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Abstract We study the pointwise regularity properties of the Lévy fields introduced
by T. Mori; these fields are the most natural generalization of Lévy processes to
the multivariate setting. We determine their spectrum of singularities, and we show
that their Hölder singularity sets satisfy a large intersection property in the sense of
K. Falconer.
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1 Introduction

The determination of the uniform and pointwise regularity of stochastic processes has
been a longstanding issue, starting with the discovery of the uniform modulus of con-
tinuity of Brownian motion by Lévy and Wiener, the law of the iterated logarithm by
Khintchine and Kolmogorov, and the study of the irregularity of the Brownian paths
by Paley, Wiener and Zygmund, as well as Dvoretzky.
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46 A. Durand, S. Jaffard

Remarkably, a connexion between stochastic processes and fractals was also first
established in the case of Brownian motion: slow points where the modulus of conti-
nuity is smaller than almost everywhere (the

√
log log(1/|t − t0|) term is replaced by

a constant a > 0), and fast points (where this term is replaced by a
√

log(1/|t − t0|))
were shown to occur on random fractal sets; the dimensions of these collections of
sets (indexed by the parameter a) were determined by E. Perkins and by S. Orey and
S.J. Taylor, respectively. This connexion did not remain confined to the specific case
of Brownian motion: in the mid 1980s, multifractal analysis was introduced in order
to propose a general framework for the study of the local variations of the regularity
of stochastic processes, using the mathematical tools supplied by fractal analysis. Let
us be more specific.

Definition 1 Let f : R
d → R be a locally bounded function, t0 ∈ R

d and α > 0.
The function f belongs to Cα(t0) if there exist C > 0 and a polynomial Pt0 of degree
less than α such that, for all t in a neighborhood of t0,

| f (t)− Pt0(t)| ≤ C‖t − t0‖α.

The Hölder exponent of f at t0 is

α f (t0) = sup
{
α ≥ 0 | f ∈ Cα(t0)

}
.

Note that α f takes values in [0,∞]. Multifractal analysis is concerned with the
determination of the Hausdorff dimension of the set of points where the Hölder expo-
nent takes a given value. Two collections of sets play a particular role: the iso-Hölder
sets of f , defined by

E f (h) =
{

t ∈ R
d | α f (t) = h

}
,

and the singularity sets E ′f (h) which consist of the points t where f is continuous
and satisfies α f (t) ≤ h. Note that, though these sets can be studied for any random
field, they are really pertinent only when the Hölder exponent is nonconstant (which
excludes for instance Brownian motion, where it takes everywhere the value 1/2).
If the Hölder exponent changes from point to point, one is interested in determining
the Hausdorff dimension of the iso-Hölder sets E f (h). The corresponding notion is
supplied by the local spectrum of singularities defined as follows.

Definition 2 Let f : Rd → R be a locally bounded function and let W be a nonempty
open subset of R

d . The local spectrum of singularities of f is

d f (h, W ) = dimH
(
E f (h) ∩W

)
,

where dimH denotes Hausdorff dimension (with the convention that dimH ∅ = −∞).

For many examples of random fields Y , the spectrum of singularities does not
depend on the particular region W that is considered, and is actually a deterministic
function. If such is the case, i.e. if there is a deterministic function dY (h) such that
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Multifractal analysis of Lévy fields 47

a.s. ∀h ∈ [0,∞] ∀W �= ∅ open dY (h, W ) = dY (h),

the random field Y is called homogeneous (following the terminology of [25]). In that
case, the support of the spectrum is the set of h ∈ [0,∞] such that dY (h) ≥ 0 or,
equivalently, such that α f (t) = h for some t ∈ R

d . A spectrum is degenerate if its
support is reduced to a single point. This means that the Hölder exponent takes the
same value everywhere (as is the case for Brownian motion). In that situation, the field
is called a mono-Hölder field. Otherwise, it is called multifractal.

As shown in [18,24], Lévy processes supply examples of multifractal processes
which are homogeneous. Note that this is not the case for all classical random pro-
cesses, see e.g. Barral et al. [7] for examples of Markov processes whose spectrum
is random and depends on the region, or Durand [15] for a model of wavelet series
based on a tree-indexed Markov chain whose spectrum is random too. Moreover,
though many processes with a fairly general spectrum have been constructed (such
as the random processes built by Ayache et al. [6]), the only natural large class of
homogeneous random processes which has been studied is that of Lévy processes.

The introduction of multifractal analysis was motivated by classification and model
selection issues in signal processing (the analysis of one-dimensional turbulence data),
and its fast development was boosted by its pertinence for an unexpectedly large num-
ber of applications. Recent developments in image processing have stimulated similar
needs in 2D, and classification tools based on multifractal parameters have recently
proven to be promising directions of research [43]. These results motivate the inves-
tigation of random fields that could be used in image modeling, and the study of their
multifractal properties (and in particular for porous media, medical imaging, etc.).
Since Lévy processes were the first class of processes proven to be multifractal, and
as they play an important role in both theoretical probability and modeling, it is very
natural to wonder if their multivariate extensions display similar properties.

We shall prove that it is the case for the fields that we study in this paper, which are
multivariate analogs of Lévy processes that jump along random hyperplanes. Due to
that very anisotropic situation, new ubiquity techniques will have to be employed in
order to perform their multifractal analysis. This strongly differs from other situations
where geometry does not play any specific role and the results in the one-dimensional
case may straightforwardly be extended to higher dimensions. Such is the case for
several multifractal models of random wavelet series [3,4,18].

Two main extensions of Lévy processes to the multivariate setting have been pro-
posed. The first one is that of Adler et al. [1], which finds its origins in the work of
Straf [41], and whose regularity was studied by Vares [42] and Lagaize [28] in the
two-dimensional case. The second extension is due to Mori [33], and covers the fol-
lowing important particular cases. In the Gaussian case, the Lévy Brownian motion
[30] is the first instance of Lévy field (in the sense of Mori) which has been considered.
This field is isotropic, but its geometric construction, due to Chentsov [14], may easily
be extended to the anisotropic setting. Subsequently, Chentsov’s construction moti-
vated the introduction of a class of isotropic and stable Lévy fields, which also satisfy
a remarkable selfsimilarity property. These fields, usually termed as Lévy-Chentsov
fields, are discussed in Samorodnitsky and Taqqu’s book [37], and were studied by
Shieh [39], who established their local boundedness and the existence of local times.
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In order to compare the relevance of these models, we propose two natural criteria for
selecting a multivariate extension of Lévy processes:

– Stability under linear transforms of coordinates: If M is an invertible (deter-
ministic) linear transform, and Y (t) is a Lévy field, then Y (Mt) should also be a
Lévy field. In particular, the coordinate axes do not play any specific role in the
construction or the analysis of these fields.

– Stability under trace: The restriction of a d-dimensional Lévy field to any
d ′-dimensional linear subspace is a d ′-dimensional Lévy field. Note that the first
requirement implies that we do not need to specify a particular system of coordi-
nates on that subspace. Furthermore, restrictions to arbitrary half lines are Lévy
processes.

Among the aforementioned extensions, Mori’s is the only one that fulfills these two
criteria. It turns out that Mori’s definition of a Lévy field is also a natural multivariate
analog of the definition of a Lévy process. Indeed, recall that a stochastic process
indexed by [0,∞) is a Lévy process if it satisfies the following properties: it has sta-
tionary and independent increments, it is stochastically continuous, and it vanishes at
zero almost surely, see e.g. [12,38]. This implies in particular that the one-dimensional
marginals are infinitely divisible.

Definition 3 A random field Y = {Y (t), t ∈ R
d} is a Lévy field (in the sense of Mori)

if the following conditions are satisfied:

1. It is stochastically continuous and vanishes at zero almost surely.

2. It has stationary increments, i.e. Y (a + · )− Y (a)
d= Y for any a ∈ R

d .
3. Its finite-dimensional marginals are infinitely divisible.
4. For any a, b ∈ R

d , the increments of {Y (a + λb), λ ∈ R} are independent.

In the previous definition,
d= stands for equality of the finite dimensional distribu-

tions. It is easy to see that for any a, b ∈ R
d , the process {Y (a + λb)− Y (a), λ ≥ 0}

has stationary and independent increments, is stochastically continuous, and vanishes
at zero almost surely, thereby being a Lévy process. More generally, it is clear that the
two stability requirements listed above are satisfied.

2 Main results

2.1 Representation of Lévy fields

Mori established a remarkable decomposition of Lévy fields into three parts which is
similar to the Lévy-Itō decomposition of a Lévy process into a linear drift, a Brownian
motion, and a jump component controlled by the Lévy measure, see e.g. [38, Chap. 4].
In the d-dimensional case, the three components are the following:

1. A linear drift, that is, a mapping of the form t → 〈a, t〉, where a is a deterministic
vector and 〈·, ·〉 denotes the standard inner product in R

d .
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Multifractal analysis of Lévy fields 49

2. A Gaussian field Bμ = {Bμ(t), t ∈ R
d} that depends on a finite nonnegative

symmetric Borel measure μ defined on the unit sphere S
d−1 of R

d . Here, symmet-
ric means invariant under the mapping s → −s. The construction of Bμ is detailed
in Sect. 3. Note that Bμ is almost surely constant equal to zero when μ = 0.

3. A jump field Lν = {Lν(t), t ∈ R
d}. Recall that the jump component of a Lévy

process is a sum of independent compensated compound Poisson processes; the
structure is the same in the multivariate setting, except that Poisson processes, which
jump at points, are replaced by random fields which jump along Poisson distributed
hyperplanes. Their distribution is described by a d-dimensional analog of the Lévy
measure, namely, a nonnegative Borel measure ν defined on S

d−1×R
∗, where R

∗
means R\{0}. The measure ν is symmetric, i.e. invariant under (s,x) → (−s,−x),
and

∫

s ∈ S
d−1

x ∈ R
∗

(1 ∧ x2) ν(ds, dx) <∞, (1)

where ∧ stands for minimum. Intuitively, ν(ds, dx) describes the amount of
hyperplanes orthogonal to s where a jump of size x occurs. In particular, the jump
field Lν is almost surely zero everywhere when ν = 0. The construction of Lν is
detailed in Sect. 4.

Theorem 1 (Mori) Every Lévy field Y = {Y (t), t ∈ R
d} may be represented in the

following manner:

Y
d= 〈a, ·〉 + Bμ + Lν,

where a ∈ R
d , μ is a finite symmetric measure on S

d−1, and ν is a symmetric measure
on S

d−1 × R
∗ satisfying (1). Moreover, Bμ and Lν are independent and the triple

(a, μ, ν) is uniquely determined by the field Y .

Due to Theorem 1, studying the regularity of a Lévy field reduces to analyzing each
of these three components, and then to understanding what happens when combining
them. To begin with, note that linear drifts are C∞ and thus play no role in our analysis.

2.2 Regularity of the Gaussian component

Our main result on the regularity of the Gaussian field Bμ is the next statement.

Theorem 2 Let μ be a finite symmetric measure on S
d−1 such that μ �= 0. Then, Bμ

is a homogeneous mono-Hölder field and

a.s. ∀t ∈ R
d αBμ(t) = 1/2.

This theorem is in fact a consequence of two slightly more precise results on the
pointwise modulus of continuity of Bμ, namely, Propositions 2 and 3 below. Their
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proofs are given in Sect. 5 and rely on standard techniques for studying the oscillations
of Gaussian random fields.

2.3 Regularity of the jump component

Precise results on the size of the iso-Hölder sets of Lν are detailed in Sect. 6. In order
to give a first insight into them, let us single out a representative consequence: Theo-
rem 3 below, which yields the spectrum of singularities of Lν . Its statement involves
an index βν associated with ν and holds under an admissibility condition bearing on
that measure.

Definition 4 Let ν be a symmetric measure on S
d−1 × R

∗ satisfying (1). The index
of ν is

βν = inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ ≥ 0

∣
∣
∣
∣

∫

s ∈ S
d−1

x ∈ (0, 1]

xγ ν(ds, dx) <∞

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2)

For any integer j ≥ 1, let ν j = ν(Sd−1 × (2− j , 2− j+1]); ν is admissible if

χν =
∞∑

j=1

2− j ( jν j )
1/2 <∞. (3)

The index βν is the d-dimensional analog of the index that Blumenthal and Getoor
associated to a Lévy process [13, Definition 2.1]; note that (1) implies that βν ∈ [0, 2].
We shall almost always assume below that the measure ν is admissible. A similar
assumption had been made in [24]. This condition is slightly stronger than (1), which
ensures the existence of Lν and amounts to the finiteness of

∑
2−2 jν j . Actually,

assuming (3) is a mild restriction since, for instance, every measure ν with index less
than two is admissible.

Theorem 3 Let ν be an admissible measure with βν > 0. Then, Lν is a homogeneous
multifractal field and with probability one,

∀h ∈ [0,∞] ∀W �= ∅ open dLν (h, W ) =
{

d − 1+ βνh if h ≤ 1/βν

−∞ if h > 1/βν.

This theorem is a straightforward consequence of Proposition 4 and Corollary 2
below. As well as the results of Sect. 6, it covers the isotropic and stable case of the
Lévy-Chentsov random fields [37], for which ν(ds, dx) = σ(ds)dx/|x|α+1 where
α ∈ (0, 2) and σ denotes the uniform measure on S

d−1. In that situation, βν = α.
Contrary to what the hypothesis of Theorem 3 may suggest, the analysis developed

in Sect. 6 also includes the case in which βν = 0. In particular, we shall discuss
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Multifractal analysis of Lévy fields 51

the regularity of compound Poisson fields (multivariate analogs of compound Pois-
son processes), for which ν has finite total mass. In that situation, the field is not
homogeneous. Indeed, locally, the field jumps on at most finitely many hyperplanes,
thereby being C∞ except on a set of dimension d − 1 where its Hölder exponent
vanishes, see Proposition 5 for a precise statement.

2.4 Spectrum of singularities of a general Lévy field

We call a Lévy field canonical if it is of the form Ya,μ,ν = 〈a, ·〉 + Bμ + Lν for some
a ∈ R

d , some finite symmetric measure μ on S
d−1, and some symmetric measure ν

on S
d−1 × R

∗ satisfying (1). By virtue of Theorem 1, every Lévy field has the same
finite-dimensional distributions as a canonical one. In view of Definition 4, we call
βν the index of Ya,μ,ν , and we call that field admissible if ν is admissible. Moreover,
Ya,μ,ν is said to have a Gaussian component if and only if μ �= 0.

We show in Sect. 7 that the Hölder exponent of Ya,μ,ν is everywhere the mini-
mum of that of its components Bμ and Lν . In view of Theorems 2 and 3, this leads
immediately to the next statement. This approach also easily enables one to deduce
comparable results for the cases that are treated in Sect. 6 but not covered by Theo-
rem 3. For instance, one could easily infer the spectrum of singularities of a canonical
Lévy field whose jump component is a compound Poisson field.

Corollary 1 Let Y be an admissible canonical Lévy field with index β > 0. Then, Y
is homogeneous. Moreover,

– if Y has no Gaussian component, then with probability one,

∀h ∈ [0,∞] ∀W �= ∅ open dY (h, W ) =
{

d − 1+ βh if h ≤ 1/β

−∞ if h > 1/β;
– if Y has a Gaussian component, then with probability one,

∀h ∈ [0,∞] ∀W �= ∅ open dY (h, W ) =
⎧
⎨

⎩

d − 1+ βh if h < 1/2
d if h = 1/2
−∞ if h > 1/2.

As expected, when d = 1, the previous result boils down to [24, Theorem 1] which
gives the spectrum of singularities of a Lévy process.

Remark 1 The notion of pointwise regularity given in Definition 1 does not take into
account directional regularity but yields the worst possible regularity in all directions.
Therefore, the results obtained in this paper do not take into account possible direc-
tional irregularity phenomena. However, such phenomena are to be expected in the
case of Lévy fields. Indeed, given that they display jumps along hyperplanes, they
have, by construction, a very anisotropic nature. Therefore, it would be of great inter-
est to perform a multifractal analysis of these fields using a more flexible notion of
pointwise smoothness, which can take directionality into account (see e.g. [10,26] for
appropriate definitions).
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2.5 Large intersection properties and ubiquity

We will not restrict our study to the determination of the Hausdorff dimension of the
random sets of points related with the definition of Hölder regularity, but we will
also investigate some of their geometric properties. It turns out that, rather than the
iso-Hölder sets, the singularity sets mentioned in Sect. 1 display the most striking
features. We shall show in Sect. 6.3 that the singularity sets of the jump component
Lν satisfy a remarkable counterintuitive property introduced by Falconer [21]: they
fall in the category of sets with large intersection. Recall that the intersection of two
subsets of R

d with dimension d1 and d2, respectively, is usually expected to be equal
to d1 + d2 − d (the codimensions add up), as in the case of affine subspaces, see [22,
Chap. 8] for precise statements. Sets with large intersection disprove this heuristic in
a striking way: their size properties are not altered by taking countable intersection.
Indeed, the Hausdorff dimension of the intersection of countably many sets with large
intersection is equal to the infimum of their Hausdorff dimensions. Sets with large
intersection play a prominent role in metric number theory (Diophantine approxi-
mation) and dynamical systems, see e.g. [16,17,21] and references therein. In the
context of probability, they are relevant to the multifractal analysis of random wavelet
series [4,15], as well as the study of random coverings of the circle [19]. Durand [18]
also proved that the singularity sets of Lévy processes are sets with large intersection.
In all these situations, large intersection properties arise because the sets under study
are derived from an underlying ubiquitous system. It is also the case here, and our
proofs will require new extensions of ubiquity (see Theorem 7 below and its proof).
Besides the aforementioned papers, we also refer to [8,9,11] for important results on
ubiquity and its applications.

2.6 Behavior of traces

An important and difficult subject of investigation is to understand how the multifrac-
tal properties of a field and its traces on linear subspaces are related, see e.g. [5]. This
question initially came up in the context of the analysis of turbulence: the only high
precision experimental data available are one-dimensional cuts and the challenge is to
infer from these cuts information about the multifractal properties of the whole field.
In general, it is expected that the spectrum of the trace is the initial spectrum low-
ered by the codimension of the subspace (see (4) below) and the parts which become
negative are set to −∞. Lévy fields provide a case study of that effect, because the
characteristic parameters of their traces are easy to obtain.

To be more specific, let e = (e1, . . . , ed ′) be an arbitrary orthonormal set of vectors
of R

d , with 1 ≤ d ′ ≤ d, and let Ya,ν,μ denote a canonical Lévy field. Then, the random
field Y e

a,ν,μ defined by

∀t1, . . . , td ′ ∈ R
d ′ Y e

a,ν,μ(t1, . . . , td ′) = Ya,ν,μ(t1e1 + · · · + td ′ed ′)

is a canonical Lévy field indexed by R
d ′ whose characteristic triple (ae, μe, νe) may

be deduced from (a, μ, ν) with the help of the mapping pe : Rd → R
d ′ defined by
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pe(t) = (〈t, e1〉, . . . , 〈t, ed ′ 〉) for any t ∈ R
d . To be specific, ae = pe(a), the measure

μe is the image under s → pe(s)/‖pe(s)‖ of ‖pe(s)‖μ(ds), and the measure νe is
the image under (s,x) → (pe(s)/‖pe(s)‖,x) of ‖pe(s)‖ ν(ds, dx). In particular, the
field Y e

a,ν,μ has no Gaussian component if and only if μ is supported in the orthogonal
complement of the linear span of e. Moreover, νe is admissible whenever ν is, and the
index of νe is at most the index of ν.

In the isotropic case, for which ν is the product of the uniform measure on S
d−1

and a given measure on R
∗, the indices of νe and ν coincide, regardless of the choice

of e. It follows from Corollary 1 that, as expected,

dY e
a,ν,μ
= dYa,ν,μ − (d − d ′). (4)

However, for appropriate anisotropic choices of the measure ν, one may obtain a whole
range of values for the index βνe . Our results then lead to a whole variety of spectra
for Y e

a,ν,μ, depending on the choice of the directions for the trace.

2.7 Roadmap

The paper is organized as follows. In Sects. 3 and 4, we detail the construction of the
two main components appearing in Mori’s decompositon of Lévy fields: the Gaussian
part and the jump part. We will also derive some basic properties which will be useful
for their multifractal analysis.

Section 5 is devoted to the proof of Theorem 2, according to which the Gaussian
part has everywhere the Hölder exponent 1/2. Precise results on the size (in terms of
Hausdorff measures, Hausdorff dimension and packing dimension) and large intersec-
tion properties of the iso-Hölder and the singularity sets of the jump part are stated in
Sect. 6. These results lead to Theorem 3 above. In Sect. 7, we explain how the results
on the Gaussian and the jump components may be combined to obtain the pointwise
regularity of a general canonical Lévy field.

The rest of the paper is devoted to establishing the results of Sect. 6. The structure
of the proof is described in Sect. 8; we present there the required tools, specifically, a
precise knowledge of the location of the singularities of the jump part, and a descrip-
tion of the size and large intersection properties of the set of points approximated at a
certain rate by random hyperplanes that are distributed in a Poissonian way. The first
tool is detailed in Sect. 9. The second one is presented in Sects. 10 and 11, and relies
heavily on ubiquity. Last, Sect. 12 details the proofs of the results of Sect. 6, and the
paper ends with the proof of a lemma which is called upon by the first ingredient, see
Sect. 13.

3 The Gaussian component

The Gaussian part of a Lévy field is a Gaussian field Bμ = {Bμ(t), t ∈ R
d} depending

on a finite nonnegative symmetric Borel measure μ defined on S
d−1. We now recall

the construction of such random fields Bμ, which is essentially due to Chentsov [14].
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Note that, in the isotropic case (where μ is the uniform measure on the sphere), one
basically ends up with a geometric representation of the Lévy Brownian motion [30].

3.1 Definition of Bμ

Let us consider the collection B0(Hd) of all relatively compact Borel subsets of the
product space Hd = (0,∞) × S

d−1, and the centered Gaussian process Bμ =
{Bμ(V ), V ∈ B0(Hd)} with covariance function given by

∀V, V ′ ∈ B0(Hd) E
[
Bμ(V )Bμ(V ′)

] =
∫

(ρ,s)∈Hd

1{(ρ,s)∈V∩V ′} dρ μ(ds).

Such a process Bμ is often referred to as a white noise, and may roughly be regarded
as a random signed measure on Hd (although strictly speaking it is not); the reason is
that for any disjoint sets V, V ′ ∈ B0(Hd), the two random variables Bμ(V ∪ V ′) and
Bμ(V )+Bμ(V ′) coincide almost surely.

At this point, it is useful to mention that B0(Hd) is a δ-ring, i.e. is closed under
symmetric difference and countable intersections. Moreover, there is a one-to-one
correspondence between the set Hd and the collection of all (d − 1)-dimensional
hyperplanes in R

d that do not contain the origin. Indeed, any such hyperplane h may
be represented in a unique manner by a pair (ρ, s) ∈ Hd since it coincides with the
set of all t ∈ R

d satisfying ρ = 〈s, t〉. In that correspondence, the hyperplanes that
separate a given point t ∈ R

d and the origin are those which are represented by a pair
that belongs to the set Vt ∈ B0(Hd) given by

Vt = {(ρ, s) ∈ Hd | ρ < 〈s, t〉}. (5)

The geometric intuition behind the definition of the random field Bμ is that its
value at a given point t is determined by the mass that Bμ assigns to the hyperplanes
separating t and the origin. Specifically,

∀t ∈ R
d Bμ(t) = Bμ(Vt ).

More generally, the increment of the field Bμ between two points in R
d is determined

by the mass of the hyperplanes that separate them.

3.2 Basic properties

It is quite straightforward to establish that Bμ falls in the category of Lévy fields. In
particular, checking the stationary increments property for Bμ calls upon the fact that
for any t, t ′ ∈ R

d , the random variable Bμ(t ′) − Bμ(t) is normally distributed with
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mean zero and variance

dμ(t, t ′)2 = E

[(
Bμ(t ′)− Bμ(t)

)2
]
= 1

2

∫

s∈Sd−1

|〈s, t ′ − t〉|μ(ds), (6)

which depends on t and t ′ only through t ′ − t . We refer to [33, Eq. (5.11)] for details
on how to derive the last equality in (6). In addition, it is customary to observe that dμ

defines a pseudometric on R
d which satisfies

∀t, t ′ ∈ R
d dμ(t, t ′) ≤ cμ‖t − t ′‖1/2, (7)

with cμ = (μ(Sd−1)/2)1/2, in view of (6) and the Cauchy-Schwarz inequality. Here
and below, ‖ · ‖ denotes the Euclidean norm. This observation implies that the field
Bμ is stochastically continuous, and also admits a separable modification, see e.g. [31,
Sect. 4]. For technical reasons that come into play in Sect. 5 (see the proof of Proposi-
tion 2), we need to work with such a modification. Therefore, we assume throughout
that the field Bμ is separable.

4 The jump component

As seen in Sect. 2.1, the jump component of a Lévy field is a random field Lν =
{Lν(t), t ∈ R

d} that depends on a nonnegative Borel measure ν on S
d−1×R

∗. Recall
that ν is symmetric and satisfies (1). Moreover, let L1+ be the Lebesgue measure on
(0,∞) and let N denote a Poisson random measure on (0,∞) × S

d−1 × R
∗ with

intensity L1+ ⊗ ν, see e.g. [34].

4.1 Multivariate compound Poisson processes

For any set V ∈ B0(Hd), let

Lν,0(V ) =
∫

(ρ, s) ∈ V
|x| > 1

x N(dρ, ds, dx).

In our situation, what plays the role of a compound Poisson process with jumps of
magnitude larger than one is the random field Lν,0 = {Lν,0(t), t ∈ R

d} defined
by Lν,0(t) = Lν,0(Vt ) for any t ∈ R

d , where Vt is given by (5). In fact, letting
(Pn, Sn, Xn), for n ≥ 1, denote the atoms of the Poisson measure N, we have

Lν,0(t) =
∞∑

n=1

Xn1{Pn<〈Sn ,t〉,|Xn |>1} (8)

for all t ∈ R
d . For any integer A ≥ 1, when t ranges over the closed ball with radius

A centered at the origin, the sum in (8) may actually be restricted to the integers
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n ≥ 1 satisfying both Pn < A and |Xn| > 1, which are almost surely finitely many.
Therefore, with probability one, Lν,0 is piecewise constant, with jumps of magnitude
|Xn| > 1 located on the hyperplanes Hn parametrized by (Pn, Sn) ∈ Hd , which are
given by

Hn =
{

t ∈ R
d | Pn = 〈Sn, t〉

}
. (9)

4.2 Multivariate compensated sums of jumps

For any integer j ≥ 1, the compensated sum corresponding to the jumps of magni-
tude in I j = (2− j , 2− j+1] is the field Lν, j = {Lν, j (t), t ∈ R

d} given by Lν, j (t) =
Lν, j (Vt ) for any t ∈ R

d , where

Lν, j (V ) =
∫

(ρ, s) ∈ V
|x| ∈ I j

x N(dρ, ds, dx)−
∫

(ρ, s) ∈ V
|x| ∈ I j

x dρ ν(ds, dx) (10)

for any Borel set V ∈ B0(Hd). Note that Lν, j (V ) may be regarded as an integral with
respect to the compensated Poisson measure N∗ = N − L1+ ⊗ ν associated with N.
In addition, due to the symmetry of ν, we have

Lν, j (t) =
∞∑

n=1

Xn1{Pn<〈Sn ,t〉,|Xn |∈I j } −
∫

s ∈ S
d−1

x ∈ I j

x〈s, t〉 ν(ds, dx) (11)

for all t ∈ R
d . The sum in (11) is almost surely piecewise constant with jumps of mag-

nitude |Xn| ∈ I j located on the hyperplanes Hn given by (9), while the compensating
integral depends linearly on t .

4.3 Definition and basic properties of Lν

The series formed by the compensated sums (10) for j ≥ 1 converges and yields a Lévy
field with jumps of magnitude at most one. As a matter of fact, for any V ∈ B0(Hd)

and j ≥ 1, Campbell’s theorem [27] ensures that the random variable Lν, j (V ) is
centered with variance

∫

(ρ, s) ∈ V
|x| ∈ I j

x2 dρ ν(ds, dx).

In view of (1), it follows that the series
∑

j≥1 Lν, j (V ) converges in L2. Thus, it con-
verges almost surely in view of the Lévy-Itō-Nisio theorem for sums of independent
random variables, see [29, p. 151]. This enables us to define
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Lν(V ) = Lν,0(V )+
∞∑

j=1

Lν, j (V ).

Then, Lν = {Lν(V ), V ∈ B0(Hd)} is an infinitely divisible random measure on Hd

with control measure ν, in the sense that it satisfies the next properties:

– it is independently scattered, i.e. for any disjoint sets V1, . . . , Vn ∈ B0(Hd), the
random variables Lν(V1), . . . ,Lν(Vn) are independent;

– it is σ -additive, i.e. for any sequence (Vn)n≥1 of disjoint sets in B0(Hd) whose union
belongs to B0(Hd), the series

∑
n≥1 Lν(Vn) converges almost surely and its sum is

equal to Lν(
⋃

n≥1 Vn);
– for every V ∈ B0(Hd), the characteristic function of Lν(V ) is given by

E[eiθLν (V )] = exp
∫

(ρ, s) ∈ V
x ∈ R

∗

(
eiθx − 1− iθx1{|x|≤1}

)
dρ ν(ds, dx). (12)

The first two properties directly follow from standard results on Poisson random mea-
sures, while the third one is a consequence of Campbell’s theorem, see [27,34].

Making use of these properties, it is straightforward to check that the random field
Lν = {Lν(t), t ∈ R

d} defined by

∀t ∈ R
d Lν(t) = Lν(Vt )

is a Lévy field, see [33] for details. Replacing the measure ν by appropriate restrictions,
this implies that the fields Lν, j defined above are of Lévy type as well.

4.4 Comments

Mori opted for 1/(1 + x2) instead of the cut-off function 1{|x|≤1} in (12). This leads
to a slightly different expression of the field Lν and of the drift coefficient a. Yet,
our choice clearly does not compromise the validity of Theorem 1 and does alter the
value of neither μ nor ν, given a Lévy field Y . Furthermore, Mori did not detail the
construction of the infinitely divisible random measure Lν on which the field Lν is
based. However, the proofs below call upon a precise knowledge of the jump structure
of Lν , and this explains why we chose above to present the construction of Lν in terms
of compensated Poisson integrals.

Furthermore, in order to study the regularity of Lν , we first need to make sure that
its Hölder exponent is a well-defined quantity. This boils down to verifying that the
sample functions of that field exist almost surely. In fact, as yet, Lν has been defined in
a pointwise manner only: we merely proved the almost sure convergence of the series∑

j≥0 Lν, j (t) defining Lν(t), for every fixed t ∈ R
d . This enables us to consider the

finite-dimensional marginals of the field Lν , which is sufficient to state Theorem 1.
However, in order to determine the value of the Hölder exponent αLν (t) at a given
point t ∈ R

d , we need to consider Lν everywhere near t . The next result indicates that
this is possible.
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Proposition 1 Let ν be an admissible measure. Then, with probability one,

∀t ∈ R
d Lν(t) =

∞∑

j=0

Lν, j (t) exists.

The proof of Proposition 1 is postponed to Sect. 12.1. It relies on precise estimates
of the increments of the fields Lν, j that are given by Lemma 2 below. It can also easily
be adapted to show that, when the measure ν is admissible, the sample paths of the
field Lν are almost surely locally bounded; this may be seen as an extension of [39,
Theorem 2.3], which concerns the Lévy-Chentsov fields only.

In what follows, whenever ν is supposed to be admissible, we implicitly work on
the almost sure event where the sample paths of the field Lν exist.

5 Regularity of the Gaussian component

This section is devoted to the proof of Theorem 2; we shall in fact establish two slightly
more precise results. First, the Hölder exponent of the random field Bμ is almost surely
at least 1/2 everywhere, as a direct consequence of the following result on its modulus
of continuity. Recall that cμ = (μ(Sd−1)/2)1/2.

Proposition 2 There exists a universal constant K > 0 such that for any finite sym-
metric measure μ on S

d−1 satisfying cμ > 0 and for any integer A ≥ 1,

a.s. lim sup
δ→0

1

(δ log(1/δ))1/2 sup
t, t ′ ∈ [−A, A]d
‖t − t ′‖ ≤ δ

|Bμ(t ′)− Bμ(t)| ≤ Kcμd1/2. (13)

Proof As mentioned in Sect. 3, the field Bμ is assumed to be separable. We may there-
fore apply [2, Theorem 1.3.5]. Accordingly, there exists a universal constant K > 0
such that with probability one, for η > 0 small enough,

sup
t, t ′ ∈ [−A, A]d
dμ(t, t ′) ≤ η

|Bμ(t ′)− Bμ(t)| ≤ K

η∫

0

(log N ([−A, A]d , dμ, ε))1/2dε. (14)

Here, N ([−A, A]d , dμ, ε) denotes the minimal number of balls with radius ε that
cover the cube [−A, A]d , the balls being closed, centered in that cube and taken in the
sense of the pseudometric dμ defined by (6). Letting �·� stand for the floor function, it
is easy to check that the aforementioned cube is covered by (1+ 2�A(cμ/ε)2d1/2�)d

closed Euclidean balls centered in it with radius (ε/cμ)2, and (7) implies that each of
these balls is included in a closed ball with radius ε for the pseudometric dμ. Hence,
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the right-hand side of (14) is bounded above by

K

η∫

0

(

d log

(

1+ 2Ac2
μd1/2

ε2

))1/2

dε ∼ Kη

(
2d log

cμ

η

)1/2

as η→ 0.

To conclude, it now suffices to let η = cμ

√
δ and observe that the supremum in

left-hand side of (13) is bounded above by the left-hand side of (14), due to (7). ��
Second, the fact that the Hölder exponent of Bμ is almost surely at most 1/2

everywhere follows directly from the next proposition; Bt (δ) will denote the closed
Euclidean ball centered at t with radius δ.

Proposition 3 For any finite symmetric measure μ on S
d−1 satisfying cμ > 0, there

exists κd,μ > 0 such that

a.s. ∀t ∈ R
d ∀δ > 0 ∃t ′ ∈ Bt (δ)

∣
∣Bμ(t ′)− Bμ(t)

∣
∣ > κd,μ‖t ′ − t‖1/2.

Proof We shall adapt some ideas that Dvoretzky [20] employed in the case of
Brownian motion. To begin with, let (e1, . . . , ed) denote the canonical basis of R

d .
We necessarily have dμ(0, ei ) > 0 for some i ∈ {1, . . . , d}, because

d∑

i=1

dμ(0, ei )
2 ≥ 1

2

d∑

i=1

∫

s∈Sd−1

|〈s, ei 〉|2μ(ds) = 1

2

∫

s∈Sd−1

‖s‖2 μ(ds) = c2
μ > 0,

due to (6). Then, let us consider an integer A ≥ 1, a real number κ > 0 and let us
assume that for any δ > 0, there exists a point t ∈ [−A, A]d such that

∀t ′ ∈ Bt (δ)
∣
∣Bμ(t ′)− Bμ(t)

∣
∣ ≤ κ‖t ′ − t‖1/2. (15)

Hence, for every integer n ≥ 1, there exists k ∈ {−An, . . . , An − 1}d such that (15)
holds for some t ∈ R

d with t−k/n ∈ [0, 1/n]d . Let log2 stand for base two logarithm
and jn = �log2(nδ/d1/2)�−1, and assume that n is large enough to ensure that jn ≥ 1.
For any j ∈ {0, . . . , jn}, the point (k + 2 j ei )/n is in the ball Bt (δ), so that

∣
∣
∣
∣Bμ

(
k + 2 j ei

n

)
− Bμ(t)

∣
∣
∣
∣ ≤ κ

∥
∥
∥
∥

k + 2 j ei

n
− t

∥
∥
∥
∥

1/2

≤ κ

(
2 j+1d1/2

n

)1/2

,

thanks to (15). Due to the triangle inequality, this implies that

∀ j ∈ {1, . . . , jn}
∣
∣
∣
∣Bμ

(
k + 2 j ei

n

)
− Bμ

(
k + 2 j−1ei

n

)∣∣
∣
∣ ≤ κ

d1/4

√
n

2( j+3)/2.

(16)
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The increments in the left-hand side, for j ∈ {1, . . . , jn}, are independent and nor-
mally distributed with mean zero and variance 2 j−1dμ(0, ei )

2/n by virtue of (6). Thus,
(16) occurs with probability at most

jn∏

j=1

P

(∣∣
∣
∣

2 j/2

√
2n

dμ(0, ei )ζ

∣
∣
∣
∣ ≤ κ

d1/4

√
n

2( j+3)/2
)
= q(κ) jn ,

where q(κ) = P(|ζ | ≤ 4κd1/4/dμ(0, ei )) and ζ denotes a standard normal random
variable. As a result, the probability that (15) holds for some point t ∈ [−A, A]d is
at most (2An)dq(κ) jn for every integer n such that jn ≥ 1. Clearly, q(κd,μ) < 2−d

for some κd,μ > 0, which implies that (2An)dq(κd,μ) jn → 0 as n→∞. We deduce
that for any integer A ≥ 1 and any δ > 0,

a.s. ∀t ∈ [−A, A]d ∃t ′ ∈ Bt (δ)
∣
∣Bμ(t ′)− Bμ(t)

∣
∣ > κd,μ‖t ′ − t‖1/2.

The desired result clearly follows. ��

6 Regularity of the jump component

Let us detail our results on the regularity of the random field Lν defined in Sect. 4.
The corresponding proofs are given in Sect. 12, and their architecture is presented in
Sect. 8. Throughout, we assume that ν is admissible.

In Sect. 6.2, we describe the size properties of the iso-Hölder sets ELν (h) in a
precise manner: we give the value of their Hausdorff g-measure in every open subset
of R

d , for every gauge function g. In what follows, the iso-Hölder sets are denoted by
Eν(h) instead of ELν (h), for the sake of brevity. Specifically,

∀h ∈ [0,∞] Eν(h) =
{

t ∈ R
d | αLν (t) = h

}
.

We get similar results for the singularity sets raised in Sect. 1 and defined by

E ′ν(h) = {t ∈ R
d\Jν | αLν (t) ≤ h}. (17)

We also establish that the sets E ′ν(h) fall in the category of sets with large intersection,
see Sect. 6.3. As explained in Sect. 6.4, this property has straightforward consequences
on the value of their packing dimension.

The set Jν in (17) consists of the points at which Lν jumps. Specifically, Jν is the
union over n ≥ 1 of the hyperplanes Hn defined by (9), in terms of the atoms of the
Poisson measure N that arises in the construction of Lν . Equivalently,

Jν =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t ∈ R
d
∣
∣
∣
∣

∫

(ρ, s) ∈ Hd
x ∈ R

∗

1{ρ=〈s,t〉}N(dρ, ds, dx) ≥ 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (18)
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6.1 Preliminary remark

We adopt the convention 1/βν = ∞ if the index βν defined by (2) vanishes. The
size and large intersection properties of Eν(h) and E ′ν(h) are nontrivial only when
h ∈ [0, 1/βν). In fact, when h ≥ 1/βν , this description follows essentially from the
next result, which is proven in Sect. 12.5.

Proposition 4 Let ν be an admissible measure. Then,

a.s. ∀h ∈ [1/βν,∞] E ′ν(h) = R
d\Jν .

Moreover, Eν(1/βν) has full Lebesgue measure in R
d with probability one, and

a.s. ∀h ∈ (1/βν,∞] Eν(h) = ∅.

Given that Jν has Lebesgue measure zero, Proposition 4 ensures that Eν(1/βν)

and E ′ν(1/βν) have full Lebesgue measure in R
d almost surely. This result has direct

implications in terms of Hausdorff measures and large intersection properties, which
we shall detail below (see the comments following Theorems 4 and 6).

6.2 Size properties of the sets Eν(h) and E ′ν(h): Hausdorff measures and dimension

We call a gauge function any nondecreasing function g defined on [0,∞) such that
lim0+ g = g(0) = 0 and r → g(r)/rd is positive and nonincreasing near zero (this
last assumption is not particularly restrictive and may be removed using [16, Propo-
sition 2]); Dd will denote the set of gauge functions. For any g ∈ Dd , the Hausdorff
g-measure of a subset F of R

d is defined by

Hg(F) = lim
δ↓0
↑ Hg

δ (F) with Hg
δ (F) = inf

F ⊆⋃
n Un|Un | < δ

∞∑

n=1

g(|Un|).

Here, the infimum is taken over all sequences (Un)n≥1 of subsets of R
d satisfying

F ⊆ ⋃
n Un and |Un| < δ for all n ≥ 1, where | · | denotes diameter. As shown e.g.

in [36], Hg is a Borel measure on R
d . For simplicity, the Hausdorff measure corre-

sponding to a gauge function of the form r → rd−1g(r) with g ∈ D1 (obtained by
letting d = 1 in the definition of Dd ) is denoted by Hd−1,g .

When g is of the form r → rs for some s ∈ (0, d], the Hausdorff g-measure is
referred to as the s-dimensional Hausdorff measure and denoted by Hs . These partic-
ular measures lead to the notion of Hausdorff dimension. Specifically, the Hausdorff
dimension of a nonempty set F ⊆ R

d is defined by

dimH F = sup{s ∈ (0, d) |Hs(F) = ∞} = inf{s ∈ (0, d) |Hs(F) = 0},

see [22]. Here, we adopt the convention that sup∅ = 0 and inf ∅ = d, and also that
dimH ∅ = −∞.
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6.2.1 General results

When h ∈ [0, 1/βν), the size properties of Eν(h) and E ′ν(h) are described by the next
result. In its statement, hν(g) is given by

hν(g) = inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h > 0

∣
∣
∣
∣

∫

s ∈ S
d−1

x ∈ (0, 1]

g(x1/h)ν(ds, dx) = ∞

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (19)

for g ∈ D1, with the usual convention that inf ∅ = ∞. Clearly, hν(g) ≤ 1/βν .

Theorem 4 Let ν be an admissible measure. Then, with probability one, for any
h ∈ [0, 1/βν), any gauge function g ∈ D1 and any nonempty open W ⊆ R

d ,

Hd−1,g(Eν(h) ∩W ) =
{

0 if h < hν(g)

∞ if h = hν(g)

and

Hd−1,g(E ′ν(h) ∩W ) =
{

0 if h < hν(g)

∞ if h ≥ hν(g).

We refer to Sect. 12.2 for a proof of Theorem 4. In this result, it is remarkable that
the almost sure event on which the statement holds does not depend on h, the gauge
function g or the open set W . In other words, the previous description of the size
properties of the sets Eν(h) and E ′ν(h) holds for almost every sample function of the
random field Lν . On top of that, the description is both precise and local, in the sense
that we do not restrict our attention to the mere gauge functions of the form r → rs

that lead to the Hausdorff dimension, or to the case in which the open set W is equal
to the whole space R

d .
With the help of Proposition 4 above, it is easy to obtain an analog of Theorem 4

for the case where h ≥ 1/βν . Specifically, with probability one, the sets Eν(1/βν)

and E ′ν(1/βν) both have full Lebesgue measure in R
d , so that

∀g ∈ Dd ∀W open
Hg(Eν(1/βν) ∩W )

Hg(E ′ν(1/βν) ∩W )

}
= Hg(W ).

The same result holds for the sets E ′ν(h), with h ∈ (1/βν,∞], because they all coin-
cide with E ′ν(1/βν). For those values of h, the study of the size of the sets Eν(h) is
pointless because they are empty almost surely.

In the remainder of this section, we make additional assumptions on the positivity
of βν or the finiteness of ν with a view to obtaining further results. Due to (2), it is
clear that βν = 0 when ν has finite mass. This corresponds to the case of a compound
Poisson field.
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6.2.2 Case where βν > 0

Here, Theorem 4 leads to the following more compact result, which is established
in Sect. 12.3. In its statement, D∗1 is the set of gauge functions g ∈ D1 for which
limr→0(log g(r))/ log r exists.

Corollary 2 Let ν be an admissible measure satisfying βν > 0. Then, with probability
one, for any h ∈ [0, 1/βν), any gauge function g ∈ D∗1 and any nonempty open subset
W of R

d ,

Hd−1,g(Eν(h) ∩W ) = Hd−1,g(E ′ν(h) ∩W ) =
{

0 if h < hν(g)

∞ if h ≥ hν(g),

so that

dimH(Eν(h) ∩W ) = dimH(E ′ν(h) ∩W ) = d − 1+ βνh.

In particular, the sets Eν(h) ∩W have Hausdorff dimension d − 1+ βνh, with an
infinite (d − 1+ βνh)-dimensional Hausdorff measure.

6.2.3 Case where βν = 0 and ν has infinite total mass

In that situation, we have hν(r → rs) = ∞ for all s ∈ (0, 1] and, borrowing ideas
from the proof of [18, Proposition 5], we may build a gauge function g ∈ D1 such
that hν(g) = 0. Hence, Theorem 4 leads to the following statement.

Corollary 3 Let ν be a measure with βν = 0 and infinite total mass. Then, with
probability one, for any h ∈ [0,∞) and any nonempty open subset W of R

d ,

dimH(E ′ν(h) ∩W ) = d − 1

and the (d − 1)-dimensional Hausdorff measure of E ′ν(h) ∩W is infinite.

Let us now focus on the iso-Hölder sets Eν(h). Theorem 4, coupled with the pre-
ceding remarks, also implies that with probability one, for any h ∈ [0,∞) and any
nonempty open subset W of R

d ,

dimH(Eν(h) ∩W ) ≤ d − 1. (20)

However, we cannot conclude that (20) is an equality, except when h = 0. According
to our approach, inferring that equality holds in (20) requires that we build, for any
given h ∈ [0,∞), a gauge function g ∈ D1 with hν(g) = h, and apply Theorem 4 with
this gauge function. As mentioned above, such a construction is feasible when h = 0,
but is not always possible otherwise. Indeed, some measures ν yield hν(g) ∈ {0,∞}
for all g ∈ D1. This is the case of the product of the uniform measure on S

d−1 and the
sum over j ∈ Z\{0} of the atoms δ1/j/| j | on R

∗.
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6.2.4 Case where ν has finite total mass

Making use of (8) and (11), we get

a.s. ∀t ∈ R
d Lν(t) =

∞∑

n=1

Xn1{Pn<〈Sn ,t〉} −
∫

s ∈ S
d−1

x ∈ (0, 1]

x〈s, t〉 ν(ds, dx). (21)

With probability one, the above sum is piecewise constant, with jumps located on the
set Jν given by (18). Moreover, the integral in (21) depends linearly on t . Thus, it is
natural that the previous results lead to the next statement.

Proposition 5 Let ν be a measure with finite total mass. Then, with probability one,
for any h ∈ [0,∞),

E ′ν(h) = ∅ and Eν(h) =
{

Jν if h = 0
∅ if h > 0.

Although Proposition 5 is elementary, a formal proof is given in Sect. 12.4 for the
sake of completeness. By virtue of Proposition 4, we also have Eν(∞) = E ′ν(∞) =
R

d\Jν almost surely. Hence,

a.s. ∀h ∈ [0,∞] dimH Eν(h) =
⎧
⎨

⎩

d − 1 if h = 0
−∞ if 0 < h <∞
d if h = ∞.

In the present case, the sample paths of Lν are not homogeneous. Indeed, with proba-
bility one, for any A ≥ 1, the ball B0(A) intersects only finitely many hyperplanes Hn .
Thus, with probability one, there exist nonempty open sets W such that Jν ∩W = ∅,
which implies that dLν (0, W ) = −∞ �= d − 1 = dLν (0, R

d).

6.3 Large intersection properties of the sets E ′ν(h)

As shown below, the sets E ′ν(h) defined by (17) are sets with large intersection. Specif-
ically, they belong to certain classes Gg(W ) of subsets of R

d , which were introduced
in [16] in order to generalize the original classes of sets with large intersection defined
by Falconer [21]. Given a gauge function g ∈ Dd and a nonempty open set W ⊆ R

d ,
the class Gg(W ) may be defined in the following manner. To begin with, recall that the
function r → g(r)/rd is positive and nonincreasing in a neighborhood of zero. Let
εg denote the supremum of all ε ∈ (0, 1] such that this property holds on the interval
(0, ε]. Moreover, let Λg be the set of all dyadic cubes of diameter less than εg , that is,
sets of the form λ = 2− j (k + [0, 1)d), where j is an integer larger than log2(

√
d/εg)

and k ∈ Z
d . The outer net measure associated with g ∈ Dd is defined by
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∀F ⊆ R
d Mg∞(F) = inf

(λn)n≥1

∞∑

n=1

g(|λn|),

where the infimum is taken over all sequences (λn)n≥1 in Λg ∪ {∅} satisfying F ⊆⋃
n λn . The outer measure Mg∞ is intimately related with the corresponding Hausdorff

measure Hg , so that in particular Hg(F) > 0 for any set F ⊆ R
d with Mg∞(F) > 0,

see [36, Theorem 49]. In addition, for g, g ∈ Dd , let us write g ≺ g if g/g tends
monotonically to infinity at zero. This means essentially that g grows faster than g
near the origin. We can now define the class Gg(W ). Recall that a Gδ-set is one that
may be expressed as a countable intersection of open sets.

Definition 5 Let g ∈ Dd and let W be a nonempty open subset of R
d . The class

Gg(W ) of subsets of R
d with large intersection in W with respect to g is the collection

of all Gδ-subsets F of R
d such that

∀U ⊆ W open ∀g ∈ Dd g ≺ g �⇒Mg∞(F ∩U ) =Mg∞(U ).

The class Gg(W ) satisfies several remarkable properties which are detailed in [16].
We collect the most significant ones in the following statement.

Theorem 5 Let g ∈ Dd and let W be a nonempty open subset of R
d . Then,

1. the class Gg(W ) is closed under countable intersections;
2. the set f −1(F) belongs to Gg(W ) for any bi-Lipschitz mapping f : W → R

d and
any set F ∈ Gg( f (W ));

3. any set F ∈ Gg(W ) satisfies Hg(F ∩W ) = ∞ for any g ∈ Dd with g ≺ g;
4. any Gδ-subset of R

d with full Lebesgue measure in W belongs to Gg(W ).

Making use of Theorem 5(3), it is easy to check that any set that belongs to the
class Gg(W ) is of Hausdorff dimension at least

σg = sup{s ∈ (0, d) | (r → rs) ≺ g} (22)

(with the convention that sup∅ = 0). In other words, the fact that a set satisfies a
large intersection property leads to a lower bound on its Hausdorff dimension, an
information which is usually difficult to derive.

More generally, Theorem 5 (3) embodies the connection between size and large
intersection properties, thereby suggesting a link between the following result and
Theorem 4. We shall make this link more apparent when proving these two theorems
concurrently in Sect. 12.2. In the next statement, Gd−1,g(W ) denotes the class of sets
with large intersection in W with respect to r → rd−1g(r), where g ∈ D1.

Theorem 6 Let ν be an admissible measure. Then, with probability one, for any
h ∈ [0, 1/βν), any gauge function g ∈ D1 and any nonempty open subset W of R

d ,

E ′ν(h) ∈ Gd−1,g(W )⇐⇒ h ≥ hν(g).
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The previous result only concerns the case where h < 1/βν . As regards the oppo-
site case, recall that E ′ν(1/βν) has full Lebesgue measure in R

d with probability one,
by Proposition 4. Hence, owing to Theorem 5(4),

a.s. ∀g ∈ Dd ∀W �= ∅ open E ′ν(1/βν) ∈ Gg(W ).

The sets E ′ν(h), for h ∈ (1/βν,∞], satisfy the same property because they are all
identical to E ′ν(1/βν).

6.4 Size properties of the sets E ′ν(h): packing dimension

We do not recall the definition of the packing dimension dimP F of a subset F of R
d

here, and refer to [22, Chap. 3] or [32, Chap. 5] for a full exposition. The fact that the
sets E ′ν(h) satisfy a large intersection property has a straightforward consequence on
the value of their packing dimension, as we now explain.

First, in view of Proposition 4, it is clear that with probability one, the sets E ′ν(h),
for h ≥ 1/βν , all have packing dimension equal to d. Therefore, in what follows, we
may restrict our attention to the case where h < 1/βν .

Assume that ν has infinite total mass and that d > 1. As mentioned above, there
exists a gauge function g ∈ D1 such that hν(g) = 0. Thanks to Theorem 6, almost
surely, for every h ∈ [0, 1/βν), the set E ′ν(h) belongs to the class Gg̃(Rd), where
g̃ : r → rd−1g(r). It is shown in [16] that if the parameter σ g̃ defined by (22) is
positive, then this class is included in the class Gσ̃g introduced by Falconer [21]. This
is clearly the case here, since σ̃g ≥ d − 1 > 0. By virtue of [21, Theorem D], every
set of the latter class has packing dimension d in every nonempty open subset of R

d .
Hence, we end up with the next statement.

Corollary 4 If d > 1, then for any admissible measure ν with infinite total mass,

a.s. ∀h ∈ [0, 1/βν) ∀W �= ∅ open dimP(E ′ν(h) ∩W ) = d.

The preceding result remains valid for d = 1 under the additional assumption that
βν > 0, but for h ∈ (0, 1/βν) only. This follows from applying the previous method
with the gauge function g̃ : r → rβνh , which satisfies σ̃g = βνh > 0.

7 Superposition of the Gaussian and the jump components

The next lemma gives an expression of the Hölder exponent of an admissible canonical
Lévy field Ya,μ,ν = 〈a, ·〉+ Bμ+ Lν , in terms of the Hölder exponents of its Gaussian
component Bμ and its jump component Lν . In particular, it allows one to easily infer
the spectrum of singularities of Ya,μ,ν from those of Bμ and Lν , that is, to deduce
Corollary 1 from Theorems 2 and 3.
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Lemma 1 Let a ∈ R
d , let μ be a finite symmetric measure on S

d−1, and let ν be an
admissible measure. Then,

a.s. ∀t ∈ R
d αYa,μ,ν (t) = αBμ(t) ∧ αLν (t). (23)

Proof As linear drifts are C∞ everywhere, we may clearly assume that a is zero.
Moreover, note that the Hölder exponent of the sum of two functions is the minimum
of the two exponents, except maybe when these exponents coincide, in which case the
exponent of the sum may be larger. In view of Theorem 2, it remains to show that with
probability one, αY0,μ,ν (t) ≤ 1/2 for any t ∈ R

d with αLν (t) = 1/2.
To this end, it suffices to observe that Proposition 9 below (which corresponds to

the upper bound in Proposition 6) still holds when replacing Lν by Bμ+ Lν , because
Bμ is continuous everywhere. Therefore, with probability one, αY0,μ,ν (t) ≤ Aν(t) for
any t ∈ R

d with αLν (t) = 1/2. We conclude by Proposition 6. ��

8 Architecture of the proofs concerning the jump component

Let us now present the key ideas involved in the proofs of the main results of Sect. 6,
which describe the size and large intersection properties of the iso-Hölder sets Eν(h)

and the singularity sets E ′ν(h).

8.1 Location of the singularities

The first ingredient in our proofs is a precise determination of the location of the sin-
gularities of Lν . This follows from a characterization of the Hölder exponent of its
sample paths in terms of the atoms of the Poisson measure N arising in the construc-
tion described in Sect. 4. In fact, the value of the exponent αLν (t) at a point t ∈ R

d

depends on how well t is approximated by the hyperplanes on which Lν has a jump
of size at most one.

To be more specific, for any real number α > 0, let us consider

Kν(α) =
{

t ∈ R
d
∣
∣ d(t, Hn) < |Xn|1/α for i.m. n ≥ 1 with |Xn| ≤ 1

}
,

where i.m. stands for “infinitely many” and d(t, Hn) denotes the distance, equal to
|Pn −〈Sn, t〉|, between the point t and the hyperplane Hn defined by (9). In the termi-
nology of Diophantine approximation, Kν(α) is the set of points that are approximated
by the hyperplanes Hn with a precision given by |Xn|1/α . Equivalently,

Kν(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t ∈ R
d
∣
∣
∣
∣

∫

(ρ, s) ∈ Hd
|x| ∈ (0, 1]

1{|ρ−〈s,t〉|<|x|1/α}N(dρ, ds, dx) = ∞

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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Given that the mapping α → Kν(α) is nondecreasing, it is possible to define

Aν(t) = inf{α > 0 | t ∈ Kν(α)}

for each t ∈ R
d . Proposition 7 below implies that with probability one, Kν(α) covers

the whole space R
d when α > 1/βν . As a consequence,

a.s. ∀t ∈ R
d 0 ≤ Aν(t) ≤ 1/βν. (24)

The next result, which is proven in Sect. 9, gives a simple connection between the
value of the Hölder exponent of Lν at a given point t and that of Aν(t).

Proposition 6 If ν is admissible, then

a.s. ∀t ∈ R
d αLν (t) =

{
0 if t ∈ Jν

Aν(t) else.

Recall that Jν is the set given by (18) and composed of the points at which the
field Lν jumps. Therefore the Hölder exponent of this field vanishes everywhere in
Jν . Furthermore, it follows from Proposition 6 that with probability one, the Hölder
exponent of Lν is at most 1/βν everywhere. So, for any h > 1/βν ,

E ′ν(h) = R
d\Jν and Eν(h) = ∅, (25)

thus confirming some of the results announced in Proposition 4. When h ≤ 1/βν ,
Proposition 6 enables us to relate Eν(h) and E ′ν(h) with the sets Kν(α) and Jν as
follows.

Corollary 5 If ν is admissible, then with probability one,

1. for any h ∈ [0, 1/βν],

E ′ν(h) =
⎛

⎝
⋂

h<α≤1/βν

Kν(α)

⎞

⎠ \Jν ;

2. Eν(0) = Jν ∪ E ′ν(0) and for any h ∈ (0, 1/βν],

Eν(h) = E ′ν(h)\
⋃

0<α<h

Kν(α).

We adopt here the standard convention that an intersection and a union indexed
by the empty set are equal, respectively, to R

d and to the empty set. In particular,
E ′ν(1/βν) = R

d\Jν almost surely. The proof of Corollary 5, assuming that Proposi-
tion 6 holds, is straightforward and therefore omitted.
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8.2 Diophantine approximation by Poisson hyperplanes

Corollary 5 suggests that the proofs of the results of Sect. 6 follow from a precise
understanding of the size and large intersection properties of the sets Kν(α). In fact,
these proofs make a crucial use of the next two results, see Sect. 12.2. The first one
shows that Kν(α) = R

d almost surely whenever α > 1/βν , thereby leading to (24).
We refer to Sect. 10 for its proof.

Proposition 7 For any α > 1/βν , with probability one, Kν(α) = R
d .

The second one deals with the size and large intersection properties of Kν(α) and
is proven in Sect. 11. Recall that hν(g) is defined by (19).

Theorem 7 For any α > 0, with probability one, for any gauge function g ∈ D1,

{
hν(g) > α �⇒ Hd−1,g(Kν(α)) = 0
hν(g) < α �⇒ Kν(α) ∈ Gd−1,g(Rd).

The fact that we make use of that result in the proof of Theorems 4 and 6 hints
at why they describe the size and large intersection properties of the sets Eν(h) and
E ′ν(h) only in terms of the gauge functions of the form r → rd−1g(r) with g ∈ D1.
This follows essentially from the ubiquity techniques that we use in Sect. 11 (see
Lemma 9 in particular), where we regard Kν(α) as an enlargement, measured through
g, of the random hyperplanes Hn , which are of dimension d − 1.

9 Location of the singularities of the jump component

9.1 Preliminaries

The purpose of this section is to establish Proposition 6. The proof relies on suit-
able estimates of the increments of the random fields Lν, j that come into play
in the construction of Lν , as detailed in Sect. 4. To be specific, for all integers
A, j, k ≥ 1, let

ζν(A, j, k) = sup
‖t‖ ≤ A
‖τ‖ ≤ 2−k

|Lν, j (t + τ)− Lν, j (t)|. (26)

Even though the supremum is taken over an uncountable set of parameters, there is no
measurability issue here, in the sense that ζν(A, j, k) is a random variable. In fact, it is
easy to check that the field Lν, j is separable and that Q

d may be taken as the separant
dense countable subset of R

d involved in this property. Accordingly, in addition to
(26), we have

ζν(A, j, k) = sup
t ∈ Q

d ∩ B0(A)

τ ∈ Q
d ∩ B0(2−k )

|Lν, j (t + τ)− Lν, j (t)|. (27)
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The next lemma yields an upper bound on ζν(A, j, k), that is, a control of the
increments of Lν, j . It is proven in Sect. 13, and also comes into play in the proof of
Proposition 1, see Sect. 12.1. Recall that (ν j ) j≥1 is the sequence arising in (3).

Lemma 2 For every integer A ≥ 1, with probability one,

Zν(A) = sup
( j,k)∈N2

ζν(A, j, k)

2− j k( j + 2−k/2( jν j )1/2)
<∞.

In view of Lemma 2, we shall work below on the almost sure event consisting in
the finiteness of Zν(A), for all A ≥ 1. Moreover, recall that (Pn, Sn, Xn), for n ≥ 1,
are the atoms of the Poisson random measure N arising in the construction of Lν . We
may assume that the real numbers Pn are distinct. Indeed, for any j ≥ 1, the image
under (ρ, s,x) → ρ of the restriction of N to (0,∞) × S

d−1 × (R\[−2− j , 2− j ])
is a Poisson measure on (0,∞) with intensity proportional to L1+, thereby being

almost surely simple, see [34, p. 299]. In addition, we define L j1, j2
ν =∑ j2

j= j1
Lν, j for

0 ≤ j1 ≤ j2 ≤ ∞.
We now split the proof of Proposition 6 into three parts. First, we show that αLν (t)

vanishes at every jump point t ∈ Jν . Second, we show that αLν (t) ≤ Aν(t) at every
t �∈ Jν . Third, we show that αLν (t) ≥ Aν(t) at any such t . Throughout, we assume
that the measure ν is admissible.

9.2 Value of the Hölder exponent at the jump points

With regard to the next statement, recall that the hyperplanes Hn are defined by (9).

Lemma 3 Almost surely, for any t ∈ R
d such that t ∈ Hn0 for a unique n0 ≥ 1,

lim
�→∞ Lν

(
t + Sn0

�

)
= Lν(t)+ Xn0 .

Proof Given an integer A ≥ 1, let t be a point in B0(A) such that t ∈ Hn0 for a unique
n0 ≥ 1. Then, with probability one, for all integers j0 > − log2 |Xn0 | and � larger
than some �0 ≥ 1, the only n ≥ 1 satisfying (Pn, Sn) ∈ Vt+Sn0 /��Vt and |Xn| > 2− j0

simultaneously is n0, and in fact (Pn0 , Sn0) ∈ Vt+Sn0 /�\Vt . Here, � stands for sym-
metric difference of sets, and both Vt and Vt+Sn0 /� are given by (5). Hence, for all
such j0 and �, we have

L0, j0
ν

(
t + Sn0

�

)
− L0, j0

ν (t) = Xn0 −
1

�

∫

s ∈ S
d−1

x ∈ (2− j0 , 1]

x〈s, Sn0〉 ν(ds, dx),
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thanks to (8) and (11). In addition, given that ‖t‖ ≤ A and ‖Sn0/�‖ ≤ 1/2, we get

∣
∣
∣
∣L

j0+1,∞
ν

(
t + Sn0

�

)
− L j0+1,∞

ν (t)

∣
∣
∣
∣ ≤

∞∑

j= j0+1

ζν(A, j, 1),

by virtue of (26). As a consequence, making use of Lemma 2, we deduce that

∣
∣
∣
∣Lν

(
t + Sn0

�

)
− Lν(t)− Xn0

∣
∣
∣
∣ ≤

1

�

j0∑

j=1

ν j + Zν(A)

∞∑

j= j0+1

2− j
(

j + ( jν j )
1/2

)
,

and conclude by letting �→∞, and then by letting j0 →∞ while using of the fact
that the sum χν defined by (3) is finite, because ν is admissible. ��

Thanks to Lemma 3, we may now prove that the Hölder exponent of Lν vanishes
at every jump point.

Proposition 8 With probability one, αLν (t) = 0 for every t ∈ Jν .

Proof Let t ∈ Jν and suppose that αLν (t) > 0. So, there exist ε, δ, C > 0 such that
for any τ ∈ R

d ,

‖τ‖ ≤ δ �⇒ |Lν(t + τ)− Lν(t)| ≤ C‖τ‖ε. (28)

Since t ∈ Jν , there is an n0 ≥ 1 such that t ∈ Hn0 . However, n0 need not be
unique, and we cannot apply Lemma 3 directly. To cope with that problem, recall that
the real numbers Pn are distinct, so that the hyperplanes Hn are distinct too. Hence,
for any integer m ≥ 1, the set Bt (1/m)∩ (Hn0\

⋃
n �=n0

Hn) contains a point tm . Here,
Bt (1/m) is the open Euclidean ball centered at t with radius 1/m. Then, n0 is the only
integer such that tm ∈ Hn0 . Applying Lemma 3 with tm , we get

∀m ≥ 1 lim
�→∞ Lν

(
tm + Sn0

�

)
= Lν(tm)+ Xn0 . (29)

Now, for all integers m, � ≥ 1, we have ‖tm − t‖ < 1/m and ‖tm + Sn0/�− t‖ <

1/m + 1/�. So, assuming that 1/m + 1/� < δ and applying (28), we obtain

∣
∣
∣
∣Lν

(
tm + Sn0

�

)
− Lν(tm)

∣
∣
∣
∣ ≤ C

(
1

mε
+
(

1

m
+ 1

�

)ε)
.

Letting �→∞ and using (29), we infer that |Xn0 | ≤ 2C/mε for any m > 1/δ. Then,
letting m →∞, we get Xn0 = 0, which contradicts the fact that Xn0 ∈ R

∗. ��
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9.3 Upper bound on the Hölder exponent

We now consider the points at which the field Lν does not jump.

Proposition 9 With probability one, αLν (t) ≤ Aν(t) for every t ∈ R
d\Jν .

Proof Let t ∈ R
d\Jν and α > Aν(t), and suppose that αLν (t) ≥ α + ε for some

ε > 0. First, there are δ, C > 0 and a polynomial Qt such that for any τ ∈ R
d ,

‖τ‖ ≤ δ �⇒ |Lν(t + τ)− Qt (τ )| ≤ C‖τ‖α+ε. (30)

Second, t ∈ Kν(α)\Jν , so that for any B ∈ (0, 1] with B−α/ε > 3 C 2α+ε and
2B1/α < δ, there is an n0 ≥ 1 with |Xn0 | ≤ B and 0 < d(t, Hn0) ≤ |Xn0 |1/α .

Let us suppose that for any τ ∈ R
d ,

‖τ‖ < 2 d(t, Hn0) �⇒ 3 |Lν(t + τ)− Qt (τ )| < |Xn0 |. (31)

As in the proof of Proposition 8, the set Bt (2 d(t, Hn0))∩ (Hn0\
⋃

n �=n0
Hn) contains

a point t ′. For � large enough, ‖t ′ − t‖ and ‖t ′ + Sn0/� − t‖ are both smaller than
2 d(t, Hn0), so that (31) leads to

∣
∣
∣
∣Lν

(
t ′ + Sn0

�

)
− Lν(t

′)
∣
∣
∣
∣ ≤

2

3
|Xn0 | +

∣
∣
∣
∣Qt

(
t ′ + Sn0

�
− t

)
− Qt (t

′ − t)

∣
∣
∣
∣ .

Since n0 is the only integer such that t ′ ∈ Hn0 , it follows from Lemma 3 that the
left-hand side tends to |Xn0 | as �→∞. This contradicts the fact that the right-hand
side goes to 2 |Xn0 |/3. As a result, there is a τ ∈ R

d for which (31) does not hold.
Therefore, we have ‖τ‖ < 2 d(t, Hn0) ≤ 2|Xn0 |1/α ≤ 2B1/α < δ and

|Xn0 | ≤ 3 |Lν(t + τ)− Qt (τ )| ≤ 3C‖τ‖α+ε ≤ 3 C 2α+ε|Xn0 |1+ε/α,

thanks to (30). This implies that B−α/ε ≤ 3 C 2α+ε, which contradicts the choice of
B. Finally, αLν (t) ≤ α, and we conclude by letting α ↓ Aν(t). ��

9.4 Lower bound on the Hölder exponent

The following result remains to be established. Its proof is split into several parts for
the sake of clarity.

Proposition 10 With probability one, αLν (t) ≥ Aν(t) for every t ∈ R
d\Jν .

In view of (1), with probability one, for any integer A ≥ 1 and any ε > 0, there
are only finitely many n ≥ 1 such that Pn < A and |Xn| > ε simultaneously. We
may therefore suppose, in addition to the assumptions made at the beginning of this
section, that the corresponding almost sure event occurs. We may also assume that the
almost sure event given by (24) occurs too.
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Now, given an integer A ≥ 1, let t ∈ B0(A)\Jν . To show that αLν (t) ≥ Aν(t),
we may obviously assume that Aν(t) > 0. Then, let α ∈ (0, Aν(t)). As t �∈ Kν(α),
there are only finitely many n ≥ 1 such that d(t, Hn) < |Xn|1/α ≤ 1. Hence, there is
an integer k0 ≥ 1 such that d(t, Hn) ≥ |Xn|1/α for any n ≥ 1 with |Xn| ≤ 2−�αk0�.
Besides, note that α < 1/βν , owing to (24).

9.4.1 Reduction to the study of the component with small jumps

Thanks to (8) and (11), the value at t of the component of the field Lν that corresponds
to the jumps of size larger than 2−�αk0� may be written as

L0,�αk0�
ν (t) =

∞∑

n=1

Xn1{(Pn ,Sn)∈Vt , |Xn |>2−�αk0�} −
∫

s ∈ S
d−1

x ∈ (2−�αk0�, 1]

x〈s, t〉 ν(ds, dx),

where Vt is defined by (5). Moreover, for any δ ∈ (0, A − ‖t‖), let Vt,δ denote the
complement of

⋂
‖τ‖≤δ Vt+τ in

⋃
‖τ‖≤δ Vt+τ . If n ≥ 1 satisfies (Pn, Sn) ∈ Vt,δ , then

Pn < A. Thus, the set Nδ of all n ≥ 1 such that (Pn, Sn) ∈ Vt,δ and |Xn| > 2−�αk0�
is finite. Moreover, given that t �∈ Jν , it is clear that

⋂
δ>0 ↓ Nδ = ∅, so that Nδ = ∅

for δ small enough. For such a δ and for ‖τ‖ ≤ δ, we have Vt+τ�Vt ⊆ Vt,δ . Hence,
no integer n ≥ 1 can satisfy both (Pn, Sn) ∈ Vt�Vt+τ and |Xn| > 2−�αk0�, so

L0,�αk0�
ν (t + τ)− L0,�αk0�

ν (t) = −
∫

s ∈ S
d−1

x ∈ (2−�αk0�, 1]

x〈s, τ 〉 ν(ds, dx).

Hence, L0,�αk0�
ν coincides with an affine form near t , and the Hölder exponent at t of

Lν is equal to that of the component with jumps of size at most 2−�αk0�.

9.4.2 Study of the component with small jumps

In order to study the Hölder exponent of the component with jumps of size at most
2−�αk0�, let us consider a vector τ ∈ R

d such that 2−(k+1) < ‖τ‖ ≤ 2−k for some
integer k ≥ k0. First,

|L�αk�+1,∞
ν (t + τ)− L�αk�+1,∞

ν (t)| ≤ Zν(A)

∞∑

j=�αk�+1

2− j k( j + 2−k/2( jν j )
1/2),

in view of Lemma 2. Furthermore, if βν < 2, then there exists γ ∈ (βν, (1/α) ∧ 2)

and (2) implies that cν,γ =∑
j≥1 2−γ j jν j is finite. Hence, we have

k2−k/2
∞∑

j=�αk�+1

2− j ( jν j )
1/2 ≤ k2−k/2c1/2

ν,γ

∞∑

j=�αk�+1

2(γ /2−1) j ≤ c1/2
ν,γ

1− 2γ /2−1 k2−αk .
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If βν = 2, we observe that α < 1/2, so that the left-hand side above is at most
χνk 2−αk , where χν is finite and defined by (3). The upshot is that there exists a
deterministic real number Dν,α > 0 that depends on ν and α only such that

|L�αk�+1,∞
ν (t + τ)− L�αk�+1,∞

ν (t)| ≤ Zν(A)Dν,αk22−αk . (32)

Second, no integer n ≥ 1 can verify at the same time 2−�αk� < |Xn| ≤ 2−�αk0� and
(Pn, Sn) ∈ Vt�Vt+τ (otherwise, |Pn − 〈Sn, t〉| would be at most 2−k and at least
|Xn|1/α > 2−k simultaneously, which is impossible). Along with (11), this yields

|L�αk0�+1,�αk�
ν (t + τ)− L�αk0�+1,�αk�

ν (t)| ≤ ‖τ‖
∫

s ∈ S
d−1

x ∈ (2−�αk�, 2−�αk0�]

x ν(ds, dx).

9.4.3 End of the proof for βν ≥ 1

There exists γ ∈ [1, 2] such that γ < 1/α and the integral Iγ of (s,x) → xγ over
S

d−1× (0, 1]with respect to ν is finite. Indeed, one may choose γ = βν if βν = 2 and
γ > βν sufficiently small otherwise. Hence, using both (32) and the above bound, we
infer that

|L�αk0�+1,∞
ν (t + τ)− L�αk0�+1,∞

ν (t)| ≤ ‖τ‖Iγ 2(γ−1)�αk� + Zν(A)Dν,αk22−αk

≤ ‖τ‖α
(

Iγ + 2αZν(A)Dν,α

(
log2 ‖τ‖

)2
)

.

It follows that αLν (t) ≥ α. To conclude, it remains to let α ↑ Aν(t).

9.4.4 End of the proof for βν < 1

Here, thanks to (11),

L�αk0�+1,∞
ν (t) =

∞∑

n=1

Xn1{(Pn ,Sn)∈Vt ,|Xn |≤2−�αk0�} −
∫

s ∈ S
d−1

x ∈ (0, 2−�αk0�]

x〈s, t〉ν(ds, dx).

The second term is a linear form, so we just need to study the increments of the first
term. To this end, observe that for an arbitrary γ ∈ (βν, (1/α) ∧ 1),

∣
∣
∣
∣
∣

∞∑

n=1

Xn1{(Pn ,Sn)∈Vt+τ ,|Xn |≤2−�αk0�} −
∞∑

n=1

Xn1{(Pn ,Sn)∈Vt ,|Xn |≤2−�αk0�}

∣
∣
∣
∣
∣

≤ |L�αk�+1,∞
ν (t + τ)− L�αk�+1,∞

ν (t)| + ‖τ‖
∫

s ∈ S
d−1

x ∈ (0, 2−�αk�]

x ν(ds, dx)
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≤ Zν(A)Dν,αk22−αk + ‖τ‖Iγ 2−(1−γ )�αk�

≤ ‖τ‖α(2(1−γ )(1+α) Iγ + 2αZν(A)Dν,α(log2 ‖τ‖)2),

because of (32) and the fact that no integer n ≥ 1 can satisfy (Pn, Sn) ∈ Vt�Vt+τ and
2−�αk� < |Xn| ≤ 2−�αk0� simultaneously. We deduce that αLν (t) ≥ α, and conclude
by letting α ↑ Aν(t).

10 Approximation by Poisson hyperplanes: covering the whole space

We now prove Proposition 7. To begin with, given α > 1/βν , let να denote the image
under (s,x) → (s, |x|1/α) of the restriction to S

d−1 × ([−1, 1]\{0}) of the measure
ν. Then, for an arbitrary orthonormal basis (e1, . . . , ed) of R

d and for any s ∈ S
d−1,

there necessarily exists an integer i ∈ {1, . . . , d} such that 〈s, ei 〉 �= 0. Together with
(2), this shows that for some i and some ε > 0,

∫

s ∈ S
d−1

r ∈ (0, 1]

1{〈s,ei 〉�=0}r1+ενα(ds, dr) = ∞. (33)

Now, for any integers A, j ≥ 1, let UA, j = B0(A) ∩ (2− j/
√

d)Zd . Moreover, for
j > j0 ≥ 1, let EA, j0, j denote the event consisting in the existence of a point u ∈ UA, j

satisfying d(u, Hn) ≥ |Xn|1/α − 2− j for any integer n ≥ 1 with 〈Sn, ei 〉 �= 0 and
2− j < |Xn|1/α ≤ 2− j0 . Then, we have

{Kν(α) �= R
d} ⊆

∞⋃

A=1

↑
∞⋃

j0=1

↑
∞⋂

j= j0+1

EA, j0, j . (34)

The event EA, j0, j occurs with probability at most
∑

u∈UA, j
e−I j0, j,u , where

I j0, j,u =
∫

(ρ, s) ∈ Hd
r ∈ (0, 1]

f j0, j,u(ρ, s, r)dρνα(ds, dr)

and f j0, j,u(ρ, s, r) is equal to one when |ρ − 〈s, u〉| < r − 2− j , 〈s, ei 〉 �= 0 and
2− j < r ≤ 2− j0 , and is equal to zero otherwise. Using the symmetry of ν, we infer
that I j0, j,u is equal to

∫

〈s, ei 〉 > 0

r ∈ (2− j , 2− j0 ]

∫

ρ∈R
1{|ρ−〈s,u〉|<r−2− j }dρνα(ds, dr) =

∫

〈s, ei 〉 �= 0

r ∈ (2− j , 2− j0 ]

(r − 2− j )να(ds, dr).
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Let I ′j0, j = να({s ∈ S
d−1 | 〈s, ei 〉 �= 0}× (2− j , 2− j0 ]). Then, due to Fubini’s theorem,

I j0, j,u =
∫

w∈(2− j ,2− j0 )

∫

〈s, ei 〉 �= 0

r ∈ (w, 2− j0 ]

να(ds, dr) dw ≥ 2− j I ′j0, j−1.

Therefore, given that UA, j has cardinality at most (2 j+2 A
√

d)d , we get

P(EA, j0, j ) ≤ (4A
√

d)d exp
(

jd log 2− 2− j I ′j0, j−1

)
. (35)

Finally, employing Fubini’s theorem again, we also have

∫

〈s, ei 〉 �= 0

r ∈ (0, 2− j0 ]

r1+ε να(ds, dr) = (1+ ε)

∫

w∈(0,2− j0 )

wε

∫

〈s, ei 〉 �= 0

r ∈ (w, 2− j0 ]

να(ds, dr) dw

≤ (1+ ε)

∞∑

j= j0

I ′j0, j+1

∫

w∈(2−( j+1),2− j )

wε dw.

Together with (33), this implies that I ′j0, j−1 > 2(1+ε) j/j2 for infinitely many j > j0.
We conclude with the help of (34) and (35).

11 Approximation by Poisson hyperplanes: size and large intersection
properties

This section is devoted to the proof of Theorem 7. We begin by establishing a series
of preliminary lemmas. Then, we deal with the case where hν(g) > α. We finally end
the proof with the case where hν(g) < α. Note that Theorem 7 clearly holds when ν

has finite total mass. Indeed, in this case, it is easy to check that hν(g) = ∞ for any
g ∈ D1, while Kν(α) = ∅ with probability one for every α > 0 (given A ≥ 1, there
are almost surely finitely many n ≥ 1 such that Hn ∩B0(A) �= ∅ or, equivalently, such
that Pn ≤ A). Therefore, we may assume throughout the section that ν has infinite
total mass.

11.1 A Bernstein-type inequality

The first preliminary lemma yields an analog of Bernstein’s inequality for integrals
with respect to a compensated Poisson random measure, and is a direct consequence
of [23, Corollary 5.1], see also [35, Proposition 7]. It comes into play in the proof of
Lemma 2 too, see Sect. 13.

Lemma 4 Let (E, E) be a measurable space endowed with a finite nonnegative mea-
sure μ, let M be a Poisson random measure on E with intensity μ and let M∗ = M−μ.
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Then, for any real-valued measurable function f defined on E such that S = supE | f |
and V = ∫

E f 2dμ are both positive and finite, we have

∀ξ > 0 P

⎛

⎝

∣
∣
∣
∣
∣
∣

∫

E

f dM∗
∣
∣
∣
∣
∣
∣
≥ ξ

⎞

⎠ ≤ 2 exp

(
− 3ξ2

2Sξ + 6V

)
.

11.2 A law of large numbers for Poisson measures

The second preliminary lemma concerns the behavior at zero of a Poisson random
measure on (0, 1] and is reminiscent of the strong law of large numbers for the homo-
geneous Poisson process on (0,∞), see [27]. Let P be the set of all nonnegative Borel
measures π on (0, 1] such that π((0, 1]) = ∞ and π([ε, 1]) <∞ for any ε > 0.

Lemma 5 For any Poisson random measure Π on (0, 1] with intensity π ∈ P , with
probability one,

Π([w, 1]) ∼ π([w, 1]) as w→ 0.

Proof Let A0 be the (countable) set of all r ∈ (0, 1] such that π({r}) ≥ 1 and let
A1 = (0, 1]\A0. Then, for all � ∈ {0, 1} and w ∈ (0, 1], let Φ�(w) = Π(A�∩[w, 1])
and ϕ�(w) = π(A� ∩ [w, 1]). It is easy to see that the proof reduces to showing that
for any � ∈ {0, 1} such that π(A�) = ∞, with probability one,

Φ�(w) ∼ ϕ�(w) as w→ 0. (36)

To this purpose, let us begin by observing that for any ξ > 0 and any w > 0 small
enough to ensure that ϕ�(w) > 0,

P

(∣∣
∣
∣
Φ�(w)

ϕ�(w)
− 1

∣
∣
∣
∣ ≥ ξ

)
≤ 2 exp

(
− 3ξ2

2ξ + 6
ϕ�(w)

)
, (37)

as a consequence of Lemma 4. Now, if π(A0) = ∞, there exists a decreasing sequence
(an)n≥1 of positive real numbers that converges to zero and whose terms form the set
A0. The previous inequality then implies that for all integers m, n ≥ 1,

P

(∣∣
∣
∣
Φ0(an)

ϕ0(an)
− 1

∣
∣
∣
∣ ≥

1

m

)
≤ 2 exp

(
− 3n

(6m + 2)m

)
, (38)

because ϕ0(an) = π({a1, . . . , an}) ≥ n. Summing over n ≥ 1 and making use of
the Borel-Cantelli lemma, we infer that for any integer m ≥ 1, with probability one,
Φ0(an)/ϕ0(an) is between 1 − 1/m and 1 + 1/m, for n large enough. The same
property holds for Φ0(w)/ϕ0(w) with w > 0 small enough, due to the fact that
Φ0(w) = Φ0(an(w)) and ϕ0(w) = ϕ0(an(w)), where n(w) is the number of integers
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n ≥ 1 such that an ≥ w. As a consequence,

a.s. ∀m ≥ 1 lim sup
w→0

∣
∣
∣
∣
Φ0(w)

ϕ0(w)
− 1

∣
∣
∣
∣ ≤

1

m
,

and we get (36) for � = 0 by letting m →∞.
If π(A1) = ∞, it is possible to consider, for each integer n ≥ 1,

wn = sup
{
w > 0

∣
∣ ϕ1(w) ≥ n

}
.

The reals wn are positive, satisfy ϕ1(wn) ≥ n and form a nonincreasing sequence that
converges to zero. Moreover, (37) ensures that for any m, n ≥ 1, the bound (38) holds
with an replaced by wn , and Φ0 and ϕ0 replaced by Φ1 and ϕ1, respectively. Summing
over n ≥ 1 and using the Borel-Cantelli lemma again, it follows that with probability
one, for n large enough, Φ1(wn)/ϕ1(wn) is between 1−1/m and 1+1/m. In addition,
we have

n ≤ ϕ1(wn) = π(A1 ∩ {wn})+ lim
w↓wn

↑ ϕ1(w) ≤ 1+ n,

by definition of A1 and wn . Therefore, since Φ1 and ϕ1 are nonincreasing, we infer
that with probability one, for n large enough and for w ∈ [wn+1, wn],

n

n + 2

(
1− 1

m

)
≤ Φ1(w)

ϕ1(w)
≤ n + 2

n

(
1+ 1

m

)
,

and (36) with � = 1 follows in a straightforward manner. ��

11.3 Integrability with respect to a Poisson measure

The third preliminary lemma is a direct consequence of the second one and deals with
the integrability of a gauge function with respect to a Poisson random measure.

Lemma 6 Let Π be a Poisson random measure on (0, 1] with intensity π ∈ P . Then,
with probability one, for any gauge function g ∈ D1,

∫

r∈(0,1]
g(r)Π(dr) = ∞⇐⇒

∫

r∈(0,1]
g(r)π(dr) = ∞.

Proof Assume that the almost sure event on which the statement of Lemma 5 holds
occurs, and consider g ∈ D1. The gauge function g is continuous in the neighbor-
hood of the origin, but not necessarily on the whole interval [0, 1]. However, we may
assume that this is the case, because the integrability of g with respect to Π or π

depends on its behavior near zero only. Now, as g is continuous and nondecreasing
on [0, 1], we may consider its associated Lebesgue-Stieltjes measure γ , characterized
by γ ([0, r ]) = g(r) for r ∈ [0, 1]. Given that Π([w, 1]) is equivalent to π([w, 1]) as
w→ 0, we have
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∫

w∈(0,1]
Π([w, 1])γ (dw) = ∞⇐⇒

∫

w∈(0,1]
π([w, 1]) γ (dw) = ∞.

We conclude by remarking that, owing to the Fubini-Tonelli theorem, the above inte-
grals are equal to those appearing in the statement of the lemma. ��

11.4 Approximation by homogeneously distributed hyperplanes

The next lemma is a general result on Diophantine approximation by hyperplanes,
under the assumption that the hyperplanes are homogeneously distributed, in a spe-
cific sense that we now introduce. Given s ∈ S

d−1, let Hyps be the set of all hyperplanes
h represented by a pair (ρ, s) ∈ Hd with 〈s, s〉 �= 0. Such a hyperplane h is not parallel
to s. So, for any t ∈ R

d , the line t + Rs meets h at a single point t + ξs
t (h) s, where

ξs
t (h) = ρ − 〈s, t〉

〈s, s〉 .

Now, let H = (Hn)n≥1 be a sequence in Hyps and let W be a nonempty open subset
of R

d . Given t ∈ W, δ ∈ (0, 1) and j ≥ 0, let us consider the first �2 j/δ� hyperplanes
Hn and focus on those which intersect the line t + Rs at a single point located at a
distance less than δ from t or, equivalently, those for which |ξs

t (Hn)| < δ. The fact that
the sequence H is homogeneously distributed in W basically means that the resulting
intersection points are dispersed in a regular manner around almost every point t ∈ W
in the direction s, in the sense that the set

Qs
t,δ, j (H) =

{
q ∈ {0, . . . , 2 j − 1}

∣
∣
∣
∣ q =

⌊
2 j

δ
|ξs

t (Hn)|
⌋

for some n ≤ 2 j

δ

}

has cardinality of the order of 2 j , asymptotically. Accordingly, we let Homs(W ) be
the set of sequences H in Hyps such that for Ld -almost every t ∈ W ,

lim sup
δ→0

Qs
t,δ

(H) > 0 with Qs
t,δ

(H) = lim inf
j→∞

1

2 j
#Qs

t,δ, j (H),

where # stands for cardinality, and we say that such a sequence is homogeneously
distributed in W . Here, Ld denotes the Lebesgue measure in R

d .

Lemma 7 Let H = (Hn)n≥1 be a sequence in Homs(W ) and let R = (Rn)n≥1 be a
nonincreasing sequence of positive real numbers such that

∑
n Rn=∞. Then, the set

F(H,R) =
{

t ∈ R
d | d(t,Hn) < Rn for i.m. n ≥ 1

}

has full Lebesgue measure in W .
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Proof For any t ∈ R
d , let Et (H,R) be the set of τ ∈ R such that |τ − ξs

t (Hn)| < Rn

for infinitely many n ≥ 1. It suffices to prove that

∀t ∈ R
d ∀δ ∈ (0, 1) L1(Et (H,R) ∩ (−δ, δ)) ≥ δ

18
Qs

t,δ
(H)2. (39)

Indeed, letting (Rs)⊥ be the orthogonal complement of Rs in R
d , we deduce from (39)

that for all b ∈ (Rs)⊥ and τ ∈ R,

∀δ ∈ (0, 1)
1

2δ

τ+δ∫

τ−δ

1Eb(H,R)(v) dv ≥
(

Qs
b+τs,δ

(H)

6

)2

.

By virtue of Lebesgue’s density theorem [32, Corollary 2.14], this implies that for
every b ∈ (Rs)⊥ and L1-almost every τ ∈ R,

1Eb(H,R)(τ ) ≥
(

1

6
lim sup

δ→0
Qs

b+τs,δ
(H)

)2

.

As the sequence H is in Homs(W ), we infer that for Hd−1-almost every b ∈ (Rs)⊥
and L1-almost every τ ∈ R,

b + τs ∈ W �⇒ 1Eb(H,R)(τ ) > 0 �⇒ b + τs ∈ F(H,R),

and the result follows. It now remains to establish (39). To this end, we may clearly
assume that Qs

t,δ
(H) > 0, and then show that for every η > 1,

L1(Et (H,R) ∩ (−δ, δ)) ≥ δ

18

(
Qs

t,δ
(H)

η

)2

. (40)

In order to prove (40), let us observe that, by definition of Qs
t,δ

(H), there is an integer

j ≥ 0 such that for any j ≥ j , there exists a set N j ⊆ {1, . . . , �2 j/δ�} with:

– 2 j−1Qs
t,δ

(H)/η ≤ #N j ≤ 2 j ;

– |ξs
t (Hn)| < δ for any n ∈ N j ;

–
∣
∣|ξs

t (Hn)| − |ξs
t (Hn′)|

∣
∣ ≥ δ2− j for any distinct n, n′ ∈ N j .

In addition, for each n ≥ 1, let R′n = Rn ∧ (2(n + 1))−1. Then, (R′n)n≥1 is non-
increasing and

∑
n R′n = ∞. Indeed, the convergence of

∑
n R′n would imply that

R′n = o(1/n) as n→∞, thus contradicting the divergence of
∑

n Rn .
For every j ≥ j , let us consider the set

U j =
⋃

n∈N j

(
ξs

t (Hn)−R′�2 j /δ�, ξ
s
t (Hn)+R′�2 j /δ�

)
.
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All the points in the lim sup of the sets U j , except maybe those of the form ξs
t (Hn),

belong to both [−δ, δ] and Et (H,R). Therefore,

L1

(

lim sup
j→∞

U j

)

≤ L1(Et (H,R) ∩ (−δ, δ)).

Lemma 5 in [40] enables us to obtain an appropriate lower bound on the left-hand side
above. To be more specific, this result ensures that

L1

(

lim sup
j→∞

U j

)

≥ lim sup
J→∞

(∑
j≤ j≤J L1(U j )

)2

∑
j≤ j, j ′≤J L1(U j ∩U j ′)

,

with the proviso that
∑

j L1(U j ) diverges. To check this last condition, it is crucial to
observe that for each j ≥ j , the intervals forming the set U j are disjoint, so that

L1(U j ) = 2R′�2 j /δ�#N j ≥
Qs

t,δ
(H)

η
2 jR′�2 j /δ�. (41)

Due to the divergence of
∑

n R′n and the Cauchy condensation test,
∑

j 2 jR′�2 j /δ�
diverges too. The divergence of

∑
j L1(U j ) then follows from (41). As a consequence,

in order to obtain (40), it now suffices to show that for J large enough,

∑

j≤ j, j ′≤J

L1(U j ∩U j ′) ≤ 18

δ

⎛

⎝ η

Qs
t,δ

(H)

∑

j≤ j≤J

L1(U j )

⎞

⎠

2

. (42)

To this end, let us derive an upper bound on the Lebesgue measure of U j ∩U j ′ , where
j ≤ j < j ′. This set is the union over n ∈ N j and n′ ∈ N j ′,n of the sets

(
ξs

t (Hn)−R′�2 j /δ�, ξ
s
t (Hn)+R′�2 j /δ�

)
∩
(
ξs

t (Hn′)−R′�2 j ′/δ�, ξ
s
t (Hn′)+R′�2 j ′/δ�

)
,

where N j ′,n is the collection of all n′ ∈ N j ′ such that this last intersection is nonempty.
The cardinality of N j ′,n is clearly bounded above by the number of integers of the form
�2 j ′ |ξ |/δ� with |ξ − ξs

t (Hn)| < 2R′�2 j /δ�, which is itself at most 2+ 2 j ′+2R′�2 j /δ�/δ.

Along with the fact that #N j ≤ 2 j , this yields

L1(U j ∩U j ′) ≤ 2 j

(

2+ 2 j ′+2

δ
R′�2 j /δ�

)
(

2R′�2 j ′/δ�
)
.
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As a consequence, for any integer J > j , the left-hand side of (42) is at most

2
∑

j≤ j≤J

2 jR′�2 j /δ� + 8
∑

j≤ j< j ′≤J

2 jR′�2 j ′/δ� +
16

δ

∑

j≤ j< j ′≤J

2 j+ j ′R′�2 j /δ�R
′
�2 j ′/δ�.

The third sum is smaller than half the sum over all j, j ′ ∈ { j, . . . , J }, and the second
sum is smaller than the first one. Thus, the left-hand side of (42) is at most

10
∑

j≤ j≤J

2 jR′�2 j /δ� +
8

δ

⎛

⎝
∑

j≤ j≤J

2 jR′�2 j /δ�

⎞

⎠

2

≤ 18

δ

⎛

⎝
∑

j≤ j≤J

2 jR′�2 j /δ�

⎞

⎠

2

,

where the last bound holds for J large enough, due to the divergence of the series∑
j 2 jR′�2 j /δ�. We conclude using (41). ��

11.5 Poisson hyperplanes are homogeneously distributed

The next lemma asserts essentially that the random hyperplanes arising in the definition
of Kν(α) are homogeneously distributed. To be more specific, we need to introduce
some additional notations. Given α > 0, let Nα denote the image under the mapping
(ρ, s,x) → (ρ, s, |x|1/α) of the restriction to (0,∞) × S

d−1 × ([−1, 1]\{0}) of the
measure N. Then, Nα is a Poisson random measure with intensity L1+ ⊗ να , where να

is defined at the beginning of Sect. 10.
Given an arbitrary orthonormal basis (e1, . . . , ed) of R

d , for each i ∈ {1, . . . , d},
let Ci be the set of all s ∈ S

d−1 satisfying |〈s, ei 〉| ≥ d−1/2. Furthermore, let Ai,0 be
the set of all r ∈ (0, 1] such that να(Ci × {r}) ≥ 1, and let Ai,1 = (0, 1]\Ai,0. Then,
for each � ∈ {0, 1}, let να,i,� be the restriction of να to Ci ×Ai,�.

Let us assume that να,i,� has infinite total mass. Thus, να,i,� belongs to P , in view
of (1). Given an integer A ≥ 1, the restriction NA,i,�

α of Nα to (0, A)× Ci ×Ai,� may
be written almost surely as

NA,i,�
α =

∞∑

n=1

δ(
PA,i,�

n ,S A,i,�
n ,R A,i,�

n

), (43)

for some sequence
(

PA,i,�
n , S A,i,�

n , R A,i,�
n

)

n≥1
in (0, A)× Ci ×Ai,�. Given that να,i,�

is in P , the following holds with probability one: for any ε > 0, only finitely many
n ≥ 1 satisfy R A,i,�

n ≥ ε. So, up to a reordering, we may assume that the sequence
(R A,i,�

n )n≥1 is nonincreasing and converges to zero. Last, for any n ≥ 1, let H A,i,�
n

denote the hyperplane defined in terms of PA,i,�
n and S A,i,�

n as in (9).

Lemma 8 Almost surely, for any A ≥ 1, i ∈ {1, . . . , d} and � ∈ {0, 1} such that να,i,�

has infinite total mass, H A,i,� = (H A,i,�
n )n≥1 is in Homei (B0(A)).
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Proof Given A ≥ 1, i ∈ {1, . . . , d} and � ∈ {0, 1}, it is clear that H A,i,�
n ∈ Hypei

for
all n ≥ 1. Assume that να,i,� has infinite total mass. In view of Fubini’s theorem, it
suffices to let t ∈ B0(A) and show that almost surely, lim supδ→0 Qei

t,δ(H A,i,�) > 0.

To this end, given δ ∈ (0, 1) and j ≥ 1, suppose that #Qei
t,δ, j (H A,i,�) ≤ θ2 j , for some

θ ∈ (0, 1). So, there is a subset Q of {0, . . . , 2 j − 1} with cardinality �θ2 j� which
satisfies Q ⊇ Qei

t,δ, j (H A,i,�). We have

∀n ≤
⌊

2 j

δ

⌋
|ξ ei

t (H A,i,�
n )| =

∣
∣
∣
∣
∣
PA,i,�

n − 〈S A,i,�
n , t〉

〈S A,i,�
n , ei 〉

∣
∣
∣
∣
∣
∈ [δ,∞] ∪

⋃

q∈Q

λq , (44)

where λq denotes the interval [qδ2− j , (q + 1)δ2− j ).
Let us first assume that � = 0 and derive an upper bound on the probability that (44)

happens. There exists a decreasing sequence (ai
p)p≥1 of positive reals that converges

to zero and whose terms form the set Ai,0. Then, basic properties of Poisson random
measures enable us to write that almost surely,

NA,i,0
α =

∞∑

p=1

Np∑

m=1

δ(
P̃A,i,0

p,m ,S̃ A,i,0
p,m ,ai

p

),

where each Np is Poisson distributed with mean A να,i,0(Ci × {ai
p}), each P̃A,i,0

p,m is

uniformly distributed on (0, A) and each S̃ A,i,0
p,m is distributed according to the proba-

bility measure μi,ai
p
= να,i,0(· × {ai

p})/να,i,0(Ci ×{ai
p}) on Ci , and all these variables

are independent, see e.g. [34]. This means that, in (43) above, we have the property
that, conditional on the σ -algebra generated by the sequence (R A,i,0

n )n≥1, the variables
PA,i,0

n and S A,i,0
n , for n ≥ 1, are independent and distributed according to the uniform

law on (0, A) and the law μi,R A,i,0
n

, respectively. Hence, the conditional probability
that (44) holds given that σ -algebra is

�2 j /δ�∏

n=1

∫

ρ ∈ (0, A)
s ∈ Ci

1{∣
∣
∣ ρ−〈s,t〉
〈s,ei 〉

∣
∣
∣∈[δ,∞]∪ ⋃

q∈Q
λq

} dρ

A
μi,R A,i,0

n
(ds).

Exploiting the symmetry of ν, it is easy to check that this is equal to

�2 j /δ�∏

n=1

⎛

⎜
⎝1− δ − �θ2 j�δ2− j

A

∫

s∈Ci

|〈s, ei 〉|μi,R A,i,0
n

(ds)

⎞

⎟
⎠ ≤ exp

(
− (1− θ)δ

A
√

d

⌊
2 j

δ

⌋)
,

for δ < A − ‖t‖. In order to derive the upper bound, we have used the fact that
1− z ≤ e−z for any z ∈ R and that |〈s, ei 〉| ≥ d−1/2 for any s ∈ Ci . It follows that
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P

⎛

⎝∀n ≤
⌊

2 j

δ

⌋
|ξ ei

t (H A,i,0
n )| ∈ [δ,∞] ∪

⋃

q∈Q

λq

⎞

⎠ ≤ exp

(
−1− θ

A
√

d
2 j−1

)
.

Now, recall that the set Q is a subset of {0, . . . , 2 j − 1} with cardinality �θ2 j�. We
finally infer that

P(#Qei
t,δ, j (H A,i,0) ≤ θ2 j ) ≤

(
2 j

�θ2 j�
)

exp

(
−1− θ

A
√

d
2 j−1

)
.

Making use of Stirling’s formula, we get

lim sup
j→∞

1

2 j
log P(#Qei

t,δ, j (H A,i,0) ≤ θ2 j ) ≤ −Γ (θ)− 1− θ

2A
√

d
, (45)

with Γ (θ) = θ log θ + (1 − θ) log(1 − θ). Clearly, there exists a unique θ0 ∈ (0, 1)

at which the right-hand side of (45) vanishes. Moreover, this right-hand side is neg-
ative for any θ ∈ (0, θ0). Using the Borel-Cantelli lemma, we see that for any δ ∈
(0, A − ‖t‖) and any such θ , almost surely, Qei

t,δ(H A,i,0) ≥ θ . The result follows.
Now, if � = 1, we may apply Lemma 5 with the image under (ρ, s, r) → r of the

measure L1
|(0,A)⊗να,i,1, where L1

|(0,A) is the restriction of L1 to (0, A). Consequently,

we infer that Φ A
i,1 ∼0 A ϕi,1 almost surely, where

∀w ∈ (0, 1]
{

Φ A
i,1(w) = NA,i,1

α ((0, A)× Ci × [w, 1])
ϕi,1(w) = να,i,1(Ci × [w, 1]).

This directly implies that with probability one,

C = sup
w∈(0,1]

Φ A
i,1(w)

A(1+ ϕi,1(w))
∈ [1,∞).

Furthermore, let us consider an integer k ≥ 1 and an integer j large enough to ensure
that 1+ϕi,1(w) ≤ 2 j/(Aδk) for some w ∈ (0, 1]. As (R A,i,1

n )n≥1 is nonincreasing, we
have n ≤ Φ A

i,1(w) ≤ C2 j/(δk) for any n ≥ 1 with R A,i,1
n ≥ w. Therefore, if C ≤ k

and (44) hold simultaneously, then no integer n ≥ 1 can satisfy both R A,i,1
n ≥ w and

|ξ ei
t (H A,i,1

n )| ∈ [0, δ)\⋃q∈Q λq . This happens with probability e−I (w), where

I (w) =
∫

(ρ, s) ∈ (0, A)× Ci
r ∈ [w, 1]

1{∣
∣
∣ ρ−〈s,t〉
〈s,ei 〉

∣
∣
∣∈[0,δ)\ ⋃

q∈Q
λq

} dρ να,i,1(ds, dr) ≥ (1− θ)δ√
d

ϕi,1(w).

Here, the lower bound holds for δ < A−‖t‖ and results from standard computations
that exploit the symmetry of ν. This leads to an upper bound on the probability that
C ≤ k and (44) hold simultaneously, which may be optimized by letting w ↓ w∗,
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where w∗ is the infimum of all w ∈ (0, 1]with 1+ϕi,1(w) ≤ 2 j/(Aδk). By definition
of w∗ and Ai,1, and as ϕi,1 is left-continuous with right limits, we have

lim
w↓w∗

ϕi,1(w) ≥ ϕi,1(w
∗)− 1 ≥ 2 j

Aδk
− 2 ≥ 2 j−1

Aδk
,

where the last inequality holds for j large enough. We deduce that

P

⎛

⎝C ≤ k and ∀n≤
⌊

2 j

δ

⌋
|ξ ei

t (H A,i,1
n )|∈[δ,∞] ∪

⋃

q∈Q

λq

⎞

⎠≤exp

(
− 1− θ

Ak
√

d
2 j−1

)
.

Just as in the previous case, this implies that for any k ≥ 1 with P(C ≤ k) > 0,

lim sup
j→∞

1

2 j
log P(#Qei

t,δ, j (H A,i,1) ≤ θ2 j | C ≤ k) ≤ −Γ (θ)− 1− θ

2Ak
√

d
,

where the right-hand side vanishes for a unique θk ∈ (0, 1). Using the Borel-Cantelli
lemma as above, we see that for any δ ∈ (0, A− ‖t‖) and any θ ∈ (0, θk), condition-
ally on C ≤ k, with probability one, Qei

t,δ(H A,i,1) ≥ θ . Therefore, with probability

one, conditionally on C ≤ k, we have lim supδ→0 Qei
t,δ(H A,i,1) ≥ θk . The result now

follows from the fact that C <∞ almost surely. ��

11.6 Ubiquity

Last, the proof of Theorem 7 calls upon the next lemma, which is a straightforward
consequence of Theorem 3.6 in [17]. (The hypotheses of that theorem are verified
here because the diameter of the set of t ∈ Rei such that d(t, H A,i,�

n ) < 1 is bounded
above by 2d1/2, since S A,i,�

n ∈ Ci .) For every g ∈ D1, let

F A,i,�(g) =
{

t ∈ R
d | d(t, H A,i,�

n ) < g(R A,i,�
n ) for i.m. n ≥ 1

}
.

Lemma 9 Let A ≥ 1, i ∈ {1, . . . , d} and � ∈ {0, 1} such that να,i,� has infinite total
mass, and let g ∈ D1. If the set F A,i,�(g) has full Lebesgue measure in B0(A) for

some g ∈ D1 with g ≺ g, then F A,i,�(r → r) ∈ Gd−1,g(B0(A)).

This lemma falls into the category of the ubiquity results obtained in [16,17,19],
which enable one to deduce the large intersection properties of a set, such as
F A,i,�(r → r) in the present situation, from the sole knowledge of the Lebesgue
measure of a corresponding enlarged set, which is F A,i,�(g) here.

11.7 End of the proof when hν(g) > α

To begin with, let us recall that Pn and Xn are defined in terms of the atoms of the
Poisson random measure N, see Sect. 4. Then, let Rn = |Xn|1/α for any n ≥ 1 and,
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given an integer A ≥ 1, let NA denote the set of all n ≥ 1 such that Pn < A and
Rn ≤ 1.

For any A ≥ 1, we may apply Lemma 6 with the image under (ρ, s, r) → r of the
measure L1

|(0,A) ⊗ να . Consequently, in view of (19), we deduce that with probability
one, for any A ≥ 1 and any g ∈ D1 with hν(g) > α, the series

∑
n∈NA

g(Rn) con-
verges. In particular, for any δ > 0, there necessarily exists an integer n0 ≥ 1 such
that Rn < δ for any n ∈ NA with n ≥ n0. Then, for any n1 ≥ n0,

Kν(α) ∩ B0(A − 1) ⊆
⋃

n ∈NA
n ≥ n1

{
t ∈ B0(A)

∣
∣ d(t, Hn) < Rn

}
,

where Hn is the hyperplane defined by (9). Moreover, each set in the union above may
be covered by (3�2A

√
d/Rn�)d−1 open balls with radius 2Rn . Therefore,

Hr →rd−1g(r)
δ (Kν(α) ∩ B0(A − 1)) ≤

∑

n ∈NA
n ≥ n1

(

3

⌊
2A
√

d

Rn

⌋)d−1

(4Rn)d−1g(4Rn)

≤ 4(24A
√

d)d−1
∑

n ∈NA
n ≥ n1

g(Rn).

Letting n1 →∞ and δ→ 0, we deduce that Hd−1,g(Kν(α) ∩ B0(A− 1)) = 0. This
holds for all integers A ≥ 1, so the result follows.

11.8 End of the proof when hν(g) < α

By Lemma 6, the next statement holds almost surely: for all integers A ≥ 1, i ∈
{1, . . . , d} and � ∈ {0, 1}, and all g ∈ D1,

∫

s ∈ S
d−1

r ∈ (0, 1]

g(r) να,i,�(ds, dr) = ∞ �⇒
∞∑

n=1

g(R A,i,�
n ) = ∞. (46)

Moreover, the statement of Lemma 8 holds with probability one as well. We shall
work in what follows on the almost sure event on which these two statements hold.
Let us consider a gauge function g ∈ D1 such that hν(g) < α. Due to (19) and the
fact that S

d−1 × (0, 1] is covered by the sets Ci ×Ai,�, the integral in (46) is infinite
for some (i, �) ∈ {1, . . . , d} × {0, 1}.

Let us assume that g ≺ (r → r). Borrowing ideas from the proof of [18, Proposition
5], we may build g ∈ D1 such that g ≺ g and the integral in (46) with g replaced

by g is infinite as well. Therefore,
∑

n g(R A,i,�
n ) diverges, so that F A,i,�(g) has full

Lebesgue measure in B0(A), by virtue of Lemma 7. Thanks to Lemma 9, we deduce
that F A,i,�(r → r) ∈ Gd−1,g(B0(A)). The same result holds if g �≺ (r → r), in view
of the divergence of

∑∞
n=1 R A,i,�

n , combined with Lemma 7 and Theorem 5(4).
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To conclude, it is crucial to note that the set F A,i,�(r → r) is contained in Kν(α).
Given that F A,i,�(r → r) is in Gd−1,g(B0(A)), the Gδ-set Kν(α) belongs to the
same class. Now, let W be a bounded open subset of R

d . Then, W ⊆ B0(A) for
A large enough, so that M f∞(Kν(α) ∩ W ) = M f∞(W ) for every f ∈ Dd with
f ≺ (r → rd−1g(r)). Lemma 12 in [16] finally ensures that Kν(α) ∈ Gd−1,g(Rd).

12 Proofs concerning the jump component

Throughout the section, we assume that the measure ν is admissible. We now establish
Proposition 1 and the results of Sect. 6.

12.1 Proof of Proposition 1

Let A ∈ N and UA = B0(A + 1) ∩ (d−1/2
Z

d). For any fixed t ∈ R
d , the series∑

j≥0 Lν, j (t) defining Lν(t) converges almost surely, see Sect. 4. Thus, the event
EA consisting in the fact that the series

∑
j≥0 Lν, j (u), for u ∈ UA, converge simul-

taneously has probability one. Furthermore, it follows from Lemma 2 that the event
E ′A = {Zν(A + 1) <∞} has probability one too.

Let us now assume that the almost sure event EA ∩ E ′A happens, and let ε > 0 and
t ∈ B0(A). Then, ‖t−u‖ ≤ 1/2 for some u ∈ UA. The sum χν defined by (3) is finite
and the series

∑
j≥0 Lν, j (u) converges, so that

j2∑

j= j1

2− j ( j + ( jν j )
1/2) ≤ ε and

∣
∣
∣
∣
∣
∣

j2∑

j= j1

Lν, j (u)

∣
∣
∣
∣
∣
∣
≤ ε

for all integers j1 and j2 such that j2 ≥ j1 ≥ j0, and some j0 ≥ 1. Therefore,

∣
∣
∣
∣
∣
∣

j2∑

j= j1

Lν, j (t)

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

j2∑

j= j1

Lν, j (u)

∣
∣
∣
∣
∣
∣
+

j2∑

j= j1

ζν(A + 1, j, 1) ≤ (1+ Zν(A + 1)) ε.

The partial sums of
∑

j≥0 Lν, j (t) form a Cauchy sequence. So, for any A ∈ N, with

probability one,
∑

j≥0 Lν, j (t) converges for any t ∈ B0(A), and the result follows.

12.2 Proof of Theorems 4 and 6

The statement of Corollary 5 holds with probability one, and that of Theorem 7 holds
with probability one for all rational numbers α ∈ Q ∩ (0,∞) simultaneously. Let us
assume that the almost sure event on which these statements hold occurs. Theorems 4
and 6 follow from a series of propositions that we now state and establish. Throughout,
we consider a real h ∈ [0, 1/βν), a gauge function g ∈ D1 and a nonempty open set
W ⊆ R

d .
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Proposition 11 If h < hν(g), then Hd−1,g(Eν(h)) = Hd−1,g(E ′ν(h)) = 0.

Proof There exists a rational number α ∈ Q ∩ (h, hν(g)) such that E ′ν(h) ⊆ Kν(α).
Hence, Hd−1,g(E ′ν(h)) ≤ Hd−1,g(Kν(α)) = 0. Furthermore, if h > 0, then Eν(h) ⊆
E ′ν(h), so Hd−1,g(Eν(h)) = 0 as well. This result still holds for h = 0, because
Eν(0) = E ′ν(0) ∪ Jν and Jν is a countable union of hyperplanes. ��
Proposition 12 If h < hν(g), then E ′ν(h) �∈ Gd−1,g(W ).

Proof Adapting the method developed in the proof of [18, Proposition 3], we may
build a gauge function g ∈ D1 satisfying both g ≺ g and hν(g) ≥ hν(g). Then,
applying Proposition 11 with g instead of g, we infer that Hd−1,g(E ′ν(h) ∩ W ) = 0.
We conclude by Theorem 5(3). ��
Proposition 13 If h ≥ hν(g), then E ′ν(h) ∈ Gd−1,g(W ).

Proof The mapping α → Kν(α) is nondecreasing; it follows that

E ′ν(h) = (Rd\Jν) ∩
⋂

h < α ≤ 1/βν
α ∈ Q

Kν(α).

Furthermore, each set Kν(α) arising in this last intersection belongs to Gd−1,g(W ).
The set R

d\Jν belongs to this class as well by virtue of Theorem 5 (4), because Jν is
the union of countably many hyperplanes. We conclude using Theorem 5 (1). ��
Proposition 14 If h ≥ hν(g), then Hd−1,g(E ′ν(h) ∩W ) = ∞.

Proof The assumption of the proposition implies that g ≺ (r → r). Indeed, otherwise,
we would clearly have hν(g) ≥ 1/βν , which is in contradiction with the fact that
hν(g) ≤ h < 1/βν . Therefore, borrowing ideas from the proof of [18, Proposition 5],
we may build a gauge function g ∈ D1 satisfying both g ≺ g and hν(g) ≤ hν(g).
Then, applying Proposition 13 with the gauge function g instead of g, we see that

E ′ν(h) belongs to Gd−1,g(W ). We conclude by Theorem 5 (3). ��
Proposition 15 If h = hν(g), then Hd−1,g(Eν(h) ∩W ) = ∞.

Proof In the case where h = 0, the result follows directly from Proposition 14,
because Eν(0) contains E ′ν(0). In the case where h > 0, it suffices to make use of
Proposition 14 again, together with the observation that

Eν(h) = E ′ν(h)\
⋃

0 < α < h
α ∈ Q

Kν(α),

because the mapping α → Kν(α) is nondecreasing, and that each set Kν(α) in the
union above has Hausdorff measure zero for the gauge function r → rd−1g(r). ��
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12.3 Proof of Corollary 2

Let us assume that the almost sure event on which the statement of Theorem 4 holds
occurs. Let h ∈ [0, 1/βν), g ∈ D∗1 and W be a nonempty open set. Most of the first part
of the corollary, which gives Hd−1,g(Eν(h) ∩ W ) and Hd−1,g(E ′ν(h) ∩ W ), follows
directly from Theorem 4. The only new property is that Hd−1,g(Eν(h) ∩ W ) = ∞
when h > hν(g). To prove this, let γg = limr→0(log g(r))/ log r . Then, let us assume
that h > hν(g) and remark that hν(g) = γg/βν . It follows that γg < βνh, so that
g(r) ≥ rβνh for r ≥ 0 small enough. Thus, the Hausdorff measure of Eν(h) ∩ W
for the gauge function r → rd−1g(r) is larger than or equal to its (d − 1 + βνh)-
dimensional measure, which is infinite as a result of Theorem 4 and the fact that
hν(r → rβνh) = h.

The proof of the second part of the corollary, which gives the value of the Hausdorff
dimension of Eν(h) ∩ W and E ′ν(h) ∩ W , is a consequence of the first part, together
with the following observations: for h > 0, note that hν(r → rs) = s/βν for any
s ∈ (0, 1]; for h = 0, note that hν(g) = 0 for some g ∈ D1 (which may be built by
borrowing ideas from the proof of [18, Proposition 5]).

12.4 Proof of Proposition 5

As mentioned at the beginning of Sect. 11, if ν has finite total mass, then with proba-
bility one, Kν(α) = ∅ for all α > 0. The result now follows from Corollary 5.

12.5 Proof of Proposition 4

The case where h > 1/βν follows from (25). To treat the case where h = 1/βν , let us
use of Corollary 5 in order to write that

E ′ν(1/βν) = R
d\Jν and Eν(1/βν) = R

d\
⎛

⎜
⎝Jν ∪

⋃

0 < α < 1/βν
α ∈ Q

Kν(α)

⎞

⎟
⎠ .

In the union above, we may restrict α to being rational, because α → Kν(α) is non-
decreasing. Now, applying Theorem 7 with g : r → r , we infer that with probability
one, the sets Kν(α), for α ∈ Q∩(0, 1/βν), all have Lebesgue measure zero. Moreover,
the set Jν is a countable union of hyperplanes, thereby having Lebesgue measure zero
as well. It follows that almost surely, the set Eν(1/βν) has full Lebesgue measure in
the whole space R

d .

13 Estimates of the increments of Lν, j

The purpose of this section is to establish Lemma 2, that is, to prove the almost sure
finiteness of Zν(A), for any fixed integer A ≥ 1.
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13.1 A net argument

Given an integer k ≥ 1, let σk = 2−k/�d1/2�. There exists UA,k ⊆ σk Z
d with cardi-

nality at most (2k+2 Ad1/2)d such that [−A− 2−k, A+ 2−k]d is covered by the cubes
u + [0, σk)

d , for u ∈ UA,k . Then, for any t ∈ Q
d ∩ B0(A) and τ ∈ Q

d ∩ B0(2−k),
there are two points u and u′ in UA,k such that t − u and t + τ − u′ belong to [0, σk)

d .
Moreover, writing u = pσk and u′ = p′σk with p, p′ ∈ Z

d , we see that the �1-norm
of p − p′ is at most 3d, so there exists a finite sequence (pi )0≤i≤n in Z

d such that
n ≤ 3d, p0 = p, pn = p′, and ‖pi+1 − pi‖ = 1 and ui = piσk ∈ UA,k for all i . As
a result, for any j ≥ 1, the increment |Lν, j (t + τ)− Lν, j (t)| is at most

|Lν, j (t + τ)− Lν, j (u
′)| + |Lν, j (t)− Lν, j (u)| +

n−1∑

i=0

|Lν, j (ui+1)− Lν, j (ui )|,

Making use of (27) and letting

ζν(t, j, k) = sup
τ∈Qd∩B0(2−k )

|Lν, j (t + τ)− Lν, j (t)|

for any j, k ≥ 1 and t ∈ R
d , it follows that

ζν(A, j, k) ≤ (3d + 2) sup
t∈UA,k

ζν(t, j, k). (47)

13.2 Estimates of ζν(t, j, k)

Let us now derive an appropriate upper bound on ζν(t, j, k) and a control on the tail dis-
tribution of this bound. To this end, for any relatively compact Borel set V ∈ B0(Hd),
let

Mν, j (V ) =
∫

(ρ, s) ∈ V
|x| ∈ I j

N(dρ, ds, dx) and mν, j (V ) =
∫

(ρ, s) ∈ V
|x| ∈ I j

dρ ν(ds, dx).

Recall that Lν, j (V ) is given by (10), so that we clearly have

|Lν, j (V )| ≤ 2− j+1 (Mν, j (V )+ mν, j (V )
)
. (48)

Moreover, for any t ∈ R
d and any δ > 0, let V ◦t,δ = V+t,δ\V−t,δ , where

V+t,δ =
⋃

τ∈Qd∩B0(δ)

Vt+τ and V−t,δ =
⋂

τ∈Qd∩B0(δ)

Vt+τ .
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Note that V ◦t,δ ∈ B0(Hd) and that |ρ − 〈s, t〉| ≤ δ for any (ρ, s) ∈ V ◦t,δ . Therefore,
exploiting the symmetry of ν, we have

mν, j (V ◦t,δ) ≤
1

2

∫

s ∈ S
d−1

|x| ∈ I j

∫

ρ∈R
1{|ρ−〈s,t〉|≤δ} dρ ν(ds, dx) = 2δν j . (49)

Our approach now depends on whether or not 2−kν j ≤ η jk, where η ≥ 1 is a real
constant to be fixed later.

13.2.1 Case where 2−kν j ≤ η jk

Here, the suitable bound on ζν(t, j, k) and an estimate of its tail distribution are given
by the next two results.

Lemma 10 For any t ∈ R
d and any η, j, k ≥ 1 with 2−kν j ≤ η jk,

ζν(t, j, k) ≤ 2− j+1(Mν, j (V ◦t,2−k )+ 2η jk).

Proof For every τ ∈ Q
d ∩B0(2−k), the increment |Lν, j (t + τ)− Lν, j (t)| is equal to

∣
∣(Lν, j (Vt+τ\Vt )+ Lν, j (Vt+τ ∩ Vt ))− (Lν, j (Vt\Vt+τ )+ Lν, j (Vt ∩ Vt+τ ))

∣
∣

≤ 2− j+1 (Mν, j (Vt+τ�Vt )+ mν, j (Vt+τ�Vt )
)
,

where the last bound is due to (48). Furthermore, Vt+τ�Vt ⊆ V ◦
t,2−k , so that

|Lν, j (t + τ)− Lν, j (t)| ≤ 2− j+1
(

Mν, j

(
V ◦t,2−k

)
+ mν, j

(
V ◦t,2−k

))

The result follows from (49) and the assumption on j and k. ��
Lemma 11 For any t ∈ R

d and any η, j, k ≥ 1 with 2−kν j ≤ η jk,

P(Mν, j (V ◦t,2−k ) ≥ 5η jk) ≤ 2 e−η jk .

Proof We may clearly assume that mν, j (V ◦
t,2−k ) is positive. In view of (49), the fact

that Mν, j (V ◦
t,2−k ) ≥ 5η jk implies that

∫

(ρ, s) ∈ V ◦
t,2−k

|x| ∈ I j

N∗(dρ, ds, dx) = Mν, j (V ◦t,2−k )− mν, j (V ◦t,2−k ) ≥ 3η jk,

which may happen with probability at most 2 e−η jk , by virtue of Lemma 4. ��
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13.2.2 Case where 2−kν j > η jk

Let δ j,k=(2kν j )
−1/2 and T j,k be the set of points in Q

d ∩ B0(21−k) of the form
p/�(d 2kν j )

1/2� with p ∈ Z
d . We clearly have #T j,k ≤ (25d 2−kν j )

d/2. Here are the
analogs of Lemmas 10 and 11.

Lemma 12 For any t ∈ R
d and any η, j, k ≥ 1 with 2−kν j > η jk,

ζν(t, j, k) ≤ 2 sup
τ,τ ′∈T j,k

|Lν, j (V+t+τ,δ j,k
\V−t+τ ′,δ j,k

)|

+23− j sup
τ∈T j,k

Mν, j (V ◦t+τ,δ j,k
)+ 24− j−k/2ν

1/2
j .

Proof Given τ ∈ Q
d ∩B0(2−k), there clearly exists a τ ′ ∈ T j,k with ‖τ − τ ′‖ ≤ δ j,k ,

so that V−t+τ ′,δ j,k
⊆ Vt+τ ⊆ V+t+τ ′,δ j,k

. Moreover, we also have V−t,δ j,k
⊆ Vt ⊆ V+t,δ j,k

.
Then, just as in the proof of Lemma 10,

|Lν, j (t + τ)− Lν, j (t)| ≤ |Lν, j (Vt+τ\Vt )| + |Lν, j (Vt\Vt+τ )|.

Splitting V+t+τ ′,δ j,k
\V−t,δ j,k

into its subset Vt+τ\Vt and the complement, we get

|Lν, j (Vt+τ\Vt )| = |Lν, j (V+t+τ ′,δ j,k
\V−t,δ j,k

)− Lν, j ((V+t+τ ′,δ j,k
\V−t,δ j,k

)\(Vt+τ\Vt ))|.

Owing to the triangle inequality, the upper bound given by (48) and the observation
that the complement of the set Vt+τ\Vt in V+t+τ ′,δ j,k

\V−t,δ j,k
is included in the union of

V ◦t+τ ′,δ j,k
and V ◦t,δ j,k

, the right-hand side above is smaller than or equal to

∣
∣
∣Lν, j

(
V+t+τ ′,δ j,k

\V−t,δ j,k

)∣∣
∣+ 2− j+1

(
Mν, j

(
V ◦t+τ ′,δ j,k

∪ V ◦t,δ j,k

)

+mν, j

(
V ◦t+τ ′,δ j,k

∪ V ◦t,δ j,k

))
.

In addition, (49) ensures that the sets V ◦t+τ ′,δ j,k
and V ◦t,δ j,k

have mν, j -measure at most
2δ j,kν j . Therefore, |Lν, j (Vt+τ\Vt )| is at most

∣
∣
∣Lν, j

(
V+t+τ ′,δ j,k

\V−t,δ j,k

)∣∣
∣+ 2− j+1

(
Mν, j

(
V ◦t+τ ′,δ j,k

)
+ Mν, j

(
V ◦t,δ j,k

)
+ 4δ j,kν j

)
.

Likewise, |Lν, j (Vt\Vt+τ )| is smaller than or equal to

∣
∣
∣Lν, j

(
V+t,δ j,k

\V−t+τ ′,δ j,k

)∣∣
∣+ 2− j+1

(
Mν, j

(
V ◦t+τ ′,δ j,k

)
+ Mν, j

(
V ◦t,δ j,k

)
+ 4δ j,kν j

)
,

and the result follows. ��
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Lemma 13 For any t ∈ R
d , any η, j, k ≥ 1 with 2−kν j > η jk, and any τ, τ ′ ∈ T j,k ,

⎧
⎨

⎩

P

(∣∣
∣Lν, j

(
V+t+τ,δ j,k

\V−t+τ ′,δ j,k

)∣∣
∣ ≥ 23− j−k/2

(
η jkν j

)1/2
)
≤ 2 e−η jk

P

(
Mν, j

(
V ◦t+τ,δ j,k

)
≥ 23−k/2

(
η jkν j

)1/2
)
≤ 2 e−η jk .

Proof For the first bound, in view of (48), we may clearly assume that the mν, j -mea-
sure of V+t+τ,δ j,k

\V−t+τ ′,δ j,k
is positive. Moreover, this set is included in V ◦

t,3·2−k , so its

mν, j -measure is at most 6 · 2−kν j , owing to (49). Thus, Lemma 4 and the fact that
2−kν j > η jk imply that the probability under study is at most

2 exp

(

− 3 · 26−2 j−kη jk ν j

25−2 j−k/2(η jkν j )1/2 + 36 · 22−2 j−kν j

)

≤ 2 e−η jk .

The second inequality that we need to establish is an upper bound on the probability
of an event which implies that

∫

(ρ, s) ∈ V ◦t+τ,δ j,k|x| ∈ I j

N∗(dρ, ds, dx) = Mν, j

(
V ◦t+τ,δ j,k

)
− mν, j

(
V ◦t+τ,δ j,k

)

≥ 23−k/2 (η jkν j
)1/2 − 2δ j,kν j ≥ 4

(
η jk2−kν j

)1/2
.

Thanks to Lemma 4 and (49) again, this may happen with probability at most

2 exp

(

− 3η jk24−kν j

23−k/2(η jkν j )1/2 + 12(2−kν j )1/2

)

≤ 2 e−η jk,

where the last bound follows from the fact that 2−kν j > η jk ≥ 1. ��

13.3 End of the proof

Let us consider a real η ≥ 1. If 2−kν j ≤ η jk, let E j,k denote the event that the
following does not hold:

supt∈UA,k
Mν, j (V ◦t,2−k ) ≤ 5η jk. (50)

Thanks to Lemma 11, its probability satisfies

P(E j,k) ≤ 2 e−η jk #UA,k ≤ 2
(

4Ad1/2
)d

2dk e−η jk .
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Now, if 2−kν j > η jk, let E j,k denote the event that the following does not hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
t ∈ UA,k

τ, τ ′ ∈ T j,k

∣
∣
∣L j

(
V+t+τ,δ j,k

\V−t+τ ′,δ j,k

)∣∣
∣ ≤ 23− j−k/2

(
η jkν j

)1/2

sup
t ∈ UA,k
τ ∈ T j,k

Mν, j

(
V ◦t+τ,δ j,k

)
≤ 23−k/2

(
η jkν j

)1/2
.

(51)

Owing to Lemma 13, we have

P(E j,k) ≤ 2 e−η jk #UA,k #T j,k
(
1+ #T j,k

)

≤ 4
(

100Ad3/2
)d

νd
j e−η jk ≤ 4

(
100Ad3/2cν

)d
22d j e−η jk,

where cν =∑
j≥1 2−2 jν j , which is finite owing to (1).

From now on, let us suppose that η > 2d log 2. Using the above bounds, it is easy
to check that

∑
( j,k)∈N2 P(E j,k) < ∞. Letting Dn be the set of ( j, k) ∈ N

2 with

max{ j, k} ≥ n, we deduce that P

(⋂∞
n=1 ↓

⋃
( j,k)∈Dn

E j,k

)
= 0. So, with probabil-

ity one, there exists an integer n ≥ 1 such that (50) holds for any ( j, k) ∈ Dn with
2−kν j ≤ η jk, and (51) holds for any ( j, k) ∈ Dn with 2−kν j > η jk. In the first case, it
follows from Lemma 10 and (47) that ζν(A, j, k) is bounded by 14(3d+2)η 2− j jk. In
the second case, it is bounded by 96(3d + 2)2− j−k/2(η jkν j )

1/2, owing to Lemma 12
and (47) again. Letting η = 2d > 2d log 2, we finally get

a.s. ∃n ≥ 1 sup
( j,k)∈Dn

ζν(A, j, k)

2− j k( j + 2−k/2( jν j )1/2)
≤ 192(3d + 2)d.

In addition, for any j, k ≥ 1, we deduce from (48) that the expectation of ζν(A, j, k)

is at most 24− j (A + 2−k)ν j , so that ζν(A, j, k) <∞ almost surely. Thus,

a.s. ∀n ≥ 2 sup
( j,k)∈N2\Dn

ζν(A, j, k)

2− j k( j + 2−k/2( jν j )1/2)
<∞.

Lemma 2 now clearly follows.
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