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Abstract We study the existence and asymptotic properties of a conservative
branching particle system driven by a diffusion with smooth coefficients for which
birth and death are triggered by contact with a set. Sufficient conditions for the process
to be non-explosive are given. In the Brownian motions case the domain of evolution
can be non-smooth, including Lipschitz, with integrable Martin kernel. The results
are valid for an arbitrary number of particles and non-uniform redistribution after
branching. Additionally, with probability one, it is shown that only one ancestry line
survives. In special cases, the evolution of the surviving particle is studied and for a
two particle system on a half line we derive explicitly the transition function of a chain
representing the position at successive branching times.
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334 I. Grigorescu, M. Kang

1 Introduction

This paper is the second part of an effort to characterize the non-explosiveness and
ergodic properties of a class of stochastic processes built by piecing together count-
ably many consecutive episodes of a driving process killed upon contact with a
set (catalyst), which is restarted at a random point of the state space by a redis-
tribution probability measure, to be prescribed according to the particular evolu-
tion model. The first part [16] looks at a number of models that need a finite
number of jumps before entering a certain center of the state space (i.e. a set
away from the boundary and a small set in the sense of Doeblin theory). The
results in the present paper do not depend on [16]. We are now focussing on
the harder example of the N particle system with Fleming–Viot dynamics intro-
duced in [8] for Brownian motions. Similarly to the Wright–Fisher model, a killed
particle is replaced by having one of the surviving particles branch. This can be
interpreted as a jump to the location of one of the survivors, chosen according
to a (possibly non-uniform) distribution, as in Definition 1. Perturbations of the
diffusions driving the process between jumps and of the redistribution probabil-
ities appear naturally; for example, when considering large deviations estimates
from the hydrodynamic limit [14] of the model with uniform redistribution, the
Brownian motions acquire a drift and the redistribution measures become biased
accordingly.

The main results are Theorem 1, which proves that the system is non-explosive on
domains with regularity prescribed in Definition 2; Theorem 2, which proves geomet-
ric ergodicity using a comparison with a process without jumps obtained by coupling;
Theorem 3, which gives the sharpest conditions for non-explosion for non-smooth
domains, and Theorem 4, establishing the existence of a unique infinite continuous
path, or ancestry line—the immortal particle in the sense of [10,11]. They are valid for
all N ≥ 2, general diffusions and non-uniform redistribution probabilities, and in the
Brownian motion case for non-smooth domains (including Lipschitz) with integrable
Martin kernel.

Theorem 1 solves a long standing open problem posed in [8]. We refer the reader
to [6] for a discussion on why the arguments in [8] were not sufficient to prove non-
explosion. A second attempt was Theorem 7 in [20], which states a conjecture on
how particles approach the boundary, needed to prove the non-explosiveness result
for Brownian motions in smooth domains. The proof has several errors, but the most
important is to ignore that all calculations considered must take place for times t <τ ∗,
the time of explosion, i.e. the transition probabilities are defective, in similar fashion
like for an absorbed process. In equation (8.7) the author works with stopping times
exceeding S> 0, on an event B where S ≥ τ ∗. The conclusion is therefore trivial. In
the smooth boundary case and Brownian motions with drift, there is a third attempt in
Theorem 2.1 in the preprint [22].

Our interest in the model was motivated by the scaling properties of the
F–V branching model [15]. The hydrodynamic limit (law of large numbers for the
empirical measures as objects on the Skorohod space) has been explored in [5,12] as a
tool to study the quasi-invariant measures of a killed process, providing an important
application of the Fleming–Viot mean-field redistribution dynamics.
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Immortal particle for a catalytic branching process 335

Let D be an open connected set in R
d with regular boundary ∂D and ((x̃(t))t≥0

a diffusion on D absorbed at the boundary, generated by the second order strictly
elliptic operator L. We shall assume that the diffusion coefficients are smooth up to
the boundary, i.e. belong to the C∞(D̄). Naturally, lower regularity may be consid-
ered but the problems considered are difficult enough for the Laplacian. This setup
can accommodate with minor changes the case of a diffusion with some boundary
conditions (i.e. reflecting) on a subset of its topological boundary. In that case ∂D
will denote without loss of generality, the absorbing boundary, where the process is
killed upon arrival. Under these assumptions Px (τ

D > 0) = 1 for all x ∈ D, where
τ D = inf{t > 0 | x(t) ∈ Dc} is the hitting time of Dc, the complement of D, and the
transition probabilities P D(t, x, dy) will have a density

Px (x̃(t) ∈ dy, τ D > t) = P D(t, x, dy) = pD(t, x, y)dy. (1.1)

We note that the harmonic measures Px (x(τ D−) ∈ dξ) are absolutely continuous
with respect to the Lebesgue measure on the boundary λ0(dξ), ξ ∈ ∂D.

In addition, for any ξ ∈ ∂D we have a probability measure ν(ξ, dx) on D such that
ξ → ν(ξ, dx) is measurable with respect to the Borel σ -algebras of ∂D and of M1(D),
where M1(D) denotes the space of probability measures on D with the topology of
convergence in distribution.

Constructively, we define a Markov process (x(t))t≥0, starting at x ∈ D, as follows.
We set x0 := x and τ0 := 0. The process follows the diffusion P D starting at x0 up
to τ1 := τ D

1 , which means x(t) := x̃(t) for 0 ≤ t <τ1. As soon as it reaches ∂D at
ξ0 = x(τ1−) it instantaneously jumps to a random point x1 ∈ D, independent of the
process x(t), with distribution ν(ξ0, dx). We continue the motion according to the dif-
fusion pD starting at x1 until τ2 = inf{t > τ1 | x(t) ∈ Dc}. We set x(t) = x̃(t −τ1) on
τ1 ≤ t <τ2, where x̃(·) is an independent version of the killed process, this time starting
at x1. Evidently τ2 − τ1 = τ D

2 and we continue indefinitely. Since Px (τ
D > 0) = 1

for all x ∈ D we have that τl is strictly increasing in l ≥ 0. It is possible that
τl ′ = ∞ for a given l ′, in which case τl ≡ ∞ for all l ≥ l ′. Without loss of generality,
let l ′ = inf{l ≥ 1|τl =∞} and we denote l∗ the total number of jumps; obviously
l∗ = l ′ − 1. We denote τ ∗ = liml→∞ τl ≤ ∞.

In the following, for a sufficiently small δ > 0, we denote Dδ = {x ∈ D | d(x, ∂D) >
δ}. An open set V ⊆ D is said a vicinity of the boundary if there exists δ > 0 such
that D\V ⊆ D̄δ . The complement of V is said an interior set.

The underlying diffusion will be assumed to satisfy the uniform bound on the exit
time from a vicinity of the boundary Dc

δ , trivial for a bounded D,

lim
t→∞ sup

x∈D̄c
δ

Px (τ
Dc
δ > t) = 0. (1.2)

We are interested in conditions guaranteeing that x(t) is non-explosive or, equiva-
lently, does not finish in finite time with positive probability (1.3)

∀x ∈ D, Px

(
lim

l→∞ τl = ∞
)

= 1. (1.3)
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336 I. Grigorescu, M. Kang

Lemma 1 contains the key element in the proof of non-explosiveness exhibited by
the function ln	(x), where	(x) is intuitively emulating the distance to a subset A of
∂D, with properties	(x) > 0 in D and	(x) = 0 on A. The reader may want to think
of D′ ⊆ D as a subset of D\D̄δ representing the “worst case scenario” for survival
because ∂D′ ⊇ A, in other words a set where the process may have the highest chance
of extinction - see also the remark following Lemma 1.

Besides technical assumptions contained in (i), properties (ii) and (iii) from
Lemma 1 guarantee that ln	(x(t)) is a (local) semi-martingale that experiences a
strictly positive jump (iii) on the boundary, implying that the process pays a “price”
(1.11) for each jump.

To clarify the notation, the random times τ D , τ Dc
δ from (1.1) to (1.2) refer to hit-

ting times of the process (x̃(t)). Similarly, we use (τl)l≥0, α(D1) for the sequence of
boundary hits and, respectively, the first hitting time of a set D1 ⊆ D by the process
((x(t)), i.e. α(D1) = inf{t > 0 | x(t) ∈ D̄1}, with α(D1) = +∞ if x(t) never hits D̄1.
The number of jumps up to time t ≥ 0 will be denoted J (t). Let l(D1) = J (α(D1)),
the number of jumps until the process hits D̄1, i.e. l(D1) = max{l | τl ≤ α(D1)}.

We give a summary of the paper. Section 1 proves two essential lemmas. Lemma 1
establishes an upper bound for the expected value of the number of jumps before
entering an interior set in terms of properties of a test function	. One of the terms in
the bound is the expected value of the time to enter the interior set. It is Lemma 2 that
gives an upper bound for this time, in terms of another test function �. To apply the
two lemmas in the case of the Fleming–Viot particle system on the set G described
in Sect. 2, we need tests functions ψ, φ on G corresponding to �, respectively 	. It
is ψ that requires (C1) (Definition 2, Sect. 2) and φ that requires (C2) (Definition 3,
Sect. 2). While (C1) is nontrivial, (C2) is satisfied when G has the exterior cone con-
dition (Proposition 1). As a consequence (C1) is essentially the only requirement for
non-explosion (Theorem 1, Sect. 2) and geometric ergodicity (Theorem 2, Sect. 3),
the latter using φ in a coupling argument (Proposition 3). Section 4 proves that (C1)
is satisfied for bounded Lipschitz domains when the Martin kernel is integrable (The-
orem 3). Propositions 7 and 6 give sufficient conditions for (C1) in terms of the Green
function and the solution of the eikonal equation. Section 5 proves the almost sure
existence of a unique infinite ancestry line (the immortal particle) and Section 6 cal-
culates explicitly a law of large numbers for the Markov chain, given by the meeting
points after jump in the two-particles case, in dimension one.

Lemma 1 Assume there exists a (possibly empty) closed subset A of the boundary
∂D with λ0(A) = 0, an open subset D′ ⊆ D and a bounded real function 	 ∈
C2(D′) ∩ C(D̄) with the properties (i) 	(x) > 0 on D̄\A and 	(x) = 0 on A; (ii)
there exists a constant q(	) ≥ 0 with L ln	(x) ≥ −q(	) for all x ∈ D′ and (iii)
U = infξ∈(∂D∩∂D′)\A U (ξ) > 0, where

U (ξ) =
∫
D

ln	(x)ν(ξ, dx)− ln	(ξ). (1.4)

123



Immortal particle for a catalytic branching process 337

Then, for all x ∈ D′,

Ex [J (τ ∗ ∧ α(D\D′))] ≤ U−1

×
[
[ sup
x ′∈D̄

{ln	(x ′)} − ln	(x)] + q(	)Ex [τ ∗ ∧ α(D\D′)]
]
. (1.5)

If either q(	) = 0 or q(	) > 0 and Ex [τ ∗ ∧ α(D\D′)] < ∞ for all x ∈ D′, then
Px (α(D\D′) < τ ∗) = 1 for all x ∈ D′, with the understanding that if τ ∗ = ∞, then
α(D\D′) is finite with probability one.

Remark In the F-V particle system from Sect. 2 we have D = G N , where G is
the underlying domain for each of the N particles and A will be the corners of ∂D,
i.e. where all particles are at the boundary and for G ′ a vicinity of the boundary of
G, D′ = (G ′)N .

Proof Step 1. The plan of the proof is as follows. We apply Ito’s formula to show
that ln	(x(t ∧ α(D\D′))), t ≥ 0, x(0) = x ∈ D′ is a local (Ft ) semi-martingale.
Condition (ii) shows that ln	(x(t)) changes in time, being controlled by the lower
bound −q(	) as long as x(t) ∈ D′ and (iii) shows that it has strictly positive jumps
at the boundary of D′ shared with ∂D. This proves the statement up to the first hitting
time of D\D′.

Since	(x) = 0 on A, we create a localizing sequence on D̄\A. Due to λ0(A) = 0,
there exists a nested sequence of open sets Bk ⊆ R

d , Bk ⊇ A, such that for all
k ≥ 0, d(y, A) < 1/k when y ∈ Bk . We may assume without loss of generality
that x /∈ B0 and B0 ⊆ D\Dδ . We claim that if τ(Bc

k ) = inf{t > 0 | x(t) ∈ B̄k}
and we denote the limit τ(Bc∞) = limk→∞ τ(Bc

k ), then Px (τ (Bc∞) ≥ τ ∗) = 1 for all
x ∈ D\B0. Assume τ(Bc∞) < τ ∗. The sequence τ(Bc

k ) is non-decreasing, but we want
to show that it cannot be constant from a certain rank on. If this would be the case,
τ(Bc

k ) = τ(Bc
k0
) for all k ≥ k0 and there exists l such that τ(Bc

k0
) ∈ [τl−1, τl). Conse-

quently x(τ (Bc
k0
)) ∈ D yet d(x(τ (Bc

k0
)), A) ≤ 1/k for all k ≥ k0, thus x(τ (Bc

k0
)) ∈

A, a contradiction. Without loss of generality, we assume that the sequence τ(Bc
k ) is

strictly increasing. There are two possibilities: Either (τ (Bc
k )), k ≥ 0 has only finitely

many points in each episode [τl−1, τl), l ≥ 1, or there exists lA < ∞ with infinitely
many τ(Bc

k ) in [τlA−1, τlA ). In the first case τ(Bc∞) ≥ τ ∗, and we are done. In the
second case, τ(Bc∞) �= τlA−1, so there are two scenarios: Either τ(Bc∞) ∈ (τlA−1, τlA ),
or τ(Bc∞) = τlA . In both, the process x(t) has continuous paths on (τlA−1, τlA ) and
d(x(τ (Bc

k )), A) ≤ 1/k for an infinite subsequence, which implies that the path of the
diffusion killed at the boundary has a limit point on A. This event has zero probability
on any episode and there are countably many episodes. By choosing the localizing
sequence τ(Bc

k ) ∧ α(D\D′), k ≥ 0 we proved Step 1.
Step 2. Fix x(0) = x ∈ D′. Denote M(	) = supx ′∈D̄{ln	(x ′)}, let m be a positive

integer, T > 0 and put τ ′
j = τ j∧m ∧ (τ (Bc

k )∧α(D\D′))∧ T for all j ≥ 0 and τ(Bc
k ),

k fixed at the moment, as in Step 1. With this notation, the summations below are
finite, and we can write

M(	)− ln	(x) ≥ Ex [ln	(x(τl(D\D′)∧m ∧ (τ (Bc
k ) ∧ α(D\D′)) ∧ T ))

− ln	(x(0))] (1.6)
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= Ex

⎡
⎣l(D\D′)∑

j=1

ln	(x(τ ′
j ))− ln	(x(τ ′

j−1))

⎤
⎦ (1.7)

= Ex

⎡
⎣l(D\D′)∑

j=1

[ln	(x(τ ′
j ))− ln	(x(τ ′

j−))]

+
l(D\D′)∑

j=1

[ln	(x(τ ′
j−))− ln	(x(τ ′

j−1))

⎤
⎦ (1.8)

The second term of (1.8) representing the sum over diffusive time intervals [τ ′
j−1, τ

′
j−)

is bounded below by −q(	)Ex [τ ′
l(D\D′)] by applying Ito’s formula on the intervals

between jumps. The first term, representing the jump at τ ′
j is bounded below by

Ex

⎡
⎣ m∑

j=1

Ex [ln	(x(τ ′
j ))− ln	(x(τ ′

j−))|Fτ ′
j −]

⎤
⎦ (1.9)

=
m∑

j=1

Ex [Ex [ln	(x(τ ′
j ))− ln	(x(τ ′

j−))
∣∣ x(τ ′

j−)]], (1.10)

where we used the strong Markov property. Due to the choice of the times τ ′
j , the

sequence τ ′
j becomes constant for j ≥ m (or possibly earlier on). Let η(s), s > 0 be

equal to one if s is an actual jump time of the process x(s)− x(s−) �= 0 and to zero
if it is a continuity point. With J (t) denoting the number of jumps up to time t ,

Ex [ln	(x(τ ′
j ))− ln	(x(τ ′

j−))
∣∣ x(τ ′

j−)] ≥ Uη(τ ′
j ) (1.11)

leading to the lower bound U Ex [J ((τ (Bc
k ) ∧ α(D\D′)) ∧ T ) ∧ m] for line (1.10).

Moving the lower bound Ex [τ ′
l(D\D′)] of the second term in (1.8) to the left hand side

of (1.6), we have shown

Ex [J ((τ (Bc
k ) ∧ α(D\D′)) ∧ T ) ∧ m] ≤ U−1

[
(M(	)− ln	(x))+ q(	)Ex [τ ′

l(D\D′)]
]
,

(1.12)

with the first term on the right hand side not depending on T, k, and m. We let m → ∞,
then T → ∞ and finally k → ∞ to obtain

E[J (τ ∗ ∧ α(D\D′))] ≤ U−1 [(M(	)− ln	(x))+ q(	)Ex [τ ∗ ∧ α(D\D′)]] .
(1.13)

By hypothesis, when either q(	) = 0, or q(	) > 0 and Ex [τ ∗ ∧ α(D\D′)] < ∞,
the right hand side is finite, showing that J (τ ∗ ∧α(D\D′)) < ∞ almost surely. Since
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Immortal particle for a catalytic branching process 339

J (τ ∗) = ∞, it is not possible that α(D\D′) ≥ τ ∗, therefore α(D\D′) < τ ∗ with
probability one. In particular, if τ ∗ = ∞, then α(D\D′) is finite. ��

The next result gives conditions under which Ex [τ ∗ ∧ α(D\D′)] < ∞.

Lemma 2 Let D, D′ be as in Lemma 1 and let� satisfy property (i) from the lemma;
(ii) there exists a constant q1(�) > 0 with L�(x) ≥ q1(�) for all x ∈ D′ and (iii)
U1 = infξ∈(∂D∩∂D′)\A U1(ξ) > 1, where

U1(ξ) = �(ξ)−1
∫
D

�(x)ν(ξ, dx). (1.14)

Then, for all x ∈ D′,

Ex [τ ∗ ∧ α(D\D′)] < ∞, Ex

⎡
⎣J (τ∗∧α(D\D′))∑

j=1

�(x((τl ∧ α(D\D′)−))
⎤
⎦ < ∞.

(1.15)

As a consequence, if D′ is a vicinity of the boundary and α(D\D′) = +∞, then the
configurations (x(τl−)) at jump times l ≥ 0 converge to the subset A of the boundary
with probability one.

Remark When applied to the F-V model from Sect. 2, the lemma proves the following
dichotomy: Either the particles enter an interior set before τ ∗, or they simultaneously
converge to the boundary of the set in finite time.

Proof The proof is almost identical to the proof of Lemma 1. Since
∫

D �(x)ν(ξ, dx) ≥
U1�(x) is (trivially) satisfied even when �(x) = 0, we do not have to use the local-
ization sequence (Bc

k )). The process (�(x(t ∧ α(D\D′))) is a sub-martingale. We
obtain

�(x(t ∧ α(D\D′))) = �(x)+ (I )+ (I I )+ (I I I ) (1.16)

where

(I ) = �(x(t ∧ α(D\D′)))−�(x(τl(D\D′) ∧ α(D\D′))) (1.17)

(I I ) =
J (t∧α(D\D′))∑

l=1

�(x(τl ∧ α(D\D′)−)−�(x(τl−1 ∧ α(D\D′)) (1.18)

(I I I ) =
J (t∧α(D\D′))∑

l=1

�(x(τl ∧ α(D\D′)))−�(x(τl ∧ α(D\D′)−)) (1.19)
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For (i) and (II) we apply Ito’s formula in the intervals between jumps. For (III) we
follow the same steps as in (1.9)–(1.11) to obtain

Ex [�(x(τl ∧ α(D\D′)))−�(x(τl ∧ α(D\D′)−)) ∣∣ x(τl−)]
≥ η(U1 − 1)�(x(τl ∧ α(D\D′)−)), (1.20)

where η, as in (1.11) is equal to one if there was an actual jump at τl ∧ α(D\D′) and
zero otherwise. Summing up, with C(�, x) = supx∈D̄′ |�(x)| −�(x), we have

C(�, x) ≥ Ex

⎡
⎣q1(�)(t ∧ α(D\D′))+ (U1 − 1)

×
J (t∧α(D\D′))∑

j=1

�(x((τl ∧ α(D\D′)−))
⎤
⎦ (1.21)

and, after letting t → ∞, we obtain (1.15). The last claim is a consequence of the fact
that the series on the right hand side of (1.15) is convergent it this case and �(x) is
continuous and reaches zero only on the A ⊆ ∂D. ��

2 The Fleming–Viot redistribution case

In this setup, N ≥ 2 is a positive integer, the domain D = G N , with G a domain
in R

q , d = Nq with regular boundary ∂G. The process {x(t)}t≥0 has components
x(t)= (x1(t), . . . , xN (t)) (called particles), each {xi (t)}t≥0, 1 ≤ i ≤ N evolving in
G as a q - dimensional diffusion with jumps at the boundary ∂G to be described in the
following. As before, the process {x(t)}t≥0 is adapted to a right-continuous filtration
{Ft }t≥0. For ξ ∈ ∂D we write I (ξ) = {i | ξi ∈ ∂G} and ξ i j ∈ G N denotes the vector
with the same components as ξ with the exception of ξi which is replaced by ξ j .

When a particle xi reaches ∂G at τ , it jumps instantaneously to the location of one
of the remaining particles x j , 1 ≤ j ≤ N , j � = i (there are no simultaneous bound-
ary visits a.s.) with probabilities p(x(τ−), j), 1 ≤ j ≤ N , having only the restriction
p(x(τ−), i) = 0. It is obviously possible to allow positive probabilities for stopping
at the boundary, a standard construction being to allow an exponential time before
attempting a new jump. However we do not pursue this approach here since it rather
obscures the natural question of non-explosiveness. There is no real ambiguity con-
cerning points on the “edges” of the boundary (i.e. when at least two components are
on ∂G, or |I (ξ)| ≥ 2) since the underlying diffusion does not visit a.s. sets of co-
dimension greater than two as soon as it starts at points x ∈ D. The state space is only
the open set D, so we shall not start the process on the boundary. However we may
define without loss of generality νξ (dx) for all ξ ∈ ∂D as in (2.1). More precisely, there
exist measurable functions ∂G N � ξ → pi j (ξ)∈ [0, 1], indexed by 1 ≤ i, j ≤ N
such that pi j (ξ) = 0 whenever i = j and

∑
j pi j (ξ)= 1 such that

∀ξ ∈ ∂G N , ν(ξ, dx) = 1

|I (ξ)|
∑

i∈I (ξ)

N∑
j=1

pi j (ξ)δξ i j (dx). (2.1)

123



Immortal particle for a catalytic branching process 341

Definition 1 We shall say that the redistribution probabilities pi j (ξ) are non-
degenerate if they are bounded away from zero uniformly; i.e. there exists p0 > 0
independent of ξ ∈ ∂G N , such that pi j (ξ) ≥ p0, 1 ≤ i, j ≤ N , i �= j .

Remark (1) Except on the edges of D = G N , formula (2.1) does not have a proper
average over i ∈ I (ξ). The definition is consistent over all ξ ∈ ∂D.

(2) The most common choice of pi j (ξ) is uniform pi j (ξ) = (N−1)−1, j �= i, ξ ∈∂G.
In that case p0 = (N − 1)−1.

(3) The definition (2.1) is not necessarily continuous as a function in ξ into M1(D̄)
with the topology of weak convergence of measures; the reader may check the
case N = 3, d = 1 with the redistribution measures from 2).

(4) Assume D is bounded. Then D̄ is compact, and the family of measures (νξ
(dx))ξ∈∂D is tight. Nonetheless, limit points might be concentrated on ∂D, which
raise the possibility that the process be explosive.

(5) Definition 1 can be relaxed, with proper care for the regularity of the domain, as
follows. It is only the pi j (ξ) corresponding to the j with maximum distance from
the boundary that needs a lower bound.

We shall further assume that the particles xi (t) evolve independently between jumps,
each following a diffusion with generator L on R

q killed at the boundary ∂G. More
specifically

Lu(x)=
∑

1≤α≤q

bα(x)
∂u

∂xα
(x)+ 1

2

∑
1≤α,β≤q

aα,β(x)
∂2u

∂xα∂xβ
(x), u ∈C0(R

q)∩C2(Rq),

(2.2)

with coefficients {bα(x)}α, {aα,β(x)}α,β in C∞(Rq). With the notation σ(x)σ ∗(x) =
a(x) (the star stands for the matrix transposition), the coefficients are uniformly
bounded, with L strictly elliptic

|bα(x)| ≤ ||b||, 0 < σ 2
0 ||v||2 ≤ ||〈σ(x)σ ∗(x)v, v〉|| ≤ ||σ ||2||v||2, v ∈ R

q ,

(2.3)

where ||b||, σ0, ||σ || do not depend on x, α, β. Under these conditions, there exists
a family of Brownian motions {wβi (t)}1≤β≤q , mutually independent in i as well as
β, adapted to (Ft ), such that between successive jumps, the N components xi (t) =
(x1

i (t), . . . , xq
i (t)) ∈ G, where (xαi (t))1≤α≤q are solutions to the stochastic differential

equations

dxαi (t) = bα(xi (t))dt+
∑

1≤β≤q

σα,β(xi (t))dw
β
i (t), 1≤α, β≤q , xi (0)= xi0 ∈G,

(2.4)

for all 1 ≤ i ≤ N .
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2.1 Domain regularity

Until this point we only required that ∂G be regular. For any regular domain G and any
one-particle diffusion with smooth coefficients (2.2), if U, V are two open subsets of
G with U ⊆ V ⊆ G, T > 0, we denote by p±(T,U, V ) the supremum, respectively
infimum over x ∈ U of Px (τ

V > T ), where τ V denotes the first hitting time of ∂V .
We start with the following remark. If U ⊂⊂ V such that 0 < d− ≤ d(∂U, ∂V ) ≤
d+ < ∞, then there exist constants p±(T,U, V ) such that for all x ∈ Ū

0 < p−(T,U, V ) ≤ Px (τ
V > T ) ≤ p+(T,U, V ) < 1. (2.5)

To check (2.5), we set w(T, x)= Px (τ
V > T ) on x ∈ V and note that (∂T −

L)w(T, x) = 0, 0 ≤ w(T, x) ≤ 1 and w(T, x) = 0 on ∂V . The lower bound is
guaranteed by the maximum principle applied to w(T, x) and the upper bound by
applying it to 1 − w(T, x).

We remind the reader the definition of a vicinity of the boundary ∂G is given right
before Lemma 1.

Definition 2 Condition (C1). We shall say that G satisfies (C1) if there exists a vicinity
of the boundary G ′ and there exists a functionψ such that (i)ψ ∈ C2(G ′)∩C(Ḡ ′); (ii)
ψ(x) > 0, x ∈ G ′; (iii) ψ(x) = 0, x ∈ ∂G; (iv) there exists a constant q− depending
on G ′ and ψ only, such that Lψ(x) ≥ q− > 0.

Remark In case G is a bounded C2 domain there are many choices of ψ satisfying
Definition 2. The most natural is ψ(x) = d2(x, ∂D), the square of the distance to
the boundary. It is known [19] that φ solves the eikonal equation ||∇ψ(x)||2 = 1 and
coincides with the classical smooth solution when D is smooth; more examples are
discussed in Sect. 4.

Definition 3 Condition (C2). We shall say that G satisfies (C2) if there exists a vicin-
ity of the boundary G ′ and there exists a function φ ∈ C(Ḡ ′) ∩ C2(G ′) such that (i)
Lφ(x) ≥ 0, (ii) φ(x) > 0 on G ′, (iii) φ(x) = 0 on ∂G and (iv) there exists a constant
c2 > 0 such that ||∇φ(x)||2 ≤ c2φ(x) for any x ∈ G ′.

Proposition 1 Assume G ⊆ R
q is a bounded domain satisfying the uniform exterior

cone condition ([13], page 205). Then condition (C2) is satisfied.

Proof Without loss of generality, we may take ∂G ′ smooth so we shall be concerned
with boundary estimates at ∂G only. Let u(x) be the solution of the Dirichlet prob-
lem Lu = 0, u(x) = 0 on ∂G and u(x) = 1 on ∂G ′\∂G. The goal is to show that
φ(x) = um(x), for a power m ≥ 2 to be chosen later on, satisfies the requirements of
the proposition.

(i) Directly we obtain

Lφ(x) = 1

2
m(m − 1)um−2(x)||σ ∗(x)∇u(x)||2 + mum−1(x)Lu(x) ≥ 0 (2.6)

while (ii) is a consequence of the maximum principle. Property (iii) is true by con-
struction. The only difficult part is to ensure (iv) is true.
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(iv) From Theorem 8.29 in [13] we know that u ∈ Cβ ′
(Ḡ ′), β ′ ∈ (0, 1), where

Cβ ′
(Ḡ ′) is the space of Hölder continuous functions with exponent β ′. Since u van-

ishes on ∂G, we have 0 ≤ u(x) ≤ c3d(x, ∂G)β
′
. On the other hand, we know (again

[13], page 38, eq. 3.16) that d(x, ∂G)||∇u(x)|| ≤ c4, where c4 depends on the set G
and boundary values. It follows that

||∇φ(x)||2 = m2u(x)2(m−1)||∇u(x)||2
≤ um(x)[d(x, ∂G)2||∇u(x)||2][m2d(x, ∂G)−2um−2(x)]
≤ φ(x)c2

4m2cm−2
3 d(x, ∂G)(m−2)β ′−2,

where d(G) = supx,x ′∈G d(x, x ′) < ∞, proving condition (iv) for any m ≥ 2β ′−1 +2

with c2 = c2
4m2cm−2

3 d(G ′)(m−2)β ′−2. ��
The following propositions shows that we can apply Lemma 2.

Proposition 2 On the set D = G N , the function �(x) = ∑N
i=1 ψ(xi ), with ψ as in

(C1), D′ = (G ′)N , A = (∂G)N , satisfies Lemma 2 with U1 = 1 + p0, where p0 > 0
is the constant from Definition 1 and q1(�) = Nq−.

Proof Without loss of generality, ψ can be extended to all G so that ψ(x) remains
bounded away from zero on G\G ′ and �(x) = ∑N

i=1 ψ(xi ) satisfies (i) in Lemma 2.
The only thing to verify is the lower bound for (1.14) which is evident due to the lower
bound pi j (ξ) ≥ p0 > 0 in Definition 1, for all ξ ∈ (∂G N )\(∂G)N . ��

We are ready to state the main result.

Theorem 1 Assume that G satisfies (C1) and (C2) and the relocation probabilities
satisfy the condition in Definition 1. Then, for any N ≥ 2, the process is non-explosive
in the sense of (1.3).

Proof Proposition 2 shows that Lemma 2 is applicable to the process (x(t)). The plan
is to prove the theorem in two steps. Step 1 will apply Lemma 1 to D = G N with
D′ = (G ′)N , where G\G ′ ⊆ Ḡ2N δ for some suitably small but fixed δ > 0 and the
set A = {ξ ∈ ∂G N | I (ξ) = N } will be the vertices of the domain, i.e. the part of the
boundary ∂G N with all components in ∂G. Step 1 will conclude that the process x(t)
exits in finite time D′, with probability one. In Step 2 we show that once in D\D′, the
process will hit the set (Ḡδ)

N in a finite number of jumps with probability one. From
that point on we apply Lemma 4 and we are done.

Step 1. As in the proof of Proposition 2 without loss of generality we may extend
φ to all G with φ(x) bounded away from zero on G\G ′. Let (y(t)) be the process
with one-dimensional components yi (t) := φ(xi (t)), t ≥ 0, where φ is the function
in (C2). We are interested in the logarithm of the radial process (r(t))

r(t) = 	(x(t)), 	(x) =
(

N∑
i=1

φ2(xi )

) 1
2

. (2.7)
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Using Ito’s lemma, the N -dimensional process (y(t)) satisfies the stochastic dif-
ferential equations

dyi (t) = b̃i (t)dt + σ̃i (t)dw̃i (t), yi (0) = φ(xi0), (2.8)

where {w̃i (t)}1≤i≤N are Brownian motions adapted to (Ft ) obtained from (2.4) by the
representation theorem for continuous martingales. Concretely, b̃(t) = (b̃i (t))1≤i≤N ,
(σ̃i (t))1≤i≤N have components

b̃i (t) = Lφ(xi (t)), σ̃i (t) = ||σ ∗(xi (t))∇φ(xi (t))|| (2.9)

with the inequalities

0 < σ 2
0 ||∇φ(xi (t))||2 ≤ σ̃ 2

i (t) ≤ ||σ ||2||∇φ(xi (t))||2 (2.10)

due to (2.3). By construction,	(x) = 0 if and only if all φ(xi ) = 0. In D′, this means
only on A. The only conditions on 	 from Lemma 1 that have to be verified are (ii)
and (iii).

Between jumps r(t) satisfies

dr(t) = B(t)dt + S(t)dW (t), r(0) = ||φ(x(0))||, (2.11)

where (W (t)) is a one - dimensional Brownian motion adapted to (Ft ), while the drift
B(t) and variance matrix S(t) are given by (here T r(A) is the trace of the N × N
matrix A)

B(t) = 1

2r(t)

(
2〈y(t), b̃(t)〉 + T r(σ̃ (t)σ̃ ∗(t))− ||σ̃ ∗(t)y(t)||2

r2(t)

)
(2.12)

S(t) = ||σ̃ ∗(t)y(t)||
r(t)

. (2.13)

In the formula above σ̃ ∗(t) is the N × N diagonal matric with entries σ̃i (t) from (2.9).
Relations (2.12)–(2.13) show that in order to verify the conditions of Lemma 1 we

have to prove (2r(t))−1(2r(t)B(t)− S2(t)) ≥ −q(	), q(	) > 0. This is equivalent
to

1

2r(t)

(
−2〈y(t), b̃(t)〉 − T r(σ̃ (t)σ̃ ∗(t))+ 2

||σ̃ ∗(t)y(t)||2
r2(t)

)
≤ q(	). (2.14)

Since φ(x) ≥ 0 and Lφ(x) ≥ 0 we only have to check if the last term is uni-
formly bounded above. Multiplying by (2r(t))−1 and using the bound (iv) in (C2),
Definition 3,

||σ̃ ∗(t)y(t)||2
r3(t)

≤ c2||σ ||2
∑N

i=1 y3
i (t)

r(t)3
≤ Nc2||σ ||2 = q(	).
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We verify (iii) from Lemma 1. We shall prove (iii) for boundary points ξ with
|I (ξ)| ≤ N − 1, which includes the set (∂D ∩ ∂D′)\A. We note that, with probability
one, only boundary points ξ with I (ξ) = 1 are visited. Abusing notation, we write
I (ξ) = i for the component located on the boundary ∂G. The process y(t) jumps if
and only if a component reaches zero, which is equivalent to x(t) reaching ∂G N at
some point ξ (here we make use of the condition that φ(x) > 0 except on A). To
simplify notation, let pI j = pi j (ξ) denote the corresponding relocation probabilities.

Due to the condition in Definition 1 we have the non-random lower bound away
from zero, uniformly in N :

∫

G N

ln	(x)ν(ξ, dx)− ln	(ξ) =
∑
j �=I

pI j

2
ln

(
1 + φ2(x j )∑

k �=I φ
2(xk)

)

≥ p0

2
ln

(
N

N − 1

)
> 0, (2.15)

which shows (1.4) with U = p0
2 ln

( N
N−1

)
. With the notation of Lemma 1, we have

∀x ∈ D Px(l(D\D′) < ∞) = 1, Px(α(D\D′) < τ ∗) = 1. (2.16)

This concludes the proof of Step 1.
Step 2. For a δ > 0 fixed, let Fk be the set of configurations with exactly N − k

particles in Ḡ2kδ (or exactly k in the vicinity of the boundary G\Ḡ2kδ). For a small
a > 0,

Fk(a) =
{

x ∈ Ḡ N |
N∑

i=1

1G\Ḡa
(xi ) = k

}
, Ak(a) = ∪k

j=0 Fj (a). (2.17)

Let Fk = Fk(2kδ) for a = 2kδ and Ak = ∪k
j=0 Fj . We notice that F0 = (Gδ)

N ⊆ D̄δ .

Set D′ = FN = (G\Ḡ2N δ)
N , with α(D\D′) the first hitting time of D\D′, as in

Lemma 1. We have shown in Step 1 that the lemma applies to the process (x(t))t≥0
and the open set D′ and thus Px(α(D\D′) < ∞) = 1 for all x ∈ D′. In other words, if
αk is the first hitting time of Ak for all k = 0, . . . ,N−1, thenαN−1 ≤ α(D\D′) is finite
with probability one. To verify this inequality, we show that x(α(D\D′)) ∈ AN−1.
Since x(α(D\D′)) ∈ Fc

N we only have to check that Fc
N ⊆ AN−1.

Fc
N ⊆ AN−1(2

N δ) ⊆ AN−1(2
N−1δ) = ∪N−1

j=0 Fj (2
N−1δ) ⊆ ∪N−1

j=0 A j (2
jδ) = AN−1.

For all k ≥ 1 and all x ∈ Fk, d(x, F0)≤ N2N δ, d(x, ∂D)≤ 2N δ, and thus d(x,
∂(D\F0)) ≤ N2N δ, which implies that for any x ∈ Fk , the time to reach either
the interior set F0 or the boundary ∂D is finite with probability one.

Let τ0(D′) = α(D\D′) and τk(D′), k = 1, 2, . . . , N − 1 be the first N − 1 jump
times coming right afterα(D\D′). Starting with AN−1, we want to reach AN−2, . . . A0
with positive probability in each step. We proceed to show that for each 1 ≤ k ≤ N
(in the proof k runs in decreasing order from k = N to k = 1), the probability of the
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event E = {αk−1 ≤ τN−k(D′)} of reaching Ak−1 at the time of the (N − k)-th jump
or before has a lower bound away from zero, independent of the starting point in Fk .
The fact that we reach the set at jump time is important, since we want to reach Ak−1
at a time αk−1 < τ ∗. Note first that k = N is satisfied by Step 1. For other k, denote
τ ′ the first time when one of the N − k particles situated at time t = 0 in G2kδ reaches
G2k−1δ, E ′ the event that the first jump is onto one of these N − k particles and τ ′′ the
first time when one of the k particles in G\Ḡ2kδ at time t = 0 reaches ∂G. Then, for
a fixed T0 > 0,

E � {τ ′ > T0, τ
′′ ≤ T0} ∩ E ′. (2.18)

Under the event from the right-hand side of (2.18) we have τ D = τ ′′ ≤ T0, which
implies that we may analyze all N particles independently up to τ D−. At the same
time, the jump is independent of the past. The uniform lower bound for the probability
of E is based on the bounds on the exit probability, respectively the redistribution
probability νξ when k ≤ N − 1

inf
x∈Fk

Px(E) ≥ inf
x∈Fk

Px
(
τ ′ > T0

)
inf

x∈Fk
Px

(
τ ′′ ≤ T0

)
inf

x∈∂D∩Fk
νξ (Fk−1) (2.19)

≥ p−(T0,G2kδ,G2k−1δ)
N−k

[
1 − (p+(T0,G,G))k

]
p0 = p0,k (2.20)

where p0 is the lower bound from Definition 1 and p± are defined in (2.5). Summa-
rizing the information from (2.19) to (2.20), the probability to reach F0 after the N −1
jumps following α(D\D′)when starting at an arbitrary x ∈ D\D′ has a positive lower
bound p = �N−1

k=1 p0,N−k independent of x. With the notation l(Dδ) for the number
of jumps until reaching the set Dδ , we have shown

inf
x∈D\D′ Px(l(Dδ) ≤ N − 1) ≥ p > 0. (2.21)

We shall use this and (2.16) to complete the proof.
Let (Xn)n≥0 be the interior chain on D generated by (x(t))—see [16] for more

details—displaying the consecutive positions of the process (x(t)) at jumps times. In
other words, Xn = x(τn), n ≥ 0. In discrete time n = 0, 1, . . . we denote αX (B) =
inf{n ≥ 0|Xn ∈ B}, B a Borel subset of D. We now apply Lemma 3 to F = AN−1 ⊇
D\FN , τX = αX (F0),m = N − 1 to show that Px(αX (F0) < ∞) = 1 for all x ∈ D.
This shows that the number of jumps l(δ) until reaching D̄δ satisfies Px(l(Dδ) <
∞) = 1, which implies that Px(α(Dδ) < τ ∗) = 1. Based on Lemma 4 we have that
τ ∗ = ∞ almost surely. ��
Lemma 3 Let (Xn)n≥0 be a Markov chain on D, F ⊆ D be a closed subset of D and
τX a stopping time. If Px(αX (F) < ∞) = 1 for all x ∈ D and there exists an integer
m > 0 and a number p > 0 independent of m such that Px(τX ≤ m) ≥ p uniformly
in x ∈ F, then Px(τX < ∞) = 1 for all x ∈ D.

Proof Let ξ0 = 0, αX,1 = inf{n > ξ0 | Xn ∈ F}, ξ1 = αX,1 + m and inductively

αX,l = inf{n > ξl−1 | Xn ∈ F}, ξl = αX,l + m, l ≥ 2. (2.22)
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By construction, the stopping times ξl satisfy Px(ξl < ∞) for all x ∈ D and l =
1, 2, . . ., and Px(liml→∞ ξl = ∞). Set k a positive integer. Successive applications
of the strong Markov property on the intervals [ξl−1, αl ], [αl , ξl ], l ≥ 1 give

Px(τX > ξk) ≤ Ex[�k
l=1 PXαX,l

(τ > m)] ≤ (1 − p)k, (2.23)

where the first inequality is obtained by neglecting the intervals [ξl−1, αX,l ]. Since k
is arbitrary, we proved that Px(τX < ∞) = 1. ��

The following lemma formalizes the idea that if the interior set D̄δ is reached
a.s. before τ ∗, then the process has to cross the region D\D̄δ infinitely many times.
Since the duration of such a crossing is uniformly bounded away from zero (in some
appropriate sense), the process cannot end in finite time.

Lemma 4 Let F ⊆ D̄δ for some δ > 0. If for any x ∈ D we have Px(α(F) < τ ∗) = 1,
then for any x ∈ D we have Px(τ

∗ = ∞) = 1.

Proof In view of the hypothesis, τ ∗ > α(F) ≥ α(D̄δ). It is then sufficient to prove
the Lemma for F = D̄δ . Let S < ∞ be a positive deterministic time; we want to
show that Px(τ

∗ ≤ S) = 0. Since the first jump time satisfies τ1 < ∞ a.s., we define
α1 = inf{t > τ1 | x(t) ∈ D̄δ}. An application of the strong Markov property to τ1
together with the hypothesis imply that Px(α1 < τ ∗) = 1 for any x ∈ D. We note that
this also implies that α1 < ∞ with probability one. Put u(S) = supx∈D̄δ Px(τ

∗ ≤ S).
Applying the strong Markov property to the stopping time α1 in the second inequality
below, we obtain

Px(τ
∗ ≤ S) = Px(τ

∗ ≤ S , α1 < τ ∗)

≤ Px(τ
∗ ≤ S , α1 < S) =

S∫
0

Px(τ
∗ ≤ S |α1 = s)Px(α1 ∈ ds)

≤
S∫

0

Ex[Px(α1)(τ
∗ ≤ S − α1) |α1 = s] Px(α1 ∈ ds) ≤ u(S)Px(α1 ≤ S).

The last inequality was obtained by taking the supremum over x(α1) ∈ D̄δ . The
supremum over x ∈ D̄δ on both sides of the inequality, as well as the fact that α1 ≥ τ D

give

0 ≥ u(S)(1 − sup
x∈D̄δ

Px(α1 ≤ S)) ≥ u(S) inf
x∈D̄δ

Px(τ
D > S).

Our claim is proved since infx∈D̄δ Px(τ
D > S) > 0 for any S > 0. ��
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3 Geometric ergodicity

In this section G is assumed bounded and regular.

Proposition 3 Assume there exists a function φ satisfying (C1) form Definition 2. Fix
an index i, 1 ≤ i ≤ N and recall that xi (t) denotes the i - th component of x(t). If we
denote by α1 the first hitting time of the set G\G ′ by the process (xi (t)), then there
exist θ > 0,C0 > 0 independent of x ∈ G ′ such that Ex[exp(θα1)] ≤ C0.

Remark We do not need the uniform exterior cone condition because we are not
interested in the upper bound of the gradient.

Proof Without loss of generality we may assume that 0 < φ(x) < 1 on G ′ and
φ(x) = 1 on ∂G ′ by choosing the vicinity of the boundary to be the connected com-
ponent containing ∂G of the set {x ∈ G|φ(x) < 1

m } and noticing that mφ(x) must
satisfy the property for some sufficiently large m ∈ Z+.

Denote yi = φ(xi ), where x(0) = x has components xi , 1 ≤ i ≤ N and the process
(y(t)) with components yi (t) = φ(xi (t)), t ≥ 0. In the following the particle index
i is not important and we denote yi simply by y and similarly xi by x . Denote by β1
the first hitting time of the point y = 1 by the process (y(t)). We have the almost sure
inequality α1 ≤ β1.

The process (y(t)) evolves in [0, 1] undergoing jumps at a subset of the jump times
(τl) for the process (x(t)). To simplify notation, we shall still denote these jumps
by τl , l ≥ 1, τ0 = 0. Due to the properties of φ, with probability one, at each time τl ,
the jump pushes the one-dimensional process y(t) to the right, from y(τl−) = 0 to
y(τl) > 0. We shall construct by coupling a new process z(t) evolving on (−∞, 1]
with a monotonicity property. At start, the processes z(t) and y(t) coincide - until τ1.
At τ1, z(t) suppresses the jump, but continues to diffuse being driven by the same
stochastic differential equation as y(t). Based on (2.4), we construct inductively for
l ≥ 0 a sequence z0,l , by setting z0,0 = y0 = φ(x0), and a process

dz(t) = b̃i (t)dt + σ̃i (t)dW (t), τl ≤ t < τl+1, z(τl) = z0,l , (3.1)

where the coefficients are defined in (2.9). At each step, we update z0,l+1 := z(τl+1−).
Due to the pathwise coupling (3.1), z(t) ≤ y(t) almost surely when z(τl) ≤ y(τl),
which is true by construction. Denoting with γ1 the first hitting time of the point one
by (z(t)), we see that β1 ≤ γ1 with probability one. Let μ = q− from (C1) and
θ < μ2/(2||σ ||2) and u(θ, z) = exp((z − 1)||σ ||−2[−μ + √

μ2 − 2θ ||σ ||2]) be the
solution on z ∈ (−∞, 1) of θu + μu′ + 1

2 ||σ ||2u′′ = 0. We note that u is a natural
choice, as it is the moment generating function of the hitting time of the boundary
z = 1 when starting on (−∞, 1) for the Brownian motion with diffusion coefficient
||σ ||2 and drift μ. By checking that the expression exp(θ t)u(θ, z(t)) is a local super-
martingale and comparing its expected values at both t = 0 and t ↑ γ1, we have shown
that if z ∈ [0, 1] is the starting point z = φ(xi ) of the process corresponding to x(t)
starting at x with i-th component equal to xi , then

Ex[exp(θγ1)] ≤ u(θ, z). (3.2)
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By taking the supremum over z ∈ [0, 1] we obtain the desired bound. ��
We remind the reader the definition of the interior chain (Xn) from the paragraph

right before Lemma 3.

Proposition 4 Under the same conditions as in Theorem 1, the interior chain (Xn)n≥0
has a unique invariant measure μX .

Proof We have seen at the end of the proof of Theorem 1 how (2.21) and (2.16) imply
that Dδ = (Gδ)

N is reached with probability one. We shall prove that the interior set D̄δ
is a Doeblin set. In other words, there exists a probability measure γ (dx) on D̄δ and a
constant cX ∈ (0, 1) such that P(X1 ∈ B|X0 = x) = Px(X1 ∈ B) ≥ cXγ (B) for any
B a Borel set on D̄δ and any x ∈ D̄δ . Pick a time S > 0, B = �N

i=1 Bi , Bi Borel sets
in G. Let A = {τG

1 ≤ S, τG
2 > S, . . . , τG

2 > S} and C the event that particle #1 jumps
onto particle #2. Define γ (dy1, dy2, . . . , dyN ) = c(γ, δ)δ(y1 − y1)dy1dy2 . . . dyN

where c(γ, δ) is the normalizing constant to make γ a probability measure on D̄δ . As
in (1.1), we write PG(s, x, dy), pG(s, x, y) for the transition probabilities, respec-
tively densities of the diffusion on G killed at the boundary and note that pG(S, x, y)
is bounded away from zero for x, y ∈ Ḡδ . Then, for a suitably chosen cX independent
of x,

Px(X1 ∈ B) ≥ Px(x(τ D) ∈ B,A ∩ C)
≥ p0 inf

x1∈Ḡδ

{1 − PG(S, x1,G)}
∫

B1×B2

δ(y1 − y2)dy1dy2

×�N
i=3 PG(S, xi , yi ∈ Bi ) ≥ cXγ (B). (3.3)

��
We denote by K (x, x ′) the Green function of L (2.2) on G with zero boundary

conditions.

Theorem 2 Assume G satisfies the conditions of Theorem 1. Then (x(t)) is geomet-
rically ergodic. The invariant probability measure has a density with respect to the
Lebesgue measure equal to Z−1

∫
G K (x, x ′)μX (dx ′), where Z is a normalizing con-

stant.

Remark We refer the reader to Theorem 3 in [16] for more details on the invariant
measure. In the context of the Fleming–Viot particle process, obtaining (3.5) needs
the intermediate step from Proposition 3.

Proof The set Dδ is a small set for the process due to the fact that (x(t)) has a density
bounded below by the density function of the process killed at the boundary; in its
turn, this density function has a uniform lower bound on Dδ for any t > 0. Exponen-
tial ergodicity is guaranteed [9] by the sufficient condition (3.5) that there exists an
exponential moment of the time to reach Dδ , uniformly over all x ∈ D = G N .

Most of the proof is contained in Theorem 3 in [16]. We prove the part that is new
to the context of the Fleming–Viot redistribution function. Recall that D = G N , D′ =
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(G\G2N δ)
N and α(D\D′) is the first exit time from D′, i.e. the hitting time of the

set of configurations with at least one particle at distance larger than 2N δ from the
boundary. Proposition 3 shows that there exists θ > 0 such that

sup
x∈D

Ex[eθα(D\D′)] < ∞ (3.4)

due to the uniform bound and a Markov property inductive argument similar to the
one in Lemma 3. We want a similar uniform bound on α(Dδ). This is guaranteed
by the Step 2 of the proof of Theorem 1, where it is shown that once in D\D′, the
probability to reach Dδ in N − 1 consecutive jumps in time at most T (for a fixed
but arbitrary T ) is bounded away from zero uniformly on the configuration in D\D′.
Another iteration of the argument from Lemma 3 in continuous time setting (there is
virtually no modification needed) gives

sup
x∈D

Ex[eθα(Dδ)] < ∞ (3.5)

concluding the proof of exponential ergodicity. To verify the formula for the density
of the invariant measure, we use Theorem 3 in [16] and the fact that there exists an
invariant measure μX of the interior chain, a fact proven in Proposition 4. ��

4 Examples of sets satisfying the regularity conditions

The set G is assumed to have regular boundary, guaranteed, for instance, by the exte-
rior cone condition. We remind the reader that an open set G ′ is said a vicinity of the
boundary if there exists δ′ > 0 such that G\G ′ ⊆ Ḡδ′ and K (x, x ′), K 0(x, x ′) will
denote the Green functions of L , respectively 1

2� on G with zero boundary conditions.
Let u j , j = 1, 2 be solutions to the Poisson equation Lu j = f j with zero boundary

conditions at ∂G, where f j , j = 1, 2 are smooth with f1(x) = 0 and f2(x) = −1 on
some vicinity of the boundary G ′. It is easy to see that as soon as supx∈G ′ u2(x)

u1(x)
< ∞,

condition (C1) is satisfied with ψ(x) = u1(x)− εu2(x) for sufficiently small ε > 0.
For a specific choice of u1(x) = Px (x(τG\Ḡ ′

) ∈ ∂G ′) and u2(x) = Ex [τG\Ḡ ′ ] we
obtain a probabilistic interpretation of the condition.

Considering the Martin kernel of the set G with reference point x ′ ∈ G\G ′, i.e.
M(x0, y) = limx→x0 K 0(x, y)/K 0(x, x ′), where x0 ∈ ∂G, we can state the following
result. Here the limit is taken in the Martin topology, as x ∈ G approaches x0 in
the Martin boundary of the domain G. For a Lipschitz domain G, it is known that the
Martin topology coincides with the regular Euclidean topology of the domain and the
Martin boundary coincides with the actual Euclidean boundary, ∂G (see [4], Sect. 8.8,
page 269 and Theorem 8.8.4), but the same is true for more general domains, like
uniform domains - see Remark 1 after the theorem. In the following, a k-Lipschitz
domain is a Lipschitz domain with Lipschitz constant k, in other words, a domain
G whose boundary ∂G can be given locally by a Lipschitz function whose Lipschitz
constant is less than or equal to k. We say that G satisfies the interior cone condition
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with aperture A, A ∈ (0, π2 ), if for each point x ∈ G there is a truncated cone with
vertex at x, aperture A and constant radius included in G.

Theorem 3 Assume L = 1
2� and G ⊆ R

d is a bounded Lipschitz domain. (i) (C1) is
satisfied whenever

∫
G M(x0, y)dy < ∞ for all x0 ∈ ∂G. The Martin kernel is inte-

grable (ii) if the Lipschitz constant k satisfies k < Kd for some dimension-dependent
constant Kd , or (iii) G satisfies the interior cone condition with aperture A such that
cos A > 1/

√
d.

Remark 1 The theorem is actually true for more general G than Lipschitz. If G is a
bounded uniform domain, its Martin boundary coincides with ∂G and all boundary
points are minimal (Theorem 3 and Corollary 3 in [2]). The integrability is verified
for bounded John domains with John constant cJ ≥ 1 − 2−d−1 (Theorem 1 in [3]).
The non-smooth domains are related to each other: Lipschitz � Uniform � John and
Interior cone ⊆ John.

Remark 2 The constant Kd is obtained in [21] and then [1] shows that Kd = (d −
1)−1/2. Since k = 0 when G is a C1 domain, property (C1) is automatically satisfied
in any dimension in this case.

Proof Put u1(x) = K 0(x, x ′), u2(x) = ∫
G K 0(x, y)g(y)dy where x ′ ∈ G\Ḡ ′ and

0 ≤ g(x) ≤ 1 on G, g(x) = 1 on G ′. We want to show that supx∈G ′ u2(x)
u1(x)

< ∞.

If that were not true, let (xn) be a sequence of points such that limn→∞ u2(xn)
u1(xn)

=+∞;
since G is bounded, the sequence has a convergent subsequence with limit x0. By con-
tinuity, x0 ∈ ∂G. Without loss of generality, we consider xn → x0.

(i) We use the notations in [4]. First note that if G is Lipschitz, then G is not mini-
mally thin at any point x0 ∈ ∂G and also all the boundary points of G are minimal, in
other words, the set of all minimal boundary points�1 is equal to ∂G. Now Using The-
orem 9.2.7 in [4] with� = G, E = G, μ′(dz) = g(z)dz and y = x0 ∈ ∂G = �1, we
see that as soon as

∫
G M(x0, z)dz < ∞, we have limn→∞ u2(xn)

u1(xn)
< ∞ with xn → x0

which concludes (i) by contradiction.
(ii) and (iii). Part (i) shows that when G is a bounded Lipschitz domain, it is suf-

ficient to show that the Martin kernel is integrable. The Martin kernel M(x0, y) is
a kernel function (again in [4]), thus M(x0, ·) is positive harmonic for every fixed
x0 ∈ ∂G. Corollary 9 in [21] shows that a sufficient condition for a positive super-
harmonic function to be integrable is that the domain G be k-Lipschitz with Lipschitz
constant k < Kd for some dimension-dependent Kd , exactly computable as the solu-
tion to the equation pd(Kd) = 1. For a detailed expression of pd , we refer to [21], the
discussion in [1], page 112 and Remark 1 and 2 from above. The integrability in the
interior cone case is proven in Theorem 2 from [3]. ��

4.1 Conditions based on the distance to the boundary

Proposition 5 gives an easier to verify criterion for (C1). This and especially Propo-
sition 6 indicate that the function we are looking is, in essence, the distance from the
boundary. In the following proposition, G may be unbounded.
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Proposition 5 If there exists a vicinity G ′ of the boundary of G and φ(x) that satisfies
(i), (ii), (iii) from (C1) plus condition (v), i.e. there exists a positive constant c− such
that ||∇φ(x)|| ≥ c− and Lφ(x) ≥ −c− for all x ∈ G ′, then G satisfies (C1).

Remark Any exterior C2 domain (i.e. whose complement is bounded) immediately
satisfies the conditions in the proposition with φ(x) = d(x, ∂G). One does not need
a compact boundary though, only a uniform δ > 0 such that G\G ′ ⊂ Ḡδ where the
properties are satisfied.

Proof We define ψ(x) = φ2(x), where φ is the function in the hypothesis of the
proposition. Then (2.6) implies that Lψ(x) ≥ σ 2

0 c2− − 2c−φ(x). Since c(φ, δ′) =
supx∈G\Gδ′ φ(x) converges to zero as δ′ → 0, the lower bound of Lψ(x) can be
made strictly positive for sufficiently small δ′. Condition (C1) is satisfied with G ′ �→
G\Gδ′ . ��

The connections between (C1) and the distance to the boundary is explored in the
following proposition.

Proposition 6 Suppose G is bounded and regular and there exists ε > 0 such that
the solution uε(x) of the viscuous equation −ε�uε + |∇uε |2 = 1, uε |∂G = 0 verifies
condition (v) from Proposition 5, then G satisfies (C1). When G has C2 boundary
then we may take ε = 0; the eikonal equation ||∇u||2 = 1, u|∂G = 0 has a classical
solution u ∈ C2(G ′) equal to d(x, ∂G) on G ′, which satisfies the conditions from
Proposition 5.

Remark 1 The second part of (v) is trivial in this case. To ensure the first part, it is
sufficient to either have a lower bound of the gradient directly, or prove a lower bound
on �uε independently of ε.

Remark 2 In the C2 case, the passage from the half-Laplacian to L is easy assuming
(2.3). Under the same conditions on G, we replace ||∇φ(x)|| with ||σ ∗(x)∇φ(x)||
from (2.9) and solve the generalized eikonal equation in the Riemannian metric [10]
given by (aα,β(x)) from (2.2). The theorem extends immediately to an exterior domain
and, more generally, to any domain, possibly unbounded, where the eikonal equation
has a solution on a vicinity of the boundary.

Proof The solution uε(x) belongs to C(Ḡ)∩ C2(G) and is positive by the maximum
principle. In addition, we do not need a bound on Luε simply by writing �uε =
ε−1(||∇uε(x)||2 −1). When G has C2 boundary, the direct proof based on the method
of characteristics can be found in [19] in Chapter 1. Since �uε has a lower bound
independent of ε (Chapter 2 in [19]), condition (v) is immediate. ��

We conclude with some less general sufficient conditions for (C1), yet easier to
verify in many special cases.

Proposition 7 (i) A sufficient condition for (C1) is that there exists G ′ a vicinity
of the boundary and x ′ ∈ G\G ′ such that φ(x) = K (x, x ′) satisfies (v) from
Proposition 5.
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(ii) The same statement as (i) holds for φ(x) equal to the first eigenfunction of L on
G with zero boundary conditions.

(iii) Any domain with the interior sphere condition and φ(x) = K (x, x ′) ∈ C1(Ḡ)
will satisfy (i).

(iv) properties (i), (ii) and (iii) are satisfied if ∂G ∈ C2.

Proof (i) Pick x ′ ∈ G and δ < d(x ′, ∂G). The Green function is continuous except
at x ′, positive in G\{x ′}. We set G ′ = {x ∈ G|K (x, x ′) < δ}. The function φ(x)
satisfies L K (x, x ′) = 0 in G ′, is positive in G ′, vanishes on ∂G and thus satisfies
(C1). To adjust for (C3), we only have to normalize φ(x) → δ−1φ(x).

(ii) We notice that Lφ(x) = −λ0φ(x) and thus Lφ(x) is uniformly bounded up to
the boundary.

(iii) The Hopf maximum principle [13] shows that 〈∇φ(x), n〉 < 0 on ∂G, where
n is the outward normal to ∂G. From the boundedness of the domain, G and ∂G
are compact, and from the continuity up to the boundary we have that ||∇φ(x)|| is
bounded away from zero in a neighborhood of the boundary (otherwise it would reach
zero on ∂G). For sufficiently small δ we obtain all conditions required.

(iv) ∂G ∈ C2 implies the interior sphere condition and the smoothness up to the
boundary of the solutions of elliptic equations - for example, in [10]. ��

5 The immortal particle

This section investigates the particle ancestry. The realization of the process is a tree
with continuous branches, representing diffusive episodes performed by the particles.
Reaching the boundary ends a certain branch, that will never be revived. Branching
at a given location allows the continuation of the tree, provided non-extinction (The-
orem 4), ad infinitum. The goal is to prove that, almost surely, there exists a unique
infinite continuous path on the tree, in the sense of Theorem 4 (iv). This is, informally,
the immortal particle. It is not a proper tagged particle because it changes its label
infinitely many times.

The reader is reminded that xi (t) represents the particle of index i ∈ {1, . . . , N } and
that the indices are fixed forever; also, (τl)l≥0, τ0 = 0 denote the increasing sequence
of times when particles hit the boundary. At time t = 0, each particle is given a label
(or color). The label is preserved as long as the particle is alive; when it is killed, the
particle that replaces it will acquire the label of the particle it jumps to. Or, in a differ-
ent but equivalent interpretation, the particle is killed and the newly born particle will
have the same label as its parent. We want to show that, with probability one, exactly
one label survives. Ultimately, all particles at time t can be traced to only one original
ancestor, all other lineages (to be defined precisely) dying in finite time.

5.1 The multi-color process

Formally we shall consider a Markov process with state space (G ×C)N , where C is a
finite set of labels (colors). One example is C = {1, . . . , N } and another important one
is whenC = {0, 1}. It will be shown that the two-color model is sufficient to trace ances-
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try. An element in the state space is a vector with N components (xi , C(xi )), 1 ≤ i ≤ N
designating the position xi of particle i and its color. We used C(xi ) ∈ C for the color
of particle to avoid more complicated notation.

The particles x(t) = (x1(t), . . . , xN (t)) ∈ G N follow exactly the branching mech-
anism from Sect. 2 with redistribution measure (2.1). At the same time, the labels
follow the rule that they remain constant until the particle hits the boundary, at which
time it instantaneously and always adopts the label of the particle it jumped to; equiv-
alently, the particle reaching the boundary is killed and a new particle is born from a
surviving one, with the same label as the parent. Naturally the latest interpretation is
more relevant to our investigation. It is easy to see that the joint process (particle-label)
is Markovian.

Proposition 8 Assuming the unlabeled process is non-explosive, with probability one,
all but one label have finite lifetime.

Remark (1) Once only one color has been achieved, it is evident that the process
follows the unlabeled branching mechanism and continues its evolution forever
(as long as the process is not explosive).

(2) Considering a discrete space and time version of the process, the reader may see
why the proposition is true, since all multi-colored states are transient. It is suf-
ficient to observe that one color can be forced to hit the boundary while all other
colors are not reaching the boundary and upon killing only the other colors are
allowed to branch (a small but positive probability event).

Proof The proof follows a different idea than described in Remark 2), better suited
to the context of diffusions. First, we notice that it is enough to prove the proposition
for two colors (zero and one) in the sense that the time for one color to disappear will
be shown to be finite almost surely. At time zero we re-label particles of a type with
one and all the others with zero. Inductively, it will follow that the number of colors
is reduced to exactly one in finite time. Denote τL the first time when the number of
labels has been reduced to one, with the usual convention that τL = ∞ if the event
does not happen in finite time.

Let δ > 0 be such that Ḡ2δ ⊂ G (the reason why we use 2δ becomes apparent
immediately). On the one hand, we know that from any initial position x, the particle
system will reach the complement F2δ of (G\G2δ)

N a.s., that is, at least one particle
will be within Ḡ2δ . On the other hand, for T > 0 fixed and x ∈ F2δ , we shall obtain
a lower bound p0 > 0 of Px(τL ≤ T ), uniformly over x ∈ F2δ . Starting with an
arbitrary x, the system will have an infinite number of attempts to reach a one-label
configuration. Since the failure probability is 1 − p0 < 1 in each episode, it follows
that τL < ∞ with probability one.

Part 1. Let x ∈ F2δ . Without loss of generality we assume that x1 ∈ Ḡ2δ . Let K =
{τ Ḡδ,1 > T }, where τ Ḡδ,1 is the first time when the particle #1 hits G\Gδ, τ

G, j
1 , τ

G, j
2

the first, respectively second boundary hit of particle # j, 1 ≤ j ≤ N . Denote
A j , B j ,C j the events pertaining to particles # j, 2 ≤ j ≤ N

A j = {τG, j
1 ≤ T }, B j = {x j (τ

G, j
1 ) = x1(τ

G, j
1 )}, C j = {τG, j

2 > T } (5.1)
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with A = ∩N
j=2 A j , B = ∩N

j=2 B j and C = ∩N
j=2C j . In other words, K means that

x1 will not exit Gδ before time T ; A j that x j hits the boundary in [0, T ]; B j that x j

jumps to the location of x1 at its first boundary hit, and C j that x j will not jump again
before time T . With the observation that {τL ≤ T } ⊇ A ∩ B ∩C ∩ K , it is sufficient to
prove Px(A∩ B ∩C ∩ K ) ≥ p0 > 0 with p0 independent of x ∈ F2δ . Two particles are
independent until they meet, i.e. there is a jump/birth involving the two. Consequently,
conditional on K , the events (A j ∩ B j ∩ C j )2≤ j≤N are mutually independent with

Px(A ∩ B ∩ C ∩ K ) = Px(A ∩ B ∩ C | K )Px(K )

=
N∏

j=2

Px(A j ∩ B j ∩ C j | K )Px1(τ
Ḡδ,1 > T ) (5.2)

≥
N∏

j=2

Px(A j ∩ B j ∩ C j | K )p−(T,G2δ,Gδ), (5.3)

where p± are defined in (2.5). We write

Px(A j ∩ B j ∩ C j | K ) = Px(C j | A j ∩ B j ∩ K )Px(A j ∩ B j | K ) (5.4)

and see that the first factor is bounded below (by introducing τG, j
2 > T +τG, j

1 instead

of τG, j
2 > T ) by

Px(C j | A j ∩ B j ∩ K ) ≥
∫
G

Px (τ
G > T )Px(x j (τ

G, j
1 ) ∈ dx | A j ∩ B j ∩ K )

≥ p−(T,Gδ,G) (5.5)

(note that the position of the jump is on the trajectory of x1 that stays in Gδ). At the same
time A j , B j and K are independent with Px(A j |K ) = Px(A j ) ≥ 1 − p+(T,G2δ,G)
and Px(B j |K ) = (N −1)−1. Putting all together, the probability from (5.2) is bounded
below by

p0 =
[

p−(T,Gδ,G)(1 − p+(T,G2δ,G))(N − 1)−1
]N−1

p−(T,G2δ,Gδ) > 0.

(5.6)

Part 2. We shall apply Lemma 3 with F = F2δ, τ = τL to obtain the conclusion of
the theorem. ��

Let l : [0,∞) → {1, 2, . . . , N } and η : [0,∞) → Ḡ be random processes
adapted to (Ft )t≥0 such that (i) l(t) is piecewise constant and η(t) = xl(t)(t) on
intervals [τk−1, τk), k ≥ 1 and (ii) η continuous with η(t) ≡ η(τk−) for all t ≥ τk

if η(τk−) ∈ ∂G. A pair (l(·), η(·)) is said a lineage. The stopping time τk when (ii)
happens is said the lifetime of the lineage and is denoted by τ(η).

For t1 < t2, i1, i2 two of the N labels, we say that xi1(t1) is an ancestor of xi2(t2)
(or there exists a lineage from xi1(t1) to xi2(t2)) and we write (t1, i1) � (t2, i2) if there
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exists a lineage (l(·), η(·)) with τ(η) ≥ t2 such that l(t1) = i1, η(t1) = xi1(t1) and
l(t2) = i2, η(t2) = xi2(t2). On the set of pairs (t, i), the lineage introduces a relation
of partial order.

Theorem 4 Assume G is a regular bounded domain and the process is non-explosive.
Let t1 < t2 and i1, i2 two of the N labels. If (t1, i1) � (t2, i2), then

(i) the lineage they belong to is unique up to time t = t2;
(ii) the labels/colors are identical at both endpoints, C(xi1(t1)) = C(xi2(t2)) and as

a consequence, a lineage will never change label;
(iii) For any t ≥ 0 and any index i , there exists an index i0 such that (0, i0) � (t, i);
(iv) There exists a unique lineage with infinite lifetime.

Proof (i) Assume (l ′(·), η′(·)), (l ′′(·), η′′(·)) are two lineages going from (t1, i1) to
(t2, i2). Lineages may intersect in two ways: either on open intervals (τk−1, τk)

as diffusion paths (with zero probability except in dimension one), or at branch-
ing times τk . Only intersections of the second type are proper because the par-
ticles do not interact during the diffusive episodes. Two lineages will properly
intersect at time t only if they coincide on [0, t]; otherwise, they will have to
intersect in the open set G, which is impossible by construction. Evidently,
lineages may diverge after t .

(ii) The colors may change only at times τk . At jump time, the particle performing
the jump from the boundary adopts the label of the one in G, whose label coin-
cides with the label of the lineage. Again by construction, at a branching point
the label is preserved for all offspring, so the lineage does not change label,
having C(xl(τk−)) = C(xl(τk )).

(iii) Theorem 1 shows that 0 = τ0 < τ1 < τ2 < . . . and limk→∞ τk = +∞ a.s. Let
k(t) be the integer k ≥ 1 such that τk−1 ≤ t < τk ; then one can verify (iii) by
induction over k.

(iv) At time t = 0 we label C(xi (0)) = i for all indexes i . We know from Propo-
sition 8 that τL < ∞ a.s., which implies due to (ii) that at time t = τL only
one lineage, starting at (0, i0) is still alive (did not reach the boundary). Due to
(iii), we deduce that at time t ≥ τL , all particles have lineages all the way to
(0, i0). Let τ k

L , k ≥ 1 be defined inductively by setting τL = τ 1
L and re-labeling

the particles at time τL by C(xi (τL)) = i with τ 2
L > τ 1

L being exactly the time
after τ 1

L when all labels become identical once again. Due to the strong Mar-
kov property and again Proposition 8, τ 2

L < ∞ a.s. and we re-apply (ii)-(iii)
to see that only one index i1 survives, making (τ 1

L , i1) the only ancestor of all
(τ 2

L , i), 1 ≤ i ≤ N . Since τL ≥ τ1 we immediately have τ k
L bounded below by

a subsequence of (τ jk )k≥1 of the boundary hits. Then limk→∞ τ k
L = +∞ with

probability one, implying that the construction can be done for any t > 0. The
uniqueness is a consequence of (i). ��

6 The two particle case

When N = 2, the jump re-distribution measures (2.1) are delta functions, i.e. deter-
ministic; the two particles start each diffusive episode from the same point x(τl−) (the
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meeting point). This allows some explicit calculations, which are of interest, especially
for L = 1

2� in d = 1, where we obtain a law of large numbers on the logarithmic
scale for the Markov chain of configurations at the meeting point.

We start by deriving the transition function of the surviving particle. Denote X the
position of the surviving particle at the time of the first boundary visit. If the particles
start at x1 and x2 respectively, then

P(x1,x2)(X ∈ dy) = Px1(x1(τ2) ∈ dy, τ1 > τ2)+ Px2(x2(τ1) ∈ dy, τ2 > τ1) (6.1)

=
∞∫

0

Px1(x1(t)∈dy, τ1> t)Px2(τ2 ∈ dt)+
∞∫

0

Px2(x2(t) ∈ dy, τ2> t)Px1(τ1 ∈ dt).

(6.2)

When x1 = x2 = x we obtain the transition probability S(x, dy) of the interior
Markov chain tracing the locations Xk = x1(τk), k ≥ 1 right after a jump. It is

S(x, dy) = P(X1 ∈ dy | X0 = x)= Px (X ∈ dy) = 2

∞∫
0

PG(t, x, dy)Px (τ
G ∈ dt),

(6.3)

where

Px (τ
G > t) =

∫
G

pG(t, x, y)dy. (6.4)

Combining (6.3) and (6.4) and integrating by parts we can write the alternative formula
(not used in this paper)

Px (X ∈ dy) = 2δx (dy)+ 2

∞∫
0

PG(τG > t)∂t pG(t, x, dy)dt. (6.5)

Due to independence,

Px (τ1 ∧ τ2 > t) = (Px (τ
G > t))2, Ex [τ1 ∧ τ2] =

∞∫
0

(Px (τ
G > t))2dt. (6.6)

6.1 Two particles on the half-line

Assume D = (0,∞), N = 2 and each particle follows xi (t) = xi −μt+wi (t), i =1, 2,
wherewi (t) are independent Brownian motions. The density function of the Brownian
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motion on the positive half-line with drift −μ killed at the origin is

pG(t, x, y) = 1√
2π t

(
e− (y−x)2

2t − e− (y+x)2

2t

)
e−μ(y−x)− 1

2μ
2
, (6.7)

as can be seen by applying Girsanov’s formula or directly by verification of the
Kolmogorov equations. Starting with (6.4) and noticing that the adjoint of L is
L∗

y = 1
2

d2

dy2 + μ d
dy with Dirichlet b.c. at zero, the density of τG , in this case, is

d

dt
Px (τ

G ∈ dt) = −
∫
G

d

dt
pG(t, x, y)dy = −

∫
G

L∗
y pG(t, x, y)dy (6.8)

= 1

2
∂y pG(t, x, 0). (6.9)

The transition probability (6.3) reads

Px (X ∈ dy) =
∞∫

0

PG(t, x, dy)∂y pG(t, x, 0)dt. (6.10)

Proposition 9 The following estimates are satisfied

2Ex [τ1 ∧ τ2] = Ex [X2] ∼ o(x), lim
x→0

Ex [X ]
x

= 2. (6.11)

Proof Observing that −μ < 0, then τG < ∞ and even more so τ1 ∧ τ2 ≤ τG < ∞
with probability one, the optional stopping theorem (at t = τ1 ∧τ2) applied to the mar-
tingales M1(t) = x1(t)+ x2(t)+ 2μt and M2(t) = x2

1 (t)+ x2
2 (t)− 2x1(t)x2(t)− 2t

shows that

Ex [X ] + 2μEx [τ1 ∧ τ2] = 2x, Ex [X2] − 2Ex [τ1 ∧ τ2] = 0. (6.12)

We want to prove the two limits (the second is a consequence of the first)

lim
x→0

2Ex [τ1 ∧ τ2]
x

= lim
x→0

Ex [X2]
x

= 0, lim
x→0

Ex [X ]
x

= 2. (6.13)

Since we calculate the limit as x → 0, we may assume 0 < x ≤ 1. Using (6.6), we
shall prove directly the first limit in (6.13)

lim
x→0

∫∞
0 (Px (τ

G > t))2dt

x
= lim

x→0

⎛
⎝2

∞∫
0

Px (τ
G > t)

d

dx
Px (τ

G > t)dt

⎞
⎠ = 0.

(6.14)
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To have (6.14), we use L’Hospital’s rule; it is necessary to justify the differentiation
under the integral and the limits as x → 0.

From (6.7) we derive

Px (τ
G > t) = 	

(
x − μt√

t

)
− e2μx

(
1 −	

(
x + μt√

t

))
, (6.15)

where	′(z) = 1√
2π

e− z2
2 . This is evidently in the interval [0, 1] and thus bounded and

has limit zero at x = 0. It remains to show that the absolute value of the derivative
has an upper bound, uniformly in x ∈ [0, 1] that is integrable in t ∈ (0,∞). The
derivative is

d

dx
Px (τ

G > t) = 1√
t

(
	′

(
x − μt√

t

)
+ e2μx	′

(
x + μt√

t

))

−2μe2μx
(

1 −	

(
x + μt√

t

))
. (6.16)

We break down (6.16) in the term containing 1√
t
	′( x−μt√

t
); the term containing

e2μx√
t
	′( x+μt√

t
), both bounded above by eμ√

t
	′(μ

√
t), which is integrable in t on (0,∞);

and the third part, with absolute value bounded above by 2μe2μ(1 −	(μ√
t)), which

is also integrable

∞∫
0

1 −	(μ
√

t)dt ≤
(

1 +
√

2

π

)
1

μ2 < ∞.

The last inequality comes from the estimate on the error function

1 −	(μ
√

t) =
∞∫

μ
√

t

1√
2π

e− z2
2 dz ≤

∞∫

μ
√

t

z
1√
2π

e− z2
2 dz = 1√

2π
e−μ2 t

2

when μ
√

t ≥ 1. ��

6.2 Brownian motion without drift

Proposition 10 When μ = 0, the distribution of V = X/x is independent of the
starting point x having density

fV (v) = 8v

π [(v − 1)2 + 1][(v + 1)2 + 1] . (6.17)

Since fV (v) ∼ O(v) at v = 0 and fV (v) ∼ O(v−3) at v = +∞, the random variable
V has moments E[V a] up to a < 2, with μV = 2, σ 2

V = ∞ and E[ln V ] > 0.
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Proof The cumulative distribution function of the hitting time τG , based on (6.4)
applied to (6.7) is 2

(
1 −	( x√

t
)
)

and the density is

− d

dt
Px (τ

G > t) = x√
2π t3

e− x2
2t (6.18)

so (6.3) reads

Px (X ∈ dy)

dy
=

∞∫
0

x

π t2

(
e− (y−x)2+x2

2t − e− (y+x)2+x2

2t

)
dt (6.19)

= x

π

(
2

(y − x)2 + x2 − 2

(y + x)2 + x2

)
= 1

x
fV

(y

x

)
. (6.20)

In the last equality we identified the alternative formula

fV (v) = 2

π

(
1

(v − 1)2 + 1
− 1

(v + 1)2 + 1

)
(6.21)

with

FV (v) = P(V ≤ v) = 1 − 2

π
(arctan(v + 1)− arctan(v − 1)) . (6.22)

One can calculate explicitly

E[V ]=
[

1

π
ln(

1 + (v − 1)2

1 + (v + 1)2
)+ 2

π
(arctan(v − 1)+ arctan(v + 1))

] ∣∣∣∞
0

=2. (6.23)

The logarithm ln V is integrable and we can determine numerically that E[ln V ] ≈
0.34. ��

The interior chain (Xn) satisfies ln Xn = ln x0 + ∑n
k=1 ln Vk where Vk are i.i.d.

with distribution (6.17). By the law of large numbers, we have ln Xn
n → E[ln V ] > 0

as n → ∞ with probability one so Px0(limn→∞ Xn = ∞) = 1.
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