
Probab. Theory Relat. Fields (2011) 151:475–507
DOI 10.1007/s00440-010-0305-8

On weak solutions of forward–backward SDEs

Jin Ma · Jianfeng Zhang

Received: 1 June 2009 / Revised: 19 February 2010 / Published online: 25 June 2010
© Springer-Verlag 2010

Abstract In this paper we continue exploring the notion of weak solution of
forward–backward stochastic differential equations (FBSDEs) and associated for-
ward–backward martingale problems (FBMPs). The main purpose of this work is
to remove the constraints on the martingale integrands in the uniqueness proofs in
our previous work (Ma et al. in Ann Probab 36(6):2092–2125, 2008). We consider a
general class of non-degenerate FBSDEs in which all the coefficients are assumed to
be essentially only bounded and uniformly continuous, and the uniqueness is proved
in the space of all the square integrable adapted solutions, the standard solution space
in the FBSDE literature. A new notion of semi-strong solution is introduced to clarify
the relations among different definitions of weak solution in the literature, and it is in
fact instrumental in our uniqueness proof. As a by-product, we also establish some a
priori estimates of the second derivatives of the solution to the decoupling quasilinear
PDE.
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476 J. Ma, J. Zhang

1 Introduction

The theory of backward stochastic differential equations (BSDE) and forward–
backward stochastic differential equations (FBSDE) has been explored quite exten-
sively in the past two decades since the seminal work of Pardoux and Peng [26]
appeared in 1990. We refer to [1,9,13,17,19,21,27–29,32,33], and the book [23] for
the wellposedness of various forms of such equations. All these works, however, are
in the realm of “strong solutions”.

The notion of weak solutions of FBSDEs, first proposed by Antonelli and Ma [2],
has become an important branch of research in the theory of BSDEs/FBSDEs. In a
sequence of three papers [5–7], Buckdhan et al. studied the weak solution for BSDEs
where a forward component is implicitly given. In these works, the standard issues
such as relations between pathwise uniqueness and uniqueness in law, as well as the
Yamada–Watanabe type results regarding the weak solution and strong solution were
discussed. These issues were further explored recently by Kurtz [18], in a more gen-
eral framework. Despite all the efforts, however, the uniqueness of the weak solution
remains open. We should mention that the notion of weak solution was also studied
by Delarue–Guatteri [11], where the existence and uniqueness of weak solutions was
established for a class of Markovian FBSDEs. However, since in that framework the
coefficients are assumed to be Lipschitz continuous in terms of the backward com-
ponents, the solution is therefore “weak” only in the forward component, and the
fundamental nature of the weak solution for BSDEs, especially the uniqueness, was
essentially avoided.

In our previous work [24] we studied weak solutions for fully coupled FBSDEs
and introduced the notion of Forward–Backward Martingale Problem (FBMP, for
short), and proved the equivalence between the two notions. We first established
an existence result for general FBSDEs with possibly path dependent coefficients,
under certain tightness conditions. We then verified, in the one dimensional and non-
degenerate Markovian case, that the tightness conditions do hold for FBSDE with
bounded and uniformly continuous coefficients, which leads to the existence of weak
solution. To prove the uniqueness (in law) of weak solutions, we investigated a varia-
tion of the notion of “nodal set” in [22], and argued that the weak solution is unique
if the comparison principle holds for the viscosity solution of the related quasi-
linear PDE. However, this result only applies to those solutions whose component
Z is bounded in a certain sense.

In this paper we continue exploring the well-posedness of non-degenerate
Markovian FBSDEs with bounded and uniformly continuous coefficients. We shall
introduce a new notion of semi-strong solution so as to clarify the relations between the
different weak solutions in the literature. For example, we note that the strong solution
defined in [7] is actually semi-strong under our definition. Next, we establish some a
priori estimates for the derivatives of the solutions to the corresponding decoupling
PDE, from which we obtain the existence of semi-strong solutions for FBSDEs with
arbitrary dimension, extending the existence result in [24] to high dimensional cases.
In the case when the backward component is scalar we further prove that, starting from
any point in the “nodal set” one can construct a semi-strong solution whose component
Z is locally bounded in the variable t .
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The main goal of this paper is to remove the boundedness constraint on Z in the
uniqueness result of [24]. As in [24], we shall prove that the upper bound of the
“nodal set” is a viscosity sub-solution to the related PDE and the lower bound is a
viscosity super-solution. Then the comparison principle of viscosity solutions implies
the uniqueness of the weak solutions. To remove the boundedness constraint on the
component Z , we show that for any weak solution whose initial value is in the “nodal
set”, we can actually construct a semi-strong solution starting from the same initial
value and with locally bounded Z . From this fact we then obtain the same estimates
and eventually prove the uniqueness among all weak solutions.

The rest of the paper is organized as follows. In Sect. 2 we give the preliminaries,
introduce various types of solutions, and illustrate their difference by examples. In
Sect. 3 we give some a priori estimates for the solutions to the decoupling PDE, and
prove the existence result. In Sect. 4 we study the properties of nodal set. In partic-
ular, we show that starting from any point in the nodal set there exists a semi-strong
solution whose component Z is locally bounded. Finally, we prove the uniqueness
result in Sect. 5, and give the complete proofs of the a priori estimates for the PDE in
Sect. 6.

2 Preliminaries

We first recall some basic notions from our previous work [24]. For a given finite
time horizon [0, T ], we say that a quintuple (�,F , P, F, W ) is a standard set-up if

(�,F , P) is a complete probability space; F
�= {Ft }t∈[0,T ] is a filtration satisfying

the usual hypothesis (see, e.g. [30]); and W is an F-Brownian motion. In particular, if
F = FW , the filtration generated by the Brownian motion with the usual augmentation,
then we say that the set-up is Brownian.

We consider the following forward–backward SDE on a standard set-up:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xt = x +
t∫

0

b(s, (X)s, Ys, Zs)ds +
t∫

0

σ(s, (X)s, Ys)dWs

Yt = g((X)T ) +
T∫

t

f (s, (X)s, Ys, Zs)ds −
T∫

t

ZsdWs .

(2.1)

Here (Xt , Yt , Zt , Wt ) ∈ R
d ×R

m ×R
m×k ×R

k , and the coefficients b, σ , f , and g are
functions with appropriate dimensions. We note in particular that the coefficient b is a
progressively measurable function defined on [0, T ] × C([0, T ], R

d) × R
m × R

m×k

with values in R
d ; and (X)t denotes the path of X up to time t . More precisely, for each

t ∈ [0, T ], and (y, z) ∈ R
m × R

m×k , the mapping x �→ b(t, (x)t , y, z) is measurable

with respect to the σ -field Bt (C([0, T ]; R
d)), where Bt (C([0, T ]; R

d))
�= σ {x(t ∧·) :

x ∈ C([0, T ]; R
d)} (cf. e.g. [14]). The other coefficients satisfy similar measurability.

We now recall the following definition of the weak solution, and also define the
definitions of the semi-strong as well as strong solutions for the FBSDE (2.7).
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Definition 2.1 A standard set-up (�,F , P, F, W ) along with a triplet of processes
(X, Y, Z) defined on this set-up is called a weak solution of (2.7) if

(i) the processes X, Y are continuous, and all processes X , Y , Z are F-adapted;

(ii) denoting ϕs
�= ϕ(s, (X)s, Ys, Zs) for ϕ = b, σ, f , it holds that

P

⎧
⎨

⎩

T∫

0

(
|bt | + |σt |2 + | ft | + |Zt |2

)
dt + |g(XT )| < ∞

⎫
⎬

⎭
= 1.

(iii) (X, Y, Z) verifies (2.7) P-a.s.
Moreover, a weak solution is called “semi-strong” if F = FX,W . It is called a
“strong solution” if F = FW .

Remark 2.2 (i) We note that if the FBSDE is “decoupled”, that is, the forward
equation does not depend on the backward component, then there is no signif-
icant difference between a strong solution and a semi-strong solution, as long
as the process W remains a Brownian motion under FX,W . This is because as
far as the backward SDE is concerned, the probability space can be determined
a priori once X and W are given. We refer to [7] for weak solutions to BSDEs
reflecting such reasonings.

(ii) In the coupled FBSDE case, however, the problem becomes quite different.
Because of the mutual influence between the forward and backward compo-
nents, the filtration generated by the solution (X, Y, Z , W ) can be significantly
bigger than FW , FX , or even FX,W , and the probability space cannot be pre-
determined even for the semi-strong solutions.

�	
The following examples show the differences among weak, strong, and semi-strong

solutions.

Example 2.3 (Semi-strong vs. strong) Consider a decoupled FBSDE (2.7) in which
b ≡ 0, σ = sgn (x), and f = f (x, y, z) is bounded and measurable in x but uniform
Lipschitz in (y, z). Since the forward SDE is exactly the same as the Tanaka example
(see, e.g. [31]):

Xt = x +
t∫

0

sgn (Xs)dWs, t ≥ 0, (2.2)

it is well-known that the filtration FX is strictly bigger than FW , hence FX,W = FX

is strictly bigger than FW . Furthermore, note that whenever a (weak) solution (X, W )

of (2.2) is given on some probability space, (X, FX ) is also a Brownian motion.
Thus for any duration [0, T ] and under very mild technical conditions, the FBSDE
is always solvable on this probability space with solution being FX -adapted, see e.g.
[19]. Namely, it is semi-strong but not strong. �	
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On weak solutions of forward–backward SDEs 479

Remark 2.4 We note that in general the inclusion FW ⊆ FX may not be true.
A simple example would be to modify the FBSDE above so that T = 2, and σ(t, x) =
sgn (x)1[0,1](t). Then for t ∈ [0, 1] one still has F X,W

t = F X
t which contains

FW
t strictly. But for t ∈ (1, 2], σ ≡ 0, and Xt ≡ X1, hence F X

t ≡ σ(Xt , t ≤ 1).
Thus F X,W

t = FW
t ∨ σ(Xt , t ≤ 1) strictly contains both FW

t and F X
t for t ∈

(1, 2]. Consequently, FX and FW are mutually non-inclusive, and are included strictly
in FX,W . �	

Example 2.5 (Weak vs. semi-strong) Note that in [24] we actually proved that the
semi-strong solution always exists whenever the coefficients are bounded and uni-
formly continuous. Thus in order to find a weak solution that is not semi-strong one
must consider the case where the solutions are actually non-unique.

Let us still consider the decoupled FBSDE (2.7), this time with T = 1, g = 0, and

f = f (y)
�= 2[√|y| ∧ 1]. Note that the ODE

Yt =
1∫

t

f (Ys)ds, t ∈ [0, 1] (2.3)

has two solutions: Y ≡ 0 and Ȳt
�= (1 − t)2. Denote Z

�= Z̄
�= 0. Clearly, for any

weak solution (�,F , P, FW,X , W, X) of the forward SDE (2.2), adding (Y, Z) and
(Ȳ , Z̄) we obtain two semi-strong solutions to the FBSDE (2.7).

We now try to construct a weak solution that is not semi-strong. Let F be any filtra-
tion that is strictly bigger than FW,X , but W is still an F-Brownian motion, and choose
Z0 ∈ L2(F; [0, 1]) that is not FW,X -adapted. Let Y 0 be an F-adapted solution to the
following “randomized” ODE with initial condition y ∈ (0, 1):

Y 0
t = y −

t∫

0

f (Y 0
r )dr +

t∫

0

Z0
r dWr , t ∈ [0, 1], (2.4)

Define τ1
�= inf{t : Y 0

t = Yt }, τ2
�= inf{t : Y 0

t = Ȳt }. Note that Y0 < Y0 < Ȳ0,
Y1 = Ȳ1 = 0, and all the processes are continuous, then 0 < τ1 ∧ τ2 ≤ 1. Define

Yt
�= Y 0

t 1{t≤τ1∧τ2} + Yt 1{t>τ1,τ1≤τ2} + Ȳt 1{t>τ2,τ1>τ2}, Zt
�= Z0

t 1{t≤τ1∧τ2}.

Then one can check that (�,F , P, F, W, X, Y, Z) is a weak solution, and obviously
(Y, Z) is F-adapted but not FX,W -adapted, and thus the solution is not semistrong.

For completeness we show that (2.4) has an F-adapted solution Y 0. Let { fn}n≥0 be
the smooth mollifiers of f such that fn ↑ f as n → ∞. Denote Y n to be the (unique)
strong solution to the following randomized ODE on the space (�,F , P):
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Y n
t = y −

t∫

0

fn(Y n
r )dr +

t∫

0

Z0
r dWr , t ∈ [0, 1].

Applying the comparison theorem, one sees that Y n’s are decreasing, thus there exists
an F-adapted process Y 0 such that Y n ↓ Y 0. By bounded convergence theorem and
the uniform continuity of f one then shows that Y 0 solves (2.4). �	

We now recall the notion of the “Forward–Backward Martingale Problem”. We
begin by recalling the “canonical set-up”. Define,

�1 �= C([0, T ]; R
d); �2 �= C([0, T ]; R

m); �
�= �1 × �2. (2.5)

Here �1 denotes the path space of the forward component X and �2 the path space of
the backward component Y of the FBSDE, respectively. Next, we define the canonical

filtration by Ft
�= F1

t ⊗ F2
t , 0 ≤ t ≤ T , where F i

t
�= σ {ωi (r ∧ t) : r ≥ 0}, i = 1, 2.

We denote F �= FT and F
�= {Ft }0≤t≤T .

In what follows we denote the generic element of � by ω = (ω1, ω2), and denote
the canonical processes on (�,F) by

xt (ω)
�= ω1(t), and yt (ω)

�= ω2(t), t ≥ 0.

Finally, let P(�) be the space of all the probability measures defined on (�,F),
endowed with the Prohorov metric. We should note that for every P ∈ P(�), the

term “filtered probability space (�,F , P ; F)” should always mean that F = FP

and F = F
P

. That is, F is completed and F is augmented, by the probability P ,
respectively. We will not repeat this point in the future.

For ϕ = b, f , we denote ϕ̂(t, (x)t , y, z) = ϕ(t, (x)t , y, zσ(t, (x)t , y)), and let
a = σσ ∗. We give the following definition for a Forward–Backward Martingale
Problem.

Definition 2.6 Let b, σ , f , and g be given. For any x ∈ R
d , a solution to the forward–

backward martingale problem with coefficients (b, σ, f, g) (FBMPx,T (b, σ, f, g) for
short) is a pair (P , z), where P ∈ P(�), and z is a R

m×d -valued predictable process
defined on the filtered canonical space (�,F , P ; F), such that following properties
hold:

(i) the processes

Mx(t)
�= xt −

t∫

0

b̂(r, (x)r , yr , zr )dr and My(t)

�= yt +
t∫

0

f̂ (r, (x)r , yr , zr )dr (2.6)

are both (P , F)-martingales for t ∈ [0, T ];
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On weak solutions of forward–backward SDEs 481

(ii) [Mi
x, M j

x ](t) =
∫ t

0
ai j (r, (x)r , yr )dr , t ∈ [0, T ], i, j = 1, . . . n;

(iii) My(t) =
∫ t

0
zr d Mx(r), t ∈ [0, T ].

(iv) P {x0 = x} = 1 and P {yT = g((x)T )} = 1.

We note that by (iii) we imply that the quadratic variation of My is absolutely con-
tinuous with respect to the quadratic variation of Mx, thus in the definition we require
implicitly

P

⎧
⎨

⎩

T∫

0

|zt a(t, (x)t , yt )z∗
t |Rm×m dt < ∞

⎫
⎬

⎭
= 1.

In [24] we showed that, when σ is non-degenerate, the FBSDE (2.1) has a weak
solution if and only if the FBMP has a solution (with a = σσ ∗), with the relation
Zt = ztσ(t, (x)t , yt ), at least in distribution. In this case we shall also call (P , Z) a
solution to the FBMP.

In this paper we shall mainly concentrate on the following Markovian type FBSDE:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xt = x +
t∫

0

b(s, Xs, Ys, Zs)ds +
t∫

0

σ(s, Xs, Ys)dWs

Yt = g(XT ) +
T∫

t

f (s, Xs, Ys, Zs)ds −
T∫

t

ZsdWs,

t ∈ [0, T ]. (2.7)

It is well known that this FBSDE is associated with the following system of PDEs:

⎧
⎪⎪⎨

⎪⎪⎩

ui
t + 1

2
tr (ui

xxσ(t, x, u)σ ∗(t, x, u)) + ui
x b(t, x, u, uxσ(t, x, u))

+ f i (t, x, u, uxσ(t, x, u)) = 0, i = 1, . . . , m;
u(T, x) = g(x).

(2.8)

Here and in the sequel ui
x is understood as row vectors. The FBSDE (2.7) and the PDE

(2.8) are related via the following nonlinear Feynman–Kac formula:

Yt = u(t, Xt ), Zt = ux (t, Xt )σ (t, Xt , u(t, Xt )). (2.9)

In this case the forward SDE in (2.7) becomes

Xt = x +
t∫

0

b̃(s, Xs)ds +
t∫

0

σ̃ (s, Xs)dWs, (2.10)
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where b̃(t, x)
�= b(t, x, u(t, x), ux (t, x)σ (t, x, u(t, x))) and σ̃ (t, x)

�= σ(t, x, u
(t, x)). The following definition, which is a variation of the “k-weak solution” in
[24], is important.

Definition 2.7 We say that a pair (P , Z), where P ∈ P(�) and Z is a predictable,
square-integrable process defined on (�,F , P ; F), is a “weak solution at (t, x, y)” if
the following hold:

(i) Ws
�=
∫ s

t
σ−1(r, xr , yr )[dxr − b(r, xr , yr , Zr )dr ] is a P -Brownian Motion for

s ≥ t ;
(ii) P {xt = x, yt = y} = 1;

(iii) ys = y −
∫ s

t
f (r, xr , yr , Zr )dr +

∫ s

t
Zr dWr , s ∈ [t, T ], P -a.s.

(iv) P {yT = g(xT )} = 1;

We note that for a weak solution at (t, x, y), there is no requirement for (P , Z)

over [0, t). So (x, y, Z) may have arbitrary distribution over [0, t).
We end this section by stating some Standing Assumptions:

(H1) The coefficients (b, σ, f, g) are measurable and bounded by a common
constant K .

(H2) k = d, and the function σ satisfies

[σσ ∗](t, x, y) ≥ 1

K
Id , ∀(t, x, y) ∈ [0, T ] × R

d × R
m . (2.11)

(H3) The coefficients (b, f, g) are uniformly continuous in (x, y, z), uniformly in
t ∈ [0, T ]. Moreover, σ is uniformly continuous in (t, x, y).

In this paper we also need an extra assumption on the modulus of continuity of the
coefficient σ , in order to obtain an uniform PDE estimate in Theorem 4.1 below.

(H4) There exists a continuous, increasing function ρ : R+ �→ R+, satisfying

ρ(0) = 0; and
∫

0+

ρ(t)

t
dt < ∞, (2.12)

such that for all (t, xi , yi ) ∈ [0, T ] × R
d × R

m , i = 1, 2, it holds that

|σ(t, x1, y1) − σ(t, x2, y2)| ≤ ρ(|x1 − x2| + |y1 − y2|). (2.13)

Remark 2.8 There are typically two situations where strong well-posedness may fail
and weak solutions are in order: either the coefficients have “bad” growth conditions or
they have “bad” regularity conditions. In this paper we shall focus mainly on the reg-
ularity of coefficients, and the assumption (H1) is merely for technical convenience.
We believe that the cases of unbounded coefficients (e.g. linear growth with (y, z)
or even quadratic growth in z) can be treated by combining various methods in the
literature (see, e.g., Delarue–Guatteri [11] for f having quadratic growth in Z ). But
we prefer to leave such discussion to a separate work, in order to keep our main focus.

�	
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3 Existence of semi-strong solutions

We begin by pointing out that in [24] the existence result was established only in
the one dimensional case. The constraint there was due to an application of Nash’s
result [25]. In this section we shall prove a more general existence result by using the
following a priori estimate on the solution to PDE (2.8).

Theorem 3.1 Assume (H1)–(H3), and that the coefficients b, σ, f, g are smooth with
bounded derivatives. Let u be the unique classical solution to (2.8). Then for any δ > 0
and α ∈ (0, 1), there exist constants C, Cδ , and Cδ,α , depending only on the bounds
in (H1)–(H3), the time duration T > 0, the dimensions d, m, and the constants δ, α

when necessary, but not on the derivatives of the coefficients, such that the following
estimates hold:

(i) |u(t, x)| ≤ C, for all (t, x) ∈ [0, T ] × R
d ;

(ii) |ux (t, x)| ≤ Cδ , for all (t, x) ∈ [0, T − δ] × R
d;

(iii) for all t1, t2 ∈ [0, T − δ] and x1, x2 ∈ R
d ,

|ux (t1, x1) − ux (t2, x2)| ≤ Cδ,α

[
|x1 − x2|α + |t1 − t2| α

2

]
. (3.1)

(iv) Moreover, if Kg
�= ‖gx‖∞ + ‖gxx‖∞ < ∞, then (ii) and (iii) hold for δ = 0,

with constants C0 and C0,α there depending on Kg as well.

The proof is quite technical and mainly analytic, we thus postpone it to Sect. 6. We
now have the following existence result.

Theorem 3.2 Assume (H1)–(H3). There exists a function u satisfying (i)–(iii) in The-
orem 3.1 and the FBSDE (2.7) admits a semi-strong solution such that (2.9) holds
true. In particular, for any δ > 0, |Zt | ≤ Cδ for t ∈ [0, T − δ].

Moreover, if the coefficient b is also independent of Z, and b and σ are uniformly
Lipschitz continuous in (x, y), then the semi-strong solution is actually strong.

Proof We fix a Brownian set-up (�,F , P). Let (bn, σn, fn, gn) be the standard
smooth mollifiers of (b, σ, f, g) such that they satisfy (H1)–(H3) uniformly and con-
verge to (b, σ, f, g) uniformly. Let un denote the unique classical solution to (2.8) with
coefficients (bn, σn, fn, gn), and (Xn, Y n, Zn) the unique strong solution to (2.7) with
coefficients (bn, σn, fn, gn) on (�,F , P). By Theorem 3.1, un satisfy (i)–(iii) in The-
orem 3.1 uniformly. Applying the Arzela–Ascoli Theorem we see that, possibly along
a subsequence, un converges to some function u uniformly and u also satisfies (i)–
(iii) in Theorem 3.1. Now following the arguments in [24] Theorem 3.1, in particular
noting that (3.1) implies that Zn satisfies the key condition in [24]:

lim
ε→0

sup
n

E

⎧
⎨

⎩

T −δ∫

0

|Zn
t − Zn,ε

t |2dt

⎫
⎬

⎭
= 0, Zn,ε

t
�= 1

ε

t∫

(t−ε)+
Zn

s ds, ∀δ > 0,

we know that (Xn,Y n,Zn) converges to (X,Y,Z) weakly on any subinterval [0,T −δ].
Thus, following a standard “diagonalization” scheme and using the continuity of
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X and Y we can show that (X, Y, Z) is a weak solution to (2.7) on [0, T ] and that (2.9)
holds true. This implies that (X, Y, Z) is in fact a semi-strong solution. Moreover, by
(2.9) and Theorem 3.1 (ii) we conclude that Zt is bounded for t ≤ T − δ.

To prove the last part of the Theorem, we assume the coefficient b is also indepen-
dent of Z . Now by Theorem 3.1 (ii), we see that b̃ and σ̃ in SDE (2.10) are uniform
Lipschitz continuous on any closed subinterval of [0, T ). Therefore, a standard argu-
ment would show that the forward SDE (2.10) will have a strong solution X on [0, T ],
which in turn will guarantee the existence of the strong solution to the FBSDE. Namely
the aforementioned semi-strong solution is actually a strong one. �	

4 The properties of the “nodal set”

In this section we try to characterize the set of all weak solutions in terms of their
“initial data”, inspired by the so-called “nodal set” introduced in [22]. The results
presented here will be important for the uniqueness proof in next section. To begin
with, we give an a priori estimate for the second derivative of the solution to PDE
(2.8), whose proof is again postponed to Sect. 6 in order not to disturb the discussion.

Theorem 4.1 Assume (H1)–(H4) and the coefficients b, σ, f, g are smooth with
bounded derivatives. Let u be the unique classical solution to (2.8). Let

K0
�= ‖bx‖∞+‖by‖∞ + ‖bz‖∞+‖ fx‖∞ + ‖ fy‖∞+‖ fz‖∞ + ‖gx‖∞+‖gxx‖∞.

Then, there exists a constant C > 0, depending only on the bounds in (H1)–(H4), the
time duration T > 0, the dimensions d, m, as well as K0, but not on the derivatives
of σ , such that

|uxx (t, x)| ≤ C; ∀(t, x) ∈ [0, T ] × R
d .

We now define the “nodal sets”.

Definition 4.2 (i) Let O(t, x, y) denote the space of weak solutions (X, Y, Z) at
(t, x, y), in the sense of Definition 2.7.

(ii) O(t, x)
�= {y : O(t, x, y) is not empty}.

(iii) O �= {(t, x, y) : y ∈ O(t, x)}.
By Theorem 3.2, for the function u there we have u(t, x) ∈ O(t, x) for any (t, x).

In order to study the uniqueness, from now on we always assume m = 1. Then
(2.8) becomes the following PDE:

ut + h(t, x, u, ux , uxx ) = 0, u(T, x) = g(x); (4.1)

where

h(t, x, y, z, γ )
�= 1

2
tr (γ σσ ∗(t, x, y)) + zb(t, x, y, zσ(t, x, y))

+ f (t, x, y, zσ(t, x, y)). (4.2)
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We first note that, in this case the function u in Theorem 3.2 is in fact a viscosity
solution to PDE (4.1). The following result is the key for the uniqueness.

Theorem 4.3 Assume (H1)–(H4).

(i) For any y ∈ O(t, x), there exists a semi-strong solution (X, Y, Z) ∈ O(t, x, y)

such that for any δ > 0, |Zs | ≤ Cδ for s ∈ [t, T − δ].
(ii) For any (t, x), O(t, x) is a bounded closed interval.

To prove the theorem, we need the following comparison result for FBSDEs.

Theorem 4.4 Assume (H1)–(H4). Then for each n ∈ N there exist functions (bn, σ n,

f n, gn) such that

(i) (bn, σ n, f n, gn) are smooth and satisfy (H1)–(H4) uniformly;
(ii) (bn, σ n, f n, gn) converges to (b, σ, f, g) uniformly;

(iii) For any weak solution (X, Y, Z) of (2.7) and any n, it holds that Y n
0 ≥ Y0, where

(Xn, Y n, Zn) is the unique strong solution to (2.7) with coefficients (bn, σ n,

f n, gn).

Proof For any n, and any cn,1 > 0, cn,2 > 0, we mollify the coefficients (b, σ, f, g)

to get (bn, σ n, f n, gn) so that

1

n
≤ f n − f ≤ 2

n
; 0 ≤ gn − g ≤ 1

n
; |bn − b| ≤ cn,1; |σ n − σ | ≤ cn,2;

and

| f n
x | + | f n

y | + | f n
z | + |gn

x | ≤ Cn, |gn
xx | ≤ Cn2, |bn

x | + |bn
y | + |bn

z | ≤ C

cn,1
.

Let un be the classical solution to PDE (4.1) with coefficients (bn, σ n, f n, gn). Then
Y n

0 = un(0, x). Now, by Theorem 3.1 (i) and (iv) we have

|un| ≤ C; |un
x | ≤ Cn,0, (4.3)

where Cn,0 depends on n but not on cn,1, cn,2. Moreover, by Theorem 4.1, we have

|un
xx | ≤ Cn,1, (4.4)

where Cn,1 depends on n and cn,1, but not on cn,2.
For any weak solution (X, Y, Z) of (2.7), denote

�Y n
t

�= un(t, Xt ) − Yt ; �Zn
t

�= un
x (t, Xt )σ (t, Xt , Yt ) − Zt .

For ϕ = b, σ, f, g, denote �ϕn �= ϕn − ϕ. To simplify notations in the rest of the
proof we assume that d = k = 1 as well. The general cases are the same, except for
some tedious notational differences. Also, for notational simplicity in what follows we
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let αt denote a generic bounded process whose bound is independent of n. Applying
Itô’s formula we have (often suppressing variables when context is clear):

d�Y n
t

=
{

un
t + un

x b(t, Xt , Yt , Zt ) + 1

2
un

xxσ
2(t, Xt , Yt ) + f (t, Xt , Yt , Zt )

}

dt

+�Zn
t dWt

= −
[

1

2
un

xx [σ n]2(t, Xt , un) + un
x bn(t, Xt , un, un

xσ
n(t, Xt , un))

+ f n(t, Xt , un, un
xσ

n(t, Xt , un))

]

dt

+
[

un
x b(t, Xt , Yt , Zt )+ 1

2
un

xxσ
2(t, Xt , Yt )+ f (t, Xt , Yt , Zt )

]

dt + �Zn
t dWt

=
{
[αt u

n
xx�σ n(t, Xt , Yt ) + αt u

n
xx σ̄

n
y �Y n

t ]
−un

x ([�bn(t, Xt , Yt , Zt ) + b̄n
y�Y n

t + b̄n
z �Zn

t + b̄n
z un

x�σ n + b̄n
z un

x σ̄
n
y �Y n

t ]
−[� f n(t, Xt , Yt , Zt )+ f̄ n

y �Y n
t + f̄ n

z �Zn
t + f̄ n

z un
x�σ n + f̄ n

z un
x σ̄

n
y �Y n

t ]
}

dt

+�Zn
t dWt

= −[αn
t + βn

t �Y n
t + γ n

t �Zn
t ]dt + �Zn

t dWt .

In the above we used the fact: ϕ(x)−ϕ(y) = [∫ 1
0 ϕx (y +θ(x − y))dθ ](x − y), for any

C1 function ϕ, and denoted σ̄ n
y to be the process σ̄ n

y (t)
�= ∫ 1

0 σ n
y (t, Xt , Yt + θ�Y n

t )dθ

(similarly for b̄n
y , b̄n

z , f̄ n
y , . . ., etc., with appropriate modifications); and

αn
t

�= [−αt u
n
xx +(un

x )
2b̄n

z + f̄ n
z un

x ]�σ n(t, Xt , Yt )+[un
x�bn +� f n](t, Xt , Yt , Zt );

βn
t

�= −αt u
n
xx σ̄

n
y + un

x b̄n
y + (un

x )
2b̄n

z σ̄ n
y + f̄ n

y + f̄ n
z un

x σ̄
n
y ;

γ̄ n
t

�= ūn
x b̄n

z + f̄ n
z .

Note that, by virtue of (4.3) and (4.4),

αn
t ≥ −Cn,1cn,2 − Cn,0cn,1 − C2

n,0

cn,1
cn,2 + 1

n
− nCn,0cn,2,

we can first choose cn,1 and then choose cn,2 such that

Cn,0cn,1 ≤ 1

2n
;

[

Cn,1 + C2
n,0

cn,1
+ nCn,0

]

cn,2 ≤ 1

2n
.

Then αn
t ≥ 0 and thus

d�Y n
t ≤ −[βn

t �Y n
t + γ n

t �Zn
t ]dt + �Zn

t dWt .
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Moreover, since �Y n
T = �gn(XT ) ≥ 0, we get �Y n

t ≥ 0. In particular,

Y n
0 − Y0 = un(0, x) − Y0 = �Y n

0 ≥ 0.

This proves the theorem. �	
Proof of Theorem 4.3 (i) Without loss of generality, let us assume t = 0. Let x be
fixed, and let (bn,0, σ n,0, f n,0, gn,0) be the mollifiers constructed in Theorem 4.4.
We similarly construct mollifiers (bn,1, σ n,1, f n,1, gn,1) that approximate (b, σ, f, g)

from below. Denote, for ϕ = b, σ, f, g and α ∈ [0, 1],

ϕn,α �= (1 − α)ϕn,0 + αϕn,1.

Let (Xn,α, Y n,α, Zn,α) be the unique strong solution to the FBSDE (2.7) with coef-
ficients (bn,α, σ n,α, f n,α, gn,α). By Theorem 4.4, for any y ∈ O(0, x), Y n,1

0 ≤ y ≤
Y n,0

0 . It is readily seen that, for fixed n, Y n,α
0 is continuous in α. Thus one can find

αn such that Y n,αn
0 = y. Let un be the classical solution to the PDE (2.8) with coef-

ficients (bn,αn , σ n,αn , f n,αn , gn,αn ). Then un satisfies the estimates in Theorem 3.1
uniformly, and un(0, x) = y. Possibly along a subsequence, we have un → u for
some u satisfying by the estimates in Theorem 3.1. Now following the same argu-
ments in Theorem 3.2, there exists a semi-strong solution (X, Y, Z) such that (2.9)
holds and |Zt | ≤ Cδ for ant t ≤ T − δ. It is clear that u(0, x) = y, then (X, Y, Z) is
a semi-strong solution at (0, x, y).

(ii) First, since f and g are bounded, thus the component Y of the solution to the
BSDE in (2.7) must be bounded, uniformly for all initial state x . Thus O(0, x) is
bounded. Next, for any y1, y2 ∈ O(0, x) with y1 < y2, and any y ∈ [y1, y2], we have
Y n,1

0 ≤ y1 ≤ y ≤ y2 ≤ Y n,0
0 . Then there exists αn such that Y n,αn

0 = y. Following
the same arguments as in (i) we know y ∈ O(0, x). That is, the set O(0, x) must be
an interval. Finally, let ȳ denote the right end of O(0, x). Since Y n,1

0 ≤ y ≤ Y n,0
0 for

any y ∈ O(0, x), it holds that Y n,1
0 ≤ ȳ ≤ Y n,0

0 . Then the similar arguments imply
that ȳ ∈ O(0, x). Similarly, O(0, x) is also closed at the left end. That is, O(0, x) is
a closed bounded interval, proving the theorem. �	

4.1 The decoupled case

We should note that although the proof of Theorem 4.3 does not depend on (H4)
directly, the assumption is important in proving Theorem 4.4 (actually Theorem 4.1).
On the other hand, it is well known that the comparison result holds for decoupled FBS-
DEs, without assuming (H4). To conclude this section we shall prove some stronger
results in the simplified decoupled case.

We begin by assuming that b, σ are independent of (y, z) and satisfy (H1)–(H3).
For any (t, x), let X be the unique (in law) weak solution to the forward SDE in (2.7)
with Xt = x (see [31] for existence and uniqueness of X ). Then it follows from (H2)
that FW ⊆ FX . We note that under these conditions in general the distribution of XT

may be singular to the Lebesgue measure (see [12] for a counterexample).
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We first prove a comparison result for BSDEs.

Lemma 4.5 (i) Assume (H1)–(H3) and FBSDE (2.7) is decoupled. If f is uni-
formly Lipschitz continuous in (y, z), then FBSDE (2.7) has a semi-strong
solution (X, Y, Z) and it is the unique (in law) weak solution.

(ii) Assume further that ( f̃ , g̃) also satisfy (H1)–(H3) and f̃ ≤ f and g̃ ≤ g. Let
(X, Ỹ , Z̃) be an arbitrary weak solution to FBSDE (2.7) with coefficients (b, σ,

f̃ , g̃) and assume that (X, Y, Z) and (X, Ỹ , Z̃) are on the same probability space
with the same process X (and W ). Then Ỹt ≤ Yt , for all t ∈ [0, T ], P-a.s.

Proof (i) The existence of a semi-strong solution follows from Theorem 3.2, and the
uniqueness of weak solution follows immediately from the comparison result at (ii).

(ii) Let (X, Y, Z) be the semi-strong solution to FBSDE (2.7) with coefficients
(b, σ, f, g) constructed in Theorem 3.2. Denote

�Yt
�= Ỹt − Yt , �Zt

�= Z̃ − Z , � f
�= f̃ − f, �g

�= g̃ − g.

Since f is uniformly Lipschitz continuous in (y, z), there exist bounded processes
α, β such that

�Yt = (�g)(XT ) +
T∫

t

[(� f )(s, Xs, Ỹs, Z̃s) + αs�Ys + βs�Zs]ds −
T∫

t

�ZsdWs .

Since � f ≤ 0,�g ≤ 0, by standard arguments in BSDE literature we obtain that
�Yt ≤ 0, for all t ∈ [0, T ], P-a.s. �	
We emphasize that in the proof of (ii) above we did not assume the uniqueness of
semi-strong solution in (i), so there is no danger of cycle proof here.

Theorem 4.6 Assume (H1)–(H3) and FBSDE (2.7) is decoupled. Then there exist two
functions ū and u satisfying Theorem 3.1 (i)–(iii) such that

(i) O(t, x) = [u(t, x), ū(t, x)].
(ii) Let X be the unique (in law) weak solution to the FSDE in (2.7), and (Ȳ , Z̄) and

(Y, Z) be defined by (2.9) corresponding to ū and u, respectively. Then (X, Ȳ , Z̄)

and (X, Y, Z) are two semi-strong solutions to FBSDE (2.7).
(iii) For any y ∈ O(t, x) and any (X, Y, Z) ∈ O(t, x, y), we have Ys ≤ Ys ≤ Ȳs .
(iv) For any y ∈ O(t, x), there exists a semi-strong solution (X, Y, Z) ∈ O(t, x, y)

such that for any δ > 0, |Zs | ≤ Cδ for s ∈ [t, T − δ].
Proof Let f̄n, ḡn be standard smooth molifiers of f, g such that f̄n ↓ f, ḡn ↓ g.
By Lemma 4.5 (i) there exist ūn satisfying Theorem 3.1 (i)–(iii) and the correspond-
ing semi-strong solution (Ȳ n, Z̄ n). Then by the arguments in Theorem 3.2 we can
assume, without loss of generality, that ūn → ū, ūn

x → ūx for some function ū
satisfying Theorem 3.2 (i)–(iii). By the comparison result in Lemma 4.5 (ii), one
can easily see that ū(t, x) is an upper bound of O(t, x) and Ȳ n is decreasing in n.
Then Ȳ n

t ↓ Ȳt = ū(t, Xt ). Similarly, by using smooth molifiers f
n
, g

n
such that
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f
n

↑ f, g
n

↑ g, we may obtain u and the corresponding (Y , Z). Then following the
arguments in Theorem 4.3 one can easily prove the results. �	

5 Uniqueness of weak solutions

We now turn our attention to the key issue of the paper: the uniqueness of the solution
to FBMP. Again, we shall assume m = 1. In [24] we proved the uniqueness among the
class of solutions whose component Z is bounded in some sense. We aim to remove
this constraint here. Throughout this section we assume (H1)–(H4).

Recall from Sect. 2 the canonical space �
�= C([0, T ]; R

d) × C([0, T ]; R). Let
F = {Ft }t≥0 denote the filtration generated by the canonical processes, which we shall
denote by (x, y). We recall that for any given probability measure P ∈ P(�) and any
t < T , there exists a regular conditional probability distribution (r.c.p.d. for short) of
P given Ft , denoted by P

ω
t , ω ∈ �, in the sequel (see e.g. [31]). Furthermore, we can

choose a version of P
ω
t so that P

ω
t ∈ P(�) for all ω ∈ �. In what follows we will

always take such a version without further specification.
Recall Definition 4.2. Let Ō denote the closure of O (we note that it is not clear to us

whether or not O is Lebesgue measurable!). Clearly, for the viscosity solution u to (4.1)
constructed in Theorem 3.2, we have (t, x, u(t, x)) ∈ O for any (t, x) ∈ [0, T ] × R

d .
Now define two functions on (t, x) ∈ [0, T ] × R

d :

u(t, x)
�= inf{y : (t, x, y) ∈ Ō}; ū(t, x)

�= sup{y : (t, x, y) ∈ Ō}. (5.1)

We remark that, when the FBSDE is decoupled, u, ū in (5.1) are the same as those in
Theorem 4.6.

Lemma 5.1 For some constant C0, it holds

− C0 ≤ u(t, x) ≤ u(t, x) ≤ ū(t, x) ≤ C0; u(T, x) = ū(T, x) = g(x). (5.2)

Proof First, by Theorem 4.3 (ii) where the bound is independent of (t, x), we know
u(t, x), ū(t, x) are bounded.

Second, for any (T, x, y) ∈ Ō, assume (tn, xn, yn) ∈ O and (tn, xn, yn) →
(T, x, y). Let (P n, Zn) be a weak solution at (tn, xn, yn) and W n be the corresponding
P

n-Brownian motion. Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xT = xn +
T∫

tn

b(s, xs, ys, Zs)ds +
T∫

tn

σ(s, xs, ys)dW n
s ;

yn = g(xT ) +
T∫

tn

f (s, xs, ys, Zs)ds −
T∫

tn

ZsdW n
s ;

P
n-a.s.
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Thus, applying standard arguments we have

|yn − g(xn)|2 =
∣
∣
∣
∣
∣
∣
EP

n

⎧
⎨

⎩
g(xT ) − g(xn) +

T∫

tn

f (s, xs, ys, Zs)ds

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

2

≤ 2EP
n

⎧
⎪⎨

⎪⎩
|g(xT ) − g(xn)|2 +

∣
∣
∣
∣
∣
∣

T∫

tn

f (s, xs, ys, Zs)ds

∣
∣
∣
∣
∣
∣

2
⎫
⎪⎬

⎪⎭

≤ C EP
n

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣
g

⎛

⎝xn +
T∫

tn

b(s, xs, ys, Zs)ds +
T∫

tn

σ(s, xs, ys)dW n
s

⎞

⎠

− g(xn)|2
⎫
⎬

⎭
+ C |T − tn|2.

Now note that by (H1) g is bounded and uniformly continuous, a standard argu-
ment using Chebyshev’s inequality and the boundedness of σ , one shows easily that
limn→∞ |yn − g(xn)| = 0. To wit, y = g(x). �	

Moreover, since Ō is a closed set, we have (t, x, u(t, x))∈Ō and (t, x, ū(t, x))∈Ō.
By the same arguments as in [24], we have

Lemma 5.2 u is lower semi-continuous and ū is upper semi-continuous.

Our main result of this section is the following theorem.

Theorem 5.3 Assume (H1)–(H4), and b and f are uniformly continuous in t . Then,
u and ū are viscosity supersolution and subsolution, respectively, of the PDE (4.1).

Remark 5.4 We note that the uniform continuity of b and f in t is merely for tech-
nical reasons due to our methodology. We believe that in general one can extend the
result by considering the semi-continuous Hamiltonian (cf. e.g. [4,15]) and arguing,
for example, that u is a viscosity supersolution of ut + h(t, x, u, ux , uxx ) = 0 and ū
is a viscosity subsolution of ut + h̄(t, x, u, ux , uxx ) = 0, where, with h being defined
in (4.2),

h(t, x, y, z, γ )
�= lim

t ′→t
h(t ′, x, y, z, γ ), h̄(t, x, y, z, γ )

�= lim
t ′→t

h(t ′, x, y, z, γ ).

But this would require that some of the arguments be fine tuned. Due to the length of
the paper, we do not pursue such a generality here. �	
Proof of Theorem 5.3 Without loss of generality we only check u. The arguments are
similar to those in [24]. For any (t0, x0) ∈ [0, T ) × R

d , let ϕ ∈ C1,2([0, T ] × R
d) be
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such that y0
�= u(t0, x0) = ϕ(t0, x0) and u(t, x) ≥ ϕ(t, x), for all (t, x) ∈ [0, T ]×R

d .
We shall prove that

[Lϕ](t0, x0, ϕ(t0, x0)) ≤ 0. (5.3)

where, recalling (4.2) again,

[Lϕ](t, x, y)
�= ϕt (t, x) + h(t, x, y, ϕx (t, x), ϕxx (t, x)).

To prove (5.3), let us first recall (5.2). Without loss of generality we may assume
that ϕ(t, x) = −C0 − 1 for x outside of a compact set. Then ϕ, ϕt , ϕx , and ϕxx are all
bounded and uniformly continuous. Next we fix δ0 > 0 such that t0 < T − δ0. Note
that (t0, x0, y0) = (t0, x0, u(t0, x0)) ∈ Ō, so for each n there exists a (tn, xn, yn) ∈ O
such that

|tn − t0| + |xn − x0| + |yn − y0| ≤ 1

n
. (5.4)

Without loss of generality we assume tn < T − δ0. Applying Theorem 4.3, we can
find a weak solution at (tn, xn, yn), denoted by (P n, Zn), such that

|Zn
t | ≤ Cδ0 , ∀t ∈ [tn, T − δ0]. (5.5)

Let W n denote the corresponding P
n-Brownian motion. For t ∈ (tn, T ), it is readily

seen that (P
n,ω
t , Zn) is a weak solution at (t, xt , yt ), P

n-a.s. ω ∈ �. In other words,
we must have (t, xt , yt ) ∈ O, P

n-a.s, and consequently yt ≥ u(t, xt ) ≥ ϕ(t, xt ),
P

n-a.s. , ∀t ≥ tn .
Now let us denote

�Yt
�= ϕ(t, xt ) − yt ; �Zn

t
�= ϕx (t, xt )σ (t, xt , yt ) − Zn

t .

Also, for any ε > 0, let bε, fε be smooth mollifiers of b, f such that

‖bε − b‖∞ ≤ ε; ‖ fε − f ‖∞ ≤ ε; ‖∂zbε‖∞ ≤ C

ε
; ‖∂z fε‖∞ ≤ C

ε
.

Denote

α
n,ε
t

�= ϕx (t, xt )[b(t, xt , yt , Zn
t ) − b(t, xt , yt , ϕxσ(t, xt , yt ))]

−ϕx (t, xt )[bε(t, xt , yt , Zn
t ) − bε(t, xt , yt , ϕxσ(t, xt , yt ))]

+[ f (t, xt , yt , Zn
t ) − f (t, xt , yt , ϕxσ(t, xt , yt ))]

−[ fε(t, xt , yt , Zn
t ) − fε(t, xt , yt , ϕxσ(t, xt , yt ))];

β
n,ε
t

�=
1∫

0

[ϕx (t, xt )∂zbε(t, xt , yt , Zn
t + θ�Zn

t ) + ∂z fε(t, xt , yt , Zn
t + θ�Zn

t )]dθ.
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Then, it holds that

|αn,ε
t | ≤ Cε, |βn,ε

t | ≤ C

ε
; (5.6)

where C > 0 may depend on ϕ. Furthermore, applying Itô’s formula and using the
definition of Lϕ, αn,ε, and βn,ε we have

d�Yt=
[

ϕt + ϕx b(t, xt , yt , Zn
t ) + 1

2
tr (σσ ∗(t, xt , yt )ϕxx ) + f (t, xt , yt , Zn

t )

]

dt

+�Zn
t dW n

t

=[Lϕ](t, xt , yt )dt+ϕx (t, xt )[b(t, xt , yt , Zn
t )−b(t, xt , yt , ϕxσ(t, xt , yt ))]dt

+[ f (t, xt , yt , Zn
t ) − f (t, xt , yt , ϕxσ(t, xt , yt ))]dt + �Zn

t dW n
t

=[Lϕ](t, xt , yt )dt + α
n,ε
t dt − 〈 β

n,ε
t ,�Zn

t 〉 dt + �Zn
t dW n

t .

Now let us denote

�
n,ε
t

�= exp

⎧
⎨

⎩

t∫

tn

βn,ε
s dW n

s − 1

2

t∫

tn

|βn,ε
s |2ds

⎫
⎬

⎭
, t ∈ [tn, T ]

One easily checks that, by denoting En �= EP
n
,

�
n,ε
tn = 1, �

n,ε
t > 0, En{�n,ε

t } = 1, and En{|�n,ε
t |2} ≤ Cε, ∀t ≥ tn . (5.7)

Moreover, applying Itô’s formula again we have, for t ∈ [tn, T ],

d(�
n,ε
t �Yt ) = �

n,ε
t [Lϕ]dt + �

n,ε
t α

n,ε
t dt + �

n,ε
t [�Zn

t + β
n,ε
t �Yt ]dW n

t ; (5.8)

Now, for n large and for any δ ∈ ( 1
n , T − δ0 − t0), choose t

�= t0 + δ ∈ (tn, T − δ0]
(see (5.4)), we deduce from (5.8) that

0 ≥ En
{
�

n,ε
t0+δ�Yt0+δ

}
= En

⎧
⎨

⎩
�Ytn +

t0+δ∫

tn

�
n,ε
t {[Lϕ](t, xt , yt ) + α

n,ε
t }dt

⎫
⎬

⎭
.

Therefore, using (5.6) and (5.7) we get

En

⎧
⎨

⎩

t0+δ∫

tn

�
n,ε
t [Lϕ](t, xt , yt )dt

⎫
⎬

⎭
≤ −En

⎧
⎨

⎩
�Ytn +

t0+δ∫

tn

�
n,ε
t α

n,ε
t dt

⎫
⎬

⎭

≤ En

⎧
⎨

⎩
|yn − y0| + |ϕ(t0, x0) − ϕ(tn, xn)| +

t0+δ∫

tn

�
n,ε
t |αn,ε

t |dt

⎫
⎬

⎭
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≤ C En

⎧
⎨

⎩

1

n
+ ε

t0+δ∫

tn

�
n,ε
t dt

⎫
⎬

⎭
≤ C

[

ε + 1

nδ − 1

]

×(t0 + δ − tn), (5.9)

By (H1) and (H3), Lϕ is uniformly continuous in (t, x, y). Let ρϕ denote the modulus
of continuity of Lϕ, and write

�n[Lϕ](t, xt , yt ) = Lϕ(t, xt , yt ) − Lϕ(tn, xn, yn).

We see that (5.9) yields

Lϕ(t0, x0, y0) ≤ Lϕ(tn, xn, yn) + ρϕ

(
1

n

)

= En

⎧
⎨

⎩

1

t0 + δ − tn

t0+δ∫

tn

�
n,ε
t Lϕ(tn, xn, yn)dt

⎫
⎬

⎭
+ ρϕ

(
1

n

)

(5.10)

= En

⎧
⎨

⎩

1

t0 + δ − tn

t0+δ∫

tn

�
n,ε
t {[Lϕ](t, xt , yt )−�n[Lϕ](t, xt , yt )}dt

⎫
⎬

⎭
+ρϕ

(
1

n

)

≤ Cε + C

nδ − 1
+ ρϕ

(
1

n

)

+ 1

tδ0,n

En

⎧
⎨

⎩

t0+δ∫

tn

|�n,ε
t �n[Lϕ](t, xt , yt )|dt

⎫
⎬

⎭
,

where tδ0,n
�= t0 + δ − tn . To estimate the last term on the right hand side above we

first apply Cauchy-Schwartz inequality and the estimate (5.7) to get

En

t0+δ∫

tn

|�n,ε
t �n[Lϕ](t, xt , yt )|dt ≤Cε

{

sup
tn≤t≤t0+δ

En{|�n[Lϕ](t, xt , yt )|2}
} 1

2

tδ0,n .

(5.11)

Note that, for any η > 0 and t ∈ [tn, t0 + δ], we apply the Chebychev inequality to
get

En
{
|�n[Lϕ](t, xt , yt )|2

}

≤ Cρ2
ϕ(tδ0,n) + Cρ2

ϕ(η) + C Pn (|xt − xn| + |yt − yn| ≥ η)

≤ C

[

ρ2
ϕ(tδ0,n) + ρ2

ϕ(η) + 1

η2 En
{
|xt − xn|2 + |yt − yn|2

}]
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≤ C

⎡

⎢
⎣ρ2

ϕ(tδ0,n) + ρ2
ϕ(η) + 1

η2 En

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣
∣
∣

t∫

tn

b(s, xs, ys, Zn
s )ds

∣
∣
∣
∣
∣
∣

2

+
t∫

tn

tr (σσ ∗(s, xs, ys))ds +
∣
∣
∣
∣
∣
∣

t∫

tn

f (s, xs, ys, Zn
s )ds

∣
∣
∣
∣
∣
∣

2

+
t∫

tn

|Zn
s |2ds

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

≤ C

[

ρ2
ϕ(tδ0,n) + ρ2

ϕ(η) + 1

η2 [C + C2
δ0

]tδ0,n

]

, (5.12)

thanks to (5.5). Combining (5.11) and (5.12), we see that (5.10) now becomes

Lϕ(t0, x0, y0) ≤ Cε + C

nδ − 1
+ ρϕ

(
1

n

)

+ Cε,δ0

⎡

⎣ρϕ(tδ0,n) + ρϕ(η) +
√

tδ0,n

η

⎤

⎦ . (5.13)

Now fix ε and η, choose δ
�= 1√

n
, and let n → ∞.

Lϕ(t0, x0, y0) ≤ Cε + Cε,δ0ρϕ(η).

Finally, letting η → 0 and then ε → 0, we obtain (5.3). That is, u is a viscosity
supersolution, proving the theorem. �	

We now give the definition of the uniqueness for FBMP.

Definition 5.5 We say that the forward–backward martingale problem (FBMP) of
(2.7) has unique solution if (P i , Zi ), i = 1, 2 are two solutions to the FBMP such that
P

i (x0 = x) = 1, i = 1, 2, then P
1 = P

2, and Z1 = Z2, dt ⊗dP
1 (= dt ⊗dP

2)-a.e.

We have the following result.

Theorem 5.6 Assume (H1)–(H4), b and f are uniformly continuous in t , and the
comparison theorem for viscosity solution to the PDE (4.1) holds true, then the FBMP
has a unique solution and consequently the uniqueness in law of weak solutions to
FBSDE (2.7) holds true.

Proof Since the proof is very similar to that of [24, Theorem 5.6], we shall give only
a sketch, and point out the differences.

Suppose that (P i , Zi ), i = 1, 2, are two weak solutions at (0, x, y1) and (0, x, y2),
respectively. Following exactly the same arguments as in [24, Theorem 5.6], one
shows that yt = u(t, xt ), for all t ∈ [0, T ], P

i -a.s., i = 1, 2, thanks to Theorem 5.3.
In particular, this implies that y1 = y2.
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Note that, unlike [24], the coefficient b is not 0 in the current case. We therefore
modify the arguments as follows. First, for fixed i = 1, 2, denote

W i
t

�=
t∫

0

σ−1(s, xs, ys)dxs −
t∫

0

θ i
s ds, t ∈ [0, T ], P

i -a.s.,

where θ i
s

�= [σ−1b](s, xs, ys, Zi
s). By Definition 2.7-(i), W i is a P

i -Brownian motion.
We next define a new probability measure:

dP̂
i

dP i
�= exp

⎧
⎨

⎩
−

T∫

0

〈 θ i
s , dW i

s 〉 − 1

2

T∫

0

|θ i
s |2ds

⎫
⎬

⎭
.

Then by Girsanov Theorem we know that P̂
i

is a probability measure equivalent to

P
i (hence yt = u(t, xt ), P̂

i
-a.s.), and the process

Ŵ i
t

�= W i
t +

t∫

0

θ i
s ds, t ∈ [0, T ], P

i -a.s.,

is a P̂
i
-Brownian motion. Further, note that

dxt = σ(t, xt , yt )[dW i
t + θ i

t dt] = σ(t, xt , u(t, xt ))dŴ i
t , P̂

i
-a.s.

That is, (Ŵ i , x, P̂
i
), i = 1, 2, are weak solutions to the forward SDE (2.10) with

b ≡ 0. It then follows from the uniqueness of weak solution to a forward SDE (see,

e.g. [31]) that the P̂
1 ◦ (Ŵ 1, x)−1 = P̂

2 ◦ (Ŵ 2, x)−1 (here P ◦ X−1 denotes the

distribution of X under P ). Recall that yt = u(t, xt ), P̂
i
-a.s., i = 1, 2, this in turn

leads to that P̂
1 ◦ (Ŵ 1, x, y)−1 = P̂

2 ◦ (Ŵ 2, x, y)−1. In particular, since (x, y) are

the canonical process, we have P̂
1 = P̂

2
and Ŵ 1 = Ŵ 2, P̂

1
-a.s. and P̂

2
-a.s.

Now by Definition 2.7-(iii), as the density of quadratic covariation 〈 y, W i 〉 =
〈 y, Ŵ i 〉 under P̂

i
, i = 1, 2, we have Z1 = Z2, dt ⊗ dP̂

1
(= dt ⊗ dP̂

2
)-a.e. But by

definition of θ i ’s, this means that θ1 = θ2, dt ⊗ dP̂
1

(= dt ⊗ dP̂
2
)-a.e. Moreover,

since for each i ,

dP
i

dP̂
i

�= exp

⎧
⎨

⎩

T∫

0

〈 θ i
s , dW i

s 〉 +1

2

T∫

0

|θ i
s |2ds

⎫
⎬

⎭
=exp

⎧
⎨

⎩

T∫

0

〈 θ i
s , dŴ i

s 〉− 1

2

T∫

0

|θ i
s |2ds

⎫
⎬

⎭
,

we conclude that P
1 = P

2. Finally, by the equivalence of P̂
i

and P
i again, we have

Z1 = Z2, dt ⊗ dP
1 (= dt ⊗ dP

2)-a.e. �	

123



496 J. Ma, J. Zhang

Remark 5.7 We should note that under the assumptions of Theorem 5.6, the unique
weak solution of FBSDE (2.7) is actually semi-strong, thanks to Theorem 3.2. More-
over, if the forward SDE (2.10) has a strong solution (e.g., if b is independent of Z ),
then the unique weak solution is actually strong. �	
Remark 5.8 As it was mentioned in [24, Remark 5.7], the comparison principle of
viscosity solutions is in general a rather delicate issue, and should be checked case by
case. In the FBSDE case the degree of difficulty increases when the coupling nature
of the coefficients becomes stronger. For instance, when the diffusion coefficient σ

depends on the backward component Z , there have been only very few results in the
literature. For interested reader we refer to the standard references [8,16], and the
recent paper [3] for some general discussions of the comparison principles for fully
nonlinear PDEs. Since it is not the main purpose of this paper to address this issue, we
assumed the comparison principle in Theorem 5.6 to simplify the discussion. We note
that the examples in [24, Sect. 5] regarding the cases where the comparison theorem
holds for the viscosity solutions of (2.8) are still valid in the current case. �	

6 Proofs for the PDE estimates

In this section we shall complete several proofs in the previous sections by establishing
some key a priori estimates for the solutions to (2.8). We should note that most of the
arguments in these proofs are more or less standard in the PDE literature, but we have
not been able to find the exact reference for the desired results. We therefore provide
the detailed proofs for the sake of completeness.

We start with the Hölder estimates, which is standard in the literature, and can be
found in, e.g. [10].

Lemma 6.1 Assume (H1) and (H2), and the coefficients are all smooth with bounded
derivatives. Let u denote the unique classical solution to PDE (2.8).

(i) For any δ > 0, there exist constants α ∈ (0, 1) and Cδ > 0, depending only
on T, K , the dimensions d, m, and Cδ depending on δ as well, but not on the
derivatives of the coefficients, such that, for any t1, t2 ∈ [0, T − δ], x1, x2 ∈ R

d ,

|u(t1, x1) − u(t2, x2)| ≤ Cδ,α[|t1 − t2| α
2 + |x1 − x2|α]. (6.1)

(ii) Moreover, if g is Hölder-α0 continuous for some α0 ∈ (0, 1), then there exists
α ∈ (0, α0) such that (6.1) holds for δ = 0, with the constant C0,α may depend
on the Hölder constant of g as well.

Next, we state a result regarding the a priori estimates for the following (linear)
parabolic PDE with m = 1:

{
ut + 1

2 tr {uxxσ(t, x)σ ∗(t, x)} + ux b(t, x) + f (t, x) = 0;
u(T, x) = g(x).

(6.2)
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This result may have several variations, but we find that the following form, as the
direct consequences of Lieberman [20, Theorem 7.22, p. 175 and Theorem 7.30,
p.181], suits our needs the best.

Lemma 6.2 Assume that the coefficients b, σ , f , g in (6.2) satisfy (H1), (H2), that σ

is uniformly continuous in (t, x, y), and that all the coefficients are smooth, and with
bounded derivatives. Let u denote the unique classical solution to (6.2).

(i) For any δ > 0, there exists a constant Cδ , depending only on T, K , δ, the
dimension d, and the uniform continuity of σ , but not on the derivatives of the
coefficients, such that for any bounded domain D ⊂ R

d and any p ≥ 2,

T −δ∫

0

∫

D

[|ux (t, x)|p + |uxx (t, x)|p]dxdt ≤ C p
δ |D|, (6.3)

where |D| denotes the Lebesgue measure of D.
(ii) Furthermore, if in addition g ∈ C2

b (Rd), then the estimate (6.3) holds for δ = 0.
But in this case the constant C0 may depend on the bounds ‖gx‖∞ and ‖gxx‖∞
as well.

We shall prove Theorems 3.1 and 4.1 in the following two subsections, respectively.

6.1 Proof of Theorem 3.1

We first prove (i). Since all the coefficients are assumed to be bounded and smooth,
by the Four Step Scheme (cf. [23]) the FBSDE (2.7) has a unique strong solution
(X, Y, Z). Note that

u(0, x) = Y0 = E

⎧
⎨

⎩
g(XT ) +

T∫

0

f (t, Xt , Yt , Zt )dt

⎫
⎬

⎭
.

Then by (H1) we immediately conclude that |u(0, x)| ≤ C , as well as |u(t, x)| ≤ C ,
∀(t, x).

To prove (ii)–(iv), we first make some preparations. Denote

b̄(t, x)
�= b(t, x, u(t, x), ux (t, x)σ (t, x, u(t, x))); σ̄ (t, x)

�= σ(t, x, u(t, x));
f̄ i (t, x)

�= f i (t, x, u(t, x), ux (t, x)σ (t, x, u(t, x))), i = 1, . . . , m.

(6.4)

Then ui is the solution to the following linear PDE:

⎧
⎨

⎩

ui
t + 1

2
tr {ui

xx σ̄ (t, x)σ̄ ∗(t, x)} + ui
x b̄(t, x) + f̄ (t, x) = 0;

ui (T, x) = gi (x).
i = 1, . . . , m. (6.5)
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Since we shall prove the theorem for each i , without loss of generality we may assume
m = 1 for simplicity. Denote

ā(t, x)
�= σ̄ σ̄ ∗(t, x); �

t1
t2

�=
t2∫

t1

ā(s, 0)ds; p(�, x)
�= 1
√

(2π)d det(�)
e− 1

2 x∗�−1x .

(6.6)

Then

px (�, x) = −p(�, x)x∗�−1. (6.7)

Let η ∈ C∞(Rd) be such that η(x) = 1 for |x | ≤ 1 and η(x) = 0 for |x | > 2. Denote

v(t, x)
�= u(t, x)η(x). Then

vt (t, x) + 1

2
tr (vxx (t, x)ā(t, 0)) + f̃ (t, x) = 0;

where

f̃ (t, x)
�= 1

2
tr (uxx (t, x)[ā(t, x) − ā(t, 0)]) η(x) − tr (ux (t, x)ηx (x)ā(t, 0))

−1

2
tr (u(t, x)ηxx (x)ā(t, 0)) − ux (t, x)η(x)b̄(t, x) + f̄ (t, x)η(x).

It then follows from (i) of this theorem that

| f̃ (t, y)| ≤ C[|uxx (t, y)| + |ux (t, y)| + 1]. (6.8)

Furthermore, for |x | < 1 and 0 ≤ t1 < t2 ≤ T , by standard arguments we have two
representation formulas for u:

u(t1, x) = v(t1, x) =
∫

Rd

v(t2, y)p(�
t1
t2 , y − x)dy +

t2∫

t1

∫

Rd

f̃ (t, y)p(�
t1
t , y − x)dydt

=
∫

Rd

v(t2, y + x)p(�
t1
t2 , y)dy +

t2∫

t1

∫

Rd

f̃ (t, y)p(�
t1
t , y − x)dydt.
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Then

ux (t1, x) =
∫

Rd

v(t2, y)p(�
t1
t2 , y − x)(y − x)∗[�t1

t2 ]−1dy

+
t2∫

t1

∫

Rd

f̃ (t, y)p(�
t1
t , y − x)(y − x)∗[�t1

t ]−1dydt; (6.9)

=
∫

Rd

vx (t2, y + x)p(�
t1
t2 , y)dy

+
t2∫

t1

∫

Rd

f̃ (t, y)p(�
t1
t , y − x)(y − x)∗[�t1

t ]−1dydt. (6.10)

We are now ready to prove (ii)–(iv). Fix δ > 0. For notational simplicity, denote

�t
�= �0

t ; Tδ
�= T − δ; Dδ

�= [0, Tδ] × R
d .

(ii) Without loss of generality, we prove the estimate only at point (0, 0). Set
t1 = 0, t2 = Tδ, x = 0 in (6.9), we get

ux (0, 0) =
∫

Rd

v(Tδ, y)p(�Tδ , y)y∗�−1
Tδ

dy +
∫

Dδ

f̃ (t, y)p(�t , y)y∗�−1
t dydt.

For p ≥ 2 (to be specified later), let q be its conjugate. Since |v(t, x)| ≤ C , we have

|ux (0, 0)| ≤ C√
Tδ

+ C

⎡

⎢
⎣

∫

Dδ

| f̃ (t, y)|pdydt

⎤

⎥
⎦

1
p

×
⎡

⎢
⎣

∫

Dδ

p(�t , y)q |y∗�−1
t |qdydt

⎤

⎥
⎦

1
q

. (6.11)

Set D
�= B2(0), then f̃ (t, y) = 0 for y /∈ D. By Lemma 6.1 (i), σ̄ is uniformly

continuous on
[
0, T − δ

2

]× R
d . By considering δ

2 instead of δ and recalling (6.8), we
can apply Lemma 6.2 (i) on

[
0, T − δ

2

]
to get

∫

Dδ

| f̃ (t, y)|pdydt ≤ C

Tδ∫

0

∫

D

[|uxx |p + |ux |p + 1]dydt ≤ Cδ. (6.12)
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Moreover, by changing variable in an obvious way, we have

∫

Dδ

p(�t , y)q |y∗�−1
t |qdydt ≤

∫

Dδ

1√
det(�t )q

e− q
2 |y|2 |y∗�−1/2

t |q√det(�t )dydt

≤ Cδ

Tδ∫

0

t−
dq+q−d

2 dt. (6.13)

We can now choose p > d + 2, so that q < d+2
d+1 , and that

|ux (0, 0)| ≤ C√
Tδ

+ Cδ

[
(Tδ)

1− dq+q−d
2

] 1
q

< ∞.

This proves the estimate at (0, 0).
(iii) We first prove the Hölder continuity in x . Again, without loss of generality, we

shall only estimate |ux (0, x) − ux (0, 0)| for |x | < 1. Recall (6.9). Following similar
arguments as in (ii) one can easily show that, for δ < T/2,

|ux (0, x) − ux (0, 0)| ≤ C
∫

Rd

|v(Tδ, y)|
∣
∣
∣p(�Tδ , y − x)(y − x)∗�−1

Tδ

− p(�Tδ , y)y∗�−1
Tδ

∣
∣
∣ dy

+C
∫

Dδ

| f̃ (t, y)|
∣
∣
∣p(�t , y − x)(y − x)∗�−1

t

− p(�t , y)y∗�−1
t

∣
∣
∣ dydt

≤ C |x | + Cδ

⎡

⎢
⎣

∫

Dδ

∣
∣
∣p(�t , y − x)(y − x)∗�−1

t

− p(�t , y)y∗�−1
t

∣
∣
∣
q

dydt

⎤

⎥
⎦

1
q

.

123



On weak solutions of forward–backward SDEs 501

For a constant λ > 0 which will be specified later, similar to (6.13) we get

|ux (0, x) − ux (0, 0)|q

≤ C |x |q + Cδ

λ∫

0

∫

Rd

[
|p(�t , y − x)(y − x)∗�−1

t |q + |p(�t , y)y∗�−1
t |q

]
dydt

+Cδ

Tδ∫

λ

∫

Rd

∣
∣
∣p(�t , y − x)(y − x)∗�−1

t − p(�t , y)y∗�−1
t

∣
∣
∣
q

dydt

≤ C |x |q + Cδλ
1− dq+q−d

2

+C

Tδ∫

λ

∫

Rd

∣
∣
∣
∣
∣
∣

1∫

0

p(�t , y − θx)[x∗�−1
t (y − θx)(y − θx)∗ − x∗]�−1

t dθ

∣
∣
∣
∣
∣
∣

q

dydt

≤ C |x |q + Cδλ
1− dq+q−d

2 + Cδ

Tδ∫

λ

t−
dq
2 −q+ d

2 dt |x |q

≤ C |x |q + Cδλ
1− dq+q−d

2 + Cδλ
1− dq

2 −q+ d
2 |x |q .

Here we note that − dq
2 − q + d

2 < −1, thanks to the fact that q > 1. Choose λ to
minimize the right side of above, that is, λ = |x |2, then we get

|ux (0, x) − ux (0, 0)| ≤ C |x | + Cδ|x | 2+d
q −(1+d)

.

Now for any α < 1, choose p = 2+d
1−α

. Thus q = 2+d
1+d+α

or 2+d
q − (1 + d) = α. Then,

|ux (0, x) − ux (0, 0)| ≤ C |x | + Cδ|x |α ≤ Cδ|x |α,

proving the Hölder continuity in x . To show the Hölder continuity in t , we again
assume without loss of generality that t1 = 0, t2 = t , and x1 = x2 = 0. Note that

∫

Rd

p(�t , y)y∗�−1
t dy = [0, . . . , 0],

∫

Rd

p(�t , y)y∗�−1
t ydy = 1.
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By (6.9) again we have

ux (0, 0) =
∫

Rd

v(t, y)p(�t , y)y∗�−1
t dy +

t∫

0

∫

Rd

f̃ (s, y)p(�s, y)y∗�−1
s dyds

=
∫

Rd

[v(t, y) − v(t, 0)]p(�t , y)y∗�−1
t dy

+
t∫

0

∫

Rd

f̃ (s, y)p(�s, y)y∗�−1
s dyds

=
∫

Rd

1∫

0

vx (t, θy)dθyp(�t , y)y∗�−1
t dy+

t∫

0

∫

Rd

f̃ (s, y)p(�s, y)y∗�−1
s dyds.

Then

ux (0, 0) − ux (t, 0) =
∫

Rd

1∫

0

[vx (t, θy) − vx (t, 0)]dθyp(�t , y)y∗�−1
t dy

+
t∫

0

∫

Rd

f̃ (s, y)p(�s, y)y∗�−1
s dyds.

Therefore, for any α < 1 and q = 2+d
1+d+α

, we get

|ux (0, 0) − ux (t, 0)| ≤ C
∫

Rd

1∫

0

|θy|αdθ |y|p(�t , y)|y∗�−1
t |dy + Ct

1
q − dq+q−d

2q

≤ Ct
α
2 .

(iv) We first estimate ux (t, x). Again we will do it only at (0, 0). Set t1 = 0,

t2 = T, x = 0 in (6.10), we get

ux (0, 0) =
∫

Rd

gx (y)p(�T , y)dy +
T∫

0

∫

Rd

f̃ (t, y)p(�t , y)y∗�−1
t dydt.

By Lemma 6.2 (ii) and following similar arguments in (ii) of this proof one can easily
show that |ux (0, 0)| ≤ C0. Similarly we can prove |ux (t, x)| ≤ C0.
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By using (6.10) and Lemma 6.2 (ii), similar to (iii) of this proof we can prove, for
any |x | ≤ 1,

|ux (0, x) − ux (0, 0)| ≤ Cα|x |α.

Similar to (iii) we can prove the rest of the estimates, completing the proof. �	

6.2 Proof of Theorem 4.1

We first recall (6.4)–(6.6) and write

ui
t (t, x) + 1

2
tr
(

ui
xx (t, x)ā(t, 0)

)
+ f̂ i (t, x) = 0;

where

f̂ i (t, x)
�= 1

2
tr
(

ui
xx (t, x)[ā(t, x) − ā(t, 0)]

)
+ ui

x (t, x)b̄(t, x) + f̄ i (t, x).

Then ui can be solved explicitly in the following form:

ui (t, x) =
∫

Rd

gi (y + x)p(�t
T , y)dy +

T∫

t

∫

Rd

f̂ i (s, y)p(�t
s, y − x)dyds.

Differentiating the equation above we obtain that

ui
x (t, x) =

∫

Rd

gi
x (y + x)p(�t

T , y)dy

+
T∫

t

∫

Rd

f̂ i (s, y)p(�t
s, y − x)(y − x)∗[�t

s]−1dyds;

ui
xx (t, x) =

∫

Rd

gi
xx (y + x)p(�t

T , y)dy

+
T∫

t

∫

Rd

f̂ i (s, y)p(�t
s, y − x)[�t

s]−1[(y−x)(y−x)∗[�t
s]−1 − Id ]dyds.
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Setting x = 0 we get

ui
xx (t, 0) =

∫

Rd

gi
xx (y)p(�t

T , y)dy

+
T∫

t

∫

Rd

[ f̂ i (s, y) − f̂ i (s, 0)]p(�t
s, y)[�t

s]−1[yy∗[�t
s]−1 − Id ]dyds.

(6.14)

In the above we have used the fact that
∫

Rd p(�t
s, y)[yy∗[�t

s]−1 − Id ]dy = 0. Next,
denote

At
�= sup

i
sup

x∈Rd ,s∈[t,T ]
|ui

xx (s, x)|. (6.15)

For t ≤ s ≤ T , recalling Theorem 3.1 (iv) we have

| f̂ i (s, y) − f̂ i (s, 0)| ≤ 1

2

∣
∣
∣tr
(

ui
xx (s, y)[ā(s, y) − ā(s, 0)]

)∣
∣
∣

+|ui
x (s, y)b̄(s, y) − ui

x (s, 0)b̄(s, 0)| + | f̄ i (s, y)− f̄ i (s, 0)|
≤ C At |ā(s, y) − ā(s, 0)| + C At |y| + C |b̄(s, y) − b̄(s, 0)|

+| f̄ i (s, y) − f̄ i (s, 0)|. (6.16)

Since |σ | ≤ K , without loss of generality, we may assume ρ(y) = 2K when |y| ≥ 1.
Then for α < 1, by Lemma 3.1 (iv) again, we have

|ā(s, y) − ā(s, 0)| = |σσ ∗(s, y, u(s, y)) − σσ ∗(s, 0, u(s, 0))|
≤ Cρ(|y| + |u(s, y) − u(s, 0)|) ≤ Cρ(C[|y| + |y|α]) ≤ Cρ(C |y|α);

|b̄(s, y) − b̄(s, 0)|
= |b(s, y, u(s, y), ux (s, y)σ (s, y, u(s, y)))

−b(s, 0, u(s, 0), ux (s, 0)σ (s, 0, u(s, 0)))|
≤ C

[|y| + |y|α + At |y| + ρ(C |y|α)
] ;

| f̄ i (s, y) − f̄ i (s, 0)|
= | f i (s, y, u(s, y), ux (s, y)σ (s, y, u(s, y)))

− f i (s, 0, u(s, 0), ux (s, 0)σ (s, 0, u(s, 0)))|
≤ C

[|y| + |y|α + At |y| + ρ(C |y|α)
]
.
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Plug into (6.16) we have

| f̂ i (s, y) − f̂ i (s, 0)| ≤ C
[|y| + |y|α + ρ(C |y|α)

] [1 + At ].

Then by (6.14) we get

|ui
xx (t, 0)| ≤ ‖gxx‖∞ + C[1 + At ]

T∫

t

∫

Rd

p(�t
s, y)[|[�t

s]−1 yy∗[�t
s]−1| + |[�t

s]−1|]

× [|y| + |y|α + ρ(C |y|α)
]

dyds.

Applying a change of variable y = [�t
s]

1
2 y′, we get

|ui
xx (t, 0)| ≤ ‖gxx‖∞ + C[1 + At ]

T∫

t

∫

Rd

e− 1
2 |y|2 1 + |y|2

s − t

×
[√

s − t |y| + (s − t)
α
2 |y|α + ρ(C(s − t)

α
2 |y|α)

]
dyds

≤ ‖gxx‖∞ + C[1 + At ]
⎡

⎣(T − t)
α
2

+
T∫

t

∫

Rd

e− 1
2 |y|2 (1 + |y|)2

s − t
ρ(C1(s − t)

α
2 (1 + |y|)α)

⎤

⎥
⎦ dyds.

Now change variable s = t +
[

s′
C1(1+|y|)α

] 2
α

we get

|ui
xx (t, 0)| ≤ ‖gxx‖∞ + C2[1 + At ]

×

⎡

⎢
⎢
⎣(T − t)

α
2 +

∫

Rd

e− 1
2 |y|2 dy

C1(T −t)
α
2 (1+|y|)α∫

0

ρ(s)

s
ds

⎤

⎥
⎥
⎦ .

By (H4), we can choose δ0 > 0 such that

δ
α
2

0 ≤ 1

4C2
;
∫

Rd

e− 1
2 |y|2 dy

C1δ
α
2

0 (1+|y|)α∫

0

ρ(s)

s
ds ≤ 1

4C2
. (6.17)
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Then for T − δ0 ≤ t ≤ T , we have |ui
xx (t, 0)| ≤ ‖gxx‖∞ + 1

2 [1 + At ]. In general,
we can prove similarly that

sup
x

|ui
xx (t, x)| ≤ ‖gxx‖∞ + 1

2
[1 + At ].

Moreover, since At is decreasing in t , we see that At ≤ ‖gxx‖∞ + 1
2 [1 + At ]. That is,

At ≤ 2‖gxx‖∞ + 1, ∀t ∈ [T − δ0, T ].

In particular, AT −δ0 ≤ 2‖gxx‖∞ + 1. We note that δ0 is a constant which does not
depend on g. Then following the same arguments over [T − 2δ0, T − δ0] we get

AT −2δ0 ≤ 2AT −δ0 + 1 ≤ 4‖gxx‖∞ + 3.

Repeating the arguments for at most finitely many times, we conclude that A0 ≤ C ,
proving the theorem. �	
Acknowledgments The authors are grateful to the anonymous referee for his/her careful reading of the
manuscript and many helpful suggestions, which helped to improve the quality of the paper greatly.
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