sufficient to consider only intervals
[τi , τi+1).
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In fact it suffices to consider only the first time interval [0, τ1). Let Xt be a Fleming-
Viot process started at ξ0 ∈ W(σ ) and stopped at τ1. Then the left limit process is a
pair of independent Brownian motions stopped at τ = τ−

1 . Set J = J0 and we have
ξ1 = X J

τ ∈ W(σ ) and X3−J
τ ∈ ∂W(σ ).

So set Xt = Yt + Zt as in the statement of the lemma and let FY
t ,FZ

t and F Z̃
t

be the natural filtrations of Y, Z and Z̃ respectively. Set ζ0 = Z1
0, ζ1 = Z J

τ to be the
FX

τ -measurable Z-components of ξ0 and ξ1, respectively. Thus, τ is a stopping time of
FY

t and J is measurable with respect to FY
τ . Now crucially Y and Z are independent

processes so for t < τ we have

E
ξ0
σ

(

ζ1

∣

∣

∣FY
τ ∨ FZ

t

)

= E
ξ0
σ

(

Z J
τ

∣

∣

∣FY
τ ∨ FZ

t

)

= Z̃t .

Thus Z̃ is a martingale, and hence a Brownian motion, with respect to the filtration
Gt = FY

τ ∨ FZ
t . Therefore Z̃ is independent of FY

τ ⊂ G0 and is a Brownian motion

with respect to its own natural filtration F Z̃
t ⊂ Gt . ��

Now Yt is a process in a cone and if ξi converges to some point in
◦
σ then Yt must

converge to the apex of C(σ ). Our next step is to show that this cannot be the case.

Lemma 8.6 If Yt is a Fleming-Viot process in a cone C ⊂ R
d then, with probability

one, Yt does not converge to (0, 0).

To prove this we will need to consider the angular components, �
j
t = Y j

t

‖Y j
t ‖ , of Y.

We will recall briefly some facts about spherical Brownian motion. We will omit
details, which can be found in [23, Chapter 8], particularly Example 8.5.8.

Let Bt be a Brownian motion on R
d , let the unit sphere be denoted

S
d−1 = {x ∈ R

d : ‖x‖ = 1},

and define the map φ : R
d\{0} → S

d−1 by φ(x) = x
‖x‖ .

Now let �t = φ(Bt ). Applying Ito’s formula,

d�t = 1

‖Bt‖
(

I − �t�
�
t

)

d Bt − d − 1

2‖Bt‖2 �t dt.

Note we are interpreting �t as a column vector so �t�
�
t is a square matrix. Now

define a differential operator A : C2(Sd−1, R) → C0(Sd−1, R) by

A f (x) = 1

2

⎛

⎝� f (x) −
∑

i, j

xi x j
∂2 f

∂xi∂x j

⎞

⎠− d − 1

2

∑

i

xi
∂ f

∂xi
.

Applying Ito’s formula again, we see that f (�t ) − ∫ t
0

A f (�t )

‖Bt ‖2 dt is a local martingale

for each f ∈ C2(Sd−1, R).

123



328 M. Bieniek et al.

We may extend this to functions of two Brownian motions by defining A1,A2 by

A1 f (x, y) = A( f (·, y))(x),

A2 f (x, y) = A( f (x, ·))(y).

Then by a similar application of Ito’s formula, if B1
t and B2

t are independent Brownian
motions and �1

t = φ(B1
t ),�2

t = φ(B2
t ),�t = (�1

t ,�
2
t ), then

N f
t = f

(

�1
t ,�

2
t

)

−
t
∫

0

(A1 f (�t )

‖B1
t ‖2

+ A2 f (�t )

‖B2
t ‖2

)

dt (8.1)

is a local martingale.
Now apply a time change to�t as follows. Ifα(t)= inf{s ∈ R

+ : ∫ s
0 ‖Bs̃‖−2ds̃≥t},

then �t = �α(t) is a Markov diffusion on S
d−1 with generator A. Let P

θ1,θ2
S

and E
θ1,θ2
S

be the probability measure and expectation operator associated with two independent
copies of �t started at θ1 and θ2 ∈ S

d−1 respectively.

Lemma 8.7 Let U be an open subset of S
d−1 and set

T U
1 = inf{t ∈ R : �1

t ∈ ∂U },
T U

2 = inf{t ∈ R : �2
t ∈ ∂U },

hU (θ1, θ2) = P
θ1,θ2
S

[T U
1 < T U

2 ].
Then hU ∈ C2(U 2, R) and A1hU = −A2hU ≥ 0.

Proof The process (�1
t ,�

2
t ) is a Markov diffusion with generator A1 + A2, so by

Dynkin’s formula A1hU + A2hU = 0 and it remains to show that A1hU ≥ 0.
By definition of the Markov generator

A1hU (θ1, θ2) = lim
t→0

1

t

(

E
θ1,θ2
S

(

hU
(

�1
t , θ2

))

− hU (θ1, θ2)
)

= lim
t→0

1

t

(

E
θ1,θ2
S

(

P
�1

t ,θ2
S

[

T U
1 < T U

2

]

)

− P
θ1,θ2
S

[

T U
1 < T U

2

]

)

.

But E
θ1,θ2
S

(P
�1

t ,θ2
S

(·)) is the probability measure associated with the process (�1
s+t ,

�2
s ), s > 0, obtained by giving �1 a headstart. So we have

E
θ1,θ2
S

(

P
�1

t ,θ2
S

[

T U
1 < T U

2

]

)

≥ P
θ1,θ2
S

[

T U
1 − t < T U

2

]

− P
θ1,θ2
S

[

T U
1 < t

]

≥ P
θ1,θ2
S

[

T U
1 < T U

2

]

− P
θ1,θ2
S

[

T U
1 < t

]

and, since 1
t P

θ1,θ2
S

(T U
1 < t) → 0 as t → 0, we may pass to the limit, and we see that

A1hU (θ1, θ2) ≥ 0. ��
We are ready to prove Lemma 8.6.
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Proof of Lemma 8.6 Set C = {λu : λ ∈ R
+, u ∈ U } for some open subset U ⊂

S
d−1 and let Yt be a Fleming-Viot process in C .

We deal first with the special case when d = 1, in which case either C = R and
there is nothing to prove or C = R

+. If C = R
+ then Yt is a 2-dimensional Brownian

motion in the quarter plane with jumps (y, 0) �→ (y, y) or (0, y) �→ (y, y) whenever
the process exits the first quadrant. As these jumps only increase ‖Yt‖ then ‖Yt‖
dominates a Bes(2) process and Yt does not converge to 0.

For d ≥ 2 define a function

μ(x) =
{

log ‖x‖, if d = 2,
‖x‖2−d

2−d if d ≥ 3,

and define processes

�1
t = φ(Y 1

t ), M1
t = μ(Y 1

t ),

�2
t = φ(Y 2

t ), M2
t = μ(Y 2

t ),

Ht = hU (�1
t ,�

2
t ), St = M1

t + (M2
t − M1

t )Ht .

Now, μ is harmonic on R
d and it will be key to our argument that M1

t and M2
t are

both local martingales except when Yt jumps. We say a Yt -adatapted process Rt is
a martingale between jumps if Rt −∑{i∈N : τi ≤t}(Rτi − Rτ−

i
) is a continuous local

martingale. The process St is a convex combination of M1
t and M2

t , so if both Y 1
t and

Y 2
t converge to the origin, then St converges to −∞. Notice also that if Y 1 approaches

∂C then Ht → 1 and so St → M2
t . Similarly, if Y 2

t approaches the boundary then
St → M1

t . So St is continuous.
Set

Ns = Hs −
s
∫

0

(A1hU (�t )

‖B1
t ‖2

+ A2hU (�t )

‖B2
t ‖2

)

dt.

By (8.1) Nt is a martingale between jumps. We may check that the cross variation
terms 〈M1,�1〉t = 〈M2

t ,�2
t 〉 = 0 and so, as Ht is a C2 function of �1

t and �2
t , we

have 〈M1, H〉t = 〈M2
t , H〉t = 0 and for s ∈ [τi , τi+1) we may calculate

Ss = Sτi +
s
∫

τi

(1 − Ht ) d M1
t +

s
∫

τi

Ht d M2
t +

s
∫

τi

(M2
t − M1

t ) d Ht

= Sτi +
s
∫

τi

(1 − Ht ) d M1
t +

s
∫

τi

Ht d M2
t +

s
∫

τi

(M2
t − M1

t ) d Nt

+
s
∫

τi

(

M2
t − M1

t

)

(A1hU (�t )

‖B1
t ‖2

+ A2hU (�t )

‖B2
t ‖2

)

dt.
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Therefore Ss −
∫ s
τi
(M2

t −M1
t )
(A1hU (�t )

‖B1
t ‖2 + A2hU (�t )

‖B2
t ‖2

)

dt is a martingale between jumps.

Now from Lemma 8.7 we have A1hU = −A2hU ≥ 0 and so

A1hU (�t )

‖B1
t ‖2

+ A2hU (�t )

‖B2
t ‖2

= A1hU (�t )
(

‖B1
t ‖−2 − ‖B2

t ‖−2
)

.

But μ is an increasing function of the norm ‖ · ‖, so for τi ≤ s1 ≤ s2 < τi+1,

s2
∫

s1

(

M2
t − M1

t

)

(A1hU (�t )

‖B1
t ‖2

+ A2hU (�t )

‖B2
t ‖2

)

dt ≥ 0.

Therefore St is a continuous local submartingale and it cannot converge to −∞.
Thus Yt does not converge to (0, 0). ��
Corollary 8.8 If Xt is a Fleming-Viot process in a polyhedral domain D then with
probability one the sequence of jump points ξi does not converge to any ξ∞ ∈ ∂ D as
i → ∞.

Proof First, for σ ∈ ∂K, let Fσ be the event that ξi → ξ∞ for some ξ∞ ∈ ◦
σ and

assume without loss of generality that 0 ∈ σ . Set

Fσ
i = Fσ ∩

[

X j
t ∈ N (σ ); t ≥ τi , j = 1, 2

]

.

Then, as N (σ ) is open in D, from Lemma 8.3, Fσ
i increases to Fσ up to an event of

probability 0. By the strong Markov property and Lemma 8.6,

P(Fσ
i ) = P

ξi
σ

(

Yt → (0, 0) ∩
[

X j
t ∈ N (σ ); t ≥ τi , j = 1, 2

])

= 0.

So as ∂K is a finite set of simplices we have P[∃ξ∞ ∈ ∂ D s.t. ξi →ξ∞ as i → ∞]=0.
��

To complete the proof of Theorem 8.2 we consider the set

L = {σ ∈ K : there exists a subsequence ξin → ξ ∈ ◦
σ as n → ∞}.

It is easy to check that the event {σ ∈ L} is X-measurable. We say σ is a local maximum
of L if L ∩ St (σ ) = {σ }. Of course any non-empty subset of a finite lattice contains
at least one local maximum, and L is non empty by compactness of D. We will prove
Theorem 8.2 by showing that for each σ ∈ K the event that τ∞ < ∞ and σ is a local
maximum of L has probability 0.

Proof of Theorem 8.2 Fix σ ∈ ∂K, and note that N (σ )\σ is non empty. We show

first that if ξi has a limit point in
◦
σ and τ∞ < ∞, then ξi has a second limit point in

N (σ )\σ .
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First suppose that σ = {v} is a vertex of K and v is a limit point of ξi . By Cor-
ollary 8.8, the sequence ξi does not converge to v as i → ∞, so we may choose
ε > 0 such that B(v, ε) ∩ D ⊂ N (σ ) and that ‖ξi − v‖ > ε infinitely often. If this
is the case then there are infinitely many pairs (ξin , ξin+1) such that ξin ∈ B(v, ε) and
ξin+1 /∈ B(v, ε). But from Lemma 8.3 we have ‖ξi − ξi+1‖ → 0 as i → ∞ hence
‖ξin −v‖ → ε as i → ∞. Therefore, as ∂ B(v, ε) is compact, ξi must have some limit
point in ∂ B(v, ε) ∩ D ⊂ N (σ )\{v}.

If σ is a k-simplex for 0 < k < d then for each x ∈ ◦
σ there exists ε > 0 such

that B(x, 2ε) ∩ D ⊂ N (σ ). We will consider upcrossings of the interval [ε, 2ε] by
‖ξi − x‖. Define sequences in, jn ∈ N ∪ {∞} and Tn, ηn ∈ R ∪ {∞} by: j0 = 0,

in+1 = inf{i > jn : ξi ∈ B(x, ε)},
jn = inf{ j > in : ξ j /∈ B(x, 2ε)},

Tn = inf{t > τin : X1
t /∈ B(x, 2ε) or X2

t /∈ B(x, 2ε)},
ηn = sup

i
{τi : τi < Tn}.

Then we put N = sup{n ∈ N : jn < ∞} to be the number of upcrossings.
Note that B(x, 2ε) ∩ D ⊂ N (σ ) and so X(t+τin )∧Tn is a Fleming-Viot process in

W(σ ) started at (ξin , ξin ) and stopped on exiting B(x, 2ε). So we may consider P
ξin
σ

and factorize Xt = Yt + Zt as in Lemma 8.5. For t ∈ [τin , ηn], the process Z̃t is

measurable with respect to X|[τin ,Tn ] which is distributed according to P
ξin
σ . Hence

Z̃ |[τin ,ηn ] is a Brownian motion in Sσ with respect to its own natural filtration.
Recall Zτi = (ζi , ζi ) and set

Ṽt =
{∥

∥Z̃t − ζin

∥

∥, if t ∈ [τin , ηn],
0, otherwise.

Then Ṽt is dominated by a Bes(d) process reset to zero at times τin . So arguing as
in the proof of Lemma 8.3, if τ∞ < ∞ and the number of upcrossings N = ∞, then
τin < τ∞ < ∞ for each n ∈ N, and Ṽt → 0 as τi → ∞. But ηn = supi {τi : τi < Tn},
hence Xηn = (ξkn , ξkn ) for some kn ∈ N and either ‖x−X1

Tn
‖ = 2ε or ‖x−X2

Tn
‖ = 2ε.

So if τ∞ < ∞ and N = ∞, we must have ‖ξkn − x‖ → 2ε as n → ∞ and so ξkn has
a limit point ξ∞ ∈ ∂ B(x, 2ε) ∩ D ⊂ N (σ ). But Ṽt → 0 as t → τ∞ with probability
one, so we cannot have ξ∞ ∈ σ and we must have ξ∞ ∈ N (σ )\σ .

Now let Qσ be a countably dense subset of
◦
σ and suppose ξi has some limit point

x ∈ ◦
σ . By Corollary 8.8, ξi does not converge to x as i → ∞ and we may choose some

rational ε > 0 such that B(x, 3ε)∩D ⊂ N (σ ) and ‖ξi −x‖ > 3ε infinitely often. Now
choose q ∈ Qσ ∩ B(x, ε) and notice that ‖ξi − q‖ makes infinitely many upcrossings
of the interval [ε, 2ε]. If τ∞ < ∞ then as Qσ is countable, with probability one we
may find some limit point ξ∞ ∈ N (σ )\σ .

Recall the definition of the set L . As L is nonempty there must exist some local
maximum σ . However if τ∞ < ∞ then, by Corollary 8.4, we have L ⊆ ∂K. We have
just shown that if τ∞ < ∞ then L has no local maximum in ∂K. Hence we must have
τ∞ = ∞. ��
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