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Abstract Let S be a simple random walk starting at the origin in Z
4. We consider

G = S[0,∞) to be a random subgraph of the integer lattice and assume that a resis-
tance of unit 1 is put on each edge of the graph G. Let RG(0, Sn) be the effective
resistance between the origin and Sn . We derive the exact value of the resistance expo-

nent; more precisely, we prove that n−1 E(RG(0, Sn)) ≈ (log n)− 1
2 . As an application,

we obtain sharp heat kernel estimates for random walk on G at the quenched level.
These results give the answer to the problem raised by Burdzy and Lawler (J Phys A
Math Gen 23(1):L23–L28, 1990) in four dimensions.

Mathematics Subject Classification (2000) 82B41

1 Introduction and main results

1.1 Introduction

Let S be the simple random walk starting at the origin on Z
d . We consider S[0,∞) to

be a random subgraph of the integer lattice; namely, we let G = (V (G), B(G)) be the
graph with

V (G) = {Sk : k ≥ 0} B(G) = {{Sk, Sk+1} : k ≥ 0}.

The fractal nature of the graph G has been studied in a number of papers in both the
physics and mathematical literature (see [1,8] and reference therein). One particular
quantity of interest has been the effective resistance for G assuming a unit resistor on
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192 D. Shiraishi

each edge in B(G). Let RG(0, Sn) be the effective resistance between 0 and Sn . It was
shown in [1] that there exists a constant c = cd > 0 depending only on dimension
such that

E(RG(0, Sn)) ∼ cn for d ≥ 5

cn(log n)−
1
2 ≤ E(RG(0, Sn)) ≤ 1

c
n(log n)−

1
3 for d = 4 (1.1)

lim sup
n→∞

log E(RG(0, Sn))

log n
≤ 5

6
for d = 3,

where we use E to denote expectation, and we write an ∼ bn if limn→∞ an
bn

= 1.
Thus, d = 4 is a critical dimension for the effective resistance on G. For the remainder
of this paper, we focus our attention on the four dimensional case.

For d = 4, it was conjectured in [1] that there exists a ρ > 0 such that

ψ(n) := E(RG(0, Sn))

n
≈ (log n)−ρ,

and they called ρ the resistance exponent where we write an ≈ bn if log an ∼ log bn .
By (1.1), we know that 1

3 ≤ ρ ≤ 1
2 if it exists, where 1

3 is the loop-erasing exponent
and 1

2 is the exponent for cut-times (see [1]). One of the main result in this paper is
Theorem 1.2.3, which shows ρ = 1

2 . This gives the answer to the problem raised in [1]
in four dimensions. We give a heuristic reason why ρ = 1

2 here. Let T1 < T2 < · · · be
the sequence of cut-times. Since the expected number of cut-times up to n is of order

n(log n)− 1
2 (see [6]), we have to estimate the following quantity;

an∑

j=1
RG
(
STj , STj+1

)
,

where an = �n(log n)− 1
2 	. It is clear that RG(STj , STj+1) ≥ 1 for each j . Thus, in order

to prove ρ = 1
2 , all we need is to show RG(STj , STj+1) is not large even if Tj+1 − Tj

is large. Indeed there is j such that Tj+1 − Tj is of order (log n)
1
2 . For the purpose,

we study the shape of the random walk trace between such successive cut-times Tj

and Tj+1 that are far apart and show that the random walk trace near STj and STj+1

intersects typically, namely the “long range intersection” occurs between them (see
Fig. 1). By this intersection, we can find a path on the trace connecting STj and STj+1

whose length is not long and so we conclude RG(STj , STj+1) is not large.
The effective resistance for G is strongly related to the heat kernel of X , where X

is the simple random walk on G (see [4], for example). By using Theorem 1.2.3, we
are able to obtain a sharp estimate for the heat kernel of X . It was shown in [9] that
for d = 4, there exists a c > 0 such that for all δ ∈ (0, 1),

n− 1
2 (log n)−

3
2 −δ ≤ pG(ω)

2n (0, 0) ≤ cn− 1
2 (log n)−

1
6 , for large n almost surely,

(1.2)

123



Exact value of the resistance exponent 193

Fig. 1 A shape of S[Tj , Tj+1]
when Tj+1 − Tj is large

where pG(ω)
n (x, y) denotes the quenched heat kernel of X (see Sect. 1.2) for a defini-

tion of X and its heat kernel). As we can see, the power of the logarithm for the upper
bound on pG(ω)

2n (0, 0) is different from one for the lower bound in (1.2), and the exact
power of this logarithmic correction was not known. In this paper, we show that this

logarithmic correction is equal to ψ(n)
1
2 (Theorem 1.2.2). Combining Theorem 1.2.2

and Theorem 1.2.3, we conclude that the exact power of the logarithm of the heat
kernel of X is − 1

4 at the quenched level, improving (1.2).
The organization of the paper is as follows. In Sect. 2, we study asymptotic behav-

ior of RG(0, Sn) in order to obtain Theorem 1.2.1. It is worth emphasizing that the

resistance has oscillations of order (log log n)− 1
2 almost surely as in (1.7). This is due

to the fact that G has the above mentioned long range intersections infinitely often. In
Sect. 3, we prove Theorem 1.2.2. To do this, we study the connectivity of G around the
long range intersection point. We show that once the long range intersection occurs,
then the trace near the intersection point is relatively sparse. Thus, although the trace
contains large scale fluctuations, they give no effect on the asymptotic behavior of X .
Finally, we show ρ = 1

2 (Theorem 1.2.3) in Sect. 4.
Throughout the paper, we write an = O(bn) if an ≤ cbn for some constant c > 0.

If we wish to imply that the constant may depend on another quantity, say ε, we write
Oε(bn). We use c, c̃, c1, . . . to denote arbitrary positive constants which may change
from line to line. If a constant is to depend on some other quantity, this will be made
explicit. For example, if c depends on ε, we write cε . We write an � bn if there exist
constants c1, c2 such that

c1bn ≤ an ≤ c2bn .
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194 D. Shiraishi

1.2 Framework and main results

Let S = (Sn)n≥0 be the simple random walk on Z
4 starting from 0, built on underlying

probability space (�,F , P). Define the range of the random walk S(ω) to be the graph
G(ω) = (V (G(ω)), B(G(ω))) with vertex set

V (G(ω)) := {Sn(ω) : n ≥ 0},

and edge set

B(G(ω)) := {{Sn(ω), Sn+1(ω)} : n ≥ 0},

where ω is an element of �. (For simplicity, we often omit ω.)
We define a quadratic form E by

E( f, g) = 1

2

∑

x,y∈V (G),
{x,y}∈B(G)

( f (x)− f (y))(g(x)− g(y)).

If we regard G as an electrical network with a unit resistor on each edge in B(G), then
E( f, f ) is the energy dissipation when the vertices of V (G) are at a potential f . Set

H2 = { f ∈ R
V (G) : E( f, f ) < ∞}.

Let A, B be disjoint subsets of V (G). The effective resistance between A and B is
defined by

RG(A, B)−1 = inf{E( f, f ) : f ∈ H2, f |A = 1, f |B = 0}. (1.3)

Let RG(x, y) = RG({x}, {y}).
In this article, the main object of study will be the following function ψ ;

ψ(n) = E
(
RG(0, Sn)

)

n
. (1.4)

Let μG(x) be the number of bonds that contain x, i.e.,

μG(x) = �{{x, y} ∈ B(G)}.

We extend μG to a measure on G by setting μG(A) = ∑
x∈A

μG(x) for A ⊂ G.

We denote the simple random walk on G(ω) by

X =
(
(Xn)n≥0, PG(ω)

x ,x ∈ V (G(ω))
)
,
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Exact value of the resistance exponent 195

and its heat kernel (transition density) with respect to μG(ω) by pG(ω)
n (x, y), i.e.,

pG(ω)
n (x, y) = PG(ω)

x (Xn = y)
1

μG(ω)(y)
.

To define X we introduce a second measure space (�,F), and define X on the product
�×�. We write ω to denote elements of �.

The following theorems are our main results in this paper.

Theorem 1.2.1 ψ is slowly varying and

RG(0, Sn)

nψ(n)
→ 1 in probabili ty. (1.5)

Furthermore, there exists c > 0 such that for P-a.s. realization of G,

RG(0, Sn)(ω) ≤ cnψ(n) for large n, (1.6)

RG(0, Sn)(ω) ≤ cnψ(n)(log log n)−
1
2 for infinitely many n, (1.7)

RG(0, Sn)(ω) ≥ nψ(n)(log log n)−7 for large n. (1.8)

Theorem 1.2.2 There exist c1, c2 > 0 such that for P-a.s. realization of G,

c1n− 1
2 (ψ(n))

1
2 ≤ pG(ω)

2n (0, 0) ≤ c2n− 1
2 (ψ(n))

1
2 , (1.9)

for large n.

Theorem 1.2.3

ψ(n) ≈ (log n)−
1
2 . (1.10)

We will give the proofs of Theorems 1.2.1, 1.2.2 and 1.2.3 in Sects. 2, 3 and 4
respectively.

For the convenience of the reader, we list the notations we will use and in which
subsection they can be found.
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Notation Meaning Subsection
Gk,l Random walk trace between k and l 2.1

ψ(n)
E
(

RG0,n (0,Sn)
)

n 2.1

ψ(n)
E(RG(0,Sn))

n 1.2
an,r �n(log n)r	 2.1
bn,r �n(log log n)r	 2.1
b j,n bn,− j− jδ 2.3
Ỹk 1{RG(0, Sk) ≤ ε2nψ(n)} 3.1

Ỹ
bn,7∑

k=0
Ỹk 3.2

Ȳ
bn,7∑

k=n
Ỹk 3.2

dn �ε2n	 3.2

φ(n) (log log n)2

log n 3.2

ān � 1
3 n	 3.2

Z �{1 ≤ i ≤ C : S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅} 3.2
F̃i {S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅} 3.2
K̃l 1{lis a local cut-time between ān and tC − ān} 3.2

Ãi

{
ti∑

l=ti −3an,−1

K̃l ≥ 1,
ti +3an,−1∑

l=ti

K̃l ≥ 1

}

3.2

R1
n RG0,n (0, Sn) 4.2

R2
n RGn,2n (Sn, S2n) 4.2

2 Proof of Theorem 1.2.1

2.1 Approximation of the resistance

We first give some notations that are used in this paper. For 0 ≤ k ≤ l < ∞, let
Gk,l = (V (Gk,l), B(Gk,l)

)
be the graph with

V (Gk,l) = {S j : k ≤ j ≤ l} B(Gk,l) = {{S j , S j+1} : k ≤ j < l}.

(We use Gk,∞ when we consider S[k,∞) as a graph.) We write RGk,l (·, ·) when we
consider the effective resistance on the graph Gk,l , where a unit resistance is put on
each edge of the graph Gk,l . Let

ψ(n) = E
(
RG0,n (0, Sn)

)

n
. (2.1)

Throughout this paper, we use key tools called cut-times which we will explain below
in order to divide an electrical circuit into two disjoint ones.

We call a time k a global cut-time (for S) if S[0, k] ∩ S(k,∞) = ∅. Let 0 ≤ j ≤
k ≤ l < ∞. We call a time k a local cut-time between j and l if S[ j, k] ∩ S(k, l] = ∅.
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Exact value of the resistance exponent 197

(We allow the case in which j and l depend on k.) We call k a local cut-time between
j and ∞ if S[ j, k] ∩ S(k,∞) = ∅.

We write

an,r = �n(log n)r	, for n ∈ N, r ∈ R (2.2)

and

bn,r = �n(log log n)r	, for n ∈ N, r ∈ R. (2.3)

Lemma 2.1.1

ψ(n) ∼ ψ(n).

Proof Let In = I (n) be the indicator function of the event {n is a global cut-time}
and Bn be the event

Bn = {Ik = 0 for all k ∈ [n − an,−6, n]}.

If there exists a global cut-time T ∈ [n − an,−6, n], then by definition, we have

|RG0,n (0, Sn)− RG(0, Sn)| = |RG0,T (0, ST )+ RGT,n (ST , Sn)− RG0,T (0, ST )

−RGT,∞(ST , Sn)| = |RGT,n (ST , Sn)− RGT,∞(ST , Sn)|
≤ 2n(log n)−6.

Therefore,

|E (RG0,n (0, Sn)− RG(0, Sn)
) |

≤ |E (RG0,n (0, Sn)− RG(0, Sn); Bn
) | + |E (RG0,n (0, Sn)− RG(0, Sn); Bc

n

) |
≤ n P(Bn)+ 2n(log n)−6.

Since P(Bn) = O
(

log log n
log n

)
, (see, [6, Lemma 7.7.4]) we have

|ψ(n)− ψ(n)| = O

(
log log n

log n

)

.

By the fact that

ψ(n) ≥ c(log n)−
1
2 (2.4)

(see the proof of Lemma 2.2.2 in [9], for example), we obtain the lemma. ��
Cut-times fill the role of separating the random walk trace in the proof of

Lemma 2.1.1. By using this technique, we will show (1.5).
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198 D. Shiraishi

Proof of Theorem 1.2.1 (1.5) Let N = � n
an,−2

	. For i ∈ {1, . . . , N }, let Ji be the
indicator function of the event

Ai = {Ik = 0, for all k = (i − 1)an,−2, . . . , (i − 1)an,−2 + an,−6}
∪{Ik = 0, for all k = ian,−2 − an,−6, . . . , ian,−2}.

Then we have

|RG(0, Sn)−
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)|

≤ n(log n)−4 + n(log n)−2
N∑

i=1
Ji . (2.5)

However, it is known (see, [6, Lemma 7.7.4]) that

E

(
N∑

i=1
Ji

)

= O ((log n)(log log n)).

Therefore, it follows from (2.4) that

E

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

)

∼ nψ(n), (2.6)

and for any ε > 0,

P

(

n(log n)−2
N∑

i=1
Ji ≥ ε

4 nψ(n)

)

≤ P

(
N∑

i=1
Ji ≥ c ε4 (log n)

3
2

)

≤ cε(log n)−
3
2 E

(
N∑

i=1
Ji

)

≤ cε(log n)−
1
2 log log n. (2.7)

On the other hand, by independence and (2.4),

Var

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

)

=
N∑

i=1
Var
(

RG(i−1)an,−2,ian,−2
(S(i−1)an,−2 , Sian,−2)

)

≤
N∑

i=1
E

((
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)
)2
)

≤ cn2(log n)−2ψ(n), (2.8)
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Exact value of the resistance exponent 199

where we use RG(i−1)an,−2,ian,−2
(S(i−1)an,−2 , Sian,−2) ≤ n(log n)−2 and (2.6) in the third

inequality. Thus, for any fixed ε > 0 it follows that for large n,

P
(|RG(0, Sn)− nψ(n)| ≥ εnψ(n)

)

≤ P

(

n(log n)−2
N∑

i=1
Ji ≥ ε

4 nψ(n)

)

+P

(

|
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)− nψ(n)| ≥ ε
2 nψ(n)

)

≤ cε(log n)−
1
2 (log log n)+ cε

Var

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

)

(nψ(n))2

≤ cε(log n)−
1
2 (log log n),

where we use (2.4) in the third inequality. This implies (1.5). ��

Proposition 2.1.2 ψ is slowly varying.

Proof By Lemma 2.1.1, it suffices to prove the result for ψ . What we have to show is

lim
n→∞

ψ(�rn	)
ψ(n)

= 1 for all r ∈ (0, 1). (2.9)

We first show (2.9) when r ∈ Q ∩ (0, 1). Let r = q
p ∈ Q ∩ (0, 1), where p, q ∈ N

satisfy 1 ≤ q ≤ p and gcd(p, q) = 1.
By modifying the proof of Lemma 2.1.1, we have

ψ(n) ∼ ψ(k), ψ(�rn	) ∼ ψ(�rk	)

for all n − p ≤ k ≤ n. Hence we may assume that n
p =: N ∈ N.

Let

ji = in

p
i = 0, . . . , p.

By the similar argument as in (2.5), we know that

∣
∣
∣
∣E
(

RG0, jq
(0, S jq )

)
− E

( q∑

i=0
RG ji−1, ji

(S ji−1 , S ji )

)∣
∣
∣
∣ = nO

(
log log n

log n

)

,

∣
∣
∣
∣E
(
RG0,n (0, Sn)

)− E

( p∑

i=0
RG ji−1, ji

(S ji−1 , S ji )

)∣
∣
∣
∣ = nO

(
log log n

log n

)

.
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200 D. Shiraishi

Therefore,

ψ( jq) = ψ( j1)+ O

(
log log n

log n

)

,

ψ(n) = ψ( j1)+ O

(
log log n

log n

)

.

Since ψ(n) ≥ c(log n)− 1
2 and ψ(n) ∼ ψ(n), we have

ψ( jq) ∼ ψ(n).

For r /∈ Q, it follows that for all ε > 0, there exist r1, r2 ∈ Q such that

1 − ε ≤ r1

r
≤ 1 ≤ r2

r
≤ 1 + ε.

Let Fn be the event

Fn = {Ik = 0 for all k ∈ [�rn	 − an,−6, �rn	]}.

Then,

E
(
RG0,�rn	(0, S�rn	)

) = E
(
RG0,�rn	(0, S�rn	); Fn

)+ E
(
RG0,�rn	(0, S�rn	); Fc

n

)

= nO

(
log log n

log n

)

+ E
(
RG0,�rn	(0, S�rn	); Fc

n

)

≤ nO

(
log log n

log n

)

+ an,−6 + E
(

RG0,�r2n	(0, S�r2n	)
)
.

Therefore,

ψ(�rn	) ≤ r2

r
ψ(�r2n	)+ O

(
log log n

log n

)

≤ (1 + 2ε)ψ(�r2n	).

Similarly, we have

(1 − 2ε)ψ(�r1n	) ≤ ψ(�rn	).

Since (2.9) holds for r = r1, r2, we have

1 − 2ε ≤ lim inf
n→∞

ψ(�rn	)
ψ(n)

≤ lim sup
n→∞

ψ(�rn	)
ψ(n)

≤ 1 + 2ε,

and hence we have (2.9). ��
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Remark 2.1.3 Note that for r ∈ (0, 4), we have

ψ(n) ∼ ψ
(
an,−r
)
. (2.10)

Indeed, by modifying the argument in (2.5),

∣
∣
∣
∣
∣
E

(
N∑

i=1
RG(i−1)an,−r ,ian,−r

(
S(i−1)an,−r , Sian,−r

)
)

− E
(

RG0,n (0, Sn)
)
∣
∣
∣
∣
∣
= nO

(
log log n

log n

)

,

where N = � n
an,−r

	. Hence,

|Nan,−rψ(an,−r )− nψ(n)| = nO

(
log log n

log n

)

.

Since ψ(n) ≥ c(log n)− 1
2 , we have

Nan,−r

n

ψ(an,−r )

ψ(n)
= 1 + O

(
log log n

(log n)
1
2

)

.

Therefore, (2.10) holds.

Proposition 2.1.4 For all ε > 0,

P
(
RG0,n (0, Sn) ≤ (1 + ε)nψ(n)

) = 1 − Oε
(
(log n)−

3
2

)
.

Proof Let N = � n
an,−2

	. We have

RG0,n (0, Sn) ≤
N∑

i=1
RG(i−1)an,−2,ian,−2

(
S(i−1)an,−2 , Sian,−2

)+ RGNan,−2,n

(
SNan,−2 , Sn

)

≤
N∑

i=1
RG(i−1)an,−2,ian,−2

(
S(i−1)an,−2 , Sian,−2

)+ n(log n)−2. (2.11)

Therefore, by (2.4),

P
(
RG0,n (0, Sn) ≥ (1 + ε)nψ(n)

)

≤ P

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2) ≥ (1 + 2
3ε)nψ(n)

)

. (2.12)

It follows from (2.6) that

E

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

)

≤
(

1 + ε

3

)
nψ(n),
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202 D. Shiraishi

for large n. So the right-hand side of (2.12) is bounded above by

P

(

|
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

−E

(
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2)

)

| ≥ ε

3
nψ(n)

)

≤ 9

ε2

Var
(∑N

i=1 RG(i−1)an,−2,ian,−2
(S(i−1)an,−2 , Sian,−2)

)

(nψ(n))2
≤ cε(log n)−

3
2 , (2.13)

where we use (2.4) and (2.8) in the second inequality. ��
Remark 2.1.5 By Proposition 2.1.4 and the Borel–Cantelli lemma, it follows that there
exists c > 0 such that for P-a.s. ω,

RG0,n (0, Sn)(ω) ≤ cnψ(n), (2.14)

for large n. Indeed, let Mn := max0≤k≤l≤n RGk,l (Sk, Sl). Then we have

Mn ≤ 2n(log n)−2 +
N∑

i=1
RG(i−1)an,−2,ian,−2

(S(i−1)an,−2 , Sian,−2).

Therefore, it follows from (2.13) that

P
(
Mn ≤ 2nψ(n)

) = 1 − O
(
(log n)−

3
2

)
.

By the Borel–Cantelli lemma, for P-a.s. ω,M2k (ω) ≤ 2k+1ψ(2k) for large k. Now
(2.14) can be shown by using the monotonicity of Mn .(See also the proof of Theorem
1.2.1 in [9].)

2.2 Oscillations of the effective resistance

In this subsection, we give the proof of (1.7). Comparing (1.7) with (1.5), we know

the effective resistance RG(0, Sn) has at least oscillations of order (log log n)− 1
2 at the

quenched level. These oscillations are due to the fact that the random walk trace has
“long range intersections” infinitely often (see Lemma 2.2.3 below). We now begin
with several lemmas.

Lemma 2.2.1 There exists c > 0 such that for P-a.s. ω,

max
0≤k≤l≤b

n,− 1
2

RGk,l (Sk, Sl)(ω) ≤ cbn,− 1
2
ψ(n), (2.15)

max
n−b

n,− 1
2
≤k≤l≤n

RGk,l (Sk, Sl)(ω) ≤ cbn,− 1
2
ψ(n). (2.16)
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Proof The proof of (2.15) and (2.16) are similar, we will only prove (2.15). Let

N = �
b

n,− 1
2

an,−2
	. Let ε > 0 be an arbitrary positive number. Assume that

max
0≤k≤l≤b

n,− 1
2

RGk,l (Sk, Sl) ≥ (1 + ε)bn,− 1
2
ψ(n).

Recall that ψ(n) ∼ ψ(bn,− 1
2
) (see Remark 2.1.3), and hence we have

max
0≤k≤l≤b

n,− 1
2

RGk,l (Sk, Sl) ≥
(

1 + ε

2

)
bn,− 1

2
ψ
(

bn,− 1
2

)
,

for large n (depending on ε). This implies that there exist 0 ≤ k0 ≤ l0 ≤ bn,− 1
2

such
that

RGk0,l0

(
Sk0 , Sl0

) ≥
(

1 + ε

2

)
bn,− 1

2
ψ
(

bn,− 1
2

)
.

However, we know

RGk0,l0
(Sk0 , Sl0) ≤

N∑

j=1
RGi j−1,i j

(Si j−1 , Si j )+ 2n(log n)−2,

where i j := jan,−2 for j = 1, 2, . . . , N . Therefore, for large n,

N∑

j=1
RGi j−1,i j

(
Si j−1 , Si j

) ≥ (1 + ε
4

)
bn,− 1

2
ψ
(

bn,− 1
2

)
.

So, by the similar argument as in (2.13), we have

P

⎛

⎝ max
0≤k≤l≤b

n,− 1
2

RGk,l (Sk , Sl ) ≥ (1 + ε)bn,− 1
2
ψ(n)

⎞

⎠

≤ P

(
N∑

j=1
RGi j−1,i j

(
Si j−1 , Si j

) ≥ (1 + ε
4

)
bn,− 1

2
ψ
(

bn,− 1
2

)
)

≤ P

(∣
∣
∣
∣
∣

N∑

j=1
RGi j−1,i j

(
Si j−1 , Si j

)− E

(
N∑

j=1
RGi j−1,i j

(
Si j−1 , Si j

)
)∣
∣
∣
∣
∣
≥ ε

8
bn,− 1

2
ψ
(

bn,− 1
2

)
)

≤ cε
bn,− 1

2
an,−2ψ

(
bn,− 1

2

)

(
bn,− 1

2
ψ
(

bn,− 1
2

))2

≤ cε(log n)−
3
2 (log log n)

1
2 .

Using the Borel–Cantelli lemma (see the proof of Theorem 1.2.1 in [9]), we get
(2.15). ��
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Remark 2.2.2 Similar arguments as above give

P

(

max
0≤k≤l≤n

RGk,l (Sk, Sl) ≥ (1 + ε)nψ(n)

)

≤ cε(log n)−
3
2 , (2.17)

for all ε > 0.

Lemma 2.2.3

P
({

S
[
0, bn,− 1

2

]
∩ S
[
n − bn,− 1

2
, n
]

�= ∅
}

i.o.
)

= 1 (2.18)

Proof Let S1, S2 be independent simple random walk in Z
4 starting from the origin.

Noting that the time-reversal of S[bn,− 1
2
/2, bn,− 1

2
] and S[bn,− 1

2
, n] are two indepen-

dent simple random walks from Sb
n,− 1

2
. By the translation invariance,

P
(

S
[
bn,− 1

2
/2, bn,− 1

2

]
∩ S
[
n − bn,− 1

2
, n
]

�= ∅
)

= P
(

S1
[
0, bn,− 1

2
/2
]

∩ S2
[
n − 2bn,− 1

2
, n − bn,− 1

2

]
�= ∅
)
.

Using [6], Theorem 4.3.6, we have

P
(

S1
[
0, bn,− 1

2
/2
]

∩ S2
[
n − 2bn,− 1

2
, n − bn,− 1

2

]
�= ∅
)

∼ π2

8
(log n)−1

b
n,− 1

2
/2
∑

j=0

n−b
n,− 1

2∑

k=n−2b
n,− 1

2

P
(

S1
j = S2

k

)
. (2.19)

By the local central limit theorem, (see, [6]. Theorem 1.2.1) it follows that

b
n,− 1

2
/2
∑

j=0

n−b
n,− 1

2∑

k=n−2b
n,− 1

2

P
(

S1
j = S2

k

)
≥ c(log log n)−1,

so

P
(

S
[
bn,− 1

2
/2, bn,− 1

2

]
∩ S
[
n − bn,− 1

2
, n
]

�= ∅
)

≥ c(log n)−1(log log n)−1.

By the second Borel–Cantelli lemma, we get the result. ��
Proof of Theorem 1.2.1 (1.7). By Lemma 2.2.1 and 2.2.3, for P-a.s. ω,

max
0≤k≤l≤b

n,− 1
2

RGk,l (Sk, Sl)(ω) ≤ cbn,− 1
2
ψ(n), for large n

max
n−b

n,− 1
2
≤k≤l≤n

RGk,l (Sk, Sl)(ω) ≤ cbn,− 1
2
ψ(n) for large n

S[0, bn,− 1
2
] ∩ S[n − bn,− 1

2
, n] �= ∅ for infinitely many n.
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This implies that

RG0,n (0, Sn)(ω) ≤ 2cbn,− 1
2
ψ(n) for infinitely many n,

and we get the result. ��

2.3 Lower bound of the effective resistance

In this subsection, we will show (1.8). To do this, we first show that there exist three
global cut-times T ( j)( j = 1, 2, 3) such that each T ( j) is in [0, n] and T ( j)−T ( j−1) ≥
bn,−7. Then we divide G0,T (3) into three disjoint parts and give an appropriate lower
bound for the sum of three i.i.d. random variables instead of RG(0, Sn) (Proposi-
tion 2.3.4). We now begin with several lemmas.

Lemma 2.3.1 For any ε > 0, it follows that

P
(
RG(0, Sn) ≤ (1 − ε)nψ(n)

) = Oε

(
log log n

(log n)
1
2

)

. (2.20)

Proof Let N = � n
an,−2

	. By the similar argument as in the proof of Theorem 1.2.1
(1.5), we have

P (RG(0, Sn) ≤ (1 − ε)nψ(n))

≤ P

(
N∑

i=1
RG(i−1)an,−2 ,ian,−2

(
S(i−1)an,−2 , Sian,−2

)≤(1 − ε)nψ(n)+n(log n)−4+n(log n)−2
N∑

i=1
Ji

)

≤ P

(
N∑

i=1
RG(i−1)an,−2 ,ian,−2

(
S(i−1)an,−2 , Sian,−2

) ≤ (1 − ε
2

)
nψ(n)

)

+P

(

n(log n)−2
N∑

i=1
Ji ≥ ε

4 nψ(n)

)

≤ P

(
N∑

i=1
RG(i−1)an,−2 ,ian,−2

(
S(i−1)an,−2 , Sian,−2

) ≤ (1 − ε
2

)
nψ(n)

)

+ cε(log n)−
1
2 log log n

≤ cε(log n)−
1
2 log log n.

This implies (2.20). ��
Let δ > 0. Define the events

B1 = {S [0, 3bn,−1−δ
] ∩ S
[
n − an,−6,∞

) = ∅}
B2 = {S [0, bn,−2−2δ + an,−6

] ∩ S
[
2bn,−1−δ,∞

) = ∅}
B3 = {S [0, 3bn,−3−3δ

] ∩ S
[
bn,−2−2δ,∞

) = ∅}
B4 = {S [0, bn,−4−4δ + an,−6

] ∩ S
[
2bn,−3−3δ,∞

) = ∅}
B5 = {S [0, 3bn,−5−5δ

] ∩ S
[
bn,−4−4δ,∞

) = ∅}
B6 = {S [0, bn,−6−6δ + an,−6

] ∩ S
[
2bn,−5−5δ,∞

) = ∅}.

(For the simplicity, we write b j,n = bn,− j− jδ for j = 1, . . . , 6).
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Lemma 2.3.2 There exists c > 0 such that

P(Bc
j ) ≤ c(log n)−1(log log n)−1−δ j = 1, · · · , 6. (2.21)

Proof We will prove (2.21) for j = 1, the other cases are proved similarly. Let S1, S2

be be independent simple random walk in Z
4 starting from the origin. Then,

P(Bc
1) = P

(
S1[0, 3b1,n] ∩ S2[n − an,−6 − 3b1,n,∞) �= ∅

)
.

Using [6] Theorem 4.3.6, we have

P
(

S1 [0, 3b1,n
] ∩ S2 [n − an,−6 − 3b1,n,∞

) �= ∅
)

≤ c(log n)−1
3b1,n∑

j=0

∞∑

k=n−an,−6−3b1,n

P
(

S1
j = S2

k

)
,

for some c > 0.
It follows from [6] Theorem 1.2.1 that

3b1,n∑

j=0

∞∑

k=n−an,−6−3b1,n

P
(

S1
j = S2

k

)
≤

3b1,n∑

j=0

∞∑

k=n−an,−6−3b1,n

c′ 1
( j+k)2

≤ c(log log n)−1−δ.

Hence, the result is proved. ��
Define the indicator function

Yk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1{k is a local cut-time between 0 and 2b5,n}, b6,n ≤ k ≤ b6,n + an,−6,

1{k is a local cut-time between 3b5,n and 2b3,n}, b4,n ≤ k ≤ b4,n + an,−6,

1{k is a local cut-time between 3b3,n and 2b1,n}, b2,n ≤ k ≤ b2,n + an,−6,

1{k is a local cut-time between 3b1,n and ∞}, n − an,−6 ≤ k ≤ n.

(2.22)

It is easy to see that on the event B1 ∩ B2 ∩ · · · ∩ B6,

Yk = Ik . (2.23)

Let

J̃1 = 1
{

Yk = 0 for all k ∈ I (1) := [b6,n, b6,n + an,−6
]}

(2.24)

J̃2 = 1
{

Yk = 0 for all k ∈ I (2) := [b4,n, b4,n + an,−6
]}

(2.25)

J̃3 = 1
{

Yk = 0 for all k ∈ I (3) := [b2,n, b2,n + an,−6
]}

(2.26)

J̃4 = 1
{

Yk = 0 for all k ∈ I (4) := [n − an,−6, n
]}
. (2.27)

123



Exact value of the resistance exponent 207

Lemma 2.3.3 There exists c > 0 such that

P
(

J̃1 + J̃2 + J̃3 + J̃4 ≥ 2
)

≤ c
(log log n)2

(log n)2
. (2.28)

Proof By definition of J̃i , it follows that J̃1, . . . , J̃4 are independent. Also we know

E
(

J̃i

)
≤ c

log log n

log n
.

(See [6, Lemma 7.7.4]). Therefore,

P
(

J̃1 + J̃2 + J̃3 + J̃4 ≥ 2
)

= P
(

J̃i = J̃ j = 1 for some 1 ≤ i < j ≤ 4
)

≤ ∑

1≤i< j≤4
P
(

J̃i = J̃ j = 1
)

= ∑

1≤i< j≤4
P
(

J̃i = 1
)

P
(

J̃ j = 1
)

≤ c
(log log n)2

(log n)2
.

��

Let

T max
n =

{
max{0 ≤ k ≤ n : k is a global cut-time} if {} �= ∅
0 if {} = ∅.

Proposition 2.3.4

P

(

RG(0, ST max
n
) ≤ 1

3
b6,nψ(n)

)

≤ c(log n)−1(log log n)−1−δ. (2.29)

Proof By Lemma 2.3.2 and 2.3.3,

P

(

RG
(

0, ST max
n

)
≤ 1

3
b6,nψ(n)

)

≤ P

({

RG
(

0, ST max
n

)
≤ 1

3
b6,nψ(n)

}

∩ B1 ∩ B2 ∩ · · · ∩ B6 ∩
{

J̃1+ J̃2 + J̃3+ J̃4 ≤ 1
})

+c(log n)−1(log log n)−1−δ.
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Assume that B1, . . . , B6 and J̃1 + . . . + J̃4 ≤ 1 hold. Since Yk = Ik on the event
B1 ∩ B2 ∩ . . .∩ B6, there are at least three “good” intervals, namely, there are at least
three intervals of I (1), . . . , I (4) which contain global cut-time. Hence,

P

({

RG
(

0, ST max
n

)
≤ 1

3
b6,nψ(n)

}

∩ B1 ∩ B2 ∩ · · · ∩ B6 ∩
{

J̃1 + J̃2 + J̃3 + J̃4 ≤ 1
})

≤ P

({

RG
(

0, ST max
n

)
≤ 1

3
b6,nψ(n)

}

∩
{

there are at least three “good” intervals of I (1), . . . , I (4)
})

.

Assume that there are at least three “good” intervals of I (1), . . . , I (4). Without loss
of generality, we may assume I (1), I (2) and I (3) are good intervals. Then there exist
T ( j) ∈ I ( j) for j = 1, 2, 3 such that T ( j) is a global cut-time. If

RG
(
0, ST max

n

) ≤ 1

3
b6,nψ(n),

then

RG0,T (1)
(0, ST (1) )+ RGT (1),T (2)

(ST (1) , ST (2) )+ RGT (2),T (3)
(ST (2) , ST (3) ) ≤ 1

3
b6,nψ(n).

Since |T ( j) − b8−2 j,n| ≤ n(log n)−6 for j = 1, 2, 3, it follows from (2.4) that

RG0,b6,n

(
0, Sb6,n

)
+ RGb6,n ,b4,n

(
Sb6,n

, Sb4,n

)
+RGb4,n ,b2,n

(
Sb4,n

, Sb2,n

)
≤ 1

2
b6,nψ(n),

for large n. By (2.10), Lemma 2.1.1, Lemma 2.3.1 and independence,

P

(

RG0,b6,n

(
0, Sb6,n

)
+RGb6,n ,b4,n

(
Sb6,n

, Sb4,n

)
+RGb4,n ,b2,n

(
Sb4,n

, Sb2,n

)
≤ 1

2
b6,nψ(n)

)

≤ P

(

RG0,b6,n

(
0, Sb6,n

)
≤ 1

2
b6,nψ(n)

)

×P

(

RGb6,n ,b4,n

(
Sb6,n

, Sb4,n

)
≤ 1

2
b6,nψ(n)

)

×P

(

RGb4,n ,b2,n

(
Sb4,n

, Sb2,n

)
≤ 1

2
b6,nψ(n)

)

≤ c
(log log n)3

(log n)
3
2

.

This implies (2.29). ��

Proof of Theorem 1.2.1 (1.8) Since for any δ > 0,

∞∑
k=2

1
k(log k)1+δ < ∞,
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it follows from Proposition 2.3.4 and the argument using the Borel–Cantelli lemma
that for P-a.s. ω and large n,

RG(0, ST max
n
)(ω) ≥ nψ(n)(log log n)−7.

However, we know

RG(0, ST max
n
)(ω) ≤ RG(0, Sn)(ω).

Hence, the result is proved. ��

3 Proof of Theorem 1.2.2

3.1 Heat kernel estimate w.r.t the resistance metric

In this section, we will prove Theorem 1.2.2. It is known that the effective resistance
RG(·, ·) is a metric on G (see, for example [4] and the references therein). We write

BG(x, R) = {y ∈ G : RG(x, y) < R
}
, VG(x, R) = μG

(
BG(x, R)

)
, R > 0.

For ε > 0, we set

Ỹk = 1
{

RG(0, Sk) ≤ ε2nψ(n)
}
,

Ỹ = Ỹ (n) =
2bn,7∑

k=0
Ỹk .

We now state the key proposition. The proof will be given in the next subsection.

Proposition 3.1.1 There exist ε ∈ (0, 1) and c > 0 such that

P
(

Ỹ ≥ cn
)

= O
(
(log n)−

3
2 (log log n)α

)
, (3.1)

for some α > 0.

Remark 3.1.2 It follows from (3.1) and the Borel–Cantelli lemma that for P-a.s. ω,

Ỹ (ω) ≤ cn, (3.2)

for large n. On the other hand, it follows from (1.8) that for P-a.s. ω,

RG(0, Sk)(ω) > ε2nψ(n) for all k ≥ 2n(log log n)7. (3.3)

Indeed, by (1.8), for P-a.s. ω,

RG(0, Sk)(ω) ≥ kψ(k)(log log k)−7 for large k.
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Assume k ≥ 2n(log log n)7 and n is sufficiently large so that k
(log log k)7

≥ n. It follows
from (2.10) that

kψ(k)(log log k)−7 ≥ 1

2

k

(log log k)7
ψ

(
k

(log log k)7

)

.

Recall that Bn = {Ik = 0 for all k ∈ [n − an,−6, n]} in the proof of Lemma 2.1.1.

Then it follows from P(Bn) = O
(

log log n
log n

)
, (see [6, Lemma 7.7.4]) and (2.4) that for

large n ≤ l,

lψ(l) = E
(
RG(0, Sl)

)

≥ E
(
RG(0, Sl); Bc

n

)

≥ E
(
RG(0, Sn); Bc

n

)− n(log n)−6

= E
(
RG(0, Sn)

)− E
(
RG(0, Sn); Bn

)− n(log n)−6

≥ nψ(n)− cn
log log n

log n
− n(log n)−6

≥ 1

2
nψ(n).

Therefore, if k ≥ 2n(log log n)7, then for P-a.s. ω,

RG(0, Sk)(ω) ≥ 1

2

k

(log log k)7
ψ

(
k

(log log k)7

)

≥ 1

4
nψ(n)

which gives (3.3) when ε < 1
2 . Therefore, for P-a.s. ω,

∞∑
k=0

Ỹk(ω) ≤ cn (3.4)

for large n.

We now give a proof of Theorem 1.2.2, assuming the above proposition.

Proof of Theorem 1.2.2. By Remark 2.2.2, it follows that for P-a.s. ω,

max
0≤k≤n

RG(0, Sk)(ω) ≤ cnψ(n),

for some c > 0. Therefore,

{Sk : 0 ≤ k ≤ n} ⊂ BG (0, cnψ(n)).

However, it is known (see [2] (2.22) and [3] (4.1), for example) that for P-a.s. ω,

�{Sk(ω) : 0 ≤ k ≤ n} � n.
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Hence,

c̃n ≤ VG (0, cnψ(n)) (ω),

for some c̃ > 0. By a simple reparameterisation,

c̃1n (ψ(n))−1 ≤ VG(0, n)(ω), (3.5)

for some c̃1 > 0. (Here we use the fact ψ is slowly varying. See Remark 2.1.3.)
For the upper bound, we have

BG
(

0, ε2nψ(n)
)

= {Sk : RG(0, Sk) < ε2nψ(n)},

and

VG
(

0, ε2nψ(n)
)

≤ 8�
{

Sk : RG(0, Sk) < ε2nψ(n)
}

≤ 8�
{

0 ≤ k < ∞ : RG(0, Sk) < ε2nψ(n)
}

≤ 8
∞∑

k=0
Ỹk .

Therefore, it follows from (3.4) that for P-a.s. ω,

VG
(

0, ε2nψ(n)
)
(ω) ≤ cn for large n.

Hence, by a simple reparameterisation,

VG(0, n)(ω) ≤ c̃2n (ψ(n))−1 , for P-a.s. ω. (3.6)

By Proposition 3.1 and Proposition 3.2 in [4], we can conclude that for P-a.s. ω,

c1n− 1
2 (ψ(n))

1
2 ≤ pG(ω)

2n (0, 0) ≤ c2n− 1
2 (ψ(n))

1
2 for large n, (3.7)

for some c1, c2 > 0. (Note that since we consider the resistance metric on the graph
G(ω), we can apply the results in [4] as v(R) = R (ψ(R))−1 , r(R) = R. See [4] for
details.) ��

3.2 Proof of Proposition 3.1.1

In this subsection, we will give the proof of Proposition 3.1.1. In order to prove this
proposition, we now make some preparations. Let

Ȳ = Ȳ (n) =
2bn,7∑

k=n
Ỹk .
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To prove Proposition 3.1.1, it suffices to show that there exist ε ∈ (0, 1) and C > 0
such that

P
(
Ȳ ≥ Cn

) = O

(
(log log n)α

(log n)
3
2

)

, (3.8)

for some α > 0.
Before we proceed the proof of (3.8), we give a guideline intuitively. Since the

random walk trace has long range intersections as in (2.18), it is possible that there
exists a k ∈ [n, bn,7] such that Ỹk = 1. So it is not trivial to show that the number of
such times are of order O(n). To do this, we study the connectivity of the trace near
the long range intersection point and show that the trace is relatively sparse around
the intersection point. The key fact is Proposition 4.3 in [7] which gives a uniform
estimate for the probability that the simple random walk escapes from the recurrent
set satisfying a certain condition, called slowly recurrent set in [7]. This proposition
enables to analyze the shape of the trace around the long range intersection point, and
we can obtain (3.8).

Let ε ∈ (0, 1) (the exact values of this number will be determined later) and
dn = �ε2n	. We write

N = �2bn,7 − n

dn
	.

Then

N ≤ 2

ε2 (log log n)7.

Let

I ′
j = [n + ( j − 1)dn, n + jdn] for 1 ≤ j ≤ N , (3.9)

I ′
N+1 = [n + Ndn, 2bn,7]. (3.10)

Then

[n, 2bn,7] ⊂
N+1⋃

j=1

I ′
j .

We call a time k “bad” if Ỹk = 1 and a interval I ′
j “bad” if there exists k ∈ I ′

j such
that k is bad. Let

L = �
{

1 ≤ j ≤ N + 1 : I ′
j is bad

}
. (3.11)
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Assume that Ȳ ≥ 2Cn. (Again the exact value of C will be determined later.) Then

L ≥ 2C

ε2 . (3.12)

So assume that L ≥ 2C
ε2 . Under this assumption, we choose the intervals

I ′
j1
, I ′

j2
, . . . , I ′

jC
as follows:

j1 = min
{

1 ≤ j ≤ N + 1 : I ′
j is bad

}
. (3.13)

For i ≥ 2, define

ji = min
{

k > ji−1 : dist
(

I ′
ji−1
, I ′

k

)
≥ n, I ′

k is bad
}
, (3.14)

where dist(I ′
k, I ′

l ) denotes the distance between I ′
k and I ′

l with respect to the Euclidean
distance. Since L ≥ 2C

ε2 , we can define ji at least for i = 1, . . . ,C . Let

I = {( j1, . . . , jC ) : 1 ≤ j1 < j2 < · · · < jC ≤ N + 1,

dist
(

I ′
ji−1
, I ′

ji

)
≥ n for all i = 2, · · · ,C

}
. (3.15)

Then, we have shown the following lemma.

Lemma 3.2.1

P
(
Ȳ ≥ 2Cn

) ≤ ∑

( j1,..., jC )∈I
P
(

I ′
ji

is bad for all 1 ≤ i ≤ C
)
. (3.16)

We now estimate the right-hand side of (3.16). Fix ( j1, . . . , jC ) ∈ I and let

ti = n + ( ji − 1)dn for i = 1, . . . ,C. (3.17)

Then

I ′
ji = [ti , ti + dn] i = 1, . . . ,C.

Lemma 3.2.2 Assume that ε < 1
3 . Then,

P
(

I ′
ji is bad for all 1 ≤ i ≤ C

)

≤ P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C

)+ c̃(log n)−
3
2 ,

for some c̃ > 0.
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Proof By Lemma 2.1.1, Proposition 2.1.2 and Remark 2.2.2, we have

P

(

max
0≤k<l≤dn

RGk,l (Sk, Sl) ≥ 2dnψ(n)

)

≤ c̄(log n)−
3
2 .

Therefore, if ε < 1
3 , then

P
(

I ′
ji is bad for all 1 ≤ i ≤ C

)

≤ P

(

I ′
ji is bad and max

ti ≤k<l≤ti +dn
RG(Sk, Sl) ≤ 2dnψ(n) for all 1 ≤ i ≤ C

)

+P

(

max
ti ≤k<l≤ti +dn

RG(Sk, Sl) ≥ 2dnψ(n) for some 1 ≤ i ≤ C

)

≤ P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C

)+ c̃(log n)−
3
2 ,

for some c̃ > 0. ��
By Lemma 3.2.2, all we need is to estimate

P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C

)
.

Let

Ĩ ′
i = [ti − ān, ti + ān] i = 1, . . . ,C (3.18)

and

Z = �{1 ≤ i ≤ C : S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅}, (3.19)

where ān = � 1
3 n	. [Note that Ĩ ′

i are disjoint for i = 1, . . . ,C . See (3.15).] We write

φ(n) = (log log n)2

log n
. (3.20)

Lemma 3.2.3

P (Z ≥ 2) = O
(
(φ(n))2

)
. (3.21)

Proof By definition,

P (Z ≥ 2)

≤ ∑

1≤i<k≤C
P (S[0, ān]∩S[ti −ān, ti +ān] �=∅, S[0, ān]∩S[tk − ān, tk +ān] �= ∅).
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So it suffices to prove

P (S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅, S[0, ān] ∩ S[tk − ān, tk + ān] �= ∅)
= O
(
(φ(n))2

)
, (3.22)

for each 1 ≤ i < k ≤ C .
Let 1 ≤ i < k ≤ C . Let S1, S2 denote independent simple random walks in Z

4.
We write Px

i to denote the probability law of Si assuming Si (0) = x. We use Ex
i for

expectation with respect to Px
i . If the x is missing then it is assumed that Si (0) = 0.

We have

P (S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅, S[0, ān] ∩ S[tk − ān, tk + ān] �= ∅)
= P
(

S1[0, ān] ∩ S2[ti − 2ān, ti ] �= ∅, S1[0, ān] ∩ S2[tk − 2ān, tk] �= ∅
)
.

Define the event

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1[0, ān] ⊂ C√
n log n

S1[0,∞) ∩ C√
n log n ∈ A√

n log n

√
n(log n)−1 ≤ |S2

tk−2ān
| ≤ 1

2

√
n log n

dist
(

S2
tk−2ān

, S1[0,∞)
)

≥ √
n(log n)−3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where An is defined in [7] Proposition 4.1 (we omit the definition of An since we do
not need the exact shape of it) and

Cn(x) =
{
y ∈ Z

4 : |x − y| < n
}
, Cn = Cn(0).

(| · | denotes the Euclidean distance.) Lemma 1.5.1 in [6] gives that

P
(

S1[0, ān] ⊂ C√
n log n

)
= 1 − O

(
1

n

)

.

By Proposition 4.1 in [7],

P
(

S1[0,∞) ∩ C√
n log n ∈ A√

n log n

)
= 1 − O

(
(log n)−6

)
.

It follows from Theorem 1.2.1 and Lemma 1.5.1 in [6] that

P

(√
n(log n)−1 ≤ |S2

tk−2ān
| ≤ 1

2

√
n log n

)

= 1 − O
(
(log n)−4

)
.
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By Proposition 1.5.10 in [6],

P
(

dist
(
x, S1[0,∞)

)
≥ √

n(log n)−3
)

= 1 − O
(
(log n)−4

)
,

for all x ∈ Z
4 with

√
n(log n)−1 ≤ |x| ≤ 1

2

√
n log n. Hence,

P(Dc) = O
(
(log n)−4

)
. (3.23)

Therefore, it suffices to estimate

P
(
F̄i ∩ F̄k ∩ D

)
,

where F̄i = {S1[0, ān] ∩ S2[ti − 2ān, ti ] �= ∅}. By the Markov property,

P
(
F̄i ∩ F̄k ∩ D

)

≤ E1

(

E2

(

1{F̄i ∩D} P
S2

tk−2ān
2

(
S1[0,∞) ∩ C√

n log n ∩ S2[0, 2ān]

∩
(

C√
n(log n)−3(S2

0 )
)c �= ∅

)))
.

(3.24)

It follows from Proposition 4.3 in [7] that

P
S2

tk−2ān
2

(
S1[0,∞) ∩ C√

n log n ∩ S2[0, 2ān] ∩
(

C√
n(log n)−3(S2

0 )
)c �= ∅

)
≤ cφ(n),

(3.25)

on the event D. Hence,

P
(
F̄i ∩ F̄k ∩ D

) ≤ cφ(n)P
(
F̄i
)
.

If we repeat the same arguments as above, we have

P
(
F̄i
) ≤ cφ(n). (3.26)

This gives the lemma. ��

By Lemma 3.2.3, all we need is to estimate

P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, Z = 1

)

+P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, Z = 0

)
. (3.27)
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First we will consider the first term of (3.27). Note that

P
(
RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, Z = 1

)

≤
C−2∑

i=1
P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i

)
(3.28)

+P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃C−1

)
(3.29)

+P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃C

)
, (3.30)

where F̃i = {S[0, ān] ∩ S[ti − ān, ti + ān] �= ∅}.
Lemma 3.2.4 Let 1 ≤ i ≤ C − 2 and ε ∈ (0, 1

4 ). Then

P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i

)
≤ c̃φ(n)(log n)−

1
2 log log n, (3.31)

for some c̃ > 0.

Proof Let 1 ≤ i ≤ C − 2. We write

Kl =
{

1{l is a local cut-time between 0 and l + ān} if ti +ān ≤ l ≤ ti +ān + an,−6

1{l is a local cut-time between l − ān and ∞} if ti+1 − an,−6 ≤ l ≤ ti+1
,

(3.32)

and

K =
ti +ān+an,−6∑

l=ti +ān

Kl , K̄ =
ti+1∑

l=ti+1−an,−6

Kl . (3.33)

By [6], Lemma 7.7.4 and independence,

P
(
K = K̄ = 0

) = O
(
φ(n)2
)
.

Therefore, for 1 ≤ i ≤ C − 2,

P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i

)

≤ P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i , K ≥ 1
)

+P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i , K̄ ≥ 1
)

+c̃(φ(n))2.

Assume K ≥ 1. (The case K̄ ≥ 1 can be dealt with similarly.) If there is no global
cut-time in [ti + ān, ti + ān + an,−6], then it is easy to see that

S[0, ti + ān + an,−6] ∩ S[ti + 2ān,∞) �= ∅.
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However, the similar argument to that in the proof of Lemma 3.2.3 gives that

P
(

S[0, ti + ān + an,−6] ∩ S[ti + 2ān,∞) �= ∅, F̃i

)
= O
(
(φ(n))2

)
.

Hence, it suffices to consider

P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i , K ≥ 1,

[ti + ān, ti + ān + an,−6] has a global cut-time
)
. (3.34)

If

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C,

then we have

RG(Sti+1 , Sti+2) ≤ 2εnψ(n).

Assume that [ti + ān, ti + ān + an,−6] has a global cut-time and let T ∈ [ti + ān, ti +
ān + an,−6] be the cut-time. Then

RG(Sti+1 , Sti+2) = RGT,∞(Sti+1 , Sti+2)

= RGti +ān ,∞(Sti+1, Sti+2).

Therefore, if ε ∈ (0, 1
4 ), then by Lemma 2.3.1, (3.26) and independence,

P
(

RG(0, St j ) ≤ εnψ(n) for all 1 ≤ j ≤ C, F̃i , K ≥ 1,

[ti + ān, ti + ān + an,−6] has a global cut-time
)

≤ P
(

F̃i , RGti +ān ,∞(Sti+1 , Sti+2) ≤ 2εnψ(n)
)

≤ c̃φ(n)(log n)−
1
2 log log n,

for some c̃ > 0. ��
To complete the estimate for the first term of (3.27), it remains to give the bounds

of (3.29) and (3.30). Since the estimates for (3.29) and (3.30) are similar, we will only
consider (3.30).

Let

K̃l = 1{l is a local cut-time between ān and tC − ān} for ān ≤ l ≤ tC − ān, (3.35)

and for 1 ≤ i ≤ C − 2, define

Ãi =
{

ti∑

l=ti −3an,−1

K̃l ≥ 1,
ti +3an,−1∑

l=ti

K̃l ≥ 1

}

. (3.36)

123
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Lemma 3.2.5

P
(

F̃C ∩ Ãc
i

)
= O
(
(φ(n))2

)
for i = 1, 2, · · · ,C − 2. (3.37)

Proof Let 1 ≤ i ≤ C − 2. It suffices to show that

P

(

F̃C ,
ti +3an,−1∑

l=ti

K̃l = 0

)

= O
(
(φ(n))2

)
.

We write

K ′
l = 1{l is a local cut-time between l − an,−1 and l + an,−1}.

By [6], Lemma 7.7.4 and independence,

P

(
ti +an,−6∑

l=ti

K ′
l =

ti +3an,−1∑

l=ti +3an,−1−an,−6

K ′
l = 0

)

= O
(
(φ(n))2

)
.

Hence, all we need is to estimate

P

(

F̃C ,
ti +3an,−1∑

l=ti

K̃l = 0,
ti +an,−6∑

l=ti

K ′
l ≥ 1

)

(3.38)

+P

(

F̃C ,
ti +3an,−1∑

l=ti

K̃l = 0,
ti +3an,−1∑

l=ti +3an,−1−an,−6

K ′
l ≥ 1

)

. (3.39)

We will only consider (3.38). Assume that

ti +3an,−1∑

l=ti

K̃l = 0,
ti +an,−6∑

l=ti

K ′
l ≥ 1.

Then by definition of K̃l and K ′
l , it is easy to see that the following event occurs:

B1 ∪ B2 ∪ B3 := {S[ti − an,−1, ti + an,−6] ∩ S[ti + an,−1, tC − ān] �= ∅}
∪{S[ān, ti + an,−6 − an,−1] ∩ S[ti , tC − ān] �= ∅}
∪{S[ān, ti + an,−6] ∩ S[ti + an,−1, tC − ān] �= ∅}. (3.40)

However, it follows from the similar arguments as in (3.22) that

P
(

F̃C , (3.40)
)

≤
3∑

k=1
P(F̃C ∩ Bk) = O

(
(φ(n))2

)
.

This gives the lemma. ��
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We are now in a position to estimate (3.30).

Lemma 3.2.6 Suppose That ε ∈ (0, 1
10 ) and C > 120. Then we have

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, F̃C

)
= O
(
φ(n)(log n)−

1
2 log log n

)
.

(3.41)

Proof By Lemma 3.2.5, in order to derive (3.41), we have only to show

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, F̃C , Ãi for all 1 ≤ i ≤ C − 1
)

= O
(
φ(n)(log n)−

1
2 log log n

)
. (3.42)

Choose i0 ∈ {2, 3, . . . ,C − 3} be a number satisfying that

ti0+1 − ti0 = min
2≤i≤C−3

(ti+1 − ti ).

By definition of I [see (3.15)], we have r := ti0+1 − ti0 ≥ n. Assume that Ãi holds
for all 1 ≤ i ≤ C − 1. Then there exist

T 1 ∈ [t1, t1 + 3an,−1]
T 2 ∈ [ti0 , ti0 + 3an,−1]
T 3 ∈ [ti0+1 − 3an,−1, ti0+1]
T 4 ∈ [tC−1 − 3an,−1, tC−1]

such that T 1, . . . , T 4 are local cut-times between ān and tC − ān . Furthermore, by
modifying the proof of Lemma 3.2.3, we have

P
(

F̃C , S[ti0 , ti0+1] ∩ (S[0, ān] ∪ S[tC − ān,∞)) �= ∅
)

= O
(
(φ(n))2

)
. (3.43)

Therefore, if we set

G+ = GT 2,T 3 G− = G0,T 2 ∪ GT 3,∞,

then by (3.43), we may assume that

G+ ∩ G− = {ST 2 , ST 3}. (3.44)

Hence, by the parallel law for electrical resistance,

RG(ST 2 , ST 3) = RG+(ST 2 , ST 3)RG−(ST 2 , ST 3)

RG+(ST 2 , ST 3)+ RG−(ST 2 , ST 3)
. (3.45)
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Note that a resistance of unit 1 is put on each edge of the graph G+ and G−. By
definition of ti0 , we have

(T 2 − T 1)+ (T 4 − T 3) ≥ (ti0 − t2)+ (tC−2 − ti0+1) ≥ (C − 5)r.

Hence, because of the assumption C ≥ 15,

(T 2 − T 1) ∨ (T 4 − T 3) ≥ C

3
r.

Without loss of generality, we may assume (T 2 −T 1) ≥ C
3 r . We are now in a position

to derive (3.42). By the above consideration, all we need is to show

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, F̃C , Ãi for all 1

≤ i ≤ C − 1,G+ ∩ G− = {ST 2 , ST 3})

= O
(
φ(n)(log n)−

1
2 log log n

)
. (3.46)

Set

Ā = {RG+(ST 2 , ST 3) ≤ 2rψ(r), RG−(ST 1 , ST 2) ≥ C

6
rψ(r)}.

Then, on Ā, because of assumption C > 120,

RG+(ST 2 , ST 3) ≤ 1

10
RG−(ST 2 , ST 3).

Here we use the fact that ST 1 is a pivotal point on the graph G−, i.e.,

RG−(ST 2 , ST 3) = RG−(ST 2 , ST 1)+ RG−(ST 1, ST 3).

Hence,

RG(ST 2 , ST 3) = RG+(ST 2 , ST 3)RG−(ST 2 , ST 3)

RG+(ST 2 , ST 3)+ RG−(ST 2 , ST 3)

≥ RG+(ST 2 , ST 3)RG−(ST 2 , ST 3)
11
10 RG−(ST 2 , ST 3)

= 10

11
RG+(ST 2 , ST 3).

However, we are assuming

RG(0, Sti0
) ≤ εnψ(n) RG(0, Sti0+1) ≤ εnψ(n).

123



222 D. Shiraishi

Therefore, it follows from |T 2 − ti0 | ≤ 3an,−1 and |T 3 − ti0+1| ≤ 3an,−1 that

RG(ST 2 , ST 3) ≤ 3εnψ(n),

and

RG+(ST 2 , ST 3) ≤ 33

10
εnψ(n) ≤ 4εnψ(n).

Again it follows from |T 2 − ti0 | ≤ 3an,−1 and |T 3 − ti0+1| ≤ 3an,−1 that

RGti0
,ti0+1

(Sti0
, Sti0+1) ≤ 5εnψ(n). (3.47)

If ε < 1
10 , then by (3.47), Lemma 2.3.1 and the similar arguments to that in the proof

of Lemma 3.2.3, we have

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, F̃C , Ãi for all 1 ≤ i ≤ C − 1, Ā
)

≤ P
(

F̃C , RGti0
,ti0+1

(Sti0
, Sti0+1) ≤ 5εnψ(n)

)

= O
(
φ(n)(log n)−

1
2 log log n

)
. (3.48)

Similar argument as in (3.22) gives that

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, F̃C , Ãi for all 1 ≤ i ≤ C − 1, Āc
)

= O
(
φ(n)(log n)−

1
2 log log n

)
. (3.49)

So, we get (3.46). ��
By Lemma 3.2.4 and Lemma 3.2.6, we can conclude that if ε ∈ (0, 1

10 ) and C > 120
then

(the first term of (3.27)) = O
(
φ(n)(log n)−

1
2 log log n

)
. (3.50)

Hence, it remains to estimate the second term of (3.27).

Lemma 3.2.7 Let ε ∈ (0, 1
12

)
and C > 120. Then we have

P
(
RG(0, Sti )≤εnψ(n) for all 1≤ i ≤ C, Z = 0

) = O
(
φ(n)(log n)−

1
2 log log n

)
.

(3.51)

Proof Let ε ∈ (0, 1
12 ) and C > 120. Assume that Z = 0. Then

S[0, ān] ∩ S[ti − ān, ti + ān] = ∅ for all i = 1, 2, . . . ,C.

123



Exact value of the resistance exponent 223

If S[0, ān] ∩ S[ti + ān, ti+1 − ān] �= ∅ for some i , then the situation boils down to the
same case as Z = 1. Therefore,

P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, Z = 0

)

≤ P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅)

+ P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[ti + ān, ti+1 − ān] �= ∅ for some i

)

= P
(
RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅)

+ O
(
φ(n)(log n)−

1
2 log log n

)
.

Let

I ′
l =

⎧
⎪⎨

⎪⎩

1{l is a local cut-time between 0 and 3ān+t1
4 } if l ∈ [ān, ān + an,−6]

1{l is a local cut-time between 3ān+t1
4 and ān+3t1

4 } if l ∈ [ ān+t1
2 − an,−6,

ān+t1
2 ]

1{l is a local cut-time between ān+3t1
4 and ∞} if l ∈ [t1 − an,−6, t1],

and

I ′
(1) =

ān+an,−6∑

l=ān

I ′
l , I ′

(2) =
ān+t1

2∑

l= ān+t1
2 −an,−6

I ′
l , I ′

(3) =
t1∑

l=t1−an,−6

I ′
l .

By [6], Lemma 7.7.4 and independence,

P
(

I ′
(i) = I ′

( j) = 0 for some 1 ≤ i < j ≤ 3
)

= O
(
(φ(n))2

)
.

Hence, we have only to estimate

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(1) ≥ 1, I ′

(2) ≥ 1
)

+P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(2) ≥ 1, I ′

(3) ≥ 1
)

+P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(3) ≥ 1, I ′

(1) ≥ 1
)
.

We will only consider the first term of the above. (The other terms are estimated sim-
ilarly.) Assume I ′

(1) ≥ 1, I ′
(2) ≥ 1. If there is no global cut-time in [ān, ān + an,−6],

then it is easy to see that

S[0, ān] ∩ S

[
3ān + t1

4
,∞
)

�= ∅.

However, by the same proof as that of the case for Z = 1, we have the following.

P

(

RG
(
0, Sti

) ≤ εnψ(n) for all 1 ≤ i ≤ C, S [0, ān] ∩ S

[
3ān + t1

4
,∞
)

�= ∅.
)

= O
(
φ(n)(log n)−

1
2 log log n

)
.
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Hence, we can assume that there is a global cut-time in both [ān, ān − an,−6] and[
ān+t1

2 − an,−6,
ān+t1

2

]
. (Note that if there is no global cut-time in

[ ān+t1
2 − an,−6,

ān+t1
2

]
, then we return to the case Z = 1 again.) So let

T ∈ [ān, ān + an,−6
]

T ′ ∈
[

ān + t1
2

− an,−6,
ān + t1

2

]

be global cut-times. Since

RG(0, St1) ≤ εnψ(n),

we have

RG0,T (0, ST )+ RGT,T ′ (ST , ST ′)+ RGT ′,∞
(
ST ′ , St1

) ≤ εnψ(n).

It follows from |T − ān| ≤ an,−6 and |T ′ − ān+t1
2 | ≤ bn,−6 that

RG0,ān

(
0, Sān

)+ RG
ān ,

ān+t1
2

(
Sān , S ān+t1

2

)
+ RG ān+t1

2 ,∞

(
S ān+t1

2
, St1

)
≤ 2εnψ(n).

Therefore, if we choose ε ∈ (0, 1
12

)
, then by Lemma 2.3.1 and independence, we can

conclude

P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(1) ≥ 1, I ′

(2) ≥ 1
)

≤ P

(

RG0,ān
(0, Sān )+ RG

ān ,
ān+t1

2

(Sān , S ān+t1
2
)+ RG ān+t1

2 ,∞
(S ān+t1

2
, St1) ≤ 2εnψ(n)

)

+P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(1) ≥ 1, I ′

(2) ≥ 1,
[
ān, ān + an,−6

]
does not have a global cut-time

)

+P
(

RG(0, Sti ) ≤ εnψ(n) for all 1 ≤ i ≤ C, S[0, ān] ∩ S[t1,∞) = ∅, I ′
(1) ≥ 1, I ′

(2) ≥ 1,
[

ān + t1
2

− an,−6,
ān + t1

2

]

does not have a global cut-time

)

= O
(
φ(n)(log n)− 1

2 log log n
)
.

This gives the result. ��
Proof of Proposition 3.1.1 By Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3, (3.50) and
Lemma 3.2.7, if we fix ε ∈ (0, 1

12 ) and C > 120, then

P
(
Ȳ ≥ 2Cn

) = O
(
(log n)−

3
2 (log log n)α

)
,

for some α > 0. This gives the proposition. ��
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4 Proof of Theorem 1.2.3

4.1 Preparations

We will prove Theorem 1.2.3 in this section. To do this, we first show the following
easy lemma.

Lemma 4.1.1 Assume thatψ satisfies the following condition: for all ε ∈ (0, 1), there
exists N = Nε ∈ N such that

ψ(2n) ≤ ψ(n)

(

1 − log 2

2 log n
(1 − ε)

)

for all n ≥ N . (4.1)

Then it follows that for all ε ∈ (0, 1), we have

lim sup
n→∞

(log n)
1
2 −εψ(n) = 0. (4.2)

Proof Fix ε ∈ (0, 1) and assume (4.1). Let g(k) = logψ(2k N ). Then by (4.1),

g(k + 1) ≤ g(k)+ log

(

1 − 1 − ε

2(k + log2 N )

)

.

Therefore,

g(k) ≤ g(1)+
k−1∑

j=1
log
(

1 − 1−ε
2( j+log2 N )

)
.

If we choose M ∈ N satisfying that

log

(

1 − 1 − ε
2

2( j + log2 N )

)

≤ −1 − 2ε
3

2 j
for all j ≥ M,

then we have

g(k) ≤ −1

2

(

1 − 2ε

3

)

(log k − log M)+ g(1) for all k > M.

Hence, it follows that for large k,

(log k)−1g(k) ≤ −1

2

(

1 − 3ε

4

)

,

and

ψ(2k N ) ≤ k− 1
2 + 3ε

8 ≤
(

log 2k N
)− 1

2 + 3ε
8

for all k ≥ K ,
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for some K ∈ N. Let n ≥ 2K N . Then there exists k ≥ K such that 2k N ≤ n < 2k+1 N .
It follows from the fact ψ is slowly varying that

ψ(n) ≤ cψ(2k N ) ≤ c̃(log n)−
1
2 + 3ε

8 .

This implies (4.2). ��
Remark 4.1.2 Note that Lemma 4.1.1 is obtained by modifying Proposition 4.4.2 in
[6]. If we get (4.2) for all ε ∈ (0, 1), then by (2.4), we can conclude that

ψ(n) ≈ (log n)−
1
2 .

Hence, in this section, we will derive (4.1) for all ε ∈ (0, 1).

4.2 Derivation of the resistance exponent

Fix ε ∈ (0, 1). In this subsection, we will show (4.1). Sinceψ(n) ∼ ψ(n) (see Lemma
2.1.1), it suffices to show that there exists N ∈ N such that

ψ(2n) ≤ ψ(n)

(

1 − log 2

2 log n
(1 − ε)

)

for all n ≥ N . (4.3)

(Indeed, once we get (4.3), the same argument as the proof of Lemma 4.1.1 gives that

ψ(n) ≈ (log n)− 1
2 and we have the theorem.) Note that

ψ(n)− ψ(2n) = E
(
RG0,n (0, Sn)+ RGn,2n (Sn, S2n)− RG0,2n (0, S2n)

)

2n
. (4.4)

So, to get (4.3), we have to give a sharp lower bound of the right-hand side of (4.4).
Let

R1
n = RG0,n (0, Sn), R2

n = RGn,2n (Sn, S2n).

Let

N := � n

an,−2
	 + 1.

We set

I 1
j = [n − jan,−2, n − ( j − 1)an,−2

]
, for j = 1, · · · , N − 1

I 1
N = [0, n − (N − 1)an,−2

]
,

I 2
j = [n + ( j − 1)an,−2, n + jan,−2

]
, for j = 1, · · · , N − 1

I 2
N = [n + (N − 1)an,−2, 2n

]
.
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We say j and k intersect if

S[n − jan,−2, n − ( j − 1)an,−2] ∩ S[n + (k − 1)an,−2, n + kan,−2] �= ∅.

Let

L = max
1≤ j,k≤N ,

j and k intersect

( j + k),

2 ≤ l ≤ 2N , and 1 ≤ j ≤ l − 1. We define the following events.

A1 = A1
l = { j and l − j intersect}

A2 = A2
l = {L = l}

A3 = A3
l = {there is only one pair of ( j, k) which attains the maximum of L}

A4 = A4
l =
{

there is a local cut-time between 0 and 2n in I 1
j+1

}

A5 = A5
l =
{

there is a local cut-time between 0 and 2n in I 2
l− j+1

}

A6 = A6
l =
{

max
i,ĩ∈I 1

j−1∪I 1
j ∪I 1

j+1

RGi,ĩ
(Si , Sĩ ) ≤ 4an,−2ψ(n)

}

A7 = A7
l =
{

max
i,ĩ∈I 2

l− j−1∪I 2
l− j ∪I 2

l− j+1

RGi,ĩ
(Si , Sĩ ) ≤ 4an,−2ψ(n)

}

A8 = A8
l =
{

there is a local cut-time between 0 and n in I 1
j−1

}

A9 = A9
l =
{

there is a local cut-time between n and 2n in I 2
l− j−1

}

A10 = A10
l =
{

RG
t1j ,n

(
St1

j
, Sn

)
≥ (1 − ε) jan,−2ψ(n)

}

A11 = A11
l =
{

RG
n,t2l− j

(
Sn, St2

l− j

)
≥ (1 − ε)(l − j)an,−2ψ(n)

}

,

where t1
j = n − ( j − 1)an,−2 and t2

l− j = n + (l − j − 1)an,−2.

Lemma 4.2.1 Fix l and j . Then, on the event A1 ∩ A2 ∩ · · · ∩ A11,

R1
n + R2

n − R1
2n ≥ {(1 − ε)l − 16}an,−2ψ(n). (4.5)

Proof Assume A1 ∩ A2 ∩ · · · ∩ A11 and let

T 1 ∈ I 1
j+1, T 2 ∈ I 1

j−1, T 3 ∈ I 2
l− j−1, T 4 ∈ I 2

l− j+1
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be local cut-times in the events A4, A8, A9 and A5, respectively. Then

R1
n + R2

n − R1
2n

= RGT 2,n

(
ST 2 , Sn

)+ RGn,T 3

(
Sn, ST 3

)

+RGT 1,T 2

(
ST 1 , ST 2

)+ RGT 3,T 4

(
ST 3 , ST 4

)− RGT 1,T 4

(
ST 1 , ST 4

)

≥ RGT 2,n

(
ST 2 , Sn

)+ RGn,T 3

(
Sn, ST 3

)− RGT 1,T 4

(
ST 1 , ST 4

)

≥ RGT 2,n

(
ST 2 , Sn

)+ RGn,T 3

(
Sn, ST 3

)− 8an,−2ψ(n)

= RG
t1j ,n

(
St1

j
, Sn

)
+ RG

n,t2l− j

(
Sn, St2

l− j

)

−RG
t1j ,T

2

(
St1

j
, ST 2

)
− RG

T 3,t2l− j

(
ST 3 , St2

l− j

)
− 8an,−2ψ(n)

≥ RG
t1j ,n

(
St1

j
, Sn

)
+ RG

n,t2l− j

(
Sn, St2

l− j

)
− 16an,−2ψ(n)

≥ {(1 − ε)l − 16}an,−2ψ(n).

��
By Lemma 4.2.1,

E
(

R1
n + R2

n − R1
2n

)

=
2N∑

l=2
E
(
R1

n + R2
n − R1

2n; A2
)

≥
2N∑

l=2
E
(
R1

n + R2
n − R1

2n; A2 ∩ A3
)

≥
N∑

l=3

l−1∑

j=1
E
(
R1

n + R2
n − R1

2n; A1 ∩ A2 ∩ A3
)

+
2N∑

l=N+1

N∑

j=l−N
E
(
R1

n + R2
n − R1

2n; A1 ∩ A2 ∩ A3
)

≥
N∑

l=3

�(1−ε)l	∑

j=�εl	
E
(
R1

n + R2
n − R1

2n; A1 ∩ A2 ∩ A3
)

+
2N∑

l=�(1+ε)N	

N∑

j=l−N
E
(
R1

n + R2
n − R1

2n; A1 ∩ A2 ∩ A3
)

≥
N∑

l=3

�(1−ε)l	∑

j=�εl	
{(1 − ε)l − 16}an,−2ψ(n)P

(
A1 ∩ · · · ∩ A11

)

+
2N∑

l=�(1+ε)N	

N∑

j=l−N
{(1 − ε)l − 16}an,−2ψ(n)P

(
A1 ∩ · · · ∩ A11

)
. (4.6)
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Lemma 4.2.2 There exists c = cε > 0 such that

P
(

A1 ∩ · · · ∩ A11
)

≥ P
(

A1
) (

1 − c(log n)−
1
2 (log log n)α

)

for 3 ≤ l ≤ N , �εl	 ≤ j ≤ �(1 − ε)l	, (4.7)

and

P
(

A1 ∩ · · · ∩ A11
)

≥ P
(

A1
) (

1 − c(log n)−
1
2 (log log n)α

)

for �(1 + ε)N	 ≤ l ≤ 2N , l − N ≤ j ≤ N , (4.8)

for some α > 0.

Proof We will only prove (4.7). ((4.8) is proved similarly.) It is known that

P
(

A1
)

∼ 1

2
(log n)−1l−2 (4.9)

if ( j, l − j) �= (1, 1). (Note that the asymptotic convergence is uniform for l. See the
proof of Theorem 4.1 (a) in [5], for example.) Let 3 ≤ l ≤ N , �εl	 ≤ j ≤ �(1 − ε)l	,
and k = l − j . To prove (4.7), we will show

P
(

A1 ∩ · · · ∩ Ai
)

≥ P
(

A1 ∩ · · · ∩ Ai−1
)

− cP
(

A1
)
(log n)−

1
2 (log log n)α.

(4.10)

for all i = 2, 3, . . . , 11. We will only consider (4.10) for i = 11 since the case i = 11
is the most complicated and the other cases can be proved similarly. Let S1, S2 be
independent simple random walks starting from the origin in Z

4. Note that

P
(

A1 ∩
(

A11
)c) = P

(
S1[0, an,−2] ∩ S2 [(l − 2)an,−2, (l − 1)an,−2

] �= ∅,

RG2
0,(k−1)an,−2

(0, S2
(k−1)an,−2

) < (1 − ε)kan,−2ψ(n)

)

,

where G2 denotes the random walk trace for S2. Define the event

B̄ =
{ ∣

∣S1
m

∣
∣ ≤ 1

2
√

an,−2(log log n)2, for all m = 0, 1, · · · , an,−2

|S2
m+(l−2)an,−2

− S2
(l−2)an,−2

| ≤ 1
2
√

an,−2(log log n)2, for all m = 0, 1, · · · , an,−2

}

.
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By the large deviation estimate [see [6, Lemma 1.5.1], for example), we have P(B̄c) ≤
(log n)−10. So

P
(

S1 [0, an,−2
] ∩ S2 [(l − 2)an,−2, (l − 1)an,−2

] �= ∅,

RG2
0,(k−1)an,−2

(
0, S2

(k−1)an,−2

)
< (1 − ε)kan,−2ψ(n)

)

≤ P
(

S1 [0, an,−2
] ∩ S2 [(l − 2)an,−2, (l − 1)an,−2

] �= ∅,

RG2
0,(k−1)an,−2

(
0, S2

(k−1)an,−2

)
< (1 − ε)kan,−2ψ(n), B̄

)

+ (log n)−10

:= I + (log n)−10.

Assume that

S1 [0, an,−2
] ∩ S2 [(l − 2)an,−2, (l − 1)an,−2

] �= ∅ and B̄.

Then we have

|S2
(l−2)an,−2

| ≤ √
an,−2(log log n)2.

So,

I ≤ P
(

S1 [0, an,−2
] ∩ S2 [(l − 2)an,−2, (l − 1)an,−2

] �= ∅,

RG2
0,(k−1)an,−2

(
0, S2

(k−1)an,−2

)
< (1 − ε)kan,−2ψ(n), |S2

(l−2)an,−2
| ≤ √

an,−2(log log n)2
)

≤ cφ(n)P

(

RG2
0,(k−1)an,−2

(0, S2
(k−1)an,−2

)<(1 − ε)kan,−2ψ(n), |S2
(l−2)an,−2

|≤√
an,−2(log log n)2

)

+ c(log n)−6,

where the last inequality is obtained by the same argument as in (3.22).
Note that for any x ∈ Z

4,

Px
(
|S( j−1)an,−2 | ≤ √

an,−2(log log n)2
)

≤ c
1

(( j − 1)an,−2)2
(an,−2)

2(log log n)8

≤ c
1

j2 (log log n)8.

Hence, by the Markov property and Lemma 2.3.1,

P

(

RG2
0,(k−1)an,−2

(
0, S2

(k−1)an,−2

)
< (1 − ε)kan,−2ψ(n), |S2

(l−2)an,−2
| ≤ √

an,−2(log log n)2
)

≤ P

(

RG2
0,(k−1)an,−2

(0, S2
(k−1)an,−2

) < (1 − ε)kan,−2ψ(n)

)

c
1

j2 (log log n)8
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≤ cε
1

j2 (log n)−
1
2 (log log n)9

≤ cε
1

l2 (log n)−
1
2 (log log n)9,

where we used j ≥ �εl	 in the last inequality. Therefore, by (4.9),

P
(

A1 ∩ · · · ∩ A11
)

≥ P
(

A1 ∩ · · · ∩ A10
)

− P
(

A1 ∩ (A11)c
)

≥ P
(

A1 ∩ · · · ∩ A10
)

− cεφ(n)
1

l2 (log n)−
1
2 (log log n)9

−c(log n)−6−(log n)−10 ≥ P
(

A1∩· · ·∩ A10
)

−c̄εP
(

A1
)
(log n)−

1
2 (log log n)11.

This gives (4.10) for i = 11. ��
Proof of Theorem 1.2.3. As we mentioned before, we have only to show (4.3). By
(4.6), Lemma 4.2.2, (4.9) and N ∼ (log n)2,

E
(

R1
n + R2

n − R1
2n

)

≥
N∑

l=3

�(1−ε)l	∑

j=�εl	
{(1 − ε)l − 16}an,−2ψ(n)(1 − ε) 1

2 (log n)−1l−2
(

1 − c(log n)− 1
2 (log log n)α

)

+
2N∑

l=�(1+ε)N	

N∑

j=l−N
{(1 − ε)l − 16}an,−2ψ(n)(1 − ε) 1

2 (log n)−1l−2
(
1−c(log n)− 1

2 (log log n)α
)

≥
N∑

l=3
(1 − 6ε) 1

2 (log n)−1an,−2ψ(n)+
2N∑

l=�(1+ε)N	
(1 − 4ε)(2N − l)l−1 1

2 (log n)−1an,−2ψ(n)

≥ (1 − 7ε)
1

2
(log n)−1nψ(n)+ (1 − 6ε)n(log n)−1ψ(n)(log 2)− 1

2
(log n)−1nψ(n)

= (1 − 6ε)n(log n)−1ψ(n)(log 2)− 7ε
1

2
(log n)−1nψ(n)

≥ (1 − 20ε)n(log n)−1ψ(n) log 2,

for large n. Hence, by (4.4),

ψ(n)− ψ(2n) ≥ (1 − 20ε)(log n)−1ψ(n)
log 2

2
,

for large n. This implies (4.3). ��
Remark 4.2.3 By modifying the above arguments, it is not difficult to show that there
exists c > 0 such that

ψ(2n) ≥ ψ(n)
(

1 − c(log n)−1
)
, (4.11)

and it follows from (4.1) and (4.11) that

ψ(n2) � ψ(n). (4.12)
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