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Abstract We consider the 2-dimensional spatially homogeneous Boltzmann
equation for hard potentials. We assume that the initial condition is a probability
measure that has some exponential moments and is not a Dirac mass. We prove some
regularization properties: for a class of very hard potentials, the solution instanta-
neously belongs to Hr , for some r ∈ (−1, 2) depending on the parameters of the
equation. Our proof relies on the use of a well-suited Malliavin calculus for jump
processes.
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1 Introduction

The Boltzmann equation

We consider a spatially homogeneous gas in dimension 2 modeled by the Boltzmann
equation. The density ft (v) of particles with velocity v ∈ R

2 at time t ≥ 0 solves
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660 V. Bally, N. Fournier

∂t ft (v) =
∫

R2

dv∗

π/2∫

−π/2
dθB(|v − v∗|, θ)

[
ft (v

′) ft (v
′∗)− ft (v) ft (v∗)

]
, (1.1)

where

v′ = v + v∗
2

+ Rθ

(
v − v∗

2

)
, v′∗ = v + v∗

2
− Rθ

(
v − v∗

2

)

and where Rθ is the rotation of angle θ . One usually integrates θ on (−π, π), but a
famous trick allows one to restrict the integration to [−π/2, π/2] without loss of gener-
ality, see e.g. the argument in the introduction of [2]. The cross section B(|v−v∗|, θ) ≥
0 is given by physics and depends on the type of interaction between particles. We
refer to the book of Cercignani [9] for a good physical reference on the Boltzmann
equation and to the review papers of Villani [24] and Alexandre [1] for many details
on what is known from the mathematical point of view.

Conservation of mass, momentum and kinetic energy hold for reasonable solutions
to (1.1):

∀t ≥ 0,
∫

R2

ft (v)ψ(v) dv =
∫

R2

f0(v)ψ(v) dv, ψ = 1, v, |v|2

and we classically may assume without loss of generality that
∫
R2 f0(v) dv = 1 and∫

R2 v f0(dv) = 0.

Assumptions

We shall assume here that for some γ ∈ (0, 1), ν ∈ (0, 1/2), some even function
b : [−π/2, π/2]\{0} �→ R+,

⎧⎨
⎩

B(|v − v∗|, θ) = |v − v∗|γ b(θ),
∃ 0 < c < C, ∀ θ ∈ (0, π/2], cθ−1−ν ≤ b(θ) ≤ Cθ−1−ν,
∀ k ≥ 1, ∃ Ck, ∀ θ ∈ (0, π/2], |b(k)(θ)| ≤ Ckθ

−1−ν−k .

(A(γ, ν))

This assumption is made by analogy to the case where particles collide by pairs due
to a repulsive force proportional to 1/rs for some s > 2 in dimension 3, for which
γ = (s − 5)/(s − 1) and b(θ) � |θ |−1−ν , with ν = 2/(s − 1). We aim to study here
hard potentials (s > 5), for which γ ∈ (0, 1) and ν ∈ (0, 1/2).

Weak solutions

For θ ∈ (−π/2, π/2), we introduce

A(θ) = 1

2
(Rθ − I ) = 1

2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
.
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Regularization properties of the Boltzmann equation 661

Note that v′ = v + A(θ)(v − v∗) and that for X ∈ R
2,

|A(θ)X |2 = 1

2
(1 − cos θ)|X |2 ≤ θ2

4
|X |2. (1.2)

Definition 1.1 Assume (A(γ, ν)) for some ν ∈ (0, 1) and γ ∈ (0, 1]. A family
( ft )t∈[0,T ] of probability measures on R

2 is said to be a weak solution of (1.1) if for
all t ∈ [0, T ],

∫

R2

v ft (dv) =
∫

R2

v f0(dv) and
∫

R2

|v|2 ft (dv) =
∫

R2

|v|2 f0(dv) < ∞ (1.3)

and if for any ψ : R
2 �→ R globally Lipschitz continuous and any t ∈ [0, T ],

d

dt

∫

R2

ψ(v) ft (dv) =
∫

R2

ft (dv)
∫

R2

ft (dv∗)
π/2∫

−π/2
b(θ)dθ |v − v∗|γ

[ψ(v + A(θ)(v − v∗))− ψ(v)] . (1.4)

The right hand side of (1.4) is well-defined due to (1.3), (1.2) and because∫ π/2
−π/2 |θ |b(θ)dθ < ∞ thanks to (A(γ, ν)) with ν ∈ (0, 1). As shown in [17, Corollary

2.3 and Lemma 4.1], we have the following result.

Theorem 1.2 Assume (A(γ, ν)) for some ν ∈ (0, 1) and γ ∈ (0, 1]. Assume also that
b(θ) = b̃(cos θ), for some nondecreasing convex C1 function b̃ on [0, 1). Let f0 be a
probability measure on R

2 such that for some δ ∈ (γ, 2),
∫
R2 e|v|δ f0(dv) < ∞. There

exists a unique weak solution ( ft )t≥0 to (1.1) starting from f0. Furthermore, for all
κ ∈ (0, δ), supt≥0

∫
R2 e|v|κ ft (dv) < ∞.

The additional condition that b̃ is nondecreasing and convex is made for conve-
nience and typically holds if b(θ) � |θ |−1−ν .

Sobolev spaces

For f a probability measure on R
2, we set, for ξ ∈ R

2, f̂ (ξ) = ∫
R2 ei〈ξ,x〉 f (dx).

Recall that for r ∈ R,

Hr (R2) = { f, || f ||Hr (R2) < ∞} , where || f ||2Hr (R2)
=
∫

R2

(1 + |ξ |2)r | f̂ (ξ)|2dξ.

Let us recall the following classical results. For f a probability measure on R
2,

• f ∈ Hr (R2) for every r < −1;
• if f ∈ Hr (R2) for some r ≥ 0, then f has a density that belongs to L2(R2);
• if f ∈ Hr (R2) for some r > 1, then f has a bounded and continuous density.
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662 V. Bally, N. Fournier

Main result

We need to introduce, for ν ∈ (0, 1/2) and γ ∈ (0, 1) satisfying γ > ν2/(1 − 2ν),

aγ,ν = 1

2

[√
(γ + ν + 1)2 + 4

(
γ (1 − 2ν)

ν
− ν

)
− (γ + ν + 1)

]
> 0, (1.5)

qγ,ν =
⎧⎨
⎩

aγ,ν if aγ,ν ≤ 2,
(2 + γ )(1 − 2ν)− ν2

(1 + γ + ν)ν + 1
if aγ,ν > 2.

(1.6)

As we will see in Lemma 5.3, qγ,ν > 2 in the latter case. We would like to comment on
these values. However, we believe that they have no physical or mathematical mean-
ing: we found these values for qγ,ν after some very technical computations, which are
probably not optimal in many places.

Theorem 1.3 Assume (A(γ, ν)), for some γ ∈ (0, 1), ν ∈ (0, 1/2), such that γ >

ν2/(1 − 2ν). Consider a weak solution ( ft )t∈[0,T ] to (1.1) such that f0 is not a Dirac
mass and, for some δ ∈ (γ ∨ ν, 1),

sup
t∈[0,T ]

∫

R2

e|v|δ ft (dv) < ∞. (1.7)

(i) For all t0 ∈ (0, T ],

∀q ∈ (0, qγ,ν), ∀ξ ∈ R
2, sup

[t0,T ]
| f̂t (ξ)| ≤ Ct0,T,q(1 + |ξ |)−q ,

∀r < qγ,ν − 1, sup
[t0,T ]

|| ft ||Hr (R2) < ∞,

∀q ∈ (0, qγ,ν), ∀v0 ∈ R
2, ∀ε > 0, sup

[t0,T ]
ft (Ball(v0, ε)) ≤ Ct0,T,qε

q .

(ii) If ν ∈ (0, 1/3) and γ > (2ν + 2ν2)/(1 − 3ν), then qγ,ν > 1. Thus ft has a
density belonging to L2(R2) for all t ∈ (0, T ].

(iii) If finally ν ∈ (0, 1/4) and γ > (6ν + 3ν2)/(1 − 4ν), then qγ,ν > 2. Thus ft

has a continuous and bounded density for all t ∈ (0, T ].

Discussion about the result

In the realistic case where γ = (s − 5)/(s − 1) and ν = 2/(s − 1), point (i) applies if
s > 7, point (ii) applies if s > 8+√

33 � 13.75, point (iii) applies if s > 13+2
√

31 �
24.14.

When at least point (ii) applies, this shows in particular that for all t > 0,
H( ft ) < ∞, where the entropy is defined as H( f ) := ∫

R2 f (v) log f (v)dv. This
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Regularization properties of the Boltzmann equation 663

allows us to apply many results concerning regularization (see e.g. Villani [23] or
Alexandre-Desvillettes-Villani-Wennberg [2]) or large time behavior (see e.g. Villani
[24]) where the finiteness of entropy is required.

Until the middle of the 90’s, almost all the works on the Boltzmann equation were
assuming Grad’s angular cutoff, where the cross section B, which physically satisfies∫ π/2

0 B(|v − v∗|, θ)dθ = ∞ was replaced by an integrable cross section. A fully
general existence result was obtained by Villani [22] for true physical cross sections
without cutoff. As shown in Mouhot-Villani [20], no regularization may occur under
Grad’s angular cutoff. Intuitively, this comes from the fact that each particle is sub-
jected to finitely (resp. infinitely) many collisions on each time interval in the case
with (resp. without) cutoff. See however [15] where it is shown on a simplified model
that some regularization might occur under Grad’s angular cutoff, but for some very
soft potentials (i.e. with γ < −1).

Here we deal with true hard potentials and we thus have to overcome the three
following difficulties: |w|γ vanishes at 0, explodes at infinity and is not smooth at 0.
This lack of regularity is the basis of many technical complications.

The first papers on regularization for the homogeneous Boltzmann equation seem
to be those of Desvillettes [10,11], that concern Maxwell molecules, that is γ = 0.
This is the most simple case, since then |v−v∗|γ is constant. For the one-dimensional
Kac equation, he proves that ft ∈ C∞ for all t > 0, while for the 2D Boltzmann
equation, he shows that ft almost lies in H1 for all t > 0. Still in the case of Maxwell
molecules, Alexandre-El Safadi [3] have shown, in the realistic 3D case, that ft ∈ C∞
as soon as t > 0. In all these works, H( f0) is supposed to be finite. Using a probabilis-
tic approach, Graham-Méléard [18] (for the Kac equation) and [14] (for the 2D case)
proved that if f0 is a measure with some moments of all orders and is not a Dirac mass,
then ft ∈ C∞ for all t > 0. The main advantage of these works is that the finiteness
of entropy is not required, but they still have not been extended to the 3D case.

Many papers deal with the case of regularized hard potentials, where |v − v∗|γ
is replaced by something like (ε2 + |v − v∗|2)γ /2. In this situation, Desvillettes-
Wennberg [13], Alexandre-El Safadi [4], Huo-Morimoto-Ukai-Yang [19] have shown
that if H( f0) < ∞, then ft ∈ C∞ for all t > 0 for any γ ∈ (0, 1), any ν ∈ (0, 2), in
any dimension. See Alexandre [1] for a review.

In the case of the Landau equation, which is a diffusion approximation of the
Boltzmann equation, Desvillettes-Villani [12] have obtained a very complete regular-
ization result, for true hard potentials and initial conditions with a finite entropy. The
point is that for the Landau equation, the computations are much less intricate.

But to our knowledge, the only regularization result that concerns the homogeneous
Boltzmann equation for true hard potentials is that of Alexandre-Desvillettes-Villani-
Wennberg [2]: in any dimension d ≥ 2, if f0 is a function such that H( f0) < ∞,
then any weak solution satisfies

√
ft ∈ H ν/2

loc (R
2) for all t > 0, for any value of

γ ∈ (−d, 1) and any value of ν ∈ (0, 2). The main idea of this paper is very simple.
Since the entropy H( ft ) is bounded below and nonincreasing as a function of time,
its derivative, called entropy dissipation, is finite. In [2], a lowerbound of this entropy
dissipation involving the regularity of

√
ft is proved. Let us insist on the fact that

regularization is only one of the many applications of [2].
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664 V. Bally, N. Fournier

The main limitation of our study is that we work in dimension 2. Furthermore we
have to assume at least s > 7. The two main positive points of the present paper are
that (i) we deal with true hard potentials and (ii) we assume no regularity at all on the
initial condition (in [2–4,10,11,13,19], f0 is already a function): we only suppose that
f0 is not a Dirac mass. This is a necessary condition for regularization, since Dirac
masses are stationary solutions to (1.1).

If ν > 0 is small and γ ∈ (0, 1) is large, our result seems really competitive.
For example if γ = (s − 5)/(s − 1) and ν = 2/(s − 1), then (denoting by Hr− =
∩s∈(0,r)Hs),

• with s = 15 we obtain ft ∈ H (1/7)−(R2),
• with s = 25 we obtain get ft ∈ H (172/167)−(R2),
• with s = 101, we obtain ft ∈ H (4504/2599)−(R2);

Let us finally mention that for any values of γ ∈ (0, 1) and ν ∈ (0, 1/2), our result
will never provide a better estimate than ft ∈ H2−(R2). Here again, we believe that
this is a technical limitation, but our tedious proof leads to such a maximal regularity.

It might seem surprising that we assume some smoothness on the angular cross sec-
tion b. In most works, the third line of (A(γ, ν)) is not required, see [2–4,13,14,18]. For
example, the lowerbound b(θ) ≥ cθ−1−ν is clearly sufficient if one uses a lowerbound
of the entropy dissipation: by monotonicity, one then can assume that b(θ) = cθ−1−ν .
Intuitively, the main idea is the following. Write b = b0 + b1, with b1 possibly non
smooth and b0(θ) = cθ−1−ν . The collisions due to b0 produce smooth collisions,
from which the regularizating effect is deduced, while b1 produce some (possibly)
non smooth collisions, which can only have a (non-quantified) regularizing effect.
We have not been able to make rigorous such considerations while using the pres-
ent method. However, the third line of (A(γ, ν)) does not seem so restrictive from a
physical point of view.

We conclude this subsection with a remark on regularized hard potentials: if ν ∈
(0, 1/3), our method allows us to extend the result of Desvillettes-Wennberg [13] to
initial conditions with infinite entropy.

Remark 1.4 Assume that B(|v − v∗|, θ) = (ε2 + |v − v∗|2)γ /2b(θ), for some ε > 0,
some γ ∈ (0, 1) and some b satisfying the same conditions as in (A(γ, ν)) for some
ν ∈ (0, 1/2). With our method, it is possible to prove that for ( ft )t∈[0,T ] a weak solu-
tion to (1.1) satisfying (1.7) and such that f0 is not a Dirac mass, for 0 < t0 < T ,
sup[t0,T ] | f̂t (ξ)| ≤ Ct0,T,r (1 + |ξ |)−r for all r ∈ (0, 1/ν − 2). In particular if ν ∈
(0, 1/3), we deduce that ft ∈ L2(R2) so that H( ft ) < ∞ for any t > 0. Thus we can
apply the result of [13] and deduce that ft ∈ C∞(R2) for all t > 0.

Discussion about the method

Following the seminal work of Tanaka [21], we will build a stochastic process
(Vt )t∈[0,T ] such that for each t ∈ [0, T ],L(Vt ) = ft . This process will solve a
jumping stochastic differential equation. Then we will use some Malliavin calculus
to study the smoothness of ft , in the spirit of Graham-Méléard [18]. When using the
classical Malliavin calculus for jumps processes of Bichteler-Gravereaux-Jacod [7],

123



Regularization properties of the Boltzmann equation 665

one can only treat the case of a constant rate of jump, which corresponds here to the
case where γ = 0. This was done in [14,18]. We thus have to build a suitable Malliavin
calculus.

Recently Bally-Clément [5] introduced a new method, still inspired by [7] which
allows one to deal with equations with a non-constant rate of jump. They discuss equa-
tions with a similar structure as (1.1), but with much more regular coefficients. Here
we use the same method, but we have to overcome some nontrivial difficulties related
to the singularity and unboundedness of the coefficients. The nondegeneracy property
is also quite complicated to establish, in particular because |v − v∗|γ vanishes on the
diagonal and because (1.1) is nonlinear.

Plan of the paper

In the next section, we give the probabilistic interpretation of (1.1) in terms of a
jumping S.D.E. We also build some approximations of the process and study their
rate of convergence. Another representation of the approximating processes is given
in Sect. 3. In Sect. 4, we prove an integration by parts formula for the approxi-
mating process, using the Malliavin calculus introduced in [5]. We conclude the
proof in Sect. 5. An appendix containing technical results lies at the end of the
paper.

Notation

In the whole paper, we assume without loss of generality that

∫

R2

v f0(dv) = 0 and e0 =
∫

R2

|v|2 f0(dv) > 0. (1.8)

Observe that e0 > 0, because else, f0 would be the Dirac mass at 0. We always assume
at least that (A(γ, ν)) hold for some γ ∈ (0, 1), some ν ∈ (0, 1). We denote by ( ft )t≥0
a weak solution to (1.1) satisfying (1.7) for some δ > γ . We consider η0 such that

η0 ∈ (1/δ, 1/(γ ∨ ν)). (1.9)

For v0 ∈ R
2 and r > 0, we denote by

Ball(v0, r) = {v ∈ R
2, |v − v0| < r}

the open ball centered at v0 with radius r . We will always write C for a finite (large)
constant and c for a positive (small) constant, of which the values may change from
line to line and which depend only on b, ν, γ, δ, η0, T, f0. When a constant depends on
another quantity, we will always indicate it. For example, Ct0 or ct0 stand for constants
depending on b, ν, γ, δ, η0, T, f0 and t0.
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666 V. Bally, N. Fournier

2 Probabilistic interpretation and approximation

Recall that we are given a fixed weak solution ( ft )t∈[0,T ] to (1.1). We wish to build
a Markov process (Vt )t∈[0,T ], solution to a jumping stochastic differential equation,
whose time marginals are equal to ( ft )t∈[0,T ].

We consider a Poisson measure N (ds, dθ, dv, du) on [0, T ] × [−π/2, π/2] ×
R

2 ×[0,∞)with intensity measure dsb(θ)dθ fs(dv)du. Then for a R
2-valued f0-dis-

tributed random variable V0 independent of N , we consider the R
2-valued stochastic

differential equation, setting E = [−π/2, π/2] × R
2 × [0,∞),

Vt = V0 +
t∫

0

∫

E

A(θ)(Vs− − v)1{u≤|Vs−−v|γ }N (ds, dθ, dv, du). (2.1)

We will prove that this equation has a unique solution, which furthermore satisfies
L(Vt ) = ft for all t ∈ [0, T ].

We also introduce some approximations of the process (Vt )t∈[0,T ]. We consider a
C∞ even nonnegative function χ supported by (−1, 1) satisfying

∫
R
χ(x)dx = 1.

Then we introduce, for x ∈ R and ε ∈ (0, 1), (recall (1.9))

�ε = [log(1/ε)]η0 , φε(x) =
∫

R

((y ∨ 2ε) ∧ �ε)χ((x − y)/ε)

ε
dy. (2.2)

Observe that we have 2ε ≤ φε(x) ≤ �ε for all x ≥ 0, φε(x) = x for x ∈ [3ε, �ε −1],
φε(x) = 2ε for x ∈ [0, ε] and φε(x) = �ε for x ≥ �ε + 1. We find ε0 > 0 small
enough, in such a way that for ε ∈ (0, ε0), 3ε < 1 < �ε − 1 and consider, for
ε ∈ (0, ε0), the equation

V ε
t = V0 +

t∫

0

∫

E

A(θ)(V ε
s− − v)1{u≤φγε (|V ε

s−−v|)}N (ds, dθ, dv, du), (2.3)

Next we introduce, for ζ ∈ (0, 1), a function Iζ : R+ �→ [0, 1] such that Iζ (x) = 1
for x ≥ ζ and vanishing on a neighborhood of 0. We will choose Iζ in the next section
as a smooth version of 1{x≥ζ }. We consider the equation

V ε,ζ
t = V0 +

t∫

0

∫

E

A(θ)(V ε,ζ
s− − v)1{u≤φγε (|V ε,ζ

s− −v|)} Iζ (|θ |)N (ds, dθ, dv, du). (2.4)

The goal of this section is to check the following results.

Proposition 2.1 (i) There exists a unique càdlàg adapted solution (Vt )t∈[0,T ] to
(2.1). For each ε ∈ (0, ε0) and each ζ ∈ (0, 1), there exist some unique càdlàg
adapted solutions (V ε

t )t∈[0,T ] and (V ε,ζ
t )t∈[0,T ] to (2.3) and (2.4).
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Regularization properties of the Boltzmann equation 667

(ii) For all t ∈ [0, T ], Vt is ft -distributed.
(iii) For any κ ∈ (ν, δ), any ε ∈ (0, ε0), any ζ ∈ (0, 1),

E

[
sup
[0,T ]

(
e|Vt |κ + e|V ε

t |κ + e|V ε,ζ
t |κ)
]

≤ Cκ .

(iv) For any β ∈ (ν, 1], any ε ∈ (0, ε0), any ζ ∈ (0, 1),

sup
[0,T ]

E

[
|V ε

t − V ε,ζ
t |β
]

≤ CβeCβ�
γ
ε ζ β−ν .

(v) Assume furthermore that for some α ≥ 0, some K , for all v0 ∈ R
2, for all

ε ∈ (0, 1],

sup
[0,T ]

ft (Ball(v0, ε)) ≤ K εα.

This always holds with K = 1, α = 0. Then for any β ∈ (ν, 1], any ε ∈ (0, ε0),
any ζ ∈ (0, 1),

sup
[0,T ]

E
[|Vt − V ε

t |β] ≤ Cβ,K eCβ�
γ
ε εβ+γ+α.

Observe that eC�γε is not very large: since�γε = [log(1/ε)]γ η0 with γ η0 < 1 (recall
(1.9)), we have eC�γε ≤ Cηε−η, for any η > 0.

To check this proposition, we need the two following Lemmas, of which the proofs
can be found in the appendix. First, we state some estimates concerning the expo-
nential moments for the linearized Boltzmann equation. The study of exponential
moments for the nonlinear Boltzmann equation was initiated by Bobylev [8], see also
[17] and the references therein. These results really use the nonlinear structure of the
Boltzmann equation and we can unfortunately not use them.

Lemma 2.2 For any κ ∈ (ν, 1), any v, V ∈ R
2, for some constants C > 0, cκ > 0,

Cκ > 0,

π/2∫

−π/2

(
e|V +A(θ)(V −v)|κ − e|V |κ) b(θ)dθ ≤ e|V |κ

×
[
−cκ1{|V |≥1,|V |≥C|v|} + Cκ(|V | ∨ 1)κ+ν−2eCκ |v|κ

]
,

π/2∫

−π/2

∣∣∣e|V +A(θ)(V −v)|κ − e|V |κ
∣∣∣ b(θ)dθ ≤ CκeCκ |v|κ eCκ |V |κ .

Next, we state some regularity estimates for the cutoff function φε .
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668 V. Bally, N. Fournier

Lemma 2.3 Consider the function φε introduced in (2.2).

(i) For β ∈ (0, 1], for all x, y ≥ 0, all ε ∈ (0, ε0),

xβ |φγε (x)− φγε (y)| ≤ Cβ�
γ
ε |x − y|β.

(ii) For every l ≥ 1, for every multi-index q = (q1, . . . , ql) ∈ {1, 2}l ,

∣∣∂vql
. . . ∂vq1

[logφε(|v|)]
∣∣ ≤ Cl

(
1{|v|∈(ε,�ε−1]}|v|−l + 1|v|∈(�ε−1,�ε+1)�

−1
ε

)
,

∣∣∂vql
. . . ∂vq1

[φγε (|v|)]
∣∣ ≤ Cl

(
1{|v|∈(ε,�ε−1]}|v|γ−l + 1|v|∈(�ε−1,�ε+1)�

γ−1
ε

)
.

Proof of Proposition 2.1. We handle the proof in several steps. In Steps 1–5, we
assume that (Vt )t∈[0,T ], (V ε

t )t∈[0,T ] and (V ε,ζ
t )t∈[0,T ] exist and prove points (iii)–(v).

Points (i) and (ii) are then checked in Steps 6–7.

Step 1 We first check that for κ ∈ (ν, δ),

sup
[0,T ]

E

[
e|Vt |κ + e|V ε

t |κ + e|V ε,ζ
t |κ ] ≤ Cκ .

Let us for example treat the case of (V ε
t )t∈[0,T ]. We have

e|V ε
t |κ = e|V0|κ +

t∫

0

∫

E

[
e|V ε

s−+A(θ)(V ε
s−−v)
∣∣κ − e|V ε

s−|κ
]

×1{u≤φγε (|V ε
s−−v|)}N (ds, dθ, dv, du). (2.5)

Taking expectations and using Lemma 2.2,

E

[
e|V ε

t |κ ] = E

[
e|V0|κ ]+

t∫

0

ds

π/2∫

−π/2
b(θ)dθ

∫

R2

fs(dv)

× E

[(
e|V ε

s +A(θ)(V ε
s −v)
∣∣κ − e|V ε

s |κ
)
φγε (|V ε

s − v|)
]

≤ E

[
e|V0|κ ]+

t∫

0

ds
∫

R2

fs(dv)E
[
φγε (|V ε

s − v|)e|V ε
s |κ

×
(
−cκ1{|V ε

s |≥1,|V ε
s |≥C|v|} + Cκ(|V ε

s | ∨ 1)κ+ν−2eCκ |v|κ
) ]
.

But κ+ν−2 < 0, so that for |V | ≥ Mκ(v) := max{1,C |v|, [CκeCκ |v|κ /cκ ]1/(2−ν−κ)},
we have

−cκ1{|V |≥1,|V |≥C|v|} + Cκ(|V | ∨ 1)κ+ν−2eCκ |v|κ ≤ 0.
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Changing the values of the constants, Mκ(v) ≤ CκeCκ |v|κ . Thus

E

[
e|V ε

t |κ ] ≤ E

[
e|V0|κ ]+ Cκ

t∫

0

ds
∫

R2

fs(dv)

E

[
φγε (|V ε

s − v|)e|V ε
s |κ1{|V ε

s |≤CκeCκ |v|κ }eCκ |v|κ
]
.

Since now φ
γ
ε (|V − v|) ≤ (1 + |V | + |v|)γ , we deduce that φγε (|V − v|)

1{|V |≤CκeCκ |v|κ }eCκ |v|κ ≤ CκeCκ |v|κ , whence

E

[
e|V ε

t |κ ] ≤ E

[
e|V0|κ
]

+ Cκ

t∫

0

ds
∫

R2

fs(dv)E
[
e|V ε

s |κ ] eCκ |v|κ

≤ Cκ + Cκ

t∫

0

dsE

[
e|V ε

s |κ ] .

We finally used (1.7), that κ < δ and that V0 ∼ f0. The Gronwall Lemma allows us
to conclude.

Step 2 We now prove (iii), for example with (V ε
t )t∈[0,T ]. Using (2.5) and Lemma 2.2,

we obtain

E

[
sup
[0,T ]

e|V ε
t |κ
]

≤ E

[
e|V0|κ
]

+
T∫

0

ds

π/2∫

−π/2
b(θ)dθ

∫

R2

fs(dv)

× E

[∣∣∣∣e|V ε
s +A(θ)(V ε

s −v)
∣∣κ − e|V ε

s |κ
∣∣∣∣φγε (|V ε

s − v|)
]

≤ Cκ + Cκ

T∫

0

ds
∫

R2

fs(dv)E
[
φγε (|V ε

s − v|)eCκ |v|κ eCκ |V ε
s |κ ]

≤ Cκ + Cκ

T∫

0

ds
∫

R2

fs(dv)e
Cκ |v|κE

[
eCκ |V ε

s |κ ] .

We used here that φγε (|V − v|)eCκ |V |κ eCκ |v|κ ≤ (1 + |V | + |v|)γ eCκ |V |κ eCκ |v|κ ≤
eCκ |V |κ eCκ |v|κ . Step 1 and (1.7) allow us to conclude, for κ ∈ (ν, δ).
Step 3 We set

h(u, v, θ, w) = A(θ)(w − v)1{u≤|w−v|γ } and hε(u, v, θ, w)

= A(θ)(w − v)1{u≤φγε (|w−v|)}
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and we prove that for β ∈ (0, 1],

∞∫

0

|(h − hε)(u, v, θ, w)|βdu ≤ C |θ |β |w − v|β(εγ1{|w−v|≤3ε}

+|w − v|γ1{|w−v|≥�ε−1}), (2.6)
∞∫

0

|hε(u, v, θ, w)− hε(u, v, θ, w̃)|βdu ≤ Cβ |θ |β�γε |w − w̃|β. (2.7)

We note that |A(θ)| ≤ |θ | (see (1.2)) and recall that φε(x) = x for x ∈ [3ε, �ε − 1],
that φε(x) ≤ 3ε for x ∈ [0, 3ε] and that φε(x) ≤ x for x ≥ �ε − 1. The left hand side
of (2.6) is bounded by

|θ |β |w − v|β
∞∫

0

∣∣∣1{u≤|v−w|γ } − 1{u≤φγε (|v−w|)
∣∣∣ du

≤ |θ |β |w − v|β ∣∣|v − w|γ − φγε (|v − w|)∣∣
≤ |θ |β |w − v|β(1{|w−v|≤3ε} + 1{|w−v|≥�ε−1})

∣∣|w − v|γ − φγε (|w − v|)∣∣
≤ |θ |β |w − v|β (1{|w−v|≤3ε}(3ε)γ + 1{|w−v|≥�ε−1}|w − v|γ ) .

Similarly, using Lemma 2.3-(i) and that φε ≤ �ε , the left hand side of (2.7) is bounded
by

|θ |β ∣∣(w − v)−(w̃ − v)
∣∣βφγε (|w − v|)+|θ |β |w̃ − v|β ∣∣φγε (|w − v|)−φγε (|w̃ − v|)∣∣

≤ |θ |β |w − w̃|β�γε + Cβ |θ |β�γε ||w − v| − |w̃ − v||β ≤ Cβ |θ |β |w − w̃|β�γε .

Step 4 We now prove (iv). Let thus β ∈ (ν, 1]. Since x �→ xβ is sub-additive, we can
write

E

[
|V ε

t − V ε,ζ
t |β
]

≤
t∫

0

ds

π/2∫

−π/2
b(θ)dθ

∫

R2

fs(dv)

×
∞∫

0

duE
[|hε(u, v, θ, V ε,ζ

s )− hε(u, v, θ, V ε
s )|β
]
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+
t∫

0

ds

π/2∫

−π/2
(1 − Iζ (|θ |))βb(θ)dθ

∫

R2

fs(dv)

×
∞∫

0

duE
[|hε(u, v, θ, V ε,ζ

s )|β] .

Using (2.7) and that 0 ≤ 1 − Iζ (|θ |) ≤ 1{|θ |≤ζ }, we get

E

[
|V ε

t − V ε,ζ
t |β
]

≤ Cβ�
γ
ε

t∫

0

ds

π/2∫

−π/2
b(θ)dθ |θ |βE

[|V ε
s − V ε,ζ

s |β]

+Cβ

t∫

0

ds

ζ∫

−ζ
b(θ)dθ |θ |β

∫

R2

fs(dv)E
[
φγε (|V ε,ζ

s −v|)|V ε,ζ
s −v|β].

Using (A(γ, ν)), since β > ν and since φγε (|V − v|)|V − v|β ≤ C(1 + |v|2 + |V |2),
this yields

E

[
|V ε

t − V ε,ζ
t |β
]

≤ Cβ�
γ
ε

t∫

0

E
[|V ε

s − V ε,ζ
s |β] ds

+Cβζ
β−ν

t∫

0

ds
∫

R2

fs(dv)E
[
1 + |V ε,ζ

s |2 + |v|2
]

≤ Cβ�
γ
ε

t∫

0

E
[|V ε

s − V ε,ζ
s |β] ds + Cβζ

β−ν,

where we used (1.7) and point (iii). The Gronwall Lemma allows us to conclude.

Step 5 Let us check (v), for some β ∈ (ν, 1] fixed. Using again the sub-additivity of
x �→ xβ , (2.6–2.7), ( A(γ, ν)) and that β > ν, we obtain

E
[|Vt − V ε

t |β] ≤
t∫

0

ds

π/2∫

−π/2
b(θ)dθ

∫

R2

fs(dv)

∞∫

0

duE

× [|h(u, v, θ, Vs)− hε(u, v, θ, V ε
s )|β
]
.

We infer from (2.6–2.7), (A(γ, ν)) and the fact that β > ν that

E
[|Vt − V ε

t |β] ≤ Cβ

t∫

0

ds

π/2∫

−π/2
b(θ)dθ |θ |β

∫

R2

fs(dv)

× E
(|Vs − v|β(εγ1{|Vs−v|≤3ε} + |Vs − v|γ1{|Vs−v|≥�ε−1})+ �γε |Vs − V ε

s |β)
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≤ Cβε
β+γ

t∫

0

dsE [ fs(Ball(Vs, 3ε))] + Cβ�
γ
ε

t∫

0

dsE
[|Vs − V ε

s |β]

+Cβ

t∫

0

ds
∫

R2

fs(dv)E
[|Vs − v|β+γ1{|Vs−v|≥�ε−1})

]
.

By assumption, we have

sup
[0,T ]

E [ fs(Ball(Vs, 3ε))] ≤ 3αK εα.

Next (1.7) and point (iii) yield, for κ ∈ (1/η0, δ),

∫

R2

fs(dv)E
[|Vs − v|β+γ1{|Vs−v|≥�ε−1})

]

≤
∫

R2

fs(dv)E
[
(|Vs | + |v|)β+γ1{|Vs |+|v|≥�ε−1})

]

≤ e−(�ε−1)κ
∫

R2

fs(dv)E
[
(|Vs | + |v|)β+γ e(|Vs |+|v|)κ ]

≤ Cκe−�κε
∫

R2

fs(dv)E
[
eCκ (|Vs |+|v|)κ ] ≤ Cκe−�κε .

Thus we have

E
[|Vt − V ε

t |β] ≤ Cβ,κ,K (ε
β+γ+α + e−�κε )+ Cβ�

γ
ε

t∫

0

dsE
[|Vs − V ε

s |β] ,

whence E
[|Vt − V ε

t |β] ≤ Cβ,κ,K (εβ+γ+α + e−�κε )eCβ�
γ
ε T by the Gronwall Lemma.

We easily conclude, since κ > γ and since �κε = [log(1/ε)]κη0 , with κη0 > 1.

Step 6 We now prove point (i). First, the strong existence and uniqueness of a solution
(V ε,ζ

t )t∈[0,T ] to (2.4) is obvious, since the Poisson measure used in (2.4) is a.s. finite
because since Iζ vanishes on a neighborhood of 0,

T∫

0

∫

E

1{Iζ (|θ |) �=0,u≤�γε }dsb(θ)dθ fs(dv)du < ∞.

Similar arguments as in point (iv) allow us to pass to the limit as ζ → 0 (recall that
Iζ (|θ |) → 1{θ �=0}) and to deduce that there exists a unique solution to (V ε

t )t∈[0,T ]
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Regularization properties of the Boltzmann equation 673

to (2.3). Finally, we use similar arguments as in point (v) to prove the existence and
uniqueness of a solution (Vt )t∈[0,T ] to (2.1), by taking the limit ε → 0.

Step 7 It remains to show that Vt ∼ ft for all t ∈ [0, T ]. To this end, we denote by gt

the law of Vt . Then g0 = f0 by assumption. Using the Itô formula for jump processes
and taking expectations, we see that (gt )t∈[0,T ] solves the following linear Boltzmann
equation: for all ψ : R

2 �→ R globally Lipschitz continuous,

d

dt

∫

R2

ψ(v) gt (dv) =
∫

R2

gt (dv)
∫

R2

ft (dv∗)

×
π/2∫

−π/2
b(θ)dθ |v − v∗|γ [ψ(v + A(θ)(v − v∗))− ψ(v)] .

Of course, ( ft )t∈[0,T ] also solves this linear equation. Thus (gt )t∈[0,T ] = ( ft )t∈[0,T ]
by a uniqueness argument. The uniqueness for this linear equation can be derived from
the uniqueness of the solution to (2.1), by using the results of Bhatt-Karandikar [6,
Theorem 5.2], see [16, Lemma 4.6] for very similar considerations in a very close
situation.

3 Some substitutions

We will use some Malliavin calculus for the process (V ε,ζ
t )t∈[0,T ], solution to (2.4).

Since φγε ≤ �
γ
ε ≤ 2�γε , we can write

V ε,ζ
t =V0 +

t∫

0

π/2∫

−π/2

∫

R2

2�γε∫

0

A(θ)(V ε,ζ
s− − v)Iζ (|θ |)1{u≤φγε (|V ε,ζ

s− −v|)}N (ds, dθ, dv, du).

Recall that the intensity measure of N is given by dsb(θ)dθ fs(dv)du. Our goal in
this section is to modify this formula in order to get an expression in adequacy with
[5]. First of all, we use the Skorokhod representation Theorem to find a measurable
application vt : [0, 1] �→ R

2 such that for all ψ : R
2 �→ R+,

1∫

0

ψ(vt (ρ))dρ =
∫

R2

ψ(v) ft (dv). (3.1)

Next, we consider the following function G : x ∈ (0, π/2) �→ (0,∞)

G(x) =
π/2∫

x

b(θ)dθ
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and its inverse ϑ : (0,∞) �→ (0, π/2) (i.e. G(ϑ(z)) = z) and we set ϑ(z) = −ϑ(−z)
if z < 0. Then for all ψ : [−π/2, π/2]\{0} �→ R+,

π/2∫

−π/2
ψ(θ)b(θ)dθ =

∫

R∗

ψ(ϑ(z))dz. (3.2)

Note that ϑ is smooth on (−∞, 0)∪ (0,∞). Since b(θ) � |θ |−1−ν by assumption, we
have G(x) � ν−1(x−ν−(π/2)−ν) and thusϑ(z) � (νz+(2/π)ν)−1/ν � (1+z)−1/ν .
More precisely, the following estimates will be checked in the appendix.

Lemma 3.1 The function ϑ is C∞ on (0,∞). For all z > 0,

(i) c(1 + z)−1/ν ≤ ϑ(z) ≤ C(1 + z)−1/ν,

(ii) c(1 + z)−1/ν−1 ≤ |ϑ ′(z)| ≤ C(1 + z)−1/ν−1,

(iii) |ϑ(k)(z)| ≤ Ck(1 + z)−1/ν−1, k ≥ 1,

(iv) |(A(ϑ(z)))(k)| ≤ Ck(1 + z)−1/ν−1, k ≥ 1.

Observe now that for all z ∈ R∗,

|ϑ(z)| > ζ ⇐⇒ |z| < G(ζ ). (3.3)

We choose Iζ in such a way that for Iζ (z) = Iζ (ϑ(|z|)), Iζ : R �→ [0, 1] is smooth
(with all its derivatives bounded uniformly in ζ ) and verifies Iζ (z) = 1 for |z| ≤ G(ζ )
and Iζ (z) = 0 for |z| ≥ G(ζ )+ 1.

We can write, using the substitutions θ = ϑ(z) and v = vs(ρ),

V ε,ζ
t = V0 +

t∫

0

1∫

0

G(ζ )+1∫

−G(ζ )−1

2�γε∫

0

A(ϑ(z))(V ε,ζ
s− − vs(ρ))Iζ (z)

×1{u≤φγε (|V ε,ζ
s− −vs (ρ)|)}M(ds, dρ, dz, du),

where M is a Poisson measure on [0, T ] × [0, 1] × R∗ × [0,∞) with intensity mea-
sure dsdρdzdu. These substitutions are used for technical convenience: for example,
it would have been technically complicated to use a smooth version of 1{|θ |≥ζ } (with
ζ small), while it is easy to build a smooth version of 1{|z|≥G(ζ )} (with G(ζ ) large),
see also Remark 4.2 below.

Consequently, there exists a standard Poisson process J ε,ζt =∑k≥1 1{T ε,ζk ≤t} with
rate

λε,ζ =
1∫

0

dρ

G(ζ )+1∫

−G(ζ )−1

dz

2�γε∫

0

du = 4(G(ζ )+ 1)�γε
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and a family (R̄ε,ζk , Z̄ ε,ζk , Ū ε,ζ
k )k≥1 of i.i.d. [0, 1]×[−G(ζ )−1,G(ζ )+1]×[0, 2�γε ]-

valued random variables with lawλ−1
ε,ζ dρdzdu such that, with the conventions

∑0
1 = 0

and T ε,ζ0 = 0,

V ε,ζ
t = V0 +

J ε,ζt∑
k=1

A(ϑ(Z̄ ε,ζk ))

(
V ε,ζ

T ε,ζk−1

− v
T ε,ζk

(R̄ε,ζk )

)
Iζ (Z

ε,ζ
k )

×1{
Ū ε,ζ

k ≤φγε
(∣∣∣∣∣V

ε,ζ

T
ε,ζ
k−1

−v
T
ε,ζ
k
(R̄ε,ζk )

∣∣∣∣∣
)}.

For t ∈ [0, T ], w ∈ R
2, (recall that φε ≤ �ε), define

gε,ζ (t, w) = 1 − 1

λε,ζ

1∫

0

dρ

G(ζ )+1∫

−G(ζ )−1

dzφγε (|w − vt (ρ)|)

= 1 − 1

2�γε

1∫

0

dρφγε (|w − vt (ρ)|) ∈ [1/2, 1].

Consider a C∞ functionχ : R �→[0, 1] supported by (−1, 1) such that
∫ 1
−1 χ(x)dx =1.

Setting

qε,ζ (t, w, ρ, z) = gε,ζ (t, w)χ(z − G(ζ )− 3)+ φ
γ
ε (|w − vt (ρ)|)

λε,ζ
1{|z|≤G(ζ )+1}

we see that for each t ∈ [0, T ], w ∈ R
2, qε,ζ (t, w, ρ, z)dρdz is a probability measure

on [0, 1]×R∗. Since χ(z−G(ζ )−3) = 0 for |z| ≤ G(ζ )+1 and χ(z−G(ζ )−3) > 0
implies |z| > G(ζ )+1 and thus Iζ (z) = 0, we see that for all k ≥ 0, allψ : R

2 �→ R+,

E

[
ψ

(
V ε,ζ

T ε,ζk+1

)∣∣∣∣ V ε,ζT ε,ζk

, T ε,ζk , T ε,ζk+1

]

=
1∫

0

∫

R∗

ψ

(
V ε,ζ

T ε,ζk

+ A(ϑ(z))(V ε,ζTk
− v

T ε,ζk+1
(ρ))Iζ (z)

)
φ
γ
ε

(∣∣∣∣V ε,ζT ε,ζk

− v
T ε,ζk+1

(ρ)

∣∣∣∣
)

dρdz

λε,ζ

=
1∫

0

∫

R∗

ψ

(
V ε,ζ

T ε,ζk

+ A(ϑ(z))(V ε,ζTk
− v

T ε,ζk+1
(ρ))Iζ (z)

)
qε,ζ (T

ε,ζ
k+1, V ε,ζ

T ε,ζk

, ρ, z)dρdz.

Consequently, we can build, on a possibly enlarged probability space, a sequence
(Rε,ζk , Z ε,ζk )k≥1 of random variables such that V ε,ζ

0 = V0 and for all k ∈ {0, . . . ,
J ε,ζT − 1},
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V ε,ζ
t = V ε,ζ

T ε,ζk

for all t ∈ [T ε,ζk , T ε,ζk+1),

V ε,ζ

T ε,ζk+1

=
J ε,ζt∑
k=1

A(ϑ(Z ε,ζk+1))(V
ε,ζ
Tk

− v
T ε,ζk+1

(Rε,ζk+1))Iζ (Z
ε,ζ
k+1),

L
(
(Rε,ζk+1, Z ε,ζk+1)|V ε,ζ

T ε,ζk

, T ε,ζk , T ε,ζk+1

)
= qε,ζ (T

ε,ζ
k+1, V ε,ζ

T ε,ζk

, ρ, z)dρdz.

Observe that by construction, we have

V ε,ζ
t = V0 +

J ε,ζt∑
k=1

A(ϑ(Z ε,ζk ))(V ε,ζ

T ε,ζk−1

− v
T ε,ζk

(Rε,ζk ))Iζ (Z
ε,ζ
k )

for all t ∈ [0, T ]. The following observation will allow us to handle several computa-
tions.

Remark 3.2 Recall that M(ds, dρ, dz, du) is a Poisson measure on [0, T ] × [0, 1] ×
R∗×[0,∞)with intensity measure dsdρdzdu. For anyψ : [0, T ]×R

2×[0, 1]×R∗ �→
R+, any t ∈ [0, T ],

J ε,ζt∑
k=1

ψ(T ε,ζk , V ε,ζ

T ε,ζk−1

, Rε,ζk , Z ε,ζk )Iζ (Z
ε,ζ
k )

=
t∫

0

1∫

0

∫

R∗

∞∫

0

ψ(s, V ε,ζ
s− , ρ, z)Iζ (z)1{u≤φγε (|V ε,ζ

s− −vs (ρ)|)}M(ds, dρ, dz, du).

Remark 3.3 We finally compute the law of ((Rε,ζ1 , Z ε,ζ1 ), . . . , (Rε,ζl , Z ε,ζl )). We can
write, for each k ≥ 0,

V ε,ζ
Tk

= Hk(V0, (T
ε,ζ

1 , Rε,ζ1 , Z ε,ζ1 ), . . . , (T ε,ζk , Rε,ζk , Z ε,ζk )),

for some function Hk : R
2 × (R+ × [0, 1] × R∗)k �→ R

2. Indeed, set H0(v) = v and

Hk+1(v, (t1, ρ1, z1), . . . , (tk+1, ρk+1, zk+1)) = Hk(v, (t1, ρ1, z1), . . . , (tk, ρk, zk)))

+A(ϑ(zk+1))
(Hk(v, (t1, ρ1, z1), . . . , (tk, ρk, zk)))− vtk+1(ρk+1)

)
Iζ (zk+1).

Conditionally on σ(V0, J ε,ζt , t ≥ 0), the law of ((Rε,ζ1 , Z ε,ζ1 ), . . . , (Rε,ζl , Z ε,ζl )) has
the density

l∏
k=1

qε,ζ (T
ε,ζ
k ,Hk−1(V0, (T

ε,ζ
1 , ρ1, z1), . . . , (T

ε,ζ
k−1, ρk−1, zk−1)), ρk, zk),

with respect to the Lebesgue measure on ([0, 1] × R∗)k .
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4 An integration by parts formula

The aim of this section is to prove an integration by parts formula for V ε,ζ
t . Clearly,

on the event {T ε,ζ1 > t}, V ε,ζ
t = V0, so that no regularization may occur. To avoid

this degeneracy, we consider (Z−1, Z0) with law N (0, I2) independent of everything
else. We also introduce a C∞ non-decreasing function �ε : R �→ [0, 1] such that
�ε(x) = 0 for x ≤ �ε − 1 and �ε(x) = 1 for x ≥ �ε . We may assume that the
derivatives of all orders of �ε are bounded uniformly with respect to ε ∈ (0, ε0).
Finally, we consider a C∞ function � : R �→ [0, 1] such that �(x) = 1 for x ≤ 1/4
and �(x) = 0 for x ≥ 3/4. We set

�
ε,ζ
t = �ε(|V0|)+

J ε,ζt∑
k=1

�ε(|V ε,ζ

T ε,ζk

|) and Gε,ζ
t = �(�

ε,ζ
t ). (4.1)

Observe that since sup[0,t] |V ε,ζ
s | = max{|V0|, |V ε,ζ

T ε,ζ1

|, . . . , |V ε,ζ

T ε,ζJt

|}, we have

1{sup[0,t] |V ε,ζ
s |≤�ε−1} ≤ Gε,ζ

t ≤ 1{sup[0,t] |V ε,ζ
s |≤�ε}. (4.2)

Theorem 4.1 We set uζ (t) := tζ 4+ν . For any ψ ∈ C∞
b (R

2,R), any 0 < t0 ≤ t ≤ T ,
any κ ∈ (1/η0, δ), any q ≥ 1, any multi-index β ∈ {1, 2}q ,

∣∣∣∣E
[
∂

q
βψ

(√
uζ (t)

(
Z−1
Z0

)
+ V ε,ζ

t

)
Gε,ζ

t

]∣∣∣∣
≤ Cq,t0,κeCq,κ�

γ
ε ||ψ ||∞

[
ε−qζ−νq + e−�κε ζ−2νq

]
.

In the whole section, ζ ∈ (0, 1) and ε ∈ (0, ε0) are fixed. We set for simplicity
λ = λε,ζ , Tk = T ε,ζk , Rk = Rε,ζk , Zk = Z ε,ζk , but we track the dependance of all the
constants with respect to ε and ζ .

4.1 The Malliavin calculus

We recall here the Malliavin calculus defined in [5]. This calculus is based on the
variables (Zk)k≥1 (they correspond to the variables (Vk)k≥1 in [5]). The σ -field with
respect to which we will take conditional expectations is

G = σ(V0, Tk, Rk, k ≥ 1).

The calculus presented below is slightly different from the one used in [5]: there one
employs as basic random variables (Rk, Zk)k≥1, while here we use only (Zk)k≥1.
This is because we have no information about the derivability of the coefficients of
the equation with respect to ρ. We also note that our coefficients depend on time, but
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678 V. Bally, N. Fournier

since the bounds of the coefficients and of their derivatives are uniform with respect
to time, the estimates from [5] hold in our framework.

Recall that (Z−1, Z0) is independent of everything else and N (0, I2)-distributed.
We set

Zt = (Z−1, Z0, Z1, . . . , Z Jt ).

We now use Remark 3.3. Conditionally on G, the law of Zt has the following density
with respect to the Lebesgue measure on R

2 × (R∗)Jt : setting z = (z−1, . . . , z Jt ),

pε,ζ (z) = Wt e
− |z−1|2+|z0 |2

2

Jt∏
k=1

qε,ζ (Tk,Hk−1(V0, (T1, R1, z1), . . . ,

(Tk−1, Rk−1, zk−1)), Rk, zk),

the normalization constant

Wt =
⎛
⎜⎝2π

∫

[0,1]Jt

[ Jt∏
k=1

qε,ζ (Tk,Hk−1(V0, (T1, R1, z1), . . . ,

× (Tk−1, Rk−1, zk−1)), Rk, zk)

]
dz1 . . . dz Jt

⎞
⎟⎠

−1

being G-measurable.
We denote by Uζ : R∗ �→ [0, 1] a C∞ function such that Uζ (z) = 1 for |z| ∈

(1,G(ζ )− 1) and Uζ (z) = 0 for |z| ≤ 1/2 and |z| ≥ G(ζ )− 1/2. We may of course
choose Uζ in such a way that its derivatives of all orders are uniformly bounded (with
respect to ζ ). Then we define

π−1 = π0 = 1, πk = Uζ (Zk), k ≥ 1.

Remark 4.2 Note that πk is smooth with respect to Zk and that all its derivatives are
bounded uniformly with respect to ζ . This is the reason why we used the substitution
θ = ϑ(z) in the previous section.

A random variable F is said to be a simple functional if it is of the form

F = h(ω, (Z−1, . . . , Z Jt )) = h(ω,Zt )

for some t ≥ 0, some G-measurable h : {(ω, z), ω ∈ �, z ∈ R
2 × (R∗)Jt (ω)} �→ R,

such that for almost all ω ∈ �, for all k ∈ {−1, . . . , Jt (ω)}, z �→ f (ω, z) is smooth
with respect to zk on the set πk > 0. For such a functional we define the Malliavin
derivatives: for k ≥ −1,

Dk F = πk∂zk h(ω,Zt ).
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Regularization properties of the Boltzmann equation 679

Remark 4.3 We note that Remark 3.3 ensures us that V ε,ζ
t is a simple functional

for each t ∈ [0, T ]. Indeed, Hk is smooth with respect to zl for l ∈ {1, . . . , k} on
{zl ∈ (−G(ζ ), 0) ∪ (0,G(ζ )), which contains {πl > 0}. This explains our choice
for πl .

Observe that if F is a simple functional, Dk F is also a simple functional (in par-
ticular because the weights πk are smooth functions of Z ). Thus for a multi-index
β = (k1, . . . , km) with length |β| = m, we may define

DβF = Dkm . . . Dk1 F.

For m ≥ 1, we will use the norm

|F |m = |F | +
∑

1≤|β|≤m

|DβF |.

Given a d-dimensional simple functional F = (F1, . . . , Fd), we set |F |m =∑d
i=1 |Fi |m . The Malliavin covariance matrix of F is defined by

σ i, j (F) =
Jt∑

k=−1

Dk Fi × Dk Fj , 1 ≤ i, j ≤ d.

Finally, we introduce the divergence operator L: for a simple functional F ,

L F = −
Jt∑

k=−1

[
1

πk
Dk(πk Dk F)+ Dk F × Dk log pε,ζ (Zt )

]
.

We now are able to state the integration by parts formula obtained in [5], of which the
assumptions are satisfied.

Theorem 4.4 ([5, Theorems 1 and 3]) Let G and F = (F1, . . . , Fd) be simple func-
tionals. We suppose that det σ(F) �= 0 almost surely. Then for every ψ ∈ C∞

b (R
d ,R)

and every multi-index β = (β1, . . . , βq) ∈ {1, . . . , d}q , we have

E

(
∂

q
βψ(F)G

)
= E
(
ψ(F)Kβ,q(F,G)

)
,

with the following estimate:

∣∣Kβ,q(F,G)
∣∣ ≤ Cq,d

|G|q (1 + |F |q+1)
q(6d+1)

|det σ(F)|3q−1

⎛
⎝1 +

q∑
j=1

∑
k1+··+k j ≤q− j

j∏
i=1

|L F |ki

⎞
⎠ .
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680 V. Bally, N. Fournier

4.2 Lower-bound of the covariance matrix

The aim of this subsection is to show the following proposition. We denote by I the
identity matrix of M2×2(R). As we will see below (see Subsect. 4.4), the Malliavin

covariance matrix of
√

uζ (t)

(
Z−1
Z0

)
+ V ε,ζ

t is nothing but uζ (t)I + σ(V ε,ζ
t ).

Proposition 4.5 Recall that uζ (t) := tζ 4+ν . For all p ≥ 1, all 0 < t0 < t < T ,

E

[(
det
[
uζ (t)I + σ(V ε,ζ

t )
])−p
]

≤ Ct0,peC p�
γ
ε .

First, we compute the derivatives of V ε,ζ
t for t ∈ [0, T ]. If we have a family

(Mk)k∈{1,..., j} in M2×2(R), we write
∏ j

k=1 Mk = M j . . .M1.

Lemma 4.6 Let (Yt )t∈[0,T ] be the M2×2(R) -valued process defined by

Yt =
Jt∏

k=1

[
I + A(ϑ(Zk))Iζ (Zk)

]
(with Yt = I if Jt = 0).

This process solves

Yt = I +
Jt∑

k=1

A(ϑ(Zk))Iζ (Zk)YTk−1

and Yt is invertible for all t ∈ [0, T ], because I + A(θ) is invertible for |θ | ≤ π/2.
Set, for k ≥ 1,

Hk = ϑ ′(Zk)A
′(ϑ(Zk))(V

ε,ζ
Tk−1

− vTk (Rk)).

Then for k ≥ 1, for t ∈ [0, T ],

Dk V ε,ζ
t = πkYt Y

−1
Tk

Hk1t≥Tk .

Proof Since V ε,ζ
t and Yt are constant on [Tj , Tj+1), it suffices to check the result for

V ε,ζ
Tj

, for all j ≥ 0, that is, on the set πk > 0 (i.e. |Zk | ∈ [1/2,G(ζ )− 1/2]),

∂zk V ε,ζ
Tj

= YTj Y
−1
Tk

Hk1 j≥k .

Since V ε,ζ
Tj

does not depend on Zk if j < k, the result is obvious for j < k.

We now work by induction on j ≥ k. First, V ε,ζ
Tk

= V ε,ζ
Tk−1

+ A(ϑ(Zk))(V
ε,ζ
Tk−1

−
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Regularization properties of the Boltzmann equation 681

vTk (Rk, ))Iζ (Zk). Derivating this formula with respect to zk yields (recall that |Zk | ∈
[1/2,G(ζ − 1/2)] and thus Iζ (Zk) = 1),

∂zk V ε,ζ
Tk

= ϑ ′(Zk)A
′(ϑ(Zk))(V

ε,ζ
Tk−1

− vTk (Rk)) = YTk Y −1
Tk

Hk .

We now assume that the result holds for some j ≥ k and we recall that due to Sect. 3,
V ε,ζ

Tj+1
= V ε,ζ

Tj
+ A(ϑ(Z j+1))(V

ε,ζ
Tj

− vTj+1(R j+1))Iζ (Z j+1). Hence

∂zk V ε,ζ
Tj+1

= (I + A(ϑ(Z j+1))Iζ (Z j+1)
)
∂zk V ε,ζ

Tj

= (I + A(ϑ(Z j+1))Iζ (Z j+1)
)

YTj Y
−1
Tk

Hk = YTj+1 Y −1
Tk

Hk

as desired. ��
We deduce the following expression.

Lemma 4.7 For all t ∈ [0, T ], σ (V ε,ζ
t ) = Yt St Y ∗

t , where

St :=
Jt∑

k=1

π2
k Y −1

Tk
Hk H∗

k (Y
−1
Tk
)∗.

Proof Due to Lemma 4.6, we have

σ(V ε,ζ
t ) =

Jt∑
k=1

π2
k

[
Yt Y

−1
Tk

Hk

] [
Yt Y

−1
Tk

Hk

]∗ = Yt

( Jt∑
k=1

π2
k Y −1

Tk
Hk H∗

k (Y
−1
Tk
)∗
)

Y ∗
t ,

whence the result. ��
Next, we prove some estimates concerning (Yt )t∈[0,T ].

Lemma 4.8 Almost surely, for all t ≥ 0, |Yt | ≤ 1. Furthermore, for all p ≥ 1,

E

[
sup
[0,T ]

|Y −1
t |p

]
≤ exp(C p�

γ
ε ).

Proof First, an immediate computation shows that

|I + A(θ)|2 = sup
|ξ |=1

|(I + A(θ))ξ |2 = 1 + cos θ

2
≤ 1,

so that |Yt | ≤ 1. Next, one can check that for θ ∈ (−π/2, π/2),

|(I + A(θ))−1|2 = 2

1 + cos θ
≤ 1 + θ2 ≤ exp(θ2).

123



682 V. Bally, N. Fournier

Thus for 0 ≤ t ≤ T ,

|Y −1
t |2 ≤

Jt∏
k=1

|(I + A(ϑ(Zk))Iζ (Zk))
−1|2 ≤ exp

( JT∑
k=1

ϑ2(Zk)Iζ (Zk)

)
=: exp(LT ).

We infer from Remark 3.2 that for some Poisson measure M with intensity measure
dsdρdzdu,

LT =
T∫

0

1∫

0

∫

R∗

∞∫

0

|ϑ(z)|2Iζ (z)1{u≤φγε (|V ε,ζ
s− −vs (ρ)|)}M(ds, dρ, dz, du)

≤
T∫

0

1∫

0

∫

R∗

∞∫

0

|ϑ(z)|21{u≤�γε }M(ds, dρ, dz, du).

Hence for any p > 0,

E
[
exp(pLT )

] ≤ exp

⎛
⎜⎝�γε T

∫

R∗

(epϑ2(z) − 1)dz

⎞
⎟⎠ ≤ exp

(
C pT�γε

)
,

since ϑ2(z) ≤ (π/2)2 and since
∫
R∗ ϑ

2(z)dz = ∫ π/2−π/2 θ
2b(θ)dθ < ∞ by (3.2) and

(A(γ, ν)). ��
To bound St from below, we need a lower-bound of ft . The following estimate is

probably standard and will be verified in the appendix. Recall ( 3.1).

Lemma 4.9 One may find r0 > 0 and q0 > 0 such that for anyw ∈ R
2, any t ∈ [0, T ],

ft ({v, |v − w| ≥ r0}) =
1∫

0

1{|vt (ρ)−w|≥r0}dρ ≥ q0.

We now prove some basic but fundamental estimates.

Lemma 4.10 For ξ ∈ R
2, X ∈ R

2, consider

I (ξ, X) =
{
θ ∈ [−π/2, π/2],

〈
ξ, (I + A(θ))−1 A′(θ)X

〉2 ≥ θ2|X |2|ξ |2/128

}
.

For any ξ, X ∈ R
2, we always have either (0, π/2] ⊂ I (ξ, X) or [−π/2, 0) ⊂

I (ξ, X).
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Proof We may assume, by homogeneity, that |X | = |ξ | = 1. We have

(I + A(θ))−1 A′(θ) = 1

2

( − sin θ
1+cos θ −1

1 − sin θ
1+cos θ

)
=: 1

2

[ − sin θ

1 + cos θ
I + P

]
,

〈
ξ, (I + A(θ))−1 A′(θ)X

〉2 = 1

4

[
sin2 θ

(1 + cos θ)2
〈ξ, X〉2 + 〈ξ, P X〉2

−2
sin θ

1 + cos θ
〈ξ, X〉 〈ξ, P X〉

]
.

Since 〈X, P X〉 = 0 and |X | = |ξ | = 1, we always have either 〈ξ, X〉2 ≥ 1/2 or
〈ξ, P X〉2 ≥ 1/2. Thus for all θ such that 〈ξ, X〉 〈ξ, P X〉 sin θ ≤ 0 (this holds either
on [0, π/2] or on [−π/2, 0]),

〈
ξ, (I + A(θ))−1 A′(θ)X

〉2 ≥ 1

8
min

[
sin2 θ

(1 + cos θ)2
, 1

]
≥ sin2 θ

32
.

We easily conclude, since | sin θ | ≥ |θ |/2 on [−π/2, π/2]. ��

We deduce the following estimate.

Lemma 4.11 There are some constants c > 0,C > 0 such that for all ξ ∈ R
2, all

t ∈ [0, T ],

E[exp(−ξ∗Stξ)] ≤ C exp
(
−ct[|ξ |ν/(2+ν) ∧ ζ−ν]

)
.

Proof Recalling Lemmas 4.6, 4.7, the definition of πk and using that YTk = (I +
A(ϑ(Zk)))YTk−1 on πk > 0 (because πk > 0 implies Iζ (Zk) = 1), we see that

ξ∗Stξ =
Jt∑

k=1

π2
k

〈
Y −1

Tk
Hk, ξ
〉2 =

Jt∑
k=1

π2
k

〈
(I + A(ϑ(Zk)))

−1 Hk, (Y
−1
Tk−1

)∗ξ
〉2

≥
Jt∑

k=1

1{|Zk |∈[1/2,G(ζ )−1/2]}(ϑ ′(Zk))
2

×
〈
(I + A(ϑ(Zk)))

−1 A′(ϑ(Zk))(V
ε,ζ
Tk−1

− vTk (Rk)), ξTk−1

〉2
,

where ξt := (Y −1
t )∗ξ . We observe that a.s., |ξt | ≥ |ξ | because |Yt | ≤ 1 by Lemma

4.8. We splitted YTk = (I + A(ϑ(Zk)))YTk−1 in order to make rigorous the stochastic
calculus below (ξTk−1 will be predictable). We recall that r0 and q0 were defined in
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684 V. Bally, N. Fournier

Lemma 4.9. Thus, due to Lemma 4.10,

ξ∗Stξ ≥
Jt∑

k=1

1{|Zk |∈[1/2,G(ζ )−1/2]}1{ϑ(Zk )∈I (ξTk−1 ,V
ε,ζ
Tk−1

−vTk (Rk))}1{|V ε,ζ
Tk−1

−vTk (Rk ))|≥r0}

× (ϑ
′(Zk))

2ϑ2(Zk)r2
0 |ξTk−1 |2

128

≥ |ξ |2r2
0

128

Jt∑
k=1

1{|Zk |∈[1/2,G(ζ )−1/2]}1{ϑ(Zk )∈I (ξTk−1 ,V
ε,ζ
Tk−1

−vTk (Rk ))}

×1{|V ε,ζ
Tk−1

−vTk (Rk))|≥r0}(ϑ
′(Zk))

2ϑ2(Zk)

= |ξ |2r2
0

128

t∫

0

1∫

0

∫

R∗

∞∫

0

ϑ2(z)(ϑ ′(z))21{|z|∈[1/2,G(ζ )−1/2]}1{ϑ(z)∈I (ξs−,V ε,ζ
s− −vs (ρ))}

×1{|V ε,ζ
s− −vs (ρ)|≥r0}1{u≤φγε (|V ε,ζ

s− −vs (ρ)|)}M(ds, dρ, dz, du),

where M is a Poisson measure on [0, T ] × [0, 1] × R∗ × [0,∞) with intensity mea-
sure dsdρdzdu. We used Remark 3.2. Since φγε (x) ≥ rγ0 for x > r0 we get ξ∗Stξ ≥
|ξ |2r2

0
128 Lt , where

Lt :=
t∫

0

1∫

0

∫

R∗

∞∫

0

ϑ2(z)(ϑ ′(z))21{|z|∈[1/2,G(ζ )−1/2]}1{ϑ(z)∈I (ξs−,V ε,ζ
s− −vs (ρ))}

×1{|V ε,ζ
s− −vs (ρ)|≥r0}1{u≤rγ0 }M(ds, dρ, dz, du).

Using the Itô formula for jump processes, taking expectations and differentiating with
respect to time, we get, for x > 0,

d

dt
E

[
e−x Lt
]

= −
1∫

0

∫

R∗

∞∫

0

E

[
e−x Lt
(

1 − e−xϑ2(z)(ϑ ′(z))2
)
1{|z|∈[1/2,G(ζ )−1/2]}

×1{ϑ(z)∈I (ξt ,V
ε,ζ
t −vt (ρ))}1{|V ε,ζ

t −vt (ρ)|≥r0}1{u≤rγ0 }
]
dudzdρ.

The integration with respect to u is explicit. Using Lemma 4.10, we see that the set
{ϑ(z) ∈ I (ξt , V ε,ζ

t − vt (ρ))} a.s. contains {ϑ(z) ∈ (0, π/2)} = {z ∈ (0,∞)} or
{ϑ(z) ∈ (−π/2, 0)} = {z ∈ (−∞, 0)}. Since (ϑϑ ′)2 is even, this yields

d

dt
E

[
e−x Lt
]

≤ −rγ0

1∫

0

G(ζ )−1/2∫

1/2

E

[
e−x Lt
(

1 − e−xϑ2(z)(ϑ ′(z))2
)
1{|V ε,ζ

t −vt (ρ)|≥r0}
]
dzdρ.
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Finally we use Lemma 4.9 to deduce

d

dt
E

[
e−x Lt
]

≤ −
⎛
⎜⎝rγ0 q0

G(ζ )−1/2∫

1/2

(
1 − e−xϑ2(z)(ϑ ′(z))2

)
dz

⎞
⎟⎠E

[
e−x Lt
]
.

Since L0 = 0, this implies

E

[
e−x Lt
]

≤ exp

⎛
⎜⎝−trγ0 q0

G(ζ )−1/2∫

1/2

(
1 − e−xϑ2(z)(ϑ ′(z))2

)
dz

⎞
⎟⎠ .

Recalling that ξ∗Stξ ≥ |ξ |2r2
0

128 Lt , we get

E[exp(−ξ∗Stξ)] ≤ exp

⎛
⎜⎝−trγ0 q0

G(ζ )−1/2∫

1/2

(
1 − e−|ξ |2r2

0ϑ
2(z)(ϑ ′(z))2/128

)
dz

⎞
⎟⎠ .

We observe that due to (A(γ, ν)),

G(ζ )− 1/2 ≥ c(ζ−ν − (π/2)−ν)− 1/2 ≥ cζ−ν

for ζ > 0 small enough. By Lemma 3.1, we have ϑ2(z)(ϑ ′(z))2 ≥ c(1 + z)−4/ν−2 ≥
cz−4/ν−2 for z ≥ 1/2. We thus have

E[exp(−ξ∗Stξ)] ≤ exp

⎛
⎜⎝−trγ0 q0

cζ−ν∫

1/2

(
1 − e−c|ξ |2z−4/ν−2

)
dz

⎞
⎟⎠ .

But for z < |ξ |ν/(2+ν), we have |ξ |2z−4/ν−2 ≥ 1, whence 1−e−c|ξ |2z−4/ν−2 ≥ 1−e−c.
Consequently,

E[exp(−ξ∗Stξ)] ≤ exp
(
−ct
(
(cζ−ν) ∧ |ξ |ν/(2+ν) − 1/2

))
.

The conclusion follows. ��
We are finally able to conclude this subsection.

Proof of Proposition 4.5. We recall that due to [7, p 92], for all p ≥ 1, there is a
constant C p such that for all nonnegative symmetric A ∈ M2×2(R),

| det A|−p ≤ C p

∫

ξ∈R2

|ξ |4p−2e−ξ∗ Aξdξ.
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We set dt = det(uζ (t)I + σ(V ε,ζ
t )). Using Lemma 4.7, we have σ(V ε,ζ

t ) = Yt St Y ∗
t ,

whence dt = det2(Yt ) det(uζ (t)(Y ∗
t Yt )

−1 + St ). Lemma 4.8 and the Cauchy-Schwarz
inequality yield

E[d−p
t ] ≤ E

[
det(Yt )

−2p det
(

uζ (t)(Y
∗
t Yt )

−1 + St

)−p
]

≤ eC p�
γ
ε E

[
det
(

uζ (t)(Y
∗
t Yt )

−1 + St

)−2p
]1/2

.

Thus due to (4.3) and Lemma 4.11, since ξ∗(Y ∗
t Yt )

−1ξ = |(Y −1
t )∗ξ |2 ≥ |ξ |2 by

Lemma 4.8 ,

E[d−p
t ] ≤ C peC p�

γ
ε

⎛
⎜⎝
∫

|ξ |∈R2

|ξ |8p−2e−uζ (t)|ξ |2E
[
e−ξ∗St ξ

]
dξ

⎞
⎟⎠

1/2

≤ C peC p�
γ
ε

⎛
⎜⎝
∫

|ξ |∈R2

|ξ |8p−2 exp
(
−uζ (t)|ξ |2 − ct[|ξ |ν/(2+ν) ∧ ζ−ν]

)
dξ

⎞
⎟⎠

1/2

≤ C peC p�
γ
ε

⎛
⎜⎝
∫

|ξ |∈R2

|ξ |8p−2 exp
(
−ct |ξ |ν/(2+ν)) dξ

⎞
⎟⎠

1/2

.

To get the last inequality, observe that if |ξ |ν/(2+ν) ≥ ζ−ν , then |ξ |2−ν/(2+ν) ≥ ζ−4−ν ,
so that

uζ (t)|ξ |2 = tζ 4+ν |ξ |2 = tζ 4+ν |ξ |ν/(2+ν)|ξ |2−ν/(2+ν) ≥ t |ξ |ν/(2+ν).

Thus for 0 < t0 < t < T , we have

E[d−p
t ] ≤ Ct0,peC p�

γ
ε

as desired. ��

4.3 Upper-bounds of the derivatives

This subsection is devoted to the following estimates.
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Regularization properties of the Boltzmann equation 687

Proposition 4.12 For all l ≥ 1, all p ≥ 1,

E

(
1{sup[0,T ] |V ε,ζ

s |≤�ε} sup
[0,T ]

|V ε,ζ
s |p

l

)
≤ Cl,peCl,p�

γ
ε ,

E

(
1{sup[0,T ] |V ε,ζ

s |≤�ε} sup
[0,T ]

|LV ε,ζ
s |p

l

)
≤ Cl,p

eCl,p�
γ
ε

ε p(l+1)ζ νp
.

Proof We will use the estimates from [5, Sect. 4]. In [5], the coefficients are bounded.

But, as long as we are on the set {sup[0,T ]
∣∣∣V ε,ζ

s

∣∣∣ ≤ �ε}, we do not need to take a

supremum over all w ∈ R
2. For a function ψ = [0,∞)× R

2 × [0, 1] × R∗ �→ R (or
�→ R

2) which is infinitely differentiable with respect to z ∈ R∗ and to w ∈ R
2, we

set, for ε ∈ (0, ε0), l ≥ 1,

ψ̄ l
ε(t, ρ, z) := sup

{|w|≤�ε}

∑
0≤|β|+k≤l

|∂βw∂k
zψ(t, w, ρ, z)|.

Let c(t, w, ρ, z) = A(ϑ(z))(w−vt (ρ))Iζ (z), for which supw∈R2 |∇wc(t, w, ρ, z)| =
|A(ϑ(z))|Iζ (z). Due to [5, Lemma 7], we know that

Yl(t) := 1{sup[0,t] |V ε,ζ
s |≤�ε} sup

[0,t]
|V ε,ζ

s |l

≤1{sup[0,t] |V ε,ζ
s |≤�ε} sup

[0,t]
|V ε,ζ

s | + Cl

(
1+

Jt∑
k=1

c̄l
ε(Tk, Rk, Zk)

)l×l!
sup
[0,t]

(Es)
l×l! ,

where

Et = 1 + Cl

Jt∑
k=1

|A(ϑ(Zk))|Iζ (Zk)ETk− =
Jt∏

k=1

(1 + Cl |A(ϑ(Zk))|Iζ (Zk)).

First, we prove exactly as in Lemma 4.8 that for all p ≥ 1, 0 ≤ t ≤ T ,

E

[
sup
[0,t]

E p
s

]
≤ eC p,l�

γ
ε .

Due to Lemma 3.1, since |A(θ)| ≤ |θ | and since the derivatives of Iζ are bounded
uniformly with respect to ζ , we have c̄l

ε(t, ρ, z) ≤ Cl(1 + |z|)−1/ν(�ε + |vt (ρ)|) ≤
Cl�ε(1 + |z|)−1/ν(1 + |vt (ρ)|). We thus have, using the Cauchy-Schwarz inequality,

E
[
Yl (t)

p] ≤ C p�
p
ε + C p,l e

C p,l�
γ
ε � pl×l!

ε E

⎡
⎣1 +
( Jt∑

k=1

(1 + |Zk |)−1/ν(1 + |vTk (Rk)|)
)2pl×l!⎤

⎦
1/2

≤ C p,l e
C p,l�

γ
ε E

[
1 + X2pl×l!

t

]1/2
,
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688 V. Bally, N. Fournier

where Xt := ∑Jt
k=1(1 + |Zk |)−1/ν(1 + |vTk (Rk)|). We now prove that for any p ≥

1,E[X p
t ] ≤ C peC p�

γ
ε , which will end the proof of the first inequality. Using Remark

3.2, one may find a Poisson measure M on [0, T ]×[0, 1]×R∗ ×[0,∞)with intensity
measure dsdρdzdu such that

Xt =
t∫

0

1∫

0

∫

R∗

∞∫

0

(1 + |z|)−1/ν(1+|vs(ρ)|)1{u≤φγε (|V ε,ζ
s− −vt (ρ)|)}Iζ (z)M(ds, dρ, dz, du)

≤
t∫

0

1∫

0

∫

R∗

∞∫

0

(1 + |z|)−1/ν(1 + |vs(ρ)|)1{u≤�γε }M(ds, dρ, dz, du) =: X̃t .

A simple computation shows that

E[X̃ p
t ] ≤ �γε

t∫

0

ds

1∫

0

dρ
∫

R∗

dzE
[
(X̃s + (1 + |z|)−1/ν(1 + |vs(ρ)|))p − X̃ p

s

]

≤ C p�
γ
ε

t∫

0

ds

1∫

0

dρ
∫

R∗

dz(1 + |z|)−1/ν(1 + |vs(ρ)|)E
[
1+ X̃ p

s + |vs(ρ)|p
]
.

Since
∫
R∗(1 + |z|)−1/νdz < ∞ and since

∫ 1
0 |vt (ρ)|qdρ = ∫

R2 |v|q ft (dv) ≤ Cq for

all q ≥ 1 due to (1.7), we conclude that E[X̃ p
t ] ≤ C p�

γ
ε

∫ t
0 E[X̃ p

s ]ds +C p�
γ
ε , whence

E[X̃ p
t ] ≤ C p�

γ
ε eC p�

γ
ε ≤ C peC p�

γ
ε by the Gronwall Lemma. This ends the proof of

the first inequality.
We now prove the second inequality. We use [5, Lemmas 11 and 12]. We introduce

the functions

g(t, w) = 1 − 1

λε,ζ

1∫

0

dρ
∫

R∗

dz1{|z|<G(ζ )+1}φγε (|w − vt (ρ)|)

= 1 − 1

2�γε

1∫

0

dρφγε (|w − vt (ρ)|),

h(t, w, ρ) = φγε (|w − vt (ρ)|).

Then by [5, Lemma 11], for k = 1, . . . , Jt ,

|L Zk |l ≤ Cl

(
(log h)

l+1
ε (Tk, Rk)

+(1 + sup
[0,t]

|V ε,ζ
s |l+1)

l+1
Jt∑

j=k+1

[(log g)
l+1
ε (Tj )+ (log h)

l+1
ε (Tj , R j )])

)
.
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Regularization properties of the Boltzmann equation 689

Making use of Lemma 2.3-(ii), one easily checks that (log h)
l
ε(t, ρ) ≤ Clε

−l and that
for any multi-index q = (q1, . . . , ql) ∈ {1, 2}l , |∂ l

q gε(t, w)| ≤ Cl�
−1
ε εγ−l . Hence,

using the Faa di Bruno formula (5.5) and the fact that gε(t, w) ≥ 1/2,

(log g)
l
ε(t) ≤ Clε

γ−l .

Thus for k = 1, . . . , Jt ,

|L Zk |l ≤ Clε
−l−1

(
1 + sup

[0,t]
|V ε,ζ

s |l+1

)l+1

(1 + Jt ).

We now infer from [5, Lemma 12] that

sup
[0,t]

|LV ε,ζ
s |l ≤ Cl

(
1 + sup

k=1,...,Jt

|L Zk |l
)(

1 +
Jt∑

k=1

c̄l
ε(Tk, Rk, Zk)

)l+1

×
(

1 + sup
[0,t]

|V ε,ζ
s |l+2

l+1

)l+1

sup
[0,t]

E l+1
s

Using the above estimates, we can upperbound sup[0,t] |LV ε,ζ
s |l with

Clε
−l−1(1 + Jt )

(
1 + sup

[0,t]
|V ε,ζ

s |(l+1)(l+3)
l+1

)

×
(

1 + �ε

Jt∑
k=1

|ϑ(Zk)|(1 + |vTk (Rk)|)
)l+1

sup
[0,t]

E l+1
s .

Thus using the Cauchy-Schwarz inequality and similar arguments as in the proof of
the first inequality, we get

E

[
sup
[0,t]

|LV ε,ζ
s |p

l

]
≤ Cl,pε

−p(l+1)eCl,p�
γ
ε E

[
(1 + Jt )

2p
]1/2

.

Recall now that Jt is a Poisson process with rate λ = λε,ζ = 4(G(ζ ) + 1)�γε ≤
C�γε ζ−ν by (A(γ, ν)). Hence E[J p

t ] ≤ C p(λε,ζ T + (λε,ζ T )p) ≤ C p�
γ p
ε ζ−νp. The

second inequality follows. ��

4.4 Proof of the formula

We prove a final lemma to compute the norm of Gε,ζ
t .
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690 V. Bally, N. Fournier

Lemma 4.13 Recall (4.1). For all l ≥ 1, all t ∈ [0, T ],

|Gε,ζ
t |l ≤ Cl1{sup[0,t] |V ε,ζ

s |≤�ε}

[
1 + 1{sup[0,t] |V ε,ζ

s |≥�ε−1}(1 + Jt )
l(sup

[0,t]
|V ε,ζ

s |ll)l
]
.

Proof Using [5, Lemma 8], we have

|Gε,ζ
t |l ≤ |Gε,ζ

t | + Cl

(
sup

{k=1,...,l}
|�(k)(�ε,ζt )|

)
|�ε,ζt |ll .

By definition of �, we see that sup{k=1,...,l} |�(k)(x)| ≤ Cl1{1/4≤x≤3/4}. Next we

observe that by definition, �ε,ζt ∈ [1/4, 3/4] implies sup[0,t] |V ε,ζ
s | ∈ [�ε − 1, �ε].

Recalling (4.2), we only have to prove that |�ε,ζt |l ≤ Cl(1 + Jt )(sup[0,t] |V ε,ζ
s |ll). But

of course, |�ε,ζt |l ≤ |�ε(|V0|)|l +∑Jt
1 |�ε(|V ε,ζ

Tk
|)|l ≤ (1+ Jt ) sup[0,t] |�ε(|V ε,ζ

s |)|l .
It only remains to check that for all s ∈ [0, T ], |�ε(|V ε,ζ

s |)|l ≤ Cl |V ε,ζ
s |ll . But this

is an immediate consequence of the chain rule (see [5, Lemma 8]) and the fact that
v �→ �ε(|v|) has bounded derivative of all orders, uniformly in ε. ��

Finally, we have all the weapons in hand to give the

Proof of Theorem 4.1. We apply Theorem 4.4 with

F = V ε,ζ
t +√uζ (t)

(
Z−1
Z0

)
, G = Gε,ζ

t .

We first note that for k ≥ 1, Dk F = Dk V ε,ζ
t , that D−1 F = √uζ (t)

(
1
0

)
and D0 F =

√
uζ (t)

(
0
1

)
. We also have L F = LV ε,ζ

t +√uζ (t)

(
L Z−1
L Z0

)
. A simple computation

shows that L Z0 = Z0, so that Dk(L Z0) = 1k=0 and thus so that Dl Dk(L Z0) = 0.
This yields |L Z0|l = 1 + |Z0|. By the same way, |L Z−1|l = 1 + |Z−1|. Since
uζ (t) ≤ 1,

|F |l ≤ Cl(1 + |V ε,ζ
t |l), |L F |l ≤ 2 + |Z−1| + |Z0| + |LV ε,ζ

t |l
and σ(F) = uζ (t)I + σ(V ε,ζ

t ).

Using Theorem 4.4, we deduce that for β a multi-index with length q,

∣∣∣E
[
∂

q
βψ(F)G

ε,ζ
t

]∣∣∣ ≤ CqE[Kβ,q ]||ψ ||∞,
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Regularization properties of the Boltzmann equation 691

where

Kβ,q = |Gε,ζ
t |q(1 + sup[0,t] |V ε,ζ

t |q+1)
13q

(det(uζ (t)I + σ(V ε,ζ
t )))3q−1

×
⎡
⎣1 +

q∑
j=1

∑
k1+···+k j ≤q− j

j∏
i=1

(2 + |Z−1| + |Z0| + |LV ε,ζ
t |ki )

⎤
⎦

≤ Cq1{sup[0,t] |V ε,ζ
s |≤�ε}

(1 + sup[0,t] |V ε,ζ
t |q+1)

13q+q2

(det(uζ (t)I + σ(V ε,ζ
t )))3q−1

(
1 + J q

t 1{sup[0,t] |V ε,ζ
s |≥�ε−1}

)

×
⎡
⎣1 +

q∑
j=1

∑
k1+···+k j ≤q− j

j∏
i=1

(2 + |Z−1| + |Z0| + |LV ε,ζ
t |ki )

⎤
⎦

due to Lemma 4.13. Using the Cauchy the Cauchy-Schwarz inequality, we obtain

E[Kβ,q ] ≤ Cq I1 I2 I3 I4,

where

I1 = E

[
1{sup[0,t] |V ε,ζ

s |≤�ε }(1 + sup
[0,t]

|V ε,ζ
t |q+1)

4(13q+q2)

]1/4

,

I2 = E

[
(det(uζ (t)I + σ(V ε,ζ

t )))−4(3q−1)
]1/4

,

I3 = E

[
1 + J 4q

t 1{sup[0,t] |V ε,ζ
s |≥�ε−1}

]1/4
,

I4 = E

⎡
⎣1 +

q∑
j=1

∑
k1+···+k j ≤q− j

j∏
i=1

(2 + |Z−1| + |Z0| + |LV ε,ζ
t |ki )

41{sup[0,t] |V ε,ζ
s |≤�ε }

⎤
⎦

1/4

.

Making use of Lemmas 4.5 and 4.12, we immediately get, for 0 ≤ t0 ≤ t ≤ T ,

I1 ≤ CqeCq�
γ
ε and I2 ≤ Ct0,qeCq�

γ
ε .

Recall now that Jt is a Poisson process with rate 4�γε (G(ζ ) + 1) ≤ C�γε ζ−ν , so
that E[J p

t ] ≤ C p�
γ p
ε ζ−νp for all p ≥ 1. Using Proposition 2.1-(iii) with some

1/η0 < κ < δ, and the Cauchy-Schwarz inequality, we obtain

I3 ≤ Cq + CqE

[
J 8q

t

]1/8
P

[
sup
[0,t]

|V ε,ζ
s | ≥ �ε − 1

]1/8

≤ Cq + Cq�
γ q
ε ζ−νqe−4(�ε−1)κ )E

[
sup
[0,t]

e32|V ε,ζ
s |κ
]1/8

≤ Cq,κ (1 + ζ−νqe−2�κε ).
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692 V. Bally, N. Fournier

Finally, using Lemma 4.12, we see that for j = 1, . . . , q and k1 + · · · + k j ≤ q − j ,

E

⎡
⎣

j∏
i=1

(2 + |Z−1| + |Z0| + |LV ε,ζ
t |ki )

41{sup[0,t] |V ε,ζ
s |≤�ε}

⎤
⎦

1/4

≤
j∏

i=1

E

[
(2 + |Z−1| + |Z0| + |LV ε,ζ

t |ki )
4 j1{sup[0,t] |V ε,ζ

s |≤�ε}
]1/(4 j)

≤ Cq

j∏
i=1

E

[
1 + |LV ε,ζ

t |4 j
ki
1{sup[0,t] |V ε,ζ

s |≤�ε}
]1/(4 j)

≤ CqeCq�
γ
ε

⎡
⎣

j∏
i=1

(1 + ζ−4 jνε−4 j (ki +1))

⎤
⎦

1/(4 j)

≤ CqeCq�
γ
ε

⎡
⎣

j∏
i=1

ζ−4 jνε−4 j (ki +1)

⎤
⎦

1/(4 j)

≤ CqeCq�
γ
ε ζ− jνε−q

≤ CqeCq�
γ
ε ζ−qνε−q ,

whence I4 ≤ CqeCq�
γ
ε ζ−qνε−q . All this yields

E[Kβ,q ] ≤ Ct0,q,κeCq�
γ
ε ζ−qνε−q(1 + ζ−νqe−2�κε )

≤ Ct0,q,κeCq�
γ
ε

(
ζ−qνε−q + ζ−2νqe−�κε

)
.

For the last inequality, we used that �ε = [log(1/ε)]η0 and that γ η0 < 1 < κη0.
Theorem 4.1 is checked. ��

5 Conclusion

We now wish to end the proof of our main result.

Lemma 5.1 Assume that for some α ∈ [0, 2), some K > 0, for all ε ∈ (0, 1),

sup
[0,T ]

sup
v0∈R2

fs(Ball(v0, ε)) ≤ K εα.

Then for η ∈ (0, 1−ν) and p ≥ 1, for 0 < t0 ≤ t ≤ T , for ε ∈ (0, ε0) and ζ ∈ (0, 1),
for q ≥ 1, for all ξ ∈ R

2 with |ξ | ≥ 1,

| f̂t (ξ)| =
∣∣∣E
[
ei〈ξ,Vt 〉

]∣∣∣ ≤ Cq,t0,η,p

[
|ξ |−q(ε−q−ηζ−νq + ε pζ−2νq)

+ |ξ |ν+ηεν+γ+α + |ξ |ε−ηζ 1−ν] .
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Regularization properties of the Boltzmann equation 693

Proof We have | f̂t (ξ)| = ∣∣E [ei〈ξ,Vt 〉]∣∣ by Proposition (2.1)-(ii). We set X ζt :=√
uζ (t)(Z−1, Z0) for simplicity and write

| f̂t (ξ)| ≤
∣∣∣E
[
ei〈ξ,Vt 〉 − ei〈ξ,V ε

t 〉]∣∣∣+
∣∣∣∣E
[

ei〈ξ,V ε
t 〉 − e

i
〈
ξ,V ε,ζ

t

〉]∣∣∣∣
+
∣∣∣∣E
[

e
i
〈
ξ,V ε,ζ

t

〉
− e

i
〈
ξ,V ε,ζ

t +Xζt
〉]∣∣∣∣

+
∣∣∣∣E
[

e
i
〈
ξ,V ε,ζ

t +Xζt
〉
(1 − Gε,ζ

t )

]∣∣∣∣+
∣∣∣∣E
[

e
i
〈
ξ,V ε,ζ

t +Xζt
〉
Gε,ζ

t

]∣∣∣∣
=: A1 + · · · + A5.

First, we apply Theorem 4.1 withψ(v) = ei〈ξ,v〉 and the multi-indexesβ1 = (1, . . . , 1)
and β2 = (2, . . . , 2)with length q, for which ∂q

β1
ψ(v) = (iξ1)

qei〈ξ,v〉 and ∂q
β2
ψ(v) =

(iξ2)
qei〈ξ,v〉. For any κ ∈ (1/η0, δ),

A5 ≤ Cq,t0,κ |ξ |−qeCq�
γ
ε (ζ−νqε−q + ζ−2νqe−�κε )

≤ Cq,t0,η,p|ξ |−q(ζ−νqε−q−η + ζ−2νqε p),

because�ε = log(1/ε)η0 and γ η0 < 1 < κη0. Next, by (4.2) and Proposition 2.1-(iii),

A4 ≤ P

[
sup
[0,T ]

|V ε,ζ
t | ≥ �ε − 1

]
≤ Cκe−(�ε−1)κ ≤ Cεν+α+γ .

We could have chosen any other positive power of ε. We also have, since |ei〈ξ,x〉 −
ei〈ξ,y〉| ≤ |ξ ||x − y| ,

A3 ≤ |ξ |E
[
|X ζt |
]

≤ C |ξ |√uζ (t) ≤ C |ξ |ζ 2+ν/2.

Proposition 2.1-(iv) (with β = 1) implies

A2 ≤ |ξ |E
[
|V ε,ζ

t − V ε
t |
]

≤ C |ξ |eC�γε ζ 1−ν ≤ Cη|ξ |ε−ηζ 1−ν .

Finally, we note that for β ∈ (0, 1],

|ei〈ξ,x〉 − ei〈ξ,y〉| ≤ min(|ξ ||x − y|, 2) ≤ 21−β |ξ |β |x − y|β.

Hence using Proposition 2.1-(v) with β = ν + η (which is smaller than 1),

A1 ≤ 21−β
E
[|ξ |ν+η|V ε

t − Vt |ν+η
] ≤ Cη|ξ |ν+ηεν+η+γ+αeCη�

γ
ε ,

which we can bound by Cη|ξ |ν+ηεν+γ+α as usual. To conclude the proof, it suffices to
note that we obviously have εν+α+γ ≤ |ξ |ν+ηεν+α+γ and |ξ |ζ 2+ν/2 ≤ |ξ |ε−ηζ 1−ν .

��
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694 V. Bally, N. Fournier

Next, we optimize the previous formula.

Lemma 5.2 Assume that for some α ∈ [0, 2), some K > 0, for all ε ∈ (0, 1),

sup
[0,T ]

sup
v0∈R2

fs(Ball(v0, ε)) ≤ K εα.

Assume that ν ∈ (0, 1/2) and that γ > ν2/(1 − 2ν). Define

p(α) = (α + γ )(1 − 2ν)− ν2

(α + γ + ν − 1)ν + 1
> 0.

Then for all r ∈ (0, p(α)), all 0 < t0 ≤ t ≤ T and all ξ ∈ R
2,

| f̂t (ξ)| ≤ Cr,t0 |ξ |−r .

Proof We can assume that |ξ | ≥ 1, because ft is a probability measure, so that
|| f̂t ||∞ = 1. We use Lemma 5.1 with ε = |ξ |−a and ζ = |ξ |−b, for some a > 0, b > 0
such that a + νb = 1 − η1, for some small η1 ∈ (0, 1) to be chosen later. We thus get,
for some small η ∈ (0, 1 − ν) and some large p ≥ 1, q ≥ 1 to be chosen later, for all
|ξ | ≥ 1,

| f̂t (ξ)| ≤ Cq,t0,η,p

(
|ξ |−q+aη+(a+νb)q + |ξ |−q−ap+2νqb + |ξ |ν+η−a(ν+γ+α)

+ |ξ |1+aη−b(1−ν))

= Cq,t0,η,p

(
|ξ |−η1q+aη + |ξ |−q−ap+2q(1−η1−a) + |ξ |ν+η−a(ν+γ+α)

+ |ξ |1+aη−(1−η1−a)(1/ν−1)
)

≤ Cq,t0,η,p

(
|ξ |−η1q+1 + |ξ |q−ap + |ξ |ν+η−a(ν+γ+α)

+ |ξ |1+a(η+1/ν−1)−(1−η1)(1/ν−1)
)
.

We used here that 0 < aη ≤ 1 and 1−η1−a ≤ 1. Let now r ∈ (0, p(α)). It remains to
show that one may find q ≥ 1, p ≥ 1, η1 ∈ (0, 1), η ∈ (0, 1 − ν) and a ∈ (0, 1 − η1)

in such a way that

η1q − 1 ≥ r, (5.1)

ap − q ≥ r, (5.2)

a(ν + γ + α)− ν − η ≥ r, (5.3)

(1 − η1)(1/ν − 1)− 1 − a(η + 1/ν − 1) ≥ r. (5.4)

It suffices to show that (5.3) and (5.4) hold for some η ∈ (0, 1 − ν), some η1 ∈ (0, 1)
and some a ∈ (0, 1 − η1) small enough. Indeed, it will then suffice to choose q large

123



Regularization properties of the Boltzmann equation 695

enough to get (5.1) and then p large enough to obtain (5.2). Hence it suffices to check
that there is a ∈ (0, 1) such that

a(ν + γ + α)− ν > r and 1/ν − 2 − a(1/ν − 1) > r.

But setting a = (1 − 2ν + ν2)/[1 + ν(ν + γ + α − 1)], we get

a(ν + γ + α)− ν = 1/ν − 2 − a(1/ν − 1) = p(α) > r.

To conclude the proof, it only remains to check that a ∈ (0, 1). Clearly, a > 0. To
check that a < 1, it suffices to prove that 1 − 2ν + ν2 < 1 + ν(ν − 1), which always
holds for ν > 0. ��

The last preliminary consists of studying the function α �→ p(α).

Lemma 5.3 Assume that ν ∈ (0, 1/2) and that γ > ν2/(1 − 2ν).

(i) The map α �→ p(α) is increasing on [0,∞). The function α �→ p(α)/α is
decreasing on (0,∞) and p(aγ,ν)/aγ,ν = 1, where aγ,ν was defined by (1.5).

(ii) Furthermore, we have, recalling (1.6)

qγ,ν > 1 ⇐⇒ aγ,ν > 1 ⇐⇒ ν < 1/3 and γ > (2ν + 2ν2)/(1 − 3ν),

qγ,ν > 2 ⇐⇒ aγ,ν > 2 ⇐⇒ ν < 1/4 and γ > (6ν + 3ν2)/(1 − 4ν).

Observe that qγ,ν = p(2 ∧ aγ,ν).
(iii) For q ∈ (0, qγ,ν), one may find n0 ≥ 1 and 0 = α0 < α1 < · · · < αn0 such that

for all k ∈ {0, . . . , n0 − 1}, αk ∈ [0, 2) and αk+1 < p(αk), with furthermore
αn0 ≥ q, all these quantities depending only on q, γ, ν.

Proof We start with point (i). To show that p is increasing, it suffices to note that its
derivative is positive if and only if (1 − 2ν)[(γ + ν − 1)ν + 1] > ν[γ (1 − 2ν)− ν2],
i.e. 1 − 3ν + 3ν2 − ν3 > 0, which always holds for ν ∈ (0, 1). We also have

p(α)

α
= 1 − 2ν

αν + [(γ + ν − 1)ν + 1] + γ (1 − 2ν)− ν2

α2ν + α[(γ + ν − 1)ν + 1] ,

which is obviously decreasing, because under our assumptions, 1 − 2ν > 0, γ (1 −
2ν) − ν2 > 0 and (γ + ν − 1)ν + 1 > 0. Next, aγ,ν > 0 is designed to solve
νa2
γ,ν + ν(γ + ν + 1)aγ,ν = γ (1 − 2ν)− ν2, whence

p(aγ,ν)

aγ,ν
= aγ,ν(1 − 2ν)+ γ (1 − 2ν)− ν2

νa2
γ,ν + ν(γ + ν + 1)aγ,ν + (1 − 2ν)aγ,ν

= 1.

We now prove (ii). Due to (i), we clearly have aγ,ν > 1 if and only if p(1)/1 > 1,
i.e. [(1 + γ )(1 − 2ν)− ν2]/[(γ + ν)ν + 1] > 1 , which is equivalent to ν > 1/3 and
γ > (2ν + 2ν2)/(1 − 3ν). By the same way, aγ,ν > 2 if and only if p(2)/2 > 1, i.e.
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696 V. Bally, N. Fournier

[(2 + γ )(1 − 2ν)− ν2]/[(1 + γ + ν)ν + 1] > 2, which is equivalent to ν > 1/4 and
γ > (6ν + 3ν2)/(1 − 4ν). Next we note that we always have qγ,ν = p(aγ,ν ∧ 2).
Thus we have aγ,ν > 2 if and only if p(2)/2 > 1 if and only if qγ,ν > 2. Similarly,
aγ,ν > 1 if and only if p(1)/1 > 1 if and only if qγ,ν > 1.

Let us now check point (iii). We fix q ∈ (0, qγ,ν).
We first assume that aγ,ν ≤ 2, whence qγ,ν = aγ,ν . We fix q ′ ∈ (q, qγ,ν),

we observe that due to (i), p(q ′)/q ′ > 1 and we consider η > 0 such that
(1 − η)p(q ′)/q ′ = 1. Then by (i), we deduce that the sequence α0 = 0, αk+1 =
(1 − η)p(αk) takes its values in [0, q ′] ⊂ [0, 2) and increases to q ′. Thus for some
n0, αn0 ≥ q. Of course, we have αk+1 < p(αk) for all k ∈ {0, . . . , n0 − 1}, so that
(α0, . . . , αn0) solves our problem.

Next we assume that aγ,ν > 2, whence qγ,ν = p(2) > 2. We may assume that q ∈
(2, p(2)). We consider η > 0 such that (1−η)p(2)/2 = 1, whence (1−η)p(α)/α > 1
for all α ∈ [0, 2). Then by (i), the sequence α0 = 0, αk+1 = (1 − η)p(αk) takes its
values in [0, 2) and increases to 2. Consider now x ∈ (0, 2) such that p(x) = q (recall
that q ∈ (2, p(2)) is fixed). Then for n0 sufficiently large, we have αn0−1 > x and
thus αn0−1 < q < p(αn0−1). Hence (α0, . . . , αn0−1, q) solves our problem. ��

The last preliminary consists of an easy result on Fourier transforms. Recall that
for f a probability measure on R

2 and ξ ∈ R
2, we denote by f̂ (ξ) = F f (ξ) =∫

R2 ei〈ξ,v〉 f (dv).

Lemma 5.4 Let f be a probability measure on R
2 such that | f̂ (ξ)| ≤ K |ξ |−α , for

some α ∈ (0, 2). Then for all v0 ∈ R
2, all ε ∈ (0, 1), one has f (Ball(v0, ε)) ≤

CK ,αε
α .

This Lemma will be checked in the appendix. We can now give the

Proof of Theorem 1.3 Points (ii) and (iii) follow from (i) and Lemma 5.3. We fix
0 < t0 < T and q ∈ (0, qγ,ν). The only thing we have to check is that for all ξ ∈ R

2,
all t ∈ [t0, T ], | f̂t (ξ)| ≤ Ct0,q(1 + |ξ |)−q . Then the Sobolev norm estimate and the
ball estimate will follow (see Lemma 5.4). By Lemma 5.3, we may consider n0 ≥ 1
and 0 = α0 < α1 < · · · < αn0 such that for all k ∈ {0, . . . , n0 − 1}, αk ∈ [0, 2) and
αk+1 < p(αk), with αn0 ≥ q.

Step 1 First, we apply Lemma 5.2 with α = α0 = 0. Since α1 < p(α0), we deduce
that

sup
t∈[t0/n0,T ]

| f̂t (ξ)| ≤ C |ξ |−α1 .

By Lemma 5.4, we deduce that sup[t0/n0,T ] supv0∈R2 ft (Ball(v0, ε)) ≤ Ct0,qε
α1 .

Step 2 Define now ( f 1
t )t∈[0,T −t0/n0] by f 1

t = ft+t0/n0 . This is also a weak solution of
(1.1). It satisfies the same properties as ( ft )t∈[0,T ], and the additional property that

sup
[0,T −t0/n0]

sup
v0∈R2

f 1
t (Ball(v0, ε)) ≤ Ct0,qε

α1 .
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We thus can apply Lemma 5.2 with α = α1 and r = α2 < p(α1), to get

sup
t∈[2t0/n0,T ]

| f̂t (ξ)| = sup
t∈[t0/n0,T −t0/n0]

| f̂ 1
t (ξ)| ≤ C |ξ |−α2 ,

whence sup[2t0/n0,T ] supv0∈R2 ft (Ball(v0, ε)) ≤ Ct0,qε
α2 by Lemma 5.4.

Step 3 Iterating this procedure (n0 times), we deduce that

sup
t∈[t0,T ]

| f̂t (ξ)| ≤ Ct0,r |ξ |−αn0 .

But ft is a probability measure, so that | f̂t (ξ)| ≤ 1. Thus

sup
t∈[t0,T ]

| f̂t (ξ)| ≤ Ct0,r (1 + |ξ |)−αn0 ,

which ends the proof since αn0 ≥ q. ��
Acknowledgments We are very grateful to the anonymous referees for their comments, which allowed
us to improve consequently the presentation of this work.

Appendix

Fourier transforms

We first check Lemma 5.4. This result is probably standard, but we found no reference
and the proof is short and easy.

Proof of Lemma 5.4 We use the Plancherel identity. Recall that

F(1[x0−ε,x0+ε]×[y0−ε,y0+ε])(ξ1, ξ2) = 4eiξ1x0+iξ2 y0 sin(ξ1ε) sin(ξ2ε)/(ξ1ξ2).

Setting v0 = (x0, y0),

f (Ball(v0, ε)) ≤
∫

R2

f (dv)1[x0−ε,x0+ε]×[y0−ε,y0+ε](v)

≤ C
∫

R2

∣∣∣∣ f̂ (ξ) sin(ξ1ε) sin(ξ2ε)

ξ1ξ2

∣∣∣∣ dξ

≤ CK

∫

R2

|ξ |−α | sin(ξ1ε) sin(ξ2ε)|
|ξ1ξ2| dξ ≤ CK

∫

R2

| sin(ξ1ε) sin(ξ2ε)|
|ξ1ξ2|1+α/2 dξ,
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698 V. Bally, N. Fournier

because |ξ | ≥ √
2|ξ1ξ2|. We handle the substitution ξ = x/ε and get

f (Ball(v0, ε)) ≤ CK ε
α

∫

R2

| sin(x1)|
|x1|1+α/2

| sin(x2)|
|x2|1+α/2 dx ≤ CK ε

α

⎛
⎝
∫

R

| sin(x1)|
|x1|1+α/2 dx1

⎞
⎠

2

.

We easily conclude, since α ∈ (0, 2). ��

Lowerbound

We now handle the

Proof of Lemma 4.9 Recall that by (1.8), we have
∫
R2 |v|2 ft (dv) = e0 > 0 and∫

R2 v ft (dv) = 0. First, we observe that for all w such that |w| ≥ √
2e0 + 1 =: a, we

have

ft ({v, |v − w| ≥ 1}) ≥ ft ({v, |v| ≤ |w| − 1}) = 1 − ft ({v, |v| > |w| − 1})
≥ 1 − e0/(|w| − 1)2 ≥ 1/2.

Thus it suffices to prove the result for (t, w) ∈ [0, T ] × Ball(0, a). We note that for
each t ≥ 0, ft is not a Dirac mass. Indeed, since

∫
R2 v ft (dv) = 0, the only possible

Dirac mass is δ0, but this would imply
∫
R2 |v|2 ft (dv) = 0.

As a consequence, we can find, for each (t, w) ∈ [0, T ]×Ball(0, a), some numbers
rt,w > 0 and qt,w > 0 such that ft ({v, |v − w| ≥ rt,w}) ≥ qt,w.

Now we prove that for each (t, w) ∈ [0, T ]×Ball(0, a), we can find a neighborhood
Vt,w of (t, w) such that for all (t ′, w′) ∈ Vt,w, ft ′({v, |v − w′| ≥ rt,w/2}) ≥ qt,w/2.
To do so, we first observe that it is clear from Definition 1.1 that t �→ ft is weakly
continuous. Hence for all continuous-bounded function ϕ : R �→ R+, (t ′, w′) �→∫
R2 ϕ(|w′ − v|) ft ′(dv) is continuous. Consider now a continuous-bounded nonneg-

ative function ϕ : R+ �→ R+ such that 1{x≥rt,w} ≤ ϕ ≤ 1{x≥rt,w/2}. By continuity,
there is a neighborhood Vt,w of (t, w) such that for all (t ′, w′) ∈ Vt,w, there holds∫
R2 ϕ(|w′ − v|) ft ′(dv) ≥ 1

2

∫
R2 ϕ(|w − v|) ft (dv), which implies

ft ′({v, |v − w′| ≥ rt,w/2}) ≥ 1
2 ft ({v, |v − w| ≥ rt,w}) ≥ qt,w/2.

Since [0, T ] × Ball(0, a) is compact, we can find a finite covering [0, T ] ×
Ball(0, a) ⊂ ∪n

i=1Vti ,wi . We conclude choosing r0 = min(rti ,wi /2) ∧ 1 and
q0 = min(qti ,wi /2) ∧ (1/2). ��

Derivatives

We recall here the Faa di Bruno formula. Let l ≥ 1 be fixed. The exist some coefficients
al,r

i1,...,ir
> 0 such that for φ : R �→ R and τ : R �→ R of class Cl(R),
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Regularization properties of the Boltzmann equation 699

[φ(τ)](l) = [τ ′]lφ(l)(τ )+
l−1∑
r=1

⎛
⎝ ∑

i1+···+ir =l

al,r
i1,...,ir

r∏
j=1

τ (i j )

⎞
⎠φ(r)(τ ), (5.5)

where the sum is taken over i1 ≥ 1, . . . , ir ≥ 1 with i1 + · · · + ir = l.
We also need another formula. For l ≥ 2 fixed, there exist some coefficients

cl,r
i1,..,iq

∈ R such that for φ : R �→ R a Cl -diffeomorphism and for τ its inverse
function,

τ (l) =
2l−1∑

r=l+1

1

(φ′(τ ))r
∑

i1+···+iq=r−1

cl,r
i1,..,iq

q∏
j=1

φ(i j )(τ ), (5.6)

where the sum is taken over q ∈ N, over i1, . . . , iq ∈ {2, . . . , l} with i1 + · · · + iq =
r − 1. This formula can be checked by induction on l ≥ 2.

Regularity of the modified cross section

We still have to give the

Proof of Lemma 3.1 Due to (A(γ, ν)), we have c(x−ν − (π/2)−ν) ≤ G(x) ≤
C(x−ν − (π/2)−ν) , for all x ∈ (0, π/2]. Since ϑ is nonincreasing, we easily deduce
that for all z ∈ [0,∞), (z/c + (π/2)−ν)−1/ν ≤ ϑ(z) ≤ (z/C + (π/2)−ν)−1/ν and (i)
follows. Next, we have |ϑ ′(z)| = 1/|b(ϑ(z))|. But b(x) ∈ [cx−1−ν,Cx−1−ν], so that
|ϑ ′(z)| ∈ [ϑ1+ν(z)/C, ϑ1+ν(z)/c]. Using (i), we deduce (ii). Next, (iii) is obtained
from (5.6): using that for any k ≥ 2, |G(k)(x)| = |b(k−1)(x)| ≤ Ck |x |−ν−k , we get

|ϑ(k)(z)| ≤ Ck

2k−1∑
r=k+1

|ϑ(z)|r(ν+1)
∑

i1+···+iq=r−1

|ϑ(z)|−νq−r+1.

Since we have i1, . . . , iq ∈ {2, . . . , k} such that i1 + · · · + iq = r − 1, we see that
q ≤ (r − 1)/2. Consequently, for k ≥ 2,

|ϑ(k)(z)| ≤ Ck

2k−1∑
r=k+1

|ϑ(z)|r(ν+1)|ϑ(z)|−ν(r−1)/2−r+1

= Ck

2k−1∑
r=k+1

|ϑ(z)|(r+1)ν/2+1 ≤ Ck |ϑ(z)|(k+2)ν/2+1 ≤ Ck(1 + |z|)−1/ν−1,

where we finally used (i). Since |A(l)(θ)| ≤ Cl for all l ≥ 1, (iv) follows from (5.5)
and (iii). ��
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Regularity of the cutoff function

We now prove the regularity properties of our cutoff function φε stated in Lemma 2.3.

Proof of Lemma 2.3 We first prove (i). We recall that for any a, b > 0, there are
some constants 0 < ca,b < Ca,b such that for any x, y ≥ 0, ca,b|xa+b − ya+b| ≤
(xa + ya)|xb − yb| ≤ Ca,b|xa+b − ya+b|. We also recall that φε is globally Lipschitz
continuous with constant 1, that φε(x) = �ε for x ≥ �ε + 1 and that φε(x) ≥ x/2 for
x ∈ [0, �ε + 1], since φε(x) ≥ x for x ∈ [0, �ε − 1] and since φε is non-decreasing.
We set �ε(x, y) = xβ |φγε (x)− φ

γ
ε (y)|. If x, y ≥ �ε + 1, then �ε(x, y) = 0. If now

x ≤ �ε + 1, then

�ε(x, y) ≤ 2βφβε (x)|φγε (x)− φγε (y)|
≤ 2β(φβε (x)+ φβε (y))|φγε (x)− φγε (y)|
≤ 2βCβ,γ |φβ+γ

ε (x)− φβ+γ
ε (y)|

≤ 2β
Cβ,γ
cγ,β

(φγε (x)+ φγε (y))|φβε (x)− φβε (y)|

≤ 2β+γ Cβ,γ
cγ,β

�γε |φε(x)− φε(y)|β

≤ 2β+γ Cβ,γ
cγ,β

�γε |x − y|β.

We used here that β < 1. Finally, if x ≥ �ε + 1 and y ≤ �ε + 1,

�ε(x, y) = xβ |�γε − φγε (y)|
≤ (|x − y|β + |y|β)(�γε − φγε (y))

≤ |x − y|β�γε + |y|β |φγε (x)− φγε (y)|
≤ |x − y|β�γε + 2β+γ Cβ,γ

cγ,β
�γε |x − y|β,

the last inequality being obtained as previously, since y ≤ �ε + 1.
To prove (ii), we first observe that for k ≥ 1,

|φ(k)ε (x)| ≤ Ck

(
ε1−k1{x∈(ε,3ε)} + 1{k=1}1{x∈[3ε,�ε−1]} + 1{x∈(�ε−1,�ε+1)}

)
.

Using the Faa di Bruno formula (5.5), one easily deduces that for l ≥ 1,

|[logφε(x)](l)| ≤ Cl

(
1{x∈(ε,�ε ]}x−l + 1{x∈(�ε−1,�ε+1)}�−1

ε

)

and

|[φγε (x)](l)| ≤ Cl

(
1{x∈(ε,�ε ]}xγ−l + 1{x∈(�ε−1,�ε+1)}�γ−1

ε

)
.
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Regularization properties of the Boltzmann equation 701

Using again (5.5) and that any derivative of order k ≥ 1 of v �→ |v| is smaller than
Ck |v|1−k , one easily concludes. ��

Exponential estimates

Finally, we conclude with the

Proof of Lemma 2.2 We start with the first inequality. Recall that by (1.2),
|A(θ)V |2 = 1+cos θ

2 |V |2. We also have 〈V, A(θ)V 〉 = − 1−cos θ
2 |V |2, |A(θ)| ≤ |θ |

and θ2/4 ≤ 1 − cos θ ≤ θ2 for θ ∈ [−π/2, π/2]. Thus

|V + A(θ)(V − v)|2 = |V |2 + 1 − cos θ

2
(|V |2 + |v|2 − 2 〈V, v〉)

+2 〈V, A(θ)V 〉 − 2 〈V, A(θ)v〉
= 1 + cos θ

2
|V |2 + 1 − cos θ

2
(|v|2 − 2 〈V, v〉)− 2 〈V, A(θ)v〉

≤ |V |2(1 − θ2/8)+ θ2|v|2 + 4|θ ||V ||v|.

An simple computation shows that

|V + A(θ)(V − v)|2 ≤
{ |V |2(1 − θ2/16) if |V | ≥ 130|v|/|θ |

|V |2 + θ2|v|2 + 4|θ ||V ||v| if |V | ≤ 130|v|/|θ |
}
.

In the case where |V | ≤ 1, we observe that, since κ ∈ (0, 1),

|V + A(θ)(V − v)|κ ≤ (|V | + |θ |(|V | + |v|))κ ≤ |V |κ + |θ |κ(1 + |v|κ).

We thus may write

�(V, v) :=
π/2∫

−π/2

(
e|V +A(θ)(V −v)|κ − e|V |κ) b(θ)dθ

≤ −
π/2∫

−π/2

(
e|V |κ − e|V |κ (1−θ2/16)κ/2

)
1{|θ |≥130|v|/|V |}b(θ)dθ

+1{|V |≥1}

π/2∫

−π/2

(
e(|V |2+θ2|v|2+4|θ ||V ||v|)κ/2 − e|V |κ)1{|θ |≤130|v|/|V |}b(θ)dθ

+1{|V |≤1}

π/2∫

−π/2

(
e|V |κ+Cκ |θ |(1+|v|κ ) − e|V |κ) b(θ)dθ

=: −�1(V, v)+�2(V, v)+�3(V, v).
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We now compute carefully. First, we have

�1(V, v) ≥ 1{|V |≥1,|V |≥130|v|}

π/2∫

−π/2

(
e|V |κ − e|V |κ (1−θ2/16)κ/2

)
1{|θ |≥1}b(θ)dθ.

But for |θ | ≥ 1 and |V | ≥ 1,

e|V |κ − e|V |κ (1−θ2/16)κ/2 ≥ e|V |κ − e|V |κ (1−1/16)κ/2

≥ e|V |κ (1 − e−|V |κ (1−(1−1/16)κ/2)) ≥ cκe|V |κ ,

whence, since b([1, π/2]) > 0 by assumption,

�1(V, v) ≥ cκ1{|V |≥1,|V |≥130|v|}e|V |κ .

Next we observe that for x, y ≥ 0, since κ/2 ∈ (0, 1), e(x+y)κ/2 − exκ/2 ≤
(κ/2)yxκ/2−1exκ/2 eyκ/2 . As a consequence in �2, since |θ ||V | ≤ 130|v|,

e(|V |2+θ2|v|2+4|θ ||V ||v|)κ/2 −e|V |κ ≤Cκ (θ
2|v|2 + |θ ||V ||v|)|V |κ−2e|V |κ eCκ (θ2|v|2+|θ ||V ||v|)κ/2

≤ Cκ (θ
2|v|2 + |θ ||V ||v|)|V |κ−2e|V |κ eCκ |v|κ .

Integrating this formula against b(θ)dθ (on |θ | ∈ [0,min(π/2, 130|v|/|V |)]) and
using (A(γ, ν)) yields

�2(V, v) ≤ Cκ1{|V |≥1}|V |κ−2e|V |κ eCκ |v|κ
[
|v|2 min(1, (|v|/|V |)2−ν)

+ |V ||v| min(1, (|v|/|V |)1−ν)
]

≤ Cκ1{|v|≥|V |≥1}e|V |κ eCκ |v|κ |V |κ−2|v|2
+Cκ1{|V |≥1,|V |≥|v|}e|V |κ eCκ |v|κ (|v|4−ν |V |κ+ν−4 + |v|2−ν |V |κ+ν−2)

≤ Cκ1{|V |≥1}|V |κ+ν−2e|V |κ eCκ |v|κ .

We finally used that κ + ν − 4 ≤ κ − 2 ≤ κ + ν − 2 < 0. Recall now that for
x ≥ 0, ex − 1 ≤ xex , so that in �3, since |V | ≤ 1,

e|V |κ+|θ |κ (1+|v|κ ) − e|V |κ = e|V |κ (e|θ |κ (1+|v|κ ) − 1) ≤ Cκ |θ |κeCκ |v|κ .

Thus, using (A(γ, ν)) and that κ > ν,

�3(V, v) ≤ Cκ1{|V |≤1}eCκ |v|κ
π/2∫

−π/2
|θ |κb(θ)dθ ≤ Cκ1{|V |≤1}eCκ |v|κ .
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We have proved that

�(V, v) ≤ −cκe|V |κ1{|V |≥1,|V |≥130|v|} + Cκ1{|V |≥1}|V |κ+ν−2e|V |κ eCκ |v|κ

+Cκ1{|V |≤1}eCκ |v|κ ,

which ends the proof of the first inequality.
The second inequality is much easier. Since κ ∈ (0, 1), we have for all x, y ≥ 0,

|exκ − eyκ | ≤ κ|xκ − yκ |e(x∨y)κ ≤ |x − y|κe(x∨y)κ .

Thus, since |A(θ)| ≤ |θ | ≤ π/2,

∣∣∣e|V +A(θ)(V −v)|κ −e|V |κ
∣∣∣≤|θ |κ(|V | + |v|)κe(|V |+2|θ |(|V |+|v|))κ≤Cκ |θ |κeCκ |V |κ eCκ |v|κ.

Since
∫ π/2
−π/2 |θ |κb(θ)dθ < ∞ by (A(γ, ν)), the second inequality holds true. ��
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