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Abstract Let X1, . . . , Xn be a random sample from some unknown probability
density f defined on a compact homogeneous manifold M of dimension d ≥ 1.
Consider a ‘needlet frame’ {φ jη} describing a localised projection onto the space of
eigenfunctions of the Laplace operator on M with corresponding eigenvalues less
than 22 j , as constructed in Geller and Pesenson (J Geom Anal 2011). We prove non-
asymptotic concentration inequalities for the uniform deviations of the linear needlet
density estimator fn( j) obtained from an empirical estimate of the needlet projection∑
η φ jη

∫
f φ jη of f . We apply these results to construct risk-adaptive estimators and

nonasymptotic confidence bands for the unknown density f . The confidence bands
are adaptive over classes of differentiable and Hölder-continuous functions on M that
attain their Hölder exponents.
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364 G. Kerkyacharian et al.

1 Introduction

We consider the problem of constructing confidence bands for an unknown probabil-
ity density f based on a sample X1, . . . , Xn from f observed on the d-dimensional
compact homogeneous manifold M.The classical statistical applications occur when
M equals the d-dimensional unit sphere S

d of R
d+1: If d = 1 this corresponds to esti-

mating a periodic univariate density, and recent interest lies mostly in the case d = 2,
strongly motivated by statistical problems in astrophysics, see Baldi et al. [2] for an
account of typical problems and applications in astrophysics and directional statistics
more generally. In Baldi et al. [2] a recent construction of wavelet type bases on S

d—
due to Narcowich et al. [24,25], who called these new basis functions needlets—was
employed to construct risk-adaptive estimators for f (x), x ∈ S

d , by a local needlet
series with support concentrated in a neighborhood of x . See also Kerkyacharian et al.
[16] for similar results in the spherical deconvolution problem. The main advantages
of this approach are that they share none of the drawbacks of classical approaches:
kernel methods do not take the manifold structure of the sphere well into account,
orthogonal series methods associated with spherical harmonics have very poor point-
wise (and even worse uniform) performance since spherical harmonics are not well
localized but spread out all over the sphere, and methods based on stereographic pro-
jections of the sphere onto the plane use a distorted approximation-theoretic paradigm.
In contrast needlets are a tight frame constructed on the spherical harmonics which
are highly localized and allow for optimal approximation not only in L2 but in general
L p-spaces, including in particular L∞, which is particularly relevant in the problem of
constructing confidence bands for f . Moreover the localization property is of crucial
importance since in astrophysical data sets some parts of the sphere (sky) may not be
covered by the observations, so that non-local procedures may suffer severely from
missing data points.

The main contributions of the present article are three-fold. First, building on recent
results on wavelets and approximation of functions on manifolds in [7,8], we show
how needlet estimators fn( j, y), y ∈ M, with resolution level j ≥ 0, can be defined
also on the more general class of compact homogeneous differentiable manifolds M,
which includes, next to d-dimensional unit spheres, also other relevant examples such
as real and complex projective spaces, or Grassmann and Stiefel manifolds. The main
idea behind this construction is to use tools from harmonic analysis on compact Lie
groups that allow to build a localized frame on the eigenfunctions of a second order
elliptic differential Laplace operator on M, which in the case of the sphere coincides
with the construction of [24,25], where these eigenfunctions are precisely the spherical
harmonics.

The second goal of this article is to prove non-asymptotic concentration inequalities
for the uniform fluctuations

sup
y∈M

| fn( j, y)− E fn( j, y)|

of needlet estimators fn( j) around the needlet projections E fn( j) = A j ( f ) of the
unknown density f . The constants in these concentration inequalities depend in a
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Concentration inequalities and confidence bands for needlet density estimators 365

natural way on the manifold and we derive reasonably tight constants for the case
M = S

d , d ≥ 1. We present both Bernstein-type bounds and inequalities based on
Rademacher-symmetrization in a similar vein as in recent work in [12,18,21].

The third goal is to use the above concentration inequalities to construct estimators
and confidence bands for the unknown density f : M → R. Even the problem of
spherical confidence bands seems not to have been addressed in the literature so far—
one reason may arise from the fact that the classical approach in the univariate case
[3] via extreme value theory does not straightforwardly generalise to sample spaces
with a different geometric structure. Our concentration inequalities hold on arbitrary
compact homogeneous manifolds and can be used directly to construct estimators and
nonasymptotic confidence bands for the unknown density f if one has a priori control
of the approximation error of f by its needlet projection A j ( f ) (the ‘bias’ of estima-
tion), which by results in Geller and Pesenson [8] is equivalent to classical Hölderian
smoothness conditions for f on M.

Since knowledge of the bias is usually not available, the question of how to choose
j comes into sight, and to which extent adaptive estimators and confidence bands can
be constructed. It is known on the one hand [22] that adaptive and honest confidence
bands in nonparametric function estimation problems cannot exist over the entirety
of the usual smoothness classes (in our case, Hölder-balls on M). Recent work in
this field, however, can be interpreted as a new way of looking at this problem: One
can devise statistically relevant subsets of the usual smoothness function classes for
which adaptive confidence bands do exist. One example comes from shape constrained
nonparametric regression, see, e.g., [4]. Other examples are ‘self-similar functions’
that attain their Hölder exponent—see Picard and Tribouley [26] in the case of the
Gaussian white noise model and regression framework and Giné and Nickl [11] in
density estimation on the real line. Moreover, building on Jaffard’s [15] work on the
Frisch–Parisi conjecture [6], Giné and Nickl [11] proved that ‘generic’ subsets (in the
Baire-sense) of the class of Hölder balls can be constructed for which asymptotically
honest adaptive confidence bands exist.

In the present paper we follow the line of Picard and Tribouley [26] and Giné and
Nickl [11], but take a nonasymptotic approach. We propose an adaptive procedure ĵn
based on Lepski’s method [20] to choose the resolution level j for the needlet estima-
tor fn( j) in a data-driven way. The resulting estimator fn( ĵn) adapts to the unknown
smoothness of f in sup-norm risk. In our main result we devise an analytic condition
on the approximation errors of f by its needlet projections A j ( f ) under which we
can establish both an asymptotic and a nonasymptotic coverage result for confidence
bands for f over arbitrary subsets� of M that are centered at fn( ĵn), and we show that
this band adapts to the unknown smoothness of f in the minimax sense. Intuitively
the results in Giné and Nickl [11] suggest that adaptation is possible for functions
f : M → R that attain their Hölder exponent, and indeed we prove that our analytic
condition can be interpreted in terms of classical Hölder regularity properties of f .
The proof of this result is somewhat delicate and we detail it only in the case S

d , where
the representation of the projector onto spherical harmonics in terms of Gegenbauer
polynomials allows for explicit derivations.

Let us finally remark that even in the univariate case S
1 our nonasymptotic approach

to confidence bands gives an alternative to the more classical asymptotic techniques
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based on extreme value theory, as initiated in the classical paper [3], and as also used
in the adaptive context in Giné and Nickl [11]. Not surprisingly the nonasymptotic
approach has limitations, but in contrast to the classical asymptotic theory referred
to above, the present results give precise conditions for what is necessary to obtain
coverage in finite samples.

2 Compact homogeneous manifolds and needlets

We summarize here some facts on compact homogeneous manifolds and Lie groups
(see [5,13,14,30] for general references), and the construction and essential properties
of the associated needlet frame due to [7,8], generalising the spherical case considered
in Narcowich et al. [24].

2.1 Compact Lie groups and the Laplace operator

Let M be a compact connected differentiable (C∞-) manifold of dimension dim(M) =
d. A Lie group G of dimension τ is said to act on M via

(g, x) ∈ G × M �→ g.x ∈ M

if (a) this action is, for every g ∈ G, a diffeomorphism of M, if (b) g1g2.x = g1.(g2.x)
holds for every g1, g2 ∈ G, x ∈ M, if (c) the identity e ∈ G satisfies e.x = x and if
(d) for every g ∈ G, g �= e, there exists a point x ∈ M such that g.x �= x . A group G
acts transitively on M if in addition

for every x, y ∈ M there exists g ∈ G s.t. g.x = y.

A compact manifold M is said to be homogeneous if it is a compact connected differen-
tiable manifold on which a compact Lie group acts transitively. Examples include the
d-dimensional unit sphere S

d of R
d+1, projective spaces, Stiefel and Grassmann man-

ifolds, see page 125 in Warner [30] and also Wang [29] for the two-point homogeneous
case.

Any compact homogeneous manifold M can be realised as a quotient G/K where K
is a closed subgroup of G. More precisely, if we fix once and for all a point x0 ∈ M, and
let K = {h ∈ G, h.x0 = x0} be the closed isotropy subgroup at x0, then M is diffeo-
morphic to G/K and the canonical projectionπ : g ∈ G �→ g = {gh, h ∈ K } ∈ G/K
is continuous, onto and verifies π(g1g2) = g1π(g2), see Warner [30], p. 123 onwards.
Moreover the image of the Haar measure on G under π ,

∫

G

f (π(g))dg =
∫

G/K

f (x)dx =
∫

M

f (x)dx,

is a natural “Haar” measure dx on M, invariant under the action of G. (It is the unique
G-invariant measure on M up to a scaling factor.) The usual Lebesgue spaces on M
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Concentration inequalities and confidence bands for needlet density estimators 367

are denoted by L p(M) := L p(M, dx), 1 ≤ p ≤ ∞. Since G is compact, dx is bi-
invariant: for f ∈ L1(M) and g ∈ G let us define Lg( f )(x) = f (g−1x), Rg( f )(x) =
f (xg), then

∫

M

Lg( f )(x)dx =
∫

M

f (x)dx =
∫

M

Rg( f )(x)dx .

The Lie algebra Lie(G) of G is characterized by the fact that

X ∈ Lie(G) �→ eX ∈ G,

and since G is compact, this mapping is onto. Let us recall that we have the Ad
representation of G in Lie(G):

g ∈ G �→ Ad(g)X ≡ gXg−1 ∈ Lie(G), and geX g−1 = eAd(g)X ,

and there exists an Euclidean structure 〈·, ·〉 on Lie(G) for which Ad is unitary, that
is, such that

∀g ∈ G, ∀X ∈ Lie(G), 〈Ad(g)X, Ad(g)Y 〉 = 〈X,Y 〉, |X |2 = 〈X, X〉, (1)

see Proposition 6.1.1 in [5].
Every X ∈ Lie(G) generates a vector field on G so that we can define a one

parameter group

t �→ et X ∈ G, t ∈ R,

and we can define a metric on G by the ‘length’ |X | of the ‘shortest geodesic’ joining
two points g1, g2 ∈ G,

dG(g1, g2) = inf{|X |, eX g1 = g2} = inf{|X |, g1eX = g2}. (2)

The two previous definitions are equivalent, as:

eX g1 = g2 ⇐⇒ g1g−1
1 eX g1 = g2 ⇐⇒ g1eAd(g−1

1 )X = g2, |Ad(g−1
1 )X | = |X |

and it is not difficult to verify that this metric is bi-invariant:

∀g1, g2, g ∈ G, dG(g1, g2) = dG(gg1, gg2) = dG(g1g, g2g).

Every X ∈ Lie(G) also naturally generates a one parameter group on M:

t ∈ R �→ et X .x ∈ M
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which describes geodesics of the Riemannian structure on M associated to the
Euclidean structure 〈·, ·〉 on Lie(G). The metric on M is given by

dM(x, y) = inf{|X |, eX .x = y} = dG/K (x, y)

= inf{dG(g1, g2), π(g1) = x, π(g2) = y}

So dM(π(g), π(g′)) ≤ dG(g, g′). Moreover

∀g ∈ G, x, y ∈ M, dM(g.x, g.y) = dM(x, y).

This is again due to (1) as

eX .x = y ⇐⇒ g.eX g−1.g.x = g.y ⇐⇒ eAd(g)X g.x = g.y, and |X |=|Ad(g)X |.

Now similarly every X ∈ Lie(G) gives rise to a one-parameter group on L p(M), 1 ≤
p < ∞, given by

f �→ Tt ( f )(x) = f (et X .x); t ∈ R, x ∈ M, f ∈ L p(M)

and we denote the infinitesimal generator of this one-parameter group by DX , so

DX f (x) = d

dt
f (et X .x)|t=0, x ∈ M,

the derivative of f at x in the direction of the X -geodesic.
If Xi , i = 1, . . . , τ , is an orthonormal basis of Lie(G) with respect to the scalar

product induced by the adjoint representation, the sum

L =
τ∑

i=1

X2
i

defines the Casimir operator, which is independent of the choice of the basis, and
which is a central element of the enveloping algebra of Lie(G). Associated to the
Casimir operator is the following operator on L2(M) (we keep the same notation L)

L = D2
X1

+ D2
X2

+ · · · + D2
Xτ .

The operator −L, which is often called the Laplace operator, is a second order, positive,
elliptic differential operator defined on the space C∞(M) of infinitely differentiable
functions on M. Moreover −L can be closed to give a positive, self-adjoint second
order elliptic differential operator on L2(M) with a discrete spectrum of eigenvalues
λk, k ∈ N, arranged in increasing and divergent order. By the spectral theorem the
corresponding eigenfunctions {ek}k∈N constitute an orthonormal basis of L2(M), and
we define, for n ∈ N, the closed finite-dimensional subspaces En = En(M) of L2(M)
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spanned by eigenfunctions ek whose corresponding eigenvalues λk do not exceed n.
Formally

En(M) :=
⎧
⎨

⎩
x �→

∑

k:λk≤n

ckek(x) : ck ∈ R, λk an eigenvalue of ek

⎫
⎬

⎭
.

2.2 Connection to the Laplace–Beltrami operator

The operator L need not necessarily coincide with the Laplace–Beltrami operator on
M, but it does in several important cases. If M is a two-point homogeneous space then
L equals, up to a scaling constant, the Laplace–Beltrami operator, see Proposition
4.11 in Chapter II of Helgason [14]. By Wang’s [29] classification of such spaces this
includes, among others, the d-dimensional unit sphere, real and certain complex pro-
jective spaces. Further examples for manifolds where the Laplace–Beltrami operator
coincides with −L are given in Geller and Pesenson [8]. Since this connection is of
some interest in applications, we discuss this point here in some more detail.

The Laplace operator L is left- and right invariant and symmetric with respect to the
inner product 〈·, ·〉 induced by the adjoint representation, see [5, p. 162]. By the gen-
eral theory of irreducible unitary representation of compact Lie groups (e.g., Theorem
6.4.1 and Proposition 8.2.1 in [5]):

L2(M) =
⊕

j

V j , Vj = ker(L − c j I )

for constants c j , and ∀g ∈ G, Lg(Vj ) ⊂ Vj ,

g ∈ G �→ Lg ∈ Lin(Vj )

is a finite dimensional unitary representation of G, where Lin(Vj ) denotes the space
of bounded linear operators on Vj .

Moreover, as a Riemannian manifold, M is equipped with a Laplace–Beltrami
operator � which commutes with the G-action: ∀g ∈ G, �Lg = Lg�. If M is
compact:

L2(M) =
⊕

k

Hk, Hk = ker(�− λk I ).

Moreover Hk is G-invariant (∀g ∈ G, Lg(Hk) ⊂ Hk), so

g ∈ G �→ Lg ∈ Lin(Hk)

is a finite dimensional unitary representation of G.
Clearly, if	k(x, y) is the kernel of the projection operator onto Hk, then φk(y) =

	k(x0, y) verifies ‖φk‖2
2 = φk(x0) = dim(Hk) and is moreover a zonal function

123
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(recall that f is zonal if ∀h ∈ K , Lh( f ) = f , see, e.g., [9,14]). If the space of zonal
functions in Hk is of dimension 1 then g ∈ G �→ Lg ∈ Lin(Hk) is an irreducible
representation. If this is the case for all Hk then L and the Laplace–Beltrami will
coincide, if we can check that the eigenvalues are the same.

Let us illustrate this in the case of M = S
d , where

G = SO(d + 1) = {A ∈ M(d + 1 × d + 1), A−1 = At },
Lie(G) = so(d + 1) = {X ∈ M(d + 1 × d + 1), −X = Xt }

and we can take

〈X,Y 〉 = 1

2
T r(XY t ).

An orthonormal basis is then given by

Xi, j = Ei, j − E j,i , 1 ≤ i < j ≤ d + 1, E j,i = (α
i, j
k,l )k,l , α

i, j
k,l = δi,kδ j,l .

We take x0 = (1, 0, . . . , 0) so K ≈ SO(d) and

∀x, y ∈ M = S
d , dSd (x, y) = arccos(〈x, y〉Rd=1)

The eigenvalues of� are λk = −k(k + d − 1), see Proposition 9.3.5 in [5], the space
Hk equals the space of spherical harmonic functions of degree k, and there is only one
zonal function in each Hk (which is given through Gegenbauer polynomials) so the
induced representation are irreducible (and not equivalent). To see that � = −L it is
enough to compute the eigenvalue of L on Hk and this can be carried on in the case
of the sphere using the explicit expression of L = ∑

i< j D2
Xi, j
.

2.3 A smoothed projection onto the span of the eigenfunctions of −L

We shall write 〈g, h〉 from now on for the standard L2(M)-inner product of two func-
tions g, h ∈ L2(M) := L2(M, dx). We also denote by ‖g‖� = supy∈� |g(y)| the
supremum norm of g : M → R over� ⊆ M, and we shall write ‖g‖∞ when� = M.

Let 0 ≤ a ≤ 1 be an infinitely differentiable nonnegative function defined on
[0,∞). We require a to be identically 1 on [0, 1/2] and compactly supported on
[0, 1]. Define the sequence of linear operators A j , j ≥ 0, with

A0 f =
∫

M

f (x)dx, A j f (x) := A j ( f )(x) =
∫

M

A j (x, y) f (y)dy, j > 0,

where, for Lk(x, y) = ek(x)ek(y),

A j (x, y) :=
∑

k

a

(
λk

22 j

)

Lk(x, y) =
∑

k:λk<22 j

a

(
λk

22 j

)

ek(x)ek(y).
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Clearly

〈A j f, f 〉 =
∑

k

a

(
λk

22 j

)

〈Lk f, f 〉 ≤ ‖ f ‖2
2, ‖A j f ‖2 ≤ ‖ f ‖2

from Parseval’s identity and since |a| ≤ 1. Since a is identically one on [0, 1/2]

h ∈ E22 j−1(M) implies A j (h) = h (3)

and since En(M), n ≥ 1, is dense in L2(M) we conclude

lim
j→∞ ‖A j f − f ‖2 = 0

for every f ∈ L2(M). Thus A j furnishes us with an approximation of the identity
operator on L2(M).

The kernel A can be ‘split’ as follows: If we define

C j (x, y) =
∑

k:λk<22 j

√

a

(
λk

22 j

)

Lk(x, y)

then due to the orthogonality properties of the Lk’s we see

A j (x, y) =
∫

M

C j (x, u)C j (u, y)du. (4)

2.4 Gauss cubature formula and needlets on a manifold

The following quadrature formula holds on Ek(M), see Theorem 5.3 in Geller and
Pesenson [8]. For every k ∈ N there exists a finite subset χk of M of cardinality
|χk | ≤ Ckd/2 and positive real numbers bη := bηk > 0, indexed by the elements η of
χk, such that

∀ f ∈ Ek(M),

∫

M

f (x) dx =
∑

η∈χk

bη f (η). (5)

The kernel C j defined above clearly satisfies z �→ C j (x, z) ∈ E22 j (M) for every
x ∈ M, and Theorem 6.1 in Geller and Pesenson [8] states that

f, g ∈ En(M) ⇒ f g ∈ E4τn(M), (6)

so we deduce z �→ C j (x, z)C j (z, y) ∈ Eτ22 j+2(M). Note that it is property (6) where
homogeneity of the manifold is used crucially. It is in the same spirit as (but not equiv-
alent to) the addition formula for eigenfunctions of the Laplace–Beltrami operator on

123



372 G. Kerkyacharian et al.

a Riemannian manifold (see [9]). Combining (4) with (5) thus implies

A j (x, y) =
∫

M

C j (x, z)C j (z, y)dz =
∑

η∈χ
τ22 j+2

bηC j (x, η)C j (η, y)

and the action of A j on L2(M) can hence be represented as

A j f (x) =
∫

M

A j (x, y) f (y)dy =
∫

M

∑

η∈χ
τ22 j+2

bηC j (x, η)C j (η, y) f (y)dy

=
∑

η∈χ
τ22 j+2

√
bηC j (x, η)

∫

M

√
bηC j (η, y) f (y)dy.

This motivates the definition of the needlet scaling function φ jη indexed by the cuba-
ture points η ∈ Z j ,

φ jη(x) := √
bη C j (x, η); η ∈ Z j ≡ χτ22 j+2 .

With this notation we can write

A j f (x) =
∑

η∈Z j

〈φ jη, f 〉φ jη(x), (7)

and call this approximation the needlet projection of f onto Eτ22 j+2(M) at resolution
level j .

We shall need below the following estimates on the cubature set, see Geller and
Pesenson [8]

1
k1

1

2d j
≤ bη j ≤ k1

1

2d j
∀η ∈ Z j ,

1
k2

2d j ≤ |Z j | ≤ k2 2d j (8)

for some explicit constants k1, k2 > 0.
Although we shall not explicitly use it in what follows, we can telescope the needlet

projections in the usual way to obtain a wavelet-type multiresolution approximation

A j f = A0 f +
∑

0≤l≤ j−1

∑

η

〈 f, ψlη〉ψlη

of a function f on a compact homogeneous manifold by needlets

ψlη(x) = √
bηl

∑

m

c(λm/2
2l)Lk(x, η), η ∈ Zl ,
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with c(y) = √
a(y/2)− a(y). See Section 8 of Geller and Pesenson [8] for details.

In particular

f ∈ L2(M) ⇒
∥
∥
∥
∥
∥
∥

f −
∑

l≤ j

∑

η∈Zl

〈 f, ψlη〉ψlη,

∥
∥
∥
∥
∥
∥

2

→ 0 as j → ∞,

and the (ψ jη)’s form a tight frame of L2(M):

∀ f ∈ L2(M), ‖ f ‖2
2 =

∑

j

∑

η

|〈 f, ψ jη〉|2. (9)

2.5 Properties of the needlet frame

We establish some key properties of needlets, including their near-exponential local-
ization property.

Proposition 1 We have, for some constant 0 < D1(M) < ∞ and every j ≥ 0, η ∈
Z j ,

‖φ jη‖2 ≤ 1, ‖φ jη‖∞ ≤ D1(M)2 jd/2. (10)

Moreover, for every x ∈ M, η ∈ Z j and every N ∈ N there exists a constant cN such
that

|φ jη(x)| ≤ cN 2 jd/2

(1 + 2 jddM(η, x))N
. (11)

Proof For the first inequality in (10), let η ∈ M, n ∈ N and note

∫

M

⎛

⎝
∑

k:λk≤n

Lk(x, η)

⎞

⎠

2

dx =
∑

k:λk≤n

Lk(η, η).

On the other hand, by (6),

x �→
⎛

⎝
∑

k:λk≤n

Lk(x, η)

⎞

⎠

2

∈ E4τn(M),

so if χ4τn is the set of cubature points of E4τn(M) and η ∈ χ4τn

∫

M

⎛

⎝
∑

k:λk≤n

Lk(x, η)

⎞

⎠

2

dx =
∑

ξ∈χ4τn

bξ

⎛

⎝
∑

k:λk≤n

Lk(ξ, η)

⎞

⎠

2

≥bη

⎛

⎝
∑

k:λk≤n

Lk(η, η)

⎞

⎠

2

.
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so, combining these estimates,

bη ≤ 1
∑

k:λk<n Lk(η, η)

for every η ∈ χ4dn . This implies, for every η ∈ Z j ,

∫

M

φ2
jη(x)dx = bη

∑

k:λk<22 j

a(λk/2
2 j )Lk(η, η) ≤ 1.

To prove the remaining claims, recall that by definition

φ jη(x) = √
bη

∑

k:λk<22 j

√

a(λk/22 j )Lk(x, y).

For f a function from the Schwartz-class on R
+, Lemma 4.1 (and the remark after

it) in Geller and Mayeli [7], applied to the elliptic operator f (L/22 j ) (notation of
functional calculus, t = 2−2 j in their lemma), proves that for every integer N ≥ 0
there exists a constant cN ( f ) such that

∑

k:λk<22 j

f (λk/2
2 j )Lk(x, η) ≤ cN ( f )2 jd

(1 + 2 jdd(η, x))N
. (12)

Applying this to f = √
a and using (8), we infer the second bound in (10) as well as

(11) follows from (8) and (12). ��
Proposition 2 We have

sup
x∈M

∫

M

A2
j (x, y)dy ≤ D2(M)2 jd , sup

x,y∈M
|A j (x, y)| ≤ D2(M)2 jd (13)

for some finite positive constant D2(M) that depends only on the manifold.

Proof As A j (x, y) := ∑
k a(λk/22 j )Lk(x, y), the second claim follows from (12)

with f = a. For the first

∫

M

A2
j (x, y)dy =

∫

M

∑

k,l

a

(
λk

22 j

)

Lk(x, y)a

(
λl

22 j

)

Ll(x, y)dy

=
∑

k

a2
(
λk

22 j

)

Lk(x, x)

and again using (12) with f = a2 gives the result. ��
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Concentration inequalities and confidence bands for needlet density estimators 375

2.6 The case of S
d

In the case of the d-dimensional unit sphere S
d of R

d+1 the above construction is effec-
tively the one in Narcowich et al. [24]. On S

d the differential operator L coincides
with the usual Laplace–Beltrami operator, and we have

L2(Sd) =
⊕

k

Hk, Hk ≡ Hk(S
d) = ker(�− λk I ), λk = −k(k + d − 1).

The eigenfunctions ek in this case are the spherical harmonics with eigenvalues k(k +
d − 1) (e.g., Proposition 9.3.5 in [5]). Thus if we take the subsequence N ≡ Nk of
N for which k(k + d − 1) = Nk as k runs through the nonnegative integers, then
the spaces EN (S

d) correspond to the spaces PN (S
d) of spherical polynomials of

degree less than or equal to N , which are spanned by the mutually orthogonal spaces
Hk(S

d), 0 ≤ k ≤ n, of spherical harmonics, see [5,27].
If {ek

i } is any orthonormal basis of Hk, then we write, in slight abuse of notation,

Lk(x, y) =
∑

i

ek
i (x)e

k
i (y) = Lk(〈x, y〉d+1), 〈x, y〉d+1 =

d+1∑

i=1

xi yi

|Sd |Lk(u) =
(

1 + k

ν

)

Cν
k (u), ν = d − 1

2
, u ∈ [−1, 1]

where Cν
k is the corresponding Gegenbauer polynomial, and |Sd | is the Lebesgue mea-

sure of S
d , i.e., |Sd | = ∫

Sd dx = (2π(d+1)/2)/�((d + 1)/2). We have furthermore
([27, p. 144]) for every x ∈ S

d ,

∑

i

|ek
i (x)|2dx = dim(Hk(S

d))

|Sd |

and thus

|Sd |Lk(1) = dim(Hk(S
d)). (14)

Moreover, for d ≥ 2 and any n ∈ N,Pn(S
d) = ⊕n

k=0 Hk(S
d) and as a consequence,

by Stein and Weiss [27],

dim(Hk(S
d)) = Cd

k+d − Cd
k−2+d = (d + k − 2)!(d + 2k − 1)

k!(d − 1)!
dim(Pn(S

d)) = Cd
n+d + Cd

n+d−1 = 2

d! (n + 1)(n + 2)..(n + d − 1)

(

n + d

2

)

= 2

d!nd
(

1 + 1

n

)(

1 + 2

n

)

. . . .

(

1 + d − 1

n

)(

1 + d

2n

)
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= nd
(

2

d
+ 1

n

) d−1∏

j=1

(
1

j
+ 1

n

)

.

So, for d ≥ 2, n ≥ 2,

2

d! (n + 1)d ≤ dim(Pn(S
d)) ≤ nd

(
n + 1

n

)2

2

d!nd ≤ dim(Pn−1(S
d)) ≤ nd and dim(Pn−1(S

1)) = n.

By virtue of these bounds the constants in Proposition 2 can be explicitly calculated.
To obtain a unified notation define, for j ∈ N, the integers k( j) = max{k ∈ N : λk =
k(k + d − 1) < 22 j } so that k( j) < 2 j always holds. Then

∫

Sd

A2
j (x, y)dx =

∑

k:λk<22 j

[a(λk/2
2 j )]2Lk(1)

= 1

|Sd |
∑

k:λk<22 j

[a(λk/2
2 j )]2dim(Hk(S

d))

≤ dim(Pk( j)(S
d))

|Sd | ≤ 2 jd

|Sd | ,

and these inequalities imply that the same bound holds for |A j (x, y)|. We can also
deduce, as in the proof of Proposition 1

‖φ jη‖∞ = √
bη

∑

k:λk<22 j

√

a(λk/22 j )Lk(1) ≤
√ ∑

k:λk<22 j

Lk(1) ≤
√

2 jd

|Sd | .

Conclude that the key constants D1(M), D2(M) in the last subsection can be taken to
be

D1(S
d) =

√
1

|Sd | , D2(S
d) = 1

|Sd | (15)

in the case of the unit sphere. Finally we should remark that in the case of the unit
sphere the addition formula (6) holds with 4τn replaced by 2n as one is multiplying
spherical polynomials. (Indeed whenever the Laplace–Beltrami operator coincides
with L one can use the addition formula for eigenfunctions of the Laplacian in [9].)
Moreover, if d = 2, for each resolution level j , the HEALPix pixelisation (commonly
used for astrophysical data) gives 12 · 22 j cubature points, so k2 = 12 in (8).
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Concentration inequalities and confidence bands for needlet density estimators 377

3 Linear needlet density estimators and concentration properties of their
uniform fluctuations

Let X, X1, . . . , Xn be i.i.d. random variables taking values in a compact homogeneous
manifold M of dimension d. Denote their common law by P and assume that P pos-
sesses a density f : M → [0,∞)w.r.t. dx on M. Denote further by Pn = 1

n

∑n
i=1 δXi

the empirical measure of the sample. Let A j (x, y) be the needlet projection kernel.
For j ∈ N, the linear needlet density estimator of f is defined as

fn( j, y) = 1

n

n∑

i=1

A j (Xi , y) =
∫

M

A j (x, y)d Pn(x), y ∈ M. (16)

We shall often write, in slight abuse of notation, fn( j) for fn(·, j).

3.1 A Bernstein-type concentration inequality for needlet estimators

We define now some quantities that measure the ‘Gaussian’ and ‘Poissonian’ fluctu-
ations of the uniform deviations of the centered estimator fn( j). Recall the explicit
constants D1(M), |Z j | ≤ k22 jd from (8), (10) in the previous section. Note moreover
that the second estimate in Proposition 1 implies

2 jd/2c0(M, j) ≡ sup
x∈M

∑

η∈Z j

|φ jη(x)| ≤ 2 jd/2C(M). (17)

The constant c0(M, j) ≡ c0(M, j, a,Z j ) (or an upper bound for it) can be computed
explicitly after the regularizing function a and the quadrature set Z j have been cho-
sen, and a sharp numerical evaluation of it is important in application of Proposition 3
below.

Define then

σ̄ (n, l, x) := ᾱ(x, l)

√
2ld

n
+ ᾱ′(x, l)2ld

n

where

ᾱ(x, l) := ᾱ(M, f, x, l) := c0(M, l)
√

2(log(2|Zl |)+ x)‖ f ‖∞

and

ᾱ′(x, l) := ᾱ′(M, x, l) := c0(M, l)
2

3
D1(M)(log(2|Zl |)+ x).

We now prove the following concentration inequality for the needlet density estimator.
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378 G. Kerkyacharian et al.

Proposition 3 Let M be a compact homogeneous manifold and suppose f : M →
[0,∞) is bounded. We have, for every n ∈ N, every j ∈ N and every x ≥ 0

Pr

{

sup
y∈M

| fn( j, y)− E fn( j, y)| ≥ σ̄ (n, j, x)

}

≤ e−x .

Proof The explicit cubature formula for eigenfunctions of L allows to reduce the
infinite supremum supy∈M | fn( j, y)− E fn( j, y)| to one over a finite set, so that finite-
dimensional probabilistic methods can be applied. Indeed, the estimate (17) implies
that the supremum of any h ∈ E22 j−1(M) over M can be bounded by the (finite)
maximum of the needlet coefficients of h: Clearly from (3)

∀h ∈ E22 j−1(M), h(x) = A j h(x) =
∑

η∈Z j

〈φ jη, h〉φ jη(x)

so that for Z j a cubature set of Eτ22 j+2(M) one has

sup
x∈M

|h(x)|≤ max
η∈Z j

∣
∣〈φ jη, h〉∣∣ sup

x∈M

∑

η∈Z j

|φ jη(x)|=2 jd/2c0(M, j) max
η∈Z j

∣
∣〈φ jη, h〉∣∣ .

(18)

Now using 〈·, ·〉 notation also acting on finite signed measures,

‖ fn( j)− E fn( j)‖∞ = sup
y∈M

∣
∣
∣
∣
∣
∣

∑

η∈Z j

φ jη(y)〈φ jη, Pn − P〉
∣
∣
∣
∣
∣
∣

≤ 2 jd/2c0(M, j) max
η∈Z j

∣
∣〈φ jη, Pn − P〉∣∣

by (17) above. Consider the finite empirical process indexed by the class of func-

tions {φ jηk }|Z j |
k=1 which has envelope U = 2 jd/2 D1(M) in view of (10). The class of

functions

G :=
{
φ jη1/2U, . . . , φ jη|Z j |/2U

}
,

is thus uniformly bounded by 1/2 and its weak variances σ 2 satisfy

sup
g∈G

Eg2(X) ≤ σ 2 = ‖ f ‖∞
2 jd+2 D2

1(M)

since ‖φ jη‖2 ≤ 1 (again (10)). Recall Bernstein’s inequality (e.g., p. 26 in [23]): If
Z1, . . . , Zn are i.i.d.centered random variables bounded in absolute value by 1 then

Pr

{∣
∣
∣
∣
∣

1

n

n∑

i=1

Zi

∣
∣
∣
∣
∣
≥

√
2tv

n
+ t

3n

}

≤ 2e−t (19)
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where v ≥ E Z2
i . Therefore, using the notation ‖μ‖G ≡ supg∈G | ∫ gdμ| for signed

measures μ,

Pr

⎧
⎨

⎩
‖ fn( j)− E fn( j)‖∞ ≥ c0(M, j)

⎛

⎝

√
2(log(2|Z j |)+ x)2 jd‖ f ‖∞

n

+ 2U2 jd/2(log(2|Z j |)+ x)

3n

)⎫
⎬

⎭

≤Pr

⎧
⎨

⎩
max
η∈Z j

∣
∣〈φ j,η, Pn −P〉∣∣≥

√
2(log(2|Z j |)+x)‖ f ‖∞

n
+ 2U (log(2|Z j |)+x)

3n

⎫
⎬

⎭

≤ Pr

⎧
⎨

⎩
‖Pn − P‖G ≥

√
2(log(2|Z j |)+ x)‖ f ‖∞

D2
1(M)2 jd+2n

+ log(2|Z j |)+ x

3n

⎫
⎬

⎭

= Pr

⎧
⎨

⎩
max

m=1,...,|Z j |

∣
∣
∣
∣
∣

1

n

n∑

i=1

(gm(Xi )− Egm(X))

∣
∣
∣
∣
∣
≥

√
2(log(2|Z j |)+ x)σ 2

n

+ log(2|Z j |)+ x

3n

⎫
⎬

⎭

≤
|Z j |∑

m=1

Pr

⎧
⎨

⎩

∣
∣
∣
∣
∣

1

n

n∑

i=1

(gm(Xi )− Egm(X))

∣
∣
∣
∣
∣
≥

√
2(log(2|Z j |)+ x)σ 2

n

+ log(2|Z j |)+ x

3n

⎫
⎬

⎭

≤ 2|Z j | exp
{− log(|Z j |)− log 2 − x)

} = e−x ,

which completes the proof of Proposition 3. ��
We should mention that a minor modification of the proof of Proposition 3 com-

bined with the usual blocking arguments (as, e.g., in Theorem 1 in [10]) implies under
standard conditions on jn (including 2 jn ≈ nη for some 0 < η < 1) that

lim sup
n

√
2 jnd jn

n
sup
y∈M

| fn( j, y)− E fn(y, d)| ≤ D almost surely (20)

where the constant D depends only on M, k2 and ‖ f ‖∞.
In some proofs below we shall need that σ̄ (n, l, x) is monotone increasing in l ∈ N.

In general whether this holds true or not depends on the cubature Zl as well as on
the function a. Monotonicity of σ̄ (n, l, x) can be easily ensured if we replace ᾱ(x, l)
and ᾱ′(x, l) by their upper bounds α(x, l), α′(x, l) obtained from the inequalities
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|Zl | ≤ k22ld , c0(M, l) ≤ C(M). While we do not advocate this in practice, for the
theoretical development we define

σ(n, l, x)=α(x, l)
√

2ld

n
+α′(x, l)2ld

n
, A(n, l, x) :=

[

α(x, l)+α′(x, l)
√

2ld/n

]

.

(21)

The constant A(n, l, x) allows for σ(n, l, x) to be written as a constant multiple of the
‘Gaussian component’

√
2ld/n, that is, σ(n, l, x) = A(n, l, x)

√
2ld/n.

3.2 Concentration inequalities via Rademacher processes on manifolds

Despite its conceptual simplicity the approach from the previous section has one draw-
back: the uniform deviations of fn − E fn are controlled globally on M by the function
σ(n, l, x) – constant on M. For functions f that exhibit spatially inhomogeneous
regularity properties it is of interest to have a ‘localised’ version of σ(n, l, x). This
could be achieved in Proposition 3 by means of proving a ‘local’ analogue of (18),
which, however, is a rather intricate matter that we do not pursue here. Instead we
show how a simple symmetrization technique can be used to deal with this problem.
This is inspired by Koltchinskii [18] and also Giné and Nickl [12]. For � any subset
of M, define a Rademacher process {(1/n)

∑
i εi A j (Xi , y)}y∈� and set

Rn(�, j) = sup
y∈�

∣
∣
∣
∣
∣

1

n

n∑

i=1

εi A j (Xi , y)

∣
∣
∣
∣
∣

with (εi )
n
i=1 an i.i.d. Rademacher sequence, independent of the Xi ’s (and defined

on a large product probability space). Rn(�, j) can be computed in practice by first
simulating n i.i.d. random signs, applying these signs to the summands A j (Xi ) of
the needlet density estimator, and maximizing the resulting function. The idea is that
the supremum Rn(�, j) of the symmetrized process serves as a random surrogate
for the unknown supremum supy∈� | fn( j, y) − E fn( j, y)| of the centered process.
Indeed Proposition 4 shows that supy∈� | fn(y) − E fn(y)| concentrates around (a
constant multiple of) Rn(�, j). Define the deviation term

σ R(�, n, j, x) = 6Rn(�, j)+ 10

√
2 jd D2(M)‖ f ‖∞(x + log 2)

n

+22
2 jd D2(M)(2x + 2 log 2)

n
.

Proposition 4 Let M be a compact homogeneous manifold and suppose f : M →
[0,∞) is bounded. We have for every n ∈ N, every j ∈ N, every � ⊆ M and every
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x > 0 that

Pr

{

sup
y∈�

| fn(y, j)− E fn(y, j)| ≥ σ R(�, n, j, x)

}

≤ e−x .

Proof We use the following general result for empirical processes.

Proposition 5 Let F be a countable class of real-valued measurable functions defined
on M, uniformly bounded by 1/2. We have for every n ∈ N and x > 0

Pr

⎧
⎨

⎩

∥
∥
∥
∥
∥

1

n

n∑

i=1

( f (Xi )− P f )

∥
∥
∥
∥
∥

F
≥ 6

∥
∥
∥
∥
∥

1

n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥

F
+ 10

√
(x + log 2)σ 2

n

+ 22
x + log 2

n

⎫
⎬

⎭
≤ e−x

The proof, which is based on Talagrand’s [28] inequality with constants (e.g., [23]), is
inspired by ideas in [12,18], and can be found in Proposition 5 in [21]. Now to prove
Proposition 4 note that

‖ fn( j)− E fn( j)‖� = sup
y∈�

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
A j (Xi , y)− E A j (X, y)

)
∣
∣
∣
∣
∣

for � ⊆ M. This amounts to studying the empirical process indexed by the class of
functions

{
A j (·, y) : y ∈ �}

for � ⊆ M. This class has envelope 2 jd D2(M) in view
of Proposition 2. Define thus

G := G j =
{

A j (·, y)/(2 jd+1 D2(M)) : y ∈ �
}

(22)

which is uniformly bounded by 1/2. (In fact, by continuity of the mapping y �→
A j (x, y) for every x ∈ M we can restrict ourselves to a countable subset of�, which
we still denote by �.) Furthermore the upper bound for the weak variances can be
taken to be

sup
g∈G

Eg2(X) ≤ ‖ f ‖∞
D2

2(M)22 jd+2
sup
y∈M

∫

M

A2
j (x, y)dx ≤ ‖ f ‖∞

D2(M)2 jd+2 =: σ 2 (23)
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in view of Proposition 2. Then, recalling the notation ‖ · ‖G from the proof of Propo-
sition 3

Pr

⎧
⎨

⎩
‖ fn( j, ·)− E fn( j, ·)‖� ≥ 6Rn(�, j)+ 10

√
2 jd D2(M)‖ f ‖∞(x + log 2)

n

+ 22
2 jd D2(M)(2x + 2 log 2)

n

⎫
⎬

⎭

= Pr

⎧
⎨

⎩

∥
∥
∥
∥
∥

1

n

n∑

i=1

(g(Xi )− Pg)

∥
∥
∥
∥
∥
G

≥ 6Rn(�, j)

2 jd+1 D2(M)
+ 10

√
‖ f ‖∞(x + log 2)

D2(M)2 jd+2n

+ 22
x + log 2

n

⎫
⎬

⎭

= Pr

⎧
⎨

⎩

∥
∥
∥
∥
∥

1

n

n∑

i=1

(g(Xi )− Pg)

∥
∥
∥
∥
∥
G

≥ 6

∥
∥
∥
∥
∥

1

n

n∑

i=1

εi g(Xi )

∥
∥
∥
∥
∥

G
+ 10

√
(x + log 2)σ 2

n

+ 22
x + log 2

n

⎫
⎬

⎭

and the last expression is less than or equal to e−x using Proposition 5 with G as in
(22) and σ specified by (23). ��

It is interesting to compare σ R to σ from Proposition 3. On the one hand the sec-
ond and third terms defining σ R(�, n, j, x) are of a smaller asymptotic order than
σ(n, j, x) for j → ∞ due to the absence of |Z j | in σ R . On the other hand the term
Rn(�, j) is random, and one is led to ask whether in average σ R will be larger or
smaller than σ . Our proofs imply, for some constant C independent of j, n, that

E Rn(�, j) ≤ C

⎛

⎝

√
2 jd j

n
+ 2 jd j

n

⎞

⎠

so that σ R has the same size as σ as a function of j, n, up to constants.
Inspection of the proofs and arguments similar to those in the proof of Proposition

2 in Giné and Nickl [12] show that Rn(�, j) in Proposition 4 can be replaced by its
(conditional) expectation EεRn(�, j)—a quantity that may be more stable in appli-
cations. Moreover, the constants appearing in the definition of σ R may still be fairly
conservative: the proof is based on an application of Talagrand’s [28] inequality with
explicit constants (see [23]), and in the lower deviation version thereof the optimal
constants are not known yet.
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4 Confidence bands

If the size of the bias ‖E fn( j) − f ‖∞ were known, one could directly use Proposi-
tions 3 or 4 and a suitable choice of j to obtain confidence bands with prescribed finite
sample coverage. For instance, if f is the uniform distribution (volume element) on
M, the bias A0( f )− f of the estimate fn(0) is exactly zero. In analogy, if f ∈ EN (M)

is a finite linear combination of eigenfunctions of L (so in the spherical case a poly-
nomial) then the estimator fn(J ) for sufficiently large but finite J also has bias zero
(cf. (3)). As usual, going beyond finite-dimensional smoothness classes is possible by
considering spaces of differentiable functions on M. For instance one defines Ck(M)

as the set of continuous functions f ∈ C(M) such that for all X1, X2, . . . , Xk in
Lie(G), DX1 DX2 . . . DXk f ∈ C(M). It is a Banach space when equipped with the
following norm:

‖ f ‖Ck = sup
|X1|≤1,...,|Xk |≤1

‖DX1 DX2 . . . DXk f ‖∞ + ‖ f ‖∞,

and C∞(M) is the intersection of all the spaces Ck(M), k ∈ N. One can define such
spaces also for noninteger k by introducing a modulus of continuity along vectorial
directions X , and the resulting scale of Hölder–Zygmund function spaces Ck(M) can
be characterized by the decay of their needlet coefficients in very much the same way
as in the case of Hölder–Zygmund spaces on Euclidean spaces: A k-regular function
in Ck(M), k > 0 then satisfies the estimate

‖A j ( f )− f ‖∞ ≤ C2− jk . (24)

See Geller and Pesenson [8] for these results. If the smoothness degree t of f is
known such bounds can be used, together with Propositions 3, 4, in the construction
of asymptotic confidence sets, proceeding in the same way as in the classical paper [3]
via choosing a resolution level jn that leads to ‘undersmoothing’, i.e., a bias of smaller
order as a function of n than the random fluctuations of the centered estimators.

However, in the typical nonparametric function estimation problem the size of the
bias is not known, and the above assumptions are far from realistic. So we have the
more ambitious goal to obtain confidence sets for the needlet estimator with an auto-
matic choice of the resolution level j .

4.1 Estimate of the resolution level

Split the sample into two parts S1 and S2, each of (integer) size n1 > 0 and n2 > 0
respectively. For asymptotic considerations we shall require that n1/n2 is bounded
away from zero and infinity as n → ∞. Denote by

Pn1 = 1

n1

n1∑

i=1

δXi , and Pn2 = 1

n2

n2∑

i=1

δXn1+i
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the empirical measures associated with the first and the second subsample, respec-
tively, and define the associated needlet density estimators

fnv ( j, y) =
∫

M

A j (x, y)d Pnv (x), y ∈ M, v = 1, 2.

We use the sample S2 to choose the resolution level j . For n2 > 1, choose an
integer jmax := jmax,n and define the grid of candidate bandwidths as

J := Jn = {[0, jmax] ∩ N}.
For asymptotic considerations we shall only require

2 jmax �
(

n2

(log n2)2

)1/d

, (25)

but a practical choice is to first choose l∗ such that α(x, l∗)
√

2l∗/n2 = α′(x, l∗)
(2l∗/n2) and to define jmax such that 2 jmax = 2l∗/(log n2)

1/d . Such a choice of jmax
is just slightly below the boundary where the Poissonian term starts to dominate the
Gaussian term in σ(n2, l, x) in Proposition 3, and choosing j > jmax would then
result in inconsistent estimators, so that jmax is a natural upper bound for J .

The goal is to select a data-driven bandwidth ĵn from Jn . Heuristically, for l > j ,

fn2( j)− fn2(l)=[ fn2( j)−E fn2( j)]−[ fn2(l)−E fn2(l)]+[A j ( f )− f ]−[Al( f )− f ]
and with large probability the first two terms should not exceed 2σ(n2, l, x), a quantity
that increases in l, and we would like to choose ĵn to be the smallest j such that the
approximation error 2(A j ( f ) − f ) (which decreases in j) does not exceed the size
2σ(n2, l, x) of the random fluctuations.

We shall use the subsample S2 to select ĵn following this idea, which is due to
Lepskiı̆ [20], formalised as follows:

ĵn = min
{

j ∈ J : ‖ fn2( j)− fn2(l)‖� ≤ 4σ(n, l) ∀l > j, l ∈ J }
. (26)

where σ(n, l) = σ(n2, l, κlog n2), cf. (21), where κ > 0 is any numerical constant.
By definition ĵn = jmax if ∀ j, ∃ l > j, l, j ∈ J , ‖ fn2( j)− fn2(l)‖� > 4σ(n, l).

A few remarks about the constants involved in the definition of σ(n, l) are in order:
All these constants are explicit once the function a and the cubature Z j have been
chosen, except for the quantity ‖ f ‖∞. If no upper bound for ‖ f ‖∞ is known we
advocate that ‖ f ‖∞ be replaced by ‖ fn( jmax)‖∞. Standard arguments imply that this
random quantity exponentially concentrates around ‖ f ‖∞, see for instance Giné and
Nickl [12]. Consequently we neglect the case of ‖ f ‖∞ unknown in what follows in
order to reduce technicalities. Moreover we shall see below how the choice of the
numerical constant κ influences the finite-sample performance, but our results hold
for any choice κ > 0, in particular it does not have to be ‘large enough’ (as is often
assumed in the adaptive estimation literature). See Remark 3 for discussion.
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4.2 Confidence bands with random sizes

To construct the center of the corridor of the confidence band over� ⊆ M we evaluate
the linear estimator fn1(·, y) from (16) at the random bandwidth ĵn . It turns out that
some undersmoothing is useful—in fact crucial—so let un be a sequence of natural
numbers and define

f̂n(y) = fn1( ĵn + un, y), y ∈ �.

We shall see below how the sequence un influences our results but heuristically, and
for asymptotic considerations, one may think of un of the order log log n.

The confidence band we propose is centered at f̂n(y), y ∈ �, and has random size

sn(x) = 1.01σ(n1, ĵn + un, x),

cf. (21), more precisely

Cn := Cn(x, y) =
[

f̂n(y)− sn(x), f̂n(y)+ sn(x)
]
, x > 0, y ∈ � ⊆ M. (27)

Alternatively one can use the band size s R
n (�, x) = 1.01σ R(�, n1, ĵn +un, x), and all

results proved below go through by virtue of Proposition 4 and using techniques from
Rademacher processes (as in [12]), but we abstain from this to reduce technicalities.

4.3 Coverage and adaptation properties of Cn

4.3.1 Coverage over eigenspaces of L—the finite dimensional case

We first consider here the important case where f is a very smooth function, that is,
a fixed linear combination of eigenfunctions of L, so f ∈ E2J −1(M) for some fixed
J . For simplicity of exposition let us consider the case of global confidence bands
� = M only in this subsection. We start with the case where f equals the volume
element of M.

Theorem 1 If f is the volume element of M,
∫

M f dx = 1, then we have, for every
n ∈ N

Pr( ĵn = 0) ≥ 1 − 2 jmaxn−2κ
2 .

Furthermore, for every n ∈ N and every x > 0 we have

Pr { f (y) ∈ Cn(x, y) for every y ∈ M} ≥ 1 − e−x (28)

and, if 2und/n → 0 as n → ∞ then sn(x) = OPr
(
2und/2/

√
n
)
.
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In other words our automatic band Cn attains exact finite sample coverage if f is
uniformly distributed, and in the usual situation where un = log log n the size of the
band shrinks almost at the parametric rate 1/

√
n.

It is instructive to consider next the case where f ∈ E22J−1(M) \ E22J−2(M) for
some fixed J ∈ N. We would then hope that ĵn = J with large probability, as then
AJ ( f ) − f = 0 (see (3) above). In the following theorem we restrict ourselves to
asymptotic considerations to highlight the main ideas.

Theorem 2 Suppose f ∈ E22J−1(M) \ E22J−2(M) for some fixed J ∈ N. We then
have that

Pr( ĵn /∈ [J − 1, J ]) = O(n−2κ + e−cn)

as n → ∞ for some constant c that depends on f only through ‖ f ‖∞ and through

b1( f ) ≡ inf
p∈E22J−2 (M)

‖p − f ‖∞ > 0.

Moreover if un > 1 ∀n ∈ N then

Pr { f (y) ∈ Cn(x, y) for every y ∈ M} = 1 − e−x − O(e−cn) (29)

and if 2und/n → 0 as n → ∞ then sn(x) = OPr
(
2und/2/

√
n
)
.

Thus the confidence band Cn has asymptotic coverage for any fixed spherical poly-
nomial, and the asymptotic size of the band Cn is of order 1/

√
n up to the undersmoo-

thing factor.
Clearly we have neglected the question of honesty of Cn , that is we have not

addressed the question whether (29) holds uniformly in f ∈ ∪0≤ j≤J−1 E2 j (M).
Inspection of the proof implies that Cn is honest over linear combinations of eigen-
functions of L for which the separation constants b1( f ) are bounded below by a con-
stant multiple of 1/

√
n. That uniformity over all densities between E22J−1 and E22J−2

cannot be attained for our ‘adaptive’ procedure is related to impossibility results for
post-model selection estimators in finite-dimensional models, see Leeb and Pötscher
[19].

4.3.2 Asymptotic coverage over Hölder balls

Theorem 2 just resembles the finite dimensional situation, and if it were indeed known
a priori that f ∈ E2J−1(M) for a fixed J one could simply use fn(J ) as an estimator,
circumventing the uniformity problems raised in the previous subsection. However
if no finite-dimensional model seems realistic for f we may accept these uniformity
problems for which b1( f ) is not well-behaved if in return our procedure performs
well in the infinite-dimensional setting. Note that in the usual infinite-dimensional
nonparametric models the default estimator fn( jmax) has only a logarithmic rate of
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convergence to zero in supremum norm risk, and will lead to unnecessarily large con-
fidence bands. In contrast our confidence band Cn adapts over an infinite-dimensional
class of Hölder continuous densities f as we show in this section.

Our first main result is that the size of the band Cn equals, with large probabil-
ity, the optimal band size that one would obtain from balancing approximation error
A j ( f ) − f and random fluctuations fn( j) − A j ( f ). For asymptotic considerations
this will imply that our band shrinks at the optimal rate of convergence depending on
the regularity of f . To formalize this statement we shall impose a regularity condition
on the density f , namely that its approximation errors ‖A j ( f ) − f ‖� are bounded
by a constant multiple of 2− j t for some unknown t > 0. As mentioned in (24) above
this is tantamount to assuming a classical t-Hölder condition on f . The theoretical
bandwidth that balances bias and variance is then, up to additive constants (see (38)
below for an exact definition)

j∗n (t) = 1

2t + d
(log2 n − log2 log n).

Theorem 3 (Size of the band) Let � be any subset of M. Suppose f : M → [0,∞)

is bounded and that ‖A j ( f )− f ‖� ≤ b22− j t for some b2 > 0 and some t > 0. Let
2sn(x) be the diameter of the band Cn(x, y). Then, for every n ∈ N, x > 0,

Pr
{
sn(x) > 1.01σ(n1, j∗n (t)+ un + 1, x)

} ≤ 2( jmax − j∗n (t))n−κ
2 .

In particular, if the undersmoothing constants un are such that

rn(t) :=
(

log n

n

) t
2t+d

2
un d

2 = o(1)

as n → ∞ then sn(x) = OPr(rn(t)).

Note that the proof of the theorem, combined with standard arguments from adap-
tive estimation (e.g., [12]), implies as well that f̂n is rate-adaptive in sup-norm loss,
that is, for every t > 0,

sup
f :‖A j ( f )− f ‖M≤b22− j t

E sup
x∈M

| f̂n(x)− f (x)| = O(rn(t)). (30)

The rate of convergence rn(t) cannot be improved over classes of functions that are
t-Hölder, see for instance [17] in the case M = S

d , and since these Hölder classes are,
up to constants, sets of the form { f : ‖A j f − f ‖∞ ≤ b22− j t } for suitable b2 (see
the results in [8]), this implies that (30) is optimal, and that the band Cn in Theorem 3
shrinks at the optimal rate in a minimax sense (up to the undersmoothing factor, which
will typically be of size

√
log n).

Clearly without a sharp evaluation of the probability of the event { f ∈ Cn} Theo-
rem 3 is useless for statistical inference. It is known (see [22]) that adaptive confidence
bands for densities on R cannot have coverage over a continuous scale

⋃
t>0�(t, b2)
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of Hölder balls�(t, b2). In a way Low’s results can be seen as an infinite-dimensional
analogue of the pathologies in finite dimensions mentioned above. On the other hand
recent results in Giné and Nickl [11] show that adaptation is possible over ‘generic’
subsets of

⋃
t>0�(t, b2) when densities are estimated on the real line. The idea is

that even if some pathologies cannot be avoided there are still exhaustive classes of
densities for which adaptation is possible, and we show how this applies to density
estimation on M.

To this end we assume the following crucial approximation condition. While the
upper bound is standard, the quantity occurring in the lower bound can be viewed as
an infinite-dimensional analogue to the constant b1 that appeared in Theorem 2. Note
that whereas b1 is always positive the lower bound in the following condition may fail
to hold for any t for a given continuous function f , at least for large enough j . We
discuss this in Sect. 4.4.

Condition 1 Assume that f : M → [0,∞) is bounded and let t, b2 > 0 be real
numbers. Suppose that there exists a sequence b(n) such that 0 < b(n) ≤ b2 for every
n ∈ N and such that f satisfies, for every j ∈ Jn, the inequalities

b(n)2− j t ≤ ‖A j ( f )− f ‖� ≤ b22− j t . (31)

Under this condition we can prove asymptotic coverage of our nonparametric con-
fidence band. We should note that inspection of the proof reveals that this coverage
result is ‘honest’: it holds uniformly over classes of densities satisfying Condition 1.

Theorem 4 (Asymptotic Coverage) Let � be any subset of M. Suppose f satis-
fies Condition 1 and that the undersmoothing sequence un ∈ N is such that un +
1
t log2(b(n)) → ∞ as n → ∞. Then we have, for every x > 0,

lim inf
n

Pr { f (y) ∈ Cn(x, y) for every y ∈ �} ≥ 1 − e−x . (32)

For instance if one knows that lim infn b(n) > 0 (we shall see generic examples for
this below) then any undersmoothing sequence un → ∞ gives asymptotic coverage
of the band. On the other hand if un → ∞ then bn → 0 is admissible and the lower
bound requirement in Condition 1 becomes more and more lenient as sample size
increases. This result and the discussion in Sect. 4.4 below shows that our nonpara-
metric procedure does well asymptotically for ‘typical’ Hölder-continuous functions
on the unit sphere.

4.3.3 A nonasymptotic coverage result

The asymptotic Theorem 4 is in fact a consequence of the following finite-sample
result. While the stochastic terms are similarly well-behaved as in Theorems 1 and
2, the presence of nonnegligible approximation error is the reason why the following
theorem is more intricate.

Theorem 5 (Finite Sample Coverage) Let � be any subset of M. Suppose f satisfies
Condition 1 and let m∗ := m∗

n( f ) be the smallest integer such that b(n)2tm∗ ≥ 7b2.
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Set m := mn( f ) = min( j∗n (t),m∗). Then we have, for every n ∈ N and every x > 0

Pr { f (y) ∈ Cn(x, y) for every y ∈ �} ≥ 1 − e−x − vn (33)

where

vn = 2( jmax − m)n−κ
2 + In

with

In = I

{

100

√
n1

n2

A(n2, j∗n (t)+ 1, κ log n2)

A(n1, j∗n (t)+ un − m, x)
> 2(un−m−1)( d

2 +t)
}

,

with κ > 0 equal to the constant from after (26) and where A(n, l, x) was defined in
(21).

Remark 1 (Undersmoothing in finite samples) Note first that if un ≥ m, then the frac-
tion on the l.h.s.of the inequality in the definition of In is bounded away from zero
and infinity. Consequently the tradeoff between the constants un and b(n) is such that
if un + t−1 log2(b(n)) → ∞ then In = 0 for all n from some n0 onwards, which in
particular implies Theorem 4. Not surprisingly obtaining coverage in finite samples is
more delicate, as n0 depends on f : The undersmoothing constant un should be chosen
so large that In = 0 for every n. Closer inspection of In shows that this is possible
if an upper bound for m is available, which can be obtained by requiring an a priori
lower bound for the sequence b(n) as well as for t . The discussion in Sect. 4.4 will
show that such a priori bounds can indeed be obtained in relevant cases.

Remark 2 (Admissible lower bounds in Condition 1) Another point of view is to start
with an undersmoothing sequence un and to ask which sequences of b(n)’s are admis-
sible to obtain coverage. Assume for simplicity that the sample size is 2n and that
n1 = n2 = n. Let Cn(κ log n, y) be the confidence band from (27) with undersmoo-
thing sequence un ∈ N and x = κ log n. If f satisfies Condition 1 and if

b(n) ≥ 7b2 · (100)t/(t+d/2)2(−un+2)t ,

then

Pr { f (y) ∈ Cn(κ log n, y) for every y ∈ �} ≥ 1 − (2 jmax + 3)n−κ . (34)

For instance if d = 2 and f is at least once differentiable, then finite sample cov-
erage holds for the set of densities that satisfy Condition 1 for 1 ≤ t < ∞ and
b(n) ≥ b2 · 28.2−un .

Remark 3 (The role of the thresholding constant κ) The thresholding constant κ plays
an important role in the construction of ĵn . Our results are presented for fixed κ with-
out any restriction on this constant. This is an advantage since this constant has to be
carefully chosen in applications. Our bounds typically contain a term of the form n−κ ,
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and one could be tempted to choose κ as large as possible, however it is important to
notice that choosing κ very large will increase the difficulty of cancelling In in Theo-
rem 5. An adaptive choice of this tuning constant is possible but beyond the scope of
this paper.

4.4 Regularity of functions on the sphere and Condition 1

Condition 1 can be characterized in terms of classical Hölder regularity properties of
the unknown density f : M → R. We shall only discuss the case M = S

d , which
is the case of primary statistical interest, but all findings below generalize to M with
suitable modifications.

There are several ways to approximate unknown functions defined on S
d , but it is a

fortiori not clear whether a given method retrieves the natural intuition that the degree
of smoothness of a function f is the driving quantity of the approximation proper-
ties of f . For instance, while L2(M)-projections onto spherical harmonics constitute
a way of approximating a continuous function f : S

d → R, it is well known already
from the special case d = 1 that this approximation may diverge at any given point
x , which is particularly worrying when one is interested in the local or even uni-
form behavior of the approximation errors. Furthermore the important question arises
whether the approximation method allows for very smooth (for instance infinitely
differentiable) functions to be approximated in an optimal way.

The fact that needlets form a tight frame of L2(Sd) implies good approxima-
tion properties in that space, similar to those of the spherical harmonics. Moreover,
these approximations are also optimal approximands for differentiable and Hölder-
continuous functions in the uniform norm on S

d (as follows from the results in [8]), so
the upper bound in Condition 1 has a natural interpretation in terms of Hölder–Zyg-
mund-norms on S

d .
The lower bound in Condition 1 is more intricate. The results in Jaffard [15] and

Giné and Nickl [11] for functions on R suggest that this condition should be satisfied
if f ‘attains t as its Hölder exponent’ viewed as a function on the unit sphere (in fact a
slightly stronger requirement is necessary). In the simplest case, if a real-valued func-
tion f defined on R scales like |x − x0|t at some point x0 (if t > 1 a similar property
has to hold for the highest existing derivative), then f attains the Hölder exponent t ,
and the results in Jaffard [15] imply that ‘quasi every’ function (in a Baire sense) in
Ct (R) does this. Indeed Proposition 4 in Giné and Nickl [11] implies that quasi-every
function in Ct (R) satisfies the lower bound in the R-analogue of Condition 1 (where
A j ( f ) has to be replaced by a corresponding wavelet projection). Proving such gen-
eral results in the case where f is defined on the sphere is technical, mostly since
needlets only form a tight frame but not an orthonormal basis. We therefore return
to the intuition of Hölder exponents and show that ‘typical’ α-Hölder functions on
S

d satisfy Condition 1: let us consider spherical analogues of functions on R that
scale like |x − x0|: If x0 is any point in S

d , then the zonal functions dSd (x, x0) or
(1 − 〈x, x0〉d+1)

1/2 are natural candidates for the class C1(Sd). More generally

fα(x) = (1 − 〈x, x0〉d+1)
α/2
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for 0 < α < ∞, α/2 /∈ N, is a natural candidate for Cα(Sd). We prove in Proposition 6
below

b12− jα ≤ ‖A j ( fα)− fα‖∞ ≤ b22− jα

for some fixed constants 0 < b1 < b2 < ∞. Note that obviously, for α = 2k, k ∈
N, fα(x) = (1 −〈x, x0〉d+1)

k = 1 − cos(dSd (x, x0))
k is actually a polynomial on S

d .

5 Proofs for Section 3

5.1 Proof of Theorem 1

If f is the volume element of M, then

‖A j ( f )− f ‖∞ = 0 (35)

for every j ≥ 0. Clearly by definition of ĵn

Pr
{

ĵn �= 0
}

≤
∑

l∈J :l>0

Pr
{∥
∥ fn2(0)− fn2(l)

∥
∥∞ > 4σ(n, l)

}
.

Now since E fn(l) = Al( f ) = f for every l ≥ 0, the l-th probability is bounded by

Pr
{∥
∥ fn2(0)− fn2(l)− E fn2(0)+ E fn2(l)

∥
∥∞ > 4σ(n, l)

}

≤ Pr
{∥
∥ fn2(0)− E fn2(0)

∥
∥∞ > 2σ(n, l)

}

+ Pr
{∥
∥ fn2(l)− E fn2(l)

∥
∥∞ > 2σ(n, l)

} ≤ 2n−2κ
2

in view of Proposition 3, so that Pr{ ĵn �= 0} ≤ 2 jmaxn−2κ
2 follows. To prove the

second claim of the theorem, we have from independence of ĵn and fn1 , from (35)
and from Proposition 3

Pr { f (y) ∈ Cn(x, y) for every y ∈ M}

= Pr

{

sup
y∈M

∣
∣
∣ f̂n(y)− f (y)

∣
∣
∣ ≤ sn(x)

}

≥ 1− Pr

{

sup
y∈M

∣
∣
∣ fn1( ĵn + un, y)− E1 fn( ĵn + un, y)

∣
∣
∣>σ(n1, ĵn + un, x)

}

=1−
∑

0≤l≤ jmax

Pr
{‖ fn1(l+un, ·)−E1 fn1(l+un, ·)‖∞ > σ(n1, l+un, x)

}
Pr{ ĵn = l}

≥ 1 − e−x
∑

0≤l≤ jmax

Pr{ ĵn = l} = 1 − e−x .

The last claim of Theorem 1 follows from the first and definition of σ(n, l, x).
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5.2 Proof of Theorem 2

Since jmax → ∞ as n → ∞ and since this theorem is of an asymptotic nature we
assume J ≤ jmax in what follows. We recall from (3) that f ∈ E22J−1 implies

‖Al( f )− f ‖∞ = 0 (36)

for every l ≥ J . Then

Pr
{

ĵn > J
}

≤
∑

l∈J :l>J

Pr
{∥
∥ fn2(J )− fn2(l)

∥
∥∞ > 4σ(n, l)

}
,

and the l’th summand is bounded by

Pr
{∥
∥ fn2(J )− fn2(l)− E fn2(J )+ E fn2(l)

∥
∥∞ > 4σ(n, l)

}

≤ Pr
{∥
∥ fn2(J )− E fn2(J )

∥
∥∞ > 2σ(n, l)

}

+ Pr
{∥
∥ fn2(l)− E fn2(l)

∥
∥∞ > 2σ(n, l)

} ≤ 2n−2κ
2

in view of (36) and Proposition 3.
For integer l < J − 1 (so that 2l < 2J−1) we have

‖Al( f )− f ‖∞ ≥ inf
p∈E2J−2

‖p − f ‖∞ ≡ b1 > 0

since Al( f ) ∈ E22J−2 and since E22J−2 is a closed proper subspace of E22J−1 . By
definition we have

Pr( ĵn = l) ≤ Pr
(∥
∥ fn2(l)− fn2(J )

∥
∥∞ ≤ 4σ(n, J )

)
. (37)

The triangle inequality and (36) now give

∥
∥ fn2(l)− fn2(J )

∥
∥∞ ≥‖Al( f )− f ‖∞−∥

∥ fn2(l)−E fn2(l)− fn2(J )+E fn2(J )
∥
∥∞

so that the probability in (37) is bounded by

Pr
(∥
∥ fn2(l)− E fn2(l)− fn2(J )+ E fn2(J )

∥
∥∞ ≥ b1 − 4σ(n, J )

)

≤ Pr

(
∥
∥ fn2(l)− E fn2(l)

∥
∥∞ ≥ b1

2
− 2σ(n, J )

)

+ Pr

(
∥
∥ fn2(J )− E fn2(J )

∥
∥∞ ≥ b1

2
− 2σ(n, J )

)

.

For n large enough depending on b1 we have 2σ(n, J ) ≤ b1/4 so that Proposi-
tion 3 implies, for J fixed, Pr{ ĵn < J − 1} ≤ ∑

0≤l<J−1 Pr{ ĵn = l} ≤ 2Je−cn

for some constant c > 0 depending on b1, J and those constants appearing in the
definition of σ(n, l, x) that do not depend on n, l. Summarizing we deduce Pr{ ĵn /∈
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[J −1, J ]} ≤ 2 jmaxn−2κ
2 +2Je−cn for n large enough. To prove coverage we proceed

as in Theorem 1, noting un > 1,

Pr { f (y) ∈ Cn(x, y) for every y ∈ M}

≥ 1 − Pr

{

sup
y∈M

∣
∣
∣ fn1( ĵn + un, y)− f (y)

∣
∣
∣ > σ(n1, ĵn + un, x)

}

≥ 1 − 2Je−cn

−
∑

J−1≤l≤ jmax

Pr
{‖ fn1(l+un, ·)−E1 fn1(l+un, ·)‖∞>σ(n1, l+un, x)

}
Pr{ ĵn = l}

≥ 1 − 2Je−cn − e−x
∑

J−1≤l≤ jmax

Pr{ ĵn = l} ≥ 1 − e−x − 2Je−cn

where we used (36) and Proposition 3. The last claim of the theorem is proved as in
Theorem 1.

5.3 Proof of Theorems 4 and 5

We first prove Theorem 5. For f satisfying Condition 1 there exists a unique t := t ( f )
such that f satisfies Condition 1 for this t . Define

B( j, t) = b22− j t , j∗n (t) = min { j ∈ J \ {0} : B( j, t) ≤ σ(n2, j)} − 1. (38)

If no j ∈ J exists such that B( j, t) ≤ σ(n2, j) we set j∗n (t) = jmax − 1. We shall
assume without loss of generality that b2 is large enough such that b2 ≥ σ(1, 0). In
this way B( j∗n (t)) ≥ σ(n2, j∗n (t)) also holds when j∗n (t) = 0.

It is easy to see that j∗n (t) satisfies

2 j∗n (t) �
(

n2

log n2

) 1
2t+d

, (39)

so is a ‘rate optimal’ resolution level for estimating f satisfying Condition 1 for the
given t . The constants in the definition of j∗n (t) depend only on b2, t, a, d, k2 and
‖ f ‖∞.

Lemma 1 (a) For every n ∈ N,

Pr( ĵn > j∗n (t)+ 1) ≤ 2( jmax − j∗n (t))n−κ
2 . (40)

(b) Let m := min( j∗n (t),m∗) where m∗ is the smallest integer such that
(b(n)/b2)2tm∗ ≥ 7. Then, for every j ∈ J satisfying 0 ≤ j < j∗n (t) − m
and every n ∈ N we have Pr( ĵn = j) ≤ 2n−κ

2 . As a consequence, for every
n ∈ N,

Pr
(

ĵn < j∗n (t)− m
)

≤ 2( j∗n (t)− m)n−κ
2 (41)
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Proof Since this lemma only involves the sample S2, we set n = n2 for notational
simplicity. We also put j∗+

n = j∗n (t)+ 1. If j∗+
n = jmax Part (a) is proved. Otherwise

one has

Pr( ĵn > j∗+
n ) ≤

∑

l∈J :l> j∗+
n

Pr
(∥
∥ fn( j∗+

n )− fn(l)
∥
∥
�
> 4σ(n, l)

)
.

We first observe that by Condition 1 (noting also E fn( j) = A j ( f ))

∥
∥ fn( j∗+

n )− fn(l)
∥
∥
�

≤∥
∥ fn( j∗+

n )− fn(l)−E fn( j∗+
n )+E fn(l)

∥
∥
�

+B( j∗+
n , t)+B(l, t),

and that

B( j∗+
n , t)+ B(l, t) ≤ 2B( j∗+

n , t) ≤ 2σ(n, j∗+
n ) ≤ 2σ(n, l)

by definition of j∗n (t) and since l > j∗+
n . Consequently, the l-th probability in the last

sum is bounded by

Pr
(∥
∥ fn( j∗+

n )− fn(l)− E fn( j∗+
n )+ E fn(l)

∥
∥
�
> 2σ(n, l)

)

≤Pr
(∥
∥ fn( j∗+

n )−E fn( j∗+
n )

∥
∥
�
>σ(n, l)

)+Pr
(‖ fn(l)−E fn(l)‖�>σ(n, l)

)≤2n−κ

where we have used Proposition 3.
To prove the second claim, fix j < j∗n (t) − m. Clearly we only have to consider

the case m = m∗. Observe that

Pr( ĵn = j) ≤ Pr
(∥
∥ fn( j)− fn( j∗n (t))

∥
∥
�

≤ 4σ(n, j∗n (t))
)
. (42)

Now using Condition 1 and the triangle inequality we deduce

∥
∥ fn( j)− fn( j∗n (t))

∥
∥
�

≥ b(n)

b2
B( j, t)− B( j∗n (t), t)

− ∥
∥ fn( j)− E fn( j)− fn( j∗n (t))+ E fn( j∗n (t))

∥
∥
�

so that the probability in (42) is bounded by

Pr

(
∥
∥ fn( j)− E fn( j)− fn( j∗n (t))+ E fn( j∗n (t))

∥
∥
�

≥ b(n)

b2
B( j, t)− B( j∗n (t), t)

− 4σ(n, j∗n (t))
)

.
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By definition of j∗n (t) and B( j, t), we have

b(n)

b2
B( j, t)− B( j∗n (t), t) = b(n)

b2
2t ( j∗n (t)− j)B( j∗n (t), t)− B( j∗n (t), t)

>

(
b(n)

b2
2tm − 1

)

B( j∗n (t), t)

as well as B( j∗n (t), t) ≥ σ(n, j∗n (t)) ≥ σ(n, j) so that the last probability is
bounded by

Pr

(
∥
∥ fn( j)− E fn( j)− fn( j∗n (t))+ E fn( j∗n (t))

∥
∥
�

≥
[(

b(n)

b2
2tm − 1

)

− 4

]

σ(n, j∗n (t))
)

≤ Pr

(

‖ fn( j)− E fn( j)‖� ≥ 2−1
(

b(n)

b2
2tm − 5

)

σ(n, j)

)

+ Pr

(
∥
∥ fn( j∗n (t))− E fn( j∗n (t))

∥
∥
�

≥ 2−1
(

b(n)

b2
2tm − 5

)

σ(n, j∗n (t))
)

By definition of m, the term in brackets is greater than or equal to two, and then—using
Proposition 3—the last two probabilities do not exceed 2n−κ . Moreover,

Pr
(

ĵn < j∗n (t)− m
)

=
∑

0≤ j< j∗n (t)−m

Pr( ĵn = j) ≤ 2
∑

0≤ j< j∗n (t)−m

n−κ

≤ 2( j∗n (t)− m)n−κ ,

which completes the proof. ��
Combining (40) with (41) we have, for every n ∈ N and for m as in the lemma

Pr{ ĵn /∈ [ j∗n (t)− m, j∗n (t)+ 1]} ≤ 2[( j∗n (t)− m)+ ( jmax − j∗n (t))]n−κ
2

= 2( jmax − m)n−κ
2 := Zn, (43)

a fact we shall use below.
We now prove Theorem 5. Denoting by E1 expectation w.r.t. S1, one has by defi-

nition of sn(x) that

Pr { f (y) ∈ Cn(x, y) for every y ∈ �}

= Pr

{

sup
y∈�

∣
∣
∣ f̂n(y)− f (y)

∣
∣
∣ ≤ sn(x)

}

=1−Pr

{

sup
y∈�

∣
∣
∣ f̂n(y)− E1 f̂n(y)+E1 f̂n(y)− f (y)

∣
∣
∣>1.01σ(n1, ĵn + un, x)

}
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≥ 1 − Pr
{
‖ f̂n − E1 f̂n‖� > σ(n1, ĵn + un, x)

}

− Pr
{
‖E1 f̂n − f ‖� > 0.01σ(n1, ĵn + un, x)

}

= 1 − I − I I

About term I : This probability equals, by independence of fn1( j, y) and ĵn ,

Pr
{
‖ fn1( ĵn + un, ·)− E1 fn1( ĵn + un, ·)‖� > σ(n1, ĵn + un, x)

}

=
∑

0≤l≤ jmax

Pr
{‖ fn1(l+un, ·)−E1 fn1(l+un, ·)‖�>σ(n1, l+un, x)

}
Pr{ ĵn = l}

≤ e−x
∑

0≤l≤ jmax

Pr{ ĵn = l} = e−x

in view of Proposition 3.
About term I I : Using Condition 1 as well as (43), and recalling (21), this quantity

equals

Pr
{∥
∥
∥E fn1( ĵn + un)− f

∥
∥
∥
�
> 0.01σ(n, ĵn + un, x)

}

≤ Pr
{

100b22−t ( ĵn+un) > σ(n1, ĵn + un, x)
}

= Pr

{

100
√

n1b2 > 2
( ĵn+un)

(
d
2 +t

)

A(n1, ĵn + un, x)

}

≤
∑

j∗n (t)−m≤l≤ j∗n (t)+1

I

{

100
√

n1b2>2
(l+un)

(
d
2 +t

)

A(n1, l+un, x)

}

Pr{ ĵn = l}+Zn

≤ I

{
100b2

√
n1

A(n1, j∗n (t)+ un − m, x)
> 2

( j∗n (t)+1)
(

d
2 +t

)

2
(un−m−1)

(
d
2 +t

)}

+ Zn

≤ I

{

100

√
n1

n2

A(n2, , j∗n (t)+ 1, κ log n2)

A(n1, j∗n (t)+ un − m, x)
> 2

(un−m−1)
(

d
2 +t

)}

+ Zn

where we have used that (38) implies

2
( j∗n (t)+1)

(
d
2 +t

)

≥
√

n2b2

A(n2, j∗n (t)+ 1, κ log n2)

in the last inequality. This proves Theorem 5. Theorem 4 follows from Theorem 5
using that tradeoff between b(n) and un through the constant m (cf. also Remark 1).

5.4 Proof of Theorem 3

The size of the band is 2.02σ(n1, ĵn + un, x). In view of (40)—whose proof only
requires the hypotheses of Theorem 3—we have ĵn ≤ j∗n (t) + 1 with probability
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larger than 1 − 2( jmax − j∗n (t))n−κ
2 , so the size of this band is less than or equal to

2.02σ(n1, j∗n (t) + un + 1, x) with the same probability bound. The second claim of
Theorem 3 then follows from definition of σ(n, l, x) (cf. (21)) and of j∗n (t) (cf. (39)).

6 Precise validity of condition (31)

In this section we investigate examples of functions verifying condition (31) if M = S
d .

Let us recall that the projection kernel on Hk(S
d) is given by

Lk(〈x, y〉d+1) = 1

|Sd |
(

1 + k

ν

)

Cν
k (〈x, y〉d+1), ν = d − 1

2

where Cν
k (x) is the corresponding Gegenbauer polynomial. For ease of notation we

shall redefine A j (x, y) = ∑
k<2 j a(k/2 j )Lk(x, y), to be in line with the notation in

[2,24,25]. (For j → ∞ this modification is immaterial.) We shall use the classical
symbol

∀k ∈ N, (a)k = a(a + 1) · (a + k − 1)

(

= �(a + k)

�(a)
if − a �∈ N

)

, (a)0 = 1.

The following Olindes Rodrigues formula defines the Gegenbauer polynomials and is
useful for integration by parts: for t ∈ I = [−1, 1]

Cν
k (t) = (−1)k

1

k!2k

(2ν)k
(
ν + 1

2

)
k

Dk{(1 − t2)k)ων(t)}
ων(t)

, ων(t) = (1 − t2)ν−1/2.

(44)

Proposition 6 For 0 < α < ∞, α
2 �∈ N, we define the following functions:

fα(x) =
(√

1 − 〈x, x0〉d+1

)α =
(√

1 − cos(dSd (x, x0))
)α

where dSd is the geodesic distance on S
d . Then there exist constants c1 > 0, c2 > 0

independent of j such that

c12− jα ≤ ‖A j ( fα)− fα‖∞ ≤ c22− jα.
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Proof of the upper bound: Let us consider first the case 0 < α ≤ 1. We have

|A j ( fα)(x)− fα(x)| =

∣
∣
∣
∣
∣
∣
∣

∫

Sd−1

A j (x, y) fα(y)dy − fα(x)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

Sd

A j (x, y)( fα(y)− fα(x))dy

∣
∣
∣
∣
∣
∣
∣

≤
∫

Sd

|A j (x, y)|| fα(y)− fα(x)|dy

But

∀θ, θ ′ ∈ [0, π ], |√1 − cos θ−√
1 − cos θ ′|=√

2

∣
∣
∣
∣sin

θ

2
−sin

θ ′

2

∣
∣
∣
∣≤

1√
2
|θ−θ ′|,

so

| f1(x)− f1(y)| = |√1 − cos(dSd (x, x0))− √
1 − cos(dSd (y, x0))|

≤ 1√
2
|dSd (x, x0)− dSd (y, x0)| ≤ 1√

2
dSd (x, y)

And, by the subadditivity of x �→ xα for 0 < α ≤ 1

| fα(x)− fα(y)| = | f α1 (x)− f α1 (y)| ≤ | f1(x)− f1(y)|α ≤ 1

2α/2
(dSd (x, y))α

So, by the integration formula for zonal functions on the sphere (Section 9.1 in [5]):

∀x ∈ S
d ,

∫

Sd

|A j (x, y)|| fα(y)− fα(x)|dy

≤ 2−α/2
∫

Sd

|A j (〈x, y〉d+1))|(dSd (x, y))αdy

= 2−α/2|Sd−1|
π∫

0

A j (cos θ)θα(sin θ)d−1dθ

≤ 2−α/2|Sd−1|
π∫

0

A j (cos θ)θd−1+αdθ

But using the following concentration result from [25]

∀K > 0, ∃ CK < ∞, A j (cos θ) ≤ CK 2 jd [1 ∧ 1/(2 jθ)K ]
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Taking K > d + α, we obtain

‖A j ( f )− f ‖∞ ≤ 2−α/2|Sd−1|CK 2 jd

⎛

⎜
⎝

2− j∫

0

θd−1+αdθ +
1∫

2− j

θd−1+α 1

(2 jθ)K
dθ

⎞

⎟
⎠

≤ 2−α/2|Sd−1|CK 2− jα K

(d + α)(K − d − α)

Let us now consider the case α > 1. Taking d = 2 the previous proof shows
that, on the classical torus T , for 0 < α ≤ 1 , the 2π -periodical function φα(θ) =
(
√

1 − cos θ)α = 2α| sin θ
2 |α belongs to Cα(T). But, if for k in N, α equals α =

k + β ≤ k + 1, it is clear that φα(θ) is k-times differentiable, and Dkφα(θ) as a linear
combination of C∞ periodical functions times | sin θ

2 |β+ j , j = 0, 1, . . . , k belongs
to Cβ(T). So, φα ∈ Cα(T), and, as moreover φα(θ) is even, there exists Pj (cos θ), a
sequence of trigonometrical polynomials of degree less than 2 j such that:

‖(√1 − cos θ)α − Pj (cos θ)‖∞ ≤ C2− jα

But Pj (cos〈x, x0〉d+1) is a polynomial on the sphere of degree less than 2 j and

‖(√1 − cos〈x, x0〉d+1)
α − Pj (〈x, x0〉d+1)‖∞ ≤ C2− jα.

Proof of the lower bound We only have to consider the case j large enough since fα
is not a spherical polynomial and thus not in EN (S

d) for any finite N . Using again the
integration fomulae for zonal functions

‖A j ( fα)− fα‖∞ ≥ |A j ( fα)(x0)− fα(x0)|

=

∣
∣
∣
∣
∣
∣
∣

∫

Sd

A j (x0, y)( fα(y)− fα(x0))dy

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

Sd

A j (x0, y)(
√

1 − 〈y, x0〉d+1)
αdy

∣
∣
∣
∣
∣
∣
∣

= |Sd−1|
π∫

0

A j (cos θ)(
√

1 − cos θ)α(sin θ)d−1dθ |

= |Sd−1|
∫

I

A j (t)(1 − t)α/2(1 − t2)ν−1/2dt |

= |Sd−1|
|Sd |

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1+ k

ν

)∫

I

Cνk (t)(1−t)α/2(1−t2)ν−1/2dt

∣
∣
∣
∣
∣
∣

123



400 G. Kerkyacharian et al.

But, using (44)

∫

I

Cν
k (t)(1 − t)α/2(1 − t2)ν−1/2dt =

∫

I

Cν
k (t)(1 − t)α/2ων(t)dt

= (−1)k
1

k!2k

(2ν)k
(
ν + 1

2

)
k

∫

I

(1 − t)α/2 Dk{(1 − t2)kων(t)}dt

= 1

k!2k

(2ν)k
(
ν + 1

2

)
k

∫

I

Dk{(1 − t)α/2}(1 − t2)kων(t)dt

= 1

k!2k

(2ν)k
(
ν + 1

2

)
k

(
−α

2

)

k

∫

I

(1 − t)α/2−k(1 − t2)kων(t)dt

= 1

k!2k

(2ν)k
(
ν + 1

2

)
k

(
−α

2

)

k

∫

I

(1 − t)α/2(1 + t)kων(t)dt = uk

Clearly ∀k ≥ 0, uk �= 0 (because α
2 �∈ N), uk = (−1)k |uk | for 0 ≤ k < α

2 + 1 and
uk = −(−1)[α/2]|uk | for k > α

2 + 1. By the upper bound, and for j large enough:

C2− j ≥ ‖A j fα − fα‖∞ ≥ |Sd−1|
|Sd |

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

∣
∣
∣
∣
∣
∣

= |Sd−1|
|Sd |

∣
∣
∣
∣
∣
∣

∑

0≤k<α/2+1

a

(
k

2 j

)(

1+ k

ν

)

(−1)k |uk |−(−1)[α/2]

×
∑

α/2+1<k<2 j

a

(
k

2 j

)(

1+ k

ν

)

|uk |
∣
∣
∣
∣
∣
∣

= |Sd−1|
|Sd |

∣
∣
∣
∣
∣
∣

∑

0≤k≤[α/2]

(

1+ k

ν

)

uk −(−1)[α/2] ∑

α/2+1<k<2 j

a

(
k

2 j

)(

1+ k

ν

)

|uk |
∣
∣
∣
∣
∣
∣

So if [α/2] is even, and j large enough

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

∣
∣
∣
∣
∣
∣
=

∑

0≤k≤[α/2]

(

1 + k

ν

)

uk

−
∑

α/2+1<k<2 j

a

(
k

2 j

)(

1 + k

ν

)

|uk |
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=
∑

0≤k≤[α/2]

(

1 + k

ν

)

uk +
∑

α/2+1<k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk .

So

∑

0≤k<2 j

(

1 + k

ν

)

uk ≤
∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

∣
∣
∣
∣
∣
∣
≤

∑

0≤k<2 j−1

(

1 + k

ν

)

uk .

Now, if [α/2] is odd, and j large enough

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

∣
∣
∣
∣
∣
∣
= −

⎛

⎝
∑

0≤k≤[α/2]

(

1 + k

ν

)

uk

+
∑

α/2+1<k<2 j

a

(
k

2 j

)(

1 + k

ν

)

|uk |
⎞

⎠

= −
⎛

⎝
∑

0≤k≤[α/2]

(

1 + k

ν

)

uk

+
∑

α/2+1<k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

⎞

⎠

So

−
∑

0≤k<2 j

(

1 + k

ν

)

uk ≤
∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1 + k

ν

)

uk

∣
∣
∣
∣
∣
∣
≤ −

∑

0≤k<2 j−1

(

1 + k

ν

)

uk,

and in any case

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

a

(
k

2 j

)(

1+ k

ν

)

uk

∣
∣
∣
∣
∣
∣
∼

∣
∣
∣
∣
∣
∣

∑

0≤k<2 j

(

1+ k

ν

)∫

I

Cν
k (t)(1−t)α/2(1−t2)ν−1/2dt

∣
∣
∣
∣
∣
∣

Denote now by 〈·, ·〉ν the L2([−1, 1])-inner product w.r.t. ων and recall (see
[1, p. 343])

∑

0≤k≤n

(

1 + k

ν

)

Cν
k (x) = (n + 2ν)Cν

n (x)− (n + 1)Cν
n+1(x)

2ν(1 − x)

123



402 G. Kerkyacharian et al.

so that

2ν

〈
∑

0≤k≤n

(

1 + k

ν

)

Cν
k (x), (1 − x)α/2

〉

ν

= (n + 2ν)〈Cν
n (x), (1 − x)α/2−1〉ν

−(n + 1)〈Cν
n+1(x), (1 − x)α/2−1〉ν

〈Cν
k (x), (1 − x)α/2〉ν = (−1)k

1

k!2k

(2ν)k
(ν + 1

2 )k

∫

I

(1 − t)α/2−1 Dk((1 − t2)kων(t))dt

= 1

k!2k

(2ν)k
(
ν + 1

2

)
k

(
1 − α

2

)

k

∫

I

(1 − t)α/2−1−k(1 − t2)k(1 − t2)ν−1/2dt

= 1

k!2k

�(2ν + k)

�(2ν)

�
(
ν + 1

2

)

�
(
ν + k + 1

2

)
�
(− α

2 + k + 1
)

�
(
1 − α

2

)

∫

I

(1 − t)ν+α/2−3/2(1 + t)ν−1/2+kdt

= sin πα
2

π
�(α/2)

1

k!2k

�(2ν + k)

�(2ν)

�(ν + 1
2 )

�
(
ν + k + 1

2

)�
(
−α

2
+ k + 1

)
22ν+k−1+ α

2

×�
(
ν + α

2 − 1
2

)
�
(
ν + k + 1

2

)

�
(
2ν + k + α

2

)

= 2α/2 sin
(
πα
2

)
�
(
ν + α

2 − 1
2

)
�(α/2)

�(ν)
√
π

�
(
k + 1 − α

2

)
�(2ν + k)

k!� (
2ν + k + α

2

) .

Using the following standard formulaes

�(1 − α/2)�(α/2) = π

sin πα/2
; �(2ν)

√
π = 22ν−1�(ν)�(ν + 1/2).

We deduce

〈
∑

0≤k≤n

(

1 + k

ν

)

Cνk (x), (1 − x)α/2
〉

ν

=
2α/2 sin

(
πα
2

)
�
(
ν + α

2 − 1
2

)
�(α/2)

2ν�(ν)
√
π

1

n! .
(n + 2ν)�

(
n + 1 − α

2

)
�(2ν + n)

�
(
2ν + n + α

2

)

×
{

1 −
(
n + 1 − α

2

)

(
2ν + n + α

2

)

}

=
(2ν − 1 + α)2α/2 sin

(
πα
2

)
�
(
ν + α

2 − 1
2

)
�(α/2)

2ν�(ν)
√
π

(n + 2ν)�
(
n + 1 − α

2

)
�(2ν + n)

(n + 2ν + α/2)n!� (
2ν + n + α

2

)

× sin
(πα

2

)
C(α, ν)

(n + 2ν)

(n + 2ν + α/2)

�
(
n + 1 − α

2

)
�(2ν + n)

n!� (
2ν + n + α

2

)
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Clearly sin
(
πα
2

)
determines the sign, and by Stirling’s formula:

�
(
n + 1 − α

2

)
�(2ν + n)

n!� (
2ν + n + α

2

) ∼ n−α

So the lower bound of ‖A j ( fα)− fα‖∞ is of order 2− jα .
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