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Abstract We observe a random measure N and aim at estimating its intensity s. This
statistical framework allows to deal simultaneously with the problems of estimating
a density, the marginals of a multivariate distribution, the mean of a random vector
with nonnegative components and the intensity of a Poisson process. Our estimation
strategy is based on estimator selection. Given a family of estimators of s based on
the observation of N , we propose a selection rule, based on N as well, in view of
selecting among these. Little assumption is made on the collection of estimators and
their dependency with respect to the observation N need not be known. The procedure
offers the possibility to deal with various problems among which model selection, con-
vex aggregation and construction of T -estimators as studied recently in Birgé (Ann
Inst H Poincaré Probab Stat 42(3):273–325, 2006). For illustration, we shall consider
the problems of estimation, complete variable selection and selection among linear
estimators in possibly non-Gaussian regression settings.
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354 Y. Baraud

1 Introduction

1.1 The statistical setting

Let N1, . . . , Nk be k independent random measures. Each Ni is defined on an abstract
probability space (�, T ,P) and takes its values in the class of positive measures on a
measured space (Xi ,Ai , μi ). Besides, we assume that

E[Ni (A)] =
∫

A

si dμi < +∞, for all A ∈ Ai (1)

for some nonnegative and measurable function si on Xi . We shall call si the inten-
sity of Ni . Equality (1) implies that Ni is finite a.s. and that for all measurable and
nonnegative functions fi on Xi ,

E

⎡
⎢⎣
∫

Xi

fi d Ni

⎤
⎥⎦ =

∫

Xi

fi si dμi . (2)

Our aim is to estimate s = (s1, . . . , sk) from the observation of N = (N1, . . . , Nk).
Throughout, we shall set X = (X1, . . . ,Xk), A = (A1, . . . ,Ak), μ = (μ1, . . . ,

μk) and denote by L the cone of nonnegative and measurable functions t of the form
(t1, . . . , tk) where the ti are nonnegative and integrable functions on (Xi ,Ai , μi ).
Moreover, for f = ( f1, . . . , fk) ∈ L we shall use the notations

∫

X
f d N =

k∑
i=1

∫

Xi

fi d Ni and
∫

X
f dμ =

k∑
i=1

∫

Xi

fi dμi .

Finally, L0 will denote a known subset of L containing the target function s.
This statistical framework allows to deal simultaneously with the more classical

ones given below:

Example 1 (Density Estimation) Consider the problem of estimating a density s on
(X ,A, μ) from the observation of an n-sample X1, . . . , Xn with distribution Ps =
s ·μ. To handle this problem, we shall take k = 1, N = n−1 ∑n

i=1 δXi and L0 the set
of densities on (X ,A) with respect to μ.

Example 2 (Estimation of marginals) Let X1, . . . , Xn be independent random vari-
ables with values in the measured spaces (X1,A1, μ1), . . . , (Xn,An, μn) respectively.
We assume that for all i , Xi admits a density si with respect to μi and our aim is to
estimate s = (s1, . . . , sn) from the observation of X = (X1, . . . , Xn). We shall deal
with this problem by taking k = n and Ni = δXi for i = 1, . . . , n. Note that this
setting includes as a particular case that of the regression framework

Xi = fi + εi , i = 1, . . . , n (3)
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Estimator selection 355

where the fi are unknown real numbers and the εi = Xi − fi are i.i.d. random
variables with known distribution q. In this case si (x) = q(x − fi ) for all i = 1, . . . , n
and the problem of estimating the densities of the Xi amounts to estimating the shift
parameter f = ( f1, . . . , fn).

Example 3 Let X1, . . . , Xn be n independent, nonnegative and integrable random
variables. Our aim is to estimate the function s given by s(i) = E(Xi ) < +∞ for
i ∈ X = {1, . . . , n} on the basis of the observation X = (X1, . . . , Xn). This statis-
tical setting is a particular case of our general one by taking k = 1, A = P(X ), μ
the counting measure on (X ,A), L0 = L and N the measure defined for A ⊂ X by
N (A) = ∑

i∈A Xi .

Among the marginal distributions of X we have in mind, we mention the Binomial or
Gamma among others.

Example 4 (Estimating the intensity of a Poisson process) Consider the problem of
estimating the intensity s of a possibly inhomogeneous Poisson process N on a mea-
surable space (X ,A). We shall assume that s is integrable. This statistical setting is a
particular case of our general one by taking k = 1 and L0 = L.

Hereafter, we shall deal with estimators with values in L0 and to measure their risks,
endow L0 with the distance H defined for t, t ′ in L0 by

H2(t, t ′) = 1

2

∫

X

(√
t − √

t ′
)2

dμ = 1

2

k∑
i=1

∫

Xi

(√
ti −

√
t ′i
)2

dμi .

When k = 1 and t, t ′ are densities with respect toμ, H is merely the Hellinger distance
h between the corresponding probabilities. Given an estimator ŝ of s, i.e. a measurable
function of N with ŝ ∈ L0, we define its risk by E[H2(s, ŝ)].

1.2 An account of the results

We start with an arbitrary collection E = {
ŝλ, λ ∈ �} of estimators based on N

together with a family S of subsets of L0. The family E need not be countable even
though we shall assume so in order to avoid measurability problems. In fact, the reader
can check that the cardinality of E will play no role in our results. In contrast, the fam-
ily S should be countable (we shall use the word countable for finite or countable) and
its complexity is measured by means of a mapping � from S into [1,+∞) satisfying

� =
∑
S∈S

e−�(S) < +∞. (4)

When � = 1, e−� corresponds to a prior distribution on the family S and gives thus
a Bayesian flavor to our statistical procedure. The fact that � is assumed to be not
smaller than 1 (although one usually assumes � ≥ 0) is only here to simplify the
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356 Y. Baraud

presentation of the results. Hereafter, the elements S of S will be called models and
assumed to have finite metric dimensions D(S) (in an appropriate sense).

In the present paper, the problem we consider is that of estimator selection. More
precisely, our aim is to select some estimator ŝ

λ̂
among the collection E from the same

observation N in view of achieving the smallest risk bound over E . For appropriate
choices of E and S, our approach allows us to deal simultaneously with the problems
of model selection, (convex) aggregation and construction of T -estimators. As we
shall see, very little assumptions on the estimators ŝλ will be required and in fact the
way they depend on N need not even be known. Nevertheless, there should be some
connections between the families E and S. Typically, each ŝλ should belong (or at least
should be close enough) to

⋃
S∈S

S. More precisely, we associate to each estimator
ŝλ a (possibly random) subfamily Sλ ⊂ S of approximation models and introduce the
accuracy index of ŝλ with respect to Sλ as the (random) quantity

A(ŝλ,Sλ) = inf
S∈Sλ

inf
t∈S

[
H2(ŝλ, t)+ penλ(t)

]
, (5)

where penλ is a penalty function from
⋃

S∈Sλ
S into R+. Typically, penλ is of the form

penλ (t) = c0τ inf
S∈Sλ(t)

(D(S)+�(S)) , (6)

where c0 is a universal constant in (0, 1 − 1/
√

2), Sλ(t) = {S ∈ Sλ, t ∈ S} and τ is a
scaling parameter depending on the statistical setting (τ is of order 1/n for Example 1
and of order a universal constant for Examples 2, 3 and 4). The quantity A(ŝλ,Sλ)
measures in some sense the complexity of the estimator ŝλ with respect to the collec-
tion Sλ. For a choice of the penalty given by (6), the model Sλ which minimizes (5)
over Sλ achieves the best trade-off between the approximation term inf t∈S H2(ŝλ, t)
and the complexity term τ(D(S)∨�(S)). The selection procedure we propose leads
to an estimator s̃ = ŝ

λ̂
which satisfies the following inequality for some constant

C ∈ (0, 1) which neither depends on τ nor s

CE

[
H2(s, s̃)

]
≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ E
[
A(ŝλ,Sλ)

]}
. (7)

Inequality (7) leads to an oracle inequality as soon as the quantity

E
[
A(ŝλ,Sλ)

] = E

[
inf

S∈Sλ

inf
t∈S

(
H2(ŝλ, t)+ penλ(t)

)]

is not larger that E
[
H2

(
s, ŝλ

)]
up to a universal constant whatever s. Such a property

depends on the choice of the subfamilies Sλ. From a theoretical point of view, the
choices Sλ = S for all λ ∈ � lead to the smallest values of A(ŝλ,Sλ). Nevertheless,
for computational reasons it may be sometimes convenient to reduce the family Sλ to
a smaller number of models.

Selecting among estimators is an old problem in statistics. In density or regres-
sion, most of the statisticians use resampling techniques (cross-validation, V -fold,…).

123



Estimator selection 357

They seem to give satisfactory results in practice but little is known on the theoretical
performances of the resulting choice. In the opposite, we provide a non-asymptotic
risk bound for the estimator we select but more needs to be done to make our procedure
practical. We shall point out the difficulties to be overcome in view of computing the
final estimator s̃ and also describe some situations for which these computations are
indeed feasible.

1.3 Connections with Birgé’s T -estimators

The starting point of this paper originates from a series of papers by Birgé [16–18] pro-
viding a new perspective on estimation theory. His approach relies on ideas borrowed
from old papers by Le Cam [37,38] and Birgé [13–15], showing how to derive good
estimators from families of robust tests between simple hypotheses, and also from
more recent ones about complexity and model selection such as Barron and Cover
[11] and Barron, Birgé and Massart [10]. More precisely, given a model S with a finite
metric dimension, the construction of Birgé’s estimators (called T -estimators) is based
on a good discretization of S and on the use of a robust test in view of selecting among
the discretization points. T -estimators are naturally robust under misspecification and,
from this point of view, may outperform the well-known maximum likelihood esti-
mators which are not. If one considers discretization points as candidate estimators,
T -estimators result from an estimator selection procedure which crucially relies on the
ability of finding a robust test with respect to a given distance d and, to our knowledge,
no general recipe for this is available. Our approach provides a general machinery to
build such robust tests for Hellinger-type distances and allows us to build T -estimators
in various statistical settings, recovering Birgé’s results in the contexts of Examples 1
and 4 and establishing new ones in the cases of Examples 2 and 3. Unlike Birgé’s
approach which allows to select among deterministic points only, ours can deal with
arbitrary collection of estimators.

1.4 Connections with model selection

Consider a collection of models S = {Sm, m ∈ M} (say linear spaces) together with
a mapping � from S into [1,+∞) satisfying (4) and associate to each m ∈ M an
estimator ŝm with values in Sm such that, for some distance d on L0 and some positive
constant C ,

CE

[
d2(s, ŝm)

]
≤ inf

t∈Sm
d2(s, t)+ τD(Sm).

In view of estimating s at best, an ideal choice of m is given by the index m∗, usu-
ally called the oracle, for which ŝm∗ achieves the best possible risk bound among
the collection of estimators

{
ŝm, m ∈ M

}
. In practice, this oracle is inaccessible

since it depends on the unknown parameter s and the art of model selection is to
design a rule solely based on the data in order to mimic ŝm∗ . From this point of view,
the model selection problem is a particular case of that of estimator selection. The
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following oracle-type inequality is typical of what is usually proved in the literature:
for all s ∈ L0

C ′
E

[
d2(s, ŝm̂)

]
≤ inf

m∈M

{
E

[
d2(s, ŝm)

]
+ τ (D(Sm) ∨�(Sm))

}
. (8)

There exist many different ways of designing a selection rule. Some are based on the
minimization of a penalized criterion. For example, let us mention Castellan [24,25]
and Massart [45, Chapter 7] for the problem of estimating a density, Reynaud-Bouret
[48] for that of estimating the intensity of a Poisson process and in the regression
setting Baraud [7], Birgé and Massart [20] and Yang [54] among other references.
Another way, usually called Lepski’s method, appears in a series of papers by Lepski
[39–42] and was originally designed to perform model selection among collections of
nested models. In a more abstract way, Birgé [16] proposed a way of selecting among
T -estimators and closer to ours, Baraud and Birgé [8] suggested to compare pair by
pair histogram-type estimators in the statistical frameworks described in Examples 1
and 4 (among others). Finally, we mention that other procedures based on resampling
have interestingly emerged from the work of Arlot [3,4] and Célisse [27].

Our approach to estimator selection provides an alternative to solve the problem of
model selection. By choosing d = H ,� = M, Sm = {Sm} and penm given by (6) for
all m ∈ M, we have

A(ŝm,Sm) ≤ 2c0τ (D(Sm) ∨�(Sm)), ∀m ∈ M

and it is then straightforward to deduce from (7) an oracle-type inequality such as (8)
for the estimator we select. Compared to the model selection procedures mentioned
above, we shall see that ours possesses the advantage to apply in many statistical set-
tings simultaneously and to require very few assumptions on the collection of models.

1.5 Organization of the paper

The paper is organized as follows. The basic ideas underlying our approach are
described in Sect. 2. The main assumptions on the measure N and the family S are
presented and discussed in Sect. 3 on the basis of Examples 1 to 4. The selection
procedure and the main result can be found in Sect. 4. In Sect. 5 we consider models
S which consist of piecewise constant functions on partitions of X . For the problem
of estimating a density, we give a practical way of choosing the number of cells of
a regular histogram (regular in the sense that each cell contains the same number of
data, with a possible exception for the right-most). In Sect. 6, we deal with mod-
els with bounded metric dimensions and, as an application, handle the problems of
(convex) aggregation and construction of T -estimators. The problem of estimating
the means of nonnegative random variables as presented in Example 3 is tackled in
Sect. 7. We establish there uniform rates of estimation over various classes of means
and provide a lower bound on the minimax estimation rate over classes for which√

s = (
√

s(1), . . . ,
√

s(n)) belong to a given linear space. In Sect. 8, we consider the
regression framework presented in Example 3 and deal with the problems of model
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selection, complete variable selection and that of selecting among linear estimators
under weak integrability properties of the errors. Finally, Sect. 9 is devoted to the
proofs.

Throughout, we use the following notations. The quantity |E | denotes the car-
dinality of a finite set E . For x ∈ R+, �x
 = sup {n ∈ N, n ≤ x}. The Euclidean
norm of R

n is denoted ‖ ‖. We set N
∗ = N\{0}, R

∗+ = R+\{0} and for t ∈ R
∗n+ ,

we denote by
√

t the vector
(√

t1, . . . ,
√

tn
)
. Given a closed convex subset A of an

Hilbert space, 
A denotes the projection operator onto A. For t ∈ L0 and F ⊂ L0,
we set H(t,F) = inf f ∈F H(t, f ) and for y > 0, B(t, y) = {

t ′ ∈ L0, H(t, t ′) ≤ y
}
.

Throughout C,C ′,C ′′, . . . denote constants that may vary from line to line.

2 Basic formulas and basic ideas

The aim of this section is to present the basic formulas and ideas underlying our
approach. For the sake of simplicity, we assume that k = 1 until further notice. For
t ∈ L0, we define ρ(s, t) = ∫

X
√

st dμ. This quantity corresponds to the Hellinger
affinity whenever s and t are densities. The squared distance H2(s, t) is related to
ρ(s, t) by the formula 2H2(s, t) = ∫

X sdμ + ∫
X tdμ − 2ρ(s, t). Throughout, t, t ′

denote two elements of L0 one should think of as estimators of s. One would prefer
t ′ to t if H2(s, t ′) is smaller than H2(s, t) or equivalently if

⎡
⎣ρ(s, t ′)− 1

2

∫

X
t ′dμ

⎤
⎦−

⎡
⎣ρ(s, t)− 1

2

∫

X
tdμ

⎤
⎦ ≥ 0.

Since
∫
X tdμ and

∫
X t ′dμ are both known, deciding whether t ′ is preferable to t

amounts to estimating ρ(s, t) and ρ(s, t ′) in a suitable way. In the following sections,
we present the material that enables us to estimate these quantities on the basis of the
observation N .

2.1 An approximation of ρ(., .)

For a measure ν on (X ,A) and t, r ∈ L0, we set

ρr (ν, t) = 1

2

⎡
⎣ρ(t, r)+

∫

X

√
t

r
dν

⎤
⎦ ≤ +∞ (9)

(using the conventions 0/0 = 0 and a/0 = +∞ for all a > 0). We start with the
following result showing that ρr (s · μ, t) over-approximates ρ(s, t).

Proposition 1 Let s, t, r ∈ L0. We have,

ρr (s · μ, t)− ρ(s, t) = 1

2

∫

X

√
t

r

(√
s − √

r
)2

dμ ≥ 0.
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360 Y. Baraud

Besides, if r = (t + t ′)/2 with t ′ ∈ L0 then

0 ≤ ρr (s · μ, t)− ρ(s, t) ≤ 1√
2

[
H2(s, t)+ H2(s, t ′)

]
. (10)

Proof It follows from the definition of ρr that

2 [ρr (s · μ, t)− ρ(s, t)] =
∫

X

√
tr dμ+

∫

X

√
t

r
sdμ− 2

∫

X

√
st dμ

=
∫

X

√
t

r

(√
s − √

r
)2

dμ.

For the second part, note that (t/r)(x) ≤ 2 for all x ∈ X and therefore ρr (s · μ, t)−
ρ(s, t) ≤ √

2 H2(s, r). It remains to bound H2(s, r) from above. The concav-
ity of the map t �→ √

t implies that ρ(s, r) ≥ [
ρ(s, t)+ ρ(s, t ′)

]
/2 and therefore

2H2(s, r) ≤ H2(s, t)+ H2(s, t ′), which leads to the result. ��
The important point about Proposition 1 (more precisely inequality (10)) lies in the
fact that the constant 1/

√
2 is smaller than 1. This makes it possible to use the (sign

of the) difference

T (s · μ, t, t ′) =
⎡
⎣ρr (s · μ, t ′)− 1

2

∫

X
t ′dμ

⎤
⎦−

⎡
⎣ρr (s · μ, t)− 1

2

∫

X
tdμ

⎤
⎦

with r = (t + t ′)/2 as an alternative benchmark to find which between t and t ′ is the
closest element to s (up to a multiplicative constant). More precisely, we can deduce
from Proposition 1 the following corollary.

Corollary 1 If T (s · μ, t, t ′) ≥ 0, then

H2(s, t ′) ≤
√

2 + 1√
2 − 1

H2(s, t).

Proof Using inequality (10) and the assumption, we have

H2 (s, t ′
)− H2 (s, t) =

⎡
⎣ρ(s, t)− 1

2

∫

X
tdμ

⎤
⎦−

⎡
⎣ρ(s, t ′)− 1

2

∫

X
t ′dμ

⎤
⎦

=
⎡
⎣ρr (s · μ, t)− 1

2

∫

X
tdμ

⎤
⎦−

⎡
⎣ρr (s · μ, t ′)− 1

2

∫

X
t ′dμ

⎤
⎦

+ ρ (s, t)− ρr (s · μ, t)+ ρr
(
s · μ, t ′

)− ρ
(
s, t ′

)

≤ 1√
2

[
H2 (s, t)+ H2 (s, t ′

)]

which leads to the result. ��
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2.2 An estimator of ρr (., .)

Throughout, given t, t ′ ∈ L0, we set

r = t + t ′

2
∈ L0.

The superiority of the quantity ρr (s · μ, t) over ρ (s, t) lies in the fact that the former
can easily be estimated by its empirical counterpart, namely

ρr (N , t) = 1

2

[
ρ(t, r)+

∫ √
t

r
d N

]
. (11)

Note that ρr (N , t) is an unbiased estimator of ρr (s · μ, t) because of (2). Conse-
quently, a natural way of deciding which between t and t ′ is the closest to s is to
consider the test statistic

T (N , t, t ′) =
⎡
⎣ρr (N , t ′)− 1

2

∫

X
t ′dμ

⎤
⎦−

⎡
⎣ρr (N , t)− 1

2

∫

X
tdμ

⎤
⎦ .

Replacing the “ideal” test statistic T (s · μ, t, t ′) by its empirical counterpart leads
to an estimation error given by the process Z(N , ·, ·) defined on L2

0 by

Z(N , t, t ′) = T (N , t, t ′)− T (s · μ, t, t ′)
= [

ρr
(
N , t ′

)− ρr
(
s · μ, t ′

)]− [ρr (N , t)− ρr (s · μ, t)]

=
∫

X
ψ(t, t ′, x)d N −

∫

X
ψ(t, t ′, x)sdμ

where ψ(t, t ′, x) is the function on L2
0 × X with values in [−1/

√
2, 1/

√
2] given by

ψ(t, t ′, x) = 1√
2

[ √
1

1 + t (x)/t ′(x)
−
√

1

1 + t ′(x)/t (x)

]
. (12)

The study of the empirical process Z(N , ·, ·) over the product space S × S′ is at the
core of our techniques.

2.3 The multidimensional case k > 1

In the multidimensional case, the same results can be obtained by reasoning com-
ponent by component. More precisely, the formulas of the above sections extend
by using the convention that for all k-uplets ν = (ν1, . . . , νk) of measures on
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(X1,A1), . . . , (Xk,Ak) respectively,

∫

X
φ(s, t, t ′, r)dν =

k∑
i=1

∫

Xi

φ(si , ti , t ′i , ri )dνi ,

whatever the functions s, t, t ′, r ∈ L0 and mappings φ from R
4+ into R.

3 Assumptions on N and S

Let τ, γ be positive numbers. For (t, t ′) ∈ L2
0 and y > 0, let us set

w2(t, t ′, y) =
[

H2 (s, t)+ H2 (s, t ′
)] ∨ y2.

We assume that the family S and the measure N satisfy the following.

Assumption 1 Let τ and γ be fixed positive numbers and c0 ∈ (0, 1−1/
√

2). For all
pairs (S, S′) ∈ S

2, there exist positive numbers D(S), D(S′) such that for all ξ > 0
and y2 ≥ τ

(
D(S) ∨ D(S′)+ ξ

)
,

P

[
sup

(t,t ′)∈S×S′

Z(N , t, t ′)
w2(t, t ′, y)

> c0

]
≤ γ e−ξ .

This assumption means that for ξ large enough the random process Z(N , t, t ′) is uni-
formly controlled byw2(t, t ′, y) over S×S′ with probability close to 1. As we shall see
on examples, such a property can be derived from concentration inequalities. Under
suitable assumptions, the quantities D(S) measure (in some sense) the massiveness
of the parameter sets S. Assumption 1 is met in the following typical examples.

3.1 Discrete models

When the collection S consists of discrete models S, Assumption 1 holds under mild
conditions on N . The proof of the following proposition is postponed to Sect. 9.1.

Proposition 2 Let a, b, c and M be nonnegative numbers and c0 ∈ (0, 1 − 1/
√

2).
Assume that N satisfies for all y, ξ > 0

sup
t,t ′∈B(s,y)

P
[
Z(N , t, t ′) > ξ

] ≤ b exp

[
− aξ2

y2 + cξ

]
. (13)

Besides, assume that for all S ∈ S there exists η(S) ≥ 1/2 such that for all R ≥ 2η(S)

∣∣S ∩ B(s, R
√
τ)
∣∣ ≤ M exp

(
R2

2

)
with τ = 4(2 + cc0)

ac2
0

. (14)
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Then, Assumption 1 holds with γ = bM2 and D(S) = 4η2(S) for all S ∈ S.

Inequality (14) imposes that the number of points of S within balls of radii R ≥ 2η(S)
be not larger that M exp

(
R2/2

)
. One needs to choose the parameter η(S) large enough

if the set S is too massive, that is, if it contains a large number of points within small
balls. As to inequality (13), it typically derives from Bernstein’s and is met in all the
examples mentioned in the introduction.

Proposition 3 Inequality (13) holds with a = n2/12, b = 1 and c = n
√

2/6 for
Example 1, with a = 1/12, b = 1 and c = √

2/6 for Example 2 and with a = 1/12,
b = 1 and c = √

2/36 for Example 4. As to Example 3, if there exist nonnegative
numbers σ and β such that for all i ∈ {1, . . . , n}, Xi satisfies

E

[
eu(Xi −s(i))

]
≤ exp

[
u2σ s(i)

2(1 − |u|β)
]

∀u ∈ (−1/β, 1/β), (15)

then (13) holds with a = 1/(12σ), b = 1 and c = β
√

2/(12σ).

The value of τ given in Proposition 2 is of order 1/n in the density case and is of order
a constant in the other cases. The proof of Proposition 3 is postponed to Sect. 9.2.

3.2 Piecewise constant parameter sets

Assume that k = 1 and define for any finite partition m of X the set Sm gathering
the elements of L0 which are piecewise constant on each element of the partition m,
that is

Sm =
{∑

I∈m

aI1I
∣∣ (aI )I∈m ∈ R

|m|
}⋂

L0.

Let M be a countable set consisting of such partitions. The family S = {Sm, m ∈ M}
and the measure N satisfy Assumption 1 provided that the following holds.

Proposition 4 Let a and δ be positive numbers. For any finite partition m of X , set

X 2(m) =
∑
I∈m

(√
N (I )−√

E(N (I ))
)2

and assume that N satisfies for all ξ > 0

P

[
X 2(m) ≥ a (|m| + ξ)

]
≤ e−ξ . (16)

Besides, assume that for all m,m′ ∈ M,

∣∣m ∨ m′∣∣ ≤ δ
(|m| ∨ ∣∣m′∣∣) (17)
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where m ∨ m′ = {
I ∩ I ′, (I, I ′) ∈ m × m′}. Then Assumption 1 holds with γ = 1,

τ = 20ac−2
0 and D(Sm) = δ|m| for all m ∈ M.

In this case, the parameter D(Sm) is proportional to the dimension of the linear space
generated by Sm . The assumptions given by (16) and (17) also appeared in Baraud
and Birgé [8] as Assumptions H and H’ in their Theorem 6. Inequality (16) can be
obtained from concentration inequalities of suprema of empirical processes (based
on N ) over classes of uniformly bounded functions. In particular, the following result
is proved in Baraud and Birgé [8].

Proposition 5 Inequality (16) holds with a = 200/n in the case of Example 1, with
a = 6 in the case of Example 4 and, in the case of Example 3, with

a = 3κ

(
1/

√
2 +

√(
β

κ
− 1

2

)
+

)

provided that for some β ≥ 0 and κ > 0, the Xi satisfy for i = 1, . . . , n

E

[
eu(Xi −s(i))

]
≤ exp

[
κ

u2s(i)

2(1 − uβ)

]
for all u ∈

[
0,

1

β

[
,

with the (convention 1/β = +∞ if β = 0), and

E

[
e−u(Xi −s(i))

]
≤ exp

[
κ

u2s(i)

2

]
for all u ≥ 0.

One can check that the value of τ given in Proposition 4 is then of order 1/n in the
density case and otherwise is of order a constant.

4 The selection procedure and the main result

Let
{
ŝλ, λ ∈ �} be a collection of estimators of s with values in L0 based on the

observation N and let S be a countable family of subsets S of L0. We recall that
together with S, we consider a nonnegative map � on S satisfying (4) and in order
to simplify the presentation of our results, we assume that �(S) ≥ 1 for all S ∈ S.
Throughout, c0 is an arbitrary number in (0, 1 − 1/

√
2).

4.1 The estimation procedure

We associate to each λ ∈ �, both a family of (possibly random) subsets Sλ of S and
a penalty function penλ from

⋃
S∈Sλ

S into R+. The procedure includes three steps.
Step 1: Construction of intermediate estimators.
Let τ > 0. For each λ, define s̃λ as any element of

⋃
S∈Sλ

S such that

H2(ŝλ, s̃λ)+ penλ(s̃λ) ≤ A(ŝλ,Sλ)+ c0τ (18)
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where A(ŝλ,Sλ) is given by (5). When Sλ reduces to a single model Sλ containing
ŝλ with probability one and when penλ is constant over Sλ, one may choose s̃λ = ŝλ,
what we shall do for simplicity throughout this paper.
Step 2: Pairwise comparison of the estimators s̃λ.
Given a pair (s̃λ, s̃λ′) such that s̃λ �= s̃λ′ , we consider the test statistic

T(N , s̃λ, s̃λ′) =
⎡
⎣ρr (N , s̃λ′)− 1

2

∫

X
s̃λ′dμ− penλ′(s̃λ′)

⎤
⎦

−
⎡
⎣ρr (N , s̃λ)− 1

2

∫

X
s̃λdμ− penλ(s̃λ)

⎤
⎦ (19)

where r = (s̃λ + s̃λ′)/2 and ρr (N , .) is given by (11). We set

E(s̃λ) = {s̃λ′ , T(N , s̃λ, s̃λ′) ≥ 0}

and note that either s̃λ ∈ E(s̃λ′) or s̃λ′ ∈ E(s̃λ) since T(N , s̃λ, s̃λ′) = −T(N , s̃λ′ , s̃λ).
Then, we define

D(s̃λ) = sup
{

H2 (s̃λ, s̃λ′)
∣∣ s̃λ′ ∈ E(s̃λ)

}
if E(s̃λ) �= ∅

and D(s̃λ) = 0 otherwise.
Step 3: The final selection.
Select λ̃ among � as any element satisfying

D(s̃λ̃) ≤ D(s̃λ)+ c0τ, ∀λ ∈ �

and λ̂ as any element of � such that

H2(ŝ
λ̂
, s̃λ̃) ≤ inf

λ∈� H2(ŝλ, s̃λ̃)+ c0τ.

Our final estimator is s̃ = ŝ
λ̂
.

4.2 Discussion about the procedure

The choice of the value c0 is arbitrary in (0, 1 − 1/
√

2) and can be fixed to (
√

2 −
1)/(2

√
2). It seemed interesting to show how the constants we get in the risk bounds

were depending upon the choice of c0, at least in the proofs. Even though an optimi-
zation with respect to c0 looks theoretically untractable, the computations show that
choices of c0 too close to 0 or to 1−1/

√
2 lead to large constants and should therefore

be avoided.
Let us now discuss the implementation issues. The computation of the estimator s̃

requires the comparison pair by pair of the estimators s̃λ defined in Step 1. The whole
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procedure may therefore be performed in about |�|2 steps once the s̃λ are available.
When the cardinality of� is not too large, the main difficulty lies in the computations
of the s̃λ. In the most favorable situations, one may take Sλ as a (possibly random)
singleton Sλ for eachλ ∈ � and the penalty function penλ to be constant over Sλ. In this
case, s̃λ may be chosen as the best approximation of ŝλ in Sλ. Whenever the model Sλ
is simple enough, this step can therefore be performed in a reasonable amount of time.
Nevertheless, we sometimes use models S which result from an abstract discretization
of manifolds and, in this least favorable case , the s̃λ are abstract as well.

4.3 The main result

We recall that for all t ∈ L0 and λ ∈ �,

Sλ(t) = {S ∈ Sλ, t ∈ S}.

We obtain the following result the proof of which postponed to Sect. 9.4.

Theorem 1 Let c0 ∈ (0, 1 − 1/
√

2). Assume that N and S satisfy Assumption 1 for
some positive constants τ and γ and let � be some mapping from S into [1,+∞)

satisfying (4). By applying the selection procedure of Sect. 4.1 with penalties penλ
satisfying for all λ ∈ � and t ∈ ⋃

S∈Sλ
S,

penλ(t) ≥ c0τ inf {D(S)+�(S), S ∈ Sλ (t)}, (20)

the estimator s̃ = ŝ
λ̂

satisfies for all ξ > 0,

P

[
C H2 (s, s̃) ≥ inf

λ∈�

[
H2 (s, ŝλ

)+ A(ŝλ,Sλ)
]

+ τξ

]
≤
(
γ�2e−ξ) ∧ 1,

where C is a positive constant depending on c0 only and

A(ŝλ,Sλ) = inf
S∈Sλ

inf
t∈S

[
H2(ŝλ, t)+ penλ(t)

]
, ∀λ ∈ �.

In particular, by integration with respect to ξ , for some C ′ depending on c0, γ and �
only

C ′
E

[
H2 (s, s̃)

]
≤ E

[
inf
λ∈�

{
H2 (s, ŝλ

)+ A(ŝλ,Sλ)
}]

≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ E
[
A(ŝλ,Sλ)

]}
. (21)

We deduce from Theorem 1 the following corollary.
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Corollary 2 Under the assumptions of Theorem 1, if for all λ ∈ �, ŝλ ∈ ⋃
S∈Sλ

S
with probability 1 and if equality holds in (20), then

C ′
E

[
H2 (s, s̃)

]
≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ 2E

[
v2(ŝλ)

]}
(22)

where C ′ depends on c0, γ and � only and

v2(ŝλ) = τ

[
inf

S∈Sλ(ŝλ)
D(S) ∨�(S)

]
for all λ ∈ �. (23)

Inequality (22) compares the risk of the resulting estimator s̃ to those of the ŝλ plus an
additional term E

[
v2(ŝλ)

]
. If for some deterministic S ∈ Sλ, the estimator ŝλ belongs

to S with probability 1, we obtain that

v2(ŝλ) ≤ τ [D(S) ∨�(S)] (24)

and hence E
[
v2(ŝλ)

]
is small compared to the risk of ŝλ as soon as for some universal

constant C ′′ > 0,

C ′′
E

[
H2 (s, ŝλ

)] ≥ τD(S) for all s ∈ L0.

We emphasize that (24) does not depend on the cardinality of the collection of estima-
tors

{
ŝλ, λ ∈ �}. In particular, if with probability one all the estimators ŝλ belong to a

same deterministic model S ∈ ⋂
λ∈� Sλ, by setting�(S) = 1, the resulting estimator

s̃ satisfies

C ′′′
E

[
H2(s, s̃)

]
≤ inf
λ∈�E

[
H2 (s, ŝλ

)]+ τ (D(S) ∨ 1)

no matter how large this collection is. For a choice of
{
ŝλ, λ ∈ �}which is countable

and dense in S, we therefore get

sup
s∈S

E

[
H2(s, s̃)

]
≤ C ′τ (D(S) ∨ 1) ,

showing thus that the quantity τ (D(S) ∨ 1) is an upper bound for the minimax rate
over S.

5 Selecting among histogram-type estimators

Throughout this section, k = 1 and we consider a countable family M of finite parti-
tions of X satisfying (17). We associate to M the family of models S = {Sm,m ∈ M}
described in Sect. 3.2. We assume that the measure N satisfies (16) and set τ =
20ac−2

0 . As already seen in Proposition 4, inequalities (17) together with (16) imply
that Assumption 1 holds and we may therefore apply our main theorem (Theorem 1).
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The statistical settings we have in mind include Examples 1, 3 and 4 for which we
already know from Proposition 5 that (16) holds true for a suitable value of a. We
restrict ourselves to families of estimators ŝλ with values in

⋃
m∈M Sm which allows

us to associate to each λ some (possibly random) partition m̂(λ) ∈ M such that
ŝλ ∈ Sm̂(λ) with probability 1. For all λ ∈ �, we choose Sλ = {

Sm̂(λ)
}

and penλ
constant over Sm̂(λ) for the sake of simplicity. We may therefore take s̃λ = ŝλ for all
λ ∈ � in our selection procedure which only depends now on the choice of penλ(ŝλ).
We deduce from Theorem 1 the following result.

Theorem 2 Assume that N and S satisfy (16) and (17) respectively. Let
{
ŝλ, λ ∈ �}

be a collection of estimators of s with values in
⋃

m∈M Sm. If for all λ ∈ �,

penλ(ŝλ) ≥ c0τ
[
δ|m̂(λ)| +�(Sm̂(λ))

]
, (25)

the estimator s̃ satisfies for some positive constant C depending on c0 and � only,

CE

[
H2 (s, s̃)

]
≤ E

[
inf
λ∈�

[
H2 (s, ŝλ

)+ penλ
(
ŝλ
)]]

≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ E
[
penλ

(
ŝλ
)]}
.

In particular, if equality holds in (25)

C ′
E

[
H2 (s, s̃)

]
≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ τE
[|m̂(λ)| ∨�(Sm̂(λ))

]}
,

for some C ′ depending on c0, � and δ only.

Let us now turn to examples.

5.1 Model selection

Theorem 2 holds for any choices of estimators
{
ŝλ, λ ∈ �}with values in

⋃
m∈M Sm .

However, the estimators ŝm defined by

ŝm =
∑
I∈m

N (I )

μ(I )
1I for m ∈ M (26)

are of special interest. Note that when μ(I ) = 0, E(N (I )) = ∫
I sdμ = 0 and

N (I ) = 0 a.s., the estimator ŝm is well-defined with the convention 0/0 = 0 and
c/∞ = 0 for c > 0. Besides, in the context of Example 1, ŝm belongs to L0 (that is,
ŝm is a density on X ) as soon as μ is finite on X . For these estimators, one can prove
(we refer to Baraud and Birgé [8]) that for all m ∈ M,

E

[
H2(s, ŝm)

]
≤ 4

(
H2(s, Sm)+ τ |m|

)
.
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By applying Theorem 2 with � = M and for all m ∈ M, Sm = {Sm} and

penm(t) = c0τ (δ|m| +�(Sm)), ∀t ∈ Sm

we obtain the following result.

Corollary 3 Assume N and S satisfy (16) and (17) respectively. The estimator s̃ sat-
isfies for some constant C depending on c0, δ and � only

CE

[
H2 (s, s̃)

]
≤ inf

m∈M

{
E

[
H2(s, ŝm)

]
+ τ (|m| ∨�m)

}

≤ inf
m∈M

[
H2 (s, Sm)+ τ(|m| ∨�m)

]
.

This corollary recovers the results of Theorem 6 in Baraud and Birgé [8] even though
the selection procedure is different. The choice of a suitable family M of partitions
is of course a crucial point in view of deducing nice statistical properties for s̃. This
point has been discussed in Baraud and Birgé [8] (see their Section 3). However, the
families M proposed there have large cardinalities and the computation of s̃ becomes
unfortunately NP-hard.

5.2 Selecting among histograms based on random partitions

In this section, we focus on the problem of estimating a density or the intensity of
a Poisson process by an histogram(-type) estimator. More precisely, we consider the
frameworks described in Examples 1 and 4 with X = [0, 1) and μ the Lebesgue mea-
sure. As already mentioned, the model selection approach developed in the previous
section has the advantage to design an estimator possessing nice theoretical proper-
ties for suitable choices of families M but also has the drawback to be practically
intractable for such choices. In view of designing a practical procedure for the prob-
lem of estimating a density, one may prefer families containing fewer but possibly
data-dependent partitions. For illustration, we consider a family of random partitions
the elements of which contain a same number of data (with a possible exception for
the rightmost). Our selection procedure gives a practical way of choosing the number
of data that should be put in each bin of an histogram and provide s thus an alterna-
tive to the cross-validation techniques which are quite popular in density for selecting
such tuning parameters. This family of partitions can also be used for the problem
of estimating the intensity of a Poisson process, the only difference being that the
number n = N ([0, 1)) of observations becomes now randomly drawn from a Poisson
distribution with parameter n̄ = ∫ 1

0 s(x)dx (that we assume to be positive).

The procedure

For n ≥ 1, let M̂ be the random variable defined as the smallest integer for
which each interval [(i − 1)/M, i/M[ with i = 1, . . . ,M contains at most one
datum. For λ ∈ {1, . . . , n}, define m̂(λ) as any partition of [0, 1) based on the grid
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{i/M̂, i = 1, . . . , M̂} for which |I ∩ {X1, . . . , Xn}| = λ for all intervals I in m̂(λ)
(with a possible exception for the rightmost). Note that |m̂(λ)| ≤ nλ−1 + 1. Let us
now define our collection of estimators. It would be natural to take � = {1, . . . , n}
in order to index the family of estimators ŝm̂(λ) defined by (26). However, this choice
of � has the drawback to be random in the Poisson case and we rather take � = N

∗
and define ŝλ as ŝm̂(λ) when λ ≤ n and as n1[0,1[ when λ > n. Note that both col-
lections

{
ŝλ, λ ∈ �} and

{
ŝm̂(λ), λ ∈ {1, . . . , n}} coincide on the event {n ≥ 1}. As

to the family M, we introduce for each positive integer M the family of partitions
MM consisting of intervals with end points belonging to {i/M, i = 0, . . . ,M} and
set M = ⋃

M≥1 MM . Finally, we define � as follows. First, for M = 1 M1 reduces
to {[0, 1)} and we set �(S{[0,1)}) = 1. Then we define recursively for M ≥ 2 and
m ∈ MM\⋃M−1

k=1 Mk , �(Sm) = (|m| + 2) log(M). Our choice of � satisfies (4)
since

∑
m∈M

e−�(Sm ) ≤
∑
M≥1

M∑
D=1

∑
m∈MM ,|m|=D

e−(D+2) log(M)

≤
∑
M≥1

M−2
(

1 + M−1
)M ≤ eπ2

6
< +∞.

The computation of s̃ requires n(n − 1)/2 steps to compare the estimators ŝλ pair by
pair plus n additional steps to minimize λ �→ D(ŝλ) for λ ∈ {1, . . . , n}. The whole
selection procedure can therefore by implemented in about n2 steps.

In view of facilitating the comparison of the risk bounds between the density and
Poisson frameworks, we shall use the notation h for the Hellinger distance in the
density case and the normalized Hellinger-type distance H/

√
n in the Poisson case.

Corollary 4 Assume that ‖s‖Lq =
(∫ 1

0 sq
)1/q

< +∞ for some q > 1. If for all

λ ∈ �,

penλ(ŝλ) = 2c0τ
[
(nλ−1 + 1) log(e + M̂)1λ≤n + 1λ>n

]
,

the estimator s̃ = ŝ
λ̂

satisfies for some C depending on q only

CE

[
h2(s, s̃)

]
≤ inf

1≤λ≤n

⎡
⎣E

[
h2 (s, ŝλ

)]+
log

(
e + n2 ‖s‖Lq

)

λ

⎤
⎦

in the density case, and in the Poisson case

CE

[
H2(s, s̃)

n

]
≤ inf
λ≥1

⎡
⎣E

[
H2

(
s, ŝλ

)
n

]
+

log
(

e + n̄2 ‖s/n‖Lq

)

λ ∧ n̄

⎤
⎦ .
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Even though the estimators ŝλ are widely used in practice, at least for the purpose of
estimating a density, little is known about their risks. In density estimation, the only
result we are aware of is due to Lugosi and Nobel [44] showing that if λ = λ(n) satis-
fies both λ(n) → +∞ and λ(n)/n → 0 as n tends to infinity, the L1-norm between s
and ŝλ(n) tends to 0 a.s. (and therefore so does the Hellinger distance). The assumption
that for some q > 1, sq is integrable is technical and ensures that the cardinality M̂
of the random grid {i/M̂, i = 1, . . . , M̂} keeps to a reasonable size as n increases.

6 Collections of models with bounded metric dimensions

Throughout this section, we consider a family S of subsets of L0 with metric dimen-
sions bounded by D(., .) (in the sense of Definition 6 in Birgé [16]). More precisely,
we assume that for some universal constant M > 0, all S ∈ S and η > 0 there exist a
number D(S, η) ∈ [1/2,+∞) and a discrete subset S[η] ⊂ L0 such that

H(t, S[η]) ≤ η
√
τ , for all t ∈ S (27)

and for all s ∈ L0 and R ≥ 2η,

∣∣S[η] ∩ B(s, R
√
τ)
∣∣ ≤ M exp

[
D(S, η)

(
R

η

)2
]
. (28)

Furthermore, it is assumed that the mapping η �→ D(S, η) is right-continuous and,
with no loss of generality, that is also non-increasing on (0,+∞). It follows from (27)
and (28) that sets S with bounded metric dimensions may be approximated at any scale
by discrete sets with controlled massiveness. Any compact set S has a bounded metric
dimension: by definition for all η > 0 one can find a finite subset S[η] of S satisfy-
ing (27) and hence (28) holds with M = 1 and D(S, η) = 4−1 max

{
log

∣∣S[η]∣∣ , 2
} ≥

1/2.
As to the measure N , we assume that it satisfies (13) and we take τ =

4(2 + cc0)/(ac2
0) all along. As shown by Proposition 3, this assumption on N is

met in all the examples of Sect. 1.1 and τ is then of order a constant (except in the
density case where it is of order 1/n). To our knowledge, the results of this section
are new for the problems presented in Examples 2 and 3 and we believe that they can
also be solved by using the robust tests described in Birgé [15] and Birgé [17] in the
contexts of Examples 1 and 4 respectively.

6.1 The selection procedure and the main result

We start with a collection of estimators
{
ŝλ, λ ∈ �}, a family S of models S with

bounded metric dimensions and a mapping � on S with values in [1,+∞) satisfy-
ing (4). We associate to each model S ∈ S its discrete version

S = S[η] with η = η(S) = inf
{
η > 0, η2 ≥ 2D(S, η)

}
≥ 1 (29)
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and consider the family S of those S when S runs among S. Since the mappings D(S, .)
are right-continuous and non-increasing, the sets

{
η > 0, η2 ≥ 2D(S, η)

}
are non-

void and contain their smallest elements η(S) for all S ∈ S. In order to select among
the family

{
ŝλ, λ ∈ �}, we use the selection procedure described in Sect. 4.1 with

the choices Sλ = S for all λ ∈ �, �(S) = �(S) for all S ∈ S and

penλ(t) = pen(t) = c0τ inf
S∈S(t)

[
4η2(S)+�(S)

]

for all t ∈ ⋃
S∈S

S and λ ∈ �.
For the choice of η(S) given by (29), inequality (14) holds for all S ∈ S and

therefore by Proposition 2, N and S satisfy Assumption 1 with D(S) = 4η2(S) and
γ = bM2. In particular, pen satisfies (20). Finally, note that under (27) for all λ ∈ �
and S ∈ S,

A
(
ŝλ,S

) ≤ inf
t∈S

[
H2 (ŝλ, t

)+ pen(t)
]

≤ 2H2 (ŝλ, S
)+ 2τη2 (S)+ c0τ

[
4η2(S)+�(S)

]

≤ 2H2 (ŝλ, S
)+ τ

(
6η2(S)+�(S)

)
.

By applying Theorem 1 we therefore deduce the following result.

Theorem 3 Let
{
ŝλ, λ ∈ �} be a family of estimators based on a measure N satis-

fying (13). Let us assume that the family S consists of subsets S of L0 with bounded
metric dimensions D(S, η) and that � is a mapping from S into [1,+∞) satisfy-
ing (4). By applying the selection procedure described above, the resulting estimator
s̃ satisfies

CE

[
H2 (s, s̃)

]

≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ E

[
inf
S∈S

[
H2(ŝλ, S)+ τ

(
η2 (S) ∨� (

S
))]]}

where η(S) is given by (29) and C is a positive number depending on c0, b,M and �
only. In particular, if for all λ ∈ � there exists some (possibly random) model Sλ ∈ S

such that ŝλ ∈ Sλ with probability 1,

CE

[
H2 (s, s̃)

]
≤ inf
λ∈�

{
E

[
H2 (s, ŝλ

)]+ τE

[
η2 (Sλ) ∨� (

Sλ
)]}

. (30)

Let us now turn to examples.
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6.2 Aggregation of arbitrary points

We assume here that the estimators ŝλ are deterministic and to emphasize the fact that
they do not depend on N , denote them sλ hereafter. Typically, one should think of
the sλ as estimators of s based on an independent copy N ′ of N in which case the
result below should be understood as conditional on N ′. In view of selecting among
these points, we consider the family of models S given by S = {{sλ} , λ ∈ �}. Since
each element S of S reduces to a single point, its metric dimension can be chosen as
D(S, η) = 1/2 for all η > 0 and hence η(S) = 1. We deduce from Theorem 3 the
following result.

Corollary 5 Let N be some random measure satisfying (13), {sλ, λ ∈ �} a countable
collection of points in L0 and � a mapping from S into [1,+∞) satisfying (4). By
applying the selection procedure described in Sect. 6.1 the estimator s̃ satisfies

CE

[
H2 (s, s̃)

]
≤ inf
λ∈�

{
H2 (s, sλ)+ τ� (sλ)

}

for some positive number C depending on c0, b and� only. In particular, if� is finite,
by choosing �(sλ) = 1 + log |�| we obtain

E

[
H2 (s, s̃)

]
≤ C inf

λ∈�

[
H2 (s, sλ)+ τ log |�|

]
.

6.3 Construction of T -estimators

Let us start with a family of models S with finite metric dimensions and consider the
family of estimators (in fact points) obtained by gathering the elements of the sets S
defined in Sect. 6.1 as they run among S. That is

{
ŝλ, λ ∈ �} = ⋃

S∈S
S. Because

of (27), this collection of estimators satisfies infλ∈� H
(
s, ŝλ

) ≤ H(s, S) + η(S)
√
τ

for all s ∈ L0 and S ∈ S. By applying the selection procedure of Sect. 6.1 the resulting
estimator s̃ turns to be a T -estimator (according to Definition 2 in Birgé [16]). We
deduce from Theorem 3 the following result for s̃.

Corollary 6 Let N be some measure satisfying (13), S a countable collection of
subsets S of L0 with bounded metric dimensions D(S, η) and � a mapping on S sat-
isfying (4). By applying the selection procedure described in Sect. 6.1 to the family of
points

⋃
S∈S

S with S defined by (29), the resulting estimator s̃ is a T -estimator which
satisfies

E

[
H2 (s, s̃)

]
≤ C inf

S∈S

[
H2(s, S)+ τ

(
η2(S) ∨�(S)

)]

for some C depending on c0, b,M and � only.

This result recovers Corollary 4 in Birgé [16] in the density case and Theorem 3 in Birgé
[17] in the Poisson case. Example 2 was also considered in Birgé [16, Proposition 6]
but for a different loss function. The case of Example 3 is to our knowledge new.
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6.4 Estimators with values in a simplex and convex aggregation

In this section, we assume that L0 is a convex subset of L and consider a family
{t1, . . . , tM } of M ≥ 2 distinct points of L0. We denote by M the class of nonempty
subsets m of {1, . . . ,M} and define Sm as the convex hull of the ti for i ∈ m, namely

Sm =
{∑

i∈m

qi ti
∣∣ (qi )i∈m ∈ R

|m|
+ ,

∑
i∈m

qi = 1

}
⊂ L0.

Along the section, we assume that the estimators ŝλ take their values in the convex
hull of {t1, . . . , tM }, that is, in

C =
⋃

m∈M
Sm =

{
M∑

i=1

qi ti
∣∣ q1, . . . , qM ∈ R+,

M∑
i=1

qi = 1

}
⊂ L0. (31)

As usual, our aim is to select some estimator s̃ among the collection
{
ŝλ, λ ∈ �} at

best.

6.4.1 The example of convex aggregation

When the set {t1, . . . , tM } corresponds to M preliminary estimators of s (say obtained
from an independent copy N ′ of N ), the problem of looking for some best con-
vex combination of these is usually called convex aggregation. Given some integer
D ∈ {1, . . . ,M}, we tackle this problem by considering the (countable) collection of
estimators (in fact points) given by

{
sλ =

M∑
i=1

λi ti , λ ∈ �
}

(32)

with

� = �D,M =
{
λ ∈ Q

M+ ,
M∑

i=1

λi = 1, |{i, λi �= 0}| ≤ D

}
.

The choices D = 1 and D = M correspond to the problems of estimator selec-
tion and convex aggregation respectively. These problems are particular cases of that
of aggregation which aims at designing a suitable combination of given estimators
in order to outperform each of these separately (and even the best combination of
these) up to a remaining term. Aggregation techniques can be found in Juditsky and
Nemirovski [35], Nemirovski [46], Yang [55–57], Tsybakov [51], Wegkamp [53],
Birgé [16], Rigollet and Tsybakov [49], Bunea et al. [22], Goldenshluger [32] for
Lp-losses, and Catoni [26] (we refer to his course of Saint Flour which takes back
some mixing techniques he introduced earlier). Most of the aggregation procedures

123



Estimator selection 375

are based on a sample splitting and therefore usually requires that the data be i.i.d.. In
a non-i.i.d. case, some nice results of aggregation can be found in Leung and Barron
[43] for the problem of mixing least-squares estimators of a mean of a Gaussian vector
Y . In their paper, they assume that the components of Y are independent with a known
common variance. Giraud [31] extended their results to the case where it is unknown.

6.4.2 The selection procedure

In order to select among the estimators
{
ŝλ, λ ∈ �}, we apply the selection pro-

cedure described in Sect. 6.1 with the family of models S = {
Sm,m ∈ M

}
. To

do so, we need to find a mapping � on S with values in [1,+∞) satisfying (4)
and build an η

√
τ -net Sm[η] of Sm for all η > 0 and m ∈ M. Concerning �, we

choose �
(
Sm
) = |m|(1 + log(eM/|m|)) for all m ∈ M. It satisfies (4) since for all

D ∈ {1, . . . ,M}, (M
D

) ≤ log(eM/D) and hence

∑
m∈M

e−�(Sm ) ≤
M∑

D=1

(
M

D

)
e−D(1+log(eM/D)) ≤

∑
D≥1

e−D < 1.

Let us now fix some η > 0 and m ∈ M and discretize Sm . If for some i ∈ {1, . . . ,M}
m = {i}, we can merely take S{i}[η] = Si . If |m| ≥ 2, write m as

{
i1, . . . , i|m|

}
with

1 ≤ i1 < · · · < i|m| ≤ M and for

ε = min

{
η2τ

(|m| − 1) ‖t‖1
; 1

}
with ‖t‖1 = max

i=1,...,M

∫

X
ti dμ (33)

define Sm[η] ⊂ Sm as the set gathering the elements of the form

|m|−1∑
j=1

qi j ti j +
⎛
⎝1 −

|m|−1∑
j=1

qi j

⎞
⎠ ti|m|

where the qi j vary among
{
�ε, � = 0, . . . ,

⌊
ε−1

⌋}
and satisfy

∑|m|−1
j=1 qi j ≤ 1. The

following result holds.

Proposition 6 For all η > 0 and all non-void subsets m of {1, . . . ,M}, the subset
Sm[η] defined above is an η

√
τ -net for Sm which satisfies

log |Sm[η]| ≤ |m| log
(

1 +
⌊
ε−1

⌋)

where ε is given by (33) with the convention ε−1 = 0 if |m| = 1. In particular, the
metric dimension D(Sm, η) of Sm may be chosen as

D(Sm, η) = |m| log

(
1 + (|m| − 1) ‖t‖1

η2τ
∨ 1

)
≥ 1

2
.
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Some simple calculations show that for all m ∈ M, the quantity η(Sm) given by (29)
satisfies

η2(Sm) ≤ 2|m| log

(
1 + (|m| − 1) ‖t‖1

|m|τ ∨ 1

)
for all m ∈ M.

6.4.3 The main result

Hereafter, m̂(λ) denotes any (possibly random) element of M for which ŝλ ∈ Sm̂(λ).
We deduce from Theorem 3 the following result.

Corollary 7 Let N be some measure satisfying (13) and
{
ŝλ, λ ∈ �} a collection of

arbitrary estimators with values in the simplex C given by (31). Let L be the mapping
defined on N

∗ by

L(k) =
{

log(M) if k = 1
1 + max

{
log

(
Mk−1

) ; log
(‖t‖1 τ

−1
)}

otherwise.

By applying the selection procedure described above, the resulting estimator s̃ satisfies

CE

[
H2(s, s̃)

]

≤ inf
λ∈�

{
E

[
H2(s, ŝλ)

]
+ E

[
inf

m∈M

[
H2(ŝλ, Sm)+ τ |m|L(|m|)

]]}

≤ inf
λ∈�

{
E

[
H2(s, ŝλ)

]
+ τE

[|m̂(λ)|L(|m̂(λ)|)]}

where C depends on c0 and b only.
For the problem of convex aggregation, that is, by considering the collection of

points {sλ, λ ∈ �} defined by (32) with D = M, the estimator s̃ satisfies

CE

[
H2(s, s̃)

]
≤ inf

m∈M

[
H2(s, Sm)+ τ |m|L(|m|)

]
. (34)

Let us comment on this result in the density framework. In this case, ‖t‖1 = 1 and
τ is of order 1/n. If one considers the collection of points {sλ, λ ∈ �} given by (32)
with D = M , the right-hand side of (34) is of the form

inf
m∈M

{
H2(s, Sm)+ |m|L(|m|)

n

}
= inf

D=1,...,M

[
inf

λ∈�D,M
H2(s, sλ)+ DL(D)

n

]

where L(1) = log(M) and L(D) is of order max {log(eM/D); log(n)} otherwise. In
the density case, the problem of aggregating M densities has also been considered in
Birgé [16] and Rigollet and Tsybakov [49]. In this latter paper, it is shown that the
optimal rate of aggregation associated to the simplex �M,M is of order M/n for the
L2-norm and leads thus to risk bounds which are similar to ours (up to constants and
log(n) factors). The result we get is similar to Birgé [16] for the L1-norm (up to the
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logarithmic factor). We do not know whether this extra logarithmic factor is due to
our discretization procedure or to the loss function we use.

7 Estimating the means of nonnegative random variables

In this section, we consider the statistical setting described in Example 3 and assume
that (15) holds. We recall that it is satisfied for a large class of distributions including
any random variables with values in [0, β] (then σ = β), the Binomial distribution
(then σ = 1 = β), the Poisson distribution (for the same choice of parameters), or
the Gamma distribution γ (p, q) (with mean p/q and β = 1/q = σ ). By expand-
ing (15) in a vicinity of 0, it is easy to see that (15) implies that Var(Xi ) ≤ σE(Xi )

for all i = 1, . . . , n. Throughout, we identify with the same notation the functions
t on X = {1, . . . , n} with the vectors (t1, . . . , tn) = (t (1), . . . , t (n)). The distance√

2H between two elements t, t ′ ∈ L0 corresponds to the Euclidean distance between
the vectors

√
t and

√
t ′ and it seems natural to approximate the parameter

√
s with

respect to the Euclidean norm ‖ ‖. For this purpose, we introduce a family V of linear
subspaces V of R

n with respective (linear) dimensions denoted D(V ). Together with
this family, we associate, as usual, a mapping � on V satisfying (4). The aim of this
section is to design an estimator s̃ satisfying the following risk bound

C ′
E

[
H2 (s, s̃)

]
≤ inf

V ∈V

[
inf
v∈V

∥∥√s − v
∥∥2 + D(V ) ∨�(V )

]
for all s ∈ R

n+.

(35)

To do so, we associate to each linear space V , some discrete set V ⊂ R
n+ obtained by

the discretization device described in Birgé [16]. More precisely, the following result
holds.

Proposition 7 Let τ > 0 and C be some closed convex subset of R
n and V ⊂ R

n a
linear subspace with dimension D(V ). For all η > 0, there exists a discrete subset
V (η) ⊂ C such that whatever f ∈ C,

inf
v∈V (η)

‖ f − v‖ ≤ 4

[
inf
v∈V

‖ f − v‖ + η
√
τ

]
(36)

and for all R ≥ 2η,

∣∣{v ∈ V (η), ‖ f − v‖ ≤ R
√
τ
}∣∣ ≤ exp

[
5D(V )

(
R

η

)2
]
. (37)

We apply the proposition with C = R
n+ and for V ∈ V, denote by V = V (η) the

discrete set resulting from the choice η = η(V ) =
√

20D(V ) and set

S(V ) =
{
(v2

1, . . . , v
2
n), v ∈ V

}
for all V ∈ V.
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We shall now apply the selection procedure described in Sect. 4.1 with the collection
of the estimators (in fact points) ŝλ = λ with λ ∈ � = ⋃

V ∈V
S(V ) together with

the choices �(S(V )) = �(V ) and Sλ = S for all V ∈ V and λ ∈ �. We know from
Proposition 3 that N satisfies (13) with a = (12σ)−1, b = 1 and c = β

√
2/(12σ)

and since the mapping t �→ √
t from (Rn+,

√
2H) into (Rn+, ‖ ‖) is an isometry, it

follows from (37) and our choice of η(V ) that all the models S(V ) of S satisfy (14)
with M = 1 and τ depending on σ and β only. By Proposition 2, N and S satisfy
thus Assumption 1 with D(S(V )) = 80D(V ) and τ given by (14). Finally, since (36)
implies 4−1

√
2H(s, S(V )) ≤ infv∈V

∥∥√s − v
∥∥ + η

√
τ for all V ∈ V, we deduce

from Theorem 1 that the selected estimator s̃ satisfies the following:

Theorem 4 Let V be a countable family of linear spaces V with respective dimen-
sions D(V ) and � a mapping from V into [1,+∞[ satisfying (4). By applying the
estimation procedure described above, one designs an estimator s̃ satisfying (35) for
some constant C ′ depending on c0, σ, β and � only.

7.1 Uniform convergence rates

In this section, we assume that
√

s is of the form

√
s = √

sF = (F(x1), . . . , F(xn))

for some unknown nonnegative function F on [0, 1] and deterministic points 0 ≤
x1 < · · · < xn ≤ 1. For a suitable choice of V, our aim is to deduce from The-
orem 4 uniform rates of convergence over classes of means Sαp,∞(R) of the form

Sαp,∞(R) =
{

sF , F ∈ Bαp,∞(R)
}

⊂ R
n+ where Bαp,∞(R) is a Besov ball with

radius R > 0 and parameters α > 0 and p ∈ [1,+∞]. For a precise definition of
Besov spaces, we refer to DeVore and Lorentz [29]. The following result derives from
Theorem 1 and Proposition 1 in Birgé and Massart [19].

Proposition 8 For all r ∈ N
∗ and J ∈ N, there exist positive numbers C(r),C ′(r),

C ′′(r) and a family Vr,J of finite dimensional linear subspaces V of real-valued func-
tions on [0, 1] with the following properties: dim(V) ≤ C(r)2J for all V ∈ Vr,J ,
log

∣∣Vr,J
∣∣ ≤ C ′(r)2J and for all α ∈ (1/p, r) and all F ∈ Bαp,∞(R) there exists

G ∈ ⋃
V∈Vr,J

V such that

sup
x∈[0,1]

|F(x)− G(x)| ≤ C ′′(r)R2−Jα.

For V ∈ Vr,J , we define V = V (V) = {(G(x1), . . . ,G(xn)), G ∈ V} ⊂ R
n and

Vr,J as the collection of those linear subspaces V as V runs among Vr,J . By applying
Theorem 4 with V = ⋃

r≥1,J≥0 Vr,J and�(V ) = (C ′(r)+1)2J +r for all V ∈ Vr,J ,
r ≥ 1 and J ≥ 0 we deduce the following result.
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Corollary 8 By using the family of linear spaces V defined above, the estimator s̃
satisfies for all p ∈ [1,+∞], α > 1/p and R > 1/

√
n,

sup
s∈Sαp,∞(R)

n−1 H2 (s, s̃) ≤ C R2/(1+2α)n−2α/(1+2α),

where C depends on c0, τ and r.

To our knowledge, Example 3 has received little attention in the literature, espe-
cially from a non-asymptotic point of view. The only exceptions we are aware of are
Antoniadis, Besbeas and Sapatinas [1] (see also Antoniadis and Sapatinas [2]) and
Kolaczyk and Nowak [36]. In Antoniadis, Besbeas and Sapatinas [1], the authors
estimate F2 by a wavelet shrinkage procedure and show that the resulting estimator
achieves the usual estimation rate of convergence over Sobolev classes with smooth-
ness larger than 1/2. Kolaczyk and Nowak [36] study the risk properties of some
thresholding and partitioning estimators. Their approach assumes that s is bounded
from above and below by positive numbers on X = {1, . . . , n}. Finally, Baraud and
Birgé [8] tackled this problem but they restricted themselves to histogram-type esti-
mators and smoothness α ≤ 1 only.

7.2 Lower bounds

Let V be a linear subspace of R
n such that V ∩ R

n+ �= {0}. By applying Theorem 4
with �(V ) = 1, we have

sup
s∈S

E

[
H2(s, s̃)

]
≤ C(τ )D

(
V
)

where S = {
s,

√
s ∈ V

}
.

The aim of this section is bound the minimax risk over S from below. We assume the
following.

Assumption 2 The distribution of the random vector X = (X1, . . . , Xn) belongs to
an exponential family of the form

d Pθ (x1, . . . , xn) = exp

[
n∑

i=1

(θi T (xi )− A(θi ))

]
n⊗

i=1

dν(xi ) with θ ∈ �n

(38)

where ν denotes some measure on R+, T is a map from R+ to R, θi are parameters
belonging to an open interval � such that

� ⊂
{

a ∈ R,

∫
exp [aT (x)] dν(x) < +∞

}

and A denotes a smooth function from � into R satisfying A′′(a) �= 0 for all a ∈ �.
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Assumption 2 holds for the Poisson, Binomial and Gamma distributions (among oth-
ers). For θ ∈ �n , Pθ and Eθ will denote the probability and the expectation over Pθ .
It is well-known that the function A is infinitely differentiable on � and that for all
i = 1, . . . , n

s(i) = Eθ [Xi ] = A′(θi ) and Varθ (Xi ) = A′′(θi ),

these quantities being all positive because we assume Xi ≥ 0 for i ∈ {1, . . . , n}.
We set

S = {
s ∈ A′(�)n,

√
s ∈ V

}
.

Let us fix some compact interval I ⊂ � and set K = A′(I ). Since A′ and A′′ are
continuous and positive on I , there exists κ > 0 such that for all θ ∈ I n

0 < Eθ (Xi ) ≤ κVarθ (Xi ) ∀i = 1, . . . , n. (39)

The following result holds.

Theorem 5 Let R ∈ (0, (2
√
κ)−1) with κ given by (39). Assume that Assumption 2

holds and that the linear space V is such that for some u0 ∈ V

{
(u2

1, . . . , u2
n)
∣∣ u ∈ V , ‖u − u0‖ ≤ R

}
⊂ K n . (40)

Then, whatever the estimator ŝ based on X1, . . . , Xn,

sup
s∈S

E

[
H2(s, ŝ)

]
≥ R2

30
D(V ).

8 Estimation and variable selection in non-Gaussian regression

In this section, we use the notations of Example 2 and consider the regression setting

Xi = fi + εi , i = 1, . . . , n (41)

where f = ( f1, . . . , fn) is an unknown vector belonging to the cube C = [−R, R]n

(for some R > 0) and the εi are i.i.d. random variables with density q on R. Both q
and R are assumed to be known. Our aim is to estimate f from the observation of
X = (X1, . . . , Xn) and to do so, we introduce a collection { f̂λ, λ ∈ �} of estimators of
f based on X and a family V of linear subspaces V ⊂ R

n with respective dimensions
D(V ). As usual we consider a mapping � from V into [1,+∞) satisfying (4).
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8.1 The main assumption

For all d ≥ 1 and t ∈ R
d , we set

qt (x) = (qt1(x1), . . . , qtd (xd)) = (q(x1 − t1), . . . , q(xd − td)) ∀x ∈ R
d

and omit to specify the dependency of qt with respect to the dimension of t . We assume
that the density q satisfies the following.

Assumption 3 For all real numbers t, t ′ ∈ [−R, R],

R
∣∣t − t ′

∣∣ ≤ h (qt , qt ′) ≤ R
∣∣t − t ′

∣∣ (42)

where h is the Hellinger distance between the densities qt and qt ′ .

Assumption 3 holds whenever
√

q is regular enough (see Theorem 3A page 183 in
Borovkov [21]) and is therefore satisfied for the Cauchy distribution. Note that such a
distribution admits no finite moments.

8.2 The procedure and the results

For each λ ∈ �, let Vλ be a subset of V (possibly random depending on X ). Associate
to each linear space V ∈ V the discrete subset V of C obtained by applying Proposi-

tion 7 with η = η(V ) = R−1
(
10D(V )

)1/2
. Then, set S(V ) = {qt , t ∈ V } and define

S (respectively Sλ) as the collection of those S(V ) as V runs among V (respectively
Vλ). Take�(S(V )) = �(V ) for all V ∈ V and select the estimator s̃ = ŝ

λ̂
among the

family

{
ŝλ = q f̃λ

, λ ∈ �
}

with f̃λ = 
C f̂λ

by applying the selection procedure described in Sect. 4.1 with τ given by (14),
a = 1/12, c = √

2/6 (hence τ only depends on c0) and for all λ ∈ �,

penλ(s
′) = c0τ inf

{
40D(V )+�(V )

∣∣ V ∈ Vλ

}
.

Our final estimator f̃ = f̂
λ̂

satisfies the following.

Theorem 6 Consider the regression setting given by (41) where the mean f is known
to belong to the cube C = [−R, R]n for some R > 0 and assume that the density q
of the εi is known and satisfies Assumption 3. Let V be a family of linear subspaces
V of R

n with dimension D(V ), � a mapping from V into [1,+∞) satisfying (4) and
{ f̂λ, λ ∈ �} a collection of estimators of f based on X. By applying the selection
procedure described above, the estimator f̃ satisfies
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CE

[∥∥∥ f −
C f̃
∥∥∥2
]

≤ inf
λ∈�

{
E

[∥∥∥ f − f̂λ
∥∥∥2
]

+ E

[
inf

V ∈Vλ

(∥∥∥ f̂λ −
V f̂λ
∥∥∥2 + D(V ) ∨�(V )

)]}

where C depends on c0, R, R and � only. In particular if for all λ ∈ � f̂λ belongs to
some V λ ∈ Sλ with probability 1,

CE

[∥∥∥ f −
C f̃
∥∥∥2
]

≤ inf
λ∈�

{
E

[∥∥∥ f − f̂λ
∥∥∥2
]

+ E
[
D(V λ) ∨�(V λ)

]}
.

8.3 Model selection

In this section, we consider the problem of model selection among a collection V of
linear spaces V . Among the examples we have in mind is that of variable selection.

Problem 1 (Variable selection) We assume that f is of the form

f =
p∑

j=1

β jv
( j)

where β = (β1, . . . , βp) is an unknown vector of R
p and v(1), . . . , v(p) are p ≥ 2

known vectors in R
n that we call predictors. Since, the number p of those may be large

and possibly larger than the number n of data, we assume that the vector β is sparse
which means that

∣∣{ j, β j �= 0
}∣∣ ≤ pmax for some integer pmax ≤ n. Our aim is to

estimate f and the set
{

j, β j �= 0
}
. To do so, we consider the index set M consisting

of all the subsets of {1, . . . , p} with cardinality not larger than pmax and V the family
gathering the linear spaces V m spanned by the v( j) for j ∈ m when m varies among
M. By convention, V∅ = {0}.
One way to address the problem of model selection is to associate to each V ∈ V

a family of points �(V ) which is countable and dense in V and then to apply the
procedure described in Sect. 8.2 to the family of estimators (in fact points) given by
f̂λ = λ for λ ∈ ⋃

V ∈V
�(V ) = �. By applying Theorem 6 with Vλ = V for all

λ ∈ �, we deduce the following result without assuming any finite moments on the
distribution of the εi .

Corollary 9 Under the assumptions of Theorem 6, one can build an estimator f̂ based
on X such that

CE

[∥∥∥ f − f̂
∥∥∥2
]

≤ inf
V ∈V

{∥∥ f −
V f
∥∥2 + D(V ) ∨�(V )

}
. (43)
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To our knowledge, such a result without any assumption on the integrability of the εi is
new. In the context of variable selection with non-Gaussian errors, Theorems 5 and 6
by Dalalyan and Tsybakov [28] are probably the closest even though the risk bounds
they get is slightly different and depend on the �1-norm of the β j . These bounds are
derived from sharp PAC-Bayesian ones and are difficult to compare to ours. Let us
just say that Dalalyan and Tsybakov achieve better constants and do not assume that
the distribution of the errors is known but require stronger assumptions both on the
integrability of the errors and on the predictors v( j) to control the �1-norm of the β j .

If the εi are centered and admit a finite variance σ 2, the family of candidate esti-
mators used in Corollary 9 can be reduced to that of the least-squares { f̂λ, λ ∈ �}
defined with the choice � = V by f̂V = 
V X for all V ∈ V. Since the risk of f̂V
satisfies

E

[∥∥∥ f − f̂V

∥∥∥2
]

= ∥∥ f −
V f
∥∥2 + D(V )σ 2, (44)

by applying Theorem 6 with VV = {
V
}

for all V ∈ V, we deduce the following.

Corollary 10 Assume that the assumptions of Theorem 6 hold and that the εi are cen-
tered and admit a finite variance σ 2. By applying the selection procedure of Sect. 8.2
to the family of least-squares estimators

{

V X, V ∈ V

}
, one can select from the data

X some linear space V̂ among V such that

CE

[∥∥ f −
C
V̂ X
∥∥2
]

≤ inf
V ∈V

{∥∥ f −
V f
∥∥2 + D(V ) ∨�(V )

}
(45)

where C depends on c0, σ, R, R and � only.

Under the assumption that the εi are Gaussian, results of the same flavor (without
any boundedness assumption on the vector f and therefore for C = R) were previ-
ously obtained by Birgé and Massart [20] when the variance is known and in Baraud,
Giraud and Huet [9] when it is not. Nevertheless, these approaches as well as ours suffer
from the same drawback: in the context of variable selection with pmax large enough,
the collection { f̂V , V ∈ V}, though finite, is very large and the selection procedure
becomes NP-hard and hence practically useless. In the recent years, many efforts have
been done to design (practical) selection rules for the purpose of performing variable
selection. Among the most popular ones, we mention the Lasso and the Dantzig selec-
tors described respectively in Tibshirani [50] and Candès and Tao [23]. A theoretical
analysis of these two procedures ( separately and comparatively) has been done in
Bickel, Ritov and Tsybakov [12]. Others based on random forest (see Genuer et al.
[30]) or PLS regression (see Höskuldsson [34]) are also used in practice even though
less is known on their theoretical performances. In any case, it seems that none of
such procedures outperforms the others and it may therefore be reasonable to consider
them all and let the data decide which is the most appropriate to estimate the truth.

In what follows we consider an arbitrary collection � of model selection proce-
dures among V, denote V λ the model selected by the procedure λ ∈ � and f̂λ the
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least-squares estimator on V λ. By applying the selection procedure of Sect. 8.2 with
Vλ = {

V λ

}
for all λ ∈ �, we deduce the following result.

Corollary 11 Under the assumptions of Theorem 6, the estimator 
C f̃ satisfies

CE

[∥∥∥ f −
C f̃
∥∥∥2
]

≤ inf
λ∈�

{
E

[∥∥∥ f − f̂λ
∥∥∥2
]

+ E
[
D
(
V λ

) ∨� (
V λ

)]}

for some C depending on c0, R, R and � only.

The selection procedure we propose is unfortunately not practical in the general con-
text of model selection. Not because the computations are NP-hard, at least as long as
the family � of candidate procedures keeps to a reasonable size, but rather because
our selection rule relies on a discretization device that is not practical yet. However,
we mention that in the specific context of variable selection the procedure can be made
feasible indeed by using the alternative family of models V = {

V m ∩ C,m ∈ M
}
. By

assumption, the unknown parameter s belongs to one of these models and as subsets
of linear spaces, their discretization can be easily done. Furthermore, only the models
V λ ∩ C with λ ∈ � actually need to be discretized.

8.4 Selecting among linear estimators

In this section, we assume that the collection { f̂λ, λ ∈ �} consists of linear estimators
of f . More precisely, we shall assume that � is an arbitrary collection of (determin-
istic) symmetric matrices and that f̂λ = λX for all λ ∈ �. Among the examples we
have in mind is the following one.

Example 5 (Kernel estimation) Assume that f is of the form

f = (F(1/n), . . . , F(n/n))

for some real-valued function F on [0, 1]. Given a symmetric kernel K , that is, a
function from R

2 into R, such that the matrix (K (i/n, j/n))1≤i, j≤n is symmetric, we
can associate the kernel estimator of f defined by

f̂λ(K ) = λ(K )X with λi, j (K ) = K (i/n, j/n)

n
for all i, j = 1, . . . , n.

This estimator corresponds to the Priestley and Chao [47] estimator evaluated at points
k/n for k = 1, . . . , n.

Other examples of linear estimators with symmetric matrices λ can be found in Arlot
and Bach [5] (kernel ridge regression, spline smoothing, multiple kernel learning...).
As also mentioned there, the classical Nadaraya-Watson kernel estimator is beyond
the scope of this study because it corresponds to a non-symmetric matrix λ.

In view of selecting among the family { f̂λ, λ ∈ �}, we consider the family of
models V = {

V λ, λ ∈ �} defined as follows. For λ ∈ �, let λ(1) ≥ · · · ≥ λ(n)
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be the the eigenvalues of λ sorted by non-increasing order, v(1), . . . , v(n) the corre-
sponding eigenvectors and Dλ = max

{
k, λ(k) ≥ 1/2

}
with the convention Dλ = 0 if{

k, λ(k) ≥ 1/2
} = ∅. The linear space V λ corresponds to the linear space generated

by the v(k) for k ≤ Dλ with the convention V λ = {0} if Dλ = 0. The threshold 1/2
involved in the definition of Dλ is not magical and has been chosen for convenience.
Any other choice of a constant in (0, 1) would lead to a result which is similar to the
one below (with a possibly different constant C).

Corollary 12 Assume that the assumptions of Theorem 6 hold and that the εi are
centered and admit a finite variance σ 2. Consider a collection { f̂λ, λ ∈ �} of lin-
ear estimators associated to symmetric matrices λ. By using the selection procedure
described in Sect. 8.2 with the family of linear spaces V defined above and any mapping
� from V into [1,+∞) satisfying (4) the selected estimator satisfies

CE

[∥∥∥ f −
C f̃
∥∥∥2
]

≤ inf
λ∈�

{
E

[∥∥∥ f − f̂λ
∥∥∥2
]

∨�(V λ)

}

for some constant C depending on c0, R, R, σ and � only.

The selection procedure allows to minimize the risk among the family of linear estima-
tors {λX, λ ∈ �}. In particular, it can be used to select a window or a kernel among a
collection of those. A result of the same flavour as that of Corollary 12 can be found in
Arlot and Bach [5] but under more restrictive assumptions on the matrices λ, the car-
dinality of � and the distribution of the εi . Nevertheless, their point of view is more
practical than ours and leads to a concrete algorithm. In the Gaussian white noise
model, Goldenshluger and Lepski [33] addressed the problem of structural adaptation
by means of a suitable selection procedure among linear estimators based on kernels.
Their assumptions on the family of kernels are slightly different from ours: they con-
sider some convolution-type assumption between the kernels of the collection while
we assume that the kernels are symmetric.

The proof of Corollary 12 is postponed to Sect. 9.11.

9 Proofs

9.1 Proof of Proposition 2

For S, S′ ∈ S and ξ > 0,

y2 ≥ τ
[
4
(
η2(S) ∨ η2(S′)

)
+ ξ

]
≥ 4τ

(
η2(S) ∨ η2(S′)

)
.

We set C0 = (S ∩ B(s, y))× (S′ ∩ B(s, y)) and for j ≥ 1,

C j =
{
(t, t ′) ∈ S × S′, 2 j−1 y2 < H2 (s, t)+ H2 (s, t ′

) ≤ 2 j y2
}
.
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Note that for all j ≥ 0, C j ⊂ (
S ∩ B(s, 2 j/2 y)

) × (
S′ ∩ B(s, 2 j/2 y)

)
and that for

(t, t ′) ∈ C j , w2(t, t ′, y) = (
H2(s, t)+ H2(s, t ′)

) ∨ y2 ≥ (2 j−1 ∨ 1)y2. Using (13)
and (14), we have

P

[
sup

(t,t ′)∈S×S′

Z(N , t, t ′)
w2(t, t ′, y)

> c0

]

≤
∑

(t,t ′)∈C0

P

[
Z(N , t, t ′) ≥ c0 y2

]
+
∑
j≥1

∑
(t,t ′)∈C j

P

[
Z(N , t, t ′) ≥ c02 j−1 y2

]

≤ b |S ∩ B(s, y)| ∣∣S′ ∩ B(s, y)
∣∣ exp

[
− ac2

0 y4

y2 + cc0 y2

]

+b
∑
j≥1

|S ∩ B(s, 2 j/2 y)||S′ ∩ B(s, 2 j/2 y)| exp

[
− ac2

022( j−1)y4

2 j y2 + cc02 j−1 y2

]

≤ bM2 exp

[(
1

τ
− ac2

0

1 + cc0

)
y2

]
+ bM2

∑
j≥1

exp

[(
1

τ
− ac2

0

2(2 + cc0)

)
2 j y2

]

≤ bM2
∑
j≥0

exp

[
−2 j y2

τ

]
,

recalling that τ = 4(2 + cc0)/(ac2
0). By using that τ−1 y2 ≥ 4(η2(S)∨ η2(S′))+ ξ ≥

1 + ξ and the inequality 2 j ≥ j + 1 which holds for all j ≥ 0, we finally obtain

P

[
sup

(t,t ′)∈S×S′

Z(N , t, t ′)
w2(t, t ′, y)

> c0

]
≤ bM2

∑
j≥0

exp [−( j + 1)(1 + ξ)] ≤ bM2e−ξ .

9.2 Proof of Proposition 3

Cases of Examples 1 and 2 It suffices to prove the result in the case of Exam-
ple 2, the result for Example 1 being obtained similarly by changing Z(N , t, t ′) into
Z(N , t, t ′)/n. Note that for all t, t ′ ∈ L0,

Z(N , t, t ′) =
n∑

i=1

(
ψ(ti , t ′i , Xi )− E

[
ψ(ti , t ′i , Xi )

])

is a sum of independent and centered random variables bounded by
√

2. Besides, by
setting ri = (ti + t ′i )/2 for i = 1, . . . , n and using that for all xi ∈ Xi , (t (xi ) ∨
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t ′i (xi ))/ri (xi ) ≤ 2 we have

4E

[
Z2(N , t, t ′)

]
≤

n∑
i=1

∫

Xi

(√
ti −

√
t ′i
)2 si

ri
dμi

=
n∑

i=1

∫

Xi

(√
ti −

√
t ′i
)2 (√ si

ri
− 1 + 1

)2

dμi

≤ 2
n∑

i=1

∫

Xi

(√
ti −

√
t ′i
)2 (√ si

ri
− 1

)2

dμi

+2
n∑

i=1

∫

Xi

(√
ti −

√
t ′i
)2

dμi

= 2
n∑

i=1

∫

Xi

(√
ti −

√
t ′i
)2

ri

(√
si − √

ri
)2

dμi + 4H2 (t, t ′
)

≤ 8
(

H2 (s, r)+ H2 (s, t)+ H2(s, t ′)
)
.

Since the concavity of u �→ √
u implies that 2H2 (s, r) ≤ H2 (s, t)+ H2

(
s, t ′

)
, we

obtain that for t, t ′ ∈ B(s, y)

Var
(
Z(N , t, t ′)

) = E

[
Z2(N , t, t ′)

]
≤ 3

[
H2 (s, t)+ H2 (s, t ′

)] ≤ 6y2.

Applying Bernstein’s inequality, we obtain that (13) is fulfilled with b = 1, a = 1/12
and c = √

2/6.

Case of Example 3 Under (15), for all u = (u1, . . . , un) ∈ R
n such that∑n

i=1 u2
i s(i) ≤ v2 and maxn

i=1 |ui | ≤ γ , and all λ ∈ (0, 1/(βγ )), we have

E

[
eλ

∑n
i=1 ui (Xi −s(i))

]
=

n∏
i=1

E

[
eλui (Xi −s(i))

]
≤

n∏
i=1

exp

[
λ2σu2

i s(i)

2(1 − λγβ)

]

≤ exp

[
λ2σv2

2(1 − λγβ)

]
. (46)

Under (46), we derive from Bernstein’s inequality (see Massart [45, Corollary 2.10]),

P

[
n∑

i=1

ui (Xi − s(i)) ≥ ξ

]
≤ exp

[
− ξ2

2(σv2 + γβξ)

]
. (47)
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For t, t ′ ∈ B(s, y), let us now take u = (ψ(t, t ′, 1), . . . , ψ(t, t ′, n)) (where ψ is
defined by (12) on X = {1, . . . , n}) and note that

n∑
i=1

ψ(t, t ′, i) (Xi − s(i)) = Z(N , t, t ′)

max
i=1,...,n

∣∣ψ(t, t ′, i)
∣∣ ≤ 1√

2
= γ.

Besides, arguing as for the case of Example 2, we get

n∑
i=1

ψ2(t, t ′, i)s(i) = 1

4

n∑
i=1

(√
t (i)− √

t ′(i)
)2

s(i)

(t (i)+ t ′(i))/2

≤ 3H2(s, t)+ 3H2(s, t ′) ≤ 6y2 = v2.

Consequently, we deduce from (47) that (13) is satisfied with a = 1/(12σ), b = 1
and c = β

√
2/(12σ) (then τ ≤ 96c−2

0 (σ + β)).

Case of Example 4 In this case,

Z(N , t, t ′) =
∫

X
ψ
(
t, t ′, x

)
(d N (x)− s(x)dμ)

where ψ is bounded with values in [−1/
√

2, 1/
√

2] and, arguing as for Example 2,
we see that it satisfies

∫

X
ψ2 (t, t ′, x

)
s(x)dμ ≤ 3

(
H2(s, t)+ H2(s, t ′)

)
≤ 6y2

for all t, t ′ ∈ B(s, y). By applying Proposition 7 in Reynaud-Bouret [48] we obtain
that Z(N , t, t ′) satisfies (13) with a = 1/12, b = 1 and c = √

2/36.

9.3 Proof of Proposition 4

Let us fix m,m′ ∈ M, ξ > 0 and y such that

y2 ≥ τ (D(Sm) ∨ D(Sm′)+ ξ) .

All t ∈ Sm and t ′ ∈ Sm′ are constant on the cells I ∈ m ∨ m′ with value tI , t ′I
respectively and therefore so is ψ(t, t ′, .). Namely, for all x ∈ I

ψ(t, t ′, x) = ψ(tI , t ′I ) = 1√
2

[ √
1

1 + tI /t ′I
−
√

1

1 + t ′I /tI

]
.
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Using that
∣∣ψ(tI , t ′I )

∣∣ ≤ 1/
√

2 and Cauchy–Schwarz inequality, we get

Z(N , t, t ′) =
∑

I∈m∨m′
ψ(tI , t ′I ) (N (I )− E [N (I )])

=
∑

I∈m∨m′
ψ(tI , t ′I )

(√
N (I )−√

E [N (I )]
) (√

N (I )+√
E [N (I )]

)

=
∑

I∈m∨m′
ψ(tI , t ′I )

(√
N (I )−√

E [N (I )]
)2

+2
∑

I∈m∨m′
ψ(tI , t ′I )

√
E(N (I ))

(√
N (I )−√

E [N (I )]
)

≤ X 2(m ∨ m′)√
2

+ 2

[ ∑
I∈m∨m′

ψ2(tI , t ′I )E(N (I ))
]1/2

X (m ∨ m′)

= X 2(m ∨ m′)√
2

+ 2

[∫
ψ2(t, t ′, x)sdμ

]1/2

X (m ∨ m′).

Besides, arguing as in Sect. 9.2 (Example 2), we have

∫

X
ψ2(t, t ′, x)sdμ ≤ 3

(
H2(s, t)+ H2(s, t ′)

)

and thus, using that w2(t, t ′, y) ≥ y2 and w2(t, t ′, y) ≥ (
H2(s, t)+ H2(s, t ′)

)1/2
y,

we derive

sup
(t,t ′)∈Sm×Sm′

Z(N , t, t ′)
w2(t, t ′, y)

≤ X 2(m ∨ m′)√
2y2

+ 2
√

3
X (m ∨ m′)

y

≤ 2
√

6 + 1√
2

(X 2(m ∨ m′)
y2 ∨ X (m ∨ m′)

y

)
.

Since c0 ∈ (0, 1),

{
sup

(t,t ′)∈Sm×Sm′

Z(N , t, t ′)
w2(t, t ′, y)

≥ c0

}
⊂
{

X 2(m ∨ m′)
y2 ∨ X (m ∨ m′)

y
≥ c0

√
2

2
√

6 + 1

}

⊂

⎧⎪⎨
⎪⎩

X 2(m ∨ m′)
y2 ≥ 2c2

0(
2
√

6 + 1
)2

⎫⎪⎬
⎪⎭

123



390 Y. Baraud

and therefore

P

[
sup

(t,t ′)∈Sm×Sm′

Z(N , t, t ′)
w2(t, t ′, y)

≥ c0

]
≤ P

⎡
⎢⎣X 2(m ∨ m′) ≥ 2c2

0 y2

(
2
√

6 + 1
)2

⎤
⎥⎦ .

We conclude by using (16) together with the fact that under (17),

y2 ≥ τ (D(Sm) ∨ D(Sm′)+ ξ) ≥
(

2
√

6 + 1
)2

2c2
0

× a
(|m ∨ m′| + ξ

)
.

9.4 Proof of Theorem 1

Throughout we set κ = c0 + 1/
√

2 ∈ (1/√2, 1) and fix some estimator ŝλ. We start
with a preliminary result.

Preliminary result: For ξ > 0 and S, S′ ∈ S, let us set

y2(S, S′, ξ) = τ
(
D(S) ∨ D(S′)+�(S)+�(S′)+ ξ

)
,

and

�ξ =
⋂

(S,S′)∈S2

{
sup

(t,t ′)∈S×S′

Z(N , t, t ′)
w2(t, t ′, y(S, S′, ξ))

≤ c0

}
.

Note that under Assumption 1, P
(
�ξ
) ≥ 1 − γ�2e−ξ . Let us prove that on the

set �ξ ,

D(s̃λ) ≤ 12

1 − κ

(
H2(s, ŝλ)+ A(ŝλ,Sλ)+ 1

6
c0τξ

)
. (48)

Proof Since D(s̃λ) = 0 whenever E(s̃λ) = ∅, we shall assume from now on that
E(s̃λ) �= ∅. Hence, there exists s̃λ′ ∈ E(s̃λ) with s̃λ′ �= s̃λ. Using Proposition 1 with
r = (s̃λ + s̃λ′)/2 and the fact that T(N , s̃λ, s̃λ′) ≥ 0, we get

H2(s, s̃λ′)− H2(s, s̃λ) =
⎡
⎣ρ (s, s̃λ)− 1

2

∫

X
s̃λdμ

⎤
⎦−

⎡
⎣ρ (s, s̃λ′)− 1

2

∫

X
s̃λ′dμ

⎤
⎦

= −T(N , s̃λ, s̃λ′)+ pen(s̃λ)− pen(s̃λ′)

+ [
ρ (s, s̃λ)−ρr (s · μ, s̃λ)

]−[ρ (s, s̃λ′)−ρr (s · μ, s̃λ′)
]

+ [
ρr (s · μ, s̃λ)− ρr (N , s̃λ)

]

− [
ρr (s · μ, s̃λ′)− ρr (N , s̃λ′)

]
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≤ 1√
2

[
H2 (s, s̃λ)+ H2 (s, s̃λ′)

]

+Z(N , s̃λ, s̃λ′)+ pen(s̃λ)− pen(s̃λ′)

and therefore,

(
1 − 1√

2

)
H2 (s, s̃λ′) ≤

(
1 + 1√

2

)
H2 (s, s̃λ)

+ Z(N , s̃λ, s̃λ′)+ pen(s̃λ)− pen(s̃λ′).

On �ξ ,

Z(N , s̃λ, s̃λ′) ≤ c0 H2(s, s̃λ)+ c0 H2(s, s̃λ′)

+c0 inf
{

y2(S, S′, ξ), (S, S′) ∈ Sλ(s̃λ)× Sλ′(s̃λ′)
}

≤ c0 H2(s, s̃λ)+ c0 H2(s, s̃λ′)

+c0τ inf
(S,S′)∈Sλ(s̃λ)×Sλ′ (s̃λ′ )

(
D(S)+ D(S′)+�(S)+�(S′)+ ξ

)

and since for all λ ∈ �,

penλ(s̃λ) ≥ c0τ inf {D(S)+�(S), S ∈ Sλ(s̃λ)} ,

we have

(1 − κ) H2 (s, s̃λ′) ≤ (1 + κ) H2 (s, s̃λ)+ 2 penλ(s̃λ)+ c0τξ.

Since s̃λ′ is arbitrary in E(s̃λ), we deduce that on �ξ ,

D(s̃λ) = sup
s̃λ′ ∈E(s̃λ)

H2 (s̃λ, s̃λ′)

≤ 2H2 (s, s̃λ)+ 2 sup
sλ′ ∈E(s̃λ)

H2 (s, s̃λ′)

≤ 2

(
1 + 1 + κ

1 − κ

)
H2 (s, s̃λ)+ 4

1 − κ
penλ(s̃λ)+ 2

1 − κ
c0τξ

≤ 4

1 − κ

(
3H2(s, ŝλ)+ 3

2
H2(ŝλ, s̃λ)+ penλ(s̃λ)+ 1

2
c0τξ

)

and we conclude by using that H2(ŝλ, s̃λ)+penλ(s̃λ) ≤ A(ŝλ,Sλ)+c0τ ≤ 2A(ŝλ,Sλ)
because �(.) ≥ 1 on S. ��
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End of the proof of Theorem 1 Using the triangular inequality and the fact that

H
(
s̃λ̃, s̃

) ≤ H
(
s̃λ̃, ŝλ

)+ √
c0τ ≤ H

(
s̃λ̃, s̃λ

)+ H
(
s̃λ, ŝλ

)+ √
c0τ ,

we have

H (s, s̃) ≤ H(s, ŝλ)+ 2H(ŝλ, s̃λ)+ 2H(s̃λ, s̃λ̃)+ √
c0τ ,

which with c0τ ≤ A(ŝλ,Sλ) and H2
(
ŝλ, s̃λ

) ≤ 2A(ŝλ,Sλ) gives

3−1 H2 (s, s̃) ≤ H2(s, ŝλ)+ (2
√

2 + 1)2 A(ŝλ,Sλ)+ 4H2(s̃λ, s̃λ̃).

On �ξ , we deduce from (48)

H2 (s̃λ, s̃λ̃
) ≤ D(s̃λ) ∨ D(s̃λ̃) ≤ D(s̃λ)+ c0τ

≤ 12

1 − κ

[
H2(s, ŝλ)+ A(ŝλ,Sλ)+ 1

6
c0τξ

]
+ A(ŝλ,Sλ),

and get

3−1 H2 (s, s̃) ≤
(

1 + 4 × 12

1 − κ

)
H2(s, ŝλ)+ 8

1 − κ
c0τξ

+
(
(2

√
2 + 1)2 + 4

13 − κ

1 − κ

)
A(ŝλ,Sλ).

Finally, we conclude the first part by using that P
(
�ξ
) ≥ 1 − γ�2e−ξ and the fact

that ŝλ is arbitrary. For the second part, it suffices to integrate with respect to ξ and to
note that under the assumption that � ≥ 1 on S,

A(ŝλ,Sλ) ≥ inf
S∈S

inf
t∈S

penλ(t) ≥ c0τ, ∀λ ∈ �.

��

9.5 Proof of Corollary 4

For Examples 1 and 4, we know from Proposition 5 that inequality (16) hold with
a = 200/n and a = 6 respectively. Besides, inequality (17) holds with δ = 2 and
since (25) is satisfied for all λ ≥ 1, we may apply Theorem 2. To get the result, it
remains to bound E

[
penλ(ŝλ)

]
from above. Let us first consider the case of density

estimation. Note that if n ≥ 2

M̂ = min

{
M, min

i �= j

∣∣Xi − X j
∣∣ ≥ 1

M

}
≤ max

i �= j

1∣∣Xi − X j
∣∣ + 1
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hence, by Hölder inequality with q > 1, q = q/(q − 1) > 1 and for p = 2q̄ > 1

E

[
M̂1/p

]
≤ 1 + E

[
max
i �= j

1∣∣Xi − X j
∣∣1/p

]
≤ 1 + n(n − 1)

2
E

[
1

|X1 − X2|1/p

]

≤ 1 + n(n − 1)

2

∫

[0,1)

⎡
⎢⎣
∫

[0,1)

1

|x − y|1/p s(y)dy

⎤
⎥⎦ s(x)dx

≤ 1 + 2n(n − 1) ‖s‖Lq . (49)

Since for n = 1, M̂ = 1 a.s., this inequality remains true in this case. By using the
concavity of the logarithm and of the map t �→ t1/p, for all λ ≥ 1,

E
[
penλ(ŝλ)

] = 2c0τ(nλ
−1 + 1)E

[
log(e + M̂)

]
≤ 2c0τ(nλ

−1 + 1)pE

[
log(e + M̂1/p)

]

≤ 2c0τ(nλ
−1 + 1)p log

[
e + E

(
M̂1/p)

)]

≤ 2c0τ(nλ
−1 + 1)p log

[
e +

(
1 + 2n(n − 1) ‖s‖Lq

)]

≤ 4τ
(

nλ−1 + 1
)

p log
(

e + n(n − 1) ‖s‖Lq

)
, (50)

and we conclude by using that in the density case τ equals 1/n up to a universal
constant.

Let us now turn to the Poisson case. We decompose E
[
penλ(ŝλ)

]
as follows

E
[
penλ(ŝλ)

] = E
[
penλ(ŝλ)1n=0

]+ E
[
penλ(ŝλ)1n≥1

]
= E

[
penλ(ŝλ)1n=0

]+ E
[
E
[
penλ(ŝλ)1n≥1|n

]]
.

On the event {n = 0}, penλ(ŝλ) = 2c0τ for all λ ≥ 1 and therefore,

E
[
penλ(ŝλ)1n=0

] ≤ 2c0τ. (51)

Since n̄ > 0, P(n = k) > 0 for all k ≥ 1 and conditionally on the event {n = k},
X1, . . . , Xk are i.i.d. with density s/n̄. Hence, using (50), we deduce that

E
[
penλ(ŝλ)1n≥1|n

] ≤ 4τ
(

nλ−1 + 1
)

p log

(
e + n(n − 1) ‖s‖Lq

n̄

)
1n≥1.

We now use the following inequality E(U log V ) ≤ E
1/2(U 2) log(E(V ))which holds

for all random variables U, V such that U ≥ 0 and V ≥ e. This inequality derives
from Cauchy–Schwarz inequality together with the fact that the map v �→ log2 v is
concave on [e,+∞). We obtain
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E
[
penλ(ŝλ)1n≥1

] ≤ 4pτE
1/2

[(
nλ−1 + 1

)2
]

log

(
e + E (n(n − 1)) ‖s‖Lq

n̄

)

and using the fact that n is distributed as a Poisson random variable, we get

E
[
penλ(ŝλ)1n≥1

] ≤ 4pτ
(

n̄λ−1 + 1
)

log
(

e + n̄ ‖s‖Lq

)
. (52)

We conclude by putting (51) and (52) together and by using that τ is a universal
constant in the Poisson case.

9.6 Proof of Proposition 6

Clearly, the result is true for |m| = 1. Let us now assume D = |m| ≥ 2. For t =∑D
j=1 qi j ti j ∈ Sm , define

πmt =
D−1∑
j=1

qi j
t j +

⎛
⎝1 −

D−1∑
j=1

q̄i j

⎞
⎠ tiD with q̄i j =

⌊
qi j ε

−1
⌋
ε

Note that for all j ∈ {1, . . . , D}, q̄i j ≥ 0,
⌊
qi j ε

−1
⌋ ∈ {

0, . . . ,
⌊
ε−1

⌋}
,∑D−1

j=1 q̄i j ≤ ∑D−1
j=1 qi j ≤ 1 and therefore πmt ∈ Sm[η]. Besides, for all j ∈

{1, . . . , D} ∣∣q j − q̄ j
∣∣ ≤ ε and hence, by using that for all u, v ∈ L0, 2H2(u, v) ≤∫

X |u − v| dμ we get

2H2(t, Sm[η]) ≤ 2H2(t, πmt) ≤
∫

X

∣∣∣∣∣∣
D∑

j=1

(q j − q̄ j )t j

∣∣∣∣∣∣ dμ

≤ ε

D−1∑
j=1

∫

X
t j dμ+

∣∣∣∣∣∣
D−1∑
j=1

(
qi j − q̄i j

)
∣∣∣∣∣∣
∫

X

tiD dμ

≤ 2ε(D − 1) ‖t‖1 ≤ 2η2τ.

9.7 Proof of Proposition 7

We set D = D(V ) and consider an orthonormal basis
{
u j , j = 1, . . . , D

}
of V . It

follows from Proposition 9 of Birgé [16] that the set

T =
⎧⎨
⎩

2η
√
τ√

D

d∑
j=1

k j u j , (k j ) j=1,...,D ∈ Z
D

⎫⎬
⎭
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is a η
√
τ -net for V and for all R ≥ 2η and h ∈ R

n

∣∣{t ∈ T , ‖h − t‖ ≤ R
√
τ
}∣∣ ≤ exp

[
0.458D

(
R

η

)2
]
.

The result follows by applying Proposition 12 of Birgé [16] (with π = 
C , (M ′, d) =
(Rn, ‖ ‖), M0 = C, T = T and λ = 1 = ε).

9.8 Proof of Corollary 8

Let us denote by ‖ ‖∞ the supremum norm on [0, 1]. First note that (4) holds since

∑
V ∈V

e−�(V ) ≤
∑
r≥1

∑
J≥0

∣∣Vr,J
∣∣ e−(C ′(r)+1)2J −r ≤

∑
r≥1

e−r
∑
J≥0

e−2J
< +∞.

Let now p ∈ [1,+∞], α > 1/p and R > 0. There exists some r ∈ N
∗ such that

α ∈ (1/p, r) and it follows from Proposition 8 that for all J ≥ 0 there exits V ∈ Vr,J

such that D(V ) ≤ C(r)2J and for all sF ∈ Sαp,∞(R)

inf
v∈V

∥∥√sF − v
∥∥ ≤ n inf

V∈Vr,J

inf
G∈V

‖F − G‖∞ ≤ C ′′(r)n R2−Jα.

Hence, we deduce from (35) that for some constant C (depending on c0, τ and r ),

CE

[
n−1 H2 (s, s̃)

]
≤ inf

J≥0

(
R22−2Jα + 2J

n

)

and the result follows by choosing 2J of order (n R2)1/(1+α) ≥ 1.

9.9 Proof of Theorem 5

Hereafter, ρ(P, Q) and h(P, Q) denote the Hellinger affinity and the Hellinger dis-
tance between the probabilities P, Q. For θ ∈ �n , A′(θ) corresponds to the vector
t = (A′(θ1), . . . , A′(θn)). Since the mapping from�n into R

n+ defined by θ �→ A′(θ)
is one to one, for s ∈ S we denote (abusively) Ps and Es the probability and expecta-
tion with respect to the probability Pθ where θ is the unique element of�n satisfying
s = A′(θ). We start with the following lemma.

Lemma 1 Under Assumption 2, for all θ, θ ′ ∈ I n, t = A′(θ) and t ′ = A′(θ ′),

h2 (Pθ , Pθ ′) ≤ −
n∑

i=1

log ρ
(

Pθi , Pθ ′
i

)
≤ 4κ

n∑
i=1

H2(ti , t ′i ) = 4κH2(t, t ′)
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Proof Since

h2 (Pθ , Pθ ′) = 1 − ρ (Pθ , Pθ ′) = 1 − exp

[
n∑

i=1

log ρ
(

Pθi , Pθ ′
i

)]

≤ −
n∑

i=1

log ρ
(

Pθi , Pθ ′
i

)
,

it suffices to show that −∑n
i=1 log ρ

(
Pθi , Pθ ′

i

)
≤ 4κ

∑n
i=1 H2(ti , t ′i ). Summing up

over i , it is enough to show the inequality for n = 1, what we shall do. Let θ, θ ′ in I
such that t = A′(θ) and t ′ = A′(θ ′). With no loss of generality, we may assume that
θ ′ < θ and set δ = (θ − θ ′)/2. The Hellinger affinity between Pθ and Pθ ′ is given by

ρ(Pθ , Pθ ′) = exp

[
−
(

A(θ)+ A(θ ′)
2

− A

(
θ + θ ′

2

))]

and therefore

− log ρ (Pθ , Pθ ′) = A(θ)+ A(θ ′)
2

− A

(
θ + θ ′

2

)

= 1

2
[A(θ)+ A(θ − 2δ)− 2A (θ − δ)]

= 1

2

θ∫

θ−δ

(
A′(u)− A′(u − δ)

)
du

= 1

2

θ∫

θ−δ

⎡
⎣

u∫

u−δ
A′′(v)dv

⎤
⎦ du.

Since t, t ′ ∈ R+\{0} and since A′′ do not vanish on [θ ′, θ ] and A′ is nondecreasing,
for all u ∈ [θ − δ, θ ] and v ∈ [u − δ, u]

A′′(v) = A′′(v)
2
√

A′(v)
A′′(u)

2
√

A′(u)
4
√

A′(v)A′(u)
A′′(u)

≤ A′′(v)
2
√

A′(v)
A′′(u)

2
√

A′(u)
4A′(u)
A′′(u)

≤ 4κ
A′′(v)

2
√

A′(v)
A′′(u)

2
√

A′(u)
.

giving thus,

− log ρ (Pθ , Pθ ′) ≤ 2κ

θ∫

θ−δ

⎡
⎣

u∫

u−δ

A′′(v)
2
√

A′(v)
A′′(u)

2
√

A′(u)
dv

⎤
⎦ du
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≤ 2κ

θ∫

θ ′

⎡
⎣

θ∫

θ ′

A′′(v)
2
√

A′(v)
A′′(u)

2
√

A′(u)
dv

⎤
⎦ du

= 2κ

⎛
⎝

θ∫

θ ′

A′′(v)
2
√

A′(v)
dv

⎞
⎠

2

= 2κ
(√

A′(θ)−√
A′(θ ′)

)2

= 2κ
(√

t − √
t ′
)2

��
The proof of Theorem 5 is based on Assouad’s Lemma (see Assouad [6]), more pre-
cisely on the version given by Theorem 2.10 in Tsybakov [52]. Hereafter,

{
u1, . . . , u D

}
denotes an orthonormal basis of V (we set D = D(V )) and d(ε, ε′) the Hamming

distance between two elements ε and ε′ of {0, 1}D , that is d(ε, ε′) = ∑D
j=1 1ε j �=ε′j .

Besides, we set

SK = {
s ∈ K n,

√
s ∈ V

} ⊂ S.

Let t0 ∈ S be such that u0 = √
t0. Under (40), there exists β1, . . . , βD such that√

t0 = ∑D
j=1 β j u j and that for all ε ∈ {0, 1}D one can find tε ∈ SK such that√

tε = ∑D
j=1

(
β j + Rε j

)
u j . Note that the for all ε, ε′ ∈ {0, 1}D ,

2H2(tε, tε
′
) =

∥∥∥√tε −
√

tε′
∥∥∥2 = R2d(ε, ε′).

Besides, whatever the estimator ŝ and s ∈ S

sup
s∈S

Es

[
H2 (s, ŝ

)] ≥ sup
s∈SK

Es

[
H2 (s, ŝ

)] ≥ sup
ε∈{0,1}D

Etε
[

H2 (tε, ŝ
)]

≥ inf
ε̂

sup
ε∈{0,1}D

Etε
[

H2
(

tε, t ε̂
)]

= R2

2
inf
ε̂

sup
ε∈{0,1}D

Etε
[
d
(
ε, ε̂

)]
,

where the two last infima run among all estimators ε̂ based on the observations
(X1, . . . , Xn) with values in {0, 1}D . Theorem 2.10 in Tsybakov [52] asserts that

inf
ε̂

sup
ε∈{0,1}D

Etε
[
d
(
ε, ε̂

)] ≥ D

2

(
1 −√

α(2 − α)
)

provided that for all ε, ε′ such that d(ε, ε′) = 1, h2
(
Pθε , P

θε
′
) ≤ α < 1 where the

parameters θε and θε
′

are such that tε = A′(θε) and tε
′ = A′(θε′). Taking α = 1/2
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and using Lemma 1, we get for all ε, ε′ such that d(ε, ε′) = 1,

h2 (Pθε , P
θε

′
) ≤ 4κH2(tε, tε

′
) ≤ 2κR2 ≤ 1

2
= α,

and hence,

inf
ŝ

sup
s∈S

Es

[
H2 (s, ŝ

)] ≥ 1 − √
3/2

4
DR2,

which concludes the proof.

9.10 Proof of Theorem 6

Let L0 = {
qt , t ∈ C

}
. Under Assumption 3, the mapping t �→ qt is a quasi isometry

between (C, ‖ ‖) and (L0, H). In particular, by using Proposition 7, for all V ∈ V,
qt ∈ L0 and number r ≥ 2(Rη(V )),

∣∣{qt ′ ∈ S(V ), H(qt , qt ′) ≤ r
√
τ
}∣∣

≤
∣∣∣
{

t ′ ∈ V,
∥∥t − t ′

∥∥ ≤ R−1r
√
τ
}∣∣∣ ≤ exp

[
5D(V )

(
R−1r

η(V )

)2]
≤ exp

(
r2

2

)
.

Consequently, we deduce from Propositions 2 and 3 that S satisfies Assumption 1 with
γ = 1 and D(S(V )) = 40D(V ) for all V ∈ V. We may therefore apply Theorem 1
and get (recalling that f̃λ = 
C f̂λ and ŝλ = q f̃λ

)

CE

[
H2(q f , ŝ

λ̂
)
]

≤ inf
λ∈�

{
E

[
H2(q f , q f̃λ

)
]

+ E

[
A(q f̃λ

,Sλ)
]}
,

and deduce that for some constant C ′ depending on c0, R, R and � only,

C ′
E

[∥∥∥ f −
C f̃
∥∥∥2
]

≤ inf
λ∈�

{
E

[∥∥∥ f −
C f̂λ
∥∥∥2 + E

[
A(q f̃λ

,Sλ)
]]}

.

It remains to bound A(q f̃λ
,Sλ) from above for all λ ∈ �. By using Proposition 7, for

all λ ∈ � and V ∈ Vλ,

A(ŝλ,Sλ) ≤ inf
t ′∈V

[
H2(q f̃λ

, qt ′)+ pen(qt ′)
]

≤ R
2

inf
t ′∈V

∥∥∥
C f̂λ − t ′
∥∥∥2 + c0τ

(
40D(V )+�(V )

)

≤ 8R
2
[

inf
t ′∈V

∥∥∥
C f̂λ − t ′
∥∥∥2 + η2(V )τ

]
+ c0τ

(
40D(V )+�(V )

)
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≤ 8R
2
[

inf
t ′∈V

∥∥∥
C f̂λ − f + f − f̂λ + f̂λ − t ′
∥∥∥2 + η2(V )τ

]

+ c0τ
(
40D(V )+�(V )

)

≤ 24R
2
[∥∥∥ f −
C f̂λ

∥∥∥2 +
∥∥∥ f − f̂λ

∥∥∥2 + inf
t ′∈V

∥∥∥ f̂λ − t ′
∥∥∥2 + η2(V )τ

]

+ c0τ
(
40D(V )+�(V )

)

≤ C ′′
[∥∥∥ f − f̂λ

∥∥∥2 +
∥∥∥ f̂λ −
V f̂λ

∥∥∥2 + D(V )+�(V )

]

for some C ′′ depending on R, R and c0 only which concludes the proof.

9.11 Proof of Corollary 12

For each λ ∈ �, let λ be the linear map which coincides with λ on V λ and takes the
value 0 on its orthogonal. On the one hand,

E

[∥∥∥ f − f̂λ
∥∥∥2
]

= ‖ f − λ f ‖2 + tr
(
λ2
)
σ 2

=
n∑

k=1

(1 − λ(k))
2〈 f, v(k)〉2 + σ 2

n∑
k=1

λ2
(k).

On the other hand, the definition of D = Dλ entails that for all k > D, λ(k) ≤ 1/2
(with the convention λ(n+1) = 0) and therefore

E

[
inf

t∈V λ

∥∥∥ f̂λ − t
∥∥∥2
]

≤ E

[∥∥λX − λX
∥∥2
]

= E

[∥∥(λ− λ) f + (λ− λ)ε
∥∥2
]

= ∥∥(λ− λ) f
∥∥2 + tr

(
(λ− λ)2

)
σ 2 =

n∑
k=1+D

λ2
(k)〈 f, v(k)〉2 + σ 2

n∑
k=1+D

λ2
(k)

≤
n∑

k=1

(1 − λ(k))
2〈 f, v(k)〉2 + σ 2

n∑
k=1

λ2
(k) = E

[∥∥∥ f − f̂λ
∥∥∥2
]

and, since D/4 ≤ ∑D
k=1 λ

2
(k) ≤ σ−2

E

[∥∥∥ f − f̂λ
∥∥∥2
]

, we conclude the proof by using

Theorem 6.
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