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Abstract This paper is a contribution to the Bayesian theory of semiparametric
estimation. We are interested in the so-called Bernstein–von Mises theorem, in a
semiparametric framework where the unknown quantity is (θ, f ), with θ the param-
eter of interest and f an infinite-dimensional nuisance parameter. Two theorems are
established, one in the case with no loss of information and one in the information
loss case with Gaussian process priors. The general theory is applied to three specific
models: the estimation of the center of symmetry of a symmetric function in Gaussian
white noise, a time-discrete functional data analysis model and Cox’s proportional
hazards model. In all cases, the range of application of the theorems is investigated by
using a family of Gaussian priors parametrized by a continuous parameter.

Keywords Bayesian non and semiparametrics · Bernstein–von Mises Theorems ·
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0 Introduction

In a Bayesian estimation framework, the Bernstein–von Mises phenomenon (here-
after abbreviated BVM) is concerned with the fact that posterior distributions often
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asymptotically look like normal distributions. In the parametric i.i.d. case, according
to Le Cam and Yang [20], the phenomenon was discovered by Laplace and fur-
ther studied by Bernstein, von Mises, Le Cam and many others since then. For
a statement in the parametric case under fairly minimal assumptions, we refer to
[27].

A natural question is then to know if this phenomenon occurs in more general
settings. In non- and semiparametric models, the question of consistency of the pos-
terior distribution is already very interesting, see for instance [1,23]. As pointed out
in [8], some care must be taken when dealing with infinite-dimensional prior dis-
tributions since even consistency might fail for innocent looking priors, and this is
still the case when looking at asymptotic normality of the posterior, see [9]. How-
ever, positive BVM results are known in particular nonparametric settings, see
[10,17].

From the practical point of view, Bayesian methods are broadly used, and the
development of computer capacities has enabled the use of computational methods
like Markov chain Monte Carlo algorithms to simulate from the posterior. Also, the
use of infinite-dimensional prior distributions is becoming more and more common,
for instance Gaussian process priors are widely used in machine learning, see [22].
However, often, in infinite-dimensional contexts, little is known about how to prove
that posterior distributions have the desired behavior. In semiparametric frameworks,
the BVM theorem constitutes a very suitable theoretical guarantee. The importance of
this result lies in the fact that it gives the explicit asymptotic form of the relevant part of
the posterior distribution, from which one easily derives in particular the consistency
of the Bayes procedure, together with the fact that Bayesian confidence intervals have
the desired asymptotic coverage probability.

A few semiparametric BVM theorems are known in specific models with well-cho-
sen families of priors, often exploiting the fact that the prior has certain conjugacy
properties, see for instance [16], where the author establishes the BVM theorem in the
proportional hazards model for Lévy-type priors. To the best of our knowledge, the
only work considering a general semiparametric framework is [24]. Here we would
like to acknowledge the importance of this work, which contains many interesting
ideas, for the present paper. However, as we explain in more details in the sequel,
some of the conditions in [24] are rather implicit and hard to check in practice. Our
goal in this paper is to obtain simple interpretable conditions which give more insight
into the problem and are usable in practice in a variety of situations. Although we do
not consider the most general semiparametric framework possible, our results already
enable to treat very different practical examples, especially cases where the prior is
not conjugate.

Two BVM theorems are proved, depending on whether or not there is a loss of
information in the model, that is whether the efficient information coincides with the
information in the associated parametric model, see [27], Sect. 25.4. In the case of
loss of information, we restrict our investigations to Gaussian process priors for the
nonparametric component of the model. Our assumptions naturally extend in their
spirit the ones for proving the parametric BVM theorem, that is the concentration of
the posterior in neighborhoods of the true and a proper “shape” of the model locally
around the true parameter. As an application, we obtain new BVM theorems in three
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different models, the problem of estimating the translation parameter of a symmetric
signal in Gaussian noise, see [7,15], a time-discrete functional data analysis model
and the proportional hazards model introduced by Cox in [6].

Two main tools are used which both correspond to recent advances in the Bayesian
nonparametric theory. The first one is the theory of nonparametric posterior concen-
tration, as presented in [13,25] in i.i.d. settings, see also [12] for several non-i.i.d.
extensions. The second tool is the use of Gaussian process priors, which provide a
flexible framework in which to analyze our results and for which concentration prop-
erties of the posterior have been recently investigated by [5,29].

The article is organized as follows. In Sect. 1, the semiparametric framework we
study is described and the general theorems are stated. Applications and results in
special models are given in Sect. 2. Proofs of the main theorems are in Sect. 3, while
Sect. 4 is devoted to checking the assumptions in the particular models. Section 5
gathers useful properties of Gaussian processes used throughout the paper.

Let us denote by N (μ, σ 2) the 1-dimensional Gaussian distribution with mean μ
and variance σ 2 and by� the cumulative distribution function associated to a N (0, 1)
variable. For a distribution P and a measurable set B, we denote by P(B) the mass
that P puts on B. Let K ( f, g) = ∫

f log( f/g)dμ stand for the Kullback–Leibler
divergence between the two non-negative densities f and g relative to a measure μ.
Let us also define V ( f, g) = ∫

f | log( f/g)− K ( f, g)|2dμ. The ε-covering number
of a set � for a semi-metric d, denoted by N (ε,�, d), is the minimal number of
d-balls of radius ε needed to cover�. Let Cβ [0, 1] denote the Hölder space of order β
of continuous functions on [0, 1] that have β continuous derivatives for β the largest
integer strictly smaller than β with the βth derivative being Lipschitz-continuous of
order β − β. The notation � is used for ‘smaller than or equal to a universal constant

times’ and � means ‘equal by definition to’.

1 Statement

1.1 Bayesian semiparametric estimators

Let us consider a sequence of statistical models (X (n),G(n),P(n)η , η ∈ E), with obser-
vations X (n), where E is a parameter set of the form�×F with� an interval of R (the
results of this paper extend without much effort to R

k) and F a subset of a separable
Banach space. The “true” value of the parameter is denoted by η0 = (θ0, f0) and is
assumed to be an interior point of E . We assume that the measures P(n)η admit densi-

ties p(n)η with respect to a σ -finite measure μ(n) on (X (n),G(n)). The log-likelihood

log p(n)η is denoted by 	n(η) and 
n(η) = 	n(η) − 	n(η0). The space E = � × F
is equipped with a product σ -field T ⊗ B and we assume that (x, η) → p(n)η (x) is
jointly measurable.
Prior, condition (P). Let us put a probability measure �, called prior, on the pair
(θ, f ), of the form � = πθ ⊗ π f . For πθ we choose any probability measure on
� having a density λ with respect to Lebesgue’s measure on �, with λ positive and
continuous at the point θ0.
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Bayes formula. In the preceding framework, Bayes’ theorem asserts that the posterior
distribution is given explicitly for any C in T ⊗ B by

�(C |X (n)) =

∫

C
p(n)η (X (n))d�(η)

∫
p(n)η (X (n))d�(η)

. (1)

For any ε > 0, let us define a Kullback–Leibler-type neighborhood of η0 in E as

BK L ,n(η0, ε) = {η ∈ E : K (P(n)η0
, P(n)η ) ≤ nε2, V (P(n)η0

, P(n)η ) ≤ nε2}.

Let �θ=θ0(·|X (n)) be the posterior distribution in the model where θ is known to be
equal to θ0 and one takes π f as prior on f . By Bayes’ theorem, for any B ∈ B,

�θ=θ0(B|X (n)) =

∫

B
p(n)θ0, f (X

(n))dπ f ( f )
∫

p(n)θ0, f (X
(n))dπ f ( f )

.

As above let us also define a neighborhood of f0 in F by

Bθ=θ0
K L ,n( f0, ε) = { f ∈ F : K (P(n)η0

, P(n)θ0, f ) ≤ nε2, V (P(n)η0
, P(n)θ0, f ) ≤ nε2}.

1.2 A specific semiparametric framework

A natural way to study efficiency in a semiparametric model is to study estimation
along a maximal collection of 1-dimensional paths locally around the true parame-
ter, as explained for instance in [27, Chap. 25], see also [21] where some tools are
developed in non-i.i.d. situations. The likelihood ratios along the paths might then for
instance be well approximated by the likelihood ratios in the case of a Gaussian shift
experiment, which leads to the notion of local asymptotic normality (LAN).

In this paper we take a slightly different approach. Given a true η0 = (θ0, f0) in E ,
for any η = (θ, f ) in E (possibly restricted to a subset of E , possibly close enough to
η0), let us assume that the pair (θ − θ0, f − f0) can be embedded in a product Hilbert
space of the form Vη0 = R×Gη0 equipped with an inner-product 〈 , 〉L with associated
norm ‖ · ‖L . Locally around the true parameter, we shall compare the log-likelihood
differences to a quadratic term plus a stochastic term. We set

Rn(θ, f ) = 
n(θ, f )+ n‖θ − θ0, f − f0‖2
L/2 − √

nWn(θ − θ0, f − f0), (2)

where we use the following notation

• 
n(θ, f ) = 	n(θ, f )− 	n(θ0, f0) is the difference of log-likelihoods between the
points (θ, f ) and (θ0, f0).
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• {Wn(v), v ∈ Vη0} is a collection of random variables measurable with respect to
the observations X (n) and satisfying the following properties.

 For any v1, . . . , vd in Vη0 , the d-tuple (Wn(v1), . . . ,Wn(vd)) converges in dis-

tribution to the d-dimensional centered Gaussian distribution with covariance
structure given by the matrix (〈vi , v j 〉L)1≤i, j≤d .


 The map v → Wn(v) is linear.

We will further assume that one has a form of uniform control of the Rn’s over (sieved)
shrinking neighborhoods of the true η0, see the assumptions (N) and (N′) of the theo-
rems below.

The inner-product and the stochastic term introduced above are often identified
from LAN-type expansions. For instance, one might be in a situation where the model
is LAN with linear paths (see e.g. [21]) in that for each v = (s, g) ∈ Vη0 , as n → +∞,


n(θ0 + s/
√

n, f0 + g/
√

n) = −‖s, g‖2
L/2 + Wn(s, g)+ o

P(n)η0
(1),

where ‖ · ‖L , Wn and Vη0 are as above. To define the notions of information and
efficiency in our model (let us recall that it is not necessarily i.i.d.), we assume for
simplicity that the considered model is LAN with linear paths, which falls in the frame-
work considered in [21], so we can borrow from that paper the definitions and their
implications for efficiency. In fact, such an assumption is essentially weaker than the
uniform type of control on Rn(θ, f ) required below, see Sect. 1.7. All models consid-
ered in Sect. 2 admit such a LAN expansion, at least for a well-chosen parametrization
of the model.
Semi-parametric structure. Here we define the notions of least favorable direction and
efficient Fisher information following [21]. Let F be the closure in Vη0 of the linear
span of all elements of the type (0, f − f0), where f belongs to F . Let us define the
element (0, γ (·)) ∈ F as the orthogonal projection of the vector (1, 0) onto the closed
subspace F . The element γ is called least favorable direction. For any (s, g) ∈ Vη0 ,
one has the following decomposition

‖s, g‖2
L = (‖1, 0‖2

L − ‖0, γ ‖2
L)s

2 + ‖0, g + sγ ‖2
L .

The coefficient of s2 is called efficient Fisher information and is denoted by Ĩη0 =
‖1, 0‖2

L − ‖0, γ ‖2
L . If γ is zero, we say there is no loss of information and denote

the information simply by Iη0 . Note also that since ‖ · ‖L is a norm, Iη0 = ‖1, 0‖2
L is

always nonzero. If Ĩη0 itself is nonzero, let us also denote

�n,η0 = Ĩ −1
η0

Wn(1,−γ ).

In particular, an estimator θ̂n of θ0 is asymptotically linear and efficient if it satisfies√
n(θ̂n − θ0) = �n,η0 + o

P(n)η0
(1).

Local parameters. Throughout the paper, we use the following shorthand notation
h = √

n(θ − θ0) and a = √
n( f − f0).
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1.3 The case without loss of information

If there is no information loss, it holds ‖h, a‖2
L = ‖h, 0‖2

L +‖0, a‖2
L and Iη0 = Ĩη0 =

‖1, 0‖2
L and �n,η0 = Wn(1, 0)/‖1, 0‖2

L .
Concentration (C). Let εn > 0 be a sequence such that εn → 0 and nε2

n → +∞.
The statistical model and the prior � satisfy condition (C) with rate εn if there exists
a sequence of measurable sets Fn in F such that

�
(
{η ∈ �× Fn, ‖η − η0‖L ≤ εn} | X (n)

)
→ 1,

�θ=θ0
(
{ f ∈ Fn, ‖0, f − f0‖L ≤ εn/

√
2} | X (n)

)
→ 1,

as n → +∞, in P(n)η0 -probability.
Local shape (N). Let Rn be defined by (2) and let εn and Fn be as in (C). Let us
denote Vn = {(θ, f ) ∈ �× Fn, ‖θ − θ0, f − f0‖L ≤ εn}. The model satisfies (N)
with rate εn over the sieve Fn if

sup
(θ, f )∈Vn

|Rn(θ, f )− Rn(θ0, f )|
1 + n(θ − θ0)2

= o
P(n)η0
(1).

Theorem 1 Let us assume that the prior � on (θ, f ) satisfies (P) and that the model
and prior verify conditions (C), (N). Suppose there is no information loss, then it holds

sup
B

∣
∣
∣
∣�

(
B × F | X (n)

)
− N

(

θ0 + 1√
n
�n,η0 ,

1

n
I −1
η0

)

(B)

∣
∣
∣
∣ → 0,

as n → +∞, in P(n)η0 -probability, where the supremum is taken over all measurable
sets B in�. In words, the total variation distance between the marginal in θ of the pos-
terior distribution and a Gaussian distribution centered at θ0 + 1√

n
�n,η0 , of variance

1
n I −1
η0

, converges to zero, in P(n)η0 -probability.

Condition (C) means that the posterior concentrates at εn-rate around the true η0
in terms of ‖ · ‖L . Sufficient conditions for (C) are discussed in Sect. 1.6. Condition
(N) controls how much the likelihood ratio differs locally from the one of a Gauss-
ian experiment and is studied in Sect. 1.7. Note that assumptions (P) -the parametric
part of the prior must charge θ0-, (N)—which is about the shape of the model- and
(C)—which enables us to localize in a neighborhood of the true η0- compare in their
spirit to the assumptions for the parametric Bernstein–von Mises theorem as stated
in [20][Sect. 7.3, Prop.1]. One can also note that Theorem 1 actually yields a result
in the particular case where f is known. In this case, the Theorem implies that if
posterior concentration occurs at rate εn = Mnn−1/2 for some Mn → ∞ (for instance
Mn = log n say) and if the uniform LAN property (N) in θ holds in that neighborhood
of size Mnn−1/2 then the (parametric) BVM theorem holds.
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1.4 The case with information loss

Here we shall restrict our investigations to Gaussian priors for π f . Roughly, this
enables us to change variables in the expression ‖0, f − f0 + (θ − θ0)γ ‖2

L by setting
g = f + (θ − θ0)γ (or g = f + (θ − θ0)γn , where γn is close enough to γ ).

Suppose π f is the distribution associated to a centered Gaussian process taking
its values almost surely in a separable Banach space B. For an overview of the basic
properties of these objects and applications to Bayesian nonparametrics, we refer to
[29,30]. Two examples of families of Gaussian priors are considered in Sect. 2, see
(10)–(14).

Let H be the Reproducing Kernel Hilbert Space (RKHS) of the Gaussian pro-
cess. For a zero-mean real-valued Gaussian stochastic process (Wt , t ∈ T ) for some
index set T , this space is defined through the covariance function K : T × T → R,
K (s, t) = E(Ws Wt ) as the completion H of the set of all linear functions

t →
k∑

i=1

λi K (si , t), λ1, . . . , λk ∈ R, s1, . . . , sk ∈ R, k ∈ N,

with respect to the norm ‖ · ‖H induced by the inner product

〈
k∑

i=1

λi K (si , t),
l∑

j=1

μ j K (t j , t)

〉

H

=
k∑

i=1

l∑

j=1

λiμ j K (si , t j ).

If the Gaussian process is given as a Borel measurable map in a Banach space, H is
generally defined in a more abstract way through the Pettis integral, but both definition
coincide in general, see [30], Sect. 2, for a detailed discussion.

We shall assume that the space H is “large enough” so that the least favorable direc-
tion γ introduced above can be approximated by elements of H. Suppose that there
exists ρn → 0 and a sequence γn of elements in H such that for all n > 0, γn − γ

belongs to Gη0 and

‖γn‖2
H

≤ 2nρ2
n and ‖0, γn − γ ‖L ≤ ρn . (3)

Concentration (C′). The model verifies condition (C′) with rate εn if there exists a
sequence of measurable sets Fn in F such that, if Fn(θ) = (Fn + (θ − θ0)γn),

�
(
{η ∈ �× Fn, ‖η − η0‖L ≤ εn} | X (n)

)
→ 1,

inf
|θ−θ0| Ĩ 1/2

η0 ≤εn

�θ=θ0
(
{ f ∈ Fn(θ), ‖0, f − f0‖L ≤ εn/2} | X (n)

)
→ 1,

as n → +∞, in P(n)η0 -probability. We also assume that for some c, d > 0, it holds

�(BK L ,n(η0, dεn)) ≥ exp(−cnε2
n) and π f (B

θ=θ0
K L ,n( f0, dεn)) ≥ exp(−cnε2

n).
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60 I. Castillo

Local Shape (N′). Let Vn = {(θ, f ) ∈ �×Fn, ‖θ − θ0, f − f0‖L ≤ 2εn}. Assume
that for any (θ, f ) in Vn , the function f − (θ − θ0)γn belongs to F and that

sup
(θ, f )∈Vn

|Rn(θ, f )− Rn(θ0, f − (θ − θ0)γn)|
1 + n(θ − θ0)2

= o
P(n)η0
(1).

Our last assumption is related to how well the least favorable direction is approximated
by elements of H. As n → +∞ suppose

(E)
√

nεnρn = o(1) and Wn(0, γ − γn) = o
P(n)η0
(1).

Theorem 2 Let us assume that the prior � = πθ ⊗ π f on (θ, f ) satisfies (P), that
π f is a Gaussian prior, that Ĩη0 > 0 and that the least favorable direction γ can
be approximated according to (3). Suppose that conditions (C′), (N′) and (E) are
satisfied. Then it holds

sup
B

∣
∣
∣
∣�

(
B × F | X (n)

)
− N

(

θ0 + 1√
n
�n,η0 ,

1

n
Ĩ −1
η0

)

(B)

∣
∣
∣
∣ → 0,

as n → +∞, in P(n)η0 -probability, where the supremum is taken over all measurable
sets B in �.

The assumptions are similar in nature to the ones of Theorem 1, with additional
requirements about the least favorable direction γ and Gaussianity of π f . These
assumptions are further discussed in Sects. 1.8 and 2.4. For the moment let us only
note that γ might in fact lie in H, in which case (3) and (E) are trivially satisfied.

1.5 Comments on centering and applications to confidence intervals

Centering. The Bernstein–von Mises theorem is sometimes stated with the target
Gaussian distribution centered at the maximum likelihood estimator. Here the approach
we consider is slightly more general. As we show in the next paragraph, the conclusions
of Theorems 1 or 2 imply a statement with a centering at any arbitrary asymptotically
linear and efficient estimator of θ . The centering is thus in a way the best possible
one can expect. We note that it does not require to prove any property of the max-
imum likelihood estimator. This approach was first introduced by Le Cam, see [26,
pp. 678–679], and [27, Chapter 10], for a discussion.

Let θ̃n be any estimator such that
√

n(θ̃n − θ0) = �n,η0 + oPη0
(1), as n → +∞,

where as above we denote �n,η0 = Ĩ −1
η0

Wn(1,−γ ). In other words, θ̃n is asymptoti-

cally linear and efficient (the asymptotic variance of
√

n(θ̃n−θ0) equals the information
bound Ĩ −1

η0
). Due to the invariance by location and scale changes of the total variation

distance on R and the assumed property of θ̃n , one has

sup
B

∣
∣
∣
∣N

(

θ0 + 1√
n
�n,η0 ,

1

n
Ĩ −1
η0

)

(B)− N

(

θ̃n,
1

n
Ĩ −1
η0

)

(B)

∣
∣
∣
∣ → 0,
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in probability. If the conclusion of Theorems 1 or 2 holds, the posterior is in the limit
like N (θ0 +�n,η0/

√
n, Ĩ −1

η0
/n) in the total variation sense, and thus one gets automat-

ically the same result for the Gaussian target distribution replaced by N (θ̃n, Ĩ −1
η0
/n).

In particular, if the maximum likelihood estimator θ̂M L E is asymptotically linear
and efficient, that is

√
n(θ̂M L E − θ0) = �n,η0 + oPη0

(1) then one deduces the form of

the BVM theorem with the centering at θ̂M L E . But as seen above, the result can in fact
be stated with centering at any other (asymptotically linear and) efficient estimator.
Application to confidence intervals. Let us consider the random interval having as
endpoints the 2.5% and 97.5% percentiles of the posterior marginal �(· × F | X (n)).
It is the interval [An, Bn] such that

�((−∞, An)× F | X (n)) = 0.025, �((Bn,+∞)× F | X (n)) = 0.025.

Note that [An, Bn] is accessible in practice as soon as simulation from the posterior
marginal is feasible. Now, the conclusion of the BVM theorem implies that [An, Bn]
coincides asymptotically with the interval having as endpoints the same percentiles
but for the distribution N (θ0 +�n,η0/

√
n, Ĩ −1

η0
/n). Simple verifications reveal that the

latter interval contains θ0 with probability 95%. Hence [An, Bn] is asymptotically a
95%-confidence interval in the frequentist sense. Moreover, it holds

[An, Bn] =
[

θ̃n + �−1(0.025)√
n Ĩ 1/2
η0

+ oP (n
−1/2), θ̃n + �−1(0.975)√

n Ĩ 1/2
η0

+ oP (n
−1/2)

]

,

for any asymptotically linear and efficient θ̃n . In particular, Bayes and frequentist cred-
ible regions asymptotically coincide. An advantage of the Bayes approach is that, to
build [An, Bn], estimation of Ĩη0 is not required.

1.6 Tests and concentration: about conditions (C), (C′)

In this subsection, we give sufficient conditions for (C) and (C′) following [12,13].
Suppose that there exist two semi-metrics dn and en (possibly depending on n) on E
satisfying the following property. There exist universal constants ξ > 0 and K > 0
such that for every ε > 0, n > 0, for each η1 ∈ E with dn(η1, η0) > ε, there exists a
test φn such that

P(n)η0
φn ≤ e−K nε2

, sup
η∈E, en(η,η1)<ξε

P(n)η (1 − φn) ≤ e−K nε2
. (4)

Let εn → 0, nε2
n → +∞, let An ⊂ E be a sequence of measurable sets and

C1, . . . ,C4 positive constants such that, as n → +∞,

log N (C1εn,An, en) ≤ C2nε2
n (5)

�(E\An) ≤ exp(−nε2
n(C3 + 4C2

4 )), (6)

�
(
BK L ,n(η0,C4εn)

) ≥ exp(−nε2
nC3) (7)
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Lemma 1 Let us assume that (5), (6), (7) hold. Then for M large enough, the posterior
�({η ∈ E, dn(η, η0) ≤ Mεn} | X (n)) tends to 1 as n → +∞, in P(n)η0 -probability.

This lemma is a version of Theorem 1 in [12], with the constants Ci adding some extra
flexibility. More refined versions of this result could also be used, see [12]. More gen-
erally, any approach providing posterior rates could be used. For instance, in the i.i.d.
setting for Hellinger’s distance, one can also check the set of conditions considered in
[25] to obtain posterior rates.

Let us now briefly discuss the meaning of the previous conditions. Condition (7) is
in terms of the prior only and means that there should be enough prior mass in balls
of size equal to the desired rate of convergence εn around the true parameter η0. Con-
ditions of the same flavor, without the rate, appear already when proving consistency
results, see for instance [23], and they enable to control the denominator of the Bayes
ratio. Condition (5) requires the entropy over a sieve set An with respect to en to be
controlled. This is a way of controlling the complexity of the model on a set which
should capture most prior mass, as required by Condition (6). Note also that the latter
condition can be checked independently using the next Lemma.

Lemma 2 If εn → 0 and nε2
n → +∞, if An ⊂ E is a measurable set such that

�(E\An)/�(BK L ,n(η0, εn)) ≤ exp(−2nε2
n),

then �(An|X (n)) → 1 as n → +∞, in P(n)η0 -probability.

Finally, with (4) we require that it is possible to test a point versus a ball using semi-
distances dn, en with exponential decrease of the error probabilities. This testing con-
dition is particularly useful when dealing with non i.i.d. data and it has been checked
in the literature for a variety of frameworks. For a detailed discussion and examples we
refer the reader to [12] (see also Lemma 3 and Sect. 4.3). In fact, in some frameworks
condition (4) will be automatically satisfied. In the case of i.i.d. data for instance,
general results in [2,19] on existence of tests between convex sets of probability mea-
sures imply that such tests always exist when dn = en is the total variation or Hellinger
metric, see for instance [13, Sect. 7].

Lemma 1 returns a result in terms of the semi-distance dn appearing in the testing
condition (think, for instance, of Hellinger’s distance in an i.i.d. framework). To obtain
(C), some link has to be made between the target metric ‖ · ‖L appearing in the LAN
expansion and dn . In some cases, those might be equivalent or at least there might
exist a D > 0 such that for any sequence rn → 0 as n → +∞, for n large enough it
holds

{η ∈ E, dn(η, η0)
2 ≤ r2

n } ⊂ {η = (θ, f ), ‖θ − θ0, f − f0‖2
L ≤ Dr2

n }. (8)

If (5), (6), (7) and (8) hold, then (C) holds. For instance, in the Gaussian white noise
model considered in Sect. 2.1, one can take dn equal to the L2-distance, and it can
be checked that ‖ · ‖L satisfies (8), see Lemma 4. However, in some situations the
relation between those distances might be more involved (see for instance, in the case

123



Semiparametric BVM theorem 63

of Cox’s model, the proof of Theorem 5). Then it might not be straightforward at all
to compare the above distances and this might result in a lower rate than rn for the
concentration of the posterior in terms of ‖ · ‖L .

The condition involving�θ=θ0 can be checked similarly. In fact, often, one starts by
choosing a prior π f which is adapted to the nonparametric situation where θ is fixed,
then check the condition in the model where θ = θ0 and in a second step check the
condition on (θ, f ) about semiparametric concentration. Regarding (C′), the assump-
tion on �θ=θ0 is not much more difficult to check than (C), especially if the sieves
have ball-shapes (this is the case for the sieve used for Gaussian priors in this paper),
since a translation by a small quantity can be absorbed by considering a ball of slightly
larger radius. The assumption about KL-neighborhoods is classical in the literature,
see also above.

We also underline the fact that for Gaussian priors on π f , recent results of [29]
provide tools for checking concentration conditions in many estimation frameworks.
In particular, explicit evaluations of the rate of convergence εn are often available at
least for some distance d and a natural choice of sieves Fn is provided by Borell’s
inequality. Detailed statements can be found in Sect. 5.

1.7 About the shape conditions (N), (N′)

First note that if �Rn(θ, f ) denotes Rn(θ, f )− Rn(θ0, f ), it holds

	n(θ, f )− 	n(θ0, f ) = −n

2
Iη0(θ − θ0)

2 + √
n(θ − θ0)Wn(1, 0)+�Rn(θ, f ),

and a similar identity holds for 	n(θ, f )− 	n(θ0, f − (θ − θ0)γ ) in the information
loss case, involving Ĩη0 and Wn(1,−γ ). Thus (N), (N′) quantify how much these
likelihood differences differ from a “parametric”-type likelihood. Note also that (N)
is weaker than a condition where the difference of Rn’s would be replaced by the
single Rn(θ, f ). The two conditions can nevertheless be equivalent, for instance if
Rn(θ0, f ) = 0 as is the case for the model (9) of translation parameter estimation
considered in Sect. 2.

Note that there is no term ‖0, f − f0‖L appearing in the control of Rn(θ, f ). One
could ask whether it is possible to get results under a weaker condition involving
‖0, f − f0‖L . Let us consider for instance the assumption

(M) sup
(θ, f )∈Vn

|Rn(θ, f )− Rn(θ0, f )|
1 + h2 + δn‖0, a‖2

L

= o
P(n)η0
(1),

where δn is a sequence tending to zero. We believe that it is possible to replace (N) by
(M) only at the cost of assuming that nε2

nδn → 0, as n → +∞. But then (M) does not
improve on (N) because on Vn , we would then have δn‖0, a‖2

L ≤ nε2
nδn = o(1). Here

is a brief heuristical justification of the preceding claim. The effect of a perturbation
of the likelihood of the order δn‖0, a‖2

L makes appear additional terms of the type
�
(
exp

{
δn‖0, a‖2

L

} |X (n)) in the proofs. If the posterior contracts at rate exactly εn ,
those are of the order of exp(δnnε2

n) hence the condition.
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Let us still give more insight into condition (N) by considering a special case. In
the i.i.d. case with observations (X1, . . . , Xn), let us assume that the likelihood can
be written in the form (θ, f ) → ∑n

i=1 	(θ, f (Xi )). Then, provided enough regularity
is present in the model, we might want to see Rn(θ, f ) as the remainder of a Taylor
expansion of the preceding function around (θ0, f0). If we neglect the terms of Taylor’s
expansion of order higher than 3, we are left with

Rn(θ, f )≈
n∑

i=1

(θ − θ0)
3g3,0(θ0, f0, Xi )+ (θ − θ0)

2( f − f0)(Xi )g2,1(θ0, f0, Xi )

+ (θ−θ0)( f − f0)
2(Xi )g1,2(θ0, f0, Xi )+( f − f0)

3(Xi )g0,3(θ0, f0, Xi ),

where the g’s denote (up to numerical constants) the partial derivatives at the order 3.
By subtracting Rn(θ0, f ) the last term vanishes and

Rn(θ, f )− Rn(θ0, f ) ≈ (θ − θ0)h
2g3,0 + h2( f − f0)g2,1 + √

nh( f − f0)2g1,2,

where the bar denotes the empirical mean. Since we are in a neighborhood of size εn of
(θ0, f0), the first term in the preceding display is o(h2), the second term is expected to
be h2 O(‖ f − f0‖) = o(h2), while the last one should have order O(h

√
n‖ f − f0‖2).

This might lead to a condition of the type
√

nε2
n → 0, which limits the range of εn .

This appears to be an analog of the “no-bias” condition arising in frequentist contexts
(see e.g. [27, Sect. 25.8]). This is exactly what happens in Cox’s model (one just needs
to replace Rn(θ0, f ) by Rn(θ0, f − (θ − θ0)γ ) but the argument remains unchanged),
see Sect. 4.3. By contrast in model (9) we will show that no special assumption on εn

is needed, at least if f0 is smooth enough.
Verification of (N′) is similar to checking (N). A possibility to obtain (N′) is to estab-

lish that (N) holds together with the fact that a similar condition involving Rn(θ0, f )−
Rn(θ0, f − (θ − θ0)γn) holds.

Finally, let us comment on the assumption of LAN with linear paths and its link
to (N)–(N′). The first one requires a pointwise control of the remainder Rn(θ, f ) in
a neighborhood of size 1/

√
n of the true while the second requires a uniform control

over sieves of the differences�Rn(θ, f ) in a neighborhood of larger size εn . Though
the second does not imply the first in general, the first is generally much easier to
check. We also note that having LAN with linear paths is not needed for Theorems 1
and 2 to hold but assuming it enables to interpret the results in terms of efficiency
(convolution theorems and resulting efficiency notions being established for models
with LAN with linear paths in [21]).

1.8 About Gaussian priors, (3) and (E)

In the information loss case in Theorem 2, we assume that π f belongs to the class
of Gaussian priors. This choice of prior entails some restrictions on the models we
can deal with, the main one being that the random f ’s generated by the prior must
be almost surely in F . This excludes the modelling of nuisances f with too many
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restrictions. Simple types of restrictions such as symmetry or periodicity can never-
theless be handled, see for instance the example of prior (10).

A natural way to obtain (3) and (E) is as follows. The support of a Gaussian prior
in B is the closure of its RKHS H in B, see e.g. [30, Lemma 5.1]. Thus if γ belongs
to this support, then (3) is verified with ‖ · ‖L replaced by ‖ · ‖B. If these two norms
combine correctly, one deduces a rate ρn satisfying (3).

Even if the Gaussianity assumption is not satisfied, our proof can be adapted in
some cases. For instance, as a referee pointed out, Theorem 2 carries over to the
case of a finite mixture of Gaussian processes for π f by conditioning, as long as
the assumptions are satisfied for each individual component of the mixture. An even
further extension would be the case of continuous mixtures, but extra work would
be needed to control uniformly the individual results on each component. Finally, in
the special case of truncated series priors—with non-Gaussian components—, in the
case explicit expressions would be available for the posterior, an analog of the change
of variables used here could be considered component by component, although one
would lose the interpretation in terms of RKHS.

2 Applications

2.1 Translation parameter estimation in Gaussian white noise

One observes sample paths of the process {X (n)(t)} such that

d X (n)(t) = f (t − θ)dt + 1√
n

dW (t), t ∈ [−1/2, 1/2], (9)

where the unknown function f is symmetric (that is f (−x) = f (x) for all x),
1-periodic and when restricted to [0, 1], belongs to L2[0, 1]. The unknown param-
eter θ is the center of symmetry of the signal f (· − θ) and is supposed to belong to
� = [−τ0, τ0] ⊂]−1/4, 1/4[. Here W is standard Brownian motion on [−1/2, 1/2].
We shall work in the asymptotic framework n → +∞.

Model (9) can be seen as an idealized version in continuous time of a signal pro-
cessing problem where one would observe discretely sampled and noisy observations
of a symmetric signal, see for instance [15] and references therein for the parametric
case and [7] for frequentist estimators in the semiparametric case.

Let us define F as the linear space of all symmetric square-integrable functions
f : [−1/2, 1/2] → R and, for simplicity in the definitions of the classes of functions
below, such that

∫ 1
0 f (u)du = 0. We extend any f ∈ F by 1-periodicity and denote its

real Fourier coefficients by fk = √
2
∫ 1

0 f (u) cos(2πku)du, k ≥ 1. Note that we can
still denote by f0 the “true” function f . Let us denote εk(·) � cos(2πk·) for k ≥ 0.
Finally ‖ · ‖ is the L2-norm over [−1/2, 1/2].
Conditions (R). A function f = ( fk)k≥1 is said to fulfill conditions (R) if there exist
reals ρ > 0, L > 0 and β > 1 such that | f1| ≥ ρ and

∑
k≥1 k2β f 2

k ≤ L2. In the
sequel it is assumed that the true f0 satisfies conditions (R).
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The likelihood associated to a path X (n) in (9) is defined with the help of a common
dominating measure, here the probability P(n)0 generated by 1/

√
n times Brownian

motion on [−1/2, 1/2]. Thanks to Girsanov’s formula,

dP(n)θ, f

dP(n)0

(X (n)) = exp

⎧
⎪⎨

⎪⎩
n

1/2∫

−1/2

f (u − θ)d X (n)(u)− n

2

1/2∫

−1/2

f (u − θ)2du

⎫
⎪⎬

⎪⎭
.

and 2K (P(n)θ, f ,P(n)τ,g) = V (P(n)θ, f ,P(n)τ,g) = n‖ f (· − θ)− g(· − τ)‖2 as simple calcula-
tions reveal. Moreover, in model (9) there is no information loss (see Sect. 4.1), thus
we are in the framework of Theorem 1.
Prior. For the parametric part πθ of the prior, we choose any probability measure
which satisfies condition (P) (for instance the uniform measure on [−1/4, 1/4]). The
nonparametric part π f is chosen among a family of Gaussian priors parametrized
by a real parameter α. Let {νk}k≥1 be a sequence of independent standard normal
random variables and for any k > 0 and α > 1 let σk = k−1/2−α . The prior παf is the
distribution generated by

f (·) =
+∞∑

k=1

σkνkεk(·). (10)

Let us also define παf,k(n) as the distribution of g(·) = ∑k(n)
k=1 σkνkεk(·), where k(n) is

a strictly increasing sequence of integers. The latter prior depends on n, which is often
viewed as non-desirable, but the entropy bounds involved to get posterior convergence
are easier to obtain since just a finite number of Fourier coefficients are involved for all
n. This also explains why for this prior the domain where the BVM-theorem holds is
slightly larger in the following theorem. In both cases α can be seen as the “regularity”
of the prior and the rate convergence of the associated posterior for estimating f of
Sobolev-regularity β is quantified in Lemma 14.

Theorem 3 Suppose that f0 satisfies (R) with regularity β > 1. Let the prior πθ
satisfy (P) and let π f be defined by (10) for some α > 1. Then conditions (C) and (N)
of Theorem 1 are satisfied for pairs (β, α) such that the corresponding point in Fig. 1
lies in the shaded area. In particular, the BVM theorem holds in this region. For the
prior παf,k(n) with k(n) = �n1/(2α+1)�, the same holds in the region delimited by the
‘triangle’-curve.

The region for which β > 1 and α > 1 delimited by the ‘square’-curve in Fig. 1
can be regarded as the ‘best possible’ region, since it describes true functions and
priors which have at least one derivatives in a weak (L2-) sense. This condition on β
is necessary to have a finite Fisher information, which here equals ‖ f ′

0‖2. Thus with
this respect the results of Theorem 3 are quite sharp, in that only a small strip in the
region where α or β are very close to 1 is not covered by Theorem 1. More precisely,
the region where BVM holds is defined by α > 1 + √

3/2 (resp α > 3/2 for the
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Fig. 1 Translation model. Possible choices for π f

truncated prior), β > 3/2 and, finally, α < (3β − 2)/(4 − 2β), which corresponds to
the non-linear curve in Fig. 1. These mild conditions arise when checking (N).

For instance for β = 2, any prior of the type (10) with α > 1 +√
3/2 will do. This

means also that in model (9) for β ≥ 2, no condition on the nonparametric concen-
tration rate εn of the posterior is needed to get the semiparametric BVM theorem. For
example, it can be easily seen that if β = 2 and α increases, εn becomes slower and
slower (in fact if β = 2 and α ≥ 2, then εn can be as slow as n−2/(2α+1), see [5]).

The results of Theorem 3 can be extended to other families of priors. For instance,
for Gaussian series priors for which just an equivalent of σk is available in the form of
a power of k−1 as k → ∞, the method presented here could be adapted, since equiv-
alents of the small ball probabilities are still available for these priors. One could also
consider non-Gaussian priors in form of infinite series, in this case however, under-
standing the concentration properties of the posterior for π f in the nonparametric
setting would be very desirable and will be the object of future research.

2.2 A functional data analysis model

A referee suggested, as a follow-up to the white noise model (9), to investigate what
the theory would give in the following functional data analysis case of non-parametric
regression. For i = 1, . . . , n, one observes independent realizations of

Yi = f (ti )+ σεi (11)

Zi = f (ti − θ)+ τζi , (12)

with εi , ζi independent standard normal random variables. The pair (θ, f ) is unknown
and ti are fixed design points (say ti = i/n, for i = 1, . . . , n). Here, the parameter of
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interest θ represents the relative translation between the two groups observed through
the Y ’s and Z ’s respectively.

This example indeed nicely illustrates how the theory can be applied in a framework
with discrete observations, more directly related to real data applications. Another
important difference with model (9) is that a loss of information occurs, as can be seen
from the LAN expansion with linear paths arising for this model. Though, due to the
similarity in structure it is still possible to use or adapt several of the arguments used
for model (9). We shall now briefly describe and discuss the results.
Regularity conditions. Let us assume that the parameter set E = � × F is such that
� is a compact interval [−τ0, τ0] ⊂] − 1/2, 1/2[. The elements f of F are square
integrable functions on [0, 1] and extended by 1-periodicity to R. The complex Fourier
basis is denoted ψk(t) = e2ikπ t and gk = ∫ 1

0 g(t)ψ−k(t)dt for any g ∈ F .
We further assume that the true function f0 fulfills some regularity conditions. For

some ρ > 0, β > 1, L1 > 0, L2 > 0, the function f0 belongs to the following class
of continuously differentiable functions (C1 functions)

C(β, ρ, L1, L2)={g ∈ C1, g0 = 0, |g1|≥ρ,
∑

k∈Z

k2β |gk |2 ≤ L2
1,
∑

k∈Z

|kgk |≤ L2}.

We also assume that the noise variances σ, τ are known and we set σ = τ = 1.
Prior. The prior� on (θ, f ) is chosen of the form πθ ⊗π f with π f a Gaussian series
prior. To simplify we shall take finite series, which suffice to illustrate our point, but
the case of infinite series could also be considered, so we set

g(·) = σ0ν0 +
k(n)∑

k=1

σ2kν2k cos(2πk·)+ σ2k−1ν2k−1 sin(2πk·), (13)

where k(n) → +∞ is an increasing sequence of integers, νk is a sequence of inde-
pendent standard normal variables, and σk the sequence σ2k = σ2k+1 = k−α−1/2 for
k ≥ 1 and σ0 = 1. For k(n) we choose k(n) = �n1/(2α+1)�.

Theorem 4 Suppose that f0 satisfies the above regularity conditions with β > 3/2.
Let the prior πθ satisfy (P) and let π f be defined by (13) for some α > 3/2. Then the
semiparametric BVM theorem holds in model (11)–(12) for all pairs (β, α) such that
α > 3/2 and α < 2β − 3/2.

The region in (β, α) defined by these two conditions is an (affine) convex cone (see
the next section for a picture of a similar region for Cox model). One can also notice
that this region is included in the region obtained for the same prior in the previous
model and depicted in Fig. 1 by the ‘triangle’-curve. The proof of Theorem 4 is in the
same spirit as the one of Theorem 3. We shall not give the full proof here but only
check (E). This will be done in Sect. 4.2, where we show that the limiting condition
α < 2β − 3/2 originates from (E). More precisely,

√
nεnρn → 0 is only satisfied if

the least favorable direction can be well enough approximated by the RKHS of the
prior.
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As long as we choose α not too large, the BVM theorem holds for any β larger than
a reasonably small value. For instance, for α = 2 we need β > 1.75 and for α = 3
we need β > 2.25. Since we have the choice of the parameter α of the prior, the best
choice is the smallest possible α. Since we need α > 3/2 one can take α = 3/2 + δ

for some small δ in which case Theorem 4 implies that the BVM theorem holds from
β > 3/2 + δ/2.

2.3 Cox’s proportional hazards model

The observations are a random sample from the distribution of the variable (T, δ, Z),
where T = X ∧Y , δ = 1X≤Y , for some real-valued random variables X , Y and Z . We
assume that the variable Z , called covariate, is bounded by M and admits a continuous
density ϕ with respect to Lebesgue’s measure on [−M,M]. Suppose that given Z ,
the variables X and Y are independent and that there exists a real τ > 0 such that
Pη0(X > τ) > 0 and Pη0(Y ≥ τ) = Pη0(Y = τ) > 0. The conditional hazard func-
tion α of X knowing Z is defined by α(x)dx = P(X ∈ [x, x +dx] | X ≥ x, Z). Cox’s
model assumes that α(x) = eθ Zλ(x), where λ is an unknown hazard function and θ
a real parameter. For simplicity, we have assumed that Z and θ are one-dimensional.

Let us assume that λ0 is continuous and that there exists a ρ > 0 such that, for
all x in [0, τ ], one has λ0(x) ≥ ρ > 0. We will denote 
(x) = ∫ x

0 λ(u)du. We also
assume that Y given Z = z admits a continuous density gz with respect to Lebesgue’s
measure on [0, τ ) with distribution function Gz and that there exists ρ′ > 0 such that
gz(t) ≥ ρ′ for almost all z, t . Finally we assume that the possible values of θ lie in
some compact interval [−θM , θM ].

In this semiparametric framework the unknown parameter η will be taken equal to
η = (θ, log λ). In the sequel we use the notation r � log λ. Under these assumptions,
the triplet (T, δ, Z) admits a density fη(t, d, z) with respect to the dominating mea-
sureμ = {L[0,τ ] + δτ }⊗{δ0 + δ1}⊗L[−M,M], where LI denotes Lebesgue’s measure
on the interval I and

fη(t, d, z) =
{

gz(t)e
−
(t)eθ z

}1−d {
(1 − Gz(t−))λ(t)eθ z−
(t)eθ z

}d
ϕ(z)1t<τ (t)

+
{
(1 − Gz(τ−))e−
(τ)eθ z

}
ϕ(z)1d=0, t=τ (d, t).

The log likelihood-ratio associated to the data (Ti , δi , Zi )i=1,...,n is


n(θ, r) =
n∑

i=1

δi {(r − r0)(Ti )+ (θ − θ0)Zi } −
(Ti )e
θ Zi +
0(Ti )e

θ0 Zi .

Prior. We construct � as πθ ⊗ π f with πθ having a positive continuous density
with respect to Lebesgue’s measure on a compact interval containing [−θM , θM ]. As
prior π f on r = log λ, we take a Gaussian prior belonging to a 1-parameter family.
For α > 0 and W standard Brownian motion, we define the Riemann–Liouville type
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Fig. 2 Cox’s model. Possible choices for π f

process with parameter α > 0 as

Xt =
t∫

0

(t − s)α−1/2dWs +
α+1∑

k=0

Zktk, 0 ≤ t ≤ τ, (14)

where Z0, . . . , Zα+1, Rt are independent and Zi is standard normal. If α = 1/2 + k,
with k ∈ N, then, up to the polynomial part, the process X is simply k-times integrated
Brownian motion. This prior generates a distribution on the space of continuous func-
tions equipped with the sup-norm ‖ · ‖∞. Its properties for Bayesian estimation are
studied in [5,29] and summarized in Sect. 5, see in particular Lemma 16.

Theorem 5 Suppose that log λ0 belongs to Cβ [0, τ ] with β > 3/2. Suppose the least
favorable direction γ has Hölder regularity at least 2β/3. Let the prior πθ be defined
as described above and π f be a Riemann–Liouville type process with parameter
α > 3/2. Then the conditions (P), (C′), (N′) and (E) of Theorem 2 are satisfied for
pairs (β, α) such that the corresponding point in Fig. 2 lies in the shaded area. In
particular, the BVM theorem holds when α > 3/2 and α < 4β/3 − 1/2.

The main difference with Theorem 3 is the triangular shape of the region we obtain.
The origin of this shape is that, as an examination of the proof reveals, the rate ζn

of estimation of the nonparametric part r in terms of the LAN-norm must verify
ζn = o(n−1/4) to satisfy condition (N′). Since we are able to choose ζn = √

nε2
n ,

where εn is the rate in terms of the Hellinger distance, the condition is n3/4ε2
n → 0.

So, if α is much larger than β, the concentration rate of the posterior becomes too
small and the condition cannot be fulfilled. As discussed in Sect. 1.7, this phenome-
non corresponds to a “no-bias”-type condition. Note also that (E) imposes a somewhat
similar condition by asking

√
nζnρn → 0, where ρn is the approximation rate of γ .
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The assumption that γ is at least 2β/3-Hölder actually makes this condition always
weaker than the previous one, as can be checked from the expression of the rates εn

and ζn , see Sect. 4.3. However, if one would allow for much less regular γ ’s, then (E)
would become also here the limiting condition, as was the case for model (11)–(12).
Finally note that the regularity condition on γ is not difficult to check, due to the
existence of an explicit form (24) for γ . For instance if Y and Z are independent, in
which case Gz(u) does not depend on z, then γ has the same regularity as 
0 so its
Hölder regularity is at least β + 1 > 2β/3 and the condition is verified.

2.4 Discussion and perspectives

Comparison with the approach in [24]. First, the approach relies on properties of
the non-parametric maximum likelihood θ̂M L E or rather, as the author notes, on an
appropriately penalized version of it, where the penalty has to be tuned. As discussed
above, it provides more generality to see the BVM theorem as centered at �n,θ0 (or
at any efficient estimator of θ ). This way one does not have to carry out the work of
showing that the “MLE” is efficient which would be in a way “doing the work twice”.
Moreover, sufficient conditions ensuring consistency and efficiency of the MLE might
turn out slightly stronger than the ones for required for the (general form of the) BVM
theorem to hold.

More importantly, several conditions in [24] are implicit, for instance, Conditions
(14)–(15) on page 229. Roughly, Condition (14) says that the dependence in the param-
eter θ of the likelihood integrated with respect to f should have a negligible contri-
bution. This is an important step in the proof and putting it as an assumption appears
problematic as soon as no explicit expressions for the quantities at stake are available.
Also, computing the rate of gn(θ̂) in [24], Conditions (9) and (14), as the author himself
notes on page 230 “may require considerable effort” and seems a rather difficult task
if no explicit formulas are available. By contrast, though we restrict our investigations
to Gaussian process priors for π f , we are able to give a simple interpretable condi-
tion (condition (E)) to treat the integrated likelihood in f , in terms of approximation
properties of the least favorable direction by the RKHS of the prior.

To illustrate the relative ease of our conditions, let us take the example of Cox
Model of Sect. 2.3. Note that the form of the prior (14) prevents from using explicit
expressions. To verify (C′), the general techniques of [13] can be used to obtain rates
of posterior concentration. Since the RKHS of the prior (14) is well-known, checking
(E) is not difficult, see Sect. 4. We do not have to deal with a nonparametric θ̂M L E ,
which would in this example turn the study of the gn(θ̂) in [24] even more complex,
even putting aside the fact that no direct computations of the integrated likelihood
seem possible for the considered model and prior, at least in a simple way.

Also, our approach enables a more thorough investigation of regularity issues.
Indeed, while results in [24] are typically given for one fixed prior, here we pushed the
analysis one step further by considering a priori all pairs (α, β) and providing positive
results in full regions of the space with (β, α) coordinates, as represented in Figs. 1
and 2. In the case of the Gaussian white noise model for example, the region seems
fairly optimal.
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Shape of the satisfaction regions in (β, α). Several conclusions can be drawn from
Figs. 1 and 2. The triangle-type shapes of the regions for Cox model (and for model
(11)–(12), that we did not depict) suggest one should avoid choosing too smooth pri-
ors, for which α is very large compared to β. Two different cases can occur. First,
the uniform control (N′) might in some cases (e.g. Cox model) require that the size
of the shrinking neighborhood, controlled by εn , be not too large. Due to the typical
form of rates for Gaussian priors as established in [5,29], this fails for α large and β
small. Second, again for α large and β small, the approximation of γ by the RKHS
of the prior can become too slow, preventing (E) to be true. This happens for model
(11)–(12), and can also happen for Cox model if γ is much less smooth than log λ0,
as noted above.

The preceding suggests choosing a prior with α as small as allowed by the theory.
For this α the semiparametric BVM theorem then holds for most β’s. For instance,
in model (11)–(12), the BVM theorem holds for all regularities β’s of the true f0
larger than 3/2 + δ/2 if one chooses α = 3/2 + δ and a small δ > 0. Note also that
we do not use here the knowledge of the “true” regularity β of f0. Our result says
that the BVM theorem holds for some universal choice of α. The effective concen-
tration rate of the nonparametric part of the corresponding posterior will in general
be slower than the “adaptive” rate for nonparametric estimation (the minimax rate on
the corresponding class of functions of regularity β) which here would typically be in
n−β/(2β+1).

At least some care in the choice of the nonparametric part of the prior is needed in
general, especially if a loss of information occurs. For some special models however,
it can happen that most priors work. Model (9), where all priors with α > 2 work if β
is at least 2, is an example. Nevertheless, we point out that in a forthcoming work we
show that condition (E) is necessary in general in that, in most cases, failure of (E) will
result in the BVM theorem not being satisfied, due to an extra bias term appearing in
this case. The triangular shape of the satisfaction region thus appears to be unavoidable
in general in the loss of information case.
Future work. Apart from the models studied here, the methods presented can already
be applied to a variety of models, among which other Gaussian white noise models
(e.g. the period estimation considered in [4]), the density estimation version of model
(9), the class of partially linear models with Gaussian errors, see [14], to name a few.
Beyond the scope of this paper, it would be interesting to extend Theorem 2 to non-
Gaussian priors, which would probably require an equivalent of the change of variables
used here, in terms of measuring the influence of translations of small amplitude on
the nonparametric part of the prior. Also, concentration results including construction
of new types of sieves would have to be obtained for those priors. Future results in
the Bayesian nonparametrics field will hopefully enable to answer these questions.
Beyond “separated” semiparametric models with unknown (θ, f ), obtaining results
about finite-dimensional functionals of a nonparametric distribution is also of great
interest. For sufficiently smooth functionals, the methods presented here can presum-
ably be adapted, essentially by conditioning on the value of the functional of interest
in the nonparametric prior and thus in a way recovering a type of separated structure
in two parts for the integrals at stake. However, this framework deserves special atten-
tion, in particular due to the variety of situations which can arise (e.g. rates slower
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that n−1/2 even for simple functionals like the square norm of a density) and will be
treated in future contributions.

3 Proof of the main results

3.1 Proof of Theorem 1

First one localizes the problem around the true parameter using the concentration result
(C). Then one can use the local shape property (N) and further split up the likelihood
in a “θ -part” and a “ f -part”. For any B Borel set in�, let us denote D = B ×F , then
using the local sieve Vn introduced for condition (N),

�(D|X (n)) = �(D ∩ Vn|X (n))+�(D ∩ V c
n |X (n)).

But �(D ∩ V c
n |X (n)) ≤ �(V c

n |X (n)) and �(V c
n |X (n)) tends to 0 in probability as

n → +∞ due to (C). Note that if�A denotes the restriction of the prior� to A, with
the corresponding posterior we have

�(D ∩ Vn|X (n)) = �Vn (D|X (n))�(Vn|X (n)),

and �(Vn|X (n)) tends to 1 as n → +∞ in probability again due to (C). Thus it is
enough to focus on �Vn (D|X (n)), which explicitly is

qn(B) �

∫
1B(θ)

∫
1Vn (θ, f ) exp
n(θ, f ) dπ f ( f )dπθ (θ)

∫ ∫
1Vn (θ, f ) exp
n(θ, f ) dπ f ( f )dπθ (θ)

� q1(B)

q0
,

where 
n(θ, f ) denotes 	n(θ, f ) − 	n(θ0, f0). On the local neighborhood Vn we
expand the log-likelihood according to (2). Using h = √

n(θ−θ0) and a = √
n( f − f0)

as shorthand notation,

n‖θ − θ0, f − f0‖2
L = ‖h, a‖2

L = ‖h, 0‖2
L + ‖0, a‖2

L ,

since by assumption there is no loss of information. The linearity of Wn now implies

√
nWn(θ − θ0, f − f0) = Wn(h, a) = Wn(h, 0)+ Wn(0, a).

The numerator q1(B) of qn(B) can thus be written,

q1(B) =
∫

B

exp(−‖h, 0‖2
L/2 + Wn(h, 0))

×
∫

1Vn (θ, f ) exp
{
−‖0, a‖2

L/2 + Wn(0, a)+ Rn(θ, f )
}

dπ f ( f )dπθ (θ).
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By linearity of the inner product we have ‖h, 0‖2
L = h2‖1, 0‖2

L and since there is no
information loss, it holds Ĩη0 = Iη0 = ‖1, 0‖2

L . Let us now split the indicator of Vn

using inequalities. For any s > 0, it holds

{0≤ x ≤s/2, 0≤ y ≤s/2} ⊂ {x ≥ 0, y ≥ 0, x + y ≤s} ⊂ {0≤ x ≤s, 0≤ y ≤s}.

Applying this with x = h2 Iη0 , y = ‖0, a‖2
L and s = nε2

n , one obtains

1h2 Iη0 ≤nε2
n/2
(θ)

∫
1‖0,a‖2

L≤nε2
n/2

exp
{
−‖0, a‖2

L/2+Wn(0, a)+Rn(θ, f )
}

dπ f ( f )

≤
∫

1Vn (θ, f ) exp
{
−‖0, a‖2

L/2 + Wn(0, a)+ Rn(θ, f )
}

dπ f ( f )

≤1h2 Iη0 ≤nε2
n
(θ)

∫
1‖0,a‖2

L≤nε2
n

exp
{
−‖0, a‖2

L/2+Wn(0, a)+Rn(θ, f )
}

dπ f ( f ).

Now denoting Sn = sup(θ, f )∈Vn
|Rn(θ, f )− Rn(θ0, f )|/(1 + h2), it holds

−(1 + h2)Sn ≤ Rn(θ, f )− Rn(θ0, f ) ≤ (1 + h2)Sn,

and condition (N) tells us that Sn = o
P(n)η0
(1). Further denoting

ζn(t) =
∫

1‖0,a‖2
L≤nt (a) exp

{
−‖0, a‖2

L/2 + Wn(0, a)+ Rn(θ0, f )
}

dπ f ( f ),

for small enough positive reals t , one obtains

ζn(ε
2
n/2)

∫

B

1h2 Iη0 ≤nε2
n/2

exp
{−‖h, 0‖2

L/2 + Wn(h, 0)− (1 + h2)Sn
}

dπθ (θ)

≤ q1(B) ≤ ζn(ε
2
n)

∫

B

1h2 Iη0 ≤nε2
n

exp
{−‖h, 0‖2

L/2 + Wn(h, 0)+ (1 + h2)Sn
}

dπθ (θ).

The same calculation can be done for q0 and thus we obtain

ζn(ε
2
n/2)

ζn(ε2
n)

q P,−
n (B) ≤ qn(B) ≤ ζn(ε

2
n)

ζn(ε2
n/2)

q P
n (B),

where we have denoted

q P
n (B) =

∫

B
1h2 Iη0 ≤nε2

n
exp{−‖h, 0‖2

L/2 + Wn(h, 0)+ (1 + h2)Sn}dπθ(θ)
∫

1h2 Iη0 ≤nε2
n/2

exp{−‖h, 0‖2
L/2 + Wn(h, 0)− (1 + h2)Sn}dπθ (θ)

,

and q P,−
n (B) has a similar expression. Now qn(B) is bounded from above and below by

similar quantities. Both are a product of a nonparametric part, involving π f through
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the function ζn , and a parametric part, involving πθ through the terms q P
n (B) and

q P,−
n (B). The nonparametric part is handled noticing that

ζn(ε
2
n/2)/ζn(1) = �θ=θ0

(
{ f ∈ Fn, ‖0, f − f0‖2

L ≤ ε2
n/2} | X (n)

)
,

and similarly for ζn(ε
2
n)/ζn(1). Thus the second part of assumption (C) implies that

ζn(ε
2
n)/ζn(ε

2
n/2) tends to 1 in probability.

Now we handle the parametric part of the bounds on qn(B). Let us introduce the
notation B ′

n = {u, θ0 + (u + �n)/
√

n ∈ B} and

�n = Wn(0, 1)

‖1, 0‖2
L − 2Sn

, �n = Wn(0, 1)

‖1, 0‖2
L + 2Sn

,

Dn =
{

u, (u + �n)
2 ≤ nε2

n

‖1, 0‖2
L

}

, Dn =
{

u, (u + �n)
2 ≤ nε2

n

2‖1, 0‖2
L

}

.

Then q P
n (B) can be rewritten as follows

q P
n (B) =

∫

B′
n

1Dn (u) exp

({

−‖1, 0‖2
L

2
+ Sn

}

u2

)

λ(θ0 + u + �n√
n

)du

∫
1Dn

(u) exp

({

−‖1, 0‖2
L

2
− Sn

}

u2

)

λ(θ0 + u + �n√
n

)du

×e
�2

n

{ ‖1,0‖2
L

2 −Sn

}

e
�

2
n

{ ‖1,0‖2
L

2 +Sn

} ,

and the lower bound q P,−
n (B) admits a similar expression. To conclude the proof it is

enough to see that

sup
B

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q P
n (B)−

∫

B
exp

⎛

⎝−‖1, 0‖2
L

2

{√
n(θ − θ0)− Wn(1, 0)

‖1, 0‖2
L

}2
⎞

⎠ dθ

∫
exp

⎛

⎝−‖1, 0‖2
L

2

{√
n(θ − θ0)− Wn(1, 0)

‖1, 0‖2
L

}2
⎞

⎠ dθ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

→ 0,

as n → +∞, in P(n)η0 -probability and that the same holds for q P,−
n (B). This can be

checked using that Sn = oP (1), that nε2
n → +∞ and that�n, �n are bounded in prob-

ability, together with the use of the continuous mapping theorem. The verifications
are slightly technical but not difficult and are left to the reader. ��
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3.2 Proof of Theorem 2

The main difference with Theorem 1 is the split of the inner product

‖θ − θ0, f − f0‖2
L = Ĩη0(θ − θ0)

2 + ‖0, f − f0 + (θ − θ0)γ ‖2
L .

Since here γ is nonzero, the last term still contains a dependence in θ . We shall use
the fact that the prior is Gaussian to change variables by setting g = f + (θ − θ0)γn ,
where γn is a sequence approximating γ in H and satisfying (3).

We start by setting some notation for the change of variables. The prior π f is the
law of a centered Gaussian process Z in a Banach space (B, ‖ · ‖) of real functions
with RKHS (H, ‖ · ‖H) and covariance kernel K (s, t) = E(Z(s)Z(t)). Denoting by
� the probability space on which Z is defined, one can define a map U : H → L2(�)

as

U : K (t, ·) → Z(t)

and extending linearly and continuously, see Sect. 5.4 for details. The change of var-
iable formula for Gaussian measures, see for instance [30, Lemma 3.1], states that if
P Z denotes the law of the Gaussian process Z and if φ is an element of its RKHS H,
then the measures P Z and P Z−φ are absolutely continuous with d P Z−φ/d P Z =
exp(U (−φ) − ‖φ‖2

H
/2). Below we will slightly restrict the range of U and use the

adapted formula given in Lemma 17. In the sequel it is also technically useful to see
the variable f as a random variable ω → f (ω), for ω in �. In particular for any
measurable ψ we write

∫
ψ( f (ω))d Pf (ω) instead of

∫
ψ( f )dπ f ( f ). The reason is

that the random variable U (g) for g ∈ H is naturally defined on �.
Let us now turn to the proof of Theorem 2. First we introduce the subset Vn =

{(θ, ω) ∈ � × �, (θ, f (ω)) ∈ Vn}. By the same argument as in the proof of Theo-
rem 1, due to (C′) one can restrict the study of the posterior to Vn . One can also restrict
slightly the set of ω′s by considering, for a large enough constant M , the set

Cn = {
ω ∈ �, |Uγn|(ω) ≤ M

√
nεn‖γn‖H

}
.

Since Uγn is centered, normally distributed with variance ‖γn‖2
H

, we have the bound
Pf (Cc

n) � exp(−nε2
n M2/2). The assumption on BK L ,n together with Lemma 2 imply

that for M large enough, it holds (πθ ⊗ Pf )(�× Cn|X (n)) → 1.
The preceding shows that it is enough to focus on the ratio

∫

B

∫

Cn

1Vn (θ, ω) exp
n(θ, f (ω)) d Pf (ω)dπθ (θ)
∫ ∫

Cn

1Vn (θ, ω) exp
n(θ, f (ω)) d Pf (ω)dπθ (θ)
= s1(B)

s0
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and bound it from above and below. In total there are four inequalities to establish
(upper and lower bound for s1(B) and s0). Let us prove that

s1(B) ≤
∫

B

exp
{
−h2/2 + hWn(1,−γ )+ oP (1 + h2)

}
dπθ (θ)

×EPf

(
1F exp

{
−‖0, a‖2

L/2 + Wn(0, a)+ Rn(θ0, f )
})
, (15)

where the set F is defined as

F ={ω∈�, |Uγn|(ω)≤2M
√

nεn‖γn‖H, g(ω) ∈ Fn(θ), ‖0, g(ω)− f0‖L ≤2εn},

the other three inequalities being established in a similar way.
Since ‖θ − θ0, f − f0‖2

L = Ĩη0(θ − θ0)
2 + ‖0, f + (θ − θ0)γ − f0‖2

L and, for n
large enough, ‖0, (θ − θ0)(γ − γn)‖L ≤ εn , it holds

{‖θ − θ0, f − f0‖L ≤εn} ⊂ { Ĩη0(θ − θ0)
2 ≤ε2

n, ‖0, f +(θ−θ0)γn − f0‖L ≤2εn}.

Thus by factorizing the terms in θ one obtains as upper bound for s1(B) the first part
of the right hand-side of (15) times an integral with respect to Pf . This latter integral,
which depends on θ , equals

∫
1 {ω ∈ Cn, f (ω) ∈ Fn, ‖0, f (ω)+ (θ − θ0)γn − f0‖L ≤ 2εn}

× exp

{

− n

2
‖0, f + (θ − θ0)γ − f0‖2

L

+√
nWn(0, f + (θ − θ0)γ − f0)+ Rn(θ, f )

}

d Pf (ω)

Let us rewrite the term in the exponential introducing γn as

−n‖0, f + (θ − θ0)γ − f0‖2
L/2 + √

nWn(0, f + (θ − θ0)γ − f0)+ Rn(θ, f )

= −n‖0, f + (θ − θ0)γn − f0‖2
L/2 + √

nWn(0, f + (θ − θ0)γn − f0)

+ Rn(θ0, f +(θ − θ0)γn)+{Rn(θ, f )− Rn(θ0, f +(θ − θ0)γn)} + Qn(θ, f ),

where Qn(θ, f ) is the remainder term, that is

Qn(θ, f ) = −n(θ − θ0)
2‖0, γ − γn‖2

L/2 + √
n(θ − θ0)Wn(0, γ − γn)

−n(θ − θ0)〈 (0, f − f0 + (θ − θ0)γn), (0, γ − γn) 〉L .

Due to (E), ‖0, γ − γn‖L tends to zero and Wn(0, γ − γn) is a oP (1). Using Cauchy–
Schwarz inequality and the fact that Vn is a εn-neighborhood of η0, the crossed term in
Qn(θ, f ) is bounded from above by (

√
nεnρn)h. Thus due to (E), the term Qn(θ, f )

is a oP (1 + h2) uniformly over the considered neighborhood. The same holds for the
remainder terms difference due to (N′).
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Changing variables according to Lemma 17, the nonparametric integral equals, up
to a exp{oP (1 + h2)} term,

∫
1{ω, |Uγn(ω)+ (θ − θ0)‖γn‖2

H
| ≤ M

√
nεn‖γn‖H}

× 1 {g(ω) ∈ Fn(θ), ‖0, g(ω)− f0‖L ≤ 2εn}
× exp

{
−n‖0, g − f0‖2

L/2 + √
nWn(0, g − f0)+ Rn(θ0, g)

}

× exp
{
(θ − θ0)Uγn(ω)− (θ − θ0)

2‖γn‖2
H
/2
}

d Pf (ω).

Now using the fact that ‖γn‖H � √
nρn and that, on the considered set, due to (E),

|Uγn|(ω) � (
√

nεnρn)
√

n = o(
√

n), we obtain that the last term in the preceding dis-
play is exp

{
oP (1 + h2)

}
. The upper bound we obtain for the nonparametric integral

is, up to exp{oP (1 + h2)},
∫

1
{
ω, |Uγn(ω)| ≤ 2M

√
nεn‖γn‖H, g(ω) ∈ Fn(θ), ‖0, g(ω)− f0‖L ≤ 2εn

}

× exp
{
−n‖0, g − f0‖2

L/2 + √
nWn(0, g − f0)+ Rn(θ0, g)

}
d Pf (ω),

that is the second term of the right-hand side of (15). Note that the expression inside the
exponential is nothing but 	n(θ0, g)−	n(θ0, f0). Thus we are almost in position to use
the second part of (C′) about�θ=θ0 , except for the extra indicator of {ω, |Uγn(ω)| ≤
2M

√
nεn‖γn‖H}. But the posterior probability of this event tends to one due to the

assumption on Bθ=θ0
K L ,n together with Lemma 2, thus one can delete this event without

alternating the bound at stake for the ratio s1(B)/s0, as in the beginning of the proof.
One concludes like in the proof of Theorem 1. ��

4 Applications: proofs

4.1 Proof of Theorem 3

We first obtain the LAN-expansion for model (9) and introduce the norm ‖ · ‖L . Then
a testing distance dT which verifies (4) is defined and related to ‖ · ‖L . A sieve An can
then be constructed such that (5)–(6) are verified, which enables one to obtain (C) for
some rate εn . Finally we conclude by showing that (N) is fulfilled for our choices of
εn and Fn . For any real θ and any symmetric 1-periodic function f in L2[0, 1], simple
calculations reveal that the log-likelihood in model (9) can be expanded as follows,


n(θ, f ) = −‖h, a‖2
L/2 + W (h, a)+ Rn(θ, f ),

with ‖h, a‖2
L = ∫

(h2 f ′
0(u)

2 + a(u)2)du and W (h, a) = ∫
(−h f ′

0(t − θ0) + a(t −
θ0))dW (t), the integration domain being [−1/2, 1/2]. The Hilbert space on which
the inner product is defined is R × Gη0 , with Gη0 the Hilbert space of even, square
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integrable functions on (−1/2, 1/2), extended by 1-periodicity. In particular, note that
there is no information loss. Denoting

�n(t, h) �
√

n( f0(t − θ0)− f0(t − θ0 + h/
√

n))+ h f ′
0(t − θ0),

the remainder term Rn(θ, f ) of the expansion has the expression

Rn(θ, f ) = −1

2

∫
�n(t, h)2dt −

∫
�n(t,−h)dW (t) (16)

−
∫
�n(t, h)

[−h f ′
0(t − θ0)+ a(t − θ0)

]
dt (17)

+
∫
[
a(t − θ0 − h/

√
n)− a(t − θ0)

]
dW (t). (18)

For any η = (θ, f ) and λ = (τ, g) in E , let us introduce the distance dT as

d2
T (η, λ) =

1/2∫

−1/2

(g(t − τ)− f (t − θ))2 dt.

Lemma 3 Equation (4) is satisfied with dn = en = dT and ξ = 1/4.

Proof Let us consider the test

φn = 1

⎧
⎪⎨

⎪⎩
2

1/2∫

−1/2

{ f1(t − θ1)− f0(t − θ0)}d X (n)(t) > ‖ f1‖2 − ‖ f0‖2

⎫
⎪⎬

⎪⎭
.

The verifications are then as in the proof of Lemma 5 in [12] and are omitted. ��
Lemma 4 Let f be a symmetric 1-periodic function in L2[0, 1] and let g satisfy con-
ditions (R). There exist positive D1, D2, D3 and μ > 0 depending only on β, ρ, L , τ0
such that, for all θ, τ ∈ �,

D3(θ − τ)2 ≤ d2
T ((θ, f ), (τ, g)) ≤ D2

{
(θ − τ)2 + ‖ f − g‖2

}
(19)

if |θ − τ | ≤ μ, d2
T ((θ, f ), (τ, g)) ≥ D1

{
(θ − τ)2 + ‖ f − g‖2

}
. (20)

Proof First we prove (19). Denoting δ = θ − τ , it holds

d2
T ((θ, f ), (τ, g)) =

∑

k≥0

(gk cos(2πkδ)− fk)
2 + g2

k sin2(2πkδ).

Since |δ| ≤ 2τ0 < 1/2, there exists a constant d > 0 depending on τ0 only such that
for any |δ| < 2τ0, | sin(2πδ)| ≥ d|δ|. Since g satisfies (R), we have g2

1 ≥ ρ2, thus the
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first inequality is obtained by setting D3 = d2ρ2. Then note that

d2
T ((θ, f ), (τ, g)) ≤ 2d2

T ((θ, f ), (θ, g))+ 2d2
T ((θ, g), (τ, g))

≤ 2‖ f − g‖2
2 + 8

∑

k≥0

g2
k sin2(πkδ) ≤ D2(‖ f − g‖2

2 + δ2),

with D2 = 2 ∨ 8π2L2, using (R). In order to check (20), let us write

d2
T ((θ, f ), (τ, g)) =

∑

k≥0

(gk − fk)
2 + 4 fk gk sin2(πkδ)

= ‖ f − g‖2
2 + 4

∑

k≥0

( fk − gk)gk sin2(πkδ)+ 4
∑

k≥0

g2
k sin2(πkδ).

Since g satisfies (R) and using the bound | sin(x)| ≥ 2|x |/π valid for |x | ≤ π/2, the
last term is bounded from below by 4g2

1 sin2(πδ) ≥ 4ρ2(2δ)2. Using Cauchy–Schwarz
inequality, conditions (R) and denoting ν = (β − 1) ∧ 1,

∣
∣
∣
∣
∣
∣

∑

k≥0

( fk − gk)gk sin2(πkδ)

∣
∣
∣
∣
∣
∣
≤ ‖ f − g‖2

⎛

⎝
∑

k≥0

g2
k sin4(πkδ)

⎞

⎠

1/2

≤ ‖ f − g‖2

⎛

⎝π2ν+2δ2ν+2
∑

k≥0

k2βg2
k

⎞

⎠

1/2

≤ πν+1|δ|νL(‖ f − g‖2
2 + δ2)/2,

where we have used the inequality 2‖ f − g‖2δ ≤ ‖ f − g‖2
2 + δ2. Thus

dT ((θ, f ), (τ, g))2 ≥
{

1 − 2πν+1|δ|νL
}

‖ f − g‖2
2 +

{
16ρ2 − 2πν+1|δ|νL

}
δ2.

Let us choose δ such that |δ|ν ≤ (1/2)(1∧16ρ2)/(2πν+1L). Then it suffices to choose
D1 = (1 ∧ 16ρ2)/2 to obtain (20). ��
A consequence of Lemma 4 is that (8) is fulfilled. Indeed, f0 satisfies (R), thus if
dT (η, η0) ≤ γn , due to (19) one has (θ − θ0)

2 � γ 2
n and if γn → 0, one can

apply (20).

4.1.1 Concentration result, translation model

In order to check conditions (5–7) for the prior (10), we first define the rate εn . Accord-
ing to Lemma 14, an appropriate choice is εn = Dn−α∧β/(2α+1) for D large enough.
Then we define sieves Fn using the RKHS H

α of the prior and the Hilbert spaces B
p,

both defined in Sect. 5.2. Given a sequence αn → 0 and a real 1 ≤ p < α, both to be
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specified later, let us define An = �× Fn and

Fn =
{
εnB

0
1 + √

10CnεnH
α
1

}
∩ {
αnB

p
1 + √

nαnH
α
1

}
, (21)

with C constant large enough. We make the following restriction on αn ,

(C1) αn � εn and (C2) αn � n
−1/

(
2+ 1

α−p

)

,

so that the conclusion of Lemma 13 holds and exp(−nα2
n) ≤ exp(−Cnε2

n). Further
restrictions on p, αn arise when dealing with remainder terms in the LAN expansion.

Verification of (5). For any η1 = (θ1, f1) and η2 = (θ2, f2) in An , by the same
calculation as in the proof of Lemma 4,

d2
T (η1, η2)/2 ≤ ‖ f1 − f2‖2 + 4π2(θ1 − θ2)

2
∑

k≥1

k2 f 2
2,k .

Since f2 belongs to the set αnB
p
1 + √

nαnH
α
1 ⊂ 2

√
nαnB

p
1 and p > 1, we have that∑

k≥1 k2 f 2
2,k � nα2

n . Thus dT (η1, η2)
2 ≤ K (nα2

n(θ1 − θ2)
2 + ‖ f1 − f2‖2

2) for some
positive constant K . Hence

N (2K εn,An, dT ) ≤ N

(
εn√
nαn

,�, | · |
)

× N
(
εn, εnB

0
1 + √

10CnεnH
α
1 , ‖ · ‖2

)

�
(√

nαnε
−1
n

)
exp(6Cnε2

n) � exp
(

7Cnε2
n

)
,

using Lemma 14, as long as log n = o(nε2
n), which is the case here.

Verification of (6). Due to the definition of An ,

π f (E\An) ≤ π f

(
f /∈ εnB

0
1 + √

10CnεnH
α
1

)
+ π f

(
f /∈ αnB

p
1 + √

nαnH
α
1

)
.

Lemmas 13 and 14 and the conditions on αn give us the desired inequality.

Verification of (7). Note that BK L ,n neighborhoods are simply dT -balls here. Thus
(19) implies that

�
(

BK L(η0,
√

5D2εn)
)

≥ πθ

(
(θ − θ0)

2 < ε2
n

)
× π f

(
‖ f − f0‖2 ≤ 4ε2

n

)

� ε−1
n exp

(
−nε2

n

)
� exp

(
−2nε2

n

)
,

using Lemma 14, which is enough to check (7).
Thus Lemma 1 gives that �(η ∈ E, dT (η, η0) < Mεn|X (n)) tends to 1. Since (8)
holds, this is also true in terms of ‖ · ‖L . An application of Lemma 2 leads to the fact
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that�(η ∈ An, ‖η− η0‖L < Mεn|X (n)) → 1 and the first part of assumption (C) is
established. The concentration result about�θ=θ0 follows by the same techniques, in
an even simpler way since no θ is involved, which concludes the verification of (C).

4.1.2 Translation model, LAN-type conditions

Let us check (N) by proving that each of the terms composing Rn(θ, f )/(1 + h2) is
uniformly a oP (1) over Vn . The next Lemma deals with the term (16).

Lemma 5 As n → +∞ it holds

sup
(θ, f )∈Vn

1/2∫

−1/2

�n(t, h)2

1 + h2 dt = o(1) and sup
(θ, f )∈Vn

1/2∫

−1/2

�n(t,−h)

1 + h2 dW (t) = oP (1).

Proof Let us denote δ = (θ − θ0) = h/
√

n, then using the Fourier series expansion
of f0 and f ′

0, one obtains

1∫

0

�n(t, h)2(u)du = n
∑

k≥1

f 2
0,k{cos(2πkδ)− 1}2 + f 2

0,k{2πkδ − sin(2πkδ)}2.

Using that 0 ≤ x − sin(x) ≤ 2
(

x ∧ x3

6

)
for any x > 0, denoting ν = (β − 1) ∧ 1,

1∫

0

�n(t, h)2(u)du � n
∑

k≥1

f 2
0,k

[
sin4(πkδ)+ k6δ61k|δ|≤1 + k2δ21k|δ|>1

]

�n
∑

k≥1

f 2
0,kk2+2ν

[
δ2+2ν sin2−2ν(πkδ)+δ2+2ν(kδ)4−2ν1k|δ|≤1+δ2k−2ν1k|δ|>1

]

� nδ2+2ν
∑

k≥1

f 2
0,kk2+2ν .

Since on Vn , we have |h| � εn , using (R) the last display can be further bounded from
by n−νh2+2ν � ε2ν

n h2 = o(h2), hence the first statement. The proof of the second
result is not difficult using Lemma 12 and the first statement and is omitted. ��
Lemma 6 For any β ≥ 2, |(17)|/(1 + h2) tends to 0 uniformly over Vn. This also

holds for 1 < β < 2 as soon as εn = o(n−1+ β
2 ) as n → +∞.

Proof Cauchy–Schwarz inequality, the fact that
√

x + y ≤ √
x + √

y for all positive
x and y, and Lemma 5 together imply that on Vn ,

(17) ≤
(∫

�n(t, h)2dt

)1/2 (∫
[−h f ′

0(t − θ0)+ a(t − θ0)]2dt

)1/2

� n−ν/2h1+ν (h2 + ‖a‖2
2

)1/2
� ενn h2 + n−ν/2h1+ν‖a‖2.
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If β ≥ 2, using that (θ, f ) lies in Vn , the last display is bounded by εnh2 = o(h2),
whereas if 1 < β < 2, we get the bound n1−β/2h1+νεn , which is o(1 + h2) as soon
as εn = o(n−1+β/2). ��

Finally let us focus on (18). By definition of Fn , we can set f = αngn + hn , with
gn ∈ B

p
1 and hn ∈ √

nαnH
α
1 . Thus

(18)

1 + h2 =
√

nαn

1 + √
n(θ − θ0)

1/2∫

−1/2

(gn(t − θ)− gn(t − θ0))dW (t) (22)

+
√

n

1 + √
n(θ − θ0)

1/2∫

−1/2

((hn − f0)(t−θ)−(hn − f0)(t−θ0))dW (t). (23)

To bound these terms we use Lemma 12 applied to processes of the form∫
φn,θ, f (u)dW (u). The entropies involved are bounded using Lemma 15 as follows.

Bounding (22). Let us write (22) = ∫
ϕn(u)dW (u) and see this process as indexed by

L2-functions ϕn . Thus the distance d in Lemma 12 is simply the L2-norm and δ2 can
be chosen proportional to an upper bound on the quantities

∫
ϕ2

n . Note that

gn(t − θ)− gn(t − θ0) = 2
∑

k≥1

sin(πk(θ − θ0)) sin(2πkt − πk(θ + θ0))gn,k .

Since gn ∈ B
p
1 and p > 1, it holds

∫
ϕ2

n � α2
n
∑

k≥1 k2g2
n,k � α2

n and, denoting byϕn,k

the Fourier coefficients of ϕn , we have
∑

k≥1 k2pϕ2
n,k � nα2

n
∑

k≥1 k2pg2
n,k � nα2

n .

This means that all ϕn’s belong to
√

nαnB
p
1 . Thus

αn∫

0

√
log N (η,

√
nαnB

p
1 , ‖ · ‖2)dη �

αn∫

0

(√
nαn/η

)1/2p
dη � αnn1/4p.

This leads to the condition (C3) αn = o(n−1/4p).
Bounding (23). By similar arguments as for (22), one obtains that (23) is uniformly a
oP (1) over Vn as soon as

(C4) αn = o(n−3/2(2α+1)).

We include the detailed calculations for completeness.
Let us write (23)= ∫

ψn(u)dW (u) and see this process as indexed by the functions
ψn and apply Lemma 12. The distance d is the L2-norm and the parameter δ2 can
still be chosen proportional to an upper bound on the variances

∫
ψn,θ, f (u)2du. First

we wish to bound from above these variances. Note that due to (C1) we have the
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inequalities ‖hn − f0‖2
2 ≤ ‖ f − f0‖2

2 + α2
n‖gn‖2

2 ≤ ε2
n + α2

n ≤ α2
n , thus

n

1 + n(θ − θ0)2

1/2∫

−1/2

{(hn − f0)(t − θ)− (hn − f0)(t − θ0)}2dt

� n

1 + n(θ − θ0)2

∑

k≥1

sin2(πk(θ − θ0))(hn,k − f0,k)
2 �

∑

k≥1

k2(hn,k − f0,k)
2.

Let us denote 2χ = 2β ∧ (2α + 1) and rn = √
nαn . Hölder inequality implies

∑

k≥1

k2(hn,k − f0,k)
2 ≤

⎧
⎨

⎩

∑

k≥1

(hn,k − f0,k)
2

⎫
⎬

⎭

1−1/χ ⎧
⎨

⎩

∑

k≥1

k2χ (hn,k − f0,k)
2

⎫
⎬

⎭

1/χ

.

If 2β > 2α + 1, then
∑

k≥1 k2χ (hn,k − f0,k)
2 is bounded from above by Cr2

n using
the fact that hn belongs to rnH

α
1 . We obtain

∑

k≥1

k2(hn,k − f0,k)
2 � α

2−2/χ
n ζ

2/χ
n ≤ α2

nn2/(1+2α).

If 2β ≤ 2α + 1 then χ = β and for any integer Kn > 0 it holds

∑

k≥1

k2β(hn,k − f0,k)
2

� K 2β
n

∑

1≤k≤Kn

(hn,k − f0,k)
2 +

∑

k≥1

k2β f 2
0,k + K −1−2α+2β

n

∑

k>Kn

k1+2αh2
n,k

� K 2β
n α2

n + L2 + r2
n K −1−2α+2β

n � 1 ∨ α2
nn2β/(1+2α),

where we obtained the last inequality by optimizing in Kn . Since εn = Dn−α∧β/(2α+1),
using (C1), we have that α2

nn2β/(1+2α) is always larger than some positive constant,
thus 1 ∨ α2

nn2β/(1+2α) reduces to the second term. Thus in this case

∑

k≥1

k2(hn,k − f0,k)
2 � α2

nn2/(1+2α).

Hence in all cases, the obtained bound on the variances is χ2
n = α2

nn2/(1+2α). Now let
us show that the ψn’s are in a set whose entropy is well-controlled.

ψn(·) =
√

n

1 + √
n(θ − θ0)

{hn(· − θ)− hn(· − θ0)}

−
√

n

1 + √
n(θ − θ0)

{ f0(· − θ)− f0(· − θ0)} = Hn,θ,hn (·)− F0,θ (·).
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We deal separately which each of these two terms. First,

1/2∫

−1/2

(F0,θ1(u)− F0,θ2(u))
2du

≤ 2

1/2∫

−1/2

[ √
n

1 + √
n(θ1 − θ0)

−
√

n

1 + √
n(θ2 − θ0)

]2

f0(u − θ0)
2du

+ 2

1/2∫

−1/2

[ √
n

1 + √
n(θ1 − θ0)

f0(u − θ1)−
√

n

1 + √
n(θ2 − θ0)

f0(u − θ2)

]2

du

≤ 6n2(θ1 − θ2)
2‖ f0‖2 +

[
2
√

n

1 + √
n(θ1 − θ0)

]2 1∫

0

( f0(u − θ1)− f0(u − θ2))
2du

≤ 6n2(θ1 − θ2)
2‖ f0‖2 + 4n(4π2)(θ1 − θ2)

2
∑

k≥1

k2 f 2
0,k � n2(θ1 − θ2)

2.

Thus for a universal constant C (independent of η),

N (η, {F0,θ , θ ∈ �}, ‖ · ‖2) ≤ Cn/η.

Now let us cover the set of functions {Hn,θ,hn } by L2-balls. If qk denote the Fourier
coefficients of any function in this set, one easily sees that |qk | ≤ |k||hn,k |, thus∑

k≥1 k2α−1q2
k ≤ r2

n , which means that all functions Hn,θ,hn belong to rn ·Hα−1
1 . Due

to Lemma 15, there exists a universal constant D such that, for n large enough, for
any η > 0,

N (η, rn · H
α−1
1 , ‖ · ‖2) ≤ exp

{
D(rn/η)

2
2α−1

}
.

Combining the two preceding results, there exists a universal constant D1 such that

N (η, {F0,θ − Hn,θ,hn }, ‖ · ‖2)

≤ N
(η

2
, {F0,θ }, ‖ · ‖2

)
× N

(η

2
, {Hn,θ,hn }, ‖ · ‖2

)
� n

η
eD1η

− 2
2α−1

.

If χ2
n is the bound on the variances obtained above, due to Lemma 12,

χn∫

0

√
log N (η, {F0,θ − Hn,θ,hn }, ‖ · ‖2)dη
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�
χn∫

0

log1/2 (n/η) dη +
χn∫

0

(rn/η)
1

2α−1 dη.

� χn log1/2 (n/χn)+ χn + r
1

2α−1
n χ

1− 1
2α−1

n

As long as χn log n → 0, the first two terms tend to zero as n → +∞, while the third

one leads to the condition r
1

2α−1
n χ

1− 1
2α−1

n = o(1). That is, αnn
3

2(2α+1) = o(1). ��

4.1.3 Conclusion

Let us recall that we have chosen εn = Dn−α∧β/(2α+1). Simple verifications reveal,
setting p = 1 ∨ (α/2), that for any α, β such that α > 1 + √

3/2 and β > 3/2, it is
possible to find a sequence αn → 0 such that (C1–C4) are satisfied. Lemma 6 gives
another condition in the case β < 2, where one also needs εn = o(n−1+β/2). This
imposes, if α ≥ β, that α < (3β − 2)/(4 − 2β), whereas if α < β the condition
is trivial. Putting these conditions together gives us the area presented in Fig. 1 and
concludes the proof of Theorem 3 for the prior παf .

4.1.4 Case of the prior παf,k(n)

The proof for this prior is similar, though easier. We explain it briefly. The concentra-
tion step (C) can be done following the methods of [29], leading to a concentration

rate εn ≈ n− α∧β
2α+1 if one chooses k(n) = �n1/(2α+1)�. The step (N) is similar to the

case of prior (10). The control of the third term of the LAN expansion is simpler,
since the sum defining the prior is finite, and it leads to the condition k(n)3ε2

n → 0 as
n → +∞, that is α ∧ β > 3/2, which concludes the proof.

4.2 Functional data analysis model

Here we shall only give the LAN expansion in model (11)–(12) and check (E). Let A
be the set of all square integrable functions on [0, 1] extended to R by 1-periodicity.
Let us define the inner product 〈·, ·〉L on R × A by

‖(h1, a1), (h2, a2)‖2
L = 〈a1, a2〉2 + 〈a1 − h1 f ′

0, a2 − h2 f ′
0〉2,

with 〈·, ·〉2 the usual inner product on L2(R). For any (h, a) ∈ R × A, we denote

Wn((h, a)) = 1√
n

n∑

i=1

[
a(ti )εi + (a(ti − θ0)− h f ′

0(ti − θ0))ζi
]
.

Note that for any d ≥1 and any fixedv1, . . . , vd , the variable Wn(v1, . . . , vd) converges
in distribution towards a Gaussian variable of covariance structure (〈vi , v j 〉L)1≤i, j≤d .
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Direct calculations lead to express 
n(θ, f ) = 	n(θ, f )− 	n(θ0, f0) as


n(θ, f ) = −n

2
‖θ − θ0, f − f0‖2

L + √
nWn(θ − θ0, f − f0)+ Rn(θ, f ),

where the remainder term Rn(θ, f ) can be written in a similar way as for model (9),
with additional terms accounting for the approximation of integrals by their discrete
counterparts on the design points (ti ).

From the structure of the inner product 〈·, ·〉L on the Hilbert space R × A one
easily deduces that the least favorable direction and the efficient Fisher information
are respectively given by γ = − f ′

0/2 and Ĩη0 = ‖(1,−γ )‖2
L = ‖ f ′

0‖2
2/2. In particular,

there is a loss of information. The RKHS of the prior (13), again denoted H
α , is the

space of functions spanned by the first 2k(n)+1 elements of the Fourier basis equipped
with the norm 〈 f, g〉Hα = ∑2k(n)

k=0 σ−2
k fk gk, see [30, Theorem 4.1]. This space enables

to approximate the least favorable direction γ = − f ′
0/2 by a truncated version of it.

Denoting by γk the real Fourier coefficients of γ , we set γn(·) = ∑2k(n)
k=0 γkεk(·). Since

f0 is C1, the complex Fourier coefficients of f ′
0 are given by (2iπk)ck . Thus

‖γn‖2
H

�
k(n)∑

k=0

k3+2α|ck |2 � k(n)(2α+3−2β)∨0

‖0, γn − γ ‖2
L �

∑

k>k(n)

k2|ck |2 � k(n)2−2β.

In view of the preceding and of (3), we define ρn � k(n)1−β ∨ n−1/2. Now we
can check (E) and the condition

√
nεnρn → 0. Due to the expression of the rate

εn = n− α∧β
2α+1 , obtained in the same way as for model (9), and the expressions of ρn

and k(n) = �n1/(2α+1)�, we have three cases

• if 2α < 2β − 3, then ρn = n−1/2 and the condition is satisfied since εn → 0.
• if 2β − 3 < 2α < 2β, the condition becomes β > 3/2.
• if α ≥ β, the condition is α < 2β − 3/2.

Thus we are left with the conditions α < 2β − 3/2 and β > 3/2. One then checks
that Wn(0, γ − γn) is a oP (1) using its explicit expression, which leads to (E). We
omit the verifications for (N′), which lead to the condition α ∧ β > 3/2.

4.3 Proof of Theorem 5

We start by introducing the LAN expansion and ‖ · ‖L . Testing can be done using
Hellinger’s distance h and Lemmas 7–8 enable to relate h to other metrics. The con-
centration of the posterior associated to the prior (14) is first obtained in terms of h
at a rate εn . Then we obtain (C′) in terms of ‖ · ‖L at a slightly slower rate ζn and
finally check (N′) and (E). Throughout this section, we work with the local parameters
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h = √
n(θ − θ0) and a = √

n(r − r0). For any u ∈ [0, τ ] and any integer i , let

Mi (u) = Eη0(1u≤T Zi eθ0 Z ) and M0(θ)(u) = Eη0(1u≤T eθ Z ).

As simple calculations reveal, the log-likelihood in Cox’s model can be expanded
as follows 
n(θ, r) = −‖h, a‖2

L/2 + Wn(h, a)+ Rn(θ, r), with

‖h, a‖2
L =

τ∫

0

{h2 M2(u)+ 2ha(u)M1(u)+ a(u)2 M0(u)}d
0(u)

Wn(h, a) = 1√
n

n∑

i=1

[
δi {h Zi + a(Ti )} − eθ0 Zi {h Zi
0(Ti )+ (
0a)(Ti )}

]
,

the remainder term Rn(θ, r) being studied in Sect. 4.3.2. From the expression of the
norm, one deduces that the least favorable direction γ (the projection of the vector
(1, 0) onto the nuisance space) is u → M1(u)/M0(u). Explicitly, for any u ∈ [0, τ ],

γ (u) = M1

M0
(u) =

∫ τ
0 (1 − Gz(u−))zeθ0z−
0(u)eθ0z

ϕ(z)dz
∫ τ

0 (1 − Gz(u−))eθ0z−
0(u)eθ0z
ϕ(z)dz

. (24)

As noted in Sect. 1.6, for independent identically distributed observations, tests sat-
isfying (4) exist if one chooses dn = en equal to Hellinger’s distance h and ξ = 1/2,
K = 1/8, see [13], Sect. 7. Let us denote P = Pη = Pθ,r and P0 = Pη0 = Pθ0,r0 ,
then

h(P, P0)
2 =

∫∫ [

{e(r(t)+θ z−
(t)eθ z)/2 − e(r0(t)+θ0z−
0(t)eθ0z)/2}2(1 − Gz(t−))

+
{

e−
(t)eθ z/2 − e−
0(t)eθ0z/2
}2

gz(t)

]

dtϕ(z)dz

+
∫
{

eθ z −
0eθ0z} (τ )(1 − Gz(τ−))ϕ(z)dz

= h1(P, P0)
2 + h2(P, P0)

2 + h3(P, P0)
2.

The Kullback–Leibler divergence K L(P0, P), the quantity V (P0, P) and the second
moment W (P0, P) = ∫

log2(p0/p)p0dμ can all be expressed in a similar way.

Lemma 7 Fix λ1, λ2, θ1, θ2 and let P1, P2 be the distributions associated to (θ1, r1)

and (θ2, r2) respectively. Let us assume that there exists a constant 0 < Q ≤ 1/4 such
that ‖r1 − r2‖∞ + M |θ1 − θ2| ≤ Q. Then there exists a constant c depending on τ,M
only such that

h2(P1, P2) ≤ cQ2e2Q .

123



Semiparametric BVM theorem 89

Proof For all u in [0, τ ], using the inequality |ex − 1| ≤ |x |e|x | valid for all real x ,

∣
∣
∣1 − e(r2−r1)(u)+(θ2−θ1)z

∣
∣
∣ ≤ |(r2 − r1)(u)+ (θ2 − θ1)z| eQ ≤ QeQ .

Thus, for all t in [0, τ ], |
1(t)eθ1z −
2(t)eθ2z | is bounded from above by

t∫

0

∣
∣
∣1 − e(r2−r1)(u)+(θ2−θ1)z

∣
∣
∣ eθ1zd
1(u) ≤ QeQ
1(t)e

θ1z .

Hence using the inequality |1 − ey | ≤ e|y| − 1 valid for all real y,

{√
e

r1+θ1z−
1eθ1z − √
e

r2+θ2z−
2eθ2z
}2

≤ λ1eθ1z−
1eθ1z
{√

e
Q+QeQ
1eθ1z − 1

}2

� λ1eθ1z−
1eθ1z
(
√

e
Q − 1)2eQeQ
1eθ1z

+λ1eθ1z
{√

e
−
1eθ1z − √

e
−(1−QeQ)
1eθ1z

}2

.

The mean value theorem applied to the function s → e−s
1(t)eθ1z/2 ensures the exis-
tence of a real ζt such that 1 − QeQ ≤ ζt ≤ 1 and

∣
∣
∣e−
1eθ1z/2 − e−(1−QeQ)
1eθ1z/2

∣
∣
∣ = QeQ
1(t)e

θ1ze−ζt
1eθ1z/2/2

� QeQ
1(t)e
θ1ze−(1−QeQ)
1eθ1z/2.

Since QeQ ≤ 1/2, using the inequality 0 ≤ xe−x/4 � e−x/8 for positive x , we obtain

h2
1(P1, P2) � Q2e2Q

∫∫
λ1(t)e

θ1ze−
1(t)eθ1z/4dtϕ(z)dz

�
∫

Q2e2Q
[
−4e−
1(t)eθ1z/4

]τ

0
ϕ(z)dz � Q2e2Q .

The same bound is obtained for h2
2(P1, P2) and h2

3(P1, P2) in a similar way. ��
Lemma 8 Suppose that |θ0 − θ | + ‖r − r0‖∞ is bounded in R. Then

K (P0, P)= P0 log p0/p�h2(p0, p) and V (P0, P)≤ P0 log2 p0/p�h2(p0, p).

Proof First note that

log p0/p = {log λ0/λ+ (θ0 − θ)z −
0eθ0z +
eθ z}1d=1,t<τ

+{
eθ z −
0eθ0z}1d=0,t<τ + {
(τ)eθ z −
0(τ )e
θ0z}1d=0,t=τ .
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By assumption M |θ0 − θ | + ‖ log λ0/λ‖∞ is bounded by some constant Q1. Then
using the same technique as in the proof of Lemma 7, one obtains

log ‖p0/p‖∞ ≤ ‖ log(p0/p)‖∞ ≤ Q1 + eθ0 M‖
0‖∞Q1eQ1 .

An application of Lemma 8 in [11] gives the result. ��

4.3.1 Semi-parametric concentration

For any α > 0, let Hα be the RKHS of the prior (14), seen as a random element in
B = (C0([0, τ ]), ‖ · ‖∞). Since log λ0 = r0 is β-Hölder, it follows from the results
stated in Sect. 5 that the equation ϕr0(εn) ≤ nε2

n is solved for εn equal to n−α∧β/(2α+1),
possibly up to some log-factor that we omit to write in the sequel. Moreover, Eqs. (26)
and (27)–(29) are then satisfied and (28) is fulfilled with Bn = εnB1 + √

10CnεnHα
1 ,

where C is a large enough constant.
Let B denote the Hölder regularity of the least favorable direction γ given by

(24). Due to Lemma 16, if, up to a log-factor, we choose ρn = n−α∧B/(2α+1), then
ϕγ (ρn) ≤ nρ2

n . Hence there exists a sequence γn in Hα such that

‖γn − γ ‖∞ ≤ ρn and ‖γn‖2
Hα ≤ 2nρ2

n ,

Since ‖0, h − γ ‖L � ‖h − γ ‖∞, the preceding display also holds with the ‖·‖∞-norm
replaced by the ‖ · ‖L -norm, which implies (3). Note also that ‖γn‖∞ is bounded.

Now let us check (5)–(7). Lemmas 7 and 8 imply

{θ : |θ − θ0| ≤ εn} × {r : ‖r − r0‖∞ ≤ εn}
⊂ {

(θ, r) : h(p, p0) � εn, ‖log p0/p‖∞ � εn
}

⊂
{
(θ, r) : K (p0, p) � ε2

n, V (p0, p) � ε2
n

}
.

Due to (27), �(BK L ,n(η0, cεn)) � ε−1
n exp(−nε2

n) � exp(−2nε2
n) for some c > 0,

which gives (7). Equation (28) implies (6) for the sieve A′
n = � × Bn . Lemma 7

implies that εn-balls for the metric induced by |θ1 − θ2| + ‖r1 − r2‖∞ are included in
Cεn-Hellinger balls for a universal constant C . Thus to obtain (5) it suffices to cover
A′

n with balls for the first-mentioned metric and to use (27). Then Lemma 1 yields,

for M large enough, in P(n)η0 -probability,

�
(
(θ, r) ∈ �× Bn, h(P, P0) ≤ Mεn|X (n)

)
→ 1.

Now let us translate this result in terms of the norm ‖·‖L while also slightly modifying
the sieve. Let us denote ζn = C

√
nε2

n with C large enough and An = �× Fn , with

Fn = Bn ∩
⎧
⎨

⎩
r :

τ∫

0

er(u)du ≤ C5,

τ∫

0

er(u)(r − r0)
2(u)du ≤ C6ζ

2
n

⎫
⎬

⎭
,
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for C5,C6 large enough constants. It follows from Lemmas 9, 10 and 11 below that

�
(
(θ, r) ∈ �× Fn, ‖θ − θ0, r − r0‖L ≤ ζn|X (n)

)
→ 1.

So, our definitive choice of sieve is An = �× Fn and our definitive rate is ζn .
To check the second part of (C′), one has to deal with Fn(θ) = Fn + (θ − θ0)γn .

Note that those sets are, up to constants, of the same type as Fn , since on the set
|θ − θ0| � εn , the norm ‖(θ − θ0)γn‖Hα � εn

√
nζn = o(

√
nεn). The concentra-

tion condition on �θ=θ0 easily follows. Finally, the conditions on Kullback–Leibler
neighborhoods are checked as above.

Before giving the proof of Lemmas 9–11, let us summarize what we have obtained
up to now. The posterior has been seen to converge at rate εn for Hellinger’s dis-
tance and at rate ζn for the LAN-distance. In particular, condition (C′) is satisfied
with the rate ζn . Below, in checking (N′), a mild condition on ζn will appear, namely
ζn = o(n−1/4), necessary to control the remainder term Qn,2 below.

Lemma 9 There exist universal constants C3,C4 > 0 such that if h(P0, P) ≤ C3,
then ‖
‖∞ ≤ C4, where the sup-norm is taken over the interval [0, τ ].
Proof Let us first check that

sup
u∈[0,τ ]

∫
(1 − Gz(u−))

∣
∣
∣e−eθ z
(u) − e−eθ0z
0(u)

∣
∣
∣ϕ(z)dz ≤ 2h(P0, P). (25)

Let us denote�η,z(u) = Pη(T ≥ u|Z = z) = (1− Gz(u−))e−eθ z
(u) for 0 ≤ u < τ .
For any 0 ≤ s < τ , let ψη,z(s) be the derivative of �η,z(u) with respect to u at the
point s. Since �η,z(0) = �η0,z(0), it holds �η,z(u) − �η0,z(u) = ∫ u

0

[
ψη0,z(s) −

ψη,z(s)
]
ds for 0 ≤ u < τ . Using Cauchy–Schwarz inequality, the inequality (a +

b)2 ≤ 2a2 + 2b2 and the fact that �η,z(u) ≤ 1, we get that for all 0 ≤ u < τ it holds

⎛

⎝
u∫∫

0

∣
∣ψη0,z(s)−ψη,z(s)

∣
∣ϕ(z)dsdz

⎞

⎠

2

≤2

u∫∫

0

(√
ψη0,z(s)−

√
ψη,z(s)

)2
ϕ(z)dsdz.

Now note that for any positive reals a1, a2, b1, b2, it holds

{√
a1 + b1 −√

a2 + b2

}2 ≤ 2
{
(
√

a1 − √
a2)

2 + (
√

b1 −√
b2)

2
}
.

Thus for 0 ≤ u < τ , the penultimate display is bounded above by

4
∫∫ [

(1 − Gz(t−))
{√

e
r+θ z−
eθ z − √

e
r0+θ0z−
0eθ0z

}2

+ gz(t)

{√
e
−
eθ z − √

e
−
0eθ0z

}2
]

ϕ(z)dtdz ≤ 4h2(P0, P).
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For u = τ , similarly, one gets
∫ |�η,z(τ ) − �η0,z(τ )|ϕ(z)dz ≤ h(P0, P), which

proves (25). Now let dμu(z) denote the measure (1 − Gz(u−))ϕ(z)dz. For each fixed
u in [0, τ ], the mean value theorem applied to the function z → e−eθ z
(u)−e−eθ0z
0(u)

with respect to the measure dμu implies that there exists a real z∗(u) ∈ [−M,M] such
that

∫ ∣
∣
∣e−eθ z
(u) − e−eθ0z
0(u)

∣
∣
∣ dμu(z) =

∣
∣
∣e−eθ z∗(u)
(u) − e−eθ0z∗(u)
0(u)

∣
∣
∣

∫
dμu(z).

Since
∫
(1 − Gz(u−))ϕ(z)dz = Pη0(Y ≥ u) ≥ Pη0(Y ≥ τ) is bounded away from

zero, this means that, due to (25),

sup
u∈[0,τ ]

∣
∣
∣e−eθ z∗(u)
(u) − e−eθ0z∗(u)
0(u)

∣
∣
∣ ≤ Ch(P0, P).

From this it is easily seen that, since θ , Z and ‖
0‖∞ are bounded,
must be bounded
from above by a finite constant if h(P0, P) is small enough. ��
Lemma 10 For any (θ, r) ∈ �× Fn such that h(Pθ,r , P0) ≤ εn, it holds

‖θ − θ0, log λ− log λ0‖2
L � (nε2

n)ε
2
n = ζ 2

n .

Moreover, (θ − θ0)
2 � ζ 2

n and
∫
λ0 log2 λ/λ0 � ζ 2

n .

Proof First, due to the form of Fn , on this set it holds ‖r‖∞ = ‖ log λ‖∞ � √
nεn .

Thus using the expression of log(p/p0) obtained in the proof of Lemma 8, one gets
‖ log p/p0‖∞ � √

nεn on the sieve. An application of Lemma 8 in [11] then gives
that the second moment W (P0, P) verifies W (P0, P) � h2(P0, P)nε2

n � nε4
n . Now

simple calculations reveal that ‖θ − θ0, r − r0‖2
L is bounded from above by

W (P0, P)+
∫∫

(

0eθ0z −
eθ z)2

eθ0z−
0eθ0z
(1 − Gz(t−))d
0(t)ϕ(z)dz.

Since gz(t) is uniformly bounded away from zero, the last term in the preceding display
is bounded from above by

∫∫
(r − r0 + (θ − θ0)z)

2 eθ0z−
0eθ0z
gz(t)ϕ(z)d
0(t)dz � W (P0, P).

The last two statements of the lemma are simple consequences of the first result and
of the explicit expression of the norm ‖ · ‖L . ��
Lemma 11 For any (θ, r) ∈ An such that h(Pθ,r , P0) ≤ εn, it holds

∫
λ log2 λ/λ0 � (nε2

n)ε
2
n = ζ 2

n .
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Proof Let us denote S(λ)2 = λeθ z−
eθ z
(1−Gz(t−))ϕ(z) and define S(λ0)

2 similarly.
Further set X (λ) = ∫∫

(r − r0 + (θ − θ0)z)2S(λ)2. Due to Lemma 10 and Cauchy–
Schwarz inequality,

X (λ) =
∫∫

[r − r0 + (θ − θ0)z]2 (S(λ0)
2 + {S(λ)2 − S(λ0)

2})

� ζ 2
n +

(∫∫
{S(λ)− S(λ0)}2

)1/2

×
(∫∫

[r − r0 + (θ − θ0)z]4 {S(λ)2 + S(λ0)
2}
)1/2

� ζ 2
n + h(P0, P) ‖r − r0 + (θ − θ0)z‖∞

×
(

X (λ)+
∫∫

[r − r0 + (θ − θ0)z]2 S(λ0)
2
)1/2

.

We deduce, using that ‖r‖∞ � √
nεn on the sieve,

X (λ) � ζ 2
n + h(P0, P)

√
nεn

√
X (λ)+ ζ 2

n � ζ 2
n + ζn

√
X (λ)+ ζ 2

n .

Hence X (λ) � ζ 2
n , from which, using the facts that 
 is bounded due to Lemma 9

and that (θ − θ0)
2 � ζ 2

n (Lemma 10), we obtain the result. ��

4.3.2 Verification of (N′)

Let Vn be defined as in (N′) but with f replaced by r . Let the sieve An and the
rate ζn be as defined above. Let us write Rn(θ, r) = Rn,1(θ, r) + Rn,2(θ, r), where
Rn,1(θ, r) = −Gnψn(θ, r), with

ψn(θ, r)(Ti , Zi ) = √
n
{

eθ Zi
0{er−r0}(Ti )− eθ0 Zi
0(Ti )

− (θ − θ0)Zi e
θ0 Zi
0(Ti )− eθ0 Zi
0{r − r0}(Ti )

}

Rn,2(θ, r) = −n
0

{

M0(θ)e
r−r0 − M0 − (θ − θ0)M1 − (r − r0)M0

−1

2

[
(θ − θ0)

2 M2 + 2(θ − θ0)(r − r0)M1 + (r − r0)
2 M0

] }

.

Let us use the decomposition

Rn(θ, r)− Rn(θ0, r − (θ − θ0)γn)

= Rn(θ, r)− Rn(θ0, r)+ Rn(θ0, r)− Rn(θ0, r − (θ − θ0)γn).

We first deal with the term Qn,2(θ, r) = Rn,2(θ, r)− Rn,2(θ0, r). Due to Taylor’s
theorem, exp((θ − θ0)Z)− 1 = (θ − θ0)Z + (θ − θ0)

2 Z2/2 + (θ − θ0)
3 Z3Y/6, with
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Y bounded and exp(r − r0) = 1 + (r − r0)+ (r − r0)
2/2 + T1/2, where

T1 =
r−r0∫

0

(r − r0 − t)2et dt ≤ (r − r0)
2
∣
∣1 − er−r0

∣
∣ � (r − r0)

2(1 + er−r0).

Simple calculations yield that, on Vn ,

Qn,2(θ, r) = −n(θ − θ0)

[

(θ − θ0)

∫
(r − r0)M2d
0/2 +

∫
(r − r0)

2 M1d
0/2

+(θ − θ0)

∫
(r − r0)

2 M2d
0/4

+
0

{

(M1 + o(1))T1 + (θ − θ0)
2o(1)

}]

.

The dominating term is the one involving T1. The upper bound on T1 obtained
above together with Lemmas 10, 11 implies that |Qn,2(θ, r)| ≤ ζnh2 + (

√
nζ 2

n )h.
As announced above, we now impose ζn = o(n−1/4), so one obtains Qn,2(θ, r) =
o(1 + h2).

Now let us deal with Qn,1(θ, r) = (Rn,1(θ, r)− Rn,1(θ0, r))/(1 + h2) = −Gn fn .
Note that fn(t, z)(θ, r) = g1,n,θ (z)
(t)− g2,n,θ (z)
0(t), where

g1,n,θ (z) = √
neθ0z e(θ−θ0)z − 1

1 + n(θ − θ0)2
and g2,n,θ (z) = √

neθ0z (θ − θ0)z

1 + n(θ − θ0)2
.

Let us denote by P , L, G1 and G2 the respective collections of all functions
fn(t, z)(θ, r), 
(t), g1,n,θ (z), g2,n,θ (z), for n ≥ 1 and (θ, r) varying in Vn . Denoting
by N[] and J[] the bracketing number and bracketing integral (see e.g. [27, Chapter
19]), it follows from the decomposition of fn that

N[](ε,P, L2(Pη0)) � N[](ε,L, L2(Pη0)) · N[](ε,G1, L2(Pη0)) · N[](ε,G2, L2(Pη0)).

Since θ and z are bounded, ‖gi‖∞ + ‖g′
i‖∞ is bounded from above for i = 1, 2 by

a universal constant. Note also that 
 is nondecreasing and uniformly bounded over
the sieve due to Lemma 9. Thus (see e.g. Corollary 2.7.2 and Theorem 2.7.5 of [28]),
the preceding display is bounded above by eC/ε. Hence J[](δ,P, L2(Pη0)) �

√
δ for

any δ > 0. Using Taylor’s theorem, there exists a (bounded) real rz such that

fn(t, z)(θ, r) � |h|eθ0z

1 + h2

(
|z|
0

(
|r − r0| + (r − r0)

2 + (r − r0)
2er−r0

)
(t)

+ |h|z2erz

2
√

n

0

(
1 + |r − r0| + (r − r0)

2 + (r − r0)
2er−r0

)
(t)

)

,

from which, using Lemmas 10 and 11, we easily deduce that ‖ fn‖∞ � ζn and thus
also Pη0 f 2 � ζ 2

n . We apply Lemma 3.4.2 in [28] to conclude that ‖Gn fn‖P = oP (1).
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Finally, denoting ϕn = (θ − θ0)γn , we have to deal with the following terms

Sn,1 � Rn,1(θ0, r − ϕn)− Rn,1(θ0, r)

1 + h2 = −Gngn, with

gn = √
n
{

0

(
er−r0{eϕn − 1} − ϕn

)
(T )

}
eθ0 Z/(1 + h2) and

Sn,2 � −n
0

(
er−r0{eϕn − 1}M0 − ϕn M0 − (r − r0)ϕn M0 − ϕ2

n M0/2
)
,

where Sn,2 is the analog of Qn,2 between the points (θ0, r − ϕn) and (θ0, r). The
term Sn,2 can be treated by the same method as Qn,2 since, as noted above, ‖γn‖∞ is
bounded, so a Taylor expansion can be carried out.

To deal with the stochastic term Sn,1, we notice that gn is a difference of two
bounded functions of bounded total variation. Indeed, denoting for any s, t in [0, τ ],
Gn(
)(t) = √

n
∫ t

0 (e
ϕn(u) − 1)d
(u)/(1 + h2), it holds

|Gn(
)(t)− Gn(
)(s)| ≤
√

n|θ − θ0|
1 + h2 ‖γn‖∞(
(t)−
(s)) � 
(t)−
(s).

Since 
 is nondecreasing and bounded on the sieve (see Lemma 9), we deduce that
Gn(
) belongs to the set of bounded functions (since Gn(
)(0) = 0) of bounded
total variation, whose entropy is well-controlled. On the other hand, using the nota-
tion �n(t) = √

n
0ϕn(t)/(1 + h2), it holds |�n(t)− �n(s)| ≤ ‖γn‖∞‖λ0‖∞|t − s|.
Thus �n is again bounded of bounded total variation. To conclude that Sn,1 = oP (1)
using the entropy bounds of Chapter 2.7 of [28], it suffices to obtain an upper bound
tending to zero for E(gn(T, Z)2). This can be done using Taylor expansions as for
Sn,2 together with the fact that ‖γn‖∞ is bounded and Lemma 11, which eventually
leads to E(gn(T, Z)2) � ζ 2

n , which concludes the verification of (N′).
So far the only condition on the prior is that ζn = √

nε2
n = o(n−1/4) should hold.

This leads, due to the fact that εn � n−α∧β/(2α+1) up to a log-factor, to the conditions
α > 3/2 and 8β > 6α + 3, which correspond to the triangle shape in Fig. 2.

4.3.3 Checking condition (E)

As noticed in 4.3.1, the condition on the rate ρn is ρn � n−α∧B/(2α+1), possibly up to
a log-factor. Thus to satisfy

√
nζnρn = o(1), one must have B > 2β/3 if α ≥ β and

B > 1 if α < β, which reduce to B > 2β/3. Finally note that
√

nWn(0, γn − γ ) is a
sum of n independent, centered random variables of variance bounded by a constant
times

∫ τ
0 {γn − γ }2d
0, which tends to zero. This concludes the proof of Theorem 5.

��
5 Appendix: tools for Gaussian processes

5.1 Concentration function, rate and suprema

Let Z be a separable Gaussian process with sample paths almost surely in the Banach
space (B, ‖ · ‖B) and let H be its Reproducing Kernel Hilbert space (RKHS). Let B1
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and H1 denote the unit balls of the corresponding spaces. Suppose that f0 belongs to
the support of Z in B and define the concentration function of Z by

ϕ f0(ε) = inf
h∈H, ‖h− f0‖B≤ε

‖h‖2
H

− log P(‖Z‖B ≤ ε).

Then Theorem 2.1 in [29] states that, if εn is such that

ϕ f0(εn) ≤ nε2
n, (26)

then for any C > 1 there exists a measurable set Bn such that for large enough n,

log N (3εn, Bn, ‖ · ‖B) ≤ 6Cnε2
n (27)

P(Z /∈ Bn) ≤ exp(−Cnε2
n) (28)

P(‖Z − f0‖B < 2εn) ≥ exp(−nε2
n). (29)

and Bn can be chosen of the form εnB1 + √
10CnεnH1 for large enough C .

We often use the next Lemma to control suprema of Gaussian processes.

Lemma 12 (Corollary 2.2.8 in [28]) Let Y be a separable sub-Gaussian process with
intrinsic semi-metric d(s, t) = E((Ys −Yt )

2)1/2 on its index set. Then for every δ > 0,
for a universal constant K ,

E

(

sup
d(s,t)≤δ

|Ys − Yt |
)

≤ K

δ∫

0

√
log D(η, T , d)dη.

5.2 Gaussian priors given as series expansions

Let us define a scale of Hilbert spaces (Bα, ‖ f ‖2,α) with parameter α > 0 by

B
α =

⎧
⎨

⎩
f =

∑

k≥1

fkεk(·),
∑

k≥1

k2α f 2
k < +∞

⎫
⎬

⎭
, ‖ f ‖2

2,α =
∑

k≥1

k2α f 2
k .

Note that for any p < α, the process (10) has sample paths almost surely in B
p, since∑

k k2p−1−2αν2
k is positive with finite mean and thus is finite almost surely. Let H

α be
the RKHS of the process defined by (10). Due to Theorem 4.2 of [30], the space H

α

coincides with (Bα+1/2, ‖ · ‖2,α+1/2). Borell’s inequality (see [3], here in the notation
of [30, Theorem 5.1]) then enables us to obtain concentration properties of the process
(10) viewed as a random element of B

p, as stated in the next Lemma.

Lemma 13 Assume that f is distributed according to (10). For any p < α, for C > 0

large enough, if αn → 0 and αn ≥ Cn
−1/

(
2+ 1

α−p

)

, then

P( f /∈ αnB
p
1 + √

10nαnH
α
1 ) ≤ exp(−nα2

n).
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Proof Let us denote ϕ0,p(·) = − logπ f (‖ f ‖Bp < ·) the small ball probability in B
p

associated to the process (10). By Borell’s inequality,

P( f /∈ αnB
p
1 + √

10nαnH
α
1 ) ≤ 1 −�(�−1(e−ϕ0,p(αn))+ √

10nαn).

Theorem 4 in [18] implies that ϕ0,p(αn) � α
−1/(α−p)
n . The condition on αn then

implies that for C large enough, ϕ0,p(αn) ≤ nα2
n . Since�−1 is nondecreasing we have

�−1
(
e−ϕ0,p(αn)

) ≥ �−1(e−nα2
n ). Now the inequality −

√
5
2 log(1/y) ≤ �−1(y) ≤ 0,

valid for all y ∈ (0, 1/2), implies that
√

10nαn ≥ −2�−1(e−nα2
n ), which, using the

identity �(−�−1(x)) = 1 − x , gives the result. ��
Lemma 14 Let π f be the prior induced by (10), seen as a random element in B

0.

Let f0 satisfy conditions (R) with β > 1. Then εn = Dn− α∧β
2α+1 with D large enough,

satisfies (26). With this choice of εn, Eqs. (27), (28), (29) are satisfied with B = B
0

and Bn = εnB
0
1 + √

10CnεnH
α
1 .

Proof It suffices to establish that εn has the above expression, which can be done by
bounding from above ϕ f0 , see [5], Theorem 2 for the detailed calculations. ��
To control the entropy of the RKHS unit ball H

α
1 , we use a general link existing

between the small ball probability of a Gaussian process and the entropy of its RKHS
unit ball, see [18] or [30, Lemma 6.2].

Lemma 15 Let Y be a centered Gaussian process in the space (B, ‖ · ‖) with asso-
ciated RKHS H. For any γ > 0, as ε → 0 it holds − log P(‖Y‖ < ε) � ε−γ if and
only log N (ε,H1, ‖ · ‖) � ε−2γ /(2+γ ).

Thus, if Y α is a process distributed according to (10), due to [18], Theorem 4, the
small ball probability of the process behaves as − log P(‖Y α‖2 < ε) � ε−1/α , as
ε → 0. Hence Lemma 15 implies that log N (ε,Hα

1 , ‖ · ‖2) � ε−2/(2α+1) as ε → 0.

5.3 Gaussian priors of the Riemann–Liouville type

Upper-bounds for the concentration function of the process prior (14) are given in the
next Lemma. For a proof, see [5], Theorem 4.

Lemma 16 Suppose f0 belongs to Cβ [0, 1], with β > 0. The concentration function
ϕ f0 associated to the process Xαt satisfies, if 0 < α ≤ β, that ϕ f0(ε) = O(ε−1/α) as
ε → 0. In the case that α > β, if {α} denotes the integer part of α, as ε → 0,

ϕ f0(ε) =
{

O(ε−
2α−2β+1

β ) if {α} = 1/2 or α /∈ β + 1
2 + N,

O(ε−
2α−2β+1

β log(1/ε)) otherwise.

This result implies that, for the Riemann–Liouville type process, the rate εn such that
ϕ f0(εn) ≤ nε2

n can be chosen equal to constant times n−α∧β/(2α+1), possibly with an
additional logarithmic factor.
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5.4 Changing variables in Gaussian measures

Let Z be a centered Gaussian process in a Banach space (B, ‖·‖) of real functions with
RKHS (H, ‖ · ‖H) and covariance function K (s, t) = E(Z(s)Z(t)). Let us denote by
P Z the distribution of Z and by EZ the expectation under this law. Given the collection
of paths t → Z(t, ω) for ω ∈ � of the process Z , let us define

U : 〈 {t → K (·, t), t ∈ R} 〉 → L2(�)
p∑

i=1

ai K (·, ti ) →
p∑

i=1

ai Z(ti , ω).

Note that U is an isometry and since by definition any h ∈ H is the limit of a sequence
∑p(n)

i=1 ai,n K (·, ti,n), it can be extended into an isometry U : H → L2(�). Then Uh

is the limit in L2(�) of the sequence
∑p(n)

i=1 ai,n Z(ti,n, ω).

Lemma 17 Let � : B → R be a measurable function. Then for any g, h ∈ H and
ρ > 0 it holds

EZ (1|Ug|≤ρ�(Z − h)) = EZ (1|Ug+〈g,h〉H|≤ρ�(Z) exp{U (−h)− ‖h‖2
H
/2}).

Proof The change of variable formula for Gaussian measures (see [30, Lemma 3.1])
states that if h belongs to H, then the measures P Z−h and P Z are absolutely continuous
and d P Z−h/d P Z = exp(U (−h)−‖h‖2

H
/2). On the other hand, since g ∈ H, for any

integer m ≥ 1 there exist sequences (a1,m, . . . , ap(m),m) and (t1,m, . . . , tp(m),m) such

that p(m) → +∞ and g(·) is the limit in H of
∑p(m)

i=1 ai,m K (·, ti,m) as m → +∞.
Moreover,

p(m)∑

i=1

ai,mh(ti,m) =
〈p(m)∑

i=1

ai,m K (·, ti,m), h(·)
〉

H

→ 〈g, h〉H,

as m → +∞. By definition Ug is the limit in L2 of
∑p(m)

i=1 ai,m Z(ti,m, ω), where Z is
distributed according to P Z . Thus this quantity is equal to the limit in L2 of the sum
∑p(m)

i=1 ai,m{Z ′(ti,m, ω) + h(ti,m)}, where Z ′ = Z − h, that is Ug + 〈g, h〉H if Z ′ is
distributed according to P Z . ��
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