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Abstract This paper is motivated by a new class of SDEs–PDEs systems, the so
called Lagrangian stochastic models which are commonly used in the simulation of
turbulent flows. We study a position–velocity system which is nonlinear in the sense
of McKean. As the dynamics of the velocity depends on the conditional expectation
with respect to its position, the interaction kernel is singular. We prove existence and
uniqueness of the solution to the system by solving a nonlinear martingale problem
and showing that the corresponding interacting particle system propagates chaos.
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1 Introduction

In this paper, we prove the well-posedness of a simplified Lagrangian stochastic model
describing the time evolution of the position and velocity of a fluid-particle, and we
construct an interacting particle approximation of the model. More precisely, given a
finite horizon time T > 0, we consider a d-dimensional standard Brownian motion
(Wt ; t ∈ [0, T ]), and a R

2d -valued r.v. (X0,U0) independent of W . We aim to prove
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320 M. Bossy et al.

that there exists a unique solution ((Xt ,Ut ); t ∈ [0, T ]) to the nonlinear McKean
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xt = X0 + ∫ t
0 Us ds,

Ut = U0 + ∫ t
0 B [Xs,Us; ρs] ds + ∫ t

0 σ(s, Xs,Us) dWs,

ρt is the density distribution of (Xt ,Ut ) for all t ∈ (0, T ].
(1.1)

Here, B is the mapping from R
d × R

d × L1(R2d) to R
d defined by

B
[
x, u; γ ] =

⎧
⎪⎨

⎪⎩

∫

Rd b(v, u)γ (x, v) dv
∫

Rd γ (x, v) dv
if
∫

Rd γ (x, v) dv �= 0,

0 elsewhere,
(1.2)

where b : R
d × R

d → R
d is a bounded interaction kernel. Formally, the drift compo-

nent of (1.1) involves the function

(x, u) �→ E

[
b (Ut , u)

/
Xt = x

]
. (1.3)

Such nonlinearity is typical of Lagrangian stochastic models which describe char-
acteristics, including positions Xt and velocities Ut , of fluid particles in a turbulent
flow. Although simple, the model (1.1) actually inherits two important features of such
Lagrangian stochastic models. First, due to the Langevin dynamics, the infinitesimal
generator of the solution is not uniformly elliptic. Second, the drift coefficient of the
velocity involves a conditional expectation w.r.t. the particle position. Because of these
two features of the model, existence and uniqueness of the solution to the non classical
nonlinear McKean equation (1.1) require a careful analysis.

We emphasize that our result is a first step in the analysis of Lagrangian stochastic
models for the simulation of turbulent flows and the related probability density func-
tion (PDF) methods. These models and numerical methods actually have a dramatic
complexity (see Sect. 2), which is not astonishing since they aim to be alternative
approaches to Navier–Stokes equations for turbulent flows. Several recent works sep-
arately face some of the difficulties. For example, Bossy, Fontbona and Jabir study the
Poisson partial differential equation (PDE) (2.2) and its relation with the incompress-
ibility of the mean field velocity; Bossy and Jabir study (1.1) with a specular reflection
boundary condition.

The paper is organized as follows. In Sect. 2, we present the Lagrangian stochastic
models in turbulent fluid dynamics, and list some references on the models and their
numerical issues. In Sect. 3, we state our main results. In Sect. 4, we prove that the
system (1.1) has at most one weak solution, in the sense that a suitable nonlinear
martingale problem has at most one solution. In Sect. 5, we exhibit a solution to the
nonlinear martingale problem by studying the limit of solutions to smoothed systems
(see Theorem 3.2). The existence of solutions to the smoothed systems is obtained by
proving that corresponding interacting particle systems propagate chaos.
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On conditional McKean Lagrangian stochastic models 321

2 A brief description of Lagrangian stochastic models for turbulent flows

We start this section with a short reminder on the notion of statistical solutions to the
Navier–Stokes equations for turbulent flows. For the sake of simplicity, we limit our
presentation to monophasic flows. These statistical solutions are random fields, the
velocity and the pressure, which are decomposed into their averaged and fluctuating
parts. The so called Reynolds decomposition of the Eulerian velocity U is

U (t,x, ω) = 〈U 〉(t,x)+ u(t,x, ω),

where 〈U 〉 is the (ensemble) averaged part, and u is the fluctuating part. The Reynolds
average 〈 〉 is a linear operator applied to the random fields, which is assumed to com-
mute with spatial and times derivatives. Formally applying the Reynolds average to the
Navier–Stokes equations, one obtains the so called Reynolds Averaged Navier–Stokes
(RANS) equations:

⎧
⎪⎪⎨

⎪⎪⎩

∇x · 〈U 〉 = 0,

∂t 〈U (i)〉 + 〈U 〉 · ∇x〈U (i)〉 = − 1

�
∇x〈P(i)〉 + ν	x〈U (i)〉 − ∂x j 〈u(i)u( j)〉,

〈U 〉(0,x) = 〈U0〉(x).
(2.1)

The averaged pressure 〈P〉 solves the Poisson equation

− 1

�
	x〈P〉 = ∂xi x j 〈U (i)〉〈U ( j)〉 + ∂xi x j 〈u(i)u( j)〉. (2.2)

The Reynolds stress tensor stands for the covariance of velocity components:

〈u(i)u( j)〉 = 〈U (i)U ( j)〉 − 〈U (i)〉〈U ( j)〉.

These terms are not closed in Eq. (2.1). This problem has led to the introduction of
closure models based on Kolmogorov’s theory for turbulent flows and experimental
observations. For example, the k − E closures consist in a set of closed equations for
the turbulent kinetic k and the dissipation rate E defined as

k(t,x) = 1

2
〈u(i)u(i)〉(t,x),

E (t,x) = ν〈∂x j u
(i)∂x j u

(i)〉(t,x),

(see, e.g., [11,14]).
Lagrangian stochastic models have been successfully proposed to provide an alter-

native approach to the numerical resolution of RANS equations combined with closure
models to simulate complex flows for which PDE solvers are inefficient.

In a series of papers initiated in 1980s, Stephen B. Pope has proposed Lagrangian
stochastic models to describe the position and the instantaneous velocity (Xt ,Ut ) of
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a fluid-particle. Depending on the flow, other Lagrangian characteristics of the turbu-
lence are added to the model. For a fluid with constant mass density �, Lagrangian
and Eulerian quantities are related as follows: for all suitable measurable function
g : R

d → R
d ,

〈g(U )〉(t,x) = E [g(Ut )/Xt = x] .

Assuming that (X,U) is a diffusion process, the coefficients of its generator are
designed such that the Lagrangian laws are consistent with closed RANS equations and
other relevant physical laws in turbulence theory (see [13,14] for details). This meth-
odology is known as PDF method for turbulent flows in the literature. The simplest
model proposed by Pope is the so called simplified Langevin model (see [14]):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xt = X0 + ∫ t
0 Us ds,

Ut = U0 − 1

�

∫ t
0 ∇x〈P〉(s, Xs) ds + ν

∫ t
0 	x〈U 〉(s, Xs) ds

+ C1
∫ t

0
E (s, Xs)

k(s, Xs)
(〈U 〉(s, Xs)− Us) ds + ∫ t

0

√
C2E (s, Xs) dWs .

Here, C1 and C2 are positive constants, and (Wt ; t ≥ 0) is a standard R
3-valued

Brownian motion. The Poisson equation (2.2) provides the averaged pressure 〈P〉(t,x),
and k and E are assumed to be known.

A less elementary model was proposed by Dreeben and Pope [7] where

k(t,x) = E

(
(U (i)t )2/Xt = x

)
−
(
E

(
U (i)t /Xt = x

))2
,

and E is defined as E (t,x) = 〈ω〉(t,x)k(t,x) where 〈ω〉(t,x) = E (ωt/Xt = x) and
(ωt ; t ≥ 0) is the solution of the following stochastic differential equation (SDE):

ωt = ω0 + C3

t∫

0

〈ω〉(s, Xs) (〈ω〉(s, Xs)− ωs) ds

−
t∫

0

ωs Sω(s, Xs)〈ω〉(s, Xs) ds +
t∫

0

√

C4ωs (〈ω〉(s, Xs))
2 dW̃s .

Here, C3,C4 are positive constants, W̃ is a one-dimensional standard Brownian motion
independent of W , and

Sω(t,x) = Cω2 + Cω1

(〈U (i)U ( j)〉(t,x)− 〈U (i)〉(t,x)〈U ( j)〉(t,x)) ∂x j 〈U (i)〉(t,x)
〈ω〉(t,x)k(t,x) .

A description of the numerical issues can be found in [15]. A recent application to
meteorology is developed by one of the authors: see, e.g., [2].
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On conditional McKean Lagrangian stochastic models 323

Notation. Let 0 < T < +∞ be fixed.

– For all t ∈ (0, T ], we set Qt = (0, t)× R
2d .

– For all q ≥ 1, C([0, T ] ; R
q) denotes the space of R

q -valued continuous functions
equipped with the uniform metric ‖ ‖∞.

– Given a metric space E , Ck
b(E) denotes the set of real-valued bounded functions

defined on E with continuous derivatives up to order k; Ck
c (E) denotes the set of

real-valued functions with continuous derivatives up to order k and with compact
support.

– Given a metric space E,M(E) denotes the set of probability measures defined on
E , equipped with the weak convergence topology.

– In all the paper, C is a constant which may vary from line to line, but does not
depend on the approximation parameters ε and N introduced in (3.3).

3 Main result

In the study of (1.1), difficulties arise from the dependency of the drift coefficient on the
conditional expectation (1.3). Related situations have been studied by Sznitman [18],
Oelschlager [12] and Dermoune [4]. Sznitman [18] has considered the one-dimen-
sional nonlinear SDE

dζt = pt (ζt ) dt + dWt ,

where pt is the Lebesgue density of ζt . Oelschlager [10] has considered the family of
models

dζt = F(ζt , pt (ζt )) dt + dWt ,

where F : R
d × R → R

d is a bounded Lipschitz function, and

dζt = ∇pt (ζt ) dt + dWt .

Dermoune [4] has studied the system

dζt = E (v(ζ0)/ζt ) dt + dWt ,

where v : R
d → R

d is a bounded continuous function. Our situation substantially
differs from the above: our drift coefficient depends on a conditional density rather
than the density and the infinitesimal generator of (X,U) is not strongly elliptic.

In the sequel, we suppose that the following hypotheses hold true:

(H) • b is a bounded continuous function and the law μ0 of (X0,U0) is such that

∫

R2d

(|x| + |u|2)μ0(dx,du) < +∞.
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324 M. Bossy et al.

• The velocity diffusion coefficient σ is bounded and strongly elliptic: for
a(t,x, u) := σ(t,x, u)σ ∗(t,x, u), there exists λ > 0 such that, for all t ∈
(0, T ], x, u, v ∈ R

d ,

|v|2
λ

≤
d∑

i, j=1

a(i, j)(t,x, u)viv j ≤ λ |v|2 . (3.1)

• For all 1 ≤ i, j ≤ d, a(i, j) is Hölder continuous in the following sense:
there exist α ∈ (0, 1] and K depending only on T and d such that, for all
(s,x, u), (t, y, v) ∈ [0, T ] × R

d × R
d ,

|a(i, j)(t,x, u)− a(i, j)(s, y, v)| ≤ K (|t − s|α2 + |x − y − v(t − s)|α3
+|u − v|α). (3.2)

Remark 3.1 The hypothesis (3.2) on the matrix a is classical in the literature on
ultraparabolic PDEs, see e.g. Theorem A.1 and Sect. A.2 in the Appendix.

For fixed N ≥ 1 and ε > 0, we consider the interacting particle system {(Xi,ε,N
t ,

U i,ε,N
t ; t ∈ [0, T ]); 1 ≤ i ≤ N } defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xi,ε,N
t = Xi

0 + ∫ t
0 U i,ε,N

s ds,

U i,ε,N
t = U i

0 + ∫ t
0

∑N
j=1b(U j,ε,N

s ,U i,ε,N
s )φε(X

i,ε,N
s − X j,ε,N

s )

∑N
j=1

(
φε(X

i,ε,N
s − X j,ε,N

s )+ ε
) ds

+ ∫ t
0 σ(s, Xi,ε,N

s ,U i,ε,N
s ) dW i

s , i = 1, . . . , N .

(3.3)

Here, {(Xi
0,U i

0), (W
i
t ; t ∈ [0, T ]); i ≥ 1} are independent copies of ((X0,U0),

(Wt ; t ∈ [0, T ])), and {φε; ε > 0} denotes a family of mollifiers of the type φε(x) =
1
εd φ(

x
ε
), where φ ∈ C1

c (R
d) is such that φ ≥ 0 and

∫

Rd φ(z) dz = 1. As the drift coef-
ficient of the particle system (3.3) is uniformly bounded, the well-posedness of (3.3)
follows from Proposition 4.4 (see Sect. 4.1) and Girsanov’s theorem.

In Sect. 5, we prove that the particles propagate chaos. In particular, as N tends to
infinity, (X1,ε,N ,U1,ε,N ) converges weakly to the solution of

⎧
⎪⎨

⎪⎩

X εt = X0 + ∫ t
0 Uεs ds,

Uεt = U0 + ∫ t
0 Bε

[
X εs ,Uεs ; ρεs

]
ds + ∫ t

0 σ(s, X εs ,Uεs ) dWs,

ρεt is the density of (X εt ,Uεt ) for all t ∈ (0, T ],
(3.4)

where the kernel Bε
[
x, u; γ ] is defined as follows: for all nonnegative γ ∈ L1(R2d),

(x, u) ∈ R
2d ,

Bε
[
x, u; γ ] =

∫

Rd b(v, u)φε � γ (x, v) dv
∫

Rd φε � γ (x, v) dv + ε
,

123



On conditional McKean Lagrangian stochastic models 325

where

φε � γ (x, u) =
∫

Rd

φε(x − y)γ (y, u) dy.

Our main result is as follows.

Theorem 3.2 Assume (H).

(i) For all ε > 0, the sequence {(X1,ε,N ,U1,ε,N ); N ≥ 1} converges weakly to a
weak solution (X ε,Uε) of (3.4). This solution is unique and, if P

ε denotes the
law of (X ε,Uε), the interacting particle system is P

ε-chaotic; that is, for every
integer k ≥ 2 and every finite family {ψl; l = 1, . . . , k} of Cb(C([0, T ] ; R

2d)),

〈Pε,N , ψ1 ⊗ . . . ψk ⊗ . . .〉 −→
k∏

l=1

〈Pε, ψl〉, when N −→ +∞.

(ii) When ε tends to 0, (X ε,Uε) converges weakly to the unique solution (X,U)
of (1.1).

Weak solutions of (3.4) and (1.1) are defined by appropriate martingale problems in
the next section (see Definitions 4.1 and 4.2).

The rest of the paper is organized as follows: in Sect. 4, we prove weak uniqueness
results for Eqs. (3.4) and (1.1). In Sect. 5, we get existence: we show that, for all ε > 0,
the law of the particle system (3.3) converges weakly and we identify the limit as the
weak solution of (3.4); we then get existence of a weak solution of (1.1) by letting ε
decreases to 0.

In all the statements below, we implicitly assume (H) and we do not repeat it.

4 Uniqueness results

We introduce the notions of weak solutions to (1.1) and (3.4). Let ((xt , ut ); t ∈ [0, T ])
be the canonical processes in the sample space C([0, T ]; R

2d). The martingale problem
related to the smoothed particle system (3.4) is stated as follows.

Definition 4.1 A probability measure Pε on the canonical space C([0, T ]; R
2d) is a

weak solution of (3.4), or equivalently, a solution to the martingale problem (MPε) if

(i) Pε ◦ (x0, u0)
−1 = μ0.

(ii) For all t ∈ (0, T ], the time marginal Pε ◦(xt , ut )
−1 has a density ρεt with respect

to Lebesgue measure on R
2d .

(iii) For all f ∈ C2
b(R

2d), the process

f (xt , ut )− f (x0, u0)−
t∫

0

Aε
ρεs

f (s,xs, us) ds
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326 M. Bossy et al.

is a Pε-martingale where, for all γ ∈ L1(R2d), Aε
γ is the differential operator

Aε
γ f (t,x, u) := u · ∇x f (x, u)+ Bε

[
x, u; γ ] · ∇u f (x, u)

+ 1

2

d∑

i, j=1

a(i, j)(t,x, u)∂ui u j f (x, u).

The martingale problem related to (1.1) is stated as follows.

Definition 4.2 A probability measure P on the canonical space C([0, T ] ; R
2d) is a

weak solution of (1.1), or equivalently, a solution to the martingale problem (MP) if:

(i) P ◦ (x0, u0)
−1 = μ0.

(ii) For all t ∈ (0, T ], the time marginal P◦ (xt , ut )
−1 has a positive density ρt w.r.t.

Lebesgue measure on R
2d .

(iii) For all f ∈ C2
b(R

2d), the process

f (xt , ut )− f (x0, u0)−
t∫

0

Aρs f (s,xs, us) ds

is a P-martingale, where, for each positive γ ∈ L1(R2d), Aγ is the differential
operator

Aγ f (t,x, u) := u · ∇x f (x, u)+ B
[
x, u; γ ] · ∇u f (x, u)

+1

2

d∑

i, j=1

a(i, j)(t,x, u)∂ui u j f (x, u).

We prove the following uniqueness result.

Proposition 4.3 There is at most one weak solution to Eq. (1.1) and one weak solution
to Eq. (3.4).

For a weak solution P of (1.1), and a weak solution Pε of (3.4), we consider the
densities ρt and ρεt as in Definitions 4.1 and 4.2. We prove that ρt and ρεt are the unique
solutions of nonlinear mild equations (see Lemma 4.5) which implies Proposition 4.3.
A preliminary step consists in studying the linear case (b = 0).

4.1 Study of a Langevin system

For (y, v) ∈ R
2d , consider the pair of processes

(
Y s,y,v

t , V s,y,v
t ; t ≥ s ≥ 0

)
solution

of the Langevin equation

{
Y s,y,v

t = y + ∫ t
s V s,y,v

θ dθ,

V s,y,v
t = v + ∫ t

s σ(θ,Y s,y,v
θ , V s,y,v

θ ) dWθ .
(4.1)

123



On conditional McKean Lagrangian stochastic models 327

The following result is a slight extension of a theorem due to Di Francesco and Pascucci
[5]. We postpone the statement of this theorem and the proof of Proposition 4.4 in
Sect. A.2.

Proposition 4.4 There exists a unique weak solution to (4.1). In addition, this solution
admits a density �(s, y, v; t,x, u) w.r.t. Lebesgue measure such that:

(i) For all (t,x, u) ∈ (0, T ] × R
2d , 1 ≤ i, j ≤ d, the derivatives ∂vi�(s, y, v;

t,x, u) exist and are continuous for all (s, y, v) ∈ R × R
2d such that (s, y, v) �=

(t,x, u).
(ii) Let f : R

2d → R be a bounded continuous function. Then the function Gt, f

defined by

Gt, f (s, y, v) =
∫

R2d

�(s, y, v; t,x, u) f (x, u) dx du,

is the unique classical solution of the Cauchy problem
{
∂s Gt, f + Ls Gt, f = 0 in [0, t)× R

2d ,

lims→t− Gt, f (s, y, v) = f (y, v) in R
2d ,

(4.2)

where

Lsψ(s, y, v) := v · ∇xψ(s, y, v)+ 1

2

d∑

i, j=1

a(i, j)(s, y, v)∂viv jψ(s, y, v).

(4.3)

(iii) There exists a constant C > 0 depending only on T and λ such that

sup
(y,v)∈R2d

∫

R2d

|∇v�(s, y, v; t,x, u)| dx du ≤ C√
t − s

, ∀ 0 ≤ s < t ≤ T .

(4.4)

Let us now identify mild equations satisfied by (ρt ; t ∈ (0, T ]) and (ρεt ; t ∈ (0, T ]).

4.2 Mild equations for the densities of (X,U) and (X ε,Uε)

Consider a weak solution (X,U) of (1.1). For all f ∈ Cb(R
2d), since Gt, f is a classical

solution of (4.2), Itô’s formula leads to

EP

[
f (Xt∧τM ,Ut∧τM )

] = EP

[
Gt, f (0, X0,U0)

]

+ EP

⎡

⎣

t∧τM∫

0

(∇vGt, f (s, Xs,Us) · B [Xs,Us; ρs]
)

ds

⎤

⎦ ,

(4.5)
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328 M. Bossy et al.

where {τM ; M ≥ 1} is the sequence of stopping times

τM = inf {t > 0 ; |Xt | + |Ut | ≥ M}.

The boundedness of b and σ implies that limM→+∞ τM = +∞, P-a.s.
By Lebesgue’s Dominated Convergence theorem, the left-hand side of (4.5) converges
to EP [ f (Xt ,Ut )] as M tends to infinity. For the right-hand side, Proposition 4.4 shows
that, for s �= t

∇vGt, f (s, y, v) =
∫

R2d

∇v�(s, y, v; t,x, u) f (x, u) dx du,

and, P − a.s.,

sup
M≥1

t∧τM∫

0

∣
∣∇vGt, f (s, Xs,Us) · B [Xs,Us; ρs]

∣
∣ ds ≤ ‖b‖∞‖ f ‖∞

t∫

0

C√
t − s

ds.

Letting M tends to infinity, we get

∫

R2d

f (x, u)ρt (x, u) dx du =
∫

R2d

Gt, f (0, y, v)μ0(dy, dv)

+
∫

Qt

(∇vGt, f (s, y, v) · ρs(y, v)B [y, v; ρs]
)

dy dv ds.

(4.6)

We denote by (S∗
t,s; 0 ≤ s< t ≤ T ) the adjoint of the transition operator of

(Y s,y,v
t , V s,y,v

t ), that is,

S∗
t,s( f )(x, u) =

∫

R2d

�(s, y, v; t,x, u) f (y, v) dy dv.

In view of Proposition 4.4, for all 0 ≤ s < t ≤ T , S∗
t,s is a linear operator from M(R2d)

to L1(R2d). In particular, S∗
t,0(μ0) ∈ L1(R2d) and the first term in the right-hand side

in (4.6) can be rewritten as

∫

R2d

S∗
t,0(μ0)(x, u) f (x, u) dx du.

In addition, for all 0 ≤ s < t ≤ T , we define the operator S′
t,s : L1(R2d ; R

d) →
L1(R2d; R) by
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On conditional McKean Lagrangian stochastic models 329

S′
t,s(h(·))(x, u) =

∫

R2d

(∇v�(s, y, v; t,x, u) · h(y, v)) dy dv.

In particular, Proposition 4.4 shows that

t∫

0

‖S′
t,s(h(s, ·))‖L1(R2d ) ds ≤

t∫

0

C√
t − s

‖h(s, ·)‖L1(R2d )ds (4.7)

for all h ∈ L∞((0, T ); L1(R2d)). Thus the second term in the right-hand side of (4.6)
writes

∫

R2d

f (x, u)

t∫

0

S′
t,s (ρs(·)B [· ; ρs]) (x, u) dx du ds.

Therefore, the marginal distributions (ρt ; t ∈ (0, T ]) of the solution of (1.1) satisfy
the mild equation in L1(R2d)

∀ t ∈ (0, T ], ρt = S∗
t,0(μ0)+

t∫

0

S′
t,s (ρs(·)B [· ; ρs]) ds. (4.8)

The preceding calculations hold true when ρ and B[· ; ρ·] are replaced by ρε and
Bε[· ; ρε· ]. Therefore, the marginal distributions (ρεt ; t ∈ (0, T ]) satisfy the mild
equation in L1(R2d)

∀ t ∈ (0, T ], ρεt = S∗
t,0(μ0)+

t∫

0

S′
t,s

(
ρεs (·)Bε

[· ; ρεs
])

ds. (4.9)

4.3 Uniqueness of the solutions to the mild Eqs. (4.8) and (4.9)

Lemma 4.5 There exists at most one positive solution (ρt ) to Eq. (4.8), and at most
one solution (ρεt ) to (4.9).

Proof We start with proving uniqueness for (4.8). Let (ρ1
t ) and (ρ2

t ) be two positive
solutions of (4.8). Set

ρi
t (x) :=

∫

Rd

ρi
t (x, u) du.
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For a.e. (t,x) in (0, T ] × R
d , ρi

t (x) > 0 for i = 1, 2 and so, B[x, u; ρi
t ] in (1.2) is

well defined for a.e. (t,x, u) ∈ (0, T ] × R
2d . In view of (4.8), we have

‖ρ1
t − ρ2

t ‖L1(R2d ) =
∫

R2d

∣
∣
∣
∣
∣
∣

t∫

0

S′
t,s

(
ρ1

s (·)B
[· ; ρ1

s

]− ρ2
s (·)B

[· ; ρ2
s

])
(x, u) ds

∣
∣
∣
∣
∣
∣

dx du.

(4.10)

We aim to prove the following estimate which implies the uniqueness result by a clas-
sical singular Gronwall’s lemma (see e.g. [1] or [8, Chap.7]): there exists C > 0 such
that, for all t ∈ (0, T ],

‖ρ1
t − ρ2

t ‖L1(R2d ) ≤
t∫

0

C√
t − s

‖ρ1
s − ρ2

s ‖L1(R2d )ds. (4.11)

From (4.10), we have

‖ρ1
t − ρ2

t ‖L1(R2d ) ≤
∫

Qt

∣
∣
∣S′

t,s

((
ρ1

s (·)− ρ2
s (·)
)

B
[
· ; ρ1

s

])
(x, u)

∣
∣
∣ dx du ds

+
∫

Qt

∣
∣
∣S′

t,s

(
ρ2

s (·)
(

B
[
· ; ρ1

s

]
− B

[
· ; ρ2

s

]))
(x, u)

∣
∣
∣ dx du ds

=: A1 + A2. (4.12)

In view of (4.7) and the boundedness of b, we get

A1 ≤
t∫

0

C√
t − s

‖ρ1
s − ρ2

s ‖L1(R2d ) ds. (4.13)

We now consider A2. As

a1

b1
− a2

b2
= a1 − a2

b2
+ a1(b2 − b1)

b2b1
, ∀a1, a2 ∈ R, b1, b2 > 0, (4.14)

we observe that

B
[
y, v; ρ1

s

]
− B

[
y, v; ρ2

s

]
= 1

ρ2
s (y)

∫

Rd

b(v′, v)
(
ρ1

s (y, v
′)− ρ2

s (y, v
′)
)

dv′

+
∫

Rd b(v′, v)ρ1
s (y, v

′) dv′

ρ2
s (y)ρ

1
s (y)

(
ρ2

s (y)− ρ1
s (y)

)
.
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Hence, for all 0 ≤ s < t ,

‖ρ2
s (·)

(
B
[
·; ρ1

s

]
− B

[
·; ρ2

s

])
‖L1(R2d )

≤ 2‖b‖∞
∫

R2d

ρ2
s (y, v)

ρ2
s (y)

∫

Rd

∣
∣
∣ρ

1
s (y, v

′)− ρ2
s (y, v

′)
∣
∣
∣ dv′ dy dv

≤ 2‖b‖∞‖ρ1
s − ρ2

s ‖L1(R2d ).

In view of (4.7) we thus have

A2 ≤
t∫

0

C√
t − s

‖ρ1
s − ρ2

s ‖L1(R2d ) ds. (4.15)

It remains to gather (4.13) and (4.15) to get (4.11).
We now prove uniqueness for (4.9). First, let us observe that, by using (4.7) in

Eq. (4.9), one can found C > 0 such that, for all solution (ρεt ) of (4.9),

‖ρεt ‖L1(R2d ) ≤ C, ∀ t ∈ (0, T ].

Next, consider two nonnegative solutions (ρε,1t ) and (ρε,2t ) of (4.9). As in (4.12), we
have

‖ρε,1t − ρ
ε,2
t ‖L1(R2d )

≤
∫

Qt

∣
∣
∣S′

t,s

((
ρε,1s (·)− ρε,2s (·)

)
Bε
[
· ; ρε,1s

])
(x, u)

∣
∣
∣ dx du ds

+
∫

Qt

∣
∣
∣S′

t,s

(
ρε,2s (·)

(
Bε
[
· ; ρε,1s

]
− Bε

[
· ; ρε,2s

]))
(x, u)

∣
∣
∣ dx du ds

=: Aε1 + Aε2.

Obviously,

Aε1 ≤
t∫

0

C√
t − s

‖ρε,1s − ρε,2s ‖L1(R2d ) ds.

In order to estimate Aε2, we use again (4.14) and observe: for a.e. (s, y, v) ∈ Qt ,

ρε,2s (y, v)
(

Bε[y, v; ρε,1s ] − Bε
[
y, v; ρε,2s

])

= ρ
ε,2
s (y, v)

φε � ρ
ε,2
s (y)+ ε

∫

Rd

b(v′, v)
(
φε � ρ

ε,1
s (y, v′)− φε � ρ

ε,2
s (y, v′)

)
dv′
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+ρ
ε,2
s (y, v)

∫

Rd b(v′, v)φε � ρε,1s (y, v′) dv′
(
φε � ρ

ε,2
s (y)+ ε

) (
φε � ρ

ε,1
s (y)+ ε

)
(
φε � ρ

ε,2
s (y)− φε � ρ

ε,1
s (y)

)

≤ 2‖b‖∞ρε,2s (y, v)
(
φε � ρ

ε,2
s (y)+ ε

)

∫

R2d

φε(y − y′)
∣
∣
∣ρ
ε,1
s (y′, v′)− ρε,2s (y′, v′)

∣
∣
∣ dy′ dv′.

In view of (4.7), it follows that

Aε2 ≤
∫

Qt

C√
t − s

‖ρε,1s − ρε,2s ‖L1(R2d ) ds.

Hence

‖ρε,1t − ρ
ε,2
t ‖L1(R2d ) ≤

t∫

0

C√
t − s

‖ρε,1s − ρε,2s ‖L1(R2d ) ds.

We conclude on the uniqueness result for (4.9) by applying a singular Gronwall’s
lemma as above. ��

5 Existence results

In this section, we establish that Eqs. (3.4) and (1.1) admit a solution.

Proposition 5.1 The martingale problem (MPε) stated in Definition 4.1 has a unique
solution P

ε . Furthermore, when ε tends to 0, P
ε converges to a solution of the mar-

tingale problem (MP) stated in Definition 4.2.

The proof of Proposition 5.1 proceeds in two steps.
The first step consists in constructing a weak solution to (3.4) by studying the inter-

acting system (3.3) as the number of particles tends to infinity. As in [19], we prove the
relative compactness of the sequence of the empirical measures of the particles (see
Lemma 5.3). We then show that the support of the limit probability measure is the set
of solutions of the martingale problem (MPε) (see Lemma 5.4). Using the uniqueness
result in Proposition 4.3, we then get the propagation of chaos result.

The second step consists in exhibiting a solution to the martingale problem (MP)
as the limit of the solution to the martingale problem (MPε) when ε tends to 0.

5.1 A propagation of chaos result for the smoothed system

Throughout this section we fix ε > 0.

Proposition 5.2 There exists a unique probability measure P
ε solution to the martin-

gale problem (MPε). Moreover, the sequence of probability laws {Pε,N ; N ≥ 1} of
the processes {(Xi,ε,N ,U i,ε,N ); 1 ≤ i ≤ N } is P

ε-chaotic.
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Let με,N be the empirical measure valued in M(C([0, T ]; R
2d)) and defined by

με,N = 1

N

N∑

i=1

δ{Xi,ε,N ,U i,ε,N }.

Let P
ε,N

in M(M(C([0, T ]; R
2d))) be the probability law of με,N .

Lemma 5.3 The sequence {P ε,N ; N ≥ 1} is tight.

Proof We proceed as in [19]: since the particle systems are exchangeable, the tight-

ness of P
ε,N

is equivalent to the tightness of the probability laws of {(X1,ε,N ,U1,ε,N );
N ≥ 1}. Let ((x(i)t , u(i)t ); t ∈ [0, T ], i = 1, . . . , N ) be the canonical processes in the
sample space C([0, T ]; R

2d N ). In view of the boundedness of b and σ ,

EPε,N [|u(1)t − u(1)s |4] ≤ C(t − s)2 and EPε,N [|x(1)t − x(1)s |2] ≤ C(t − s)2.

The result follows from the Kolmogorov criterion. ��

We have shown that {P ε,N ; N ≥ 1} is relatively compact. We still denote by {P ε,N ;
N ≥ 1} a weakly convergent subsequence. Let P

ε,∞
be the limit of such a subse-

quence.

Lemma 5.4 P
ε,∞

assigns full measure to the set of the solutions to the martingale
problem (MPε).

Proof Denote by m a sample point inM(C([0, T ]; R
2d)). Since {(Xi,ε,N

0 ,U i,ε,N
0 ); 1 ≤

i ≤ N } are μ0—i.i.d., it is easy to check that

m ◦ (x0, u0)
−1 = μ0, P

ε,N − a.s.;

a similar equality holds true for P
ε,∞

in view of the weak convergence of P
ε,N

to
P
ε,∞

, which solves the part (i) of the martingale problem (MPε).
We now prove that, P

ε,∞
—a.e., m satisfies the properties (ii) and (iii) of (MPε).

Define α : [0, T ] × R
d × R

d × M(C([0, T ]; R
2d)) → R

d by

α(t, ξ, ν,m) :=
∫

C([0,T ];R2d )
b(ūt , ν)φε(ξ − x̄t )m(dx̄, dū)

∫

C([0,T ];R2d )
φε(ξ − x̄t )m(dx̄, dū)+ ε

.
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For all f ∈ C2
c (R

2d), all 0 ≤ t1 ≤ · · · ≤ tn ≤ s < t ≤ T , and all finite family of
functions {ψ j ; 1 ≤ j ≤ n} in Cb(R

2d), we set

Fε(m) :=
∣
∣
∣
∣
∣
∣
Em

⎡

⎣
n∏

j=1

ψ j (xt j , ut j )

⎛

⎝ f (xt , ut )− f (xs, us)−
t∫

s

(uθ · ∇x f (xθ , uθ )) dθ

−
t∫

s

(α(θ,xθ , uθ ,m) · ∇u f (xθ , uθ )) dθ

+
t∫

s

1

2

d∑

i, j=1

a(i, j)(θ,xθ , uθ )∂ui ,u j f (xθ , uθ ) dθ

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣
.

Suppose that we have proven that Fε = 0, P
ε,∞ − a.s. Then

f (xt , ut )− f (x0, u0)−
t∫

0

(uθ · ∇x f (xθ , uθ )) dθ

−
t∫

0

(α(θ,xθ , uθ ,m) · ∇u f (xθ , uθ )) dθ

+
t∫

0

1

2

d∑

i, j=1

a(i, j)(θ,xθ , uθ )∂ui ,u j f (xθ , uθ ) dθ

would be a m-martingale, P
ε,∞ − a.s. As α is bounded, by Girsanov’s theorem m ◦

(xθ , uθ )−1 would have a density ρεθ , so that

f (xt , ut )− f (x0, u0)−
t∫

0

Aε
ρεθ

f (θ,xθ , uθ ) dθ

would be a m-martingale. We thus would have solved the parts (ii) and (iii) of the mar-
tingale problem (MPε). It now remains to prove that Fε = 0, P

ε,∞
-a.s. From (3.3) and

Cauchy–Schwarz’s inequality we easily get that E
P
ε,N [Fε(m)] ≤ C/

√
N . Therefore

it suffices to deduce that E
P
ε,N [Fε(m)] tends to E

P
ε,∞[Fε(m)] from the weak con-

vergence of P
ε,N

to P
ε,∞

. As the function a is bounded continuous and the function
f is smooth with compact support, it actually suffices to show the continuity (for the
weak convergence topology) of the function � defined as
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�(m) := Em

t∫

s

α(θ,xθ , uθ ,m)∇u f (xθ , uθ )dθ

=
∫

C([0,T ];R2d )

J ε(x, u,m)m(dx, du)

with

J ε(x, u,m) :=
t∫

s

α(θ,xθ , uθ ,m)∇u f (xθ , uθ )dθ.

Fix m and let (mn) be a sequence of measures in M(C([0, T ]; R
2d))weakly converg-

ing to m. We have

|�(mn)−�(m)|

≤

∣
∣
∣
∣
∣
∣
∣

∫

C([0,T ];R2d )

J ε(x, u,m)mn(dx, du)−
∫

C([0,T ];R2d )

J ε(x, u,m)m(dx, du)

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∫

C([0,T ];R2d )

(
J ε(x, u,mn)− J ε(x, u,m)

)
mn(dx, du)

∣
∣
∣
∣
∣
∣
∣

.

The first term of the right-hand side tends to 0 when n goes to infinity by weak conver-
gence of (mn). To show that the second term tends also to 0, since mn is a probability
measure for all n, it suffices to show that there exists a sequence (γn) tending to 0 such
that

sup
(x,u)∈C([0,T ];R2d )

|J ε(x, u,mn)− J ε(x, u,m)| ≤ γn . (5.1)

Let K f be the compact support of the function f . Notice that

sup
(x,u)∈C([0,T ];R2d )

|J ε(x, u,mn)− J ε(x, u,m)| ≤ C

t∫

s

�n(θ)dθ,

where

�n(θ)

:= sup
(ξ,ν)∈K f

∣
∣
∣
∣

∫
b(ūθ , ν)φε(ξ−x̄θ )mn(dx̄, dū)
∫
φε(ξ−x̄θ )mn(dx̄, dū)+ ε

−
∫

b(ūθ , ν)φε(ξ−x̄θ )m(dx̄, dū)
∫
φε(ξ−x̄θ )m(dx̄, dū)+ ε

∣
∣
∣
∣ ,
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the integrals above being computed over C([0, T ]; R
2d). We aim to prove that we may

choose

γn := C

t∫

s

�n(θ)dθ.

By Lebesgue’s Dominated Convergence theorem it suffices to show that, for all
bounded continuous function b, all θ ∈ [s, t], all η > 0, there exists N (η) satis-
fying, for all n > N (η),

sup
(ξ,ν)∈K f

∣
∣
∣
∣

∫

b(ūθ , ν)φε(ξ − x̄θ )mn(dx̄, dū)−
∫

b(ūθ , ν)φε(ξ − x̄θ )m(dx̄, dū)

∣
∣
∣
∣ ≤ η.

(5.2)

By weak convergence of (mn),

lim sup
n→+∞

mn({(x̄, ū); |x̄θ | + |ūθ | ≥ R}) ≤ m({(x̄, ū); |x̄θ | + |ūθ | ≥ R}).

Choosing R large enough, the right-hand side is smaller than η
2 . Now choose a contin-

uous function h with compact support and such that h(y, v) = 1 when |y| + |v| ≤ R.
Finally, consider the family Fξ,ν of the functions defined on K f by

(y, v) �→ b(v, ν)φε(ξ − y)h(y, v),

where (ξ, ν) is in K f . The uniform continuity on K f × K f of the mapping

(ξ, ν, y, v) �→ b(v, ν)φε(ξ − y)h(y, v)

implies that the family Fξ,ν is equicontinuous. Therefore, in view of Lemma A.4, we
have

sup
(ξ,ν)∈K f

∣
∣
∣
∣

∫

b(ūθ , ν)φε(ξ − x̄θ )h(x̄θ , ūθ )mn(dx̄, dū)

−
∫

b(ūθ , ν)φε(ξ − x̄θ )h(x̄θ , ūθ )m(dx̄, dū)

∣
∣
∣
∣ ≤

η

2
,

for all n large enough. We thus have obtained (5.2). That ends the proof. ��

Proposition 4.3 ensures that P
ε,∞

is reduced to a Dirac mass. Denote by P
ε the point

such that P
ε,∞ = δ{Pε}. Clearly P

ε is the unique solution to (MPε). Notice that this
implies the P

ε-chaoticity of the particle system (Xi,ε,N ,U i,ε,N ) (see [19, Prop. 2.2]).
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5.2 Convergence of the smoothed system

In this subsection, we prove that the probability measure P
ε , solution to the martingale

problem (MPε), converges to the solution to the martingale problem (MP). We start
with studying the probability measure P̃

ε defined on C([0, T ]; R
3d) by

P̃
ε = P

ε ◦
⎛

⎝(xt , ut , ut − u0 −
t∫

0

Bε[xs, us; ρεs ] ds); t ∈ [0, T ]
⎞

⎠

−1

.

As in the proof of Lemma 5.3, using (3.4), the Kolmogorov criterion implies that the
sequence {̃Pε; ε > 0} is relatively compact in C([0, T ]; R

3d). Let P̃
ε be a converging

subsequence and denote its limit by P̃. Let us characterize the support of P̃. To this
aim, we introduce the subset H‖b‖∞ of C([0, T ] ; R

3d) defined by

H‖b‖∞ =

⎧
⎪⎪⎨

⎪⎪⎩

(x, u, D) in C([0, T ]; R
3d), s.t. x(t) = x(0)+ ∫ t

0 u(s) ds, and
u(t)− u(0)− D(t) = ∫ t

0 β(s) ds, for a measurable function
β : [0, T ] → R

d

s.t. supt∈[0,T ] |β(t)| ≤ ‖b‖∞.

⎫
⎪⎪⎬

⎪⎪⎭

We now prove that

Lemma 5.5 P̃ has full measure on H‖b‖∞ .

Proof In view of the Portemanteau theorem, the weak convergence of P̃
ε to P̃ yields

that, for all closed subset F of C([0, T ]; R
3d),

lim sup
ε→0+

P̃
ε(F) ≤ P̃(F).

Since P̃
ε(H‖b‖∞) = 1 for all ε > 0, it suffices to show that H‖b‖∞ is a closed

subset of C([0, T ]; R
3d). Let {(xn, un, Dn); n ∈ N} be a sequence of H‖b‖∞ converg-

ing to (x, u, D) in C([0, T ]; R
3d). Set An(t):=un(t) − un(0) − Dn(t) and A(t) :=

u(t)− u(0)− D(t). By uniform convergence, it holds that

x(t) = x(0)+
t∫

0

u(s) ds, ∀ t ∈ [0, T ],

and lim
n→+∞ max

t∈[0,T ] |An(t)− A(t)| = 0.

To prove that (x, u, D) belongs to H‖b‖∞ , it remains to show that A is a.e. differentia-
ble with a time derivative uniformly bounded by ‖b‖∞. By the Riesz representation
theorem, it is enough to prove that

∣
∣
∣
∣
∣
∣

T∫

0

A(t) f ′(t) dt

∣
∣
∣
∣
∣
∣
≤ ‖b‖∞

T∫

0

| f (t)| dt, ∀ f ∈ C1
c ([0, T ]; R

d).
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As An(t) = ∫ t
0 βn(s) ds for some measurable function βn satisfying supt∈[0,T ]

|βn(t)| ≤ ‖b‖∞, an integration by parts allows us to write

∣
∣
∣
∣
∣
∣

T∫

0

A(t) f ′(t) dt

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

lim
n→+∞

T∫

0

βn(t) f (t) dt

∣
∣
∣
∣
∣
∣
≤ ‖b‖∞

T∫

0

| f (t)| dt,

which ends the proof. ��
Consider the marginal distribution P of P̃ on C([0, T ]; R

2d), defined by

P = P̃ ◦ ((xt , ut ); t ∈ [0, T ])−1.

We have the following result:

Proposition 5.6 P solves the martingale problem (MP) stated in Definition 4.2.

Proof The part (i) of (MP) is obvious.
To solve (ii), consider ((xt , ut , Dt ); t ∈ [0, T ]) the canonical processes ofC([0, T ];

R
3d). In view of Lemma 5.5, we know that, P̃ − a.s., for all t ∈ [0, T ],

xt = x0 +
t∫

0
us ds,

ut = u0 +
t∫

0
βs ds + Dt ,

with supt∈[0,T ] |βt | ≤ ‖b‖∞. Since a is bounded continuous, the weak convergence
of P̃

ε to P̃ yields that, for all function f in C2
b (R

d),

f (Dt )− f (D0)− 1

2

d∑

i, j=1

t∫

0

a(i, j)(s,xs, us)∂ui u j f (Ds)ds

is a P̃-martingale. We deduce that Dt = ∫ t
0 σ(θ,xθ , uθ ) dwθ for some d-dimensional

Wiener process (wt ; t ∈ [0, T ]).
In view of (3.1), Girsanov’s theorem allows one to define a new probability Q

absolutely continuous to P̃ on C([0, T ]; R
3d) such that Q ◦ (xt , ut )

−1 is the law of the
Langevin system

(yt , vt ) =
⎛

⎝x0 +
t∫

0

vs ds, u0 +
t∫

0

σ(s, ys, vs) dws

⎞

⎠ .

In view of Proposition 4.4, for all t ∈ [0, T ] the law of (yt , vt ) is absolutely continu-
ous w.r.t. to Lebesgue measure. Thus the measure P ◦ (xt , ut )

−1 has also a density ρt

which satisfies
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γt (x, u) = ρt (x, u)EP

(
Zt

/
(xt , ut ) = (x, u)

)
for a.e. (x, u) ∈ R

2d ,

where Zt is the restriction to C([0, t]; R
3d) of the density dQ

dP̃
, and

γt (x, u) :=
∫

R2d

�(0, y, v; t,x, u)μ0(dy, dv),

where �(0, y, v; t,x, u) is defined as in Proposition 4.4. We now recall the following
estimate (see [6]): there exist η > 0 and c > 0, depending only on λ, T , and d such
that

�(s, y, v; t,x, u) ≥ c �η(s, y, v; t,x, u), ∀s < t < T,

where �η is defined in A.1 in the Appendix. Hence the function ρt (x, u) is strictly
positive. We thus have solved the part (ii) of (M P).

We now solve (iii) of (M P). Observe that there exists C > 0 such that

sup
ε>0

EPε

[

max
t∈[0,T ]

|ut |
]

≤ C.

Therefore it suffices to prove that, for all f ∈ C2
c (R

2d) and all process (�s) of the
form

�s = �s(x·, u·) :=
n∏

j=1

ψ j (xt j , ut j ),

where the ψ j ’s are bounded continuous functions, one has

EP

⎡

⎣�s

⎛

⎝ f (xt , ut )− f (xs, us)−
t∫

s

Aρθ f (xθ , uθ )dθ

⎞

⎠

⎤

⎦ = 0, (5.3)

Since P̃
ε converges weakly to P̃, we have

lim
ε→0+ EPε

⎡

⎣�s

⎛

⎝ f (xt , ut )− f (xs, us)−
t∫

s

Lθ f (xθ , uθ )dθ

⎞

⎠

⎤

⎦

= EP

⎡

⎣�s

⎛

⎝ f (xt , ut )− f (xs, us)−
t∫

s

Lθ f (xθ , uθ )dθ

⎞

⎠

⎤

⎦ ,
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where Lθ is defined as in (4.3). To obtain (5.3), it thus remains to show

lim
ε→0+ EPε

⎡

⎣�s

t∫

s

(
Bε
[
xθ , uθ ; ρεθ

] · ∇u f (xθ , uθ )
)

dθ

⎤

⎦

= EP

⎡

⎣�s

t∫

s

(B [xθ , uθ ; ρθ ] · ∇u f (xθ , uθ )) dθ

⎤

⎦ . (5.4)

If P
ε were the law of a strongly elliptic diffusion process and the coefficient Bε would

not depend on ρε , (5.4) would result from Stroock and Varadhan’s results on limits
of martingale problems: see Lemmas 9.1.15 and 11.3.2 in [17]. In our situation, we
prove that (5.4) holds true by adapting Stroock and Varadhan’s techniques and by
taking advantage of the mild equation (4.9). Let ξ > 0 be a positive parameter that
will be choosen below. We add and subtract to the brackets in (5.4) the terms

EPε

⎡

⎣�s

t∫

s

(
Bξ
[
xθ , uθ ; ρεθ

] · ∇u f (xθ , uθ )
)

dθ

⎤

⎦ ,

and EP

⎡

⎣�s

t∫

s

(
Bξ [xθ , uθ ; ρθ ] · ∇u f (xθ , uθ )

)
dθ

⎤

⎦ .

Then we have

∣
∣
∣
∣
∣
∣
EPε

⎡

⎣�s

t∫

s

(
Bε
[
xθ , uθ ; ρεθ

] · ∇u f (xθ , uθ )
)

dθ

⎤

⎦

−EP

⎡

⎣�s

t∫

s

(B [xθ , uθ ; ρθ ] · ∇u f (xθ , uθ )) dθ

⎤

⎦

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣
EPε

⎡

⎣�s

t∫

s

(
Bξ
[
xθ , uθ ; ρεθ

] · ∇u f (xθ , uθ )
)

dθ

⎤

⎦

− EP

⎡

⎣�s

t∫

s

(
Bξ [xθ , uθ ; ρθ ] · ∇u f (xθ , uθ )

)
dθ

⎤

⎦

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
EPε

⎡

⎣�s

t∫

s

((
Bε
[
xθ , uθ ; ρεθ

]− Bξ
[
xθ , uθ ; ρεθ

]) · ∇u f (xθ , uθ )
)

dθ

⎤

⎦

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
EP

⎡

⎣�s

t∫

s

((
Bξ [xθ , uθ ; ρθ ] − B [xθ , uθ ; ρθ ]

) · ∇u f (xθ , uθ )
)

dθ

⎤

⎦

∣
∣
∣
∣
∣
∣

=: Iε,ξ + Jε,ξ + Kξ .
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Use the Lemma 5.7 below and let successively ξ and ε tend to 0: we get (5.4), which
ends the resolution of the part (iii) of (M P). ��

Lemma 5.7 There holds

∀ξ > 0, lim
ε→0+ Iε,ξ = 0, (5.5)

and

lim
ξ→0+ Kξ = 0. (5.6)

In addition, there exist a function δ1(ε) which does not depend on ξ , and a function
δ2(ξ) which does not depend on ε, such that

lim
ε→0+ δ1(ε) = lim

ξ→0+ δ2(ξ) = 0

and

Jε,ξ ≤ δ1(ε)+ δ2(ξ). (5.7)

The proof of this lemma is long. We split it into two parts: we prove technical results
in the next subsection, and finally prove the lemma in Sect. 5.4.

5.3 Technical results

A key step to prove Lemma 5.7 is the following proposition.

Proposition 5.8 For all 0 < t ≤ T , ρεt converges to ρt in L1(R2d) when ε → 0+.

In view of Lemma A.2 in the Appendix, Proposition 5.8 results from the following
lemma:

Lemma 5.9 For all t ∈ (0, T ], h, δ ∈ R
d , it holds that

lim|h|,|δ|→0
lim sup
ε→0+

∫

R2d

∣
∣ρεt (x + h, u + δ)− ρεt (x, u)

∣
∣ dx du = 0.
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Proof As P
ε is the unique solution to the martingale problem (MPε), its time marginals

satisfy the mild equation (4.9). Thus, for all t ∈ (0, T ],

lim sup
ε→0+

∫

R2d

∣
∣ρεt (x + h, u + δ)− ρεt (x, u)

∣
∣ dx du

≤
∫

R2d

∣
∣S∗

t,0(μ0)(x + h, u + δ)− S∗
t,0(μ0)(x, u)

∣
∣ dx du

+ lim sup
ε→0+

∫

Qt

∣
∣S′

t,s

(
ρεs (·)Bε

[· ; ρεs
])
(x + h, u + δ)

− S′
t,s

(
ρεs (·)Bε

[· ; ρεs
])
(x, u)

∣
∣ dx du ds.

Since S∗
t,0(μ0) belongs to L1(R2d), Lemma A.3 implies that

lim|h|,|δ|→0

∫

R2d

∣
∣S∗

t,0(μ0)(x + h, u + δ)− S∗
t,0(μ0)(x, u)

∣
∣ dx du = 0.

In addition,

∫

Qt

∣
∣S′

t,s

(
ρεs (·)Bε

[· ; ρεs
])
(x + h, u + δ)− S′

t,s

(
ρεs (·)Bε

[· ; ρεs
])
(x, u)

∣
∣ dx du ds

≤ ‖b‖∞
∫

Qt

⎛

⎜
⎝

∫

R2d

|∇v�(s, y, v; t,x + h, u + δ)− ∇v�(s, y, v; t,x, u)| dx du

⎞

⎟
⎠

×ρεs (y, v) dy dv ds.

Set

Lh,δ(t, s, y, v) :=
∫

R2d

|∇v�(s, y, v; t,x + h, u + δ)− ∇v�(s, y, v; t,x, u)| dx du.

As P̃
ε converges weakly to P̃, ρεt converges weakly to ρt for all t ∈ [0, T ] and

lim
ε→0+

∫

Qt

Lh,δ(t, s, y, v)ρεs (y, v) dy dv ds =
∫

Qt

Lh,δ(t, s, y, v)ρs(y, v) dy dv ds.

In addition, in view of (4.4), one has

sup
(y,v)∈R2d

Lh,δ(t, s, y, v) ≤ C√
t − s

,
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for all t > s, from which
∫

R2d

Lh,δ(t, s, y, v)ρ(y, v)dydv ≤ C√
t − s

.

It then remains to apply Lebesgue’s Dominated Convergence theorem. ��
Below we will also use the following three elementary results.
The first result follows from Proposition 5.8 and Lebesgue’s Dominated Conver-

gence theorem (since ‖ρεθ ‖L1(R2d ) = 1, for all θ ∈ (0, T ]):
Corollary 5.10

lim
ε→0+

T∫

0

‖ρεθ − ρθ‖L1(R2d )dθ = 0.

Lemma 5.11 It holds

lim
ξ→0+

T∫

0

‖φξ � ρθ − ρθ‖L1(R2d ) dθ = 0. (5.8)

Proof As

‖φξ � ρθ − ρθ‖L1(R2d ) ≤
∫

Rd

φ(y)

∫

R2d

|ρθ (x − ξy, v)− ρθ (x, v)| dx dv dy,

the result follows from Lemma A.3 in the Appendix, and the fact that φ ∈ L1(Rd)

which allows one to apply Lebesgue’s Dominated Convergence theorem. ��
Lemma 5.12 Set

ρθ (x) :=
∫

Rd

ρθ (x, v) dv.

Then

lim
ξ→0+

T∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ = 0.

Proof For all θ the function ρθ is strictly positive a.e. Notice that for all θ in [0, T ]
and all x such that ρθ (x) > 0, the function

ξ ∈ [0, 1] �→ D(ξ ;x, θ) := ξρθ (x)

ρθ (x)+ ξ
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is bounded from above by ρθ (x) for all ξ ∈ [0, 1]. Lebesgue’s Dominated Conver-
gence theorem implies that

∫ T
0

∫

Rd D(ξ ;x, θ)dx dθ tends to 0 with ξ . ��

5.4 Proof of Lemma 5.7

We are now in a position to prove (5.5), (5.6), and (5.7).

Proof of (5.5). Set

�
ε′
ξ (x·, u·) := �s

t∫

s

(
Bξ [xθ , uθ ; ρε′θ ] · ∇u f (xθ , uθ )

)
dθ

and

�ξ (x·, u·) := �s

t∫

s

(
Bξ [xθ , uθ ; ρθ ] · ∇u f (xθ , uθ )

)
dθ.

We have

Iε,ξ = |EPε�
ε
ξ − EP�ξ |

≤ sup
ε′>0

|EPε�
ε′
ξ − EP�

ε′
ξ | + |EP�

ε
ξ − EP�ξ |.

Now, for all fixed ξ > 0, 0 ≤ s ≤ t ≤ T , the bounded functions {�ε′
ξ ; ε′ > 0} defined

on C([0, T ]; K f ) are equicontinuous (this latter property results from the definition
of Bξ , the fact that f has compact support, and Proposition 5.8). Therefore, in view
of Lemma A.4 in the Appendix, the first term in the right-hand side of the preceding
inequality tends to 0 with ε. The second term tends also to 0 in view of Proposition 5.8.
We thus have proven (5.5).

Proof of (5.6). We recall the notation

ρθ (x) :=
∫

Rd

ρθ (x, v) dv.

Observe that

∣
∣Bξ [x, u, ρθ ] − B [x, u; ρθ ]

∣
∣

≤
∣
∣
∣
∣

∫

Rd b(v, u)φξ � ρθ (x, v) dv

φξ � ρθ (x)+ ξ
−
∫

Rd b(v, u)ρθ (x, v) dv

ρθ (x)+ ξ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Rd b(v, u)ρθ (x, v) dv

ρθ (x)+ ξ
−
∫

Rd b(v, u)ρθ (x, v) dv

ρθ (x)

∣
∣
∣
∣ .
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In view of (4.14), we have

∣
∣
∣
∣

∫

Rd b(v, u)φξ � ρθ (x, v) dv

φξ � ρθ (x)+ ξ
−
∫

Rd b(v, u)ρθ (x, v) dv

ρθ (x)+ ξ

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

Rd b(v, u)
(
φξ � ρθ (x, v)− ρθ (x, v)

)
dv

ρθ (x)+ ξ

∣
∣
∣
∣
∣

+
∣
∣
∫

Rd b(v, u)φξ � ρθ (x, v) dv
∣
∣
∣
∣
∫

Rd

(
φξ � ρθ (x, v)− ρθ (x, v)

)
dv
∣
∣

(
φξ � ρθ (x)+ ξ

) (
ρθ (x)+ ξ

)

≤ 2‖b‖∞
ρθ (x)+ ξ

∫

Rd

∣
∣φξ � ρθ (x, v)− ρθ (x, v)

∣
∣ dv. (5.9)

Thus

∫

Qt

∣
∣Bξ [x, u, ρθ ] − B [x, u; ρθ ]

∣
∣ ρθ (x, u) dx du dθ

≤ 2‖b‖∞
t∫

0

‖φξ � ρθ − ρθ‖L1(R2d ) dθ

+‖b‖∞
∫

Qt

∣
∣
∣
∣

1

ρθ (x)+ ξ
− 1

ρθ (x)

∣
∣
∣
∣

∫

Rd

ρθ (x, v) dvρθ (x, u) dx du dθ

≤
t∫

0

‖φξ � ρθ − ρθ‖L1(R2d ) dθ + C

t∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ. (5.10)

We now use the Lemmas 5.11 and 5.12. That ends the proof of (5.6).

Proof of (5.7). Observe that

Jε,ξ ≤ ‖�s‖∞‖∇u f ‖∞

⎛

⎜
⎝

∫

Qt

∣
∣Bξ [x, u; ρεθ ] − B[x, u; ρεθ ]

∣
∣ ρεθ (x, u) dx du dθ

+
∫

Qt

∣
∣B[x, u; ρεθ ] − Bε[x, u; ρεθ ]

∣
∣ ρεθ (x, u) dx du dθ

⎞

⎟
⎠

=: ‖�s‖∞‖∇u f ‖∞
(

J 1
ε,ξ + J 2

ε

)
. (5.11)
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In order to estimate J 1
ε,ξ , observe that

∫

Qt

∣
∣Bξ

[
x, u, ρεθ

]− B
[
x, u; ρεθ

]∣
∣ ρεθ (x, u) dx du dθ

≤
∫

Qt

∣
∣
∣
∣

∫

Rd b(v, u)φξ � ρεθ (x, v) dv

φξ � ρ
ε
θ (x)+ ξ

−
∫

Rd b(v, u)ρεθ (x, v) dv

ρεθ (x)+ ξ

∣
∣
∣
∣ ρ

ε
θ (x, u) dx du dθ

+
∫

Qt

∣
∣
∣
∣

∫

Rd b(v, u)ρεθ (x, v) dv

ρεθ (x)+ ξ
−
∫

Rd b(v, u)ρεθ (x, v) dv

ρεθ (x)

∣
∣
∣
∣ ρ

ε
θ (x, u) dx du dθ.

(5.12)

We now estimate each term in the right-hand side of (5.12).

Using (4.14) again, we get

∣
∣
∣
∣

∫

Rd b(v, u)φξ � ρεθ (x, v) dv

φξ � ρ
ε
θ (x)+ ξ

−
∫

Rd b(v, u)ρεθ (x, v) dv

ρεθ (x)+ ξ

∣
∣
∣
∣

≤ 2‖b‖∞
ρεθ (x)+ ξ

∫

Rd

∣
∣φξ � ρ

ε
θ (x, v)− ρεθ (x, v)

∣
∣ dv.

Therefore the first term in the right-hand side of (5.12) is bounded from above by

C
∫

Qt

∣
∣φξ � ρ

ε
θ (x, v)− ρεθ (x, v)

∣
∣ dx dv dθ,

and therefore by

C

t∫

0

‖φξ � ρεθ − φξ � ρθ‖L1(R2d )dθ + C

t∫

0

‖ρεθ − ρθ‖L1(R2d ) dθ

+C

t∫

0

‖φξ � ρθ − ρθ‖L1(R2d )dθ,

which can be bounded from above by

C

t∫

0

‖ρεθ − ρθ‖L1(R2d )dθ + C

t∫

0

‖φξ � ρθ − ρθ‖L1(R2d )dθ.
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The second term in the right-hand side of (5.12) is bounded from above by

‖b‖∞
t∫

0

∫

Rd

ξρεθ (x)

ρεθ (x)+ ξ
dx dθ.

Insert

t∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ,

and observe that, for all ξ > 0,

∣
∣
∣
∣
∣
∣
∣

t∫

0

∫

Rd

ξρεθ (x)

ρεθ (x)+ ξ
dx dθ −

t∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ

∣
∣
∣
∣
∣
∣
∣

≤
t∫

0

‖ρεθ − ρθ‖L1(R2d )dθ.

(5.13)

We thus have obtained

J 1
ε,ξ ≤ C

t∫

0

‖ρεθ − ρθ‖L1(R2d )dθ + C

t∫

0

‖φξ � ρθ − ρθ‖L1(R2d )dθ

+ C

t∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ. (5.14)

Similarly, J 2
ε being defined as in (5.11), we have

J 2
ε ≤ C

t∫

0

‖φε � ρεθ − ρεθ ‖L1(R2d ) dθ

+ C
∫

Qt

∣
∣
∣
∣

1

ρεθ (x)+ ε
− 1

ρεθ (x)

∣
∣
∣
∣

⎛

⎜
⎝

∫

Rd

|b(v, u)| ρεθ (x, v) dv

⎞

⎟
⎠ ρ

ε
θ (x, u) dx du dθ.

In view of (5.13) we deduce

J 2
ε ≤ C

t∫

0

‖φε � ρεθ − ρεθ ‖L1(R2d ) dθ + C

t∫

0

∫

Rd

ξρθ (x)

ρθ (x)+ ξ
dx dθ.
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Combining this estimate with (5.14) and (5.11) and using the Lemmas 5.11 and
5.12 we obtain (5.7).

6 Conclusion and perspectives

In this paper we have studied a Lagrangian stochastic model and shown its
well-posedness. We have proved that the unique weak solution is an hypoelliptic dif-
fusion process whose dynamics depends on the conditional distribution of the velocity
component knowing the position component. To our knowledge, this is the first theo-
retical result on the Lagrangian stochastic models modelling turbulent fluid particles.
Bossy and Jabir [3] consider models with specular reflection boundary conditions.
See also [9]. A lot remains to be done to study the complex models developed by
Pope [14].

We also emphasize another possible extension of our result. We conjecture the
following PDE analysis result: the estimate (4.4) holds true under classical Hölder
conditions rather than (3.2), possibly by using Maxwellian approximations rather
than using the parametrix method.

Appendix A

A.1 Di Francesco and Pascucci’s estimates on fundamental solutions
of ultraparabolic PDEs

Before stating the estimate on fundamental solutions of ultraparabolic PDEs which
are used in this paper, we need to introduce some new notation.

In [5], Di Francesco and Pascucci consider ultraparabolic PDEs of the type

−∂sψ + 1

2

∑

i, j

a(i, j)∂viv jψ + (y, v) · B∇(y,v)ψ = 0,

where a and B are 2d × 2d matrices, and B has constant entries. The statement of
their results for general matrices B require to introduce a pseudo-metric depending
on B and some notational effort. We thus limit ourselves to our context where

B =
(

0 0
IdRd 0

)

.

In this context, Di Francesco and Pascucci’s assumption on the coefficient a writes as
follows: a is a bounded function and there exist α ∈ (0, 1] and C > 0 such that, for
all (s,x, u) , (t, y, v) ∈ [0, T ] × R

d × R
d , the inequality (3.2) holds true.

For all η > 0, for s < t , let �η(s, y, v; t,x, u) be the transition density function of

⎛

⎝y
s,y,v
t = y +

t∫

s

v
s,v
θ dθ, vs,v

t = v + η(Wt − Ws)

⎞

⎠
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that is,

�η(s, y, v; t,x, u)

=
√

3d

(
√
πη(t − s))2d

× exp

{

−6 |x−y−(t−s)v|2
η(t−s)3

+6(x−y−(t−s)v) · (u−v)
η(t−s)2

−2 |u−v|2
η(t−s)

}

.

(A.1)

We are in a position to state the following theorem:

Theorem A.1 [5] Suppose that a satisfies (3.1) and (3.2). There exists a fundamental
solution �(s, y, v; θ,x, u) to the operator

L = −∂θ + 1

2

∑

i, j

a(i, j)(θ,x, u)∂ui u j + u · ∇x

which satisfies

(i) for all (s, y, v) ∈ (0, T ] × R
2d , 1 ≤ i ≤ d, the derivatives ∂ui�(s, y, v; θ,x, u)

exist and are continuous in (0, T ] × R
2d\{s, y, v}.

(ii) Let f : R
2d → R be a bounded continuous function. Then, for any T0 ≥ 0, the

function JT0,T defined by

JT0,T (θ,x, u) =
∫

R2d

�(T0, y, v; θ,x, u) f (y, v) dy dv, θ ∈ (T0, T ]

is the unique solution of the Cauchy problem

{
LJT0,T = 0,

JT0,T (T0, y, v) = f (y, v) in R
2d .

(iii) For all η > λ, there exists a constant C > 0 such that, for s < θ < T

∣
∣∇u�(s, y, v; θ,x, u)

∣
∣ ≤ C√

θ − s
�η(T − (θ − s),x, u; T, y, v).

A.2 Proof of Proposition 4.4

To get the existence of a weak solution, we adapt the proof of Theorem 6.3.2 in [17]:
consider a sequence {σ n; n ∈ N} of R

d ×R
d -valued Lipschitz functions on [0, T ]×R

d

such that limn→+∞ σ n = σ uniformly. For all n ∈ N, one has existence of a strong
solution (Y n,s,y,v

t , V n,s,v
t ; s ≤ t ≤ T ) to Eq. (4.1) when one substitutes σ to σ n . Then
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it is easy to check that (Y n,s,y,v
t , V n,s,v

t ; s ≤ t ≤ T ) converges in distribution to a
weak solution of (4.1).

The uniqueness of the weak solution and the properties (i) to (iii) result from
Theorem A.1: observe that Gt, f (s, y, v) = J0,t (t − s, y, v), where we have set
a(s, y.v) := a(t − s, y, v) in the definition of the operator L. Consequently, the
density �(s, y, v; t,x, u) writes

�(s, y, v; t,x, u) = �(0,x, u; t − s, y, v),

where �(0, y, v; θ,x, u) is the fundamental solution to L.

A.3 Technical lemmas

For the reader’s convenience we state three technical results which played a key role
in our proofs.

The first lemma can be found in [17, Lemma 11.4.1].

Lemma A.2 Let { fn; n ≥ 1} be a sequence of non-negative measurable functions
such that

∫

Rq fn(z) dz = 1 and, for all h ∈ R
q ,

lim|h|→0
sup
n≥1

∫

Rq

| fn(z + h)− fn(z)| dz = 0.

Suppose that there exists a density function f such that, for all functionψ ∈ Cc(R
q),

lim
n→+∞

∫

Rq

fn(z)ψ(z) dz =
∫

Rq

f (z)ψ(z) dz.

Then { fn} converges to f in L1(Rq).

The next lemma can be found in [16].

Lemma A.3 Let 1 ≤ p < +∞. For all f ∈ L p(Rq) and h ∈ R
q we have

lim|h|→0

∫

Rq

| f (z + h)− f (z)|p dz = 0. (A.2)

The last lemma can be found in [17, Cor.1.1.5].

Lemma A.4 Let S be a Polish space and let {Fε′ , ε′ > 0} be a uniformly bounded
set of functions which are equicontinuous at each point of S. For all {με; ε > 0} and
μ in M(S) such that limε→0 με = μ one has

lim
ε→0+ sup

ε′>0

∣
∣
∣
∣
∣
∣

∫

S

Fε′ dμε −
∫

S

Fε′ dμ

∣
∣
∣
∣
∣
∣
= 0.
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