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Abstract We study the stochastic heat equation ∂t u = L u + σ(u)Ẇ in (1 + 1)

dimensions, where Ẇ is space-time white noise, σ : R → R is Lipschitz continu-
ous, and L is the generator of a symmetric Lévy process that has finite exponential
moments, and u0 has exponential decay at ±∞. We prove that under natural conditions
on σ : (i) The νth absolute moment of the solution to our stochastic heat equation grows
exponentially with time; and (ii) The distances to the origin of the farthest high peaks
of those moments grow exactly linearly with time. Very little else seems to be known
about the location of the high peaks of the solution to the stochastic heat equation
under the present setting (see, however, Gärtner et al. in Probab Theory Relat Fields
111:17–55, 1998; Gärtner et al. in Ann Probab 35:439–499, 2007 for the analysis of
the location of the peaks in a different model). Finally, we show that these results
extend to the stochastic wave equation driven by Laplacian.
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682 D. Conus, D. Khoshnevisan

1 Introduction

We study the nonlinear stochastic heat equation

∂

∂t
ut (x) = (L ut )(x) + σ(ut (x))

∂2

∂t∂x
W (t , x) for t > 0, x ∈ R, (1.1)

where: (i) L is the generator of a real-valued symmetric Lévy process {Xt }t≥0 with
Lévy exponent �;1 (ii) σ : R → R is Lipschitz continuous with Lipschitz constant
Lipσ ; (iii) W is two-parameter Brownian sheet, indexed by (t , x) ∈ R+ × R; and (iv)
the initial function u0 : R → R+ is in L∞(R). Equation (1.1) arises for several rea-
sons that include its connections to the stochastic Burger’s equation (see Gyöngy and
Nualart [21]) and the parabolic Anderson model (see Carmona and Molchanov [6]).

According to the theory of Dalang [10], (1.1) has a unique solution when

Υ (β) := 1

2π

∞∫

−∞

dξ

β + 2�(ξ)
< ∞ for some, hence all, β > 0. (1.2)

Moreover, under various conditions on σ , (1.2) is necessary for the existence of a
solution [10,26].

Foondun and Khoshnevisan [17] have shown that:

γ (ν) := lim sup
t→∞

1

t
sup
x∈R

ln E
(|ut (x)|ν) < ∞ for every ν ≥ 2; (1.3)

and that

lim sup
t→∞

1

t
inf
x∈R

ln E
(|ut (x)|ν) > 0 for every ν ≥ 2, (1.4)

provided that: (a) infx |σ(x)/x | > 0; and (b) infx u0(x) > 0.2 Together these results
show that if u0 is bounded away from 0 and σ is sublinear, then the solution to (1.1) is
“weakly intermittent” [that is, highly peaked for large t]. Rather than describe why this
is a noteworthy property, we refer the interested reader to the extensive bibliography
of [17], which contains several pointers to the literature in mathematical physics that
motivate [weak] intermittency.

The case that u0 has compact support arises equally naturally in mathematical
physics, but little is known rigorously about when, why, or if the solution to (1.1) is
weakly intermittent when u0 has compact support. In fact, we know of only one article
[16], which considers the special case L = ∂2/∂x2, σ (0) = 0, and u0 smooth and
compactly supported. In that article it is shown that γ (2) ∈ (0 ,∞), but the arguments

1 Recall that � is defined by E exp(iξ X1) = exp(−�(ξ)) [ξ ∈ R]. Because of the symmetry of
{Xt }t≥0, �(ξ) = �(−ξ) ≥ 0 for all ξ ∈ R.
2 In fact, these results do not require that {Xt }t≥0 is a symmetric process provided that we replace � with
Re� in (1.2).

123



Existence and position of the farthest peaks of a family 683

of [16] rely critically on several special properties of the Laplacian. A closely-related
case (u0 := δ0) appears in Bertini and Cancrini [1].

Presently, we show that weak intermittency follows in some cases from a “stochas-
tic weighted Young inequality” (Proposition 2.5). Such an inequality is likely to have
other applications as well. And more significantly, we describe quite precisely the
location of the high peaks that are farthest away from the origin.

From now on, let us assume further that

σ(0) = 0 and Lσ := inf
x∈R

|σ(x)/x | > 0. (1.5)

And we define two growth indices:

λ(ν) := inf

{
α > 0 : lim sup

t→∞
1

t
sup

|x |≥αt
ln E

(|ut (x)|ν) < 0

}
; (1.6)

where inf ∅ := ∞; and

λ(ν) := sup

{
α > 0 : lim sup

t→∞
1

t
sup

|x |≥αt
ln E

(|ut (x)|ν) > 0

}
; (1.7)

where sup ∅ := 0.
One can check directly that 0 ≤ λ(ν) ≤ λ(ν) ≤ ∞. Our goal is to identify several

instances when 0 < λ(ν) ≤ λ(ν) < ∞. In those instances, it follows that: (i) The
solution to (1.1) has very high peaks as t → ∞ [“weak intermittency”]; and (ii) The
distances between the origin and the farthest high peaks grow exactly linearly in t .
This seems to be the first concrete piece of information on the location of the high
peaks of the solution to (1.1) when u0 has compact support.

Let Dexp denote the collection of all bounded lower semicontinuous functions h :
R → R+ for which there exists ρ > 0 such that h(x) = O(e−ρ|x |) as |x | → ∞.

Theorem 1.1 If there exists c > 0 such that E[ecX1 ] < ∞ and u0 ∈ Dexp is strictly
positive on a set of positive measure, then 0 < λ(ν) ≤ λ(ν) < ∞ for all ν ∈ [2 ,∞).

Remark 1.2 Theorem 1.1 applies to many Lévy processes other than Brownian motion.
Here we mention a simple family of examples. First, let us recall the Lévy–Khintchine
formula for �: There exists σ ∈ R and a symmetric Borel measure m on R such that
m({0}) = 0,

∫∞
−∞(1 ∧ ξ2) m(dξ) < ∞, and for all ξ ∈ R,

�(ξ) = σ 2ξ2 + 2

∞∫

−∞
[1 − cos(ξ z)] m(dz). (1.8)
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684 D. Conus, D. Khoshnevisan

It is well known that for all rapidly-decreasing functions f : R → R,

(L f )(x) = σ 2 f ′′(x) +
∞∫

0

[ f (x + z) + f (x − z) − 2 f (x)] m(dz). (1.9)

It is possible to show that the conditions of Theorem 1.1 are met, for example, if the
support of m is bounded. One can frequently verify Dalang’s condition (1.2) in such
examples, as well. For instance, let us consider the particular case that X is a “trun-
cated symmetric stable” process. That is the case when σ := 0 and the Lévy measure
satisfies m(dz) = |z|−(1+α)1(−1,1)(z) dz with 1 < α < 2. In this case,

(L f )(x) =
1∫

0

[
f (x + z) − f (x − z) − 2 f (x)

z1+α

]
dz, (1.10)

and (1.2) holds because

�(ξ) = 2

1∫

0

1 − cos(ξ z)

z1+α
dz = (2 + o(1))

∞∫

0

1 − cos r

r1+α
dr · |ξ |α, (1.11)

as |ξ | → ∞. More interesting examples can be found within the constructions of
Rosiński [28] and Houdré and Kawai [22].

There are concrete instances where one can improve the results of Theorem 1.1,
thereby establish quite good estimates for λ(2) and λ(2). The following typifies a good
example, in which L is a constant multiple of the Laplacian.

Theorem 1.3 If L f = κ
2 f ′′ and u0 is lower semicontinuous and has a compact

support of positive measure, then Theorem 1.1 holds. In addition,

L2
σ

2π
≤ λ(2) ≤ λ(2) ≤ Lip2

σ

2
for all κ > 0. (1.12)

In the case of the Parabolic Anderson Model [σ(u) := λu], (1.12) tells us that
λ2/2π ≤ λ(2) ≤ λ(2) ≤ λ2/2.

We know from Theorem 1.1 that the positions of the farthest peaks grow linearly
with time. Theorem 1.3 describes an explicit interval in which the farthest high peaks
necessarily fall. Moreover, this interval does not depend on the value of the diffusion
coefficient κ . In intuitive terms, these remarks can be summed up as follows: “Any
amount of noise leads to totally intermittent behavior.” This observation was made,
much earlier, in various physical contexts; see, for example, Zeldovich et al. [30, pp.
35–37].

We mention that the main ideas in the proofs of Theorems 1.1 and 1.3 apply also
in other settings. For example, in Sect. 5 below we study a hyperbolic SPDE, and
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Existence and position of the farthest peaks of a family 685

prove that λ(2) = λ(ν) = λ(ν) = λ(2) for ν ≥ 2, under some regularity hypotheses.
This implies the existence of a sharp phase transition between exponential growth and
exponential decay of those hyperbolic SPDEs. Moreover, we will see that the inter-
mittent behavior of the stochastic wave equation differs from (1.1) in two fundamental
ways: (a) The variance of the noise affects the strength of intermittency; and (b) the
rate of growth of σ does not.

We conclude the introduction with two questions that have eluded us.

Open problems 1. Is there a unique phase transition in the exponential growth of
(1.1). In other words, we ask:

Is λ(ν) = λ(ν)?

Although we have no conjectures about this in the present setting of parabolic
equations, Theorem 5.1 below answers this question affirmatively for some hyper-
bolic SPDEs.

2. Suppose u0 ∈ Dexp and L = −(−�)α/2 denote the fractional Laplacian for
some exponent α ∈ (1 , 2). Does supx∈R E(|ut (x)|2) grow exponentially with
t? We mention the following related fact: It is possible to adapt the proof of
[16, Theorem 2.1] to show that if u0 ∈ L2(R), then

∫∞
−∞ E(|ut (x)|2) dx grows

exponentially with t . The remaining difficulty is to establish “localization.” The
results of the present paper accomplish all this if the fractional Laplacian—which
is the generator of a symmetric stable process—were replaced by the generator
of a truncated symmetric stable process; see Remark 1.2.

Before proceeding to the proofs of Theorems 1.1 and 1.3, we introduce some nota-
tion. We write ‖ · ‖ν the standard norm on Lν(P). That is,

‖Y‖ν := {E(|Y |ν)}1/ν, for allν ∈ [1 ,∞)andY ∈ Lν(P).

We now recall the following form of Burkholder’s inequality that will be used here
and throughout.

Theorem 1.4 (The Burkholder–Davis–Gundy inequality [2–4]) Let {Mt }t≥0 be a con-
tinuous martingale. Then, for all k ≥ 1 and for all t > 0 there exists a constant zk

such that

‖Mt‖k ≤ zk‖〈M〉t‖1/2
k/2, (1.13)

where 〈M〉 denotes the quadratic variation of M.

Throughout this paper, we always choose the constant zk of Burkholder’s inequal-
ity to denote the optimal constant in Burkholder’s Lk(P)-inequality for continuous
square-integrable martingales. The precise value of zk involves the zeros of Hermite
polynomials; see Davis [14].

By the Itô isometry, z2 = 1. Carlen and Kree [5, Appendix] have shown that
zk ≤ 2

√
k for all k ≥ 2, and moreover zk = (2 + o(1))

√
k as k → ∞.
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686 D. Conus, D. Khoshnevisan

2 Proof of Theorem 1.1: upper bound

In this section we prove that λ(ν) < ∞ for all ν ∈ [2 ,∞).
If ν1 ≤ ν2 are both in [1 ,∞), then by Jensen’s inequality,

lim sup
t→∞

1

t
sup

|x |≥αt
ln E

(|ut (x)|ν1
) ≤ ν1

ν2
lim sup

t→∞
1

t
sup

|x |≥αt
ln E

(|ut (x)|ν2
)
. (2.1)

This leads to the inclusion
{

α > 0 : lim sup
t→∞

1

t
sup

|x |≥αt
ln E

(|ut (x)|ν2
)

< 0

}

⊆
{

α > 0 : lim sup
t→∞

1

t
sup

|x |≥αt
ln E

(|ut (x)|ν1
)

< 0

}
, (2.2)

and hence the inequality λ(ν1) ≤ λ(ν2). Therefore, it suffices to prove the result in
the case that ν is an even integer ≥ 2. Our method is motivated strongly by ideas of
Lunardi [23] on optimal regularity of analytic semigroups.

Dalang’s condition (1.2) implies that the Lévy process X has transition functions
pt (x) [18, Lemma 8.1]; that is, for all measurable f : R → R+,

(Pt f )(x) := E f (Xt ) =
∞∫

−∞
pt (z) f (z) dz for all t > 0. (2.3)

And Dalang’s theory implies that the solution can be written in mild form, in the sense
of Walsh [29], as

ut (x) = (Pt u0)(x) +
∫

[0,t]×R

pt−s(y − x)σ (us(y)) W (ds dy), (2.4)

where {Pt }t≥0 denotes the semigroup associated to the process X . Henceforth, we will
be concerned solely with the mild formulation of the solution, as given to us by (2.4).

The following implies part 1 of Theorem 1.1 immediately.

Proposition 2.1 If supx∈R |ecx/2u0(x)| and E exp(cX1) are both finite for some
c ∈ R, then for every even integer ν ≥ 2 and for all

β > ln EecX1 + 1

2
Υ −1

((
2zνLipσ

)−2
)

, (2.5)

there exists a finite constant Aβ,ν such that E(|ut (x)|ν) ≤ Aβ,ν exp(βt−cx), uniformly
for all t ≥ 0 and x ∈ R.

Proposition 2.1 will be proved in Sect. 2.2.
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Existence and position of the farthest peaks of a family 687

Remark 2.2 The proof shows that we require only that σ(0) = 0; the positivity of
Lσ —see (1.5)—is not required for this portion.

Remark 2.3 Proposition 2.1 can frequently be used to give an explicit bound on λ(ν).
For example, if Eec|X1| < ∞ for all c ∈ R and u0 has compact support, then Propo-
sition 2.1 implies that

lim sup
t→∞

1

t
ln sup

|x |≥αt
E
(|ut (x)|ν) ≤ −�(α) + 1

2
Υ −1

((
2zνLipσ

)−2
)

, (2.6)

where �(α) := supc∈R(αc− ln EecX1) is the Legendre transformation of the logarith-
mic moment-generating function of X1; see, for example, Dembo and Zeitouni [15].
Thus, the left-hand side of (2.6) is negative as soon as �(α) > 1

2Υ −1((2zνLipσ )−2),
and hence

λ(ν) ≤ inf

{
α > 0 : �(α) >

1

2
Υ −1

((
2zνLipσ

)−2
)}

. (2.7)

We do not know how to obtain useful explicit lower bounds for λ(ν) in general. How-
ever, when L f = κ

2 f ′′, Theorem 1.3 contains more precise bounds for both indices
λ(2) and λ(2).

2.1 Stochastic weighted Young inequalities

Proposition 2.1 is based on general principles that might be of independent interest.
These results will also be used in Sect. 5 to study a family of hyperbolic SPDEs.
Throughout this subsection, �t (x) defines a nonrandom measurable function on
(0 ,∞) × R, and Z a predictable random field [29, p. 292].

Consider the stochastic convolution

(� ∗ Z Ẇ )t (x) :=
∫

[0,t]×R

�t−s(y − x)Zs(y) W (ds dy), (2.8)

provided that it is defined in the sense of Walsh [29, Theorem 2.5]. According to the
theory of Walsh, when it is defined, � ∗ Z Ẇ defines a predictable random field. We
study its Lν(P) norm next.

Lemma 2.4 For all even integers ν ≥ 2, t ≥ 0, and x ∈ R,

∥∥(� ∗ Z Ẇ )t (x)
∥∥

ν
≤ zν

⎛
⎜⎝

∫

[0,t]×R

�2
t−s(y − x) ‖Zs(y)‖2

ν ds dy

⎞
⎟⎠

1/2

, (2.9)

where zν was defined in Theorem 1.4.
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688 D. Conus, D. Khoshnevisan

Proof For fixed t > 0 and x ∈ R, we apply Burkholder’s inequality (Theorem 1.4) to
the martingale

r �→
∫

[0,r ]×R

�t−s(y − x)Zs(y) W (ds dy), (2.10)

which has quadratic variation given by

r �→
∫

[0,r ]×R

�2
t−s(y − x)Zs(y)2 ds dy. (2.11)

We let r = t to obtain

∥∥(� ∗ Z Ẇ )t (x)
∥∥ν

ν
≤ zν

νE

⎛
⎜⎝
∣∣∣∣∣∣∣
∫

[0,t]×R

�2
t−s(y − x)Zs(y)2 ds dy

∣∣∣∣∣∣∣

ν/2⎞
⎟⎠

= zν
νE

⎛
⎜⎝

∫

([0,t]×R)ν/2

ν/2∏
j=1

�2
t−s j

(y j − x)|Zs j (y j )|2 ds dy

⎞
⎟⎠ . (2.12)

The generalized Hölder inequality implies that

E

⎛
⎝

ν/2∏
j=1

|Zs j (y j )|2
⎞
⎠ ≤

ν/2∏
j=1

∥∥Zs j (y j )
∥∥2

ν
, (2.13)

and the result follows. ��
We say that ϑ : R → R+ is a weight when ϑ is measurable and

ϑ(a + b) ≤ ϑ(a)ϑ(b) for all a, b ∈ R. (2.14)

As usual, the weighted L2-space L2
ϑ(R) denotes the collection of all measurable

functions h : R → R such that ‖h‖L2
ϑ (R) < ∞, where

‖h‖2
L2

ϑ (R)
:=

∞∫

−∞
|h(x)|2 ϑ(x) dx . (2.15)

Define, for all predictable processes v, ν ∈ [1 ,∞), and β > 0,

Nβ,ν,ϑ (v) :=
[

sup
t≥0

sup
x∈R

e−βtϑ(x) ‖vt (x)‖2
ν

]1/2

. (2.16)
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Existence and position of the farthest peaks of a family 689

Proposition 2.5 (A stochastic Young inequality) For all weights ϑ , all β > 0, and
all even integers ν ≥ 2,

Nβ,ν,ϑ (� ∗ Z Ẇ ) ≤ zν

⎛
⎝

∞∫

0

e−βt ‖�t‖2
L2

ϑ (R)
dt

⎞
⎠

1/2

· Nβ,ν,ϑ (Z). (2.17)

Proof We apply Lemma 2.4 together with (2.14) to find that

e−βtϑ(x)
∥∥(� ∗ Z Ẇ )t (x)

∥∥2
ν

≤ z2
ν

∫

[0,t]×R

e−β(t−s)ϑ(y − x)�2
t−s(y − x) e−βsϑ(y) ‖Zs(y)‖2

ν ds dy

≤ z2
ν

∣∣Nβ,ν,ϑ (Z)
∣∣2 ·

∫

[0,t]×R

e−βrϑ(z)�2
r (z) dr dz. (2.18)

The proposition follows from optimizing this expression over all t ≥ 0 and x ∈ R.
��

Proposition 2.6 If E exp(cX1) < ∞ for some c ∈ R, then for all predictable
random fields Z, all β > ln EecX1 , and all even integers ν ≥ 2,

Nβ,ν,ϑc (p ∗ Z Ẇ ) ≤ zν

(
2Υ

(
2β − 2 ln EecX1

))1/2 · Nβ,ν,ϑc (Z), (2.19)

where ϑc(x) := exp(cx).

Proof If ϑ is an arbitrary weight, then ‖pt‖2
L2

ϑ (R)
≤ supz∈R pt (z)·E ϑ(Xt ). According

to the inversion formula,

sup
z∈R

pt (z) ≤ 1

2π

∞∫

−∞
e−tRe�(ξ) dξ, (2.20)

whence

∞∫

0

e−βt‖pt‖2
L2

ϑ (R)
dt ≤ 1

2π

∞∫

−∞
dξ

∞∫

0

dt e−t (β+Re�(ξ))E ϑ(Xt ). (2.21)

The preceding is valid for all weights ϑ . Now consider the following special case
of ϑ := ϑc. Clearly, this is a weight and, in addition, by standard facts about Lévy
processes,

E ϑc(Xt ) =
(

EecX1
)t

. (2.22)
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690 D. Conus, D. Khoshnevisan

Consequently, for all β > M(c) := ln EecX1 ,

∞∫

0

e−βt‖pt‖2
L2

ϑc
(R)

dt ≤ 1

2π

∞∫

−∞
dξ

∞∫

0

dt e−t (β+Re�(ξ)−M(c))

= 2Υ (2β − 2M(c)). (2.23)

Proposition 2.5 completes the proof. ��
Lemma 2.7 For all weights ϑ , all β > 0, and all even integers ν ≥ 2,

Nβ,ν,ϑ (P•u0) ≤ Nβ,ν,ϑ (u0) · sup
t≥0

(
e−βt E ϑ(Xt )

)1/2
, (2.24)

where P•u0 stands for the function t �→ (Pt u0)(x). In particular, if EecX1 < ∞ for
some c ∈ R, then for all β > ln EecX1 ,

Nβ,ν,ϑc (P•u0) ≤ Nβ,ν,ϑc (u0). (2.25)

Proof Thanks to (2.14),

|ϑ(x)|1/2(Pt u0)(x) ≤
∞∫

−∞
|ϑ(y − x)|1/2 pt (y − x)|ϑ(y)|1/2u0(y) dy

≤ sup
y∈R

[
|ϑ(y)|1/2u0(y)

]
· E
(
|ϑ(Xt )|1/2

)
. (2.26)

This and the Cauchy–Schwarz inequality together imply (2.24), and the remainder of
the lemma follows from (2.22). ��

2.2 Proof of Proposition 2.1

We begin by studying the Picard-scheme approximation to the solution u. Namely, let
u(0)

t (x) := u0(x), and then define iteratively

u(n+1)
t (x) := (Pt u0)(x) +

(
p ∗

(
σ ◦ u(n)

)
Ẇ
)

t
(x), (2.27)

for t > 0, x ∈ R, and n ≥ 0, where the stochastic convolution is defined in (2.8).
Clearly,

∥∥∥u(n+1)
t (x)

∥∥∥
ν

≤ |(Pt u0)(x)| +
∥∥∥
(

p ∗
(
σ ◦ u(n)

)
Ẇ
)

t
(x)

∥∥∥
ν
, (2.28)

whence for all β > ln EecX1 ,

Nβ,ν,ϑc

(
u(n+1)

)
≤ Nβ,ν,ϑc (u0) + zνLipσ T 1/2 · Nβ,ν,ϑc

(
u(n)

)
, (2.29)
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where T := 2Υ (2β−2 ln EecX1); see Proposition 2.6 and Lemma 2.7. Condition (2.5)
is equivalent to the inequality z2

νLip2
σ T < 1. Therefore, it follows from iteration that

the quantity Nβ,ν,ϑc (u
(n+1)) is bounded uniformly in n, for this choice of β. Dalang’s

theory [10, Theorem 13 and its proof] tells us that limn→∞ u(n)
t (x) = ut (x) in proba-

bility for all t ≥ 0 and x ∈ R. Therefore, Fatou’s lemma implies that Nβ,ν,ϑc (u) < ∞
when β > ln EecX1 . This completes the proof of Proposition 2.1 [and hence part 1 of
Theorem 1.1]. ��

3 Proof of Theorem 1.1: lower bound

Our present, and final, goal is to prove that for all ν ∈ [2 ,∞), whenever 0 < α is
sufficiently small, lim supt→∞ t−1 sup|x |>αt ln ‖ut (x)‖ν > 0. By Jensen’s inequality,
it suffices to prove this in the case that ν = 2. We will borrow liberally several locali-
zation ideas from two related papers by Mueller [24] and Mueller and Perkins [25].

Define, for all predictable random fields v, and α, β > 0,

Mα,β(v) :=

⎡
⎢⎢⎢⎣

∞∫

0

e−βt dt
∫

x∈R:|x |≥αt

dx ‖vt (x)‖2
2

⎤
⎥⎥⎥⎦

1/2

. (3.1)

Thus, {Mα,β}α,β>0 defines a family of norms on the family of predictable random
fields.

Proposition 3.1 If E|X1| < ∞, then Mα,β(u) = ∞ for all sufficiently small
α, β > 0.

Proof Thanks to (2.4) and the Itô isometry for stochastic integrals,

‖ut (x)‖2
2 ≥ |(Pt u0)(x)|2 + L2

σ ·
t∫

0

ds

∞∫

−∞
dy |pt−s(y − x)|2 ‖us(y)‖2

2 . (3.2)

Let us define

M +
α,β(v) :=

⎡
⎢⎢⎣

∞∫

0

e−βt dt
∫

x∈R:
x≥αt

dx ‖vt (x)‖2
2

⎤
⎥⎥⎦

1/2

, (3.3)

and

M −
α,β(v) :=

⎡
⎢⎢⎣

∞∫

0

e−βt dt
∫

x∈R:
x≤−αt

dx ‖vt (x)‖2
2

⎤
⎥⎥⎦

1/2

. (3.4)
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If x, y ∈ R and 0 ≤ s ≤ t , then the triangle inequality implies that

1[αt,∞)(x) ≥ 1[α(t−s),∞)(x − y) · 1[αs,∞)(y). (3.5)

For all r ≥ 0, let

T +
α (r) :=

∫

z∈R:
z≥αr

|pr (z)|2 dz, T −
α (r) :=

∫

z∈R:
z≤−αr

|pr (z)|2 dz, (3.6)

and

S+
α (r) :=

∫

y∈R:
y≥αr

‖ur (y)‖2
2 dy, S−

α (r) :=
∫

y∈R:
y≤−αr

‖ur (y)‖2
2 dy. (3.7)

According to (3.5),

∫

x≥αt

‖ut (x)‖2
2 dx ≥

∫

x≥αt

|(Pt u0)(x)|2 dx + L2
σ · (T −

α ∗ S+
α )(t), (3.8)

where “∗” denotes the usual convolution on R+.
We multiply both sides of (3.8) by exp(−βt) and integrate [dt] to find

∣∣∣M +
α,β(u)

∣∣∣2 ≥
∣∣∣M +

α,β(P•u0)

∣∣∣2 + L2
σ · T̃ −

α (β)S̃+
α (β)

=
∣∣∣M +

α,β(P•u0)

∣∣∣2 + L2
σ · T̃ −

α (β)

∣∣∣M +
α,β(u)

∣∣∣2 , (3.9)

where H̃(β) := ∫∞
0 exp(−βt)H(t) dt defines the Laplace transform of H for every

measurable function H : R+ → R+. Also, we can apply a similar argument, run on
the negative half of the real line, to deduce that

∣∣∣M −
α,β(u)

∣∣∣2 ≥
∣∣∣M −

α,β(P•u0)

∣∣∣2 + L2
σ · T̃ +

α (β)

∣∣∣M −
α,β(u)

∣∣∣2 . (3.10)

Next we add the inequalities (3.9) and (3.10): Because {Xt }t≥0 is symmetric, T̃ +
α (β) =

T̃ −
α (β); and it is easy to see that Mα,β(u)2 = M +

α,β(u)2 + M −
α,β(u)2. Therefore, we

can conclude that

∣∣Mα,β(u)
∣∣2 ≥ ∣∣Mα,β(P•u0)

∣∣2 + L2
σ · T̃ +

α (β)
∣∣Mα,β(u)

∣∣2 . (3.11)

Next we may observe that

|Mα,β(P•u0)| > 0. (3.12)
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This holds because u0 ≥ 0, u0 > 0 on a set of positive measure, and u0 is lower
semicontinuous. Indeed, if it were not so, then

∫
|x |≥αt (Pt u0)(x) dx = 0 for almost all,

hence all, t > 0. But then we would let t → 0 to deduce from this and Fatou’s lemma
that

∫∞
−∞ u0(x) dx = 0, which is a contradiction.

The preceding development implies the following:

If Mα,β(u) < ∞, then T̃ +
α (β) < L−2

σ . (3.13)

The symmetric Lévy process X is recurrent iff

Υ (0+) = ∞. (3.14)

See, for example, Port and Stone [27, Sect. 16]. Therefore it remains to prove that the
conditions of Theorem 1.1 imply (3.14).

The discrete-time process {Xn}∞n=1 is a one-dimensional mean-zero [in fact sym-
metric] random walk, which is necessarily recurrent thanks to the Chung–Fuchs the-
orem [8]. Consequently, the Lévy process {Xt }t≥0 is recurrent as well. Thanks to the
preceding paragraph, (3.14) holds.

By the monotone convergence theorem,

lim
α↓0

T̃α(β) = 1

2

∞∫

0

e−βt‖pt‖2
L2(R)

dt = 1

2
Υ (β) for all β > 0. (3.15)

[The second identity follows from Plancherel’s theorem.] Let β ↓ 0 and appeal to
(3.14) to conclude that T̃ +

α (β) > L−2
σ for all sufficiently-small positive α and β. In

light of (3.13), this completes our demonstration. ��

Proof (of Part 2 of Theorem 1.1) Choose and fix α and β positive, but so small that
Mα,β(u) = ∞ [Proposition 3.1]. According to Proposition 2.1, for all fixed α′ > 0,

∞∫

0

e−βt dt
∫

|x |≥α′t

dx ‖ut (x)‖2
2 ≤ Aα′,2

∞∫

0

e(β ′−β)t dt
∫

|x |≥α′t

dx e−c|x |,

provided that β ′ [in place of the variable β there] satisfies (2.5) with ±c [in place of
the variable c there]. We choose and fix β ′ so large that the condition (2.5) is satisfied
for β ′. Then, choose and fix α′ so large that the right-most integral in the preceding
display is finite. Since Mα,β(u) = ∞, it follows from the preceding that

∞∫

0

e−βt dt
∫

αt≤|x |≤α′t

dx E
(
|ut (x)|2

)
= ∞. (3.16)
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Consequently,

∞∫

0

te−βt sup
|x |≥αt

E
(
|ut (x)|2

)
dt = ∞, (3.17)

whence

lim sup
t→∞

t−1 sup
|x |≥αt

ln E
(
|ut (x)|2

)
≥ β > 0 (3.18)

for the present choice of α and β. This implies that λ(2) ≥ α > 0. ��
Remark 3.2 Theorem 1.1 requires less than the symmetry of the Lévy process {Xt }t≥0.
For instance, our proof continues to work provided that there exist finite and positive
constants c1 and c2 such that

c1T −
α (r) ≤ T +

α (r) ≤ c2T −
α (r), (3.19)

simultaneously for all α > 0 and r ≥ 0.

4 Proof of Theorem 1.3

Throughout the proof, we choose and fix some κ > 0. Thus, the operator L f = κ
2 f ′′

is the generator of a Lévy process given by Xt = √
κ Bt , where {Bt }t≥0 is a Brownian

motion, and Theorem 1.1 obviously applies in this case. We now would like to prove
the second claim of Theorem 1.3. We proceed as we did for Theorem 1.1, and divide
the proof in two parts: One part is concerned with an upper bound for λ(2); and the
other deals with a lower bound on λ(2).

4.1 Upper bound

In order to obtain an upper estimate for λ(2), we could follow the procedure outlined
in Remark 2.3. But this turns out to be not optimal. In the case of Theorem 1.3, we
know explicitly the transition functions p(κ)

t :

p(κ)
t (x) = 1√

2πκt
exp

(
− x2

2κt

)
. (4.1)

Therefore, we can use (4.1) directly and make exact computations in order to improve
on the general bounds of Remark 2.3. We first prove the following; it sharpens Prop-
osition 2.1 in the present setting.
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Proposition 4.1 If L f = κ
2 f ′′ and supx∈R |ecx/2u0(x)| is finite for some c ∈ R,

then for every

β >
κc2

4
+ Lip4

σ

4κ
, (4.2)

there exists a finite constant Aβ such that E(|ut (x)|2) ≤ Aβ exp(βt − cx), uniformly
for all t ≥ 0 and x ∈ R.

Proof We follow the proof of Proposition 2.1, but use Proposition 2.5, instead of
Proposition 2.6, in order to handle (2.28) better. Then, (2.29) is replaced by

Nβ,2,ϑc

(
u(n+1)

)

≤ Nβ,2,ϑc (u0) + Lipσ

⎛
⎝

∞∫

0

e−βt
∥∥∥p(κ)

t

∥∥∥2

L2
ϑc

(R)
dt

⎞
⎠

1/2

Nβ,2,ϑc

(
u(n)

)
. (4.3)

Next we complete the proof, in the same way we did for Proposition 2.1, and deduce
that there exists a constant Aβ such that E(|ut (x)|2) ≤ Aβ exp(βt − cx) uniformly
for all t ≥ 0 and x ∈ R, provided that β is chosen to be large enough to satisfy

Lip2
σ ·

∞∫

0

e−βt
∥∥∥p(κ)

t

∥∥∥2

L2
ϑc

(R)
dt < 1. (4.4)

Now we compute:

∥∥∥p(κ)
t

∥∥∥2

L2
ϑc

(R)
= 1

2πκt

∞∫

−∞
exp

(
− x2

κt
+ cx

)
dx

= 1

2
√

πκt
exp

(
κc2t

4

)
. (4.5)

Since
∫∞

0 t−1/2e−βt dt = √
π/β, we have the following for all β > κc2/4:

Lip2
σ ·

∞∫

0

e−βt
∥∥∥p(κ)

t

∥∥∥2

L2
ϑc

(R)
dt = 1

2
Lip2

σ

(
κβ − κ2c2

4

)−1/2

. (4.6)

And hence, (4.4) follows from (4.2). This proves Proposition 4.1. ��
Proof (of the upper bound in Theorem 1.3) If u0 has compact support, then the assump-
tion of Proposition 4.1 is satisfied for all c ∈ R. Consequently,

lim sup
t→∞

1

t
ln sup

|x |≥αt
E(|ut (x)|2) ≤ β − cα, (4.7)
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and hence

λ(2) ≤ inf {α > 0 : β − cα < 0} = β

c
. (4.8)

This and (4.2) together imply that

λ(2) ≤ inf
c∈R

(
κc

4
+ Lip4

σ

4κc

)
= Lip2

σ

2
. (4.9)

This concludes the proof of the upper bound. ��

4.2 Lower bound

We first prove the following refinement of Proposition 3.1.

Proposition 4.2 If L f = κ
2 f ′′ and α and β satisfy

(
α − L2

σ

4π

)2

<
L4

σ

16π2 − κβ, (4.10)

then Mα,β(u) = ∞.

Proof In the case that we consider here, the Lévy process is a scaled Brownian motion.
Hence, Proposition 3.1 applies, and in accord with (3.13), it suffices to prove the fol-
lowing:

I :=
∞∫

0

e−βt

⎛
⎜⎜⎝
∫

z∈R:
z≥αt

∣∣∣p(κ)
t (z)

∣∣∣2 dz

⎞
⎟⎟⎠ dt > L−2

σ . (4.11)

Let �̄(z) := (2π)−1/2
∫∞

z exp(−τ 2/2) dτ for every z ∈ R, then apply (4.1) and
compute directly to find that

I = 1

2
√

πκ

∞∫

0

e−βt

√
t

�̄

⎛
⎝
√

2α2t

κ

⎞
⎠ dt

= α

4πκ

∞∫

0

e−α2t/κ

√
t

⎛
⎝

t∫

0

e−βs

√
s

ds

⎞
⎠ dt, (4.12)

after we integrate by parts. Since e−βs ≥ e−βt for s ≤ t ,
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I ≥ α

2πκ

∞∫

0

exp

(
−
(

β + α2

κ

)
t

)
dt = α

2π(βκ + α2)
. (4.13)

Hence, (4.10) implies (4.11), and hence the proposition. ��

Remark 4.3 We notice that condition (4.10) is sufficient but not necessary. Indeed, as
I is decreasing in α, only the upper bound implied by (4.10) is relevant. Typically,
(4.11) is satisfied for α = 0.

Proof (of the lower bound in Theorem 1.3) The second part of the proof of Theorem 1.1
shows that λ(2) ≥ α, provided that we choose α and β such that Mα,β(u) = ∞. In
accordance with (4.10), and after maximizing over β ≤ L4

σ /(16π2κ)—that is, making
β as small as possible—we obtain λ(2) ≥ α ≥ L2

σ /2π . This concludes the proof of
Theorem 1.3. ��

5 A nonlinear stochastic wave equation

In this section, we study the nonlinear stochastic wave equation

∂2

∂t2 ut (x) = κ2
(

∂2

∂x2 ut

)
(x) + σ(ut (x))

∂2

∂t∂x
W (t, x) for t > 0, x ∈ R, (5.1)

where: (i) σ : R → R is Lipschitz continuous with Lipschitz constant Lipσ ; (ii) W is
two-parameter Brownian sheet, indexed by (t , x) ∈ R+ × R; (iii) the initial function
u0 : R → R+ and the initial derivative v0 : R → R are both in L∞(R); and (iv)
κ > 0. In the present one-dimensional setting, the nonlinear equation (5.1) has been
studied by Carmona and Nualart [7] and Walsh [29]. There are also results available in
the more delicate setting where x ∈ Rd for d > 1; see Conus and Dalang [9], Dalang
[10], Dalang and Frangos [11], and Dalang and Mueller [12].

It is well known that the fundamental solution for the wave equation in spatial
dimension 1 is

�t (x) := 1

2
1[−κt,κt](x) for t > 0 and x ∈ R. (5.2)

According to the theory of Dalang [10], the stochastic wave Eq. (5.1) has an
a.s.-unique mild solution. In the case that u0 and v0 are both constant functions,
Dalang and Mueller [13] have shown that the solution to (5.1) is intermittent.

In this section we will use the stochastic weighted Young inequalities of Sect. 2.1
in order to deduce the weak intermittence of the solution to (5.1) for nonconstant func-
tions u0 and v0. And more significantly, when u0 and v0 have compact support, we
describe the precise rate at which the farthest peaks can move away from the origin.

Here and throughout, we assume that (1.5) holds, and define λ(ν) and λ(ν) as in
(1.6) and (1.7).
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Theorem 5.1 If u0, v0 ∈ Dexp, u0 > 0 on a set of positive measure and v0 ≥ 0, then
0 < λ(ν) ≤ λ(ν) < ∞ for all ν ∈ [2 ,∞). If, in addition, u0 and v0 have compact
support, then λ(ν) = λ(ν) = κ for all ν ∈ [2 ,∞).

Theorem 5.1 implies the weak intermittence of the solution to (5.1). And more
significantly, it tells that when the initial data have compact support, we have a sharp
phase transition [λ(ν) = λ(ν) = κ]: The solution has exponentially-large peaks
inside [−κt +o(t) , κt +o(t)], and is exponentially small everywhere outside [−κt +
o(t) , κt + o(t)]. In particular, the farthest high peaks of the solution travel at sharp
linear speed ±κt + o(t). This speed corresponds to the speed of the traveling waves
if we consider the deterministic equivalent of (5.1) [say, when σ ≡ 0]. We empha-
size that, contrary to what happens in the stochastic heat equation (Theorem 1.3), the
growth behavior of the solution to the stochastic wave Eq. (5.1) depends on the size of
the noise (that is, the magnitude of κ), but not on the growth rate of the nonlinearity σ .

5.1 Proof of Theorem 5.1: upper bound

The proof of Theorem 5.1 follows closely those of Theorems 1.1 and 1.3.
We first show that λ(ν) < ∞. The solution to (5.1) can be written in mild form, as

ut (x) = U (0)
t (x) + V (0)

t (x) +
∫

[0,t]×R

�t−s(y − x)σ (us(y)) W (ds dy), (5.3)

where U (0)
t (x) = 1

2 (u0(x + κt) + u0(x − κt)) and V (0)
t (x) = 1

2κ

∫ x+κt
x−κt v0(y) dy.

The following Proposition implies immediately that λ(ν) < ∞ for ν ≥ 2.

Proposition 5.2 Let ν ≥ 2 be an even integer, and assume that supx∈R |ecx/2u0(x)|
and supx∈R |ecx/2v0(x)| are both finite for some c ∈ R. Then for every

β >

√
κ2c2 + z2

νLip2
σ

2
, (5.4)

there exists a finite constant Aβ such that E(|ut (x)|ν) ≤ Aβ exp(βt − cx), uniformly
for all t ≥ 0 and x ∈ R.

In order to prove Proposition 5.2, we will need the following Lemma. Let ϑc and
Nβ,ν,ϑ be defined as they were in Sect. 2.1.

Lemma 5.3 For all c ∈ R, β > κ|c|/2, and even integers ν ≥ 2,

Nβ,ν,ϑc (U
(0)) ≤ Nβ,ν,ϑc (u0) and Nβ,ν,ϑc (V (0)) ≤ 1

κc
Nβ,ν,ϑc (v0). (5.5)
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Proof The first inequality of (5.5) follows from the definition of U (0). As regards the
second, we have

ecx/2V (0)
t (x) ≤

(
sup
y∈R

ecy/2v0(y)

)
ecx/2

2κ

x+κt∫

x−κt

e−cy/2 dy

≤ ecκt/2

κc

(
sup
y∈R

ecy/2v0(y)

)
. (5.6)

Because β > κ|c|/2, this proves the lemma. ��
Proof (of Proposition 5.2) As in the proof of Proposition 4.1, we apply a Picard-iter-
ation scheme to approximate the solution u. Then, Lemma 5.3 and Proposition 2.5
yield

Nβ,ν,ϑc

(
u(n+1)

)
≤ Nβ,ν,ϑc (u0) + 1

κc
Nβ,ν,ϑc (v0)

+ zνLipσ

⎛
⎝

∞∫

0

e−βt‖�t‖2
L2

ϑc
(R)

dt

⎞
⎠

1
2

· Nβ,ν,ϑc

(
u(n)

)
. (5.7)

A direct computation, using only (5.2), shows that

∞∫

0

e−βt‖�t‖2
L2

ϑc
(R)

dt < (zνLipσ )−2. (5.8)

And the same arguments that were used in the proof of Proposition 2.5 can be used to
deduce from this bound that Nβ,ν,ϑc (u) is finite. Now we use (5.2) in order to see that
this condition is equivalent to (5.4). This concludes the proof of Proposition 5.2. ��
Proof (of the upper bound in Theorem 5.1) Proposition 5.2 implies that λ(ν) < ∞.
Now suppose u0 and v0 have compact support. In that case, c is an arbitrary real num-
ber. And similar arguments as in the proof of the upper bound of Theorem 1.3 imply
that λ(ν) ≤ β/c. Together with (4.2), this leads to the following estimate:

λ(ν) ≤ inf
c∈R

√
κ2 + 2z2

νLip2
σ

c2 = κ. (5.9)

This proves half of the theorem. ��

5.2 Proof of Theorem 5.1: lower bound

The following proposition implies the requisite bound for the second half of the proof
of Theorem 5.1; namely, that λ(ν) > 0 for ν ≥ 2. Let Mα,β be defined as in (3.1).
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Proposition 5.4 Mα,β(u) = ∞ provided that

0 < α < κ − 4β2

L2
σ

. (5.10)

Proof Similar arguments as in the proof of Proposition 3.1 show that

|Mα,β(u)|2 ≥ |Mα,β(U (0) + V (0))|2 + L2
σ · T̃ +

α (β)|Mα,β(u)|2, (5.11)

where T̃ +
α (β) denotes the Laplace transform of T +

α (r) := ∫
z≥αr |�r (z)|2 dz. Since

u0 > 0 on a set of positive measure and v0 ≥ 0, we have |Mα,β(U (0) + V (0))| > 0.
This shows that if L2

σ · T̃ +
α (β) > 1, then Mα,β(u) = ∞. A direct computation reveals

that

T̃ +
α (β) =

{
(κ − α)/(4β2) if α ≤ κ,

0 otherwise.
(5.12)

Hence, Mα,β(u) = ∞ if T̃ +
α (β) > Lip−2

σ , and the latter condition is equivalent to
(5.10). Since we also want α > 0, Proposition 5.4 follows. ��
Proof (of the lower bound in Theorem 5.1) For every α such that Mα,β(u) = ∞, we
can apply the same arguments as in the proof of the lower bound of Theorem 1.1 in order
to conclude that λ(2) ≥ α > 0. Now, Proposition 5.4 shows that λ(2) ≥ κ − 4β2/L2

σ

for all β > 0, whence λ(2) ≥ κ . Jensen’s inequality then shows that λ(ν) ≥ κ as well.
��

Remark 5.5 The condition v0 ≥ 0 is not necessary in Theorem 5.1. Indeed, the nec-
essary condition is

Mα,β(U (0) + V (0)) > 0. (5.13)

The easy-to-verify conditions on u0 and v0 [in Theorem 5.1] imply (5.13).
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