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Abstract We establish an integration by parts formula in an abstract framework
in order to study the regularity of the law for processes arising as the solution of
stochastic differential equations with jumps, including equations with discontinuous
coefficients for which the Malliavin calculus developed by Bichteler et al. (Stochastics
Monographs, vol 2. Gordon & Breach, New York, 1987) and Bismut (Z Wahrsch Verw
Gebiete 63(2):147–235, 1983) fails.
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1 Introduction

This paper is made up of two parts. In a first part we give an abstract, finite dimensional
version of Malliavin calculus. Of course Malliavin calculus is known to be an infinite
dimensional differential calculus (see [20] for the basic theory of Malliavin calculus)
and so a finite dimensional version seems to be of a limited interest. We discuss later on
the relation between the finite dimensional and the infinite dimensional frameworks,
and we highlight the interest of the finite dimensional approach.
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614 V. Bally, E. Clément

In the second part of the paper, we use the results from the first section in order to
give sufficient conditions for the regularity of the law of Xt , where X is the Markov
process with infinitesimal operator

L f (x) = 〈∇ f (x), g(x)〉 +
∫

Rd

( f (x + c(z, x))− f (x))γ (z, x)μ(dz). (1)

Suppose for the moment that γ does not depend on x . Then it is well known that
the process X may be represented as the solution of a stochastic equation driven by
a Poisson point measure with intensity measure γ (z)μ(dz). Sufficient conditions for
the regularity of the law of Xt using a Malliavin calculus for Poisson point mea-
sures are given in [6]. But in our framework γ depends on x , which roughly speaking
means that the intensity of the jumps depends on the position of the particle when the
jump occurs. Such processes are of interest in a lot of applications and unfortunately
the standard Malliavin calculus developed in [6] does not apply in this framework.
After the classical papers of Bismut [7] and Bichteler et al. [6] much work concerning
the Malliavin calculus for Poisson point measures has been done and many different
approaches have been developed: see for example [1,8,13,19,21]. But as far as we
know they do not lead to a solution for our problem. If X is an one-dimensional process
an analytical argument permits to solve the above problem, this is done in Fournier
[9–11] but the argument there seems difficult to extend in the multi-dimensional case.

We come now back to the relation between the finite dimensional and the infinite
dimensional framework. This seems to be the more interesting point in our approach
so we try to explain the main idea. In order to prove Malliavin’s regularity criterion
for the law of a functional F on the Wiener space the main tool is the integration by
parts formula

E(∂β f (F)) = E( f (F)Hβ) (2)

where ∂β denotes the derivative corresponding to a multi-index β and Hβ is a random
variable built using the Malliavin derivatives of F.Once such a formula is proved one
may estimate the Fourier transform p̂F (ξ) = E(exp(iξF)) in the following way. First
we remark that ∂βx exp(iξ x) = (iξ)β exp(iξ x) (with an obvious abuse of notation)
and then, using the integration by parts formula

| p̂F (ξ)| = 1

|ξ ||β|
∣∣E(∂βx exp(iξF))

∣∣

= 1

|ξ ||β|
∣∣E(exp(iξF)Hβ)

∣∣ ≤ 1

|ξ ||β| E
∣∣Hβ ∣∣ .

If we know that E
∣∣Hβ ∣∣ < ∞ for every multi-index β then we have proved that

|ξ |p | p̂F (ξ)| is integrable for every p ∈ N and consequently the law of F is absolutely
continuous with respect to the Lebesgue measure and has an infinitely differentiable
density.
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Integration by parts formula and applications to equations with jumps 615

Let us come back to the infinite dimensional differential calculus which allows
the construction Hβ. In order to define the Malliavin derivative of F one considers a
sequence of simple functionals Fn → F in L2 and, if DFn → G in L2, then one defines
DF = G. The simple functionals Fn are functions of a finite number of random vari-
ables (increments of the Brownian motion) and the derivative DFn is a gradient type
operator defined in an elementary way. Then one may take the following alternative
route in order to prove the regularity of the law of F. For each fixed n one proves an
analogue of the integration by parts formula (2): E(∂β f (Fn)) = E( f (Fn)Hn

β ).As Fn

is a function which depends on a finite number m of random variables, such a formula
is obtained using standard integration by parts on R

m (this is done in the first section

of this paper). Then the same calculus as above gives
∣∣ p̂Fn (ξ)

∣∣ ≤ |ξ |−|β|E
∣∣∣Hn

β

∣∣∣ .
Passing to the limit one obtains

| p̂F (ξ)| = lim
n

∣∣ p̂Fn (ξ)
∣∣ ≤ |ξ |−|β| sup

n
E

∣∣∣Hn
β

∣∣∣

and, if we can prove that supn E
∣∣∣Hn

β

∣∣∣ <∞, we are done. Notice that here we do not

need that Fn → F in L2 but only in law. And also, we do not need to construct Hβ but

only to prove that supn E
∣∣∣Hn

β

∣∣∣ <∞. Anyway we are not very far from the standard

Malliavin calculus. Things become different if supn E
∣∣∣Hn

β

∣∣∣ = ∞ and this is the case

in our examples (because the Ornstein Uhlenbeck operators LFn blow up as n → ∞).

But even in this case one may obtain estimates of the Fourier transform of F in the
following way. One writes

| p̂F (ξ)| ≤ ∣∣ p̂F (ξ)− p̂Fn (ξ)
∣∣ + ∣∣ p̂Fn (ξ)

∣∣ ≤ |ξ | × E |F − Fn| + |ξ |−|β|E
∣∣∣Hn

β

∣∣∣ .

And if one may obtain a good balance between the convergence to zero of the error

E |F − Fn| and the blow up to infinity of E
∣∣∣Hn

β

∣∣∣ then one obtains | p̂F (ξ)| ≤ |ξ |−p

for some p. Examples in which such a balance works are given in Sect. 3. An other
application of this methodology is given in Bally and Fournier [3] for the Boltzmann
equation. In this case some specific and nontrivial difficulties appear due to the sin-
gularity and unboundedness of the coefficients of the equation.

The paper is organized as follows. In Sect. 2, we establish the abstract Malliavin
calculus associated to a finite dimensional random variable and we obtain estimates of
the weight Hβ which appears in the integration by parts formula (we follow here some
ideas which already appear in [2,5]). Section 3 is devoted to the study of the regularity
of the law of the Markov process X of infinitesimal operator (1) and it contains our
main results: Proposition 3 and Theorem 4. Finally, we provide in Sect. 4 the technical
estimates which are needed to prove the results of Sect. 3.
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616 V. Bally, E. Clément

2 Integration by parts formula

2.1 Notations-derivative operators

Throughout this paper, we consider a sequence of random variables (Vi )i∈N∗ on a
probability space (�,F , P), a sub σ -algebra G ⊆ F and a random variable J , G
measurable, with values in N. We assume that the variables (Vi ) and J satisfy the fol-
lowing integrability conditions: for all p ≥ 1, E(J p) + E((

∑J
i=1 V 2

i )
p) < ∞. Our

aim is to establish a differential calculus based on the variables (Vi ), conditionally on
G, and we first define the class of functions on which this differential calculus will
apply. More precisely, we consider in this paper functions f : �× R

N∗ → R which
can be written as

f (ω, v) =
∞∑
j=1

f j (ω, v1, . . . , v j )1{J (ω)= j} (3)

where f j : � × R
j → R are G × B(R j )−measurable functions. We denote by

M the class of functions f given by (3) such that there exists a random variable
C ∈ ∩q≥1Lq(�,G, P) and a real number p ≥ 1 satisfying | f (ω, v)| ≤ C(ω)(1 +
(
∑J (ω)

i=1 v
2
i )

p). So conditionally on G, the functions of M have polynomial growth with
respect to the variables (Vi ). We need some more notations. Let Gi be the σ−algebra
generated by G ∪ σ(Vj , 1 ≤ j ≤ J, j �= i) and let (ai (ω)) and (bi (ω)) be sequences
of Gi measurable random variables satisfying −∞ ≤ ai (ω) < bi (ω) ≤ +∞, for all
i ∈ N

∗. Now let Oi be the open set of R
N∗

defined by Oi = P−1
i (]ai , bi [), where

Pi is the coordinate map Pi (v) = vi . We localize the differential calculus on the sets
(Oi ) by introducing some weights (πi ), satisfying the following hypothesis.

H0. For all i ∈ N
∗, πi ∈ M, 0 ≤ πi ≤ 1 and {πi > 0} ⊂ Oi . Moreover for

all j ≥ 1, π j
i is infinitely differentiable with bounded derivatives with respect to the

variables (v1, . . . , v j ).
We associate to these weights (πi ), the spaces Ck

π ⊂ M, k ∈ N
∗ defined recur-

sively as follows. For k = 1, C1
π denotes the space of functions f ∈ M such that for

each i ∈ N
∗, f admits a partial derivative with respect to the variable vi on the open

set Oi . We then define

∂πi f (ω, v) := πi (ω, v)
∂

∂vi
f (ω, v)

and we assume that ∂πi f ∈ M.

Note that the chain rule is verified : for each φ∈C1(Rd ,R) and f =( f 1, . . . , f d) ∈
(C1
π )

d we have

∂πi φ( f ) =
d∑

r=1

∂rφ( f )∂πi f r .
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Integration by parts formula and applications to equations with jumps 617

Suppose now that Ck
π is already defined. For a multi-index α = (α1, . . . , αk) ∈ N

∗k

we define recursively ∂πα = ∂παk
. . . ∂πα1

and Ck+1
π is the space of functions f ∈ Ck

π

such that for every multi-index α = (α1, . . . , αk) ∈ N
∗k we have ∂πα f ∈ C1

π . Note
that if f ∈ Ck

π , ∂πα f ∈ M for each α with |α| ≤ k.
Finally we define C∞

π = ∩k∈N∗Ck
π .Roughly speaking the space C∞

π is the analogue
of C∞ with partial derivatives ∂i replaced by localized derivatives ∂πi .

Simple functionals. A random variable F is called a simple functional if there
exists f ∈ C∞

π such that F = f (ω, V ), where V = (Vi ). We denote by S the
space of the simple functionals. Notice that S is an algebra. It is worth to remark that
conditionally on G, F = f J (V1, . . . , VJ ).

Simple processes. A simple process is a sequence of random variables U =
(Ui )i∈N∗ such that for each i ∈ N

∗, Ui ∈ S. Consequently, conditionally on G,
we have Ui = u J

i (V1, . . . , VJ ). We denote by P the space of the simple processes and
we define the scalar product

〈U, V 〉J =
J∑

i=1

Ui Vi .

Note that 〈U, V 〉J ∈ S.
We can now define the derivative operator and state the integration by parts formula.
� The derivative operator. We define D : S → P : by

DF := (Di F) ∈ P where Di F := ∂πi f (ω, V ).

Note that Di F = 0 for i > J . For F = (F1, . . . , Fd) ∈ Sd the Malliavin covariance
matrix is defined by

σ k,k′
(F) =

〈
DFk, DFk′〉

J
=

J∑
j=1

D j Fk D j Fk′
.

We denote

�(F) = {det σ(F) �= 0} and γ (F)(ω) = σ−1(F)(ω), ω ∈ �(F).

In order to derive an integration by parts formula, we need some additional assump-
tions on the random variables (Vi ). The main hypothesis is that conditionally on G,
the law of the vector(V1, . . . , VJ ) admits a locally smooth density with respect to the
Lebesgue measure on R

J .
H1.

(i) Conditionally on G, the vector (V1, . . . , VJ ) is absolutely continuous with
respect to the Lebesgue measure on R

J and we note pJ the conditional density.
(ii) The set {pJ > 0} is open in R

J and on {pJ > 0} ln pJ ∈ C∞
π .
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618 V. Bally, E. Clément

(iii) ∀q ≥ 1, there exists a constant Cq such that

(1 + |v|q)pJ ≤ Cq

where |v| stands for the euclidian norm of the vector (v1, . . . , vJ ).

Assumption iii) implies in particular that conditionally on G, the functions of M
are integrable with respect to pJ and that for f ∈ M:

EG( f (ω, V )) =
∫

RJ

f J × pJ (ω, v1, . . . , vJ )dv1 . . . dvJ .

� The divergence operator Let U = (Ui )i∈N∗ ∈ P with Ui ∈ S. We define
δ : P → S by

δi (U ) : = −(∂vi (πiUi )+ Ui 1{pJ>0}∂πi ln pJ ),

δ(U ) =
J∑

i=1

δi (U )

For F ∈ S, let L(F) = δ(DF).

2.2 Duality and integration by parts formulae

In our framework the duality between δ and D is given by the following proposition.

Proposition 1 Assume H0 and H1, then ∀F ∈ S and ∀U ∈ P we have

EG(〈DF,U 〉J ) = EG(Fδ(U )). (4)

Proof By definition, we have EG(〈DF,U 〉J ) = ∑J
i=1 EG(Di F × Ui ) and from H1

EG(Di F × Ui ) =
∫

RJ

∂vi ( f J )πi u J
i pJ (ω, v1, . . . , vJ )dv1 . . . dvJ

recalling that {πi > 0} ⊂ Oi , we obtain from Fubini’s theorem

EG(Di F × Ui ) =
∫

RJ−1

⎛
⎝

bi∫

ai

∂vi ( f J )πi u J
i pJ (ω, v1, . . . , vJ )dvi

⎞
⎠

× dv1 . . . dvi−1dvi+1 . . . dvJ .
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Integration by parts formula and applications to equations with jumps 619

By using the classical integration by parts formula, we have

bi∫

ai

∂vi ( f J )πi u J
i pJ (ω, v1, . . . , vJ )dvi = [ f Jπi u

J
i pJ ]bi

ai
−

bi∫

ai

f J ∂vi (u
J
i πi pJ )dvi .

Now if −∞ < ai < bi < +∞, we haveπi (ai ) = 0 = πi (bi ) and [ f Jπi u J
i pJ ]bi

ai = 0.
Moreover since f J , u J

i and πi belong to M, we deduce from H1 iii) that lim|vi |→+∞
( f Jπi u J

i pJ ) = 0 and we obtain that for all ai , bi such that −∞ ≤ ai < bi ≤ +∞:

bi∫

ai

∂vi ( f J )πi u J
i pJ (ω, v1, . . . , vJ )dvi = −

bi∫

ai

f J ∂vi (u
J
i πi pJ )dvi ,

Observing that ∂vi (u
J
i πi pJ ) = (∂vi (u

J
i πi )+u J

i 1{pJ>0}∂πi (ln pJ ))pJ , the proposition
is proved. ��

We have the following straightforward computation rules.

Lemma 1 Let φ : R
d → R be a smooth function and F = (F1, . . . , Fd) ∈ Sd . Then

φ(F) ∈ S and

Dφ(F) =
d∑

r=1

∂rφ(F)DFr . (5)

If F ∈ S and U ∈ P then

δ(FU ) = Fδ(U )− 〈DF,U 〉J . (6)

Moreover, for F = (F1, . . . , Fd) ∈ Sd , we have

Lφ(F) =
d∑

r=1

∂rφ(F)LFr −
d∑

r,r ′=1

∂r,r ′φ(F)
〈
DFr , DFr ′〉

J
. (7)

The first equality is a consequence of the chain rule, the second one follows from
the definition of the divergence operator δ. Combining these equalities (7) follows.

We can now state the main results of this section.

Theorem 1 We assume H0 and H1. Let F = (F1, . . . , Fd) ∈ Sd , G ∈ S and
φ : R

d → R be a smooth bounded function with bounded derivatives. Let � ∈ G,
� ⊂ �(F) such that

E(|det γ (F)|p 1�) < ∞ ∀p ≥ 1. (8)
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620 V. Bally, E. Clément

Then, for every r = 1, . . . , d,

EG (∂rφ(F)G) 1� = EG (φ(F)Hr (F,G)) 1� (9)

with

Hr (F,G) =
d∑

r ′=1

δ(Gγ r ′,r (F)DFr ′
)

=
d∑

r ′=1

(
Gδ(γ r ′,r (F)DFr ′

)− γ r ′,r
〈
DFr ′

, DG
〉

J

)
. (10)

Proof Using the chain rule

〈
Dφ(F), DFr ′〉

J
=

J∑
j=1

D jφ(F)D j Fr ′

=
J∑

j=1

(
d∑

r=1

∂rφ(F)D j Fr

)
D j Fr ′ =

d∑
r=1

∂rφ(F)σ
r,r ′
(F)

so that ∂rφ(F)1� = 1�
∑d

r ′=1

〈
Dφ(F), DFr ′〉

J
γ r ′,r (F). Since F ∈ Sd it follows

that φ(F) ∈ S and σ r,r ′
(F) ∈ S. Moreover, since det γ (F)1� ∈ ∩p≥1L p it follows

that γ r,r ′
(F)1� ∈ S. So Gγ r ′,r (F)DFr ′

1� ∈ P and the duality formula gives:

EG (∂rφ(F)G) 1� =
d∑

r ′=1

EG
(〈

Dφ(F),Gγ r ′,r (F)DFr ′〉
J

)
1�

=
d∑

r ′=1

EG
(
φ(F)δ(Gγ r ′,r (F)DFr ′

)
)

1�.

��
We can extend this integration by parts formula.

Theorem 2 Under the assumptions of Theorem 1, we have for every multi-index
β = (β1, . . . , βq) ∈ {1, . . . , d}q

EG
(
∂βφ(F)G

)
1� = EG

(
φ(F)Hq

β (F,G)
)

1� (11)

where the weights Hq are defined recursively by (10) and

Hq
β (F,G) = Hβ1

(
F, Hq−1

(β2,...,βq )
(F,G)

)
. (12)
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Integration by parts formula and applications to equations with jumps 621

Proof The proof is straightforward by induction. For q = 1, this is just Theorem 1.
Now assume that Theorem 2 is true for q ≥ 1 and let us prove it for q + 1. Let
β = (β1, . . . , βq+1) ∈ {1, . . . , d}q+1, we have

EG
(
∂βφ(F)G

)
1� = EG

(
∂(β2,...,βq+1)(∂β1φ(F))G

)
1�

= EG
(
∂β1φ(F)H

q
(β2,...,βq+1)

(F,G)
)

1�

and the result follows. ��

2.3 Estimations of Hq

2.3.1 Iterated derivative operators, Sobolev norms

In order to estimate the weights Hq appearing in the integration by parts formulae
of the previous section, we need first to define iterations of the derivative operator.
Let α = (α1, . . . , αk) be a multi-index, with αi ∈ {1, . . . , J }, for i = 1, . . . , k and
|α| = k. For F ∈ S, we define recursively Dk

(α1,...,αk )
F = Dαk (D

k−1
(α1,...,αk−1)

F) and

Dk F =
(

Dk
(α1,...,αk )

F
)
αi ∈{1,...,J } .

Remark that Dk F ∈ R
J⊗k and consequently we define the norm of Dk F as

|Dk F | =
√√√√ J∑
α1,...,αk=1

|Dk
(α1,...,αk )

F |2.

Moreover, we introduce the following norms, for F ∈ S:

|F |1,l =
l∑

k=1

|Dk F |, |F |l = |F | + |F |1,l =
l∑

k=0

|Dk F |. (13)

For F = (F1, . . . , Fd) ∈ Sd :

|F |1,l =
d∑

r=1

|Fr |1,l , |F |l =
d∑

r=1

|Fr |l ,

and similarly for F = (Fr,r ′
)r,r ′=1,...,d

|F |1,l =
d∑

r,r ′=1

|Fr,r ′ |1,l , |F |l =
d∑

r,r ′=1

|Fr,r ′ |l .
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622 V. Bally, E. Clément

Finally for U = (Ui )i≤J ∈ P , we have DkU = (DkUi )i≤J and we define the norm
of DkU as

|DkU | =
√√√√ J∑

i=1

|DkUi |2.

We can remark that for k = 0, this gives |U | = √〈U,U 〉J . Similarly to (13), we set

|U |1,l =
l∑

k=1

|DkU |, |U |l = |U | + |U |1,l =
l∑

k=0

|DkU |.

Observe that for F,G ∈ S, we have D(F × G) = DF × G + F × DG. This leads
to the following useful inequalities

Lemma 2 Let F,G ∈ S and U, V ∈ P , we have

|F × G|l ≤ 2l
∑

l1+l2≤l

|F |l1 |G|l2 , (14)

| 〈U, V 〉J |l ≤ 2l
∑

l1+l2≤l

|U |l1 |V |l2 . (15)

We can remark that the first inequality is sharper than the following one |F × G|l ≤
Cl |F |l |G|l . Moreover from (15) with U = DF and V = DG ( F,G,∈ S) we deduce

| 〈DF, DG〉J |l ≤ 2l
∑

l1+l2≤l

|F |1,l1+1|G|1,l2+1 (16)

and as an immediate consequence of (14) and (16), we have for F,G, H ∈ S:

|H 〈DF, DG〉J |l ≤ 22l
∑

l1+l2+l3≤l

|F |1,l1+1|G|1,l2+1|H |l3 . (17)

Proof We just prove (15), since (14) can be proved on the same way. We first give a
bound for Dk 〈U, V 〉J = (Dk

α 〈U, V 〉J )α∈{1,...,J }k . For a multi-indexα=(α1, . . . , αk),
with αi ∈ {1, . . . , J }, we note α(�) = (αi )i∈� , where � ⊂ {1, . . . , k} and α(�c) =
(αi )i /∈� . We have

Dk
α 〈U, V 〉J =

J∑
i=1

Dk
α(Ui Vi ) =

k∑
k′=0

∑
|�|=k′

J∑
i=1

Dk′
α(�)Ui × Dk−k′

α(�c)Vi .
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Integration by parts formula and applications to equations with jumps 623

Let W i,� = (W i,�
α )α∈{1,...,J }k = (Dk′

α(�)Ui ×Dk−k′
α(�c)Vi )α∈{1,...,J }k , we have the equality

in R
J⊗k :

Dk 〈U, V 〉J =
k∑

k′=0

∑
|�|=k′

J∑
i=1

W i,�.

This gives

|Dk 〈U, V 〉J | ≤
k∑

k′=0

∑
|�|=k′

∣∣∣∣∣
J∑

i=1

W i,�

∣∣∣∣∣ ,

where

∣∣∣∣∣
J∑

i=1

W i,�

∣∣∣∣∣ =

√√√√√
J∑

α1,...,αk=1

∣∣∣∣∣
J∑

i=1

W i,�
α

∣∣∣∣∣
2

.

But from Cauchy–Schwarz inequality, we have

∣∣∣∣∣
J∑

i=1

W i,�
α

∣∣∣∣∣
2

=
∣∣∣∣∣

J∑
i=1

Dk′
α(�)Ui × Dk−k′

α(�c)Vi

∣∣∣∣∣
2

≤
J∑

i=1

|Dk′
α(�)Ui |2 ×

J∑
i=1

|Dk−k′
α(�c)Vi |2.

Consequently we obtain

∣∣∣∣∣
J∑

i=1

W i,�

∣∣∣∣∣ ≤
√√√√ J∑
α1,...,αk=1

J∑
i=1

|Dk′
α(�)Ui |2 ×

J∑
i=1

|Dk−k′
α(�c)Vi |2

= |Dk′
U | × |Dk−k′

V |.

This last equality results from the fact that we sum on different index sets ( � and �c).
This gives

∣∣∣Dk 〈U, V 〉J

∣∣∣ ≤
k∑

k′=0

∑
|�|=k′

∣∣∣Dk′
U

∣∣∣
∣∣∣Dk−k′

V
∣∣∣ =

k∑
k′=0

Ck′
k

∣∣∣Dk′
U

∣∣∣
∣∣∣Dk−k′

V
∣∣∣

≤
k∑

k′=0

Ck′
k |U |k′ |V |k−k′ ≤ 2k

⎛
⎝ ∑

l1+l2=k

|U |l1 |V |l2

⎞
⎠.

Summing on k = 0, . . . , l we deduce (16). ��
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2.3.2 Estimation of |γ (F)|l
We give in this section an estimation of the derivatives of γ (F) in terms of det σ(F)
and the derivatives of F . We assume that ω ∈ �(F).

In what follows Cl,d is a constant depending eventually on the order of derivation
l and the dimension d.

Proposition 2 Let F ∈ Sd , we have ∀l ∈ N

|γ (F)|l ≤ Cl,d

∑
l1+l2≤l

|F |2(d−1)
1,l2+1

(
1

| det σ(F)| +
l1∑

k=1

|F |2kd
1,l1+1

| det σ(F)|k+1

)
(18)

≤ Cl,d
1

| det σ(F)|l+1 (1 + |F |2d(l+1)
1,l+1 ). (19)

Before proving Proposition 2, we establish a preliminary lemma.

Lemma 3 for every G ∈ S, G > 0 we have

∣∣∣∣ 1

G

∣∣∣∣
l
≤ Cl

⎛
⎜⎜⎝ 1

G
+

l∑
k=1

1

Gk+1

∑
k≤r1+···+rk≤l

r1,...,rk≥1

k∏
i=1

∣∣Dri G
∣∣
⎞
⎟⎟⎠

≤ Cl

(
1

G
+

l∑
k=1

1

Gk+1
|G|k1,l

)
. (20)

Proof For F ∈ Sd and φ : R
d → R a C∞ function, we have from the chain rule

Dk
(α1,...,αk )

φ(F) =
k∑

|β|=1

∂βφ(F)
∑

�1∪...∪�|β|={1,...,k}

⎛
⎝

|β|∏
i=1

D|�i |
α(�i )

Fβi

⎞
⎠, (21)

where β ∈ {1, . . . , d}|β| and
∑
�1∪...∪�|β| denotes the sum over all partitions of

{1, . . . , k} with length |β|. In particular, for G ∈ S, G > 0 and for φ(x) = 1/x ,
we obtain

∣∣∣∣Dk
α

(
1

G

)∣∣∣∣ ≤ Ck

k∑
k′=1

1

Gk′+1

∑
�1∪...∪�k′={1,...,k}

⎛
⎝ k′∏

i=1

|D|�i |
α(�i )

G|
⎞
⎠. (22)
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We deduce then that

∣∣∣∣Dk
(

1

G

)∣∣∣∣ ≤ Ck

k∑
k′=1

1

Gk′+1

∑
�1∪...∪�k′={1,...,k}

∣∣∣∣∣∣
k′∏

i=1

D|�i |
α(�i )

G

∣∣∣∣∣∣
RJ⊗k

,

= Ck

k∑
k′=1

1

Gk′+1

∑
�1∪...∪�k′={1,...,k}

⎛
⎝ k′∏

i=1

|D|�i |G|
⎞
⎠ ,

= Ck

k∑
k′=1

1

Gk′+1

∑
r1+···+rk′=k
r1,...,rk′≥1

⎛
⎝ k′∏

i=1

|Dri G|
⎞
⎠,

and the first part of (20) is proved. The proof of the second part is straightforward.
��

With this lemma, we can prove Proposition 2.

Proof Proposition 2. We have on �(F)

γ r,r ′
(F) = 1

det σ(F)
σ̂ r,r ′

(F),

where σ̂ (F) is the algebraic complement of σ(F). But recalling that σ r,r ′
(F) =〈

Dr F, Dr ′
F
〉

J
we have

| det σ(F)|l ≤ Cl,d |F |2d
1,l+1 and |σ̂ (F)|l ≤ Cl,d |F |2(d−1)

1,l+1 . (23)

Applying inequality (14), this gives

|γ (F)|l ≤ Cl,d

∑
l1+l2≤l

|(det σ(F))−1|l1 |σ̂ (F)|l2 .

From Lemma 3 and (23), we have

|(det σ(F))−1|l1 ≤ Cl1

(
1

| det σ(F)| +
l1∑

k=1

|F |2kd
1,l1+1

| det σ(F)|k+1

)
.

Putting together these inequalities, we obtain the inequality (18) and consequently
(19). ��

2.3.3 Some bounds on Hq

Now our goal is to establish some estimates for the weights Hq in terms of the deriv-
atives of G, F , LF and γ (F).
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626 V. Bally, E. Clément

Theorem 3 For F ∈ Sd , G ∈ S and for all q ∈ N
∗ there exists an universal constant

Cq,d such that for every multi-index β = (β1, . . . , βq)

∣∣∣Hq
β (F,G)

∣∣∣ ≤ Cq,d |G|q (1+|F |q+1)
(6d+1)q

|det σ(F)|3q−1

⎛
⎝1+

q∑
j=1

∑
k1+···+k j ≤q− j

j∏
i=1

|L(F)|ki

⎞
⎠,

≤ Cq,d |G|q (1 + |F |q+1)
(6d+1)q

|det σ(F)|3q−1 (1 + |LF|qq−1).

Proof For F ∈ Sd , we define the linear operator Tr : S → S, r = 1, . . . , d by

Tr (G) = 〈
DG, (γ (F)DF)r

〉
,

where (γ (F)DF)r = ∑d
r ′=1 γ

r ′,r (F)DFr ′
. Notice that

Tr (G × G ′) = GTr (G
′)+ G ′Tr (G). (24)

Moreover, for a multi-index β = (β1, . . . , βq) we define by induction Tβ(G) = Tβq

(T(β1,...,βq−1)(G)). We also make the convention that if β is the void multi-index,

then Tβ(G) = G. Finally we denote by Lγr (F) = ∑d
r ′=1 δ(γ

r ′,r (F)DFr ′
). With this

notation we have

Hr (F,G) = GLγr (F)− Tr (G),

Hq
β (F,G) = Hβ1(F, Hq−1

(β2,...,βq )
(F,G)).

We will now give an explicite expression of Hq
β (F,G). In order to do this we have

to introduce some more notation. Let � j = {λ1, . . . , λ j } ⊂ {1, . . . , q} such that
|� j | = j . We denote by P(� j ) the set of the partitions � = (�0, �1, . . . , � j )

of {1, . . . , q}\� j . Notice that we accept that �i , i = 0, 1, . . . , j may be void sets.
Moreover, for a multi-index β = (β1, . . . , βq) we denote by �i (β) = (βk1

i
, . . . , βk p

i
)

where �i = {k1
i , . . . , k p

i }. With this notation we can prove by induction and using
(24) that

Hq
β (F,G)=Tβ(G)+

q∑
j=1

∑
� j ⊂{1,...q}

∑
�∈P(� j )

cβ,�T�0(β)(G)
j∏

i=1

T�i (β)(L
γ
βλi
(F))

(25)

where cβ,� ∈ {−1, 0, 1}.
We first give an estimation of |Tβ(G)|l , for l ≥ 0 andβ = (β1, . . . , βq). We proceed

by induction. For q = 1 and 1 ≤ r ≤ d, we have

|Tr (G)|l = | 〈DG, (γ (F)DF)r
〉 |l
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and using (17) we obtain

|Tr (G)|l ≤ Cl

∑
l1+l2+l3≤l

|γ (F)|l1 |G|l2+1|F |l3+1 ≤ |G|l+1|F |l+1

l∑
l1=0

|γ (F)|l1,

where Cl is a constant which depends on l only. We obtain then by induction for every
multi-index β = (β1, . . . , βq)

∣∣Tβ(G)∣∣l ≤ Cl,q |G|l+q |F |ql+q

∑
l1+···+lq≤l+q−1

q∏
i=1

|γ (F)|li . (26)

In particular this gives for l = 0

∣∣Tβ(G)∣∣ ≤ Cq |G|q |F |qq Pq(γ (F)),

with

Pq(γ (F)) =
∑

l1+···+lq≤q−1

q∏
i=1

|γ (F)|li , q ≥ 1.

To complete the notation, we note P0(γ (F)) = 1. We obtain

∣∣∣T�i (β)(L
γ
βλi
(F))

∣∣∣ ≤ Cq

∣∣∣Lγβλi
(F)

∣∣∣|�i (β)|
|F ||�i (β)|

|�i (β)| P|�i (β)|(γ (F)).

We turn now to the estimation of |Lγr (F)|l . From the properties of the divergence
operator δ (see Lemma 1)

δ(γ (F)DF) = γ (F)δ(DF)− 〈Dγ (F), DF〉J .

It follows from (14) and (16) that

|Lγr (F)|l ≤ Cl |γ (F)|l+1 (|δ(DF)|l + |F |l+1)

≤ Cl |γ (F)|l+1 (1 + |LF|l)(1 + |F |l+1),

and we get

∣∣∣T�i (β)(L
γ
βλi
(F))

∣∣∣ ≤ Cq |γ (F)||�i (β)|+1 (1 + |LF||�i (β)|)

×(1 + |F ||�i (β)|+1)|F ||�i (β)|
|�i (β)| P|�i (β)|(γ (F)). (27)
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628 V. Bally, E. Clément

Reporting these inequalities in (25) and recalling that |�0(β)|+· · ·+ ∣∣� j (β)
∣∣ = q − j

we deduce:

|Hq
β (F,G)| ≤ |Tβ(G)| + Cq,d

q∑
j=1

∑
k0+···+k j =q− j

|G|k0 |F |k0
k0

Pk0(γ (F))

×
⎛
⎝

j∏
i=1

|γ (F)|ki +1 Pki (γ (F)) |F |ki
ki
(1 + |F |ki +1)(1 + |LF|ki )

⎞
⎠

(28)

Now, for q ≥ 1, we have from (19):

Pq(γ (F)) ≤ Cq
1

| det σ(F)|2q−1 (1 + |F |q)4dq ,

so the following inequality holds for q ≥ 0 :

Pq(γ (F)) ≤ Cq
1

| det σ(F)|2q
(1 + |F |q)4dq .

We obtain then for k0, k1, . . . , k j ∈ N such that k0 + · · · + k j = q − j

j∏
i=0

Pki (γ (F)) ≤ Cq
1

| det σ(F)|2(q− j)
(1 + |F |q− j )

4d(q− j) (29)

and once again from (19)

j∏
i=1

|γ (F)|ki +1 ≤ Cq
1

| det σ(F)|q+ j
(1 + |F |q− j+2)

2d(q+ j) (30)

it yields finally

j∏
i=0

Pki (γ (F))
j∏

i=1

|γ (F)|ki +1 ≤ Cq
1

| det σ(F)|3q− j
(1 + |F |q− j+2)

6dq−2d j .

Turning back to (28), it follows that

∣∣∣Hq
β (F,G)

∣∣∣≤ Cq,d |G|q (1+|F |q+1)
(6d+1)q

|det σ(F)|3q−1

⎛
⎝1+

q∑
j=1

∑
k1+···+k j ≤q− j

j∏
i=1

|L(F)|ki

⎞
⎠,

and Theorem 3 is proved. ��
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3 Stochastic equations with jumps

3.1 Notations and hypotheses

We consider a Poisson point process p with state space (E, B(E)), where E = R
d ×

R+.We refer to [12] for the notation. We denote by N the counting measure associated
to p, we have N ([0, t) × A) = #{0 ≤ s < t; ps ∈ A} for t ≥ 0 and A ∈ B(E).
We assume that the associated intensity measure is given by N̂ (dt, dz, du) = dt ×
dμ(z)× 1[0,∞)(u)du where (z, u) ∈ E = R

d × R+ and μ(dz) = h(z)dz.
We are interested in the solution of the d dimensional stochastic equation

Xt = x +
t∫

0

∫

E

c(z, Xs−)1{u<γ (z,Xs−)}N (ds, dz, du)+
t∫

0

g(Xs)ds. (31)

We remark that the infinitesimal generator of the Markov process Xt is given by

Lψ(x) = g(x)∇ψ(x)+
∫

Rd

(ψ(x + c(z, x))− ψ(x))K (x, dz)

where K (x, dz) = γ (z, x)h(z)dz depends on the variable x ∈ R
d . We refer to [4,14–

18] for the links between Markov processes and pseudo-differential operators.
Our aim is to give sufficient conditions in order to prove that the law of Xt is abso-

lutely continuous with respect to the Lebesgue measure and has a smooth density. In
this section we make the following hypotheses on the functions γ, g, h and c.

Hypothesis 3.0 We assume that γ, g, h and c are infinitely differentiable functions
in both variables z and x . Moreover we assume that g and its derivatives are bounded
and that ln h has bounded derivatives.

Hypothesis 3.1 We assume that there exist two functions γ , γ : R
d → R+ such that

C ≥ γ (z) ≥ γ (z, x) ≥ γ (z) ≥ 0, ∀x ∈ R
d

where C is a constant.

Hypothesis 3.2 (i) We assume that there exists a non negative and bounded function
c : R

d → R+ such that
∫
Rd c(z)dμ(z) < ∞ and

|c(z, x)| + ∣∣∂βz ∂αx c(z, x)
∣∣ ≤ c(z) ∀z, x ∈ R

d ∀α, β.

We need this hypothesis in order to estimate the Sobolev norms.
(ii) There exists a measurable function ĉ : R

d → R+ such that
∫
Rd ĉ(z)dμ(z) < ∞

and
∥∥∥∇x c × (I + ∇x c)−1(z, x)

∥∥∥ ≤ ĉ(z), ∀(z, x) ∈ R
d × R

d .
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630 V. Bally, E. Clément

In order to simplify the notations we assume that ĉ(z) = c(z).
(iii) There exists a non negative function c : R

d → R+ such that for every z ∈ R
d

d∑
r=1

〈
∂zr c(z, x), ξ

〉2 ≥ c2(z) |ξ |2 , ∀ξ ∈ R
d

and we assume that there exists θ > 0 such that

lima→+∞
1

ln a

∫

{c2≥1/a}
γ (z)dμ(z) = θ.

Remark assumptions ii) and iii) give sufficient conditions to prove the non degeneracy
of the Malliavin covariance matrix as defined in the previous section. In particular the
second part of iii) implies that c2 is a (p, t) broad function (see [6]) for p/t < θ .
Notice that we may have c(z) = 0 for some z ∈ R

d .

We add to these hypotheses some assumptions on the derivatives of γ and ln γ with
respect to x and z. For l ≥ 1 we use the notation :

γ x,l(z) = sup
x

sup
1≤|β|≤l

|∂β,xγ (z, x)|,

γ
x,l
ln (z) = sup

x
sup

1≤|β|≤l
|∂β,x ln γ (z, x)|,

γ
z,l
ln (z) = sup

x
sup

1≤|β|≤l
|∂β,z ln γ (z, x)|.

Hypothesis 3.3 We assume that ln γ has bounded derivatives with respect to z (that
is γ z,l

ln (z) is bounded) and that γ has bounded derivatives with respect to x such that
∀z ∈ R

d , γ x,l(z) ≤ γ x,l; moreover we assume that

sup
z∗∈Rd

∫

B(z∗,1)

γ (z)dμ(z) < +∞.

We complete this hypothesis with two alternative hypotheses.

(a) (weak dependence on x) We assume that ∀l ≥ 1

∫

Rd

γ
x,l
ln (z)γ (z)dμ(z) < ∞.

(b) (strong dependence on x) We assume that ln γ has bounded derivatives with
respect to x such that ∀l ≥ 1

∀z ∈ R
d , γ

x,l
ln (z) ≤ γ

x,l
ln .
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Remark Ifμ is the Lebesgue measure ( case h = 1) and if γ does not depend on z then
γ

x,l
ln is constant and consequently Hypothesis 3.3.a fails. Conversely, if γ (z, x) = γ (z)

then Hypothesis 3.3.a is satisfied as soon as ln γ has bounded derivatives. This last
case corresponds to the standard case where the law of the amplitude of the jumps
does not depend on the position of Xt . Under Hypothesis 3.3.a we are in a classical
situation where the divergence does not blow up and this leads to an integration by part
formula with bounded weights (see Proposition 4 and Lemma 11). On the contrary
under assumption 3.3.b, the divergence can blow up as well as the weights appearing
in the integration by part formula.

3.2 Main results and examples

Our methodology to study the regularity of the law of the random variable Xt is
based on the following result. Let p̂X (ξ) = E(ei〈ξ,X〉) be the Fourier transform of a
d-dimensional random variable X then using the Fourier inversion formula, one can
prove that if

∫
Rd |ξ |p| p̂X (ξ)|dξ < ∞ for p > 0 then the law of X is absolutely

continuous with respect to the Lebesgue measure on R
d and its density is C[p], where

[p] denotes the integer part of p.
To apply this result, we just have to bound the Fourier transform of Xt in terms of

1/|ξ |. This is done in the next proposition. The proof of this proposition needs a lot
of steps that we detail in the next sections and it will be given later.

Proposition 3 Let BM = {z ∈ R
d ; |z| < M}, then under Hypotheses 3.0., 3.1. 3.2.

and 3.3 we have for all M ≥ 1, for q ≥ 1 and t > 0 such that 4d(3q − 1)/t < θ

(a) if 3.3.a holds

| p̂Xt (ξ)| ≤ t
∫

Bc
M−1

c2(z)γ (z)dμ(z)
1

2
|ξ |2 + |ξ | teCt

∫

Bc
M

c(z)γ (z)dμ(z)+ Cq

|ξ |q .

(b) if 3.3.b holds

| p̂Xt (ξ)| ≤ t
∫

Bc
M−1

c2(z)γ (z)dμ(z)
1

2
|ξ |2 + |ξ | teCt

∫

Bc
M

c(z)γ (z)dμ(z)

+Cq(1 + μ(BM+1)
q)

|ξ |q .

We can remark that if θ = +∞ then the result holds ∀q ≥ 1 and ∀t > 0.
By choosing M judiciously as a function of ξ in the inequalities given in Proposi-

tion 3, we obtain | p̂Xt (ξ)| ≤ C/|ξ |p for some p > 0 and this permits us to deduce
some regularity for the density of Xt . The next theorem precise the optimal choice of
M with respect to ξ and permits us to derive the regularity of the law of the process Xt .

Theorem 4 We assume that Hypotheses 3.0., 3.1., 3.2 and 3.3. hold.
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632 V. Bally, E. Clément

(a) Assuming 3.3.a, the law of Xt admits a density Ck if t > (3k + 3d − 1) 4d
θ

. In the
case θ = ∞, the law of Xt admits a density C∞.

(b) Assuming 3.3.b and the two following hypotheses
A1: ∃p1, p2 > 0 such that :

lim sup
M

M p1

∫

Bc
M

c(z)γ (z)dμ(z) < +∞;

lim sup
M

M p2

∫

Bc
M

c2(z)γ (z)dμ(z) < +∞;

A2: ∃ρ > 0 such that μ(BM ) ≤ C Mρ where BM = {z ∈ R
d ; |z| < M};

Case 1 if θ=+∞ then the law of Xt admits a density Ck with k<min(p1/ρ− 1 − d,
p2/ρ − 2 − d) if min(p1/ρ − 1 − d, p2/ρ − 2 − d) ≥ 1.

Case 2 if 0 < θ < ∞ let q∗(t, θ) = [ 1
3

( tθ
4d + 1

)]
; then the law of Xt admits a density

Ck for k < sup0<r<1/ρ min(r p1 − 1 − d, r p2 − 2 − d, q∗(t, θ)(1 − rρ) − d), if for
some 0 < r < 1/ρ, min(r p1 − 1 − d, r p2 − 2 − d, q∗(t, θ)(1 − rρ)− d) ≥ 1.

Proof (a) Assuming 3.3.a and letting M go to infinity in the right-hand side of the
inequality given in Proposition 3, we deduce

| p̂Xt (ξ)| ≤ C/|ξ |q ,

and the result follows.
(b) From A1, for M large enough, we have

∫

Bc
M

c(z)γ (z)dμ(z) ≤ C/M p1

and
∫

Bc
M−1

c2(z)γ (z)dμ(z) ≤ C/M p2 .

Now assuming 3.3.b and A2 and choosing M = |ξ |r , for 0 < r < 1/ρ, we obtain
from Proposition 3

| p̂Xt (ξ)| ≤ C

(
1

|ξ |r p1−1 + 1

|ξ |r p2−2 + 1

|ξ |q(1−rρ)

)
,

for q and t such that 4d(3q − 1)/t < θ . Now if θ = ∞, we obtain for q large enough

| p̂Xt (ξ)| ≤ C

(
1

|ξ |r p1−1 + 1

|ξ |r p2−2

)
.
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In the case θ < ∞, the best choice of q is q∗(t, θ). This achieves the proof of theorem 4.
��

We end this section with some examples in order to illustrate the results of Theo-
rem 4.
Example 1 In this example we assume that h = 1 so μ(dz) = dz and that γ (z) is
equal to a constant γ > 0. We also assume that Hypothesis 3.3.b holds. We have

μ(BM ) = rd Md where rd is the volume of the unit ball in R
d so ρ = d. We will

consider two types of behaviour for c.

(i) Exponential decay: we assume that c(z) = e−b|z|c and c(z) = e−a|z|c for some
constants 0 < b ≤ a and c > 0. We have

∫

{c2>1/u}
γ (z)dμ(z) = γ rd

(2a)d/c
× (ln u)d/c.

We deduce then

θ=0 i f c > d, θ=∞ i f 0 < c < d and θ= γ rd

2a
i f c=d. (32)

If c > d, Hypothesis 3.2.iii fails, this is coherent with the result of [6]. Now
observe that

∫

Bc
M

c2(z)γ (z)dμ(z)+
∫

Bc
M

c(z)γ (z)dμ(z) ≤ e−η|z|c

for some η > 0 so p1 = p2 = ∞. In the case 0 < c < d we obtain a density

C∞ for every t > 0. In the case c = d we have q∗(t, θ) =
[

1
3

(
1 + γ rd

8da × t
)]
.

If t < 8da(3d + 2)/(γ rd) we obtain nothing and if t ≥ 8da(3d + 2)/(γ rd) we

obtain a density Ck where k is the largest integer less than
[

1
3

(
1 + γ rd

8da × t
)]

−d.

(ii) Polynomial decay. We assume that c(z) = b/(1 + |z|p) and c(z) = a/(1 + |z|p)

for some constants 0 < a ≤ b and p > d. We have

∫

{c2>1/u}
γ (z)dμ(z) = γ rd × (a

√
u − 1)d/p

so θ = ∞ and our result works for every t > 0. Hence a simple computation
gives

∫

Bc
M

c2(z)γ (z)dμ(z) ≤ C

M2p−d
,

∫

Bc
M

c(z)γ (z)dμ(z) ≤ C

M p−d

and then p1 = p − d and p2 = 2p − d. If p ≥ d(d + 3) then min(p/d − 2 − d,
2p/d−3−d) ≥ 1 and we obtain a density Ck with k < p

d − d − 2. Conversely if
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634 V. Bally, E. Clément

p < d(d + 3), we can say nothing about the regularity of the density of Xt . We
give now an example where the function γ satisfies Hypothesis 3.3.a.

Example 2 As in the preceding example, we assume h = 1. We consider the function
γ (z, x) = exp(−α(x)/(1 + |z|q)) for some q > d. We assume that α is a smooth
function which is bounded and has bounded derivatives and moreover there exists two
constants such that α ≥ α(x) ≥ α > 0. Notice that the derivatives with respect to
x of ln γ (z, x) are bounded by C/(1 + |z|q) which is integrable with respect to the
Lebesgue measure if q > d. So Hypothesis 3.3.a is true. Moreover we check that
γ (z) = exp(−α/(1 + |z|q)).
(i) Exponential decay. We take c as in Example 1.i). It follows that

∫

{c2>1/u}
γ (z)dμ(z) ≥ exp(−α) rd

(2a)d/c
× (ln u)d/c.

So we obtain once again θ as in (32). In the case c > d we can say nothing, in
the case c < d we obtain a density C∞ and in the case c = d we have θ = rd

2a

and we obtain a density Ck if t > 8ad(3k+3d−1)
rd

. In particular we have no results

if t ≤ 8ad(3d−1)
rd

. Notice that the only difference with respect to the previous
example concerns the case c = d when we have a slight gain.

(ii) Polynomial decay. At last we take c as in the example 1.ii). We check that θ = ∞
so we obtain a density C∞, which is a better result than the one of the previous
example.

Example 3 We consider the process (Yt ) solution of the stochastic equation

dYt = f (Yt )d Lt ,

where Lt is a Lévy process with intensity measure |y|−(1+ρ)1{|y|≤1}dy, with 0<ρ<1.
The infinitesimal generator of Y is given by

Lψ(x) =
∫

{|y|≤1}
(ψ(x + f (x)y)− ψ(x))

dy

|y|1+ρ .

If we introduce some function g(x) in this operator we obtain

Lψ(x) =
∫

{|y|≤1}
(ψ(x + f (x)y)− ψ(x))g(x)

dy

|y|1+ρ .

We are interested to represent this operator through a stochastic equation. In order to
come back in our framework, we translate the integrability problem from 0 to ∞ by
the change of variables z = y−1 and we obtain

Lψ(x) =
∫

{|z|≥1}
(ψ(x + f (x)z−1)− ψ(x))g(x)

dz

|z|1−ρ .
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Integration by parts formula and applications to equations with jumps 635

This operator can be viewed as the infinitesimal generator of the process (Xt ) solution
of

Xt = x +
t∫

0

∫

R×R+

f (Xs−)z−11{u<g(Xs−)}N (ds, dz, du).

We have E = R × R+, dμ(z) = 1
|z|1−ρ 1{|z|≥1}dz, c(z, x) = f (x)z−1 and γ (z, x) =

g(x). We make the following assumptions. There exist two constants f and f such

that ∀x f ≤ f (x) ≤ f and we suppose that all derivatives of f are bounded

by f . Moreover we assume that there exist two constants g and g such that g and
its derivative are bounded by g and 0 < g ≤ g(x), ∀x . Consequently it is easy to
check that Hypotheses 3.0., 3.1., 3.2. and 3.3.b are satisfied, with θ = +∞. Moreover
we haveμ(BM ) ≤ C Mρ and A2 holds with p1 = 1−ρ and p2 = 2−ρ. Consequently
we deduce that the law of Xt admits a density Ck with k < 1/ρ − 3 if 1/ρ − 3 ≥ 1.

The next sections are the successive steps to prove Proposition 3.

3.3 Approximation of Xt

In order to prove that the process Xt , solution of (31), has a smooth density, we will
apply the differential calculus and the integration by parts formula of Sect. 2. But
since the random variable Xt can not be viewed as a simple functional, the first step
consists in approximate it. We describe in this section our approximation procedure.
We consider a non-negative and smooth function ϕ : R

d → R+ such that ϕ(z) = 0
for |z| > 1 and

∫
Rd ϕ(z)dz = 1. And for M ∈ N we denote �M (z) = ϕ ∗ 1BM with

BM = {z ∈ R
d : |z| < M}. Then �M ∈ C∞

b and we have 1BM−1 ≤ �M ≤ 1BM+1 .

We denote by X M
t the solution of the equation

X M
t = x +

t∫

0

∫

E

cM (z, X M
s−)1{u<γ (z,X M

s−)}N (ds, dz, du)+
t∫

0

g(X M
s )ds. (33)

where cM (z, x) := c(z, x)�M (z). Observe that (33) is obtained from (31) replac-
ing the coefficient c by the truncating one cM . Let NM (ds, dz, du) := 1BM+1(z) ×
1[0,2C](u)N (ds, dz, du). Since {u < γ (z, X M

s−)} ⊂ {u < 2C} and �M (z) = 0 for
|z| > M + 1, we may replace N by NM in the above equation and consequently X M

t
is solution of the equation

X M
t = x +

t∫

0

∫

E

cM (z, X M
s−)1{u<γ (z,X M

s−)}NM (ds, dz, du)+
t∫

0

g(X M
s )ds.
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Since the intensity measure N̂M is finite we may represent the random measure NM

by a compound Poisson process. Let λM = 2C × μ(BM+1) = t−1 E(NM (t, E)) and
let J M

t a Poisson process of parameter λM . We denote by T M
k , k ∈ N the jump times

of J M
t . We also consider two sequences of independent random variables (Z M

k )k∈N

and (Uk)k∈N respectively in R
d and R+ which are independent of J M and such that

Zk ∼ 1

μ(BM+1)
1BM+1(z)dμ(z), and Uk ∼ 1

2C
1[0,2C](u)du.

To simplify the notation, we omit the dependence on M for the variables (T M
k ) and

(Z M
k ). Then (33) may be written as

X M
t = x +

J M
t∑

k=1

cM (Zk, X M
Tk−)1(Uk ,∞)(γ (Zk, X M

Tk−))+
t∫

0

g(X M
s )ds. (34)

Lemma 4 Assume that Hypotheses 3.0., 3.1., 3.2 and 3.3. hold true then we have

E
∣∣∣X M

t − Xt

∣∣∣ ≤ εM := teCt
∫

{|z|>M}
c(z)γ (z)dμ(z), (35)

for some constant C.

Proof We have E
∣∣X M

t − Xt
∣∣ ≤ I 1

M + I 2
M with

I 1
M = E

t∫

0

∫

Rd

C∫

0

∣∣∣c(z, Xs)1{u<γ (z,Xs )} − cM (z, X M
s )1{u<γ (z,X M

s )}
∣∣∣ dudμ(z)ds

I 2
M = E

t∫

0

∣∣∣g(Xs)− g(X M
s )

∣∣∣ ds.

Since |∇x c(z, x)| ≤ c(z) we have I 1
M ≤ I 1,1

M + I 1,2
M with

I 1,1
M = E

t∫

0

∫

Rd

C∫

0

∣∣∣c(z, Xs)− cM (z, X M
s )

∣∣∣ 1{u<γ (z)}dudμ(z)ds

≤ t
∫

Rd

c(z)γ (z)(1 −�M (z))dμ(z)+
∫

Rd

c(z)γ (z)dz × E

t∫

0

∣∣∣Xs − X M
s

∣∣∣ ds
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and, since |∇xγ (z, x)| ≤ γ x,1

I 1,2
M = E

t∫

0

∫

Rd

C∫

0

c(z)
∣∣∣1{u<γ (z,Xs )} − 1{u<γ (z,X M

s )}
∣∣∣ dudμ(z)ds

= E

t∫

0

∫

Rd

c(z)
∣∣∣γ (z, Xs)− γ (z, X M

s )

∣∣∣ dμ(z)ds

≤
∫

Rd

c(z)γ x,1dμ(z)× E

t∫

0

∣∣∣Xs − X M
s

∣∣∣ ds.

A similar inequality holds for I 2
M so we obtain

E
∣∣∣X M

t − Xt

∣∣∣ ≤ t ×
∫

Rd

γ (z)c(z)(1 −�M (z))dμ(z)+ C

t∫

0

E
∣∣∣Xs − X M

s

∣∣∣ ds.

We conclude by using Gronwall’s lemma. ��
The random variable X M

t solution of (34) is a function of (Z1 . . . , Z J M
t
) but it is

not a simple functional, as defined in Sect. 2 because the coefficient cM (z, x)1(u,∞)

(γ (z, x)) is not differentiable with respect to z. In order to avoid this difficulty we use
the following alternative representation. Let z∗

M ∈ R
d such that

∣∣z∗
M

∣∣ = M + 3. We
define

qM (z, x) := ϕ(z − z∗
M )θM,γ (x)+ 1

2Cμ(BM+1)
1BM+1(z)γ (z, x)h(z)

θM,γ (x) := 1

μ(BM+1)

∫

{|z|≤M+1}

(
1 − 1

2C
γ (z, x)

)
μ(dz).

(36)

We recall that ϕ is the function defined at the beginning of this subsection : a non-
negative and smooth function with

∫
ϕ = 1 and which is null outside the unit ball.

Moreover from Hypothesis 3.1, 0 ≤ γ (z, x) ≤ C and then 1 ≥ θM,γ (x) ≥ 1/2. By
construction the function qM satisfies

∫
qM (x, z)dz = 1. Hence we can check that

E( f (X M
Tk
) | X M

Tk− = x) =
∫

Rd

f (x + cM (z, x))qM (z, x)dz. (37)

In fact the left-hand side term of (37) is equal to I + J with

I = E( f (X M
Tk
)1{Uk≥γ (Zk ,X M

Tk−)} | X M
Tk− = x) and

J = E( f (X M
Tk
)1{Uk<γ (Zk ,X M

Tk−)} | X M
Tk− = x).
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A simple calculation leads to

I = f (x)P(Uk ≥γ (Zk, x))= f (x)θM,γ (x)=
∫

|z|>M+1

f (x + cM (z, x))qM (z, x)dz

where the last equality results from the fact that cM (z, x) = 0 for |z| > M + 1.
Moreover one can easily see that J = ∫

|z|≤M+1 f (x + cM (z, x))qM (z, x)dz and (37)
is proved.

From the relation (37) we construct a process (X
M
t ) equal in law to (X M

t ) on the
following way.

We denote by �t (x) the solution of �t (x) = x + ∫ t
0 g(�s(x))ds. We assume that

the times Tk, k ∈ N are fixed and we consider a sequence (zk)k∈N with zk ∈ R
d . Then

we define xt , t ≥ 0 by x0 = x and, if xTk is given, then

xt = �t−Tk (xTk ) Tk ≤ t < Tk+1,

xTk+1 = xT −
k+1

+ cM (zk+1, xT −
k+1
).

We remark that for Tk ≤ t < Tk+1, xt is a function of z1, . . . , zk . Notice also that xt

solves the equation

xt = x +
J M

t∑
k=1

cM (zk, xT −
k
)+

t∫

0

g(xs)ds.

We consider now a sequence of random variables (Zk), k ∈ N
∗ and we denote Gk =

σ(Tp, p ∈ N)∨ σ(Z p, p ≤ k) and X
M
t = xt (Z1, . . . , Z J M

t
).We assume that the law

of Zk+1 conditionally on Gk is given by

P(Zk+1 ∈ dz | Gk) = qM (xT −
k+1
(Z1, . . . , Zk), z)dz = qM (X

M
T −

k+1
, z)dz.

Clearly X
M
t satisfies the equation

X
M
t = x +

J M
t∑

k=1

cM (Zk, X
M
Tk−)+

t∫

0

g(X
M
s )ds (38)

and X
M
t has the same law as X M

t . Moreover we can prove a little bit more.

Lemma 5 For a locally bounded and measurable function ψ : R
d → R let

St (ψ) =
J M

t∑
k=1

(�Mψ)(Zk), St (ψ) =
J M

t∑
k=1

(�Mψ)(Zk)1{γ (Zk ,X M (Tk−))>Uk },

then (X
M
t , St (ψ))t≥0 has the same law as (X M

t , St (ψ))t≥0.
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Integration by parts formula and applications to equations with jumps 639

Proof Observing that (X
M
t , St (ψ))t≥0 solves a system of equations similar to (38) but

in dimension d + 1, it suffices to prove that (X
M
t )t≥0 has the same law as (X M

t )t≥0.

This readily follows from

E
(

f (X M
Tk+1

)

∣∣∣X M
Tk+1− = x

)
= E

(
f
(

X
M
Tk+1

)∣∣∣ X
M
Tk+1− = x

)

which is a consequence of (37). ��

Remark Looking at the infinitesimal generator L of X it is clear that the natural

approximation of Xt is X
M
t instead of X M

t . But we use the representation given by
X M

t for two reasons. First it is easier to obtain estimates for this process because we
have a stochastic equation and so we may use the stochastic calculus associated to
a Poisson point measure. Moreover, having this equation in mind, gives a clear idea
about the link with other approaches by Malliavin calculus to the solution of a sto-
chastic equation with jumps: we mainly think to [6]. Remark that Xt is solution of
an equation with discontinuous coefficients so the approach developed by Bichteler

et al. [6] does not work. And if we consider the equation of X
M
t then the underlying

point measure depends on the solution of the equation so it is no more a Poisson point
measure.

3.4 The integration by parts formula

The random variable X
M
t constructed previously is a simple functional but unfor-

tunately its Malliavin covariance matrix is degenerated. To avoid this problem we

use a classical regularization procedure. Instead of the variable X
M
t , we consider the

regularized one FM defined by

FM = X
M
t + √

UM (t)×�, (39)

where � is a d-dimensional standard Gaussian variable independent of the variables
(Zk)k≥1 and (Tk)k≥1 and UM (t) is defined by

UM (t) = t
∫

Bc
M−1

c2(z)γ (z)dμ(z). (40)

We observe that FM ∈ Sd where S is the space of simple functionals for the differential
calculus based on the variables (Zk)k∈N with Z0 = (�r )1≤r≤d and Zk = (Z

r
k)1≤r≤d

and we are now in the framework of Sect. 2 by taking G = σ(Tk, k ∈ N) and defining
the weights (πk) by πr

0 = 1 and πr
k = �M (Zk) for 1 ≤ r ≤ d. Conditionally on G,
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640 V. Bally, E. Clément

the density of the law of (Z1, . . . , Z J M
t
) is given by

pM (ω, z1, . . . , z J M
t
) =

J M
t∏

j=1

qM

(
z j , �Tj −Tj−1

(
X

M
Tj−1

))

where X
M
Tj−1

is a function of zi , 1 ≤ i ≤ j − 1. We can check that pM satisfies the
hypothesis H1 of Sect. 2.

To clarify the notation, the derivative operator can be written in this framework for
F ∈ S by DF = (Dk,r F) where Dk,r = πr

k ∂Z
r
k

for k ≥ 0 and 1 ≤ r ≤ d. Conse-

quently we deduce that Dk,r Fr ′
M = Dk,r X

M,r ′
t , for k ≥ 1 and D0,r Fr ′

M = √
UM (t)δr,r ′

with δr,r ′ = 0 if r �= r ′, δr,r ′ = 1 otherwise.

The Malliavin covariance matrix of X
M
t is equal to

σ(X
M
t )

i, j =
J M

t∑
k=1

d∑
r=1

Dk,r X
M,i
t Dk,r X

M, j
t

for 1 ≤ i, j ≤ d and finally the Malliavin covariance matrix of FM is given by

σ(FM ) = σ(X
M
t )+ UM (t)× I d.

Using the results of Sect. 2, we can state an integration by part formula and give a
bound for the weight Hq(FM , 1) in terms of the Sobolev norms of FM , the divergence
L FM and the determinant of the inverse of the Malliavin covariance matrix det σ(FM ).
The control of these last three quantities is rather technical and is studied in detail in
Sect. 4.

Proposition 4 Assume Hypotheses 3.0. 3.1. 3.2. and let φ : R
d → R be a bounded

smooth function with bounded derivatives. For every multi-index β = (β1, . . . βq) ∈
{1, . . . , d}q such that 4d(3q − 1)/t < θ

(a) if 3.3.a holds then

∣∣E(∂βφ(FM ))
∣∣ ≤ Cq ‖φ‖∞ . (41)

(b) if 3.3.b holds then

∣∣E(∂βφ(FM ))
∣∣ ≤ Cq ‖φ‖∞ (1 + μ(BM+1)

q), (42)

Remark If θ = ∞ then ∀t > 0, we have an integration by parts formula for any order
of derivation q. Conversely if θ is finite, we need to have t large enough to integrate
q times by part.
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Integration by parts formula and applications to equations with jumps 641

Proof The integration by parts formula (11) gives, for every smooth φ : R
d → R and

every multi-index β = (β1, . . . , βq)

E(∂βφ(FM )) = E(φ(FM )H
q
β (FM , 1)),

and consequently

∣∣E(∂βφ(FM ))
∣∣ ≤ ‖φ‖∞ E(|Hq

β (FM , 1)|).

So we just have to bound |Hq
β (FM , 1)|. From the second part of Theorem 3 we have

|Hq(FM , 1)| ≤ Cq
1

| det σ(FM )|3q−1 (1 + |FM |(6d+1)q
q+1 )(1 + |L FM |qq−1).

Now from Lemma 13 (see Sect. 4), we have:
(a) assuming 3.3.a, for l, p ≥ 1,

E |LFM |p
l ≤ Cl,p;

(b) assuming 3.3.b, for l, p ≥ 1,

E |L FM |p
l ≤ Cl,p(1 + μ(BM+1)

p).

Hence from Lemma 9, for l, p ≥ 1

E |FM |p
l ≤ Cl,p;

and from Lemma 16, we have for p ≥ 1, t > 0 such that 2dp/t < θ

E
1

det σ(FM ))p
≤ C p.

The final result is then a straightforward consequence of Cauchy-Schwarz inequality.
��

3.5 Estimates for the Fourier transform of Xt

In this section, we prove Proposition 3.

Proof The proof consists first to approximate Xt by X
M
t and then to apply the inte-

gration by parts formula.
Approximation. We have

∣∣∣E(ei〈ξ,Xt 〉)
∣∣∣ ≤ |ξ | E

∣∣∣Xt − X
M
t

∣∣∣ +
∣∣∣∣E(ei

〈
ξ,X

M
t

〉
− ei〈ξ,FM 〉)

∣∣∣∣ +
∣∣∣E(ei〈ξ,FM 〉)

∣∣∣ .
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From (35) we deduce

E
(∣∣∣Xt − X

M
t

∣∣∣
)

≤ εM = teCt
∫

Bc
M

c(z)γ (z)dμ(z).

Moreover

E(e
i
〈
ξ,X

M
t

〉
− ei〈ξ,FM 〉) = E(e

i
〈
ξ,X

M
t

〉
(1 − ei〈ξ,√UM (t)�〉))

= E(e
i
〈
ξ,X

M
t

〉
)(1 − e− 1

2 |ξ |2UM (t)),

so that
∣∣∣∣E(ei

〈
ξ,X

M
t

〉
− ei〈ξ,FM 〉)

∣∣∣∣ ≤ UM (t)
1

2
|ξ |2 .

We conclude that

∣∣∣E(ei〈ξ,Xt 〉)
∣∣∣ ≤ UM (t)

1

2
|ξ |2 + |ξ | teCt

∫

Bc
M

c(z)dμ(z))+
∣∣∣E(ei〈ξ,FM 〉)

∣∣∣ .

Integration by parts. We denote eξ (x) = exp(i 〈ξ, x〉) and we have ∂βeξ (x) =
i |β|ξβ1 . . . ξβq eξ (x). Consequently

(a) assuming 3.3.a and applying (41) for β such that |β| = q we obtain

∣∣∣E(ei 〈ξ,FM 〉)
∣∣∣ ≤ Cq

|ξ |q ,

(b) assuming 3.3.b, we obtain similarly from (42)

|ξβ1 . . . ξβq |
∣∣∣E(ei 〈ξ,FM 〉)

∣∣∣ = ∣∣E(∂βeξ (FM ))
∣∣ ≤ Cq(1 + μ(BM+1)

q),

and then

∣∣∣E(ei 〈ξ,FM 〉)
∣∣∣ ≤ Cq

|ξ |q (1 + μ(BM+1)
q),

and the proposition is proved. ��

4 Sobolev norms—Divergence–Covariance matrix

4.1 Sobolev norms

We prove in this section that ∀l ≥ 1 and ∀p ≥ 1 E |FM |p
l ≤ Cl,p. We begin this section

with a preliminary lemma which will be also useful to control the covariance matrix.
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4.1.1 Preliminary

We consider a Poisson point measure N (ds, dz, du) on R
d × R+ with compensator

μ(dz) × 1(0,∞)(u)du and two non negative measurable functions f, g : R
d → R+.

For a measurable set B ⊂ R
d we denote Bg = {(z, u) : z ∈ B, u < g(z)} ⊂ R

d ×R+
and we consider the process

Nt (1Bg f ) :=
t∫

0

∫

Bg

f (z)N (ds, dz, du).

Moreover we note νg(dz) = g(z)dμ(z) and

αg, f (s) =
∫

Rd

(1 − e−s f (z))dνg(dz), βB,g, f (s) =
∫

Bc

(1 − e−s f (z))dνg(dz).

We have the following result.

Lemma 6 Let φ(s) = Ee−s Nt ( f 1Bg ) the Laplace transform of the random variable
Nt ( f 1Bg ) then we have

φ(s) = e−t (αg, f (s)−βB,g, f (s)).

Proof From Itô’s formula we have

exp(−s Nt ( f 1Bg )) = 1 −
t∫

0

∫

Rd×R+

exp(−s(Nr−( f 1Bg )))

×(1 − exp(−s f (z)1Bg (z, u)))d N (r, z, u)

and consequently

E(exp(−s Nt ( f 1Bg ))) = 1 −
t∫

0

E(exp(−s(Nr−( f 1Bg ))

×
∫

Rd×R+

(1 − exp(−s f (z)1Bg (z, u)))dμ(z)dudr.
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But
∫

Rd×R+

(1 − exp(−s f (z)1Bg (z, u)))dμ(z)du

=
∫

Rd×R+

1Bg (z, u)(1 − exp(−s f (z)))dμ(z)du

=
∫

Rd

1B(z)(1 − exp(−s f (z)))
∫

R+

1{u<g(z)}dudμ(z)

=
∫

B

(1 − exp(−s f (z)))g(z)dμ(z) = αg, f (s)− βB,g, f (s),

It follows that

E(exp(−s Nt ( f 1Bg ))) = exp(−t (αg, f (s)− βB,g, f (s))).

��

4.1.2 Bound for |X M
t |l

In this section, we use the notation c1(z) = supx |∇x c(z, x)|. Under Hypothesis 3.3.i
we have c1(z) ≤ c(z), but we introduce this notation to highlight the dependence on
the first derivative of the function c.

Lemma 7 Let (X
M
t ) the process solution of (38) then under Hypotheses 3.0., 3.1. and

3.2. we have ∀l ≥ 1,

sup
s≤t

|X M
s |1,l ≤ Cl

⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠

l×l!

sup
s≤t
(E M

s )
l×l!

where Cl is an universal constant and where E M
t is solution of the linear equation

E M
t = 1 + Cl

J M
t∑

k=1

c1(Zk)E M
Tk− + Cl

t∫

0

E M
s ds. (43)

Consequently ∀l, p ≥ 1

sup
M

E sup
s≤t

|X M
s |p

1,l < ∞

Before proving this lemma we first give a result which is a straightforward consequence
of Lemma 1 and formula (21).
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Integration by parts formula and applications to equations with jumps 645

Lemma 8 Let φ : R
d �→ R a C∞ function and F ∈ Sd then ∀l ≥ 1 we have

|φ(F)|1,l ≤ |∇φ(F)||F |1,l + Cl sup
2≤|β|≤l

|∂βφ(F)||F |l1,l−1.

We proceed now to the proof of Lemma 7.

Proof We first recall that from Hypothesis 3.0.g and its derivatives are bounded and
from Hypothesis 3.2.i) the coefficient c as well as its derivatives are bounded by the
function c. Now the truncated coefficient cM of (38) is equal to cM = c × φM where
φM is a C∞ bounded function with derivatives uniformly bounded with respect to M .
Consequently using Lemma 8 we obtain for l ≥ 1

|X M
t |1,l ≤ Cl

⎛
⎝At,l−1 +

J M
t∑

k=1

c1(Zk)|X M
Tk−|1,l +

t∫

0

|X M
s |1,lds

⎞
⎠,

with

At,l−1 =
J M

t∑
k=1

c(Zk)(|Zk |1,l + |Zk |l1,l−1 + |X M
Tk−|l1,l−1)+

t∫

0

|X M
s |l1,l−1ds.

This gives

∀s ≤ t |X M
s |1,l ≤ At,l−1E M

s , (44)

Under Hypotheses 3.0. 3.1. and 3.2. we have

∀p ≥ 1 E

(
sup
s≤t

|E M
t |p

)
≤ C p.

Now one can easily check that for l ≥ 1

|Zk |1,l ≤ |πk |l−1,

but since πk = φM (Zk) we deduce from Lemma 8 that

|Zk |1,l ≤ 1 + Cl(|Zk |1,l−1 + |Zk |l−1
1,l−2).

Observing that |Zk |1,1 = |DZk | = |πk | ≤ 1 we conclude that ∀l ≥ 1

|Zk |1,l ≤ Cl .
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646 V. Bally, E. Clément

This gives

At,l−1 ≤ tCl

(
1 + sup

s≤t
|X M

s |1,l−1

)l
⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠ . (45)

From this inequality we can prove easily Lemma 7 by induction. For l = 1 we remark
that

∀s ≤ t |X M
s |1,1 ≤ At,0E M

s , with At,0 =
J M

t∑
k=1

c(Zk),

and the result is true. To complete the proof of Lemma 7, we prove that ∀p ≥ 1

E

⎛
⎝

J M
t∑

k=1

c(Zk)

⎞
⎠

p

≤ C p.

We have the equality in law

J M
t∑

k=1

c(Zk) �
t∫

0

∫

E

c(z)1u<γ (z,X M
Tk−)

1BM+1(z)1[0,2C](u)N (ds, dz, du),

moreover using the notations of Sect. 4.1.1. we have

t∫

0

∫

E

c(z)1u<γ (z,X M
Tk−)

1BM+1(z)1[0,2C](u)N (ds, dz, du) ≤ Nt (1Bγ c)

with Bγ = {(z, u); z ∈ BM+1; 0 < u < γ (z)}. From Lemma 6 it follows that

Ee−s Nt (1Bγ c) = exp

⎛
⎜⎝−t

∫

BM+1

(1 − e−sc(z))γ (z)dμ(z)

⎞
⎟⎠

and since from Hypotheses 3.1. and 3.2.,
∫
Rd |c(z)γ (z)|dμ(z) < ∞ we deduce that

∀p ≥ 1, E Nt (1Bγ c)p = t p(
∫

BM+1
|c(z)γ (z)|dμ(z))p ≤ C p where the constant C p

does not depend on M . This achieves the proof of Lemma 7. ��

4.1.3 Bound for |FM |l
Lemma 9 Under Hypotheses 3.0., 3.1. and 3.2. we have

∀l, p ≥ 1 E |FM |p
l ≤ Cl,p.
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Integration by parts formula and applications to equations with jumps 647

We have FM = X
M
t + √

UM (t)� and then |FM |l ≤ |X M
t |l + √

UM (t)|�|l . But
|�|l ≤ |�| + d and UM (t) ≤ t

∫
Rd c2(z)γ (z)dμ(z) < ∞. So the conclusion of

Lemma 9 follows from Lemma 7.

4.2 Divergence

In this section our goal is to bound |L FM |l for l ≥ 0. From the definition of the

divergence operator L we have L Fr
M = L X

M,r
t −�r and then

|L FM |l ≤ |L X
M
t |l + |�| + d,

so we just have to bound |L X
M
t |l . We proceed as in the previous section and we first

state a lemma similar to Lemma 8.

Lemma 10 Let φ : R
d �→ R a C∞ function and F ∈ Sd then ∀l ≥ 1 we have

|Lφ(F)|l ≤ |∇φ(F)||L F |l + Cl sup
2≤|β|≤l+2

|∂βφ(F)|(1 + |F |ll)(|L F |l−1 + |F |21,l+1),

≤ |∇φ(F)||L F |l + Cl sup
2≤|β|≤l+2

|∂βφ(F)|(1 + |F |l+2
l+1)(1 + |L F |l−1).

For l = 0, we have

|Lφ(F)| ≤ ∇φ(F)||L F | + sup
β=2

|∂βφF ||F |21,1.

The proof follows from (7) and Lemma 8 and we omit it.
Next we give a bound for |L Zk |l . We recall the notation

γ
z,l
ln (z) = sup

x
sup

1≤|β|≤l
|∂β,z ln γ (z, x)|, h

l
ln(z) = sup

1≤|β|≤l
|∂β ln h(z)|,

θ
l
ln = sup

x
sup

1≤|β|≤l
|∂β ln θM,γ (x)|,

γ
x,l
ln (z) = sup

x
sup

1≤|β|≤l
|∂β,x ln γ (z, x)|, γ x,l = sup

z
sup

x
sup

1≤|β|≤l
|∂β,xγ (z, x)|.

Lemma 11 Assuming Hypotheses 3.0., 3.1., 3.2 and 3.3., we have ∀l ≥ 0 and
∀k ≤ J M

t

|L Zk |l ≤ Cl

⎛
⎝γ z,l+1

ln (Zk)+ h
z,l+1
ln (Zk)+ sup

s≤t
|X M

s |l+1
l+1

×
J M

t∑
j=k+1

θ
l+1
ln 1B(z∗

M ,1)
(Z j )+ γ

x,l+1
ln (Z j ))

⎞
⎠ ,

with θ
l
ln ≤ Cl(γ

x,l)l .
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648 V. Bally, E. Clément

In addition, if we assume 3.3.a., we obtain ∀p ≥ 1

E sup
k≤J M

t

|L Zk |p
l ≤ C p,l .

On the other hand, assuming 3.3.b, we have ∀p ≥ 1

E sup
k≤J M

t

|L Zk |p
l ≤ C p,l(1 + μ(BM+1)

p)

Proof We first recall that we have proved in the preceding section that ∀l ≥ 1, |Zk |l ≤
Cl . Now L Z

r
k = δ(DZ

r
k) and since Dk,r Z

r
k = πk we obtain

L Z
r
k = −∂k,r (π

2
k )− πk Dk,r ln pM ,

this leads to

|L Z
r
k |l ≤ Cl(1 + |Dk,r ln pM |l).

Recalling that ln pM = ∑J M
t

j=1 ln qM (Z j , X
M
Tj −) and that X

M
Tj − depends on Zk for

k ≤ j − 1 we obtain

Dk,r ln pM = Dk,r ln qM (Zk, X
M
Tk−)+

J M
t∑

j=k+1

Dk,r ln qM (Z j , X
M
Tj −)

But on {πk > 0}, we have qM (Zk, X
M
Tk−) = Cγ (Zk, X

M
Tk−)h(Zk), and then

Dk,r ln qM (Zk, X
M
Tk−) = Dk,r ln γ (Zk, X

M
Tk−)+ Dk,r ln h(Zk).

Now for j ≥ k + 1, if |Z j − z∗
M | < 1 then

ln qM (Z j , X
M
Tj −) = ln ϕ(Z j − z∗

M )+ ln θM,γ (X
M
Tj −)

consequently

Dk,r ln qM (Z j , X
M
Tj −) = Dk,r ln θM,γ (X

M
Tj −),

and if Z j ∈ BM+1 then

Dk,r ln qM (Z j , X
M
Tj −) = Dk,r ln γ (Z j , X

M
Tj −)
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Integration by parts formula and applications to equations with jumps 649

and finally

Dk,r ln qM (Z j , X
M
Tj −) = Dk,r ln θM,γ (X

M
Tj −)1B(z∗

M ,1)
(Z j )

+Dk,r ln γ (Z j , X
M
Tj −)1BM+1(Z j ).

It is worth to note that this random variable is a simple variable as defined in section 2.
Putting this together, it yields

|Dk,r ln pM |l ≤ |Dk,r ln γ (Zk, X
M
Tk−)|l + |Dk,r ln h(Zk)|l

+
J M

t∑
j=k+1

(∣∣∣Dk,r ln θM,γ (X
M
Tj −)1B(z∗

M ,1)
(Z j )

∣∣∣
l

+ |Dk,r ln γ (Z j , X
M
Tj −)|l

)
.

Applying Lemma 8, this gives

|Dk,r ln pM |l ≤ (γ
z,l+1
ln (Zk)+ h

z,l+1
ln (Zk))|Zk |l+1

1,l+1 +
J M

t∑
j=k+1

(
θ

l+1
ln 1B(z∗

M ,1)
(Z j )

+ γ
x,l+1
ln (Z j )

)
|X M

Tj −)|l+1
1,l+1.

We obtain then, for k ≤ J M
t

|L Zk |l ≤ Cl(γ
z,l+1
ln (Zk)+ h

z,l+1
ln (Zk)+ sup

s≤t
|X M

s |l+1
l+1

J M
t∑

j=k+1

(θ
l+1
ln 1B(z∗

M ,1)
(Z j )

+γ x,l+1
ln (Z j ))).

Now from the definition of θM,γ , we have

∂βθM,γ (x) = − 1

2Cμ(BM+1)

∫

BM+1

∂β,xγ (z, x)dμ(z).

Then assuming 3.3. and recalling that 1/2 ≤ θM,γ (x) ≤ 1, we obtain

θ
l
ln ≤ Cl(γ

x,l)l
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this finally gives

|L Zk |l ≤ Cl(γ
z,l+1
ln (Zk)+ h

z,l+1
ln (Zk)

+ sup
s≤t

|X M
s |l+1

l+1

J M
t∑

j=k+1

((γ x,l+1)l+11B(z∗
M ,1)

(Z j )+ γ
x,l+1
ln (Z j ))).

The first part of Lemma 11 is proved. Moreover, we can check that from 3.3, we have
∀p ≥ 1

E

⎛
⎝

J M
t∑

j=1

1B(z∗
M ,1)

(Z j )

⎞
⎠

p

≤ t p sup
z∗

⎛
⎜⎝

∫

B(z∗,1)

γ (z)dμ(z)

⎞
⎟⎠

p

< ∞.

Now assuming 3.3.a, we have ∀p ≥ 1

E

⎛
⎝

J M
t∑

j=1

γ
x,l+1
ln (Z j )

⎞
⎠

p

≤ t p(

∫
γ

x,l+1
ln (z)γ (z)dμ(z))p < ∞,

then the second part of Lemma 11 follows from Lemma 7 and Cauchy–Schwarz

inequality. At last, assuming 3.3.b, we check that
∑J M

t
j=1 γ

x,l+1
ln (Z j ) ≤ γ

x,l+1
ln J M

t ,
and the third part follows easily. ��

We can now state the main lemma of this section.

Lemma 12 Assuming Hypotheses 3.0., 3.1. and 3.2., we have ∀l ≥ 0

sup
s≤t

|L X
M
s |l ≤ B M

t,l

(
1 + sup

k≤J M
t

|L Zk |l
)
,

where B M
t,l is a random variable such that ∀p ≥ 1, E(B M

t,l )
p ≤ C p for a constant C p

independent on M. More precisely we have

B M
t,l ≤ Cl

⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠

l+1 (
1 + sup

s≤t
|X M

s |l+2
l+1

)l+1

sup
s≤t
(E M

s )
l+1,

where Es is solution of (43).

Proof We proceed by induction. From (38) we have

L X
M
t =

J M
t∑

k=1

LcM (Zk, X
M
Tk−)+

t∫

0

Lg(X
M
s )ds.
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For l = 0, the second part of Lemma 10 gives

|L X
M
t | ≤ Bt,0 + C

⎛
⎝

J M
t∑

k=1

c1(Zk)|L X
M
Tk−| +

t∫

0

|L X
M
s |ds

⎞
⎠

with

Bt,0 = C

⎛
⎝

J M
t∑

k=1

c(Zk)(|L Zk | + |Zk |21,1 + |X M
Tk−|21,1)+

t∫

0

|X M
s |21,1ds

⎞
⎠.

This gives

∀s ≤ t, |L X
M
s | ≤ Bt,0E M

s ,

where E M
s is solution of (43) and

Bt,0 ≤ C

⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠

(
1 + sup

s≤t
|X M

s |21
)(

1 + sup
k≤J M

t

|L Zk |
)
.

Consequently Lemma 12 is proved for l = 0.
For l > 0, we obtain similarly from Lemma 10

|L X
M
t |l ≤ Bt,l−1 + Cl

⎛
⎝

J M
t∑

k=1

c1(Zk)|L X
M
Tk−|l +

t∫

0

|L X
M
s |lds

⎞
⎠

with

Bt,l−1 = Cl

J M
t∑

k=1

c(Zk)(|L Zk |l + 1 + |L X
M
Tk−|l−1)(1 + |Zk |l+2

l+1 + |X M
Tk−|l+2

l+1)

+Cl

t∫

0

(1 + |L X
M
Tk−|l−1)(1 + |X M

s |l+2
l+1)ds.

We deduce then that

Bt,l−1 ≤ Cl

(
1 + sup

s≤t
|L X

M
s |l−1

)(
1 + sup

s≤t
|X M

s |l+2
l+1

)⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠

+Cl sup
k≤J M

t

|L Zk |l
(

1 + sup
s≤t

|X M
s |l+2

l+1

) J M
t∑

k=1

c(Zk),
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now from the induction hypothesis, we have

Bt,l−1 ≤Cl

(
1+sup

s≤t
|X M

s |l+2
l+1

)l+1
⎛
⎝1+

J M
t∑

k=1

c(Zk)

⎞
⎠

l+1

sup
s≤t
(E M

s )
l

(
1+ sup

k≤J M
t

|L Zk |l−1

)

+Cl sup
k≤J M

t

|L Zk |l
(

1 + sup
s≤t

|X M
s |l+2

l+1

) J M
t∑

k=1

c(Zk),

this leads to

∀s ≤ t |L X
M
s |l ≤ B M

t,l

(
1 + sup

k≤J M
t

|L Zk |l
)
,

with

B M
t,l ≤ Cl(1 + sup

s≤t
|X M

s |l+2
l+1)

l+1

⎛
⎝1 +

J M
t∑

k=1

c(Zk)

⎞
⎠

l+1

sup
s≤t
(E M

s )
l+1.

From Lemma 7, we observe that E(B M
t,l )

p < C p. ��
Finally recalling that

|L FM |l ≤ |L X
M
t |l + |�| + d

and combining Lemmas 7, 11 and 12 we deduce easily the following lemma.

Lemma 13 Assuming Hypotheses 3.0., 3.1. and 3.2., we have ∀l, p ≥ 1

(a) if 3.3.a holds, E |L FM |p
l ≤ Cl,p;

(b) if 3.3.b holds, E |L FM |p
l ≤ Cl,p(1 + μ(BM+1)

p).

4.3 The covariance matrix

4.3.1 Preliminaries

We consider an abstract measurable space E, a measure ν on this space and a non
negative measurable function f : E → R+ such that

∫
f dν <∞. For t > 0 and p ≥ 1

we note

α f (t) =
∫

E

(1 − e−t f (a))dν(a) and I p
t ( f ) =

∞∫

0

s p−1e−tα f (s)ds.
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Lemma 14 (i) Suppose that for p ≥ 1 and t > 0

limu→∞
1

ln u
α f (u) > p/t (46)

then I p
t ( f ) < ∞.

(ii) A sufficient condition for (46) is

limu→∞
1

ln u
ν

(
f ≥ 1

u

)
> p/t. (47)

In particular, if limu→∞ 1
ln u ν( f ≥ 1

u ) = ∞ then ∀p ≥ 1 and ∀t > 0, I p
t ( f ) <

+∞.

We remark that if ν is finite then (47) can not be satisfied.

Proof (i) From (46) one can find ε > 0 such that as s goes to infinity s p−1e−tα f (s) ≤
1/s1+ε and consequently I p

t ( f ) < ∞.
(ii) With the notation n(dz) = ν ◦ f −1(dz) we have

α f (u) =
∞∫

0

(1 − e−uz)dn(z) =
∞∫

0

e−yn
( y

u
,∞

)
dy.

Using Fatou’s lemma and (47) we obtain

limu→∞
1

ln u

∞∫

0

e−yn
( y

u
,∞

)
dy ≥

∞∫

0

e−y limu→∞
1

ln u
n
( y

u
,∞

)
dy > p/t.

��
We come now back to the framework of Sect. 4.1.1 and we consider the Poisson

point measure N (ds, dz, du) on R
d × R+ with compensator μ(dz) × 1(0,∞)(u)du.

We recall that

Nt (1Bg f ) :=
t∫

0

∫

Bg

f (z)N (ds, dz, du),

for f, g : R
d → R+ and Bg = {(z, u) : z ∈ B, u < g(z)} ⊂ R

d × R+ and that

αg, f (s) =
∫

Rd

(1 − e−s f (z))dνg(dz), βB,g, f (s) =
∫

Bc

(1 − e−s f (z))dνg(dz).

We have the following result.
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Lemma 15 Let Ut = t
∫

Bc f (z)dνg(z), then ∀p ≥ 1

E

(
1

(Nt (1Bg f )+ Ut )p

)
≤ 1

�(p)

∞∫

0

s p−1 exp(−tαg, f (s))ds = 1

�(p)
I p
t ( f ). (48)

Suppose moreover that for some 0 < θ ≤ ∞

lima→∞
1

ln a
νg

(
f ≥ 1

a

)
= θ, (49)

then for every t > 0 and p ≥ 1 such that p/t < θ

E

(
1

(Nt (1Bg f )+ Ut )p

)
< ∞.

Observe that if ν(B) < ∞ then E 1
(Nt (1Bg f )p = ∞

Proof By a change of variables we obtain for every λ > 0

λ−p�(p) =
∞∫

0

s p−1e−λs ds.

Taking the expectation in the previous equality with λ = Nt ( f 1Bg )+ Ut we obtain

E(
1

(Nt ( f 1Bg )+ Ut )p
) = 1

�(p)

∞∫

0

s p−1 E(exp(−s(Nt ( f 1Bg )+ Ut ))ds.

Now from Lemma 6 we have

E(exp(−s Nt ( f 1Bg ))) = exp(−t (αg, f (s)− βB,g, f (s))).

Moreover, from the definition of Ut one can easily check that exp(−sUt ) ≤
exp(−tβB,g, f (s)) and then

E(exp(−s(Nt ( f 1Bg )+ Ut )) ≤ exp(−tαg, f (s))

this achieves the proof of (48). The second part of the lemma follows directly from
Lemma 14. ��
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4.3.2 The Malliavin covariance matrix

In this section, we prove that under some additional assumptions on p and t , E(det σ
(FM ))

−p ≤ C p, for the Malliavin covariance matrix σ(FM ) defined in Sect. 3.4.
We first remark that from Hypothesis 3.2 ii) the tangent flow of (38) is invertible

and that the moments of all order of this inverse are finite. More precisely we define
Y M

t , t ≥ 0 and Ŷ M
t , t ≥ 0 as the matrix solutions of the equations

Y M
t = I +

J M
t∑

k=1

∇x cM (Zk, X
M
Tk−)Y

M
Tk− +

t∫

0

∇x g(X
M
s )Y

M
s ds, (50)

Ŷ M
t = I −

J M
t∑

k=1

∇x cM (I + ∇x cM )
−1(Zk, X

M
Tk−)Ŷ

M
Tk− −

t∫

0

∇x g(X
M
s )Ŷ

M
s ds. (51)

Then Ŷ M
t × Y M

t = I,∀t ≥ 0. Moreover we can prove under Hypotheses 3.0, 3.1 and
3.2. that ∀p ≥ 1

E

(
sup
s≤t

(∥∥∥Ŷ M
s

∥∥∥p +
∥∥∥Y M

s

∥∥∥p)) ≤ K p < ∞ (52)

where K p is a constant.

Lemma 16 Assuming Hypothesis 3.0, 3.1, 3.2 we have for p ≥ 1, t > 0 such that
2dp/t < θ

E

(
1

(det σ(FM ))p

)
≤ C p, (53)

where the constant C p does not depend on M.

Proof We first give a lower bound for the lowest eigenvalue of the matrix σ(X
M
t ).

ρt := inf|ξ |=1

〈
σ(X

M
t )ξ, ξ

〉
= inf|ξ |=1

J M
t∑

k=1

d∑
r=1

〈
Dk,r X

M
t , ξ

〉2
.

But from (38) we have

Dk,r X
M
t =

J M
t∑

k′=1

∇zcM

(
Zk′ , X

M
T −

k′

)
Dk,r Zk′ +

J M
t∑

k′=1

∇x cM

(
Zk′ , X

M
T −

k′

)
Dk,r X

M
T −

k′

+
t∫

0

∇x g
(

X
M
s

)
Dk,r X

M
s ds

123



656 V. Bally, E. Clément

where ∇zcM = (∂zr cr ′
M )r ′,r and ∇x cM = (∂xr cr ′

M )r ′,r . Since Dk,r Zk′ = 0 for k �= k′
we obtain

Dk,r X
M,r ′
t =

(
Y M

t ∇zcM

(
Zk, X

M
T −

k

)
Dk,r Zk

)
r ′,r

= πk

(
Y M

t ∇zcM

(
Zk, X

M
T −

k

))
r ′,r
.

We deduce that

d∑
r=1

〈
Dk,r X

M
t , ξ

〉2 =
d∑

r=1

π2
k

〈
∂zr cM (Zk, X

M
T −

k
), (Y M

t )∗ξ
〉2
,

but recalling that πk ≥ 1BM−1(Zk) and cM = c on BM−1 we obtain

d∑
r=1

〈
Dk,r X

M
t , ξ

〉2 ≥
d∑

r=1

1BM−1(Zk)
〈
∂zr c(Zk, X

M
T −

k
), (Y M

t )∗ξ
〉2
,

and consequently using Hypothesis 3.2. (iii)

ρt ≥ inf|ξ |=1

J M
t∑

k=1

1BM−1(Zk)c
2(Zk)|(Y M

t )∗ξ |2 ≥
∥∥∥Ŷ M

t

∥∥∥−2
J M

t∑
k=1

1BM−1(Zk)c
2(Zk).

Now since σ(FM ) = σ(X
M
t )+ UM (t) we have

E

∣∣∣∣ 1

det σ(FM )

∣∣∣∣
p

≤ E

∣∣∣∣ 1

ρt +UM (t)

∣∣∣∣
dp

≤ E

⎛
⎝ 1 + ∥∥Ŷ M

t

∥∥2

∑J M
t

k=1 1BM−1(Zk)c2(Zk)+UM (t)

⎞
⎠

dp

.

Now observe that the denominator of the last fraction is equal in law to

J M
t∑

k=1

1BM−1(Zk)c
2(Zk)1Uk<γ (Zk ,X M

Tk−)
+ UM (t) ≥ Nt (1B M

γ
c2)+ UM (t),

with B M
γ = {(z, u); z ∈ BM−1; 0 < u < γ (z)}. Assuming Hypothesis 3.2.iii, we can

apply Lemma 15 with f = c2 and dν(z) = γ (z)dμ(z). This gives for p′ ≥ 1 such
that p′/t < θ

E

⎛
⎝ 1

Nt (1B M
γ

c2)+ UM (t)

⎞
⎠

p′

≤ C p′ .

Finally since the moments of
∥∥Ŷ M

t

∥∥ are bounded uniformly on M the result of
Lemma 16 follows from Cauchy–Schwarz inequality. ��
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