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Abstract In this paper we focus on estimating the deformations that may exist
between similar images in the presence of additive noise when a reference template is
unknown. The deformations are modeled as parameters lying in a finite dimensional
compact Lie group. A general matching criterion based on the Fourier transform and
its well known shift property on compact Lie groups is introduced. M-estimation and
semiparametric theory are then used to study the consistency and asymptotic normal-
ity of the resulting estimators. As Lie groups are typically nonlinear spaces, our tools
rely on statistical estimation for parameters lying in a manifold and take into account
the geometrical aspects of the problem. Some simulations are used to illustrate the
usefulness of our approach and applications to various areas in image processing are
discussed.
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1 Introduction

In order to extract any information from a set of images, it is common sense that one
has to be able to compare the images one together. However, such a comparison is
a difficult task due to the lack of convexity of the space of images, and even giving
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426 J. Bigot et al.

a sense to the notion of a mean image is not an easy matter. Hence, one of the most
commonly used model is to consider that the data are obtained through the deformation
of the same image often called template or reference image. In Grenander’s theory of
shapes [15], images are considered as points in an infinite dimensional manifold and
the variations of the images are modeled by the action of Lie groups on the manifold.
Finite dimensional Lie groups can be used to model rigid displacement such as transla-
tion or rotation, while infinite dimensional groups such as spaces of diffeomorphisms
can model local and non-rigid deformations of an image and thus provide much more
flexibility than finite dimensional groups. In the last decade, there has been a growing
interest in transformation Lie groups to model the variability of natural images, and
the study of the properties and intrinsic geometries of such deformation groups is now
an active field of research (see e.g. [4,26,30,38] and references therein).

An important problem in this setting is the estimation of the mean pattern, achieved
through the estimation of the deformations between similar images in the presence of
additive noise when a reference template is unknown. This is the so-called registration
or warping problem of images (see [14] and the discussion therein for a detailed over-
view of image registration in a statistical setting). The main goal of this paper is to build
such estimates and study their statistical properties when the deformation parameters
are modeled by finite dimensional Lie groups. Statistical estimation of parameters
lying in a smooth Riemannian manifold has been originally studied by [1]. A general
overview and extensive references on the geometrical aspect of statistical inference
on manifold can be found in [22]. The difficulty of statistical analysis on manifolds
comes from the fact that the parameter space is generally not linear which makes the
definition of simple notions such as mean or covariance a difficult task. Yet, various
statistical problems in this context have been studied such as mean estimation from a
sample of random variables on a manifold [6,7], nonparametric estimation of location
and dispersion parameters in a Riemannian manifold [5] or statistical estimation and
nonparametric inference in group models for manifold valued variables [10,23–25].
However, to the best of our knowledge, the literature on statistical estimation on Lie
groups for warping problems is scarce.

Consider the following general model for the registration of images: let X be a sub-
set of R

d (with d = 2, 3 in our applications) and G be a connected Lie group acting
on X . For x ∈ X and h ∈ G, the action of h onto x will de denoted by hx . To model a
set of J images (with J > 1), let us consider the following general deformation white
noise model

dY j (x) = f j (x)dx + εdW j (x) for x ∈ X , j = 1 . . . J (1.1)

where

f j (x) = f ∗(h j
∗−1x).

The function f ∗ : X → R is the unknown common shape of the observed images
Y j .

The h∗
j ∈ G, j = 1, . . . , J are the unknown deformation parameters that we wish

to estimate, W j , j = 1, . . . , J are independent standard Brownian sheets on the topo-
logical space X with reference measure dx , and ε is an unknown noise level parameter.
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Semiparametric estimation of shifts on compact Lie groups 427

Note that the white noise model (1.1) is a continuous model which is a very useful tool
for the theoretical study of statistical problem in image analysis. In practice, images
are typically discretely sampled on a regular grid, and thus the model (1.1) may seem
inappropriate at a first glance. However, asymptotic results obtained in the white noise
model can be shown to lead to comparable asymptotic theory in a sampled data model
provided the regression function satisfies appropriate smoothness conditions, see [3]
for further details. Moreover a continuous model avoids the problem of controlling
the bias introduced by any discretization scheme, and allows one to rather focus on
the statistical properties of the estimators.

A typical example of the above model is the registration of translated two-
dimensional (2D) images for which X = [0, 1]2,G = R

2/Z2 (the torus in dimension
two), and which founds its applications in biomedical imaging or satellite remote sens-
ing (see [14,27]). Another example is a rotation model for spherical images for which
X = S

2 (the unit sphere in dimension 3), and G = SO(3) (the special orthogonal
group). Indeed in many applications, data can be organized as functions defined on
a sphere. For instance, spherical images are widely used in robotics since the sphere
is a domain where perspective projection can be mapped, and an important question
is the estimation of the camera rotation from such images (see e.g. [29]). A Bayesian
approach in such model has been proposed also in [16] for automated target rec-
ognition of a deformable template under the action of rotations and translations in
dimension 3.

Within the model (1.1), the problem of optimal recovery of the shift parameters h∗
j

involves semiparametric techniques. Indeed, semiparametric modeling is concerned
with statistical problems where the parameters of interest are both finite and infinite-
dimensional. Here, the finite-dimensional parameters are the Lie group elements, and
the infinite-dimensional parameter is the unknown template which is typically a 2D or
3D image (see [34] for a detail presentation of semiparametric statistics), which blurs
the parametric estimation issue. The main idea in semiparametric statistics is to find
an efficient tool which separates the effect of the parameters from the influence of the
blurring infinite-dimensional parameter.

A matching criterion has been proposed in [13,42] for the mere problem of recov-
ering shifts between noisy one-dimensional curves observed on an interval i.e. when
the model (1.1) can be written as

dY j (x) = f ∗(x − h∗
j )dx + εdW j (x) for x ∈ [0, 1] and h j ∈ [0, 1], j = 1, . . . , J.

(1.2)

This criterion is based on the Fourier transform of the data and on its well-known
shift property for one-dimensional translations. Indeed, let e�(x) = e−i2π�x , � ∈ Z

denotes the standard Fourier basis. Then by taking the Fourier coefficients d j,� =∫
[0,1] e�(x)dY j (x) of the observed curves the model (1.2) becomes

d j,� = e−i2π�h∗
j c� + εz j,�, with c� =

∫

[0,1]
f ∗(x)e�(x)dx and z j,� ∼i.i.d. N (0, 1).
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Hence, for a set of parameters (h1, . . . , h J ) ∈ [0, 1]J , the following contrast function
is defined in [13,42]

M(h1, . . . , h J ) =
∑

|�|≤�ε

J∑

j=1

∣
∣
∣
∣
∣
∣
ei2π�h j d j,� − 1

J

J∑

j ′=1

ei2π�h j ′ d j ′,�

∣
∣
∣
∣
∣
∣

2

(1.3)

where �ε is a frequency cut-off parameter. Under appropriate conditions, minimization
of M over [0, 1]J is shown to yield consistent estimators. Note that the above criterion
is closely related to Procrustean analysis which is classically used for the statistical
analysis of shapes (see e.g. [28]) and the registration of a set of curves onto a common
target function.

In this paper, we extend this approach to a multi-dimensional setting and to the
general case where the shift parameters belong to a compact Lie group. First, as Lie
groups are typically not linear spaces, an important question is the development of
information geometry tools to extend classical notions, such as asymptotic normality
and efficiency, or the Cramer–Rao bound originally proposed for parameters lying in
an Euclidean space. In the context of parametric statistics, several generalizations of
these concepts to arbitrary manifolds have been proposed [17,18], and we refer to [36]
for a detailed discussion and review. However, in the more general situation of semi-
parametric models, there is few work dealing with the estimation of parameters lying
in a Lie group. Then, in order to use the same kind of matching criterion, we need to
use the extension of the the standard one-dimensional Fourier transform to functions
defined on a compact Lie group. It is achieved via the theory of representations (see
e.g. [35]). Thanks to a general shift property of the Fourier transform on arbitrary
compact Lie group, a similar matching criterion based on the Fourier transform of
the data can still be defined, and enables to investigate the statistical properties of the
resulting estimators. Note that M-estimation for parameters in groups models has been
considered in [10], but applying M-estimation theory in the context of image warping
to compact Lie groups has not been proposed before.

The main contributions of this paper are the following: we provide a general frame-
work for the registration problem of noisy images without a reference template. We
build a general matching criterion for recovering the deformations that may exist
between similar images, and we also study consistency and asymptotic normality for
parameters lying in a Lie group. Although the model (1.1) looks as a toy model, our
results already provides some insights into the estimation of deformations over Lie
group. In particular, an important and new result is the study of the asymptotic covari-
ance matrix of estimators belonging to non-commutative groups within a semiparamet-
ric framework. Indeed, our results on the asymptotic normality of the estimators show
that there exists a significant difference between semiparametric estimation on a linear
Euclidean space and semi-parametric estimation on a nonlinear manifold. Finally, our
general matching criterion provides a feasible method to estimate the parameters h∗

j ,
which induces an estimator of the common shape f ∗ using the inversion theorem of
the Fourier Transform. Then, the convergence of this estimator of the common shape
is also studied.
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Semiparametric estimation of shifts on compact Lie groups 429

The rest of the paper is organized as follows. In Sect. 2, some properties on the
Fourier transform are briefly recalled, and a simple model for shifts on Lie groups is
introduced. In Sect. 3, the shift property of the Fourier transform is used to define a
general matching criterion on compact Lie groups, and the consistency of the estimator
is established. The problem of studying and defining a notion of asymptotic normality
of estimators belonging to a Lie group is studied in Sect. 4, which also includes a study
of an estimator of the common shape. The efficiency of the resulting estimators for
the shifts is discussed in Sect. 5. A general gradient descent algorithm, to minimize
the matching criterion, is described in Sect. 6 and some numerical simulations are
presented to illustrate the usefulness of this approach. Finally in Sect. 7 some exten-
sions of our simple shift model are described and applied to the problem of registering
spherical images. The main proofs are gathered in a technical Appendix.

2 A shift model on Lie groups

2.1 The Fourier transform on compact Lie groups

In what follows, some aspects of the theory of the Fourier transform on compact Lie
groups are briefly summarized. For more details, we refer to the books of [8,11] and
[35]. Let G be a compact Lie group. Denote by e the identity element, and by hg the
binary operation between two elements h, g ∈ G. Let L

2(G) be the Hilbert space of
complex valued, square integrable functions on the group G with respect to the Haar
measure dg.

To define a Fourier transform on L
2(G), a fundamental tool is the theory of group

representations, which aims at studying the properties of groups via their represen-
tations as linear transformation of vector spaces. More precisely, a representation is
an homomorphism from the group to the automorphism group of a vector space. So
let V be a finite-dimensional vector space, we defined a representation of G in V
as a continuous homomorphism π : G → GL(V ), where GL(V ) denotes the set of
automorphisms of V. Hence it provides a linear transformation which depends on the
vector space on which the group acts.

A representation π on V is irreducible if the only invariant subspaces by the set of
homomorphism π(g), g ∈ G, are {0} and V . Every irreducible representation π of a
compact group G in a vector space V is finite dimensional, so we denote by dπ the
dimension of V . By choosing a basis for V , it is often convenient to identify π(g)
with a matrix of size dπ × dπ with complex entries. Two representations will be call
equivalent if they are the same up to, basically a change of basis. Denote the set of
equivalence classes of irreducible representations of G by Ĝ. For simplicity, the same
notation is used for π and its equivalence class in Ĝ.

The function g �→ Tr π(g) is called the character of π , and the fundamental the-
orem of Schur orthogonality states that the characters form an orthonormal system in
L

2(G) when π ranges over the dual set Ĝ. In the case of compact groups, the dual Ĝ
is a countable set, and the Peter–Weyl Theorem states that the characters are dense in
L

2(G). Indeed, if π is a finite dimensional representation of G in the vector space V,
then one can define, for every f ∗ ∈ L

2(G), the linear mapping π( f ∗) : V → V by
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π( f ∗)v =
∫

G

f ∗(g)π(g)T vdg, for v ∈ V .

The matrixπ( f ∗) is the generalization to the case of compact group of the usual notion
of Fourier coefficient. Then, Peter–Weyl Theorem implies that

f ∗(g) =
∑

π∈Ĝ

dπTr
(
π(g)π( f ∗)

)
and ‖ f ∗‖2

L2(G) =
∑

π∈Ĝ

dπTr
(
π( f ∗)π( f ∗)T

)

(2.1)

In the sequel, we will also denote by 〈A, B〉H S = Tr(A
T

B) the Hilbert-Schmidt inner
product between two finite dimensional dπ × dπ matrices A and B. Note that if G
equals the circle R/Z, then Ĝ = Z, the representation are the trigonometric poly-
nomials, the “matrices” π( f ∗) are one-dimensional and equal the standard Fourier
coefficients, and one finally retrieves the classical Fourier decomposition of a periodic
function in L2[0, 1].

2.2 A simple shift model

To focus on the geometrical aspects of the statistical procedure and to simplify the
presentation, the simplest model for which X = G is studied to give the main ideas
of our approach. A discussion in the case where X �= G is deferred to Sect. 7 to show
that the methodology can be extended to more complex situations. In this case the
general model (2.2) becomes

dY j (g) = f j (g)dg + εdW j (g), j = 1 . . . J (2.2)

where f j (g) = f ∗(h∗
j
−1g), and W j are independent standard Brownian sheets on

the Lie group G. Surveys on the constructions of Brownian motions indexed by a Lie
group can be found in [2,12,20] and references therein. Obviously, without any further
restriction on the set of possible shifts, the model (2.2) is not identifiable. Indeed, if s
is an element of G with s �= e, then one can replace the h∗

j ’s in Eq. (2.2) by h̃ j = h∗
j s

and f ∗ by f̃ (g) = f ∗(sg) without changing the formulation of the model.
Let A denote the space G J . To ensure identification, we further assume that the set

of parameters A is reduced to the subset A0 ⊂ A such that

A0 = {(h1, . . . , h J ) ∈ A, h1 = e}. (2.3)

The above assumption will also guarantee the convergence of our estimators (see

Theorem 3.1). Since π(g)
T = π(g−1), one has that for all j = 1, . . . , J

π( f j ) =
∫

G

f ∗(h∗
j
−1g)π(g−1)dg =

∫

G

f ∗(g)π((h∗
j g)

−1)dg = π( f ∗)π(h∗
j
−1
).
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The above formula is classically referred to as the shift property of the Fourier
transform. Indeed, it is well known that for the standard Fourier transform on R,
then shifting a function only amounts to a phase correction of its Fourier coefficients.
This property is at the heart of our estimation procedure to exhibit the shift parameters
h∗

j .

2.3 Regularity assumption on the common shape

Since we use the Fourier transform to build our estimation method, it will be natural
to suppose that the common shape f ∗ satisfy the following assumption:

f ∗ ∈ L
2(G) ⊂ L

1(G),

where L
1(G) denotes the set of integrable function on G with respect to dg.

Now remark that the function f ∗ should satisfy some geometric conditions to make
the estimation of the shift parameters feasible. Indeed, think of a spherical image that
would be symmetric with respect to some axis through the origin. Such an image is
thus rotation invariant and a proper estimation of the shifts is therefore impossible.
Now, let us study the general case. Assume that there exists a closed subgroup H of
G (not reduced to e) such that f ∗(gh) = f ∗(g) for all g ∈ G and h ∈ H . Then, there
is a unique manifold structure on the quotient group K = G/H so that the projection
map PH : G → K is smooth. Let π be an irreducible representation of K on the
vector space V . Then, π can be used to define an irreducible representation of G by
π ◦ PH . Furthermore, from the Parseval formula (2.1) we have that:

‖ f ∗‖2
L2(G) =

∑

π∈Ĝ

dπTr
(
π( f ∗)π( f ∗)T

)
=

∑

π∈K̂

dπTr
(
π( f ∗)π( f ∗)T

)
.

For any two (generic) sets A and B, the set A \ B denotes the set A minus B. Then
we deduce that for all irreducible representation π ∈ Ĝ \ K̂ the linear mapping
π( f ∗) : V → V is identically null and thus the shift property of the Fourier transform
can not be used to recover the shifts for such π ’s, and of course the set Ĝ \ K̂ is clearly
unknown in practice. Thus, the following definition is introduced.

Definition 2.1 A function f ∗ ∈ L
2(G) is said to be not shift-invariant if there does

not exist a closed subgroup H (except H = {e} or H = G) such that f ∗(gh) = f ∗(g)
for all g ∈ G and h ∈ H.

Finally, we also impose some smoothness assumptions on the function to recover
f ∗ which are given by the following definition. This assumption is used to guarantee
the unicity of the minimum of the M-criterion defined in the next section.

Definition 2.2 A function f ∗ ∈ L
2(G) is said to be regular if for all π ∈ Ĝ such that

π( f ∗) is not identically null, then π( f ∗) is invertible.
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3 The M-estimation criterion

3.1 A matching criterion based on the Fourier transform

For h =(h1,. . ., h J )∈A0, we propose to minimize the following criterion inspired by
recent results of [13] and [42] for the estimation of shifts between curves:

M(h1, . . . , h J ) = 1

J

J∑

j=1

∥
∥
∥
∥
∥
∥

f j ◦ Lh j − 1

J

J∑

j ′=1

f j ′ ◦ Lh j ′

∥
∥
∥
∥
∥
∥

2

L2(G)

, (3.1)

where Lh : g ∈ G → hg ∈ G and f j : g ∈ G → f ∗(h∗−1
j g) ∈ R. Using the

Parseval–Plancherel formula, the criterion may be rewritten in the Fourier domain as:

M(h)= M(h1, . . . , h J )= 1

J

J∑

j=1

∑

[π ]∈Ĝ

dπ

∥
∥
∥
∥
∥
∥
π( f j )π(h j )− 1

J

J∑

j ′=1

π( f j ′)π(h j ′)

∥
∥
∥
∥
∥
∥

2

H S

,

(3.2)

for h = (h1, . . . , h J ) ∈ A0. Given that π( f j ) = π( f ∗)π(h∗
j
−1), the criterion M has

a minimum at h∗ = (h∗
1, . . . , h∗

J ) such that M(h∗) = 0. If f ∗ is assumed to be not
shift-invariant and regular (see Definitions 2.1 and 2.2), then this minimum is unique
(see the proof of Theorem 3.1).

3.2 The empirical criterion

Our estimation method is then based on the Fourier Transform of the noisy data given
by model (2.2). Let π an irreducible representation of G into V . We consider the
following linear mappings from V to V which are defined from the model (2.2):

π(Y j ) =
∫

G

π(g−1)dY j (g) = π( f j )+ επ(W j ), j = 1 . . . J,

where

π(W j ) =
∫

G

π(g−1)dW j (g), j = 1 . . . J.

Let us denote by (πkl(W j )) the matrix coefficients of π(W j ) :

πkl(W j ) =
∫

G

πkl(g
−1)dW j (g).
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Using the Schur orthogonality and the fact that W j is a standard Brownian sheet on G,
one obtains that the complex variables πkl(W j ) are independent identically distributed
Gaussian variables NC(0, d−1

π ). Notice that if π is an irreducible representation, then
the conjugate representation π : g ∈ G → π(g) is irreducible too.

Let Ĝε be a finite subset of Ĝ such that the sequence Ĝε increases when ε tends to
0 and

∪ε>0Ĝε = Ĝ.

Moreover, we assume that if π ∈ Ĝε, then π ∈ Ĝε . Practical choices for the set
Ĝε will be discussed later on in the paper for the case of Abelian groups and the
non-commutative group SO(3). Then, we consider the following criterion:

Mε(h1, . . . , h J ) = 1

J

J∑

j=1

∑

π∈Ĝε

dπ

∥
∥
∥
∥
∥
∥
π(Y j )π(h j )− 1

J

J∑

j ′=1

π(Y j ′)π(h j ′),

∥
∥
∥
∥
∥
∥

2

H S

(3.3)

and the M-estimator given by

ĥε = arg min
h∈A0

Mε(h).

The following theorem provides the consistency of ĥε . Note that a Lie group is a
topological space which can be equipped with a metric, and thus the convergence in
probability of ĥε is defined with respect to this metric.

Theorem 3.1 Assume that f ∗ is not shift-invariant and regular. Moreover suppose
that

lim
ε→0

ε2
∑

π∈Ĝε

d2
π = 0

then ĥε converges in probability to h∗ = (h∗
1, . . . , h∗

J ).

The condition that limε→0 ε
2 ∑

π∈Ĝε
d2
π = 0 in Theorem 3.1 restricts the choice

of the subset Ĝε . Such a condition leads to the choice of a subset Ĝε with a small
number of irreducible representations of low dimensions dπ . Some examples in the
case of an Abelian group and for G = SO(3) are given in the next section.

4 Asymptotic normality of the estimator

By their nature, groups are usually nonlinear objects. Thus, it is not obvious to define
a notion of asymptotic normality for an M-estimator such as ĥε which takes its values
in a group. Indeed asymptotic normality of M-estimators is classically derived using
the differentiability over a vector space of the criterion to minimize. To overcome this,
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we assume that G is a Lie group. Then, a way to linearize a Lie group is to look at
its Lie algebra via the exponential map. The Lie algebra is the vector space of left
invariant vectors fields equipped with the Lie bracket of vector fields. The exponential
map is a bridge between the structure of a Lie group and the structure of its Lie algebra
which is a vector space. At the neighborhood of some point g ∈ G, a Lie group is
very similar to its tangent space at g which is a vector space that can be identified to
the Lie algebra of G. In this setting, the asymptotic normality of an estimator can be
established by examining the behavior of the estimator in the immediate neighborhood
of the parameter h∗ to estimate. Thus, all we need is to define an appropriate system
of coordinates to parametrize the group G in the vicinity of the point h∗. Such an
approach has been proposed for instance in [7] to study the asymptotic properties of
the intrinsic mean of a sample of random variables taking their values in a manifold.
In the next sections, we provide some background on Lie groups and fix the notations.
Then, we study the asymptotic normality of the estimator ĥε .

4.1 Lie group, Lie algebra and the exponential map

Let us first introduce some definitions. A Lie group (G, ·) is a group which has also
the structure of a manifold such that the group product and the inversion are smooth
mapping with respect to the differential structure for the manifold. Let F be a smooth
manifold of finite dimension. For each point p ∈ F, recall that the tangent space Tp F
is the vector space of all point-derivations of the algebra of smooth germs defined in
the vicinity of p. The tangent bundle of F is the disjoint union of all tangent space
spaces of F,

TF =
⋃

p∈F

{p} × Tp F.

The derivative of a function m : G → F at a point h in the direction v ∈ ThG will
be written as dhm(v) ∈ Tm(h)F and dhm : ThG → Tm(h)F is a linear map. Then, it
defines a linear operator dm : T G → T F, called the tangent map of m, such that:

∀(g, Xg) ∈ T G, dm(g, Xg) = dgm(Xg).

Then, consider the left multiplication which is defined for any h ∈ G as the mapping
Lh : G → G such that Lh(g) = hg. The left multiplication Lh is diffeomorphism.
The derivative of Lh−1 at point h is known to determine an isomorphism between TeG
and ThG. Therefore any element of ThG can be identified with an element of TeG via
the relation TeG = d Lh−1(h, ThG).

Now, recall that a vector field X on G is a smooth section of the tangent bundle T G

X : G → T G

g → (g, Xg),

123



Semiparametric estimation of shifts on compact Lie groups 435

where Xg ∈ TgG for all g ∈ G. A vector field X is left invariant if dg Lh Xg = Xhg

for all (g, h) ∈ G × G, and let us denote by �L(G) the space of left invariant vector
fields. Hence a left invariant vector field X is completely determined by its value at
the identity e since Xg = de Lg Xe. Moreover one can associate to any u ∈ TeG, a left
invariant vector field Xu given by Xu

g = de Lg(u), and one can check that the mapping

{
ψ : TeG → �L(G)

u �→ Xu

is invertible by simply associating to any left-invariant vector field X ∈ �L(G) its
value at the identify e namely ψ−1(X) = Xe. Clearly ψ is an isomorphism and there-
fore, the tangent space TeG of G at the identity e is in bijection with the space �L(G)
which will be written as TeG � �L(G). Then, let us now define the Lie algebra of G:

Definition 4.1 The Lie algebra G of G is the tangent space at the identity e i.e. G =
TeG � �L(G).

The dimension of G as a Lie group will always be assumed to be finite. The Lie
algebra G is thus a vector space of finite dimension p ≥ 1. Since a Lie group is a
topological space, the notion of convergence is defined with respect to this topology.
However, for studying convergence results on G, it will be useful to equipped the Lie
algebra with a Banach space structure. We therefore suppose that there exists a norm
‖ · ‖ on G which induces a complete metric. For a detailed presentation of compact
Lie groups and Lie algebra we refer to [35] and [39].

Each left invariant vector field X defines a differential equation governed by a flow
denoted by φX (t, g) ∈ G for all (t, g) ∈ R × G such that

{
∂
∂t φX (t, g) = XφX (t,g)

φX (0, g) = g

Since X is left invariant, one has that φX (t, g) = LgφX (t, e) and thus the flow is
completely determined by the initial condition φX (0, e) = e. Then, we arrive at the
following definition:

Definition 4.2 The exponential map exp is the mapping from G � �L(G) → G
defined by exp(X) = φX (1, e) for X ∈ �L(G).

Using that TeG � �L(G), the exponential map can also be seen as a mapping from
G = TeG to G given by

exp(u) = φXu (1, e) for u ∈ G = TeG.

This application maps 0 ∈ G to the identity e ∈ G. Moreover, the exponential map can
be shown (see e.g. [39]) to be an analytical diffeomorphism from an open neighbor-
hood V(0) of 0 ∈ G to a neighborhood V (e) = exp(V(0)) of e ∈ G. The differential
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Table 1 Examples of Lie groups with their associated Lie algebra and exponential map, where M(n,R)
denotes the set of all n × n matrices with real entries and S(n,R) = {u ∈ M(n,R) such that uT + u =
0 and T r(u) = 0}
The Lie group G The Lie Algebra The exponential map

(R/Z,+) R exp(u) = u mod 1, for u ∈ R

(GL(n,R), ·) M(n,R) exp(u) = ∑+∞
k=0

uk

k! , for u ∈ M(n,R)

(SO(n,R), ·) S(n,R) exp(u) = ∑+∞
k=0

uk

k! , for u ∈ S(n,R)

du exp of exp at u ∈ G is a linear function given by

{
du exp : G → Texp(u)G

v �→ d
dt |t=0 exp(u + tv)

Moreover one can check that dexp(u)Lexp(−u) ◦ du exp is an endomorphism of G and
by a slight abuse of notations, dexp(u)Lexp(−u) ◦ du exp is also denoted by du exp. In
what follows the application du exp is thus considered as a map du exp : G → G.

Since the exponential map is an application from G to G it will play a fundamental
role to define the asymptotic normality of the estimator ĥε . Indeed, using that exp is
a diffeomorphism from V(0) to V (e), one has that if ĥε ∈ V (e), then there exists a
unique ûε ∈ V(0) such that ĥε = exp(ûε). Then, we finally arrive at the following
definition:

Definition 4.3 The operation ĥε �→ exp−1(ĥε) is defined as the projection of the
estimator ĥε onto the vector space G.

In Table 1, a few illustrative examples are given to better explain how the estimates
are mapped to the Lie Algebra in the case of the circle group G = (R/Z,+) of dimen-
sion p = 1, the group of all invertible n × n matrices with real entries G = GL(n,R)
of dimension p = n2, and the special orthogonal group G = SO(n,R) of dimension
p = (n2 − n)/2.

One can see that, in the case of the circle group, then du exp(v) = v for all u, v ∈ R.
In contrast, in the case where G = GL(p,R), the differential of exp at u ∈ G =
M(n,R) is (with our slight abuse of notations for du exp),

du exp(v) =
∑

k≥0

(−1)k

(k + 1)! (adu)
k (v) for v ∈ G, where

{
adu : G → G

v �→ uv − vu.

(4.1)

and (adu)
k (v) is defined recursively by (adu)

k (v) = adu
(
(adu)

(k−1) (v)
)

and (adu)
0

(v) = v. More generally, in the case of Abelian groups, the mapping du exp reduces to
the identity on G and is therefore independent of u, whereas in the case of non-commu-
tative groups, this differential depends on u. This will make a fundamental difference
between Abelian and non-commutative groups for the interpretation of the asymptotic
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covariance matrix of h∗ = (h∗
1, . . . , h∗

J ) in the model (2.2), see the following section
for a precise definition.

4.2 Projection of the estimator

Our main idea is to re-express the criterion Mε defined on G J as a function M̃ε defined
on G J using the exponential map. If G is a compact group, then the exponential map
is surjective (see [39]), which means that for any g ∈ G, there exists u ∈ G such
that g = exp(u). However, this map is not necessarily injective (think of the circle
group for instance). To overcome this, we will use the fact that the exponential chart
exp : V(0) → V (e) is a diffeomorphism, where V(0) is an open neighborhood of
0 ∈ G, and V (e) = exp(V(0)) is a neighborhood of e ∈ G.

Assumption 4.1 Let h̃ = (h̃1. . ., h̃ J) be in A0 with h̃1 = e, such that the true param-
eters (h∗

1. . ., h∗
J ) belong to the neighborhood of (h̃1, . . . , h̃ J ),

(h∗
1, . . . , h∗

J ) ∈ V (h̃) = {(h1, . . . , h J ) ∈ A0, h j ∈ h̃ j V (e)}.

Then we can re-express our criteria on the vicinity of h̃ as functions on the vector
space G J ,

M̃(u1, . . . , u J ) = M(h̃1 exp(u1), . . . , h̃ J exp(u J )),

and

M̃ε(u1, . . . , u J ) = Mε(h̃1 exp(u1), . . . , h̃ J exp(u J )).

Both functions M̃ and M̃ε are thus defined on the vector space G J of dimension
J × p. Using the exponential chart, there exist u∗ = (u∗

1, . . . , u∗
J ) ∈ V(0)J such

that h∗
1 = h̃1 exp(u∗

1), h∗
2 = h̃2 exp(u∗

2), . . . , h∗
J = h̃ J exp(u∗

J ). Let U be a compact
neighborhood of 0 ∈ G,with U ⊂ V(0) and such that u∗ ∈ U J . Note that Assumption
4.1 imply that the true parameters u∗ = (u∗

1, . . . , u∗
J ) belong to the compact set

U0 =
{
(u1, . . . , u J ) ∈ U J , u1 = 0

}
.

Note that under Assumption 4.1, it follows that h∗
1 = e is fixed which corresponds to

the identifiability condition (2.3). Then, we define,

ûε = (û1, . . . , û J ) = arg min
u∈U0

M̃ε(u1, . . . , u J ),

Arguing as in the proof of Theorem 3.1, we immediately have the following proposi-
tion:
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Proposition 4.1 Suppose that Assumption 4.1 holds. Assume that f ∗ is not shift-
invariant and regular. Moreover, suppose that

lim
ε→0

ε2
∑

π∈Ĝε

d2
π = 0

then ûε converges in probability to u∗ = (u∗
1, . . . , u∗

J ) as ε → 0.

As ûε belongs to a linear space, the problem of studying the asymptotic normality
of ĥε amounts to studying the asymptotic normality of ûε with the local exponen-
tial chart centered in h̃. In the case where G is a non commutative group, we will
see that the asymptotic covariance matrix of ûε can be interpreted as a Riemannian
metric i.e. as an inner product on the tangent space Th∗ G J that depends on the
point h∗ ∈ G J and the chosen coordinate chart (and thus on h̃). This is the stan-
dard fact for statistical models indexed by parameters belonging to a manifold and
we will comment more on this in the next section, see e.g. [36] and the references
therein.

In practice, we recommend the choice h̃ j = e for all j = 1, . . . , J which corre-
sponds a local parametrization of the group G around the identity e. Note that this
local parametrization is also used to calculate ĥε = arg minh∈A0 Mε(h) since once
ûε has been computed then the choice h̃ j = e for all j = 1, . . . , J automatically
yields an expression for the value of ĥε . Such an choice is equivalent to suppose that
the true parameter h∗ belong to V (e). Somehow, it restricts the study of asymptotic
normality to the choice of the chart at the origin. Being able to do the estimation
without assuming that the true parameter lies in the domain of a specific chart is an
interesting topic for future work. One possibility would be to use the estimator ĥε to
define a random chart depending on this point. However, we believe that studying the
asymptotic normality of the estimator on such a random chart is a difficult task that is
beyond the scope of the paper.

4.3 Asymptotic normality of ûε

Let us first introduce and recall some notations. Let F be a smooth manifold of finite
dimension. Recall that the derivative of a function m : G → F at a point h in the
direction v ∈ ThG will be written as dhm(v) ∈ Tm(h)F, dhm : ThG → Tm(h)F is a
linear map. The second derivative of a function m : G → F at a point h in the direc-
tion v ∈ ThG and w ∈ ThG will be written as d2

h m(v,w) ∈ Tm(h)F, d2
h m : ThG ×

ThG → Tm(h)F is a bilinear map. By abusing notations, dexp(u)Lexp(−u)(d2
u exp(v,w))

is denoted by d2
u exp(v,w) which is bilinear map from G × G → G.

Finally, it will be convenient to express our results for a given basis of G J . Let
e1, . . . , eJ be the canonical basis of R

J , and let x1, . . . , x p be a basis of G. Then, G J

can be viewed as the tensor product space of R
J and G : G J = R

J ⊗ G. For example,
let v be in G and j ∈ {1 . . . J }, e j ⊗ v is the element (0, . . . , 0, v, 0, . . . , 0) of G J

where v is the j th coordinate. Then, a basis of G J is (e j ⊗ xk)1≤ j≤J,1≤k≤p. With a
such basis, we can identify the differential of order 1 at point u ∈ G J of a function
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m : G J → R as a element ∇um of R
Jd . Likewise, the differential of order 2 at point

u ∈ G J of a function m : G J → R can be identified as as an element ∇2
u m of the

space of Jd × Jd real matrices.
Note that the consistency of ε−1(ûε − u∗) should be actually understood for the

vector ûε = (û2, . . . , û J ) ∈ G J−1 since the first component is fixed to û1 = 0 for
identifiability reasons. By definition of ûε , one has that

∇ûε M̃ε = 0.

Thus, the Taylor theorem with integral remainder states that,

0 = ε−1∇u∗ M̃ε +
1∫

0

∇2
ūε (t)M̃εε

−1(ûε − u∗)dt, (4.2)

where for t ∈ [0, 1]

ūε(t) = u∗ + t (ûε − u∗) ∈ Uε = {u ∈ U0, ‖u − u∗‖ ≤ ‖ûε − u∗‖}. (4.3)

Then, let us introduce the following matrix norm:

Definition 4.4 For any matrix A of size q ×q with complex entries Ak,�, ‖A‖ denotes
the norm

‖A‖ =
q∑

k,�=1

|Ak,�|.

Under appropriate conditions, it will be shown that ε−1∇u∗ M̃ε converges to a cen-
tered Gaussian variable N (0, 4	/J 2) (see Proposition 4.2 for the expression of 	),
and that supu∈Uε ‖∇2

u M̃ε−2	/J‖ converges in probability to 0. Then, using Slutsky’s
lemma (see e.g. [41]), it will follow that ε−1(ûε − u∗) converges to N (0, 	−1) which
is the main result of this section (see Theorem 4.1).

Obviously, to compute ∇u M̃ε and ∇2
u M̃ε , it will be necessary to compute the gra-

dient and the Hessian of the function

{
π̃ : G → GL(V )
u �→ π(exp(u)),

where π is a finite dimensional representation of G in the vector space V . First remark
that the differential of π at the identity e can be computed as

deπ(u) = lim
t→0

1

t
(π(exp(tu))− π(e))

for u ∈ G. Therefore, its differential at point h ∈ G is given by
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dhπ(u) = lim
t→0

1

t
(π(h · exp(tu))− π(h))

= π(h) lim
t→0

1

t
(π(exp(tu))− π(e))

= π(h)deπ(u). (4.4)

The above Eq. (4.4) shows that differentiating π just amounts to right multiplication
by deπ(u). This fact is of fundamental importance to prove the ε−1 consistency of our
estimators. Finally, by applying the chain rule of differentiation and the above results
one has that for u, v ∈ G

du π̃(v) = π(exp(u))deπ (du exp(v)) . (4.5)

Then, the following results hold (proofs are deferred to the Appendix):

Proposition 4.2 Assume that the conditions of Proposition 4.1 hold. Moreover, assume
that for all j = 2, . . . , J and k = 1, . . . , p

lim
ε→0

ε
∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
du∗

j
exp(xk)

)∥∥
∥

2

H S
= 0, (4.6)

∑

π∈Ĝ

dπ
∥
∥
∥π( f ∗)deπ

(
du∗

j
exp(xk)

)∥∥
∥

2

H S
< ∞, (4.7)

where x1, . . . , x p is an arbitrary basis of G. Then, as ε → 0

ε−1∇u∗ M̃ε → N

(

0,
4

J 2	

)

,

where 	 is a positive definite (J − 1)p × (J − 1)p matrix whose entries for 2 ≤
j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p are given by

	( j1,k1)×( j1,k2) =
∑

π∈Ĝ

dπ

(

1 − 1

J

)

�

×
〈
π( f ∗)deπ

(
du∗

j1
exp(xk1)

)
, π( f ∗)deπ

(
du∗

j1
exp(xk2)

)〉

H S
,

and for j1 �= j2 by

	( j1,k1)×( j2,k2) = −
∑

π∈Ĝ

dπ
1

J
�

×
〈
π( f ∗)deπ

(
du∗

j1
exp(xk1)

)
, π( f ∗)deπ

(
du∗

j2
exp(xk2)

)〉

H S
.
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Proposition 4.3 Assume that the conditions of Proposition 4.1 hold. Moreover, assume
that for all 1 ≤ k1, k2 ≤ p

lim
ε→0

sup
u∈U

⎧
⎨

⎩

∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S

∥
∥
∥deπ

(
du exp(xk1)

)∥∥
∥

2

H S

⎫
⎬

⎭
= 0 (4.8)

lim
ε→0

sup
u∈U

⎧
⎨

⎩

∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S

∥
∥
∥deπ

(
d2

u exp(xk1 , xk2)
)∥∥
∥

H S

⎫
⎬

⎭
= 0 (4.9)

lim
ε→0

ε2 sup
u∈U

⎧
⎨

⎩

∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
du exp(xk1)

)∥∥
∥

2

H S

⎫
⎬

⎭
= 0 (4.10)

lim
ε→0

ε2 sup
u∈U

⎧
⎨

⎩

∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
d2

u exp(xk1 , xk2)
)∥∥
∥

H S

⎫
⎬

⎭
= 0 (4.11)

where x1, . . . , x p is an arbitrary basis of G. Then, as ε → 0

sup
u∈U1

‖∇2
u M̃ε − ∇2

u M̃‖ → 0 in probability .

Finally, combining the above propositions we arrive at the following result

Theorem 4.1 Under the assumptions of Propositions 4.1, 4.2 and 4.3,

ε−1(ûε − u∗) → N (0, 	−1), as ε → 0.

Intuitively, the conditions of Propositions 4.2 and 4.3 impose smoothness con-
straints of the reference template f ∗ and also give an idea of how choosing the set Ĝε

with respect to the level of noise ε. The interpretation of these various conditions is
easier in the case of Abelian groups, in particular when G is the multi-dimensional
torus, and this will be discussed in the following sections.

Let us define I (u∗) = 	. The matrix I −1(u∗) is the asymptotic covariance matrix
of the estimator ûε . As it depends on the point u∗ (and thus of h∗), this matrix can
be interpreted as a Riemannian metric on G. This is a classical result in mathemat-
ical statistics for random variables whose law is indexed by parameters belonging
to a finite-dimensional manifold. In such settings, the Fisher information matrix is a
Riemannian metric and lower bounds analogue to the classical Cramer–Rao bound for
parameters in an Euclidean space can be derived (see e.g. [36] for a detailed review
and discussion of this notion). When the exponential chart is centered at the point h∗
(h̃ = h∗), the covariance matrix can be rewritten as a tensor product of matrices:

	 =
(

IJ−1 − 1

J
IJ−1

)

⊗ Gramm(∇ f ∗),
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where IJ−1 is the identity matrix of R
J−1, IJ−1 is the (J −1)× (J −1)matrix whose

the elements are equal to 1, and Gramm(∇ f ∗) is the p × p matrix defined as, for
1 ≤ k1, k2 ≤ p,

Gramm(∇ f ∗)k1,k2 =
∑

π∈Ĝ

dπ�

×
〈
π( f ∗)deπ

(
d0 exp(xk1)

)
, π( f ∗)deπ

(
d0 exp(xk2)

)〉

H S
. (4.12)

4.4 The special case of Abelian groups

In the particular case where G is an Abelian group, the conditions of Theorem 4.1
are much simpler and easier to interpret, which is due to the fact that the mapping
du exp reduces to the identity on G i.e. du exp(v) = v for all u. Moreover, recall that
in this case dπ = 1. Let f̃ ∗ : u ∈ G → f ∗(gh exp(u)) be the function defined at
the neighborhood of gh ∈ G. From our notations, the gradient of f̃ ∗ at point u is the
following vector of R

p,

∇u f̃ ∗ =
(

dgh exp(u) f ∗(du exp(xk))
)

1≤k≤p
.

In the Abelian case one has that du exp(xk) = xk, and thus ∇u f̃ ∗ = (
dgh exp(u) f ∗

(xk)
)

1≤k≤p can be seen as a function of gh exp(u). By abusing notations, we denote
by dgh exp(u) f ∗ that function. Using the Fourier inverse formula, we get that

f̃ ∗(u) =
∑

π

π( f ∗)π(gh exp(u)).

Then by differentiation, the derivative of the function f̃ ∗ at point u in the direction
v ∈ G is,

dgh exp(u) f ∗(v) =
∑

π

π( f ∗)deπ(v)π(gh exp(u)).

Consequently, the Parseval formula and the expression (4.12) of the matrix Gramm
(∇ f ∗) imply that in the case of Abelian group the matrix Gramm (∇ f ∗) is given by

Gramm
(∇ f ∗)

k1,k2
=
∫

G

dg f ∗(xk1)dg f ∗(xk2)dg.

If we suppose that Ĝε is a finite subset of Ĝ, then one has the following result which
is an immediate consequence of Theorem 4.1.
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Proposition 4.4 Let G be an Abelian group. Assume that Assumption 4.1 holds and
that f ∗ ∈ L

2(G) is regular and not shift-invariant. Moreover suppose that for k =
1, . . . , p

lim
ε→0

ε2#{Ĝε} = 0 (4.13)

lim
ε→0

ε
∑

π∈Ĝε

|deπ(x
k)|2 = 0 (4.14)

lim
ε→0

∑

π∈Ĝ\Ĝε

∣
∣π( f ∗)

∣
∣2
∣
∣
∣deπ(x

k)

∣
∣
∣
2 = 0, (4.15)

where x1, . . . , x p is an arbitrary basis of G. Then, as ε → 0

ε−1(ûε − u∗) → N (0, 	−1), as ε → 0,

for 2 ≤ j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p are given by

	( j1,k1)×( j1,k2) =
∑

π∈Ĝ

(

1 − 1

J

) ∣
∣π( f ∗)

∣
∣2 �

(
deπ

(
xk1

)
deπ

(
xk2

))
,

	( j1,k1)×( j2,k2) =
∑

π∈Ĝ

1

J

∣
∣π( f ∗)

∣
∣2 �

(
deπ

(
xk1

)
deπ

(
xk2

))
for j1 �= j2,

or,

	 =
(

IJ−1 − 1

J
IJ−1

)

⊗ Gramm(∇ f ∗),

with Gramm(∇ f ∗)k1,k2 = ∑
π∈Ĝ |π( f ∗)|2�

(
deπ

(
xk1

)
deπ

(
xk2

)) = ∫
G dg f ∗(xk1)

dg f ∗(xk2)dg.

Thus, condition (4.15) (or (4.7)) state that the common shape is differentiable and
its derivatives are square integrable on G. Conditions (4.13)–(4.14) (or (4.6)–(4.10)–
(4.11)) give some sufficient assumptions on the choice of Ĝε to guarantee the asymp-
totic normality of the estimators.

Note that the asymptotic covariance matrix 	−1 does not depend on the point h∗
since the parameter space for the shifts is a flat subset of R

p in the case of Abelian
groups. The matrix Gramm(∇ f ∗) can be viewed as the scalar product of the partial
derivatives g �→ d f ∗(xk1) and g �→ d f ∗(xk2). Then, the covariance matrix 	 is
invertible if, and only if the matrix Gramm(∇ f ∗) is invertible. This means that the
partial derivatives of the common shape have to be linearly independent in L

2(G).
Moreover if the partial derivatives of f ∗ are orthogonal, the covariance matrix may be
rewritten as a block diagonal matrix: for a fixed j, the estimators of the components
u∗

j,1, . . . , u∗
j,p of the vector u∗

j ∈ R
p are asymptotically independent.
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Then, let us study Proposition 4.4 in the case where G = (R/Z)p which corre-
sponds to the torus in dimension p. This case corresponds to the case of periodic
functions defined on [0, 1]p for which Ĝ = Z

p and G = R
p. Therefore, one retrieves

the classical multi-dimensional Fourier decomposition of a function f ∈ L
2([0, 1]p)

f (x)=
∑

�∈Zp

c�( f )e�(x), for x =(x1, . . . , x p) ∈ [0, 1]d and �=(�1, . . . , �p)∈Z
d ,

where e�(x) = π(x) = e−i2π(
∑p

k=1 �
k xk
) and c�( f ) = π( f ) = ∫

[0,1]d f (x)e�(x)dx .

Note also that deπ(xk) = −i2π�k . The condition that the function f ∗ is not shift
invariant means that f ∗ cannot be rewritten as a function m : (R/Z)p−1 → R, and
Z

p is the minimal network of periodicity. This assumption implies that the partial
derivatives are linearly independent. Moreover, one can check that f ∗ is not shift
invariant if one of these two conditions holds:

1. there exist �1, . . . , �p ∈ Z
p such that for all r = 1 . . . p, c�r ( f ∗) �= 0, and

det
({

lk
r

}
1≤r,k≤p

)
= 1,

2. there exist �11, . . . , �1p ∈ Z
p and �21, . . . , �2p ∈ Z

p such that for all r =
1 . . . p, i = 1, 2, c�ir ( f ∗) �= 0, and det

({
�k

1r

}
1≤r,k≤p

)
and det

({
�k

2r

}
1≤r,k≤p

)

are relatively prime.

Now, take

Ĝε = {(�1, . . . , �p) ∈ Z
p, |�k | ≤ �ε for all k = 1, . . . , p},

for some positive integer �ε . Then, the three conditions of Proposition 4.4 are satisfied
if

ε2�p
ε =o(1), ε�p+2

ε = o(1), and
∑

(�1,...,�p)∈Zp

(
|�1|2 + · · · + |�p|2

)
|c�( f ∗)|2 < ∞.

The last above condition implies that the template function f ∗ should be at least
differentiable. Also note that in this case, the two criterion Mε(h) and M̃ε(u) coin-
cide for h ∈ G J and u ∈ ([0, 1]p)J . Since the condition ε�p+2

ε = o(1) implies that
ε2�

p
ε = o(1) if �ε → +∞ as ε → 0, we arrive at the following proposition:

Proposition 4.5 Let G = (R/Z)p and f ∗ ∈ L
2([0, 1]p) be a periodic function.

Assume that h∗ ∈ G J or equivalently that u∗ ∈ ([0, 1]p)J . Moreover, assume that f ∗
is regular and not shift-invariant, and suppose that

ε�p+2
ε = o(1) and

∑

(�1,...,�p)∈Zp

(
|�1|2 + · · · + |�p|2

)
|c�( f ∗)|2 < ∞,

then, as ε → 0

ε−1(ûε − u∗) → N (0, 	−1), as ε → 0,
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where the matrix 	 simplifies to

	( j1,k1)×( j1,k2) =
∑

�∈Z

(

1 − 1

J

)

|c�( f ∗)|2(2π)2�k1�k2 ,

	( j1,k1)×( j2,k2) = −
∑

�∈Z

1

J
|c�( f ∗)|2(2π)2�k1�k2 for j1 �= j2,

Proposition 4.5 shows that we retrieve the results in [13,42] obtained in related
nonparametric regression models for one-dimensional shifted curves (p = 1) with
sampled design points. However, with sampled design points, we have to assume the
following stronger regularity on the common shape in order to estimate the Fourier
coefficient (see [42])

∑

|�|≥m

|cl( f ∗)| = o
(

m−p/2
)
.

4.5 The case of the special orthogonal group SO(3)

Now let us consider the case where G = SO(3) = SO(3,R) (the special orthogonal
group) to illustrate the influence of the geometry of non-commutative groups on the
estimation of u∗. The group SO(3) is the space of 3 × 3 orthogonal matrices with
determinant equal to one, and thus a Lie group of dimension p = 3.

First, let us describe the irreducible representations of this group. Let (e1, e2, e3)

be the canonical basis of R
3.We define the rotation matrices ri (α) (i = 1, 2, 3) as the

counter-clockwise rotation by an angle α about the ei axes:

r1(α) =
⎛

⎝
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

⎞

⎠ , r2(α) =
⎛

⎝
cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

⎞

⎠ ,

and

r3(α) =
⎛

⎝
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎞

⎠ .

It is a classical fact that element of SO(3) are parameterized by three Euler angles
α, β, γ : for every g ∈ SO(3) there exist angles α, γ ∈ [0, 2π), β ∈ [0, π ], such
that g = g(α, β, γ ) = r3(α)r2(β)r3(γ ). This parameterization is not everywhere
injective: for β = 0, the two parameters α and γ are only fixed up their sum. Using
the Euler angles, the Haar measure of SO(3) is dg = 1

8π2 sin(β)dαdβdγ, where dβ
(resp. α, γ ) is the Lebesgue measure on [0, π ] (resp. [0, 2π)).

Now let us define the representations of SO(3). For m ∈ N,Hm denotes the space
of all harmonic homogeneous polynomials on R

3. The space Hm is a complex vector
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space of dimension dπ = 2m + 1. We may define a representation πm of SO(3) in
Hm as the linear endomorphism of Hm such that for all g ∈ SO(3):

{
πm(g) : Hm → Hm

h(x) �→ h(g−1x), for x ∈ R
3 and h ∈ Hm .

Hence, evaluating the matrix element of πm for g = g(α, β, γ ), we find that (see e.g.
[9])

πm
k,l(g) = πm

k,l(g(α, β, γ )) = e−ikαPm
k,l(cos(β))e−ilγ , −m ≤ k, l ≤ m,

where the functions Pm
k,l(cos(β)) are generalizations of the associated Legendre func-

tions and we refer to [9, Chapter 9, p. 295] for their exact expression. The representa-
tions πm,m ∈ N, are all irreducible unitary representation of SO(3).

Then any f ∗ ∈ L
2(SO(3)) can be decomposed as (see e.g. [9])

f ∗(g) =
+∞∑

m=0

(2m + 1)
m∑

k=−m

m∑

�=−m

πm
k,l( f ∗)πm

k,l(g), with πm
k,l( f ∗)

=
∫

SO(3)

f ∗(g)πm
l,k(g)dg.

In this case, a possible choice for the set Ĝε defined in Theorem 3.1 is

Ĝε = {m = −mε, . . . ,mε},

where mε is an appropriate cut-off parameter whose choice is given by the condition
limε→0 ε

2 ∑
π∈Ĝε

d2
π = limε→0 ε

2 ∑|m|≤mε
(2m + 1) = 0 which is satisfied as soon

as mε = o(ε) as ε → 0.
Note that SO(3) is a Lie group of dimension 3, and that a vectorial basis of its

associate Lie algebra is:

x1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , x2 =
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , x3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .

Alternatively, if one parametrizes an element of g ∈ SO(3) using the exponential map
and the Lie algebra as

g = g(θ1, θ2, θ3) = exp

⎛

⎝
0 −θ3 θ2
θ3 0 −θ1

−θ2 θ1 0

⎞

⎠ , for (θ1, θ2, θ3) ∈ R
3,
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then the matrix elements πm
k,l(g) are given by the following formula

πm
k,l(g(θ1, θ2, θ3)) = (−1)2m+k+l

[
(m − k)!

(m + k)!(m − l)!(m + l)!
]

×(sin(θ/2))k−l
(−θ1 + iθ2

θ

)k−l (

cos(θ/2)−i
θ3

θ
sin(θ/2)

)k+l

×P(k−l,k+l)
m−k

(
(1 − θ2

3 /θ
2) cos(θ)+ θ2

3 /θ
2
)
,

where θ =
√
θ2

1 + θ2
2 + θ2

3 and Pq,q ′
n (·), for (n, q, q ′) ∈ Z

3, are the Jacobi polyno-
mials.

From Proposition 4.2 it follows that the entry ( j1, k1)× ( j2, k2) of 	 (the inverse

of the asymptotic covariance matrix of ûε) depends on deπ
(

du∗
j1

exp(xk1)
)

and

deπ
(

du∗
j2

exp(xk2)
)

. Hence, 	( j1,k1)×( j2,k2) depends on the parameter u∗ ∈ G J to

estimate only through the differential of the exponential map at the points u∗
j1

and u∗
j2

and in the directions xk1 and xk2 for j1, j2 = 2, . . . , J and k1, k2 = 1, 2, 3. From Eq.
(4.1) it follows that for

u =
⎛

⎝
0 −θ3 θ2
θ3 0 −θ1

−θ2 θ1 0

⎞

⎠ , with (θ1, θ2, θ3) ∈ R
3,

then

du exp(x�) =
∑

k≥0

(−1)k

(k + 1)! (adu)
k (x�) for � = 1, 2, 3

Note that adu(x1) =
⎛

⎝
0 −θ3 θ2
θ3 0 0

−θ2 0 0

⎞

⎠ , adu(x2) =
⎛

⎝
0 −θ3 0
θ3 0 −θ1
0 θ1 0

⎞

⎠ , adu(x3) =
⎛

⎝
0 0 θ2
0 0 −θ1

−θ2 θ1 0

⎞

⎠ , and that clearly (adu)
k (x�) depends on (θ1, θ2, θ3), for k > 1

and � = 1, 2, 3.
Hence, du exp(x�) generally depends on the point u. Note that for some special

values of u this may not be the case. For instance suppose that θ2 = θ3 = 0 then
adu(x1) = 0, which implies that du exp(x1) = 0 for any value of θ1, but clearly
du exp(x2) and du exp(x3) depend on θ1. Hence, contrary to the case of Abelian groups
(see Proposition 4.4), the matrix	 (and thus the asymptotic covariance of ûε) depends
on the parameter u∗ to be estimated. This example illustrates the influence of the geom-
etry of non-commutative groups on the expression of the asymptotic covariance of u∗
through the differential of the exponential map.

123



448 J. Bigot et al.

4.6 The difference between non-Abelian and Abelian groups

These results on the asymptotic normality of the estimators show that there exists
a significant difference between semiparametric estimation on a linear Euclidean
space and semiparametric estimation on a nonlinear manifold. If the group G is non-
commutative, then the asymptotic covariance matrix of the estimator ûε depends on
the point u∗ and thus on h∗ (and also on the point h̃ used to define an appropriate pro-
jection of the estimator ĥε on a vector space). Hence, this matrix can be interpreted as
a Riemannian metric on G which depends on the point h∗. This is a classical result in
parametric statistics for random variables whose law is indexed by parameters belong-
ing to a finite-dimensional manifold. In such setting, the Fisher information matrix is
a Riemannian metric and lower bounds analogue to the classical Cramer–Rao bound
for parameters in an Euclidean space can be derived (see e.g. [36]). If G is supposed
to be an Abelian group, then the asymptotic covariance matrix of the estimator is still
a Riemannian metric but its expression does not depend on the point h∗ since the
parameter space G for the shifts is a flat manifold.

4.7 The estimation of the common shape

The estimation of the parameter h∗
1, . . . , h∗

J allows us to align the signals. Therefore, it
is desirable to be able to define an estimator of the common shape f ∗. Our estimation
method suggests to use the following estimators of the coefficients π( f ∗), π ∈ Ĝ:

π̂ε(Y ) = 1

J

J∑

j=1

π(Y j )π(ĥ j,ε).

Using the Peter–Weyl Theorem (2.1), one can then take the following estimator of the
common shape,

f̂ε(g) =
∑

π∈Ĝε

dπTr
(
π(g)π̂ε(Y )

)
.

In order to simplify the study of this estimator, we restrict it to the case where G =
(R/Z)p, the multidimensional torus. In this case Ĝ = Z

p, and a possible choice for
Ĝε is to take

Ĝε = {� ∈ Z
p, |�|∞ ≤ �ε}

for some frequency cutoff parameter �ε > 0, where |�|∞ = max(|�k |, 1 ≤ k ≤ p) for
� ∈ Z

p. To study the convergence of the estimator f̂ε , let us introduce the following
smoothness class

F(s,M) =
{

f : (R/Z)p → R,
∑

�∈Zp

(1 + |�|)2s |cl( f ∗)|2 < M

}
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for some s ≥ p/2 and some constant M > 0, where |�|2 = |�1|2 + · · · + |�p|2.
The parameter s can be thought as a parameter which controls the smoothness of the
functions in the above ellipsoid. In the case p = 1, it is well known that such ellip-
soids can be identified with periodic Sobolev classes (see e.g. [32]), and the problem
of estimating functions lying in such sets has been widely studied in nonparametric
regression (see e.g. [37]).

Proposition 4.6 Assume that the conditions of Proposition 4.5 hold. Moreover, assume
that the common shape f ∗ belongs to F(s,M) for s ≥ p/2 and some constant M > 0.
Then, as ε → 0

MISE f ∗( f̂ε) = E

∫

G

(
f̂ε(g)− f ∗(g)

)2
dg = O

(
1
�2s
ε

+ ε2�
p
ε

)
.

Moreover, if �ε ∼ ε−2/(2s+p), we have M I SE f ∗( f̂n) = O
(
ε4s/(2s+p)

)
.

The above theorem shows that aligning the noisy images Y j using the estimated defor-
mations ĥ j,ε yields a consistent estimate of the common shape f ∗. Note that if �ε ∼
ε−2/(2s+p), then one retrieves the optimal rate of convergence in the minimax sense
for standard nonparametric regression problems [37]. Since h∗

1 = e, one could simply
denoise the first image to estimate the common shape f ∗ with the same asymptotic
rate of convergence. Nevertheless using the above estimate by aligning all the images
reduces the variance from ε2 to ε2/J which yields important improvement in practice.
Moreover aligning images is a fundamental task in image registration that is commonly
done to estimate a common shape.

However, this estimator is not adaptive in the sense that the choice of �ε depends on
the unknown smoothness s of f ∗. An interesting extension of this work would be to
investigate data-based choices of �ε to estimate f ∗ in an optimal way, but we leave this
problem open for future work. Also, we have only investigated the case G = (R/Z)p.
However, at the price of additional technicalities, it is also possible to define a notion
of Sobolev ellipsoid for functions defined on other compact groups (see e.g. [23] for
an example with G = SO(3)) and then to obtain analog results.

5 Efficiency of the estimators

In this section, we discuss the optimality of the covariance matrix 	−1 of the estima-
tors given in Theorem 4.1 from the point of view of asymptotic efficiency in locally
asymptotic normal (LAN) semi-parametric models, see [31] for a detailed exposition
of this concept. We mainly discuss the efficiency of the estimators for Abelian groups
and more particularly for the special case of the torus in dimension p. To the best
of our knowledge, asymptotic efficiency in LAN models has been mainly developed
for the estimation of parameters belonging to a linear space (see [31] and references
therein). Extending the notion of LAN models and efficiency for parameters lying in
a non-commutative Lie group remains a challenge that is beyond the scope of this
paper. Nevertheless, in what follows, we have tried to keep general notations (using
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the exponential map and its derivative) to better highlight how the results could be
generalized to non-commutative Lie groups.

In linear spaces, the concept of efficiency is based on what is commonly referred
to as the convolution theorem (see [31]). The two key hypothesis of this theorem are
the LAN property of the model and the differentiability of the parameter of interest.
Hereafter, we restate this approach into the framework of Abelian Lie groups.

5.1 The LAN property on compact Abelian Lie groups

In the rest of this section, G is supposed to be Abelian. Let P
(ε)
θ denote the distribution

of the model (2.2) for the parameter θ = (h, f ) ∈ A0 × F , where F is the set of

real-valued continuous function on G. The family
(
P
(ε)
θ

)
is LAN at point θ indexed

by a linear space T endowed with an inner product < ·, · >T and a norm ‖ · ‖T
such that for every t ∈ T there exists a sequence

(
P
(ε)
θε(t)

)
of probability measures

with θε(t) ∈ A0 × F such that the log-likelihood ratio �ε for θ and θε(t) admits the
following representation:

�ε (θε(t), θ) = log
dP

(ε)
θε(t)

dP
(ε)
θ

= �ε(t)− 1

2
‖t‖2

T + o
P
(ε)
θ

(1),

where the process�ε(t) is linear in t and converges in P
(ε)
θ -distribution to N

(
0, ‖t (θ)

‖2
T
)
, for some t (θ) ∈ T depending on θ . The tangent space T is used to parameter-

ize the neighborhoods of the point θ∗ = (h∗, f ∗). In the context of Lie group, the
LAN property must be true for every local map in the neighborhood of h∗. Using
Assumption 4.1, a convenient choice in this setting is

θ∗
ε (t) =

(
(h̃2 exp(u∗

2 + εu2), . . . , h̃ J exp(u∗
J + εu J )), f ∗ + ε f

)

where t = (u2, . . . , u J , f ) ∈ T = G J−1 × F . Thanks to the Girsanov formula (see
[19, Appendix 2]), the log-likelihood ratio �ε is (under Assumption 4.1)

�ε
(
θ∗
ε (t), θ

∗) =
∫

G

f (g)dW1(g)+ 1

ε

J∑

j=2

∫

G

( f ∗ + ε f )(gh̃−1
j exp(−u∗

j − εu j ))

− f ∗(gh̃−1
j exp(−u∗

j ))dW j (g)

−1

2

∫

G

f (g)2dg− 1

2ε2

∑

j=2

J
∫

G

{
( f ∗+ε f )(gh̃−1

j exp(−u∗
j −εu j ))

− f ∗(gh̃−1
j exp(−u∗

j )
}2

dg.

Note that the Girsanov’s formula in [19]] is not stated over a Lie group. We only apply
it in the case of an Abelian group which can considered as an Euclidean space by some
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abuse of notations. Thus, if the common shape f ∗ is continuously differentiable and
using the uniform continuity of the functions f ∗ and f on the compact group G, the
following proposition holds (the proof is omitted as it is a direct consequence of the
above formula for the log-likelihood ratio):

Proposition 5.1 Assume that G is a compact Abelian Lie group. Let 〈·, ·〉L2(G) be the
standard inner-product in L

2(G). Assume that the function f ∗ is not shift-invariant
and differentiable with a continuous tangent map function d f ∗ such that the matrix,

Gramm(∇ f ∗) =
(〈

d f ∗(xk1), d f ∗(xk2)
〉

L2(G)

)

1≤k1,k2≤p
,

is invertible. Then the model
(
P
(ε)
θ

)
is LAN at point θ∗ = (h∗, f ∗) indexed by the

tangent space T = G J−1 × F with,

�ε(t)=
∫

G

f (g)dW1(g)+
J∑

j=2

∫

G

f (gh̃−1
j exp(−u∗

j ))−dgh̃−1
j exp(−u∗

j )
f ∗(u j )dW j (g).

Moreover, the tangent space T = G J−1 ×F is a vector space when endowed with the
following inner-product:

〈t, t ′〉T = 〈
f, f ′〉

L2(G) +
J∑

j=2

〈
f − dg exp(0) f ∗(u j ), f ′ − dg exp(0) f ∗(u′

j )
〉

L2(G)
,

and the closure of T = G J−1 × L
2(G) is a Hilbert space.

Let Tε be any estimator of h∗ and let us denote by ûε ∈ G J−1 its local coordinates in
the Lie Algebra G via the exponential map. Using the centered process�ε(t), we can
characterize the class of asymptotically linear estimators in the sense of the following
definition:

Definition 5.1 An estimator Tε of h∗ is said to be asymptotically linear if and only if
there exists t ∈ T such that

ε−1(ûε − u∗) = �ε(t)+ o
P
(ε)

θ∗
(1),

where �ε(t) = (
�ε(t1,2), . . . ,�ε(tp,2), . . . ,�ε(tp,J )

)
is a multi-variate centered

process linear in t = (t1,2, . . . , tp,J ) ∈ T p(J−1).
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5.2 The differentiability of the estimation parameter

Let us now consider the special case where G = (R/Z)p is the torus in dimension p.
Denote the parameter to estimate relative to the distribution P

(ε)
θ by

νε

(
P
(ε)
θ

)
:= (v2, . . . , vJ ) ∈ G J−1,

where θ = ((h̃2 exp(v2), . . . , h̃ J exp(vJ )), f ) ∈ A0 × F . This parameter is differen-
tiable relative to the tangent space T in the sense that

lim
ε→0

ε−1
{
νε

(
P
(ε)
θε(t)

)
− νε

(
P
(ε)
θ

)}
= (u2, . . . , u J ), t ∈ T ,

and thus there exists a continuous linear map ν̇ from T p(J−1) to G p(J−1). According
to the Riesz representation theorem, there exist p(J − 1) vectors (ν̇k, j )1≤k≤p,2≤ j≤J

of the closure of T such that:

∀t ∈ T ,
〈
ν̇k, j , t

〉
T = uk

j ,

where t = (u, f ) ∈ T and u = (u1
2, . . . , u p

2 , . . . u
p
J ) ∈ G J−1.

Then, the tangents vectors ν̇k, j = (u̇k, j , ḟk, j ) ∈ G J−1 × F are such that,

ḟk, j = 1

J

J∑

j ′=2

d f ∗ ((u̇k, j ) j ′
)
, (5.1)

and the vectors (u̇k, j )k, j are the solutions of the equation,

(

IJ−1 − 1

J
IJ−1

)

⊗ Gramm(∇ f ∗)(u̇1,2, . . . , u̇ p,2, . . . , u̇ p,J ) = Ip(J−1). (5.2)

Since the process �ε(t) is linear with t , a consequence of the Proposition 5.3 of [31]
allows us to link the notions of asymptotic linearity and asymptotic efficiency.

Proposition 5.2 Let Tε be an asymptotic linear estimator of h∗ with associate cen-
tered process

�ε(t) = (
�ε(t1,2), . . . ,�ε(tp,2), . . . ,�ε(tp,J )

)
.

Tε is asymptotically regular and efficient if and only if,

∀ j = 2 . . . J, ∀k = 1 . . . p, tp, j = ν̇k, j .
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Let ξ j ∈ R
d be the centered random vectors defined as,

ξ j =
∫

G

∇gh̃−1
j exp(−u∗

j )
f ∗dW j (g exp(u)), j = 1, . . . J.

Let Tε be an asymptotic linear estimator of h∗ and denote by ûε ∈ G J−1 its local
coordinates in the Lie Algebra G via the exponential map. Using Propositions 5.1 and
5.2, Eqs. (5.1) and (5.2), it follows that the estimator Tε is asymptotically efficient if
and only if,

ε−1(ûε − u∗) =
(

IJ−1 − 1

J
IJ−1

)−1

⊗ Gramm(∇ f ∗)−1

⎛

⎝−
J∑

j=2

e j

⊗ ξ j + 1

J

J∑

j=1

1J−1 ⊗ ξ j

⎞

⎠ + o
P
(ε)

θ∗
(1), (5.3)

where 1J−1 = (1, . . . , 1)T ∈ R
J−1. The following proposition (whose proof is

deferred to the Appendix) finally shows that in the case of G = (R/Z)p (the torus in
dimension p) then the estimator is asymptotically efficient.

Proposition 5.3 Suppose that G = (R/Z)p. Assume that the function f ∗ is not shift-
invariant and differentiable with a continuous tangent map function d f ∗ such that the
matrix,

Gramm(∇ f ∗) =
(〈

d f ∗(xk1), d f ∗(xk2)
〉

L2(G)

)

1≤k1,k2≤p
,

is invertible. Then, the estimator ûε is asymptotically efficient.

6 Numerical simulations and some illustrative examples

6.1 A general gradient descent algorithm

To compute the estimator ĥε one has to minimize the function Mε(h). As this criterion
is defined on a Lie group, a direct numerical optimization is generally not feasible if G
is not a linear space, as in this case one may compute estimates which do not belong to
the search space (take for instance the problem of optimizing a function over the space
of positive definite matrices). Finding minima of functions defined on a Lie group is
generally done by reformulating the problem as an optimization problem on the Lie
algebra of G. Such an approach has been for instance proposed in [33] to formulate
a general Newton optimization method over Lie groups. Here, we propose to find a
minima ûε of M̃ε(u) for u ∈ G J , and then to take ĥε = exp(ûε). Since the expression
of the gradient of M̃ε(u) is available in a closed form, a gradient ! descent algorithm
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Fig. 1 Shepp–Logan phantom
image of size 100 × 100 used as
the template function f ∗

with an adaptive step can be easily implemented. More precisely the algorithm is
composed of the following steps:

Initialization: let u0 = 0 ∈ G J , γ0 = 1
‖∇u0 M̃ε‖ ,M(0) = M̃ε(u0), and set m = 0.

Step 2: let unew = um − γm∇um M̃ε and M(m + 1) = M̃ε(unew)

While M(m + 1) > M(m) do

γm = γm/κ, and unew = um − γm∇um M̃ε, and M(m + 1) = M̃ε(u
new)

End while

Then, take um+1 = unew and set m = m + 1.

Step 3: if M(m)− M(m + 1) ≥ ρ(M(1)− M(m + 1)) then return to Step 2, else stop
the iterations, and take ĥε = exp(um+1).

In the above algorithm, ρ > 0 is a small stopping parameter and κ > 1 is a param-
eter to control the choice of the adaptive step γm . Note that the choice of a basis for the
product space G J can be arbitrary and is left to the statistician. Moreover, to satisfy
the identifiability constraints the first p components of um are held fixed to zero at
each iteration m.

6.2 Registration of translated 2D images

As an illustrative example, the above described algorithm has been implemented for
the registration of translated 2D images. All simulations have been carried out with
Matlab, and the chosen template f ∗ is the Shepp–Logan phantom image (see [21]) of
size N × N with N = 100 displayed in Fig. 1. Data can be generated by translating
this image and adding Gaussian noise to each pixel value:

Y j (i1, i2) = f

(
i1

N
− h1

j ,
i2

N
− h2

j

)

+ σ z j (i1, i2), 1 ≤ i1, i2 ≤ N , j = 1, . . . , J

(6.1)
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Table 2 Average and standard deviation (in brackets) of the estimators ĥ j = (ĥ1
j , ĥ2

j ) over M = 100
simulations

j = 2 j = 3 j = 4 j = 5 j = 6

h1
j 0.07 0.1 0.05 −0.05 −0.08

ĥ1
j 0.0704 (0.0031) 0.0997 (0.0031) 0.0494 (0.0028) −0.0502 (0.0031) −0.0801 (0.0032)

h2
j 0.02 0.08 −0.10 −0.05 0.06

ĥ2
j 0.0201 (0.0031) 0.0803 (0.0031) −0.1002 (0.0030) −0.0493 (0.0029) 0.0604 (0.0032)

The bold numbers represent the true values of the parameters (h1
j , h2

j )

Fig. 2 A typical simulation run for J = 6 images generated from the model (6.1)

where i1, i2 denotes a pixel position in the image, z j (i1, i2) ∼i.i.d. N (0, 1), σ is the
level of noise, and h1

j , h2
j ∈ [0, 1] are the unknown translation parameters to estimate.

Note that in the above model, the image f is considered to be periodic function on the
square [0, 1]2 so that it is also defined outside the range of pixels 1, . . . , N ×1, . . . , N .
One could argue that the sampled data model (6.1) does not truly correspond to the
white noise model (2.2). However, as previously explained the white noise model is a
useful theoretical tool to study the properties of statistical procedures in image anal-
ysis. Moreover, there exists a correspondence between these two models in the sense
that they are asymptotically equivalent if ε = σ

N (see [3]).
We have repeated M = 100 simulations with J = 6 noisy images simulated from

the model (6.1). The various values taken for the translation parameters are the bold
numbers given in Table 2. A typical example of a simulation run is shown in Fig. 2
(note that the signal-to-noise ratio is quite low).
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Here, G = [0, 1] × [0, 1] and the Lie algebra is G = R
2. The criterion M̃ε(u) can

be easily implemented via the use of the fast Fourier transform for 2D images:

M̃ε(u) = 1

J

J∑

j=1

∑

|�1|≤�ε

∑

|�2|≤�ε

∣
∣
∣
∣
∣
∣
y j
�1,�2

ei2π(�1u j
1+�2u j

2) − 1

J

J∑

j ′=1

y j ′
�1,�2

ei2π(�1u j ′
1 +�2u j ′

2 )

∣
∣
∣
∣
∣
∣

2

for u = (u1
1, u2

1, . . . , u1
J , u2

J ), and where the y j
�1,�2

’s are the empirical Fourier coeffi-

cients of the image Y j . Moreover, if (x1
1 , x2

1 , . . . , x1
J , x2

J ) denotes the canonical basis
of the product space (R2)J , then the components of the gradient of M̃ε(u) are given
by

∂

∂xk
j

M̃ε(u) = − 2

J

∑

|�1|≤�ε

∑

|�2|≤�ε
�

×
⎛

⎝(i2π�k)y
j
�1,�2

ei2π(�1u j
1+�2u j

2)

⎛

⎝ 1

J

J∑

j ′=1

y j ′
�1,�2

ei2π(�1u j ′
1 +�2u j ′

2 )

⎞

⎠

⎞

⎠ .

As discussed in Sect. 4.4 and according to Proposition 4.5, the smoothing parameter
�ε should be chosen such that ε�4

ε = o(1). Because of the equivalence between models
(6.1) and (2.2) given by ε = σ

N , this condition becomes

�ε = �N = o(N 1/4).

Hence, since N = 100, the above condition suggests to take �N ≤ 1001/4 ≈ 3.16.
However the choice of �ε is a delicate model selection problem. The condition �ε =
o(N 1/4) is a purely asymptotic result but the choice �ε ≤ 1001/4 is rather arbitrary
since for many functions it can be important to select harmonics above the third one
with much care. In, Table 2, we give the empirical average of the estimated parameters
over the M = 100 simulations, for the choice �N = 3, together with their standard
deviation. The results are quite satisfactory as averages are close to the true values and
standard deviations are small.

We have also conducted the same simulations but with a slightly different model.
Indeed in real applications, images have a similar shape but are typically not the defor-
mation of exactly the same image since some portions of an image may not be common
to all the other images. In Fig. 2 an example of such a data set without noise is dis-
played. These images have created by taking only a portion of the previous images
generated by translations of the Shepp–Logan image. Then, M = 100 images are
generated by adding Gaussian noise to these J = 6 images. The values of the “best
translation parameters” to align the images in Fig. 2 are the same as in the previous
simulation, and results are reported in Table 3. Again, the estimations are very satis-
factory and they demonstrate somehow the robustness of this approach with respect
to some deviation from the ideal model (6.1).
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Table 3 Average and standard deviation (in brackets) of the estimators ĥ j = (ĥ1
j , ĥ2

j ) over M = 100
simulations generated by adding noise to the images shown in Fig. 3

j = 2 j = 3 j = 4 j = 5 j = 6

h1
j 0.07 0.1 0.05 −0.05 −0.08

ĥ1
j 0.0692 (0.0016) 0.1011 (0.0017) 0.0503 (0.0019) −0.0473 (0.0017) −0.0758 (0.0018)

h2
j 0.02 0.08 −0.10 −0.05 0.06

ĥ2
j 0.0251 (0.0032) 0.0830 (0.0032) −0.0900 (0.0033) −0.0434 (0.0034) 0.0684 (0.0037)

The bold numbers represent the true values of the parameters (h1
j , h2

j )

Fig. 3 A more realistic situation: the images look similar, but they are not exactly translated versions of
the same image. Noise is then added to these J = 6 images to create a second data set

7 Some extensions of the simple shift model

7.1 The general case

Return now to the general case where the space X is not necessarily equal to G. A
possible extension of the empirical matching criterion (3.3) is to take

Mε(h1, . . . , h J ) = 1

J

J∑

j=1

∥
∥
∥
∥
∥
∥

f̂ j ◦ Lh j − 1

J

J∑

j ′=1

f̂ j ′ ◦ Lh j ′

∥
∥
∥
∥
∥
∥

2

L2(X )

(7.1)
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where Lh : x ∈ X → hx ∈ X is the action of h ∈ G on X , and f̂1, . . . , f̂ J represent
some estimators of the functions f1, . . . , f J ∈ L

2(X ) obtained by smoothing the
noisy images Y1, . . . ,YJ . In the case X = G these estimators have been obtained via
low-pass filtering in the Fourier domain, while the deformations of the functions f̂ j

by the transformations Lh j are easily implemented via a simple multiplication of their
Fourier coefficients. In the next section, we show that for some particular choices of
X and G, a similar analysis based on Fourier transforms can still be investigated. Note
that in a future work, we also plan to study the criterion (7.1) in a more general setting
using other smoothing and deformation methods than those based on Fourier analysis.

7.2 Registration of spherical images

Consider the problem of estimating three-dimensional rotations between images
defined on the three-dimensional unit sphere S

2 = {x ∈ R
3, ‖x‖ = 1}. In many

applications, data can be organized as spherical images. For instance, spherical images
are widely used in robotics since the sphere is a domain where perspective projection
can be mapped, and an important question is the estimation of the camera displace-
ment from such images (see [29]). Data collected on the sphere can also be found in
other applications such as molecular biology or crystallography (see [29,40] and the
references therein).

Obviously such data do not correspond exactly to the simple shift model on group
(2.2) as spherical images are defined on X = S

2 while the shifts parameters belong
the special orthogonal group G = SO(3). However, a matching criterion similar to
the one defined in Eq. (3.2) can still be defined by combining the spherical harmonics
on S

2 with the irreducible representations of SO(3).
Indeed, let x ∈ S

2 be a point on the unit sphere parameterized with spherical coor-
dinates θ ∈ [0, π ] and φ ∈ [0, 2π [. For x = x(θ, φ) let us denote by dx the measure
dx = dφ sin(θ)dθ , where dφ and dθ are the Lebesgue measures on [0, 2π ] and [0, π ].
Then any f ∈ L

2(S2) (the space of square integrable functions on S
2 with respect to

dx) can be decomposed as (see e.g. [9])

f (x) =
+∞∑

�=0

�∑

m=−�
cm
� ( f )Y m

� (x),

with cm
� ( f ) = ∫

S2 f (x)Y m
� (x)dx = ∫ π

0

∫ 2π
0 f (θ, φ)Y m

� (θ, φ)dφ sin(θ)dθ, and where
the functions (Y m

� , � ∈ N,m = −�, . . . , �) are the usual spherical harmonics which
form an orthonormal basis of (L2(S2), dx), and are given by

Y m
� (θ, φ) = ��,m Pm

� (cos(θ))eimφ,

where the Pm
� ’s are the associated Legendre functions and ��,m are normalizing con-

stants to satisfy the orthonormality conditions. For further details on spherical har-
monics we refer to [9].
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Now, to each g ∈ G = SO(3), one can associate a linear mapping π(g) which
acts on L

2(S2) by π(g) f (x) = f (g−1x). This defines a left regular representation of
SO(3) on the vector space L

2(S2). Moreover, one has that Ĝ = N, and the invariant
subspaces are the vector spaces {V�, � ∈ N} defined as the set of functions spanned
by the spherical harmonics at frequency �, i.e.

V� = Vect{Y m
� ,m = −�, . . . , �}.

Then, using the decomposition of a representation into a direct sum of irreducible
representations, and if we identify the irreducible representations of SO(3) as (2� +
1)× (2�+ 1) matrices π� (with respect to the above basis for V�), it follows that the
action of a rotation h ∈ SO(3) on a function f ∈ L

2(S2) is given by

f (h−1x) =
+∞∑

�=0

c�( f )Tπ�(h)Y�(x) for all x ∈ S
2, (7.2)

where c�( f ) = (cm
� ( f ))m=−�,...,� denotes the vector in C

2�+1 of spherical coefficients
of f , and Y�(x) = (Y m

� (x))m=−�,...,� is the vector in C
2�+1 of spherical harmonics

at frequency �. Depending on the chosen parametrization for SO(3) (e.g. by Euler
angles), various formulas are available to express the coefficients of the matrices π�
and we refer to [9] for further details.

Now, suppose that one has a set of noisy observations of spherical images f j that
satisfy the following shift model: for j = 1, . . . , J and x ∈ S

2

d Z j (x) = f j (x)dx + εdW j (x), (7.3)

where f j (x) = f ∗(h∗
j
−1x),

where W j , j = 1, . . . , J are standard Brownian sheets on the topological space S
2

with measure dx, ε is an unknown noise level parameter, f ∗ : S
2 → R is an unknown

template, and h∗
j , j = 1, . . . , J are rotation parameters in G = SO(3) to estimate.

For h = (h1, . . . , h J ) ∈ A0, where A0 is the subset of G J defined in Eq. (2.3), the
shift property (7.3) and the orthonormality of the spherical harmonics imply that the
following matching criterion

N (h) = 1

J

J∑

j=1

∥
∥
∥
∥
∥
∥

f j ◦ Th j − 1

J

J∑

j ′=1

f j ′ ◦ Th j ′

∥
∥
∥
∥
∥
∥

2

L2(S2)

, (7.4)

where Th j : x ∈ S
2 → h j x ∈ S

2, can be written as

N (h) = 1

J

J∑

j=1

+∞∑

�=0

∥
∥
∥
∥
∥
∥

c�( f j )
Tπ�(h

−1
j )− 1

J

J∑

j ′=1

c�( f j ′)
Tπ�(h

−1
j ′ )

∥
∥
∥
∥
∥
∥

2

C2�+1

, (7.5)
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where ‖·‖2
C2�+1 denotes the usual euclidean norm in C

2�+1. Then, remark that the
spherical harmonic coefficients of the noisy images Z j are given by (in vector form)

c�(Z j ) =
∫

S2

Y�(x)d Z j (x) = c�( f j )+ εc�(W j ), j = 1 . . . J,

where c�(W j ) = ∫
S2 Y�(x)dW j (x) is a complex random vector whose components are

independent and identically distributed Gaussian variables NC(0, 1). Now, let �ε be
an appropriate frequency cut-off parameter to be chosen later, the following empirical
criterion can thus be proposed for registering spherical images:

Nε(h1, . . . , h J ) = 1

J

J∑

j=1

�ε∑

�=0

∥
∥
∥
∥
∥
∥

c�(Z j )π(h
−1
j )− 1

J

J∑

j ′=1

c�(Z j ′)π(h
−1
j ′ )

∥
∥
∥
∥
∥
∥

2

C2�+1

, (7.6)

and an M-estimator of the rotation parameters is thus given by

ĥε = arg min
h∈A0

Nε(h).

The criterion Nε is very similar to the criterion Mε . Indeed, its formulation is equiv-
alent to that of Mε is one replaces, in the expression (3.3), the matrix π(Y j ) by the

vector c�(Z j ), the norm ‖·‖2
H S by ‖·‖2

C2�+1 , and the summation
∑
π∈Ĝε

by
∑�ε
�=0. Note

that the weighting by the dimension dπ = (2� + 1) disappears in the formulation of
Nε due the chosen normalization for the spherical harmonics. Therefore, the study of
the consistency and the asymptotic normality of ĥε can be done by following exactly
the arguments developed in Sects. 2.2 and 4. For this, let us introduce the following
definitions:

Definition 7.1 A function f ∈ L
2(S2) is said to be not shift-invariant if there does

not exist a closed subgroup H of SO(3) (except H = {e} or H = SO(3)) such that
f (hx) = f (x) for all x ∈ S

2 and h ∈ H .

Definition 7.2 A function f ∈ L
2(S2) is said to be regular if for all � ∈ N such that

c�( f ) is not identically null, then the linear mapping A �→ c�( f )T A is injective, for
A belonging to the set of (2�+ 1)× (2�+ 1) matrices with complex entries.

Then, the following proposition holds (its proof is omitted since it follows from a
simple adaptation of the proof of Theorem 3.1)

Proposition 7.1 Assume that f ∗ ∈ L
2(S2) is not shift-invariant and regular. Suppose

that

lim
ε→0

ε2
�ε∑

�=0

(2�+ 1) = 0,

then ĥε converges in probability to h∗ = (h∗
1, . . . , h∗

J ).
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The asymptotic normality of ĥε can also be studied by reformulating the criterion
Nε(h) as a function Ñε(u) defined on G J , and by taking ĥε = exp(ûε). The Lie algebra
of SO(3) is the space so(3) of 3 × 3 skew symmetric matrices which is a linear space
of dimension p = 3 generated by the basis (see [9])

x1 =
⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦ , x2 =
⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ , x3 =
⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦ .

Adapting the conditions of Theorem 4.1 to the formulation of the criterion Ñε(u),
replacing dπ by

√
2�+ 1, π( f ∗) by c�( f ∗), and the Hilbert-Schmidt inner product

and norm for dπ × dπ matrices by the euclidean inner product and norm in C
2�+1, it

is also possible to derive the asymptotic normality of ûε .

Simulations: the numerical implementation of the above method for the registration
of spherical images is more involved that the alignment of 2D images. Indeed, one has
to deal with both the problem of computing the Fourier transform for images defined
on a sphere, and with the computation of the irreducible representation of the group
SO(3) from its Lie algebra. Then, a numerical method to find a minimum of Nε(h)
could be developed by following the ideas of the general gradient descent algorithm
described previously. Due to the large size of spherical data, it is essential to develop
an efficient and fast numerical scheme. However, we believe that it is far beyond the
scope of this paper to develop such a fast numerical method, so we prefer to leave this
for a future work, but encouraged by the good numerical results shown in the previous
section, we think that this approach could certainly yield satisfactory results for the
registration of! spherical images.
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Appendix

Proof of Theorem 3.1 to derive the result, it is enough to prove that M(·) has a unique
minimum at (h1, . . . , h J ) = (h∗

1, . . . , h∗
J ), and that Mε converges uniformly in prob-

ability to M i.e.

sup
h∈A0

|Mε(h)− M(h)| → 0 in probability as ε → 0.

Then, following e.g. the proof of Theorem 5.7 in [41], these two conditions ensure
that ĥε = (ĥ1,ε, . . . , ĥ J,ε) converges in probability to h∗ as ε → 0.

Unicity of the minimum of M(·): From the definition of M,M is a positive function
such that: M(h∗

1, . . . , h∗
J ) = 0.This means that h∗ = (h∗

1, . . . , h∗
J ) is a minimum of M.
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Let h be a minimum of M such that: M(h) = 0.We shall prove that h = h∗. Indeed,
if M(h) = 0 then for all π ∈ Ĝ such that π( f ) is not identically null we have that:

∥
∥
∥
∥
∥
∥
π( f ∗)

⎛

⎝(π(h∗
j
−1h j )− 1

J

J∑

j ′=1

π(h∗
j ′

−1h j ′)

⎞

⎠

∥
∥
∥
∥
∥
∥

2

H S

= 0, ∀ j = 1, . . . J

i.e.

Im

⎛

⎝(π(h∗
j
−1h j )− 1

J

J∑

j ′=1

π(h∗
j ′

−1h j ′)

⎞

⎠ ⊆ Ker(π( f ∗)), ∀ j = 1, . . . J.

Using the assumption (A2), and the identifiability constraint h1 = e, this means that,
for all π ∈ Ĝ such that π( f ∗) is not identically null,

π(h∗
j
−1h j ) = IVπ , ∀ j = 1, . . . J,

i.e.

h∗
j
−1h j ∈ H = ∩Ker(π, π ∈ Ĝ and π( f ) �= 0}, ∀ j = 1, . . . J.

But from the assumption (A1), the normal subgroup H is {e}. The result follows.

Uniform convergence of Mε : Remark that Mε(h) is the sum of three terms:

Mε(h) = Dε(h)+ εLε(h)+ ε2 Qε(h), (7.7)

where

Dε(h) = 1

J

J∑

j=1

∑

π∈Ĝε

dπ

∥
∥
∥
∥
∥
∥
π( f j )π(h j )− 1

J

J∑

j ′=1

π( f j ′)π(h j ′)

∥
∥
∥
∥
∥
∥

2

H S

Lε(h) = 2

J

J∑

j=1

∑

π∈Ĝε

dπ�
〈

π( f j )π(h j )− 1

J

J∑

j ′=1

π( f j ′)π(h j ′), π(W j )π(h j )

− 1

J

J∑

j ′=1

π(W j ′)π(h j ′)

〉

H S

Qε(h) = 1

J

J∑

j=1

∑

π∈Ĝε

dπ

∥
∥
∥
∥
∥
∥
π(W j )π(h j )− 1

J

J∑

j ′=1

π(W j ′)π(h j ′)

∥
∥
∥
∥
∥
∥

2

H S

,
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where �(x) denotes the real part of a complex number x . Let us notice that by applying
Cauchy–Schwarz inequality, we get that:

|εLε(h)| ≤ 2

{

sup
h∈A0

|Dε(h)− M(h)| + sup
h∈A0

M(h)

}1/2 {

sup
h∈A0

ε2 Qε(h)

}1/2

Since the function M is continuous on the compact set A0, we have just to consider
the uniform convergence of Dε to M and the uniform convergence in probability of
ε2 Qε to zero.

First, we study the uniform convergence of Dε(h) to M(h). Remark that:

∥
∥π( f j )π(h j )

∥
∥2

H S = Tr
(
π(h−1

j )π( f j )
T
π( f j )π(h j )

)

= ∥
∥π( f j )

∥
∥2

H S = ∥
∥π( f ∗)

∥
∥2

H S , (7.8)

and that:

∥
∥
∥
∥
∥
∥

1

J

J∑

j=1

π( f j )π(h j )

∥
∥
∥
∥
∥
∥

2

H S

=
∣
∣
∣
∣
∣
∣

1

J 2

J∑

j=1

J∑

j ′=1

〈
π( f j )π(h j ), π( f j ′)π(h j ′)

〉
H S

∣
∣
∣
∣
∣
∣

(7.9)

≤ 1

J 2

J∑

j=1

J∑

j ′=1

∥
∥π( f j )π(h j )

∥
∥

H S

∥
∥π( f j ′)π(h j ′)

∥
∥

H S

(7.10)

≤ ∥
∥π( f ∗)

∥
∥2

H S . (7.11)

Then for all h ∈ A0, we have that

|M(h)− Dε(h)| ≤ 2
∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S .

Thus Dε converges uniformly to M, because f ∗ ∈ L
2(G) and limε→0 Ĝε = G.

We show now that ε2 Qε converges uniformly in probability to 0.Using the equality
(7.8), ε2 Qε may be rewritten as the sum of two terms:

ε2 Qε(h) = ε2

J

J∑

j=1

∑

π∈Ĝε

dπ
∥
∥π(W j )

∥
∥2

H S − ε2
∑

π∈Ĝε

dπ

∥
∥
∥
∥
∥
∥

1

J

J∑

j ′=1

π(W j ′)π(h j ′)

∥
∥
∥
∥
∥
∥

2

H S

,
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where
∥
∥π(W j )

∥
∥2

H S = ∑dπ
k=1

∑dπ
l=1

∣
∣πk, j (W j )

∣
∣2 . Then, the first term of the sum

converges uniformly in probability to 0, because

lim
ε→0

E

⎛

⎝ 1

J

J∑

j=1

∑

π∈Ĝε

dπ
∥
∥π(W j )

∥
∥2

H S

⎞

⎠ = lim
ε→0

ε2
∑

π∈Ĝε

d2
π = 0.

Similarly to the inequality (7.9), the second term may be uniformly bounded by:

0≤ε2
∑

π∈Ĝε

dπ

∥
∥
∥
∥
∥
∥

1

J

J∑

j ′=1

π(W j ′)π(h j ′)

∥
∥
∥
∥
∥
∥

2

H S

≤ε2
∑

π∈Ĝε

dπ
1

J 2

J∑

j, j ′=1

∥
∥π(W j )

∥
∥

H S

∥
∥π(W j ′)

∥
∥

H S .

Using the fact that,

E
(∥∥π(W j )

∥
∥

H S

∥
∥π(W j ′)

∥
∥

H S

) ≤
{
E

(∥
∥π(W j )

∥
∥2

H S

)
E

(∥
∥π(W j ′)

∥
∥2

H S

)}1/2 = dπ .

we deduce that the second term converges uniformly to 0, which completes the proof
of Theorem 3.1. ��
Proof of Proposition 4.2 from the decomposition (7.7), M̃ε(u) can be written as the
sum of three terms:

ε−1 M̃ε(u) = ε−1 D̃ε(u)+ L̃ε(u)+ ε Q̃ε(u), (7.12)

where D̃ε(u) = Dε(exp(u)), L̃ε(u) = Lε(exp(u)) and Q̃ε(u) = Qε(exp(u)). In what
follows, we study the convergence of the three terms in the right part of equality (7.12).

Convergence of ε−1∇u∗ D̃ε : one can easily check that u∗ is a minimum of D̃ε(u) and
thus ∇u∗ D̃ε = 0 for any ε.

Convergence of ε∇u∗ Q̃ε : remark that Q̃ε can be written as

Q̃ε(u) =
∑

π∈Ĝε

dπ ×
⎛

⎜
⎝

1

J

J∑

j=1

∥
∥
∥π(W j )π(h̃ j )π̃(u j )

∥
∥
∥

2

H S
−
∥
∥
∥
∥
∥
∥

1

J

J∑

j ′=1

π(W j ′ )π(h̃ j ′ )π̃(u j ′ )

∥
∥
∥
∥
∥
∥

2

H S

⎞

⎟
⎠

Let 2 ≤ j ≤ J and 1 ≤ k ≤ p. Since
∥
∥
∥π(W j )π(h̃ j )π̃(u j )

∥
∥
∥

2

H S
= ∥

∥π(W j )
∥
∥2

H S is

independent of u j , we obtain that for u ∈ G J

du Q̃ε(e j ⊗ xk) = − 2

J

∑

π∈Ĝε

dπ�

×
〈

π(W j )π(h̃ j e
u j )deπ(du j exp(xk)),

1

J

J∑

j ′=1

π(W j ′)π(h̃ j ′e
u j ′ )

〉

H S

.
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Thus, using Cauchy–Schwartz inequalities, one obtains that

E|du Q̃ε(v)| ≤ 2

J

∑

π∈Ĝε

dπ

√
E ‖A‖2

H S

√
E ‖B‖2

H S,

where

A = π(W j )π(h̃ j e
u j )deπ(du j exp(xk)) and B = 1

J

J∑

j ′=1

π(W j ′)π(h̃ j ′e
u j ′ ).

Arguing as in the proof of Theorem 3.1, one can easily prove that E ‖B‖2
H S ≤ dπ .

Then, remark that

E ‖A‖2
H S ≤ ∥

∥deπ(du j exp(v))
∥
∥2

H S
E

∥
∥
∥π(W j )π(h̃ j e

u j )

∥
∥
∥

2

H S

≤ dπ
∥
∥
∥deπ

(
du j exp(xk)

)∥∥
∥

2

H S

Therefore, under condition (4.6) it follows that εE|∇xk
j

u∗ Q̃ε | converges to 0 as ε → 0,
and we conclude via Markov inequality.
Convergence of ∇u∗ L̃ε : let 2 ≤ j ≤ J and 1 ≤ k ≤ p. Then,

du∗ L̃ε(e j ⊗ xk) = 2

J

∑

π∈Ĝε

dπ�

×
〈

π( f j )π(h
∗
j )deπ(du∗

j
exp(xk)), π(W j )π(h

∗
j )− 1

J

J∑

j ′=1

π(W j ′)π(h
∗
j ′)

〉

H S

Let us introduce the following quantities

Vπj,k = π( f ∗)deπ(du∗
j

exp(xk)) and Zπj = π(W j )π(h
∗
j ) ∼ NC(0, d−1

π π(h∗
j )π(h

∗
j )

T
).

Hence, using that π( f j ) = π( f ∗)π(h∗
j
−1),

du∗ L̃ε(e j ⊗ xk) = 2

J

∑

π∈Ĝε

dπ�

×
⎛

⎝
〈

V π
j,k,

(

1 − 1

J

)

Zπj

〉

H S
+
〈

V π
j,k,−

1

J

J∑

j ′=1, j ′ �= j

Zπj ′

〉

H S

⎞

⎠
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Since Var
(
�
〈
V π

j,k, Zπj

〉

H S

)
= ‖V π

j,k‖2
H S/(2dπ ), du∗ L̃ε(e j ⊗ xk) is a Gaussian vari-

able with zero mean, and variance:

Var
(

du∗ L̃ε(e j ⊗ xk)
)

= = 4

J 2

∑

π∈Ĝε

dπ

(

1 − 1

J

)∥
∥
∥π( f ∗)deπ

(
du∗

j
exp(xk)

)∥∥
∥

2

H S

(7.13)

where we have used the fact that the Zπj ’s are independent variables forπ �= π ′ (except
for π ′ = π ). Using similar calculations, one obtains that

E

(
du∗ L̃ε(e j ⊗ xk1)du∗ L̃ε(e j ⊗ xk2)

)

= 4

J 2

∑

π∈Ĝε

dπ

(

1 − 1

J

)

�
〈
π( f ∗)deπ

(
du∗

j
exp(xk1)

)
,

× π( f ∗)deπ
(

du∗
j
exp(xk2)

)〉

H S
(7.14)

E

(
du∗ L̃ε(e j1 ⊗ xk1)du∗ L̃ε(e j2 ⊗ xk2)

)

= − 4

J 2

∑

π∈Ĝε

dπ
1

J
�
〈
π( f ∗)deπ

(
du∗

j1
exp(xk1)

)
,

× π( f ∗)deπ
(

du∗
j2

exp(xk2)
)〉

H S
, (7.15)

for j1 �= j2 and 1 ≤ k1, k2 ≤ p. Finally, for any vector v ∈ G J−1, by using Eqs.
(7.13), (7.14) and (7.15), one has that as ε → 0

du∗ L̃ε(v) → N

(

0,
4

J 2 v
T	v

)

,

which completes the proof of Proposition 4.2. ��

Proof of Proposition 4.3 Let (u1, . . . , u J ) be in U0. Let us denote by (h1, . . . , h J ) ∈
G J the corresponding element such that h j = h̃ j exp(u j ), j = 1 . . . J. Let 2 ≤
j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p. Then, from the decomposition (7.7), one has that for
any u ∈ U1:

d2
u M̃ε = d2

u D̃ε + εd2
u L̃ε + ε2d2

u Q̃ε, (7.16)

In what follows, we study the uniform convergence in probability over U0 of the three
above terms.
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Convergence of d2
u D̃ε : from the definition of D̃ε(u) one has that for j1 �= j2

d2
u D̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) = −2

J 2

∑

π∈Ĝε

dπ�
〈
π( f j1)π(h j1)deπ(du j1

× exp(xk1)), π( f j2)π(h j2)deπ(du j2
exp(xk2))

〉

H S
.

Hence, using Cauchy–Schwartz inequality and the fact that
∥
∥π( f j1)

∥
∥

H S = ∥
∥π( f ∗)∥

∥
H S yields

∣
∣
∣d2

u M̃(e j1 ⊗ xk1 , e j2 ⊗ xk2)− d2
u D̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2)

∣
∣
∣

≤ 2

J 2

∑

π∈Ĝ\Ĝε

dπ
∥
∥
∥π( f j1)π(h j1)deπ(du j1

exp(xk1))

∥
∥
∥

H S

×
∥
∥
∥π( f j2)π(h j2)deπ(du j2

exp(xk2))

∥
∥
∥

H S

≤ 2

J 2

∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S

∥
∥
∥deπ(du j1

exp(xk1))

∥
∥
∥

H S

∥
∥
∥deπ(du j2

exp(xk2))π̃

∥
∥
∥

H S

≤ 2

J 2

⎧
⎨

⎩

∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S

∥
∥
∥deπ

(
du j1

exp(xk1)
)∥∥
∥

2

H S

⎫
⎬

⎭

1/2

×
⎧
⎨

⎩

∑

π∈Ĝ\Ĝε

dπ
∥
∥π( f ∗)

∥
∥2

H S

∥
∥
∥deπ

(
du j2

exp(xk2)
)∥∥
∥

2

H S

⎫
⎬

⎭

1/2

.

Therefore, under Assumption (4.8), one has that d2
u D̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) con-

verges uniformly to d2
u M̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) over U0.

Now, if j1 = j2, one has that

d2
u D̃ε(e j1 ⊗ xk1 , e j1 ⊗ xk2)

=
∑

π∈Ĝε

dπ�
〈

2

J
π( f j1)π(h j1)

[
deπ(du j1

exp(xk2))deπ(du j1
exp(xk1))
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+ deπ(d
2
u j1

exp(xk1 , xk2))
]
, π( f j1)π(h j1)−

1

J

J∑

j=1

π( f j )π(h j )

〉

H S

+ 2(1−1/J )

J

×
∑

π∈Ĝε

dπ�
〈
π( f j1)π(h j1)deπ(du j1

exp(xk1)), π( f j1)π(h j1)deπ(du j1
exp(xk2))

〉

H S

By proceeding as previously using Cauchy–Schwartz inequality, Assumption (4.8)
and Assumption (4.9) ensure that d2

u D̃ε(e j1 ⊗ xk1 , e j1 ⊗ xk2) converges uniformly to
d2

u M̃ε(e j1 ⊗ xk1 , e j1 ⊗ xk2) over U0.

Convergence of ε2d2
u Q̃ε : from the definition of Q̃ε(u) one has that for j1 �= j2:

d2
u Q̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) = − 2

J 2

∑

π∈Ĝε

dπ� 〈
π(W j1)π(h j1)de

π(du j1
exp(xk1)), π(W j2)π(h j2)deπ(du j2

exp(xk2))
〉

H S

Thus, using Cauchy–Schwartz inequality,

E|d2
u Q̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2)| ≤ 2

J 2

∑

π∈Ĝε

dπ

√
E ‖A‖2

H S

√
E ‖B‖2

H S,

where

A = π(W j1)π(h j1)deπ(du j1
exp(xk1)) and B = π(W j2)π(h j2)deπ(du j2

exp(xk2)).

Now, remark that ‖A‖2
H S ≤ ∥

∥π(W j1)
∥
∥2

H S

∥
∥
∥deπ

(
du j1

exp(xk1)
)∥∥
∥

2

H S
, which implies

that (using again Cauchy–Schwartz inequality)

E|d2
u Q̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2)| ≤ 2

J 2

∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
du j1

exp(xk1)
)∥∥
∥

H S

×
∥
∥
∥deπ

(
du j2

exp(xk2)
)∥∥
∥

H S

≤ 2

J 2

⎧
⎨

⎩

∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
du j1

exp(xk1)
)∥∥
∥

2

H S

⎫
⎬

⎭

1/2

×
⎧
⎨

⎩

∑

π∈Ĝε

d2
π

∥
∥
∥deπ

(
du j2

exp(xk2)
)∥∥
∥

2

H S

⎫
⎬

⎭

1/2

and therefore under Assumption (4.10), one has that ε2
E|d2

u Q̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2)|
converges uniformly to zero over U1, and the uniform convergence in probability of
ε2d2

u Q̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) to zero follows by Markov inequality.
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Now for j1 = j2,

d2
u Q̃ε(e j1 ⊗ xk1 , e j1 ⊗ xk2) = − 2

J 2

∑

π∈Ĝε

×dπ�
〈
π(W j1)π(h j1)deπ(du j1

exp(xk1)), π(W j1)π(h j1)deπ(du j1
exp(xk2))

〉

H S

− 2

J 2

∑

π∈Ĝε

dπ�
〈

π(W j1)π(h j1)
[
deπ(du j1

exp(xk2))deπ(du j1
exp(xk1))

+ deπ(d
2
u j1

exp(xk1 , xk2))
]
,

J∑

j=1

π(W j )π(h j )

〉

H S

,

By proceeding as previously using Cauchy–Schwartz inequality and Markov inequal-
ity, Assumption (4.10) and Assumption (4.11) ensure that ε2d2

u M̃ε(e j1 ⊗xk1 , e j1 ⊗xk2)

converges uniformly in probability to zero over U0.

Convergence of εd2
u L̃ε : from the definition of L̃ε(u) one has that for j1 �= j2:

d2
u L̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2) = −2

J 2

∑

π∈Ĝε

dπ�
{〈
π( f j1)π(h j1)deπ(du j1

exp(xk1)),

π(W j2)π(h j2)deπ(du j2
exp(xk2))

〉

H S

+
〈
π( f j2)π(h j2)deπ(du j2

exp(xk2)),

π(W j1)π(h j1)deπ(du j1
exp(xk1))

〉

H S

}

Then, remarking that by Cauchy–Schwartz inequality

E

∣
∣
∣d2

u L̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2 )

∣
∣
∣

≤ 2

J 2

⎧
⎪⎨

⎪⎩

∑

π∈Ĝε

dπ
∥
∥
∥π( f j1 )π(h j1 )deπ(du j1

exp(xk1 ))

∥
∥
∥

2

H S

⎫
⎪⎬

⎪⎭

1/2

×

⎧
⎪⎨

⎪⎩

∑

π∈Ĝε

dπE

∥
∥
∥π(W j2 )π(h j2 )deπ(du j2

exp(xk2))

∥
∥
∥

2

H S

⎫
⎪⎬

⎪⎭

1/2

+ 2

J 2

⎧
⎪⎨

⎪⎩

∑

π∈Ĝε

dπ
∥
∥
∥π( f j2 )π(h j2 )deπ(du j2

exp(xk2 ))

∥
∥
∥

2

H S

⎫
⎪⎬

⎪⎭

1/2

×

⎧
⎪⎨

⎪⎩

∑

π∈Ĝε

dπE

∥
∥
∥π(W j1 )π(h j1 )deπ(du j1

exp(xk1 ))

∥
∥
∥

2

H S

⎫
⎪⎬

⎪⎭

1/2

,
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and arguing as above for the convergence of ∇2
u Q̃ε , it follows from our assumptions

that ε|d2
u L̃ε(e j1 ⊗ xk1 , e j2 ⊗ xk2)| converges uniformly to zero in probability.

Using similar arguments and our assumptions, one can also prove the uniform con-
vergence in probability to zero of ε|d2

u L̃ε(e j1 ⊗ xk1 , e j1 ⊗ xk2)|, which completes the
proof of Proposition 4.3. ��
Proof of Theorem 4.1 Recall that,

Uε = {u ∈ U0, ‖u − u∗‖ ≤ ‖ûε − u∗‖}.

Let γ > 0, and remark that

P

(

sup
u∈Uε

∥
∥
∥
∥∇2

u M̃ε − 2

J
	

∥
∥
∥
∥ > 2γ

)

≤ P

(

sup
u∈Uε

‖∇2
u M̃ε − ∇2

u M̃‖ > γ

)

+P

(

sup
u∈Uε

‖∇2
u M̃ − ∇2

u∗ M̃‖ > γ

)

,

where ∇2
u∗ M̃ = 2

J	. From Proposition 4.3, the first term in the above equation con-

verges to zero as ε → 0. For the second term, one can remark that u �→ ∇2
u M̃ is a

uniformly continuous function the compact set U0, therefore there exists δ > 0 such
that (by inclusion of events)

P

(

sup
u∈Uε

‖∇2
u M̃ − ∇2

u∗ M̃‖ > γ

)

≤ P
(‖ûε − u∗‖ > δ

)
.

By Proposition 4.1 it follows that the right term in the above equation converges to
zero which finally proves that supu∈Uε ‖∇2

u M̃ε − 2
J	‖ converges in probability to 0.

Using a Taylor expansion of ∇u M̃ε with an integral remainder, we get that

⎡

⎣ 2

J
	 +

1∫

0

(

∇2
ūε (t)M̃ε − 2

J
	

)
⎤

⎦ ε−1(ûε − u∗) = −ε−1∇u∗ M̃ε,

where ūε(t) = u∗ + t (ûε − u∗) ∈ Uε . From Proposition 4.2, one has that ε−1∇u∗ M̃ε

converges to the Gaussian variable N (0, 4
J 2	). Since supu∈Uε ‖∇2

u M̃ε − 2
J	‖ con-

verges in probability to 0, the proof of Theorem 4.1 is completed. ��
Proof of Proposition 4.6 first recall that G = (R/Z)p and Ĝ = Z

p. Let � ∈ Z
d and

for j = 1 . . . J , let us denote by c�(W j ) the Gaussian variables defined as,

c�(W j ) =
∫

G

e�(x)dW j (x).
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Then, we may write for g ∈ G,

f ∗(g)− f̂ε(g) =
∑

|�|∞>�ε
c�( f ∗)e�(g)

+
∑

1≤|�|∞≤�ε
c�( f ∗)

⎧
⎨

⎩
1 − 1

J

J∑

j=1

e�(ĥ j,ε − h∗
j )

⎫
⎬

⎭
e�(g)− εSε(g),

(7.17)

where

Sε(g) =
∑

1≤|l|∞≤�ε

⎧
⎨

⎩
1

J

J∑

j=1

c�(W j )e�(ĥ j,ε)

⎫
⎬

⎭
e�(g).

From Proposition 4.5, ε(ĥε − h∗) converges weakly in distribution. Then, the delta
method (see e.g. [41]) implies that

E

∣
∣
∣
∣
∣
∣
1 − 1

J

J∑

j=1

e�(ĥ j,ε − h∗
j )

∣
∣
∣
∣
∣
∣

2

= (|�|2)O(ε2). (7.18)

Furthermore, the stochastic term Sε is such that

∫

G

E(|Sε(g)|2)dg ≤ 1

J

∑

1≤|�|∞≤�ε

J∑

j=1

E(|c�(W j )|2) = O(�p
ε ). (7.19)

Then, inserting (7.18) and (7.19) into (7.17) yields

E

∫

G

| f ∗(g)− f̂ε(g)|2dg =
∑

|�|∞>�ε
|c�( f ∗)|2 + O(ε2 + �p

ε ε
2).

and using our assumptions on the smoothness of f completes the proof of Proposition
4.6. ��
Proof of Proposition 5.3 from the proof of Proposition 4.2, the gradient of M̃ε at u∗
is a squared integrable random variable and may be rewritten as,

ε−1∇u∗ M̃ε = ∇u∗ L̃ε + o
P
(ε)
θ

,

where, for j = 2 . . . J and k = 1 . . . , p,

J

2
du∗ L̃ε(e j ⊗ xk) = �

{∑
π∈Ĝ π( f ∗)deπ(xk)π(h̃−1

j exp(−u∗
j ))π(W j )

}
+ o

P
(ε)

θ∗
.
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Furthermore using the Fourier inversion formula (2.1), we have that for j = 2, . . . , J
and k = 1, . . . , p,

∫

G

d−u∗
j

f̃ (xk)dW j (g) =
∫

G

dgh̃−1
j exp(−u∗

j )
f (xk)dW j (g)

=
∑

π∈Ĝ

π( f ∗)deπ(x
k)π(h̃−1

j exp(−u∗
j ))

∫

G

π(g)dW j (g)

=
∑

π∈Ĝ

π( f ∗)deπ(x
k)π(h̃−1

j exp(−u∗
j ))π(W j ).

Consequently, we may rewrite ε−1∇u∗ M̃ε as,

ε−1∇u∗ M̃ε = 2

J

⎧
⎨

⎩

J∑

j=2

e j ⊗ ξ j − 1

J

J∑

j=1

1J−1 ⊗ ξ j

⎫
⎬

⎭
+ o

P
(ε)

θ∗
(1).

Then, using a Taylor expansion, we have established in the proof of Theorem 4.1 that:

ε−1(ûε − u∗) = − J

2

(

IJ−1 − 1

J
IJ−1

)−1

⊗ Gramm(∇ f ∗)−1ε−1∇u∗ M̃ε + o
P
(ε)

θ∗
(1),

and thus the result of Proposition 5.3 follows from Eq. (5.3) and the arguments given
in Sect. 5. ��
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