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436 F. Merlevède et al.

1 Introduction and background results

In recent years there has been a great effort towards a better understanding of the
structure and asymptotic behavior of stochastic processes. For processes with short
memory one basic technique is approximation with independent random variables. In
this approach, after a suitable blocking argument, the blocks are approximated by inde-
pendent random vectors. For many examples including functionals of Gaussian pro-
cesses, Harris recurrent Markov chains, time series, and for results including moment
inequalities or central limit-type theorems with rate estimates, this method is very
fruitful. Moreover, recently, the traditional measures of dependence that quantify the
departure from independence have been fine tuned to include more examples than
those covered by traditional mixing classes (see [14]).

However, at this point, this method is not developed enough to handle Bernstein-
type exponential inequalities. For instance, by the traditional blocking methods most
of the exponential inequalities for tails of sums of weakly dependent random variables
are known to hold only in an interval close to the central limit theorem range. More-
over the results are often restricted to bounded random variables, as for example in
Adamczak [1] (see the inequality (1.10)).

In this paper we will develop new methods to enlarge the interval on which the
Bernstein inequality holds for some classes of weakly dependent random variables.
The dependence coefficients used are weak enough to include sequences that are not
necessarily strongly mixing in the traditional sense, so the results have a large appli-
cability. Examples that can be treated this way include classes of Markov chains,
iterated Lipschitz models and functions of linear processes with absolutely regular
innovations.

Concerning the traditional large deviations principle, it is known from the paper
by Bryc and Dembo [9] that it is not satisfied by many classes of weakly dependent
random variables. This is the reason why it is convenient to look at moderate devi-
ations principles, which are intermediate results between central limit theorem and
large deviations. We shall use the new developed Bernstein-type inequalities to obtain
sharp moderate deviations asymptotic results for some classes of dependent random
variables. The study will be made in the nonstationary setting.

We recall now some known results concerning the Bernstein-type inequalities. Let
us consider a sequence X1, X2, . . . of centered real valued random variables defined
on a probability space (�,A,P), and set Sn = X1 + X2 +· · ·+ Xn . We first recall the
Bernstein inequality for random variables satisfying Condition (1.1) below. Suppose
that the random variables X1, X2, . . . are independent and satisfy

log E exp(t Xi ) ≤ σ 2
i t2

2(1 − t B)
for positive constants σi and B, (1.1)

for any t in [0, 1/B[. Set Vn = σ 2
1 + σ 2

2 + · · · + σ 2
n . Then

P(Sn ≥ √
2Vn x + Bx) ≤ exp(−x).
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A Bernstein type inequality and moderate deviations 437

When the random variables X1, X2, . . . are centered and uniformly bounded by M
then (1.1) holds with σ 2

i = VarXi , B = M and the above inequality implies the usual
Bernstein inequality

P(Sn ≥ y) ≤ exp
(
−y2(2Vn + 2yM)−1

)
. (1.2)

It is well known that (1.1) also holds true when the variables are centered and satisfy:
there exist positive constants σi and B such that E|Xi |k ≤ k!σ 2

i Bk−2/2 for all k ≥ 2,
and that this last condition is satisfied by variables having exponential moments.

Assume now that the random variables X1, X2, . . . are independent, centered and
satisfy the following weaker tail condition: for some δ > 0, γ ∈ (0, 1) and K > 0,

sup
i

E(exp(δ|Xi |γ )) ≤ K . (1.3)

By the proof of Corollary 5.1 in Borovkov [6] we infer that there exist two positive
constants c1 and c2 depending only δ, γ and K such that

P(Sn ≥ y) ≤ exp
(
−c1 y2/n

)
+ n exp

(−c2 yγ
)
. (1.4)

More precise results for large deviations of sums of independent random variables
with semiexponential tails (i.e. (1.3) is satisfied for γ ∈ (0, 1)) may be found in
Borovkov [7].

Our interest is to extend the above inequalities to sequences of dependent random
variables. Let us first assume that X1, X2, . . . is a strongly mixing sequence of real-
valued and centered random variables (see (2.4) for the definition of the strong mixing
coefficients α(n)). Assume in addition that there exist two positive constants γ1 and c
such that the strong mixing coefficients of the sequence satisfy

α(n) ≤ exp(−cnγ1) for any positive integer n, (1.5)

and there are constants b ∈ ]0,∞[ and γ2 in ]0,+∞] such that

sup
i>0

P(|Xi | > t) ≤ exp(1 − (t/b)γ2) for any positive t, (1.6)

(when γ2 = +∞ (1.6) means that ‖Xi‖∞ ≤ b for any positive i).
Obtaining exponential bounds for this case is a challenging problem. To understand

the difficulty of the problem we shall mention a possible approach. One of the available
tools in the literature is Theorem 6.2 in Rio [25] which is a Fuk-Nagaev type inequality
(for a similar inequality, using the coupling coefficients τ recalled in Sect. 2 instead
of the strong mixing ones, we refer to Theorem 2 in Dedecker and Prieur [14]). This
tail inequality is sharp for sequences of random variables with polynomial strongly
mixing rates and finite moments up to a certain order, and one could be tempted to
apply it to sequences with exponential or subexponential mixing rates. We shall argue
that for these cases the inequality does not provide optimal results. To explain the
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438 F. Merlevède et al.

situation, let γ be defined by 1/γ = (1/γ1) + (1/γ2). For any positive λ and any
r ≥ 1, Theorem 6.2 in Rio [25] yields that there exists a positive constant C such that

P

(

sup
1≤k≤n

|Sk | ≥ 4λ

)

≤ 4

(
1 + λ2

rns2

)−r/2

+ 4Cnλ−1 exp

(
−c

λγ

bγ rγ

)
, (1.7)

where

s2 = sup
i>0

⎛

⎝E(X2
i )+ 2

∑

j>i

|E(Xi X j )|
⎞

⎠ .

Selecting in (1.7) r = λγ/(γ+1) leads to

P( sup
k∈[1,n]

|Sk | ≥ 4λ) ≤ 4 exp

(

−λ
γ/(γ+1) log 2

2

)

+ 4Cnλ−1 exp

(

−c
λγ/(γ+1)

bγ

)

(1.8)

for any λ ≥ 1 ∨ (ns2)(γ+1)/(γ+2).
For stationary subgeometrically (absolutely regular) Markov chains (Yi )i∈Z hav-

ing a petite set, and for bounded functions f (here γ = γ1), this gives the following
exponential deviation inequality for Sn( f ) = f (Y1) + f (Y2) + · · · + f (Yn). Under
the centering condition E( f (Y1)) = 0, there exist positive constants K and L such
that for any ε > 0 and n > n0(ε),

P(|Sn( f )| ≥ nε) ≤ K exp
(
−L(nε)γ/(1+γ )) , (1.9)

which is, for γ ∈ (0, 1], also the inequality given in Theorem 10 of Douc et al. [21]
in case where their drift condition implies subgeometrical ergodicity (and then (1.5),
see Sect. 2.1.1 for details on this drift condition). When γ = 1, this yields a power√

n in the exponential whereas in this case, Theorem 6 in Adamczak [1] provides the
following inequality: for any positive λ,

P(|Sn( f )| ≥ λ) ≤ C exp

(
− 1

C
min

(
λ2

nσ 2 ,
λ

log n

))
, (1.10)

where σ 2 = limn n−1VarSn( f ) and C is a positive constant (here we take m = 1 in his
condition (14) on the petite set). In addition, when γ ∈ (0, 1), the hope is to achieve
the power nγ in the exponential term of (1.9) instead of nγ /(1+γ ), since the gap is
filled asymptotically via the moderate deviations results (see Theorem 1 in Djellout
and Guillin [19] or Theorem 7 in Douc et al. [21]).

In this paper, we extend the inequality (1.4) to dependent sequences allowing us to
fill the gap above mentioned. To be more precise, we shall prove that, for α-mixing
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sequences satisfying (1.5) and (1.6) for γ < 1, there exists a positive η such that, for
n ≥ 4 and λ ≥ C(log n)η

P

(

sup
j≤n

|S j | ≥ λ

)

≤ (n + 1) exp(−λγ /C1)+ exp(−λ2/(C2 + C2nV )), (1.11)

where C , C1 and C2 are positive constants depending on b, c, γ1 and γ2 and V is
some constant, depending on the covariance properties of truncated random variables
built from the initial sequence. In order to define precisely V we need to introduce
truncation functions ϕM .

Notation 1 For any positive M let the function ϕM be defined by ϕM (x) = (x ∧ M)∨
(−M).

With this notation, (1.11) holds with

V = sup
M>0

sup
i>0

⎛

⎝Var(ϕM (Xi ))+ 2
∑

j>i

|Cov(ϕM (Xi ), ϕM (X j ))|
⎞

⎠ . (1.12)

Let us mention that in the case γ1 = 1 and γ2 = ∞, a Bernstein type inequality
very close to (1.10) (up to a logarithmic term) has been obtained by Merlevède et al.
[24]. The case γ > 1 will certainly give a different bound than (1.11) for the deviation
inequality as in the case for independent random variables (see for instance Theorems
3.1 and 3.2 in Liu and Watbled [23]). It is outside the scope of the present paper to
consider this case.

The main tool to prove (1.11) is our Proposition 2 allowing to derive a sharp upper
bound for the Laplace transform of the partial sums. The proof of this proposition can
be described as follows: the variables (suitably truncated) are partitioned in blocks
indexed by Cantor-type sets plus a remainder. The log-Laplace transform of each
partial sum on the Cantor-type sets is then controlled with the help of our Propo-
sition 1, and Lemma 3 of Appendix provides bounds for the log-Laplace transform
of any sum of real-valued random variables. The proof of Proposition 1 is based on
decorrelation arguments on the Cantor-type sets we consider together with adaptive
truncations (at each decorrelation step, the variables get truncated at different levels,
as in Bass [4], to compensate for the diminishing block size). The assumption γ < 1
is crucial for the decorrelation steps. Proposition 2 alone does not lead directly to the
inequality (1.11) and it has to be combined with coupling to reduce the number of
variables considered in the partial sums. The strong mixing coefficients are thus not
needed in their full generality: Theorem 1 gives (1.11) when (1.5) (up to a constant)
is fulfilled by the dependence coefficients τ , as introduced by Dedecker and Prieur
[14], having exactly the coupling property in L

1. In Sect. 2, we also prove the mod-
erate deviations principle for the class of dependent sequences that we consider (see
our Theorem 2). Section 2.1 is devoted to some applications and further comparisons
with previous results are given (see Sect. 2.1.1). The proofs of Theorems 1 and 2 are
postponed in Sect. 3. Technical results are given in Appendix.
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440 F. Merlevède et al.

2 Main results

We first define the dependence coefficients that we consider in this paper.
For any real random variable X in L

1 and any σ -algebra M of A, let PX |M be
a conditional distribution of X given M and let PX be the distribution of X . We
consider the coefficient τ(M, X) of weak dependence [14] which is defined by

τ(M, X) =
∥
∥
∥
∥
∥

sup
f ∈�1(R)

∣
∣
∣
∣

∫
f (x)PX |M(dx)−

∫
f (x)PX (dx)

∣
∣
∣
∣

∥
∥
∥
∥
∥

1

, (2.1)

where �1(R) is the set of 1-Lipschitz functions from R to R.
The coefficient τ has the following coupling property: If� is rich enough then the

coefficient τ(M, X) is the infimum of ‖X − X∗‖1 where X∗ is independent of M
and distributed as X (see Lemma 5 in [14]). This coupling property allows to relate
the coefficient τ to the strong mixing coefficient. Rosenblatt [26] defined by

α(M, σ (X)) = sup
A∈M,B∈σ(X)

|P(A ∩ B)− P(A)P(B)|,

(see Lemma 6 in [14]).
If Y is a random variable with values in R

k equipped with the norm | · |k defined
by |x − y|k = ∑k

i=1 |xi − yi |, the coupling coefficient τ is defined as follows: If
Y ∈ L

1(Rk),

τ(M,Y ) = sup{τ(M, f (Y )), f ∈ �1(R
k)}, (2.2)

where �1(R
k) is the set of 1-Lipschitz functions from R

k to R.
The τ -mixing coefficients τX (i)= τ(i) of a sequence (Xi )i∈Z of real-valued ran-

dom variables are then defined by

τk(i) = max
1≤≤k

1


sup

{
τ(Mp, (X j1 , . . . , X j )), p + i ≤ j1 < · · · < j

}

and τ(i) = sup
k≥0

τk(i), (2.3)

where Mp = σ(X j , j ≤ p) and the above supremum is taken over p and ( j1, . . . j).
Recall that the strong mixing coefficients α(i) are defined by:

α(i) = sup
p∈Z

α(Mp, σ (X j , j ≥ i + p)). (2.4)

Define now the function Q|Y | by Q|Y |(u) = inf{t > 0,P(|Y | > t) ≤ u} for u in ]0, 1].
To compare the τ -mixing coefficients with the strong mixing ones, let us mention that,
by Lemma 7 in Dedecker and Prieur [14],
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τ(i) ≤ 2

2α(i)∫

0

Q(u)du, where Q = sup
k∈Z

Q|Xk |. (2.5)

Let (X j ) j∈Z be a sequence of centered real valued random variables and let τ(i)
be defined by (2.3). Let τ(x) = τ([x]) (square brackets denoting the integer part).
Throughout, we assume that there exist positive constants γ1, a and c such that

τ(x) ≤ a exp(−cxγ1) := τ ∗(x) for any x ≥ 1, (2.6)

and that, for some constants γ2 in ]0,+∞] and b in ]0,+∞[, the following tail con-
dition is satisfied: for any positive t ,

sup
k>0

P(|Xk | > t) ≤ exp(1 − (t/b)γ2) := H(t). (2.7)

Suppose furthermore that

γ < 1 where γ is defined by 1/γ = 1/γ1 + 1/γ2. (2.8)

Theorem 1 Let (X j ) j∈Z be a sequence of centered real valued random variables and
let V be defined by (1.12). Assume that (2.6), (2.7) and (2.8) are satisfied. Then V is
finite and, for any n ≥ 4, there exist positive constants C1, C2, C3 and C4 depending
only on a, b, c, γ and γ1 such that, for any positive x,

P

(

sup
j≤n

|S j | ≥ x

)

≤ n exp

(
− xγ

C1

)
+ exp

(
− x2

C2(1 + nV )

)

+ exp

(

− x2

C3n
exp

(
xγ (1−γ )

C4(log x)γ

))

.

Remark 1 Let us mention that if the sequence (X j ) j∈Z satisfies (2.7) and is strongly
mixing with strong mixing coefficients satisfying (1.5), then, from (2.5), (2.6) is sat-
isfied (with an other constant), and Theorem 1 applies.

Remark 2 If there exists δ > 0 such that E exp(δ|Xi |γ2)) ≤ K for any positive i , then
setting C = 1 ∨ log K , Markov inequality yields that the process (Xi )i∈Z satisfies
(2.7) with b = (C/δ)1/γ2 .
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442 F. Merlevède et al.

Remark 3 If (Xi )i∈Z satisfies (2.6) and (2.7), then

V ≤ sup
i>0

⎛

⎜
⎝E(X2

i )+ 4
∑

k>0

τ(k)/2∫

0

Q|Xi |(G(v))dv

⎞

⎟
⎠

= sup
i>0

⎛

⎜
⎝E(X2

i )+ 4
∑

k>0

G(τ (k)/2)∫

0

Q|Xi |(u)Q(u)du

⎞

⎟
⎠ ,

where G is the inverse function of x �→ ∫ x
0 Q(u)du (see Sect. 3.3 for a proof). Here

the random variables do not need to be centered. Note also that, in the strong mixing
case, using (2.5), we have G(τ (k)/2) ≤ 2α(k).

This result is one of the main tools to derive the moderate deviations principle
(MDP) given in Theorem 2 below. In our terminology the MDP stays for the follow-
ing type of asymptotic behavior:

Definition 1 We say that the MDP holds for a sequence (Tn)n of random variables
with speed an → 0 and good rate function I (·), if the level sets {x, I (x) ≤ λ} are
compact for all λ < ∞, and for each Borel set A,

− inf
t∈Ao

I (t) ≤ lim inf
n

an log P(
√

anTn ∈ A)

≤ lim sup
n

an log P(
√

anTn ∈ A) ≤ − inf
t∈ Ā

I (t), (2.9)

where Ā denotes the closure of A and Ao the interior of A.

Theorem 2 Let (Xi )i∈Z be a sequence of random variables as in Theorem 1 and let
Sn = ∑n

i=1 Xi and σ 2
n = VarSn. Assume in addition that lim infn→∞ σ 2

n /n > 0. Then
for all positive sequences an with an → 0 and annγ /(2−γ ) → ∞, {σ−1

n Sn} satisfies
(2.9) with rate function I (t) = t2/2.

If we impose a stronger degree of stationarity we obtain the following corollary.

Corollary 1 Let (Xi )i∈Z be a second order stationary sequence of centered real
valued random variables. Assume that (2.6), (2.7) and (2.8) are satisfied. Let Sn =∑n

i=1 Xi and σ 2
n = VarSn. Assume in addition that σ 2

n → ∞. Then limn→∞ σ 2
n /n =

σ 2 > 0, and for all positive sequences an with an → 0 and annγ /(2−γ ) → ∞,
{n−1/2Sn} satisfies (2.9) with rate function I (t) = t2/(2σ 2).

The proof is direct by using the fact that (2.6) and (2.7) imply that
∑

k>0 k|Cov(X0,

Xk)| < ∞, and then limn→∞ σ 2
n /n = σ 2 > 0 since σ 2

n → ∞ (see Lemma 1 in [8]).
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2.1 Applications

2.1.1 Instantaneous functions of absolutely regular processes

Let (Y j ) j∈Z be a strictly stationary sequence of random variables with values in a
Polish space E , and let f be a measurable function from E to R. Set X j = f (Y j ).
Consider now the case where the sequence (Yk)k∈Z is absolutely regular (or β-mixing)
in the sense of Rozanov and Volkonskii [27]. Setting F0 = σ(Yi , i ≤ 0) and Gk =
σ(Yi , i ≥ k), this means that

β(k) = β(F0,Gk) → 0, as k → ∞,

with β(A,B) = 1
2 sup{∑i∈I

∑
j∈J |P(Ai ∩ B j )−P(Ai )P(B j )|}, the maximum being

taken over all finite partitions (Ai )i∈I and (Bi )i∈J of � respectively with elements in
A and B. If we assume that

β(n) ≤ 2 exp(−cnγ1) for any positive n, (2.10)

where c > 0 and γ1 > 0, and that the random variables X j are centered and satisfy
(2.7) for some positive γ2 such that 1/γ = 1/γ1 + 1/γ2 > 1, then Theorem 1 and
Corollary 1 apply to the sequence (X j ) j∈Z (recall that α(n) ≤ β(n)/2). Furthermore,
as shown in Viennet [29], by Delyon’s [16] covariance inequality,

V ≤ E( f 2(Y0))+ 4
∑

k>0

E(Bk f 2(Y0)),

for some sequence (Bk)k>0 of random variables with values in [0, 1] satisfying
E(Bk) ≤ β(k) (see [25, Section 1.6]) for more details).

We now give an example where (Y j ) j∈Z satisfies (2.10). Let (Y j ) j≥0 be an E-valued
irreducible ergodic and stationary Markov chain with a transition probability P having
a unique invariant probability measure π (by Kolmogorov extension Theorem one can
complete (Y j ) j≥0 to a sequence (Y j ) j∈Z). To simplify the exposition, we assume in
the rest of the section that the chain has an atom, that is there exists A ⊂ E with
π(A) > 0 and ν a probability measure such that P(x, ·) = ν(·) for any x in A. If

there exists δ > 0 and γ1 > 0 such that Eν(exp(δτγ1)) < ∞, (2.11)

where τ = inf{n ≥ 0; Yn ∈ A}, then the β-mixing coefficients of the sequence
(Y j ) j≥0 satisfy (2.10) with the same γ1 (see Proposition 9.6 and Corollary 9.1 in [25]
for more details). Consequently the following corollary holds:

Corollary 2 Suppose that π( f ) = 0 and that there exist b ∈]0,∞[ and γ2 ∈ [0,∞]
such that

π(| f | > t) ≤ exp(1 − (t/b)γ2) for any positive t. (2.12)
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444 F. Merlevède et al.

If (2.11) holds and 1/γ1 + 1/γ2 > 1, then ( f (Yi ), i ∈ Z} satisfies both the conclu-
sions of Theorem 1 and of Corollary 1 with rate function I f (t) = t2/(2σ 2

f ) (here

σ 2
f = limn→∞ n−1

E
(∑n

i=1 f (Yi )
)2

).

Concerning the MDP, notice that Lemmas 5 and 7 in Djellout and Guillin [19] imply
that under (2.11) with γ1 < 1, the MDP holds for {n−1/2 ∑n

i=1 f (Yi )} with rate func-
tion I f (t) = t2/(2σ 2

f ) and speed an satisfying an ↘ 0, and annγ1/(2−γ1) → ∞ as
soon as

lim sup
n→∞

an log

(

nP

(
τ∑

k=0

| f (Yk)| ≥
√

n

an

))

= −∞. (2.13)

Their result extends, in the context of chains with an atom, works by de Acosta [11]
and Chen and de Acosta [10] for bounded functionals of geometrically ergodic Markov
chains.

Condition (2.13) originates from the use of the regeneration method constructed
via the splitting technique on return times to the atom and links the rate of ergodicity
of the chain with the growth of f . If the function f is bounded then (2.11) implies
(2.13). When f is an unbounded functional, conditions ensuring that (2.13) holds are
given in Douc et al. [21]. To describe them, introduce the following “subgeometric
drift” condition due to Douc et al. [20]:
Assumption SGD. There exist a concave, non decreasing, differentiable function
ϕ : [1,+∞) → R

+, a measurable function V : E → [1,∞) and a positive constant
r satisfying ϕ(1) > 0, limx→∞ ϕ(x) = ∞, limx→∞ ϕ′(x) = ∞, supx∈A V (x) < ∞
and PV ≤ V − ϕ ◦ V + r1A.

By Proposition 2.2 in Douc et al. [20] (and their computations on page 1365),
if Assumption SGD holds with ϕ(x) = c(x + d) (log(x + d))(1−γ1)/γ1 for c > 0,
γ1 ∈ (0, 1) and sufficiently large d, then (2.11) is satisfied. In addition if π(V ) < ∞,
according to Theorems 4 and 9 in Douc et al. [21], (2.13) is satisfied for all functions
f such that

sup
x∈E

| f (x)|/ψ ◦ V (x) < ∞, where ψ(x) = (log(1 + x))1/γ2

with γ2 a positive constant, (2.14)

as soon as an → 0 and annγ /(2−γ ) → ∞, where γ−1 = γ−1
1 +γ−1

2 . Sinceπ(V ) < ∞,
notice that (2.14) implies (2.12). It follows that for the MDP, our Corollary 2 gives
alternative conditions to the ones imposed in Theorem 9 of Douc et al. [21]. In addition
as in their paper, Corollary 2 can be extended to the one petite set case.

Let us now make some comments about the exponential deviation inequality
obtained in Corollary 2. Assume that Assumption SGD holds with V such thatπ(V ) <
∞ and ϕ(x) = c(x + d) (log(x + d))(1−γ1)/γ1 for c > 0, γ1 ∈ (0, 1) and sufficiently
large d. If f is a bounded and centered function w.r.t.π , then Theorem 10 in Douc et al.
[21] states that (1.9) holds with γ = γ1, whereas Corollary 2 gives a better rate (the
power is γ1 instead of γ1/(1 + γ1)). If we relax now the assumption that f is bounded
by assuming that (2.14) holds then Theorem 1 in Bertail and Clémençon [5] combined
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with Theorem 4 in Douc et al. [21] implies (1.9) with γ such that γ−1 = γ−1
1 + γ−1

2
whereas Corollary 2 again gives a better rate.

2.1.2 Iterative Lipschitz models

In this section, we give an example of iterative Lipschitz model, which fails to be
irreducible, to which our results apply. For the sake of simplicity, we do not take the
iterative Lipschitz models in their full generality, as defined in Diaconis and Freedman
[18] and Duflo [22].

Example: Autoregressive Lipschitz model. For δ in [0, 1[ and C in ]0, 1], let L(C, δ)
be the class of 1-Lipschitz functions f which satisfy

f (0) = 0 and | f ′(t)| ≤ 1 − C(1 + |t |)−δ almost everywhere.

Let (εi )i∈Z be a sequence of i.i.d. real-valued random variables. For η ∈]0, 1], let
ARL(C, δ, η) be the class of Markov chains on R defined by

Yn = f (Yn−1)+εn with f ∈ L(C, δ) and E(exp(λ|ε0|η)) < ∞ for some λ > 0.

(2.15)

For this model, there exists an unique invariant probability measure μ (see
Proposition 2 of [15]) and the following result holds (see Sect. 4.2 for the proof):

Corollary 3 Assume that (Yi )i∈Z belongs to ARL(C, δ, η). Let g be a 1-Lipschitz
function. Assume furthermore that, for some ζ in [0, 1] and some positive constant
c, |g(x)| ≤ c(1 + |x |ζ ) for any real x. If δ + ζ > 0, then (g(Yi ) − E(g(Yi )) )i∈Z

satisfies both the conclusions of Theorem 1 and of Corollary 1 with γ2 = η(1 − δ)/ζ

and γ1 = η(1 − δ)(η(1 − δ)+ δ)−1.

Note that γ = η(1 − δ)(η(1 − δ)+ δ + ζ )−1. An element of ARL(C, δ, η) may fail
to be irreducible and then strongly mixing in the general case. However, if the distri-
bution of ε0 has an absolutely continuous component which is bounded away from 0
in a neighborhood of the origin, then the chain is irreducible and fits in the example
of Tuominen and Tweedie [28], Section 5.2. In this case, the rate of ergodicity can be
derived from Theorem 2.1 in Tuominen and Tweedie [28] (cf. [2] for exact rates of
ergodicity).

2.1.3 Functions of linear processes with absolutely regular innovations

Let f be a 1-Lipschitz function. We consider here the case where

Xn = f

⎛

⎝
∑

j≥0

a j Yn− j

⎞

⎠ − E f

⎛

⎝
∑

j≥0

a j Yn− j

⎞

⎠ ,
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where A = ∑
j≥0 |a j | < ∞ and (Yi )i∈Z is a strictly stationary sequence of real-valued

random variables which is absolutely regular in the sense of Rozanov and Volkonskii;
namely, β(k) → 0, as k → ∞ (see Sect. 2.1.1 for the definitions).

According to Section 3.1 in Dedecker and Merlevède [13], if the innovations (Yi )i∈Z

are in L
2, the following bound holds for the τ -mixing coefficient associated to the

sequence (Xi )i∈Z:

τ(i) ≤ 2‖Y0‖1

∑

j≥i

|a j | + 4‖Y0‖2

i−1∑

j=0

|a j |β1/2(i − j).

Assume that there exist γ1 > 0 and c′ > 0 such that, for any positive integer k,

ak ≤ exp(−c′kγ1) and β(k) ≤ exp(−c′kγ1).

Then the τ -mixing coefficients of (X j ) j∈Z satisfy (2.6). Let us now focus on the tails
of the random variables Xi . Assume that (Yi )i∈Z satisfies (2.7 ). Define the convex
functions ψη for η > 0 in the following way: ψη(−x) = ψη(x), and for any x ≥ 0,

ψη(x) = exp(xη)− 1 for η ≥ 1 and ψη(x) =
x∫

0

exp(uη)du for η ∈]0, 1].

Let ‖. ‖ψη be the usual corresponding Orlicz norm. Since the function f is 1-Lipshitz,
we get that ‖X0‖ψγ2

≤ 2A‖Y0‖ψγ2
. Next, if (Yi )i∈Z satisfies (2.7), then ‖Y0‖ψγ2

< ∞.
Moreover, it can easily be proven that, if ‖Z‖ψη ≤ 1, then P(|Z | > t) ≤ exp(1 − tη)
for any positive t . Hence, (Xi )i∈Z satisfies (2.7) with the same parameter γ2, and
therefore the conclusions of Theorem 1 and Corollary 1 hold with γ defined by 1/γ =
1/γ1 + 1/γ2, provided that γ < 1.

3 Proofs

3.1 Some auxiliary results

For any positive real M , let ϕM (x) = (x ∧ M) ∨ (−M). The aim of this section is
essentially to give suitable bounds of the Laplace transform of the truncated sums

S̄M (K ) =
∑

i∈K

X̄ M (i) where X̄ M (i) = ϕM (Xi )− E(ϕM (Xi )), (3.1)

and K is a finite set of integers.
We first define some constants, depending only on b, γ , γ1 that are needed in the

following. Let

c0 = (2(21/γ − 1))−1(2(1−γ )/γ − 1), c1 = min(c1/γ1 c0/4, 2−1/γ ), (3.2)

c2 = 2−(1+2γ1/γ )cγ1
1 b−1, c3 = 2−γ1/γ b−1, and κ = min (c2, c3). (3.3)
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The following proposition, based on decorrelation arguments on Cantor-type sets, is
the key tool to derive Proposition 2, that provides upper bounds for the log-Laplace
transform of the partial sums of the random variables X̄ M (i) for a suitable M .

Proposition 1 Let (X j ) j≥1 be a sequence of centered and real valued random vari-
ables satisfying (2.6), (2.7) and (2.8). Let A and  be two positive integers such
that A2− ≥ (1 ∨ 2c−1

0 ). Let M = H−1(a−1τ ∗(c−1/γ1 A)). Then there exists a

subset K ()
A of {1, . . . , A} with Card(K ()

A ) ≥ A/2, such that for any positive t ≤
κ
(

Aγ−1 ∧ (2/A)
)γ1/γ , where κ is defined by (3.3),

log E exp
(

t S̄M

(
K ()

A

))
≤ t2v2 A

+t2
(

ab(2A)1+ γ1
γ + 4b2 Aγ (2A)

2γ1
γ

)
exp

(
−1

2

(
c1 A

2

)γ1
)
, (3.4)

with S̄M (K
()
A ) defined by (3.1) and

v2 = sup
T>0

sup
K⊂N∗

1

CardK
Var

∑

i∈K

ϕT (Xi ) (3.5)

(the maximum being taken over all nonempty finite sets K of integers).

Remark 4 Notice that v2 ≤ V (the proof is immediate).

Proof of Proposition 1 The proof is divided in several steps.
Step 1. The construction of K ()

A . Let c0 be defined by (3.2) and n0 = A. K ()
A will

be a finite union of 2 disjoint sets of consecutive integers with same cardinal spaced
according to a recursive “Cantor”-like construction. We first define an integer d0 as
follows:

d0 =
{

sup{m ∈ 2N, m ≤ c0n0} if n0 is even
sup{m ∈ 2N + 1, m ≤ c0n0} if n0 is odd .

It follows that n0 − d0 is even. Let n1 = (n0 − d0)/2, and define two sets of integers
of cardinal n1 separated by a gap of d0 integers as follows

I1,1 = {1, . . . , n1}, I1,2 = {n1 + d0 + 1, . . . , n0}.

We define now the integer d1 by

d1 =
{

sup{m ∈ 2N, m ≤ c02−(∧ 1
γ
)n0} if n1 is even

sup{m ∈ 2N + 1, m ≤ c02−(∧ 1
γ
)n0} if n1 is odd.

Noticing that n1 −d1 is even, we set n2 = (n1 −d1)/2, and define four sets of integers
of cardinal n2 by

I2,1 ={1, . . . , n2}, I2,2 ={n2+d1+1, . . . , n1}, I2,i+2 =(n1 + d0)+ I2,i for i =1, 2.
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Iterating this procedure j times (for 1 ≤ j ≤ ), we then get a finite union of 2 j

sets, (I j,k)1≤k≤2 j , of consecutive integers, with same cardinal, constructed by induc-
tion from (I j−1,k)1≤k≤2 j−1 as follows: First, for 1 ≤ k ≤ 2 j−1, we have I j−1,k =
{a j−1,k, . . . , b j−1,k}, where 1 + b j−1,k − a j−1,k = n j−1 and

1 = a j−1,1 < b j−1,1 < a j−1,2 < b j−1,2 < · · · < a j−1,2 j−1 < b j−1,2 j−1 = n0.

Let n j = 2−1(n j−1 − d j−1) and

d j =
{

sup{m ∈ 2N, m ≤ c02−(∧ j
γ
)n0} if n j is even

sup{m ∈ 2N + 1, m ≤ c02−(∧ j
γ
)n0} if n j is odd.

Then I j,k = {a j,k, a j,k +1, . . . , b j,k}, where the double indexed sequences (a j,k) and
(b j,k) are defined as follows:

a j,2k−1 = a j−1,k, b j,2k = b j−1,k, b j,2k − a j,2k + 1 = n j

and b j,2k−1 − a j,2k−1 + 1 = n j .

With this selection, we then get that there is exactly d j−1 integers between I j,2k−1 and
I j,2k for any 1 ≤ k ≤ 2 j−1.

Finally we get

K ()
A =

2⋃

k=1

I,k .

Since Card(I,k) = n, for any 1 ≤ k ≤ 2, we get that Card(K ()
A ) = 2n. Now

notice that

A − Card(K ()
A ) =

−1∑

j=0

2 j d j ≤ Ac0

⎛

⎝
∑

j≥0

2 j (1−1/γ ) +
∑

j≥1

2− j

⎞

⎠ ≤ A/2.

Consequently

A ≥ Card(K ()
A ) ≥ A/2 and n ≤ A2−.

The following notation will be useful for the rest of the proof: For any k in
{0, 1, . . . , } and any j in {1, . . . , 2}, we set

K ()
A,k, j =

j2−k
⋃

i=( j−1)2−k+1

I,i . (3.6)
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Notice that K ()
A = K ()

A,0,1 and that for any k in {0, 1, . . . , }

K ()
A =

2k
⋃

j=1

K ()
A,k, j , (3.7)

where the union is disjoint.
In what follows we shall also use the following notation: for any integer j in [0, ],

we set

M j = H−1
(

a−1τ ∗(c−1/γ1 A2−(∧ j
γ
)
)

)
. (3.8)

Since H−1(y) = b (log(e/y))1/γ2 for any y ≤ e, we get that for any x ≥ 1,

H−1(a−1τ ∗(c−1/γ1 x)) = b
(
1 + xγ1

)1/γ2 ≤ b(2x)γ1/γ2 . (3.9)

Consequently since for any j in [0, ], A2−(∧ j
γ
) ≥ 1, the following bound is valid:

M j ≤ b(2A2−(∧ j
γ
))γ1/γ2 . (3.10)

Step 2. Proof of Inequality (3.4) with K ()
A defined in step 1.

Consider the decomposition (3.7), and notice that for any i = 1, 2, Card(K ()
A,1,i ) ≤

A/2 and

τ
(
σ(Xi : i ∈ K ()

A,1,1), S̄M0(K
()
A,1,2)

)
≤ Aτ(d0)/2.

Since X̄ M0( j) ≤ 2M0, we get that |S̄M0(K
()
A,1,i )| ≤ AM0. Consequently, by using

Lemma 2 from Appendix, we derive that for any positive t ,

∣
∣
∣
∣
∣
E exp

(
t S̄M0(K

()
A )

)
−

2∏

i=1

E exp
(

t S̄M0(K
()
A,1,i )

)
∣
∣
∣
∣
∣
≤ At

2
τ(d0) exp(2t AM0).

Since the random variables S̄M0(K
()
A ) and S̄M0(K

()
A,1,i ) are centered, their Laplace

transform are greater than one. Hence applying the elementary inequality

| log x − log y| ≤ |x − y| for x ≥ 1 and y ≥ 1, (3.11)

we get that, for any positive t ,

∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2∑

i=1

log E exp
(

t S̄M0(K
()
A,1,i )

)
∣
∣
∣
∣
∣
≤ At

2
τ(d0) exp(2t AM0).
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The next step is to compare E exp(t S̄M0(K
()
A,1,i )) with E exp(t S̄M1(K

()
A,1,i )) for

i = 1, 2. The random variables S̄M0(K
()
A,1,i ) and S̄M1(K

()
A,1,i ) have values in [−AM0,

AM0], hence applying the inequality

|etx − ety | ≤ |t ||x − y|(e|t x | ∨ e|t y|), (3.12)

we obtain that, for any positive t ,

∣
∣
∣E exp

(
t S̄M0(K

()
A,1,i )

)
− E exp

(
t S̄M1(K

()
A,1,i )

)∣∣
∣

≤ tet AM0E

∣
∣
∣S̄M0(K

()
A,1,i )− S̄M1(K

()
A,1,i )

∣
∣
∣ .

Notice that

E

∣
∣
∣S̄M0(K

()
A,1,i )− S̄M1(K

()
A,1,i )

∣
∣
∣ ≤ 2

∑

j∈K ()
A,1,i

E|(ϕM0 − ϕM1)(X j )|.

Since for all x ∈ R, |(ϕM0 − ϕM1)(x)| ≤ M0 1I|x |>M1 , we get that

E|(ϕM0 − ϕM1)(X j )| ≤ M0P(|X j | > M1) ≤ a−1 M0τ
∗
(

c
− 1
γ1 A2

−
(
∧ 1

γ

))
.

Consequently, since Card(K ()
A,1,i ) ≤ A/2, for any i = 1, 2 and any positive t ,

∣
∣
∣E exp

(
t S̄M0(K

()
A,1,i )

)
− E exp

(
t S̄M1(K

()
A,1,i )

)∣∣
∣ ≤ t Aa−1 M0et AM0τ ∗

×
(

c
− 1
γ1 A2

−
(
∧ 1

γ

))
.

Using again the fact that the variables are centered and taking into account the inequal-
ity (3.11), we derive that for any i = 1, 2 and any positive t ,

∣
∣
∣log E exp

(
t S̄M0(K

()
A,1,i )

)
− log E exp

(
t S̄M1(K

()
A,1,i )

)∣∣
∣

≤ a−1e2t AM0τ ∗
(

c
− 1
γ1 A2

−
(
∧ 1

γ

))
. (3.13)

Now for any k = 1, . . . ,  and any i = 1, . . . , 2k , Card(K ()
A,k,i ) ≤ 2−k A. By

iterating the above procedure, we then get for any k = 1, . . . , , and any positive t ,

∣
∣
∣
∣
∣
∣

2k−1
∑

i=1

log E exp
(

t S̄Mk−1(K
()
A,k−1,i )

)
−

2k
∑

i=1

log E exp
(

t S̄Mk−1(K
()
A,k,i )

)
∣
∣
∣
∣
∣
∣

≤ 2k−1 t A

2k
τ(dk−1) exp

(
2t AMk−1

2k−1

)
,
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and for any i = 1, . . . , 2k ,

∣
∣
∣log E exp

(
t S̄Mk−1(K

()
A,k,i )

)
− log E exp

(
t S̄Mk (K

()
A,k,i )

)∣∣
∣

≤ a−1τ ∗
(

c
− 1
γ1 A2

−
(
∧ k

γ

))
exp

(
2t AMk−1

2k−1

)
.

Hence finally, we get that for any j = 1, . . . , , and any positive t ,

∣
∣
∣
∣
∣
∣

2 j−1
∑

i=1

log E exp
(

t S̄M j−1(K
()
A, j−1,i )

)
−

2 j
∑

i=1

log E exp
(

t S̄M j (K
()
A, j,i )

)
∣
∣
∣
∣
∣
∣

≤ t A

2
τ(d j−1) exp(2t AM j−121− j )

+ 2 j a−1τ ∗
(

c
− 1
γ1 A2

−
(
∧ j

γ

))
exp(2t AM j−121− j ).

Set k = sup{ j ∈ N, j/γ < }, and notice that 0 ≤ k ≤ −1. Since K ()
A = K ()

A,0,1,
we then derive that for any positive t ,

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2k+1
∑

i=1

log E exp
(

t S̄Mk+1(K
()
A,k+1,i )

)
∣
∣
∣
∣
∣
∣

≤ t A

2

k∑

j=0

τ(d j ) exp

(
2t AM j

2 j

)

+2a−1
k−1∑

j=0

2 jτ ∗(2−1/γ c−1/γ1 A2− j/γ ) exp

(
2t AM j

2 j

)

+2k+1a−1τ ∗(c−1/γ1 A2−) exp(2t AMk2
−k ). (3.14)

Notice now that for any i = 1, . . . , 2k+1, SMk+1(K
()
A,k+1,i ) is a sum of 2−k−1

blocks, each of size n and bounded by 2Mk+1n. In addition the blocks are equi-
distant and there is a gap of size dk+1 between two blocks. Consequently, by using
Lemma 2 along with inequality (3.11) and the fact that the variables are centered, we
get that

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄Mk+1(K

()
A,k+1,i )

)
−

i2−k−1
∑

j=(i−1)2−k−1+1

log E exp
(

t S̄Mk+1(I, j )
)
∣
∣
∣
∣
∣
∣

≤ tn2
2−k−1τ(dk+1) exp(2t Mk+1n2

−k−1). (3.15)
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Starting from (3.14) and using (3.15) together with the fact that n ≤ A2−, we obtain:

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2∑

j=1

log E exp
(

t S̄Mk+1(I, j )
)
∣
∣
∣
∣
∣
∣

≤ t A

2

k∑

j=0

τ(d j ) exp

(
2t AM j

2 j

)

+2a−1
k−1∑

j=0

2 jτ ∗(2−1/γ c−1/γ1 A2− j/γ ) exp

(
2t AM j

2 j

)

+2k+1a−1τ ∗(c−1/γ1 A2−) exp

(
2t AMk

2k

)

+t Aτ(dk+1) exp(t Mk+1 A2−k ). (3.16)

Notice that for any j = 0, . . . ,  − 1, we have d j + 1 ≥ [c0 A2−(∧ j
γ
)] and

c0 A2−(∧ j
γ
) ≥ 2. Whence

d j ≥ (d j + 1)/2 ≥ c0 A2−(∧ j
γ
)−2
.

Consequently setting c1 = min
( 1

4 c1/γ1 c0, 2−1/γ
)

and using (2.6), we derive that for
any positive t ,

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2∑

j=1

log E exp
(

t S̄Mk+1(I, j )
)
∣
∣
∣
∣
∣
∣

≤ t Aa

2

k∑

j=0

exp

(
−

(
c1 A2− j/γ

)γ1 + 2t AM j

2 j

)

+2
k−1∑

j=0

2 j exp

(
−

(
c1 A2− j/γ

)γ1 + 2t AM j

2 j

)

+2k+1 exp

(
−

(
A2−)γ1 + 2t AMk

2k

)

+t Aa exp
(
−

(
c1 A2−)γ1 + t Mk+1 A2−k

)
.

By (3.10), we get that 2AM j 2− j ≤ b2γ1/γ (2− j A)γ1/γ for any 0 ≤ j ≤ k. Also, since
k + 1 ≥ γ  and γ < 1, we have that Mk+1 ≤ b(2A2−)γ1/γ2 ≤ b(2A2−γ )γ1/γ2 .
Whence

Mk+1 A2−k = 2Mk+1 A2−(k+1) ≤ b2γ1/γ Aγ1/γ 2−γ1.
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In addition,

2AMk2
−k ≤ b22γ1/γ (A2−k−1)γ1/γ ≤ b22γ1/γ Aγ1/γ 2−γ1.

Hence, if t ≤ c2 Aγ1(γ−1)/γ where c2 = 2−(1+2γ1/γ )cγ1
1 b−1, we derive that

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2∑

j=1

log E exp
(

t S̄Mk+1(I, j )
)
∣
∣
∣
∣
∣
∣

≤ t Aa

2

k∑

j=0

exp

(
−1

2

(
c1 A2− j/γ

)γ1
)

+ 2
k−1∑

j=0

2 j exp

(
−1

2

(
c1 A2− j/γ

)γ1
)

+(2k+1 + t Aa) exp
(
−(c1 A2−)γ1/2

)
.

Since 2k ≤ 2γ ≤ Aγ , it follows that for any t ≤ c2 Aγ1(γ−1)/γ ,

∣
∣
∣
∣
∣
∣
log E exp

(
t S̄M0(K

()
A )

)
−

2∑

j=1

log E exp
(

t S̄Mk+1(I, j )
)
∣
∣
∣
∣
∣
∣

≤ (2at A + 4Aγ ) exp

(
−1

2

(
c1 A

2

)γ1
)
. (3.17)

We bound up now the log Laplace transform of each S̄Mk+1(I, j ) using the follow-

ing elementary fact. Let g(x) = x−2(ex − x − 1): for any centered random variable
U such that ‖U‖∞ ≤ M , and any positive t ,

E exp(tU ) ≤ 1 + t2g(t M)E(U 2). (3.18)

Notice that‖S̄Mk+1(I, j )‖∞ ≤ 2Mk+1n ≤ b2γ1/γ (A2−)γ1/γ . Since t ≤ b−12−γ1/γ

(2/A)γ1/γ , by using (3.5), we then get that log E exp
(

t S̄Mk+1(I, j )
)

≤ t2v2n. Con-

sequently, for any t ≤ κ
(

Aγ1(γ−1)/γ ∧ (2/A)γ1/γ ), the following inequality holds:

log E exp
(

t S̄M0(K
()
A )

)
≤ t2v2 A + (2at A + 4Aγ ) exp

(
−(

c1 A2−)γ1/2
)
.

(3.19)

Notice now that ‖S̄M0(K
()
A )‖∞ ≤ 2M0 A ≤ b2γ1/γ Aγ1/γ . Hence if t ≤ b−12−γ1/γ

A−γ1/γ , by using (3.18) together with (3.5), we derive that

log E exp
(

t S̄M0(K
()
A )

)
≤ t2v2 A, (3.20)

which proves (3.4) in this case.
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Now if b−12−γ1/γ A−γ1/γ ≤ t ≤ κ
(

Aγ1(γ−1)/γ ∧ (2/A)γ1/γ
)
, by using (3.19),

we derive that (3.4) holds, which completes the proof of Proposition 1. ��
We now bound up the Laplace transform of the sum of truncated random variables

on [1, A]. Let

μ =
(

2(2 ∨ 4c−1
0 )/(1 − γ )

) 2
1−γ

and c4 = b2γ1/γ 3γ1/γ2 c−γ1/γ2
0 , (3.21)

where c0 is defined in (3.2). Define also

ν =
(

c4

(
3 − 2(γ−1) γ1

γ

)
+ κ−1

)−1 (
1 − 2(γ−1) γ1

γ

)
, (3.22)

where κ is defined by (3.3).

Proposition 2 Let (X j ) j≥1 be a sequence of centered real valued random variables
satisfying (2.6), (2.7) and (2.8). Let A be an integer. Let M = H−1(a−1τ ∗(c−1/γ1 A))
and X̄ M (k) be defined by (3.1) for any positive k. Then, if A ≥ μ with μ defined by
(3.21), for any positive t < νAγ1(γ−1)/γ , where ν is defined by (3.22), we get that

log E

(
exp(t

∑A
k=1 X̄ M (k))

)
≤ AV (A)t2

1 − tν−1 Aγ1(1−γ )/γ , (3.23)

where V (A) = 50v2 + ν1 exp(−ν2 Aγ1(1−γ )(log A)−γ ) and ν1, ν2 are positive con-
stants depending only on a, b, c, γ and γ1, and v2 is defined by (3.5).

Proof of Proposition 2 Let A0 = A and X (0)(k) = Xk for any k = 1, . . . , A0. Let 
be a fixed positive integer, to be chosen later, which satisfies

A02− ≥ (2 ∨ 4c−1
0 ). (3.24)

Let K ()
A0

be the discrete Cantor type set as defined from {1, . . . , A} in Step 1 of the

proof of Proposition 1. Let A1 = A0 − CardK ()
A0

and define for any k = 1, . . . , A1,

X (1)(k) = Xik where {i1, . . . , i A1} = {1, . . . , A}\K A.

Now for i ≥ 1, let K (i )
Ai

be defined from {1, . . . , Ai } exactly as K ()
A is defined from

{1, . . . , A}. Here we impose the following selection of i :

i = inf{ j ∈ N, Ai 2
− j ≤ A02− }. (3.25)

Set Ai+1 = Ai − CardK (i )
Ai

and { j1, . . . , jAi+1} = {1, . . . , Ai+1}\K (i+1)

Ai+1
. Define

now

X (i+1)(k) = X (i)( jk) for k = 1, . . . , Ai+1.
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Let

m(A) = inf{m ∈ N, Am ≤ A2−}. (3.26)

Note that m(A) ≥ 1, since A0 > A2− ( ≥ 1). In addition, m(A) ≤  since for all
i ≥ 1, Ai ≤ A2−i .

Obviously, for any i = 0, . . . ,m(A) − 1, the sequences (X (i+1)(k)) satisfy (2.6),
(2.7) and (3.5) with the same constants. Now we set T0 = M = H−1(a−1

τ ∗(c−1/γ1 A0)), and for any integer j = 0, . . . ,m(A), Tj = H−1(a−1τ ∗(c−1/γ1 A j )).
With this definition and the Notation 1, we then define for all integers i and j ,

X (i)Tj
(k) = ϕTj

(
X (i)(k)

)
− EϕTj

(
X (i)(k)

)
.

According to (3.9), for any integer j ≥ 0,

Tj ≤ b(2A j )
γ1/γ2 . (3.27)

For any j = 1, . . . ,m(A) and i < j , define

Yi =
∑

k∈K
(i )
Ai

X (i)Ti
(k), Zi =

Ai∑

k=1

(X (i)Ti−1
(k)− X (i)Ti

(k)) for i > 0,

and R j =
A j∑

k=1

X ( j)
Tj−1

(k).

The following decomposition holds:

A0∑

k=1

X (0)T0
(k) =

m(A)−1∑

i=0

Yi +
m(A)−1∑

i=1

Zi + Rm(A). (3.28)

To control the terms in the decomposition (3.28), we need the following elementary
lemma.

Lemma 1 For any j = 0, . . . ,m(A)− 1, A j+1 ≥ 1
3 c0 A j .

Proof of Lemma 1 Notice that for any i in [0,m(A)[, we have Ai+1 ≥ [c0 Ai ] − 1.
Since c0 Ai ≥ 2, we derive that [c0 Ai ] − 1 ≥ ([c0 Ai ] + 1)/3 ≥ c0 Ai/3, which
completes the proof. �

Using (3.27), a useful consequence of Lemma 1 is that for any j = 1, . . . ,m(A)

2A j Tj−1 ≤ c4 Aγ1/γ

j (3.29)

where c4 is defined by (3.21)
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A bound for the Laplace transform of Rm(A).
The random variable |Rm(A)| is a.s. bounded by 2Am(A)Tm(A)−1. By using (3.29)

and (3.26), we then derive that

‖Rm(A)‖∞ ≤ c4(Am(A))
γ1/γ ≤ c4

(
A2−)γ1/γ

. (3.30)

Hence, if t ≤ c−1
4 (2/A)γ1/γ , by using (3.18) together with (3.5), we obtain

log E
(
exp(t Rm(A))

) ≤ t2v2 A2− ≤ t2(v
√

A)2 := t2σ 2
1 . (3.31)

A bound for the Laplace transform of the Yi ’s.
Notice that for any 0 ≤ i ≤ m(A)−1, by the definition of i and (3.24), we get that

2−i Ai = 21−i (Ai/2) > 2−(A/2) ≥ (1 ∨ 2c−1
0 ).

Now, by Proposition 1, we get that for any i ∈ [0,m(A)[ and any t ≤ κ(Aγ−1
i ∧

(2i /Ai ))
γ1/γ with κ defined by (3.3),

log E

(
etYi

)
≤ t2

(
v
√

Ai +
(√

abi (2Ai )
1
2 + γ1

2γ + 2bAγ /2i (2Ai )
γ1/γ

)

× exp

(
−1

4

(
c1 Ai 2

−i
)γ1

))2

.

Notice now that i ≤  ≤ A, Ai ≤ A2−i and 2−−1 A ≤ 2−i Ai ≤ 2−A. Taking into
account these bounds and the fact that γ < 1, we then get that for any i in [0,m(A)[
and any t ≤ κ

(
(2i/A)1−γ ∧ (2/A)

)γ1/γ ,

log E

(
etYi

)
≤ t2

(

v
A1/2

2i/2 +
(

21+ γ1
γ

√
b(

√
a + √

b)
A1+ γ1

γ

(2i )
γ
2 + γ1

2γ

)

× exp

(

− cγ1
1

22+γ1

(
A

2

)γ1
))2

:= t2σ 2
2,i . (3.32)

A bound for the Laplace transform of the Zi ’s.
Notice first that for any 1 ≤ i ≤ m(A)− 1, Zi is a centered random variable, such

that

|Zi | ≤
Ai∑

k=1

(∣∣
∣(ϕTi−1 − ϕTi )(X

(i)(k))
∣
∣
∣ + E|(ϕTi−1 − ϕTi )(X

(i)(k))
∣
∣
)
.

Consequently, using (3.29) we then get that ‖Zi‖∞ ≤ 2Ai Ti−1 ≤ c4 Aγ1/γ

i . In addi-
tion, since |(ϕTi−1 −ϕTi )(x)| ≤ (Ti−1−Ti ) 1 Ix>Ti , and the random variables (X (i)(k))
satisfy (2.7), by the definition of Ti , we get that
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E|Zi |2 ≤ (2Ai Ti−1)
2a−1τ ∗(c−1/γ1 Ai ) ≤ c2

4 A2γ1/γ

i exp(−Aγ1
i ).

Hence applying (3.18) to the random variable Zi , we get for any positive t ,

E exp(t Zi ) ≤ 1 + t2g(c4t Aγ1/γ

i )c2
4 A2γ1/γ

i exp(−Aγ1
i ).

Now, since Ai ≤ A2−i , for any positive real t satisfying t ≤ (2c4)
−1(2i/A)γ1(1−γ )/γ ,

we have that c4t Aγ1/γ

i ≤ Aγ1
i /2. Since g(x) ≤ ex for x ≥ 0, we infer that for

t ≤ (2c4)
−1(2i/A)γ1(1−γ )/γ ,

log E exp(t Zi ) ≤ c2
4t2(2−i A)2γ1/γ exp(−Aγ1

i /2).

By taking into account that for any 1 ≤ i ≤ m(A) − 1, Ai ≥ Am(A)−1 > A2− (by
definition of m(A)), it follows that for any i in [1,m(A)[ and any positive t satisfying
t ≤ (2c4)

−1(2i/A)γ1(1−γ )/γ ,

log E exp(t Zi ) ≤ t2
(

c4(2
−i A)γ1/γ exp(−(A2−)γ1/4)

)2 := t2σ 2
3,i . (3.33)

End of the proof. Let

C =c4

(
A

2

)γ1/γ

+ 1

κ

m(A)−1∑

i=0

((
A

2i

)1−γ
∨ A

2

)γ1/γ

+ 2c4

m(A)−1∑

i=1

(
A

2i

)γ1(1−γ )/γ
,

and

σ = σ1 +
m(A)−1∑

i=0

σ2,i +
m(A)−1∑

i=1

σ3,i ,

where σ1, σ2,i and σ3,i are respectively defined in (3.31), (3.32) and (3.33).
Notice that m(A) ≤  ≤ 2 log A/ log 2. We choose now  = inf{ j ∈ N : 2 j ≥

Aγ (log A)γ /γ1}. This selection is compatible with (3.24) if

(2 ∨ 4c−1
0 )(log A)γ /γ1 ≤ A1−γ . (3.34)

Now we use the fact that for any positive δ and any positive u, δ log u ≤ uδ . Hence if
A ≥ 3,

(2 ∨ 4c−1
0 )(log A)γ /γ1 ≤ (2 ∨ 4c−1

0 ) log A ≤ 2(1 − γ )−1(2 ∨ 4c−1
0 )A(1−γ )/2,

which implies that (3.34) holds as soon as A ≥ μ where μ is defined by (3.21). It
follows that

C ≤ ν−1 Aγ1(1−γ )/γ . (3.35)
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In addition

σ ≤ 5v
√

A + 5
√

b(
√

a + √
b)22γ1/γ A1+γ1/γ exp

(

− cγ1
1

22+γ1
(A2−)γ1

)

+c4 Aγ1/γ exp

(
−1

4
(A2−)γ1

)
.

Consequently, since A2− ≥ 1
2 A1−γ (log A)−γ /γ1 , there exists positive constants ν1

and ν2 depending only on a, b, c, γ and γ1 such that

σ 2 ≤ A
(

50v2 + ν1 exp(−ν2 Aγ1(1−γ )(log A)−γ )
)

= AV (A). (3.36)

Starting from the decomposition (3.28) and the bounds (3.31 ), (3.32) and (3.33), we
aggregate the contributions of the terms by using Lemma 3 given in the appendix.
Then, by taking into account the bounds (3.35) and (3.36), Proposition 2 follows. ��

3.2 Proof of Theorem 1

Let us give the idea of the proof. We first use the classical Bernstein-type blocking
arguments on partial sums of suitably truncated variables at a level M ; namely, the
index set {1, . . . , n} is partitioned into blocks of size A. Then the blocks of even
indexes are approximated by independent blocks with same marginals using the exact
coupling coefficient in L

1 (see Lemma 5 in [14]); and similarly for the blocks of odd
indexes. We then bound the log-Laplace transforms of each block of size A with the
help of Proposition 2. The end of the proof consists in choosing optimally both A
and M .

• If λ ≥ bnγ1/γ , note that sup(|S1|, |S2|, . . . , |Sn|) ≤ |X1| + |X2| + · · · + |Xn|.
Hence

P

(

sup
j≤n

|S j | ≥ λ

)

≤
n∑

i=1

P(|Xi | ≥ λ/n) ≤ ne exp

(
− λγ2

(bn)γ2

)
∧ 1

≤ √
ne exp

(
− λγ2

2(bn)γ2

)
.

Now, if λ ≥ bnγ1/γ , then (λ/(nb))γ2 ≥ (λ/b)γ . Hence, for any n ≥ 3,

P

(

sup
j≤n

|S j | ≥ λ

)

≤ n exp

(
− λγ

2bγ

)
.
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• Let ζ = μ∨(2/γ2)
1/γ1 whereμ is defined by (3.21). Assume that a∨b(4ζ )γ1/γ ≤

λ ≤ bnγ1/γ . Let p be a real in [1, n
2 ], to be chosen later on. Let

A =
[

n

2p

]
, k =

[ n

2A

]
and M = H−1

(
a−1τ ∗

(
c
− 1
γ1 A

))
.

For any set of natural numbers K , denote

S̄M (K ) =
∑

i∈K

X̄ M (i) where X̄ M (k) is defined by (3.1).

For i integer in [1, 2k], let Ii = {1 + (i − 1)A, . . . , i A}. Let also I2k+1 = {1 +
2k A, . . . , n}. Set

S̄1( j) =
j∑

i=1

S̄M (I2i−1) and S̄2( j) =
j∑

i=1

S̄M (I2i ).

We then get the following inequality

sup
j≤n

|S j | ≤ sup
j≤k+1

|S̄1( j)| + sup
j≤k

|S̄2( j)| + 2AM +
n∑

i=1

|Xi − X̄ M (i)|. (3.37)

Now

P

(
n∑

i=1

|Xi − X̄ M (i)| ≥ λ

)

≤ 1

λ

n∑

i=1

E|Xi − X̄ M (i)| ≤ 2n

λ

∞∫

M

H(x)dx .

Now recall that log H(x) = 1−(x/b)γ2 . It follows that the function x → log(x2 H(x))
is nonincreasing as soon as x ≥ b(2/γ2)

1/γ2 . Hence, for M ≥ b(2/γ2)
1/γ2 ,

∞∫

M

H(x)dx ≤ M2 H(M)

∞∫

M

dx

x2 = M H(M).

Whence

P

(
n∑

i=1

|Xi − X̄ M (i)| ≥ λ

)

≤ 2nλ−1 M H(M) for M ≥ b(2/γ2)
1/γ2 . (3.38)

Using (3.38) together with our selection of M , we get for all positive λ that

P

(
n∑

i=1

|Xi − X̄ M (i)| ≥ λ

)

≤ 2nλ−1 M exp(−Aγ1) for A ≥ (2/γ2)
1/γ1 .
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By using Lemma 5 in Dedecker and Prieur [14], we get the existence of independent
random variables (S̄∗

M (I2i ))1≤i≤k with the same distribution as the random variables
S̄M (I2i ) such that

E|S̄M (I2i )− S̄∗
M (I2i )| ≤ Aτ(A) ≤ a A exp

(−cAγ1
)
. (3.39)

The same is true for the sequence (S̄M (I2i−1))1≤i≤k+1. Hence for any positive λ such
that λ ≥ 2AM ,

P

(

sup
j≤n

|S j | ≥ 6λ

)

≤ aλ−1 A(2k + 1) exp
(−cAγ1

) + 2nλ−1 M exp(−Aγ1)

+P

⎛

⎝ max
j≤k+1

∣
∣
∣
∣
∣
∣

j∑

i=1

S̄∗
M (I2i−1)

∣
∣
∣
∣
∣
∣
≥ λ

⎞

⎠

+P

⎛

⎝max
j≤k

∣
∣
∣
∣
∣
∣

j∑

i=1

S̄∗
M (I2i )

∣
∣
∣
∣
∣
∣
≥ λ

⎞

⎠ .

For any positive t , due to the independence and since the variables are centered,
(exp(t S̄M (I2i )))i is a submartingale. Hence Doob’s maximal inequality entails that
for any positive t ,

P

⎛

⎝max
j≤k

j∑

i=1

S̄∗
M (I2i ) ≥ λ

⎞

⎠ ≤ e−λt
k∏

i=1

E
(
exp(t S̄M (I2i ))

)
.

To bound the Laplace transform of each random variable S̄M (I2i ), we apply Propo-
sition 2 to the sequences (Xi+s)i∈Z for suitable values of s. Hence we derive that,
if A ≥ μ then for any positive t such that t < νAγ1(γ−1)/γ (where ν is defined by
(3.22)),

k∑

i=1

log E
(
exp(t S̄M (I2i ))

) ≤ Akt2 V (A)

1 − tν−1 Aγ1(1−γ )/γ . (3.40)

Obviously the same inequalities hold true for the sums associated to (−Xi )i∈Z. Now
the usual Chernoff computations for the optimization of t in (3.40) lead to

P

⎛

⎝max
j≤k

∣
∣
∣
∣
∣
∣

j∑

i=1

S̄∗
M (I2i )

∣
∣
∣
∣
∣
∣
≥ λ

⎞

⎠ ≤ 2 exp

(
− λ2

4AkV (A)+ 2λν−1 Aγ1(1−γ )/γ

)
.

123



A Bernstein type inequality and moderate deviations 461

Similarly, we obtain that

P

⎛

⎝ max
j≤k+1

∣
∣
∣
∣
∣
∣

j∑

i=1

S̄∗
M (I2i−1)

∣
∣
∣
∣
∣
∣
≥λ

⎞

⎠≤2 exp

(
− λ2

4A(k+1)V (A)+2λν−1 Aγ1(1−γ )/γ

)
.

Choose now p = n(b−1λ)−γ /γ1 . It follows that 2A ≤ (λ/b)γ /γ1 and, since M ≤
b(2A)γ1/γ2 , we obtain that 2AM ≤ b(2A)γ1/γ ≤ λ. Also, since λ/b ≥ (4ζ )γ1/γ ,
p ≤ n/4 and consequently A ≥ n/(4p) ≥ (b−1λ)γ/γ1/4 ≥ ζ ≥ μ. Hence we get
that for a ∨ b(4ζ )γ1/γ ≤ λ ≤ bnγ1/γ ,

P

(

sup
j≤n

|S j | ≥ 6λ

)

≤ 1 ∧
(

4n exp

(
−(c ∧ 1)

λγ

4γ1 bγ

)

+ 4 exp

(
− λ2

4nB(λ)+ 2λ2−γ ν−1bγ−1

))
,

with B(λ) = 50v2 + ν1 exp(−ν̃2λ
γ (1−γ )(log λ)−γ ), where ν̃2 is a positive constant

depending on a, b, c, γ and γ1. The result follows from the previous bound.

• To end the proof, we mention that if λ ≤ a ∨ b(4ζ )γ1/γ , then

P

(

sup
j≤n

|S j | ≥ λ

)

≤ 1 ≤ e exp

(
− λγ

aγ ∨ bγ (4ζ )γ1

)
,

which is less than n exp(−λγ /C1) as soon as n ≥ 3 and C1 ≥ aγ ∨ bγ (4ζ )γ1 .

��

3.3 Proof of Remark 3

Using the Notation 1 and setting Wi = ϕM (Xi ) we first bound Cov(Wi ,Wi+k)).
Applying (4.2) of Proposition 1 in Dedecker and Doukhan [12], we derive that, for
any positive k,

|Cov(Wi ,Wi+k)| ≤ 2

γ (Mi ,Wi+k )/2∫

0

Q|Wi | ◦ G|Wi+k |(u)du

where

γ (Mi ,Wi+k) = ‖E(Wi+k |Mi )− E(Wi+k)‖1 ≤ τ(k),

since x �→ ϕM (x) is 1-Lipschitz. Now for any j , Q|W j | ≤ Q|X j | ≤ Q, implying that
G|W j | ≥ G, where G is the inverse function of u → ∫ u

0 Q(v)dv. Taking j = i and
j = i + k, we get that
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|Cov(Wi ,Wi+k)| ≤ 2

τ(k)/2∫

0

Q|Xi | ◦ G(u)du.

Making the change-of-variables u = G(v) we also have

|Cov(Wi ,Wi+k)| ≤ 2

G(τ (k)/2)∫

0

Q Xi (u)Q(u)du, (3.41)

proving the remark.

3.4 Proof of Theorem 2

We first use Theorem 1 allowing essentially us to reduce the proof of the MDP to the
one of bounded random variables. For any n ≥ 1, let T = Tn where (Tn) is a sequence
of real numbers greater than 1 such that limn→∞ Tn = ∞, that will be specified later.
We truncate the variables at the level Tn . So using the Notation 1, we consider

X ′
i = ϕTn (Xi )− EϕTn (Xi ), W ′

i = Xi − ϕTn (Xi ) and X ′′
i = Xi − X ′

i .

Let S′
n = ∑n

i=1 X ′
i and S′′

n = ∑n
i=1 X ′′

i . To prove the result, by exponentially equiva-
lence lemma in Dembo and Zeitouni [22, Theorem 4.2.13, p. 130], it suffices to prove
that for any η > 0,

lim sup
n→∞

an log P

(√
an

σn
|S′′

n | ≥ η

)
= −∞, (3.42)

and

{σ−1
n S′

n} satisfies (2.9) with the rate function I (t) = t2/2. (3.43)

To prove (3.42), we first notice that |x − ϕT (x)| = (|x | − T )+. Hence Q|W ′
i | ≤

(Q −T )+ and, denoting by V ′′
Tn

the upper bound for the variance of S′′
n (corresponding

to V for the variance of Sn) we have, by Remark 3,

V ′′
Tn

≤
1∫

0

(Q(u)− Tn)
2+du + 4

∑

k>0

τW ′ (k)/2∫

0

(Q(GTn (v))− Tn)+dv.

where GT is the inverse function of x → ∫ x
0 (Q(u) − T )+du and the coefficients

τW ′(k) are the τ -mixing coefficients associated to (W ′
i )i . Next, since x → x − ϕT (x)

is 1-Lipschitz, we have that τW ′(k) ≤ τX (k) = τ(k). Moreover, GT ≥ G, because
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(Q − T )+ ≤ Q. Since Q is nonincreasing, it follows that

V ′′
Tn

≤
1∫

0

(Q(u)− Tn)
2+du + 4

∑

k>0

τ(k)/2∫

0

(Q(G(v))− Tn)+dv.

Hence

lim
n→+∞ V ′′

Tn
= 0. (3.44)

The sequence (X ′′
i ) satisfies (2.6) and we now prove that it satisfies also (2.7) for n

large enough. With this aim, we first notice that

∣
∣E(ϕTn (Xi ))

∣
∣ ≤ E|W ′

i | ≤
∞∫

Tn

H(x)dx < b for n large enough.

Hence for n large enough, |X ′′
i | ≤ (|Xi | − Tn)+ + b ≤ b ∨ |Xi | provided that Tn ≥ b.

Then for n large enough, the sequence (X ′′
i ) satisfies (2.7) and we can apply Theorem 1

to the sequence (X ′′
i ): for any η > 0, and n large enough

P

(√
an

σ 2
n

|S′′
n | ≥ η

)
≤ n exp

(

−η
γ σ

γ
n

C1a
γ
2

n

)

+ exp

(

− η2σ 2
n

C2an(1 + nV ′′
Tn
)

)

+ exp

⎛

⎝− η2σ 2
n

C3nan
exp

⎛

⎝ ηδσ δn

C4a
δ
2
n

⎞

⎠

⎞

⎠ ,

where δ = γ (1 − γ )/2. This proves (3.42), since an → 0, annγ /(2−γ ) → ∞,
limn→∞ V ′′

Tn
= 0 and lim infn→∞ σ 2

n /n > 0.

We turn now to the proof of (3.43). Let pn = [n1/(2−γ )] and qn = δn pn where
δn is a sequence of integers tending to zero and such that δγ1

n nγ1/(2−γ )/ log n → ∞
and δγ1

n annγ1/(2−γ ) → ∞ (this is always possible since γ1 ≥ γ and by assumption
annγ /(2−γ ) → ∞). Let now mn = [n/(pn + qn)]. We divide the variables {X ′

i } in big
blocks of size pn and small blocks of size qn , in the following way: Let us set for all
1 ≤ j ≤ mn ,

Y j,n =
( j−1)(pn+qn)+pn∑

i=( j−1)(pn+qn)+1

X ′
i and Z j,n =

j (pn+qn)∑

i=( j−1)(pn+qn)+pn+1

X ′
i .
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Then we have the following decomposition:

S′
n =

mn∑

j=1

Y j,n +
mn∑

j=1

Z j,n +
n∑

i=mn(pn+qn)+1

X ′
i . (3.45)

For any j = 1, . . . ,mn , let now I (n, j) = {( j − 1)(pn + qn) + 1, . . . , ( j − 1)
(pn + qn) + pn}. These intervals are of cardinal pn . Let n = inf{k ∈ N

∗, 2k ≥
ε−1

n pγ /2n a−1/2
n }, where εn a sequence of positive numbers tending to zero and satisfying

ε2
nannγ /(2−γ ) → ∞. (3.46)

For each j ∈ {1, . . . ,mn}, we construct discrete Cantor sets, K (n)
I (n, j), as described in

the proof of Proposition 1 with A = pn ,  = n , and the following selection of c0,

c0 = εn

1 + εn

2(1−γ )/γ − 1

21/γ − 1
.

Notice that clearly with the selections of pn and n , pn2−n → ∞. In addition with
the selection of c0 we get that for any 1 ≤ j ≤ mn ,

Card(K (n)
I (n, j))

c ≤ εn pn

1 + εn

and

K (n)
I (n, j) =

2n⋃

i=1

In ,i (pn, j),

where the In ,i (pn, j) are disjoint sets of consecutive integers, each of same cardinal
such that

pn

2n (1 + εn)
≤ CardIn ,i (pn, j) ≤ pn

2n
. (3.47)

With this notation, we derive that

mn∑

j=1

Y j,n =
mn∑

j=1

S′ (K (n)
I (n, j)

)
+

mn∑

j=1

S′ ((K (n)
I (n, j))

c
)
. (3.48)

Combining (3.45) with (3.48), we can rewrite S′
n as follows

S′
n =

mn∑

j=1

S′ (K (n)
I (n, j)

)
+

rn∑

k=1

X̃i , (3.49)
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where rn = n − mnCardK (n)
I (n,1) and the X̃i are obtained by renumbering the X ′

i and
satisfy (2.6 ) and (2.7) with the same constants. Since rn = o(n), applying Theorem 1
and using the fact that lim infn→∞ σ 2

n /n > 0, we get that for any η > 0,

lim sup
n→∞

an log P

(√
an

σn

rn∑

k=1

X̃i ≥ η

)

= −∞. (3.50)

Hence to prove (3.43), it suffices to prove that

⎧
⎨

⎩
σ−1

n

mn∑

j=1

S′ (K (n)
I (n, j)

)
⎫
⎬

⎭
satisfies (2.9) with the rate function I (t) = t2/2. (3.51)

With this aim, we choose now Tn = ε
−1/2
n where εn is defined by (3.46).

By using Lemma 5 in Dedecker and Prieur [14], we get the existence of indepen-
dent random variables (S∗(K (n)

I (n, j)))1≤ j≤mn with the same distribution as the random

variables S′(K (n)
I (n, j)) such that

mn∑

j=1

E|S′(K (n)
I (n, j))− S∗(K (n)

I (n, j))| ≤ τ(qn)

mn∑

j=1

CardK (n)
I (n, j).

Consequently, since
∑mn

j=1 CardK (n)
I (n, j) ≤ n, we derive that for any η > 0 and any

n ≥ 22−γ ,

an log P

⎛

⎝
√

an

σn
|

mn∑

j=1

(S′(K (n)
I (n, j))− S∗(K (n)

I (n, j)))| ≥ η

⎞

⎠

≤ an log

(
an

√
an

ησn
exp

(

−cδγ1
n nγ1/(2−γ )

2γ1

))

,

which tends to −∞ by the fact that lim infn σ
2
n /n > 0 and the selection of δn . Hence

the proof of the MDP for {σ−1
n

∑mn
j=1 S′(K (n)

I (n, j)

)} is reduced to proving the MDP for

{σ−1
n

∑mn
j=1 S∗(K (n)

I (n, j)

)}. By Ellis Theorem, to prove (3.51) it remains then to show
that, for any real t ,

an

mn∑

j=1

log E exp

(
t S′ (K (n)

I (n, j)

)/√
anσ 2

n

)
→ t2

2
as n → ∞. (3.52)

As in the proof of Proposition 1, we decorrelate step by step. Using Lemma 2 and
taking into account the fact that the variables are centered together with the inequality
(3.11), we obtain, proceeding as in the proof of Proposition 1, that for any real t ,
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∣
∣
∣
∣
∣
∣

mn∑

j=1

log E exp

(
t S′ (K (n)

I (n, j)

)/√
anσ 2

n

)

−
mn∑

j=1

2n∑

i=1

log E exp

(
t S′ (In ,i (pn, j)

)
/

√
anσ 2

n

)
∣
∣
∣
∣
∣
∣

≤ a|t |mn pn√
anσ 2

n

(

exp

(

−c
cγ1

0

4

pγ1
n

2nγ1
+ 2

|t |
√
εnanσ 2

n

pn

2γ n

)

+
kn∑

j=0

exp

(

−c
cγ1

0

4

pγ1
n

2 jγ1/γ
+ 2

|t |
√
εnanσ 2

n

pn

2 j

)⎞

⎠ ,

where kn = sup{ j ∈ N, j/γ < n}. By the selection of pn and n , since lim infn→∞
σ 2

n /n > 0 and ε2
nannγ /(2−γ ) → ∞, we get that 2−γ1n 2γ n pγ1−1

n
√
εnanσ 2

n tends to
∞ as n goes to ∞. Consequently for n large enough, there exist positive constants K1
and K2 depending on c, γ and γ1 such that

an

∣
∣
∣
∣
∣
∣

mn∑

j=1

log E exp

(
t S′ (K (n)

I (n, j)

)/√
anσ 2

n

)

−
mn∑

j=1

2n∑

i=1

log E exp

(
t S′ (In ,i (pn, j)

)/√
anσ 2

n

)
∣
∣
∣
∣
∣
∣

≤aK1|t |√ann log(n) exp

(
−K2

(
ε2

nannγ /(2−γ ))γ /2 nγ (1−γ )/(2−γ )
)
, (3.53)

which converges to zero by the selection of εn .
Hence (3.52) will hold if we prove that for any real t

an

mn∑

j=1

2n∑

k=1

log E exp
(
t S′

(
In ,i (pn, j)/

√
anσ 2

n

)
→ t2

2
as n → ∞. (3.54)

With this aim, we first notice that, by the selection of n and the fact that εn → 0,

‖S′(In ,i (pn, j)‖∞ ≤ 2Tn2−n pn = o(
√

nan) = o

(√
σ 2

n an

)
. (3.55)
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In addition, since limn V ′′
Tn

= 0 and the fact that lim infn σ
2
n /n > 0, we have

limn σ
−2
n VarS′

n = 1. Notice that by (3.49) and the fact that rn = o(n),

VarS′
n = E

⎛

⎝
mn∑

j=1

2n∑

i=1

S′(In ,i (pn, j))

⎞

⎠

2

+ o(n) as n → ∞.

Also, straightforward computations as in the proof of Remark 3 show that under (2.6)
and (2.7),

E

⎛

⎝
mn∑

j=1

2n∑

i=1

(S′(In ,i (pn, j)))

⎞

⎠

2

=
mn∑

j=1

2n∑

i=1

E

(
S′2 (In ,i (pn, j)

)) + o(n) as n → ∞.

Hence

lim
n→∞ (σn)

−2
mn∑

j=1

2n∑

i=1

E

(
S′2 (In ,i (pn, j)

)) = 1. (3.56)

Consequently (3.54) holds by taking into account (3.55) and (3.56) and by using
Lemma 2.3 in Arcones [3]. ��

4 Appendix

4.1 Technical lemmas

We first give the following decoupling inequality.

Lemma 2 Let Y1, . . . ,Yp be real-valued random variables each a.s. bounded by M.
For every i ∈ [1, p], let Mi = σ(Y1, . . . ,Yi ) and for i ≥ 2, let Y ∗

i be a random
variable independent of Mi−1 and distributed as Yi . Then for any real t ,

∣
∣
∣
∣
∣
E exp

(

t
p∑

i=1

Yi

)

−
p∏

i=1

E exp(tYi )

∣
∣
∣
∣
∣
≤ |t | exp(|t |Mp)

p∑

i=2

E|Yi − Y ∗
i |.

In particular, we have for any real t ,

∣
∣
∣
∣
∣
E exp

(

t
p∑

i=1

Yi

)

−
p∏

i=1

E exp(tYi )

∣
∣
∣
∣
∣
≤ |t | exp(|t |Mp)

p∑

i=2

τ(σ (Y1, . . . ,Yi−1), Yi ),

where τ is defined by (2.2).
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Proof of Lemma 2 Set Uk = Y1 + Y2 + · · · + Yk . We first notice that

E

(
etUp

)
−

p∏

i=1

E

(
etYi

)
=

p∑

k=2

(
E

(
etUk

)
−E

(
etUk−1

)
E

(
etYk

)) p∏

i=k+1

E

(
etYi

)

(4.1)

with the convention that the product from p + 1 to p has value 1. Now

|E exp(tUk)− E exp(tUk−1)E exp(tYk)|
≤ ‖ exp(tUk−1)‖∞‖E(etYk − etY ∗

k |Mk−1)‖1.

Using (3.12) we then derive that

|E exp(tUk)− E exp(tUk−1)E exp(tYk)| ≤ |t | exp(|t |k M)‖Yk − Y ∗
k ‖1. (4.2)

Since the variables are bounded by M , starting from (4.1) and using (4.2), the result
follows. ��

One of the tools we use repeatedly is the technical lemma below, which provides
bounds for the log-Laplace transform of any sum of real-valued random variables.

Lemma 3 Let Z0, Z1, . . . be a sequence of real valued random variables. Assume
that there exist positive constants σ0, σ1, . . . and c0, c1, . . . such that, for any positive
i and any t in [0, 1/ci [,

log E exp(t Zi ) ≤ (σi t)
2/(1 − ci t).

Then, for any positive n and any t in [0, 1/(c0 + c1 + · · · + cn)[,

log E exp(t (Z0 + Z1 + · · · + Zn)) ≤ (σ t)2/(1 − Ct),

where σ = σ0 + σ1 + · · · + σn and C = c0 + c1 + · · · + cn.

Proof of Lemma 3 Lemma 3 follows from the case n = 1 by induction on n. Let L be
the log-Laplace of Z0 + Z1. Define the functions γi by

γi (t) = (σi t)
2/(1 − ci t) for t ∈ [0, 1/ci [ and γi (t) = +∞ for t ≥ 1/ci .

For u in ]0, 1[, let γu(t) = uγ1(t/u)+(1−u)γ0(t/(1−u)). From the Hölder inequality
applied with p = 1/u and q = 1/(1−u), we get that L(t) ≤ γu(t) for any nonnegative
t . Now, for t in [0, 1/C[, choose u = (σ1/σ)(1 − Ct) + c1t (here C = c0 + c1 and
σ = σ0 + σ1). With this choice 1 − u = (σ0/σ)(1 − Ct)+ c0t , so that u belongs to
]0, 1[ and L(t) ≤ γu(t) = (σ t)2/(1 − Ct), which completes the proof of Lemma 3.

��
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4.2 Proof of Corollary 3

The proof of Corollary 3 is based on the following proposition together with Remark 5.

Proposition 3 Assume that (Yi )i∈Z belongs to ARL(C, δ, η). Then the probability μ
satisfies

∫
exp(ω|x |η(1−δ))μ(dx) < +∞, (4.3)

for any positive ω < λ(8(1 − δ))−ηCη.
Furthermore there exist positive constants a and c such that the following bound holds
for the τ -mixing coefficient associated to the stationary Markov chain (Yi )i∈Z:

τ(n) ≤ a exp(−cnη(1−δ)/(η(1−δ)+δ)). (4.4)

Remark 5 Due to the definition of τ , if h is a 1-Lipschitz function, then the τ -mixing
coefficients (τh(Y )(n))n≥1 associated to the sequence (h(Yi ))i∈Z also satisfy (4.4). On
an other hand, according to Remark 2, (4.3) entails that if |g(x)| ≤ c(1 + |x |ζ ) the
process (g(Yi )− E(g(Yi )))i∈Z satisfies (2.7) for some b > 0 and γ2 = η(1 − δ)/ζ .

Proof of Proposition 3 We leave to the reader the case δ = 0, which is easy to treat.
Throughout δ > 0. We start by proving (4.3). Let K be the transition kernel of the
stationary Markov chain (Yi )i∈Z belonging to ARL(C, δ, η). For n > 0, we write
K ng for the function

∫
g(y)K n(x, dy).

Let k0 = inf{k ∈ N
∗ : kη(1 − δ) ≥ 1}. To prove (4.3) it suffices to show that

∑

k≥k0

ωk

k!
∫

|x |kη(1−δ)μ(dx) < +∞. (4.5)

Let S = kη(1 − δ)+ δ and V (x) = |x |S . Arguing as in the proof of Proposition 2 of
Dedecker and Rio [15], we get that

[K V (x)]1/S

|x | ≤ 1 + 1

|x |δ
(

C

(1 − δ)

[
1

|x |1−δ −
(

1 + 1

|x |
)1−δ

+ (1 − δ)‖ε0‖S

C |x |1−δ

])

.

Then for |x | ≥ RS = (
2C−1(1 − δ)‖ε0‖S + 2

)1/(1−δ)
,

|x |−1[K V (x)]1/S ≤ 1 − C(2 − 2δ)−1|x |−δ.

On the other hand, for x ∈ [−RS, RS], [K V (x)]1/S ≤ | f (x)|+‖ε0‖S ≤ RS +‖ε0‖S .
Furthermore, ‖ε0‖S ≤ (δ + (1 − δ)‖ε0‖S)

1/(1−δ) ≤ RS . Therefore, for any S ≥ 1,

K V (x) ≤ V (x)− C(2 − 2δ)−1|x |S−δ + 2S RS
S .
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Integrating w.r.t. μ this inequality gives for S ≥ 1,

μ(K V ) ≤ μ(V )− C(2 − 2δ)−1
∫

|x |S−δμ(dx)+ 2S RS
S .

Since μ(K V ) = μ(V ), it follows that for S ≥ 1,

C

2(1 − δ)

∫
|x |S−δμ(dx) ≤ 2S RS

S ≤ 2S/(1−δ)RS
S .

Now

RS
S ≤ 4S/(1−δ)

(

1 +
(

1 − δ

C
‖ε0‖S

)S/(1−δ))

≤ 4S/(1−δ) +
(

4(1 − δ)

C

)S/(1−δ)
E(|ε0|S/(1−δ)).

For k ≥ k0 and S = kη(1 − δ)+ δ, we get that

C

2(1 − δ)

∫
|x |S−δμ(dx) ≤ 8kη+β +

(
8(1 − δ)

C

)kη+β
E(|ε0|kη+β),

where β = δ/(1 − δ). Hence

C

2(1 − δ)

∑

k≥k0

ωk

k!
∫

|x |kη(1−δ)μ(dx)

≤ 8β exp(ω8η)+ (8C−1(1 − δ))βE

(
|ε0|β exp

(
ω(8C−1(1 − δ))η|ε0|η

))
< ∞,

provided that ω < λ(8(1 − δ))−ηCη. Consequently (4.5) holds and so does (4.3).
We turn now to the proof of (4.4). We denote by (Y x

n )n≥0 the chain starting from
Y0 = x . According to inequality (3.5) in Dedecker and Prieur [14], for jk > · · · >
j1 > 0,

τ(σ (Y0), (Y j1 , . . . ,Y jk )) ≤
k∑

l=1

∫ ∫
‖Y x

jl − Y y
jl
‖1μ(dx)μ(dy). (4.6)

Now we use the same scheme of proof than the one of Proposition 3 in Dedecker and
Rio [15]. Since |Y x

n − Y y
n | = | f (Y x

n−1)− f (Y y
n−1)|, we have

|Y x
n − Y y

n | ≤
(

1 − C

(1 + max(|Y x
n−1|, |Y y

n−1|))δ
)

|Y x
n−1 − Y y

n−1|. (4.7)

123



A Bernstein type inequality and moderate deviations 471

Setα(t)=1−C(1+t)−δ and�k =|ε1|+ · · · +|εk |. Noting that max(|Y x
n−1|, |Y y

n−1|)≤|x | + |y| +�n−1, and iterating (4.7) n times, we get

|Y x
n − Y y

n | ≤ αn(|x | + |y| +�n−1)|x − y|.

Then setting In(x, y) := E(αn(|x | + |y| +�n−1)), we get

τ(σ (Y0), (Y j1 , . . . ,Y jk )) ≤
k∑

l=1

∫ ∫
I jl (x, y)μ(dx)μ(dy). (4.8)

Setting �n−1 = �n−1 − (n − 1)E|ε0|, we first write:

In(x, y)=n

1∫

0

P

(
�n−1> [C/u]1/δ−[1+|x |+|y|+(n−1)E|ε0|]

)
(1−u)n−1du.

Set An(x, y) = C[2(1 + |x | + |y| + (n − 1)E|ε0|)]−δ . We have

In(x, y) ≤ (1 − An(x, y))n + n

An(x,y)∫

0

P

(
2�n−1 > [C/u]1/δ

)
(1 − u)n−1du

:= I (1)n (x, y)+ I (2)n (x, y) (4.9)

We first control
∫ ∫

I (1)n (x, y)|x − y|μ(dx)μ(dy). Set Bn(x) = C[4(1+|x |+ (n −1)
E|ε0|)]−δ . Then we have

∫
I (1)n (x, y)|x − y|μ(dy) ≤ (1 − Bn(x))

n
∫

|x − y|μ(dy)

+ n

Bn(x)∫

0

[∫
|x−y|1(4|y|>[C/u]1/δ)μ(dy)

]
(1−u)n−1du.

Let 0 < ω < λ(8(1 − δ))−ηCη. Since by (4.3), x → exp(ω|x |η(1−δ)) belongs to
L

1(μ), we have the finite upper bound

∫
|x − y|1(4|y|>[C/u]1/δ)μ(dy)

≤ exp

(

−ω
2

(
C

4δu

)η(1−δ)/δ)∫
|x − y| exp

(ω
2

|y|η(1−δ))μ(dy).
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Consequently there exists c > 0 such that, for any positive n,

∫
I (1)n (x, y)|x − y|μ(dy) ≤ (1 − Bn(x))

n
∫

|x − y|μ(dy)

+ exp(−cnη(1−δ)/(η(1−δ)+δ))
∫

|x − y| exp
(ω

2
|y|η(1−δ))μ(dy). (4.10)

Notice that that (1 − Bn(x))n ≤ exp(−nBn(x)). If |x | ≤ n‖ε0‖1,

exp(−nBn(x)) ≤ exp(−Cn(4 + 8n‖ε0‖1)
−δ).

Therefore there exists c > 0, such that

n‖ε0‖1∫

0

(1 − Bn(x))
n
∫

|x − y|μ(dy)μ(dx)

≤ exp(−cn(1−δ))
∫

|x − y|μ(dy)μ(dx). (4.11)

On the other hand, using again the fact that x → exp(ω|x |η(1−δ)) belongs to L
1(μ),

we have the finite upper bound

∫

|x |>n‖ε0‖1

|x |(1 − Bn(x))
nμ(dx)

≤
∞∫

n‖ε0‖1

|x | exp
(ω

2
|x |η(1−δ)) exp

(
−ω

2
|x |η(1−δ) − Cn(1 + 2|x |)−δ

)
μ(dx)

≤ 2 exp(−cnη(1−δ)/(η(1−δ)+δ))
∞∫

0

|x | exp
(ω

2
|x |η(1−δ))μ(dx) (4.12)

where c is a positive constant. Starting from (4.10) and using (4.11) and (4.12), we
derive that there exist positive constants c and K such that

∫ ∫
I (1)n (x, y)|x − y|μ(dy)μ(dx) ≤ K exp(−cnη(1−δ)/(η(1−δ)+δ)) (4.13)

We control now
∫ ∫

I (2)n (x, y)|x − y|μ(dx)μ(dy). Using Borovkov inequality (1.4),
there exist positive constants c1 and c2 depending on C , δ and η such that

P

(
2�n−1 > [C/u]1/δ

)
≤ exp

(
−c1/(nu2/δ)

)
+ n exp

(−c2(1/u)
η/δ

)
.
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Consequently, there exists a positive constant c3 > 0 such that

1∫

0

P

(
2�n−1 > [C/u]1/δ

)
(1 − u)n−1du ≤ 2 exp

(
−c3n

min
(

η
η+δ ,

2−δ
2+δ

))
.

Since η ∈ [0, 1] and δ > 0, min
(

η
η+δ ,

2−δ
2+δ

)
≥ η(1 − δ)/(η(1 − δ)+ δ). Then there

exists c > 0 such that
∫ ∫

I (2)n (x, y)|x − y|μ(dy)μ(dx)

≤ exp(−cnη(1−δ)/(η(1−δ)+δ))
∫

|x − y|μ(dy)μ(dx). (4.14)

Starting from (4.8) and combining (4.9) and (4.13) and (4.14), we get that there exist
positive constants a and c such that

τ(σ (Y0), (Y j1 , . . . ,Y jk )) ≤ ak exp(−cjη(1−δ)/(η(1−δ)+δ)
1 ),

which combined with the definition (2.3) ends the proof of (4.4). ��
Acknowledgments The authors are grateful to the referee and the associate editor for carefully reading
the paper and for numerous suggestions that improved its presentation.
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