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Abstract We consider a branching random walk for which the maximum position
of a particle in the n’th generation, Rn , has zero speed on the linear scale: Rn/n → 0
as n → ∞. We further remove (“kill”) any particle whose displacement is nega-
tive, together with its entire descendence. The size Z of the set of un-killed particles is
almost surely finite (Gantert and Müller in Markov Process. Relat. Fields 12:805–814,
2006; Hu and Shi in Ann. Probab. 37(2):742–789, 2009). In this paper, we confirm
a conjecture of Aldous (Algorithmica 22:388–412, 1998; and Power laws and killed
branching random walks) that E [Z ] < ∞ while E

[
Z log Z

] = ∞. The proofs rely
on precise large deviations estimates and ballot theorem-style results for the sample
paths of random walks.

Mathematics Subject Classification (2000) 60J80 · 60G50 · 60G17

1 Introduction

Consider a branching random walk. The particles form the set of individuals of a
Galton–Watson process: there is a unique ancestor (root of the tree) which gives
birth to B children in the first generation. The children behave independently and
themselves give birth to children according to the same offspring distribution B. We
suppose throughout the paper that this branching process is supercritical EB > 1, so
that it survives with positive probability [8], and that EB <∞. We can think of the
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266 L. Addario-Berry, N. Broutin

set of potential individuals as a subset of the infinite tree

U =
⋃

n≥0

N
n,

where every node at level n is a word u = u1u2 . . . un of n integers. The root is then ∅,
with potential children 1, 2, . . ., and the structure of the tree is such that the ancestors
of a node u = u1u2 . . . un are the prefixes ∅, u1, u1u2, etcetera, up to u1 . . . un−1.
Given {Bu, u ∈ U} a family of independent and identically distributed (i.i.d.) random
copies of B, the Galton–Watson tree T is the subtree of U consisting of all nodes
u = u1, . . . , un for which, for all 1 ≤ i ≤ n, ui < Bu1...ui−1 (in the case i = 1 this
notation means that u1 < B∅)—see [38,42].

We also suppose that each node u ∈ U carries a real position, or displacement.
Given a family {Xu, u ∈ U \ {∅}}, a family of i.i.d. copies of a random variable X ,
also independent of {Bu, u ∈ U}, the displacement of a node u is

Su =
∑

w�u,w 	=∅
Xw,

where w � u means that w is an ancestor of u (and u � u). Thus, for each node u, Xu

is the displacement of u relative to its parent, and we let the root have displacement
S∅ = 0. Then, along each branch of the tree U , the positions of the particles follow
a random walk with step size X . The collection {Su : u ∈ T } is a branching random
walk with step size X and branch factor B.

We say that a particle u ∈ U is living if the random walk on the branch from the
root to u never takes a negative value: that is, u is living if

Sw ≥ 0 for all w � u.

We are interested in the subtree L of T consisting only of living particles. We say
that the pair L , {Su : u ∈ L } is a killed branching random walk. It is natural that the
behaviour of the tree L , and in particular its size, should be related to the behaviour
of the maximum Rn of the positions of the particles u ∈ Tn = {x ∈ N

n : x ∈ T }
lying in the n’th generation of T , and we now elaborate on this. Let � be the cumulant
generating function of X given by

�(λ) = log E
[
eλX

]
,

defined for λ ∈ D, the set of values λ for which �(λ) < ∞. Let Do be the interior of D.
Let also f (λ) = λ�′(λ)−�(λ). The function � is infinitely differentiable and convex
on Do, and f is strictly convex on Do (see [17, Lemma 2.2.5 and Exercise 2.2.24]).

Suppose that there exists a (necessarily unique) λ ∈ Do with λ > 0, for which
f (λ) = log E [B]. Then the Biggins–Hammersley–Kingman theorem [12,29,37]
states that, conditioned on non-extinction, the maximum position Rn of a particle
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Total progeny in killed branching random walk 267

in the n’th generation of a well-controlled branching random walk satisfies

lim
n→∞

Rn

n
= �′(λ) almost surely and in expectation.

We call the branching random walk well-controlled if there exists a (necessarily
unique) λ� ∈ Do with λ� > 0 such that �′(λ�) = 0. If the branching random walk
is well-controlled then we call both the un-killed and killed branching random walks
supercritical, critical, or subcritical according as f (λ�) is greater than, equal to, or less
than log E [B].

If the killed branching random walk is supercritical, it is not hard to see that the
maximum position of a living particle still tends to +∞ almost surely and in expec-
tation with the same linear speed as before. In this case, it is fairly straightforward to
calculate the growth rate of the logarithm of the total progeny in the n’th generation.

In subcritical case, it is equally clear that extinction eventually occurs. The critical
case is not as clear since it might be the case that Rn = o(n) but that Rn → +∞.
However, it is not too hard to convince oneself that Rn → −∞ in expectation, since
ERkn ≥ kERn for all k, n ≥ 1. (This can be seen by considering first the particle of v

of maximal displacement at the n’th generation, then the particle of maximal displace-
ment at the 2n’th generation that is a descendent of v, and so on.) If ERn were positive
for some n, it would then follow that at least along a subsequence, ERn would grow
at a positive linear speed, contradicting the Biggins–Hammersley–Kingman theorem.
In fact, in the critical case, Hu and Shi [32] have proved that almost surely

lim sup
n→∞

Rn

log n
= −β, (1)

for some positive constant β, which implies that eventually every branch goes extinct
with probability one. (In the special case that X ∈ Z a.s., this also follows from work
of Gantert and Müller [27].)

In these last two cases, the parameters of interest are the total number Z = |L | of
living individuals in the process, the maximum location that a particle ever reaches,

M = sup
n≥0

Mn,

where Mn = sup{Su : u ∈ Ln}, and where Ln = L ∩N
n . Aldous [5] has conjectured

that in the critical case, EZ < ∞ but E
[
Z log Z

] = ∞, and that in the subcritical
case, Z has power law tails.

Pemantle [44] found exact asymptotics for the probability distribution of Z in the
instructive special case that X ∈ {−1,+1}. In this setting, the criticality condition
implies that p := P (X = 1 ) = (2 −√

3)/4, the smallest root of 16p(1 − p) = 1. He
found that

P (Z = n ) = c + o(1)

n2 log2 n
, with c = log(1/4p)

4p
= 4.915 . . . .
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268 L. Addario-Berry, N. Broutin

It is then clear that E [Z ] < ∞ while E
[
Z log Z

] = ∞. His proof relies on a recursive
description of the process. The fact that X only takes unit steps turns out to be cru-
cial and allows for a precise study of the probability generating function E

[
s Z

]
via

singularity analysis methods [24,25].
In this paper we verify the critical case of Aldous’ conjecture.

Theorem 1 Consider a critical killed branching random walk and let Z be the total
progeny of the process. Then E [Z ] < ∞. If additionally E

[
B log8 B

]
<∞ then

E
[
Z log Z

] = ∞.

Remarks The moment condition on B that arises in the above theorem is technical
and is required for the use of the size-biasing technique explained below. We believe
that the theorem should hold as long as EB < ∞. We were not able to obtain more
detailed information about the probability distribution of Z . (Our approach can pro-
vide upper bounds on the tail probabilities of Z , via Markov’s inequality, but does
not seem well-suited to proving lower bounds for such tail probabilities in either the
critical or subcritical case.) However, it is very likely the case that for a large class of
critical killed branching random walks,

P (Z = n ) = �

(
1

n2 log2 n

)
.

Recent progress by Aïdékon [3] subsequent to our work shows that this is indeed the
case when B ≥ 2 is deterministic.

Before going any further, we establish one assumption to which we adhere for the
duration of the paper. We say X is a lattice random variable with period d > 0 if
there is a constant z ∈ R such that d X − z is almost surely integer-valued, and d is
the smallest positive real number for which this holds; in this case, we say that the set
LX = {(n + z)/d : n ∈ Z} is the lattice of X . Technically, the analysis of the paper
should have two cases, depending on whether or not X is a lattice random variable.
However, these cases are essentially identical, and the formulae are shorter for lattice
random variables. We thus assume from this point forward that the step size X is a
lattice random variable with lattice Z.

We also provide the following estimates for the maximum position of any living
particle.

Theorem 2 The maximum position M attained by any particle in a critical killed
branching random walk satisfies P (M ≥ k ) ≤ e−kλ�

for all k. If additionally
E

[
B log8 B

]
< ∞ then

P (M = k ) = �

(
e−kλ�

k

)

as k → ∞.

If X is not a lattice random variable, Theorem 2 still holds but with P (M = k )

replaced by P (M ∈ [k, k + ε) ), for any fixed ε > 0.
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Total progeny in killed branching random walk 269

Our approach in this document is rather orthogonal to the recursive one used by
Pemantle [44]: using large deviations estimates for sums of i.i.d. random variables,
we analyze the shape of the random walks along the branches of the process. This
technique was also used in Addario-Berry and Reed [1] to precisely analyse minima
in branching random walks. The large deviations estimates we require are stated in
Theorem 4, below, and can be found in [9,17].

A notational interlude and an aside on size-biasing. For any tree T , deterministic
or random, we write Tn for the set of nodes of T in the n’th generation. We use the
notation T≤n for both

⋃n
i=0 Ti and for the subtree of T on this set of nodes. (The

ambiguity in the notation will always disappear in context.)
The size-biasing technique introduced by Kahane and Peyrière [33]—and used to

study branching random walks in, for instance, [13,14,39,40]—allows to formally
pick a typical node in the n’th generation of a tree, and will be very useful in our
calculations. We write T̂ for the size-biased version of T , grown as follows. Let B̂ be
the size-biased version of B, with distribution defined by

P(B̂ = k) = kP (B = k )

EB
.

Let v0 be the root of T̂ and let v0 have a random number of children chosen according
to B̂. Choose a child of v0 uniformly at random—say v1. From all other children,
grow independent branching processes with unbiased offspring distribution B. From
v1, independently produce a size-biased number of children, choose a uniform child
to size-bias, and repeat ad infinitum. This process always yields an infinite tree, with
a single distinguished path (v0, v1, . . .), the spine.

Let μ (resp. μ̂) be the measure of T (resp. T̂ ), and let μ̂� be the joint measure of T̂
and (v0, v1, . . .). Let [T ]≤n be the set of trees that agree with the tree T on the first n
levels. For v ∈ Tn , let [T, v]≤n be the set of trees with a distinguished path agreeing
with T on the first n levels, and with a spine going through v. Lyons et al. [40] show
that for all n and all T , if Tn 	= ∅ then for all v ∈ Tn ,

μ̂∗[T, v]≤n = 1

(EB)n
μ[T ]≤n and μ̂[T ]≤n = |Tn|

(EB)n
μ[T ]≤n .

For our purposes, the ordering of the children of a node within T will always be
unimportant, and so we may equivalently imagine growing T̂ in the following way.
Start from an infinite path (v0, v1, . . .) in U—say the “leftmost” path ∅, 1, 11, and so
on—which will form the spine. Independently give each node vi a random number Ci

of children off the spine, where Ci has distribution B̂ − 1, and start an independent
branching process with offspring distribution B from each node off the initial infinite
path. We write P̂ ( · ) for the probability operator corresponding to T̂ . We also write
L̂ for the subtree of T̂ consisting only of living particles. We refer to both T̂ and L̂
as tilted trees.
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270 L. Addario-Berry, N. Broutin

A sketch of the approach. We first explain how we bound the expectation EZ .
Decomposing the tree by level yields

E [Z ] = E [|L |] =
∑

n≥0

E [|Ln|]

=
∑

n≥0

∑

T ⊆U≤n

∑

v∈Tn

P
(
v ∈ Ln

∣∣ T≤n = T
) · μ[T ]≤n

=
∑

n≥0

(EB)n
∑

T ⊆U≤n

∑

v∈Tn

P
(
v ∈ Ln

∣∣ T≤n = T
) · μ̂�[T, v]≤n

=
∑

n≥0

(EB)n · P̂(vn ∈ L̂n). (2)

Proving that E [Z ] < ∞ thus amounts to proving upper bounds on P̂(vn ∈ L̂n).
Letting {Xi , i ≥ 0} be a sequence of i.i.d. random variables distributed like X , we
thus seek bounds on the probability that the random walk defined by Si := ∑i

j=1 X j ,
i = 0, . . . , n stays positive. Two remarks are now in order: first, since E [X ] < 0, the
event {Si ≥ 0, i = 1, . . . , n} lies in the realm of large deviations; and second, con-
trolling the probability that vn ∈ T̂n amounts to estimating “ballot-style” sample path
probabilities. Given that Sn ≥ 0, large deviations bounds imply that Sn most likely
lies around zero [17]. We are then led to estimating P ( Si ≥ 0, i = 1, . . . , n | Sn = 0),
which we will see, satisfies

P ( Si ≥ 0, i = 1, . . . , n | Sn = 0) = �

(
1

n

)
,

as for mean-zero random walks [2,11].
Proving that E

[
Z log Z

] = ∞ turns out to be harder. As for the classical x log x
moment condition of the Kesten–Stigum theorem [8,36,40], the phenomenon is due to
a lack of concentration of the number of particles Z . This is why we are led to investi-
gate events of very low probability to find a relevant lower bound on E

[
Z log Z

]
. The

events we will consider ensure that there exists a particle v with high enough position
that its descendence is huge: indeed, despite the negative drift of the random walk the
branching property makes sure that the collection of living particles is extremely large
before the drift can send all descendants of v back to a negative position. The kind
of “high position” particles we require for our proof will have displacement roughly
k = �(

√
n), where n is the generation of the particle. To prove lower bounds on

the probability that such a particle exists, we add extra constraints which ensure the
concentration of the number of such particles, then use the second moment method
[7,16]. The events we will be interested in are roughly of the form

{0 < Si < k for i = 1, . . . , n, and Sn = k},

and estimating their probabilities amounts to deriving sample path probability esti-
mates for random walks with two barriers.
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Total progeny in killed branching random walk 271

Motivation and related work. The model arose from research on combinatorial
optimization in trees. One is given a complete tree, a binary tree say, and is asked
to devise an algorithm that would find the large values of Sv [4,6,34,43]. A natural
idea for an algorithm is to intentionally not explore the subtrees rooted at nodes with
too small a value, the negative ones, say. The first natural question is then that of the
survival probability of the algorithm, since it might be stuck early despite the presence
of nodes with large values deeper in the tree. Gantert et al. [28] settle the question about
the scaling behavior of the survival probability in the near critical case, Rn/n → ε, as
n → ∞ then letting ε → 0. The analogous continuous model of branching Brownian
motion with absorption has been studied by Kesten [35] and by Harris and Harris
[30]. For similar analysis from a statistical physics perspective, see [18,50]. Also,
as mentioned earlier, in the case of deterministic branching, Aïdékon [3] has recently
improved our bounds on the tails for Z by showing that P (Z ≥ n ) = �(n−1 log−2 n).
In the related setting of critical branching Brownian motion killed at a barrier x > 0,
Maillard [41] recently derived tail asymptotics for the total number of particles that
are killed, i.e., for the number of leaves of the associated tree.

Plan of the paper. In Sect. 2, we introduce the large deviations tools we will need for
in the proofs of our main results. In Sect. 3, we state the results we require about sam-
ple paths for random walks. In Sect. 4, we provide upper and lower tail bounds for the
maximum position ever attained in the killed and un-killed critical branching random
walks. Section 5 is devoted to the proof of Theorem 1: we prove that E [Z ] < ∞
and E

[
Z log Z

] = ∞. Finally, in Sect. 6, we provide the proofs of the sample paths
results. The analyses in this section are based on recent work by Addario-Berry and
Reed [2].

2 Precise large deviations

We recall from the introduction the definition of the cumulant generating function

�(λ) = �X (λ) := log E
[
eλX

]
,

and usually supress the X in the subscript since it will be clear from context. To
better understand the utility of the function � in deriving tail bounds, we first recall
Chernoff’s bounding technique [15]. If Sn = ∑n

i=1 Xi is a sum of n independent
copies of X , then for any c > E [X ] and λ > 0, by using Markov’s inequality and
independence, we have

P (Sn ≥ cn ) = P
(

eλSn > eλcn
)

≤ E
[
eλSn

]

eλcn
=

(
E

[
eλ(X−c)

])n = e−n(λc−�(λ)),

by definition of �(λ). We choose the value of c that minimizes this upper bound:

P (Sn ≥ cn ) ≤ exp

(
−n sup

λ>0
{λc − �(λ)}

)
. (3)
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272 L. Addario-Berry, N. Broutin

The optimal choice for λ in (3) is then that for which �′(λ) = c—if such a λ exists—as
may be informally seen by differentiating λ �→ λc−�(λ) with respect to λ. Choosing
λ in this fashion and writing �′(λ) in place of c yields

P
(
Sn ≥ �′(λ)n

) ≤ e−n(λ�′(λ)−�(λ)). (4)

By essentially this argument, one obtains the following useful inequality of
Chernoff [15].

Lemma 3 (Chernoff bound) For all positive λ ∈ Do, for all a > 0 and all integers
n ≥ 1,

P
(
Sn ≥ �′(λ)n + a

) ≤ e−n(λ�′(λ)−�(λ))−aλ = e−n f (λ)−aλ.

It turns out that the upper bound given by Lemma 3 is almost tight; this is the
substance of the “exact asymptotics for large deviations” first proved by Bahadur and
Ranga Rao [9], and is the reason that the behavior of � is key to our investigation.

We now state a version of the Bahadur–Rao result, essentially the version that
appears in Dembo and Zeitouni [17] (as Theorem 3.7.4). For non-negative sequences
{ fn, n ≥ 1} and {gn, n ≥ 1} we write fn = �(gn) or fn = �(gn) if there is a constant
K ∈ (0,∞) such that for all n large enough K −1gn ≤ fn or K −1gn ≤ fn ≤ K gn ,
respectively. The following notation will be convenient: for a parameter C , we write
OC ( · ), �C ( · ) and �C ( · ) to emphasize that the constants hidden in the asymptotic
terms depend on C .

Theorem 4 (Bahadur and Ranga Rao [9]) Let S = {Sn}n∈N be a random walk with
integer step size X, and define � and Do

� as above. Choose any λ ∈ Do
� with λ > 0

and any constant C > 0. Then for any a ∈ Z with |a| ≤ C
√

n,

P
(
Sn = ��′(λ)n� + a

) = �C (1) · e−aλ−n f (λ)

√
�′′(λ) · 2πn

= P
(
Sn ≥ ��′(λ)n� + a

)
. (5)

This theorem is stated with a constant in [17], but a straightforward modification
yields the above formulation. (See also [46] and [47, Chapter VIII, p. 248] for an even
stronger, uniform version of this result, stated in slightly different language.) A similar
result holds in the non-lattice case, if we replace the event {Sn = �′(λ)n + a} with
{(Sn − �′(λ)n − a) ∈ [0, c]} for an arbitrary fixed positive constant c. This is the
version we would use if we were to explicitly treat the non-lattice case.

The proof of Theorem 4 consists in an exponential change of measure (in order
to be able to work with centered random variables) combined with the Berry–Esséen
extension of the central limit theorem [10,20,23]. The same change of measure will
be more generally useful to us, and we take a moment to explain it in detail and derive
some easy consequences.

Let F be the distribution function of X . We remark that for λ ∈ Do,

�′(λ) = E
[
XeλX

]

E
[
eλX

] and �′′(λ) = E
[
X2eλX

]

E
[
eλX

] −
(

E
[
XeλX

]

E
[
eλX

]

)2

.
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Total progeny in killed branching random walk 273

Consider the random variable Yλ, with distribution function Gλ defined by

Gλ(x) = 1

E
[
eλX

]

x∫

−∞
eλx d F(x).

Then, we have

E [Yλ] =
∞∫

−∞
x dGλ(x) = 1

E
[
eλX

]

∞∫

−∞
xeλx d F(x) = �′(λ), (6)

E
[
Y 2

λ

]
=

∞∫

−∞
x2 dGλ(x) = 1

E
[
eλX

]

∞∫

−∞
x2eλx d F(x) = �′′(λ) + �′(λ)2,

so the random variable Zλ = Yλ − �′(λ) is such that E [Zλ] = 0 and Var [Zλ] =
Var [Yλ] = �′′(λ). It may also easily be checked that E

[|Yλ|3
]

< ∞, a fact we will
use later.

We now show that we may express the probability of events such as {X1+· · ·+Xn ≥
cn}, which belong to the large deviations regime for c > E [X ], in terms of the dis-
tribution of the sum Z1 + · · · + Zn of i.i.d. copies of Zλ in the central regime. This
allows for the use of precise limit results related to the central limit theorem.

Let Sn = X1 + · · · + Xn and fix any a ∈ R. Then for any c and any λ ∈ Do
�, using

the same change of measure as in (6), we have

P (Sn ≥ cn + a ) =
∫

{x1+···+xn≥cn+a}
d F(x1) · · · d F(xn)

= en�(λ)

∫

{y1+···+yn≥cn+a}
e−λ(y1+···+yn) dGλ(y1) · · · dGλ(yn).

The centered random variable Zλ has distribution function Hλ satisfying d Hλ(z) =
eλ�′(λ)dGλ(z). So, taking c = �′(λ), this further change of measure yields

P
(
Sn ≥�′(λ)n+a

) = en�(λ)

∫

{z1+···+zn≥a}
e−λ(z1+···+zn)e−λ�′(λ)n dHλ(z1) · · · dHλ(zn)

= e−n f (λ)

∫

{z1+···+zn≥a}
e−λ(z1+···+zn) d Hλ(z1) · · · d Hλ(zn).
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274 L. Addario-Berry, N. Broutin

Writing Wn for the distribution function of Z1 + · · · + Zn , n i.i.d. copies of Zλ, the
preceding equation asserts that

P
(
Sn ≥ �′(λ)n + a

) = e−n f (λ)

∞∫

−∞
e−λs1[s≥a] dWn(s). (7)

To prove the Bahadur–Rao theorem from Eq. (7) is a matter of an integration by parts,
followed by an application of the Berry–Esséen bound between the distribution of a
rescaled sum of i.i.d. random variables and a normal [10,20,23]. (See [17] for details.)
The useful thing about the chain of argument leading to (7) is that we may apply it
when studying other events than {Sn ≥ �′(λ)n + a}. This is especially useful when
�′(λ) = 0, i.e. when λ = λ�, since in this case, the events we are considering on the
left and right-hand side are identical. In particular, we shall use the following lemma to
transfer the results of the next section, about sample paths of centered random walks,
into the large deviation regime.

Lemma 5 Let S̃n = ∑n
i=1 Zi , where Z1, . . . , Zn are i.i.d. copies of the centered

random variable Zλ� described above. Then, for any integer n and Borel set B ⊆ R
n,

P ((S1, . . . , Sn) ∈ B ) = e−n f (λ�) · E
[
exp(−λ� · S̃n) · 1[(S̃1,...,S̃n)∈B]

]
.

The proof of Lemma 5 consists in mimicking the argument leading to (7) and we
omit it.

3 The shape of random walks

In this section, we collect the facts about sample path probabilities that we will require
for the proofs of the main results. Throughout the section, X is a random variable with
lattice Z, with E [X ] = 0 and 0 < E

[
X2

]
< ∞, and S is a simple random walk with

step size X . Addario-Berry and Reed [2] proved the following theorem.

Theorem 6 Fix c > 0. Then for all n and for all k and m with 0 < k ≤ c
√

n and
0 ≤ m ≤ c

√
n,

P (Sn = k, Si ≥ −m ∀ 0 < i < n ) = �c

(
(m + 1)(k + m + 1)

n3/2

)
.

In fact, in [2] the theorem was only stated with m = 0 but an essentially identical proof
yields the above formulation. The following theorem strengthens Theorem 6, under
the additional assumption that E

[|X |3] < ∞. It essentially says that an upper barrier
lying �(

√
n) above the ending height of the conditioned path does not significantly

constrain the walk. (The assumption that E
[|X |3] < ∞ is not in fact necessary for

any of the below theorems and corollaries, but it simplifies the proofs, and it will hold
for the random walks to which we apply the results since they are well-controlled.)
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Total progeny in killed branching random walk 275

Theorem 7 Fix c > 0 and ε > 0. If E
[|X |3] < ∞ then for all n and all k and m

with 0 ≤ m ≤ c
√

n and −m ≤ k ≤ c
√

n,

P
(
Sn =k,−m ≤ Si ≤ max{k, 0}+ε

√
n ∀ 0< i <n

)=�c,ε

(
(k+m+1)(m+1)

n3/2

)
.

From Theorems 6 and 7, the key bounds we require later in the paper follow straight-
forwardly.

Corollary 8 Fix c>1. If E
[|X |3]<∞, then for any n and all k with c−1 ≤ k/

√
n ≤c,

P (Sn = k ; 0 ≤ Si < k ∀ 0 < i < n ) = �c

(
k + 1

n2

)
.

For reasons that will become clear in Sect. 4, we will need to further constrain the
path of the walk. This can be done without significantly changing the sample path
probability.

Corollary 9 Fix c > 1. If E
[|X |3] < ∞, there is m0 = m0(c) such that for any n

and all k with c−1 ≤ k/
√

n ≤ c,

P(Sn = k; 0≤ Sn−i ≤k ∀ 0≤ i < n ; Sn−m < k − m1/7 ∀m ≥ m0)=�c

(
k + 1

n2

)
.

4 Asymptotics for the maximum

Our main aim in this section is to prove bounds on the tail probabilities for M =
sup{Su : u ∈ L }, the maximum position of a living particle. As indicated in the
introduction, this turns out to be crucial in our proof that E

[
Z log Z

]
is infinite.

We first prove a straightforward upper tail bound on R = sup{Su : u ∈ T }, the
maximum position of a particle (living or not) in the branching random walk, using
Markov’s inequality and the size-biasing technique.

Lemma 10 For a critical branching random walk, we have, for all k ≥1, P (R ≥k )≤
e−λ�k .

Proof For 
 ≥ 0, write f
 = P (R ≥ 
 ). Then the sequence { f
}
∈N is supermultipli-
cative: for all 
, m ≥ 0,

f
+m ≥ f
 · fm .

This is straightforwardly seen, since in order to have R ≥ 
 + m, it suffices to first
find a node v ∈ T with Sv ≥ 
, then find a node w in Tv with Sw ≥ m. It follows by
Fekete’s lemma [21] (see also, e.g., [51]) that there exists c ≤ ∞ such that

lim

→∞

log f




= sup

≥1

log f




= c. (8)
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In particular, the second inequality in (8) implies that for all 
 ≥ 1, we have f
 ≤ ec
.
We claim that as k → ∞,

P (R ≥ k ) = O(k2e−λ�k). (9)

Assuming (9), the lemma then follows immediately. To see this, note first that if we
had c > −λ�, then by (8) there would exist c′ with c > c′ > −λ� and K > 0 such
that for all 
 ≥ K , P (R ≥ 
 ) ≥ e−c′
, which contradicts (9). It thus remains to prove
(9).

Recall that Ri = sup{Su : u ∈ N
i ∩ T } is the maximum displacement of any

individual (living or not) in the i th generation of T . By Markov’s inequality and
size-biasing, we have, for k ≥ 1,

P (R ≥ k ) =
∑

n≥1

P (Ri < k ∀0 ≤ i < n; Rn ≥ k )

≤
∑

n≥1

(EB)n · P̂
(
Svi < k, i = 0, . . . , n − 1; Svn ≥ k

)
.

For n < k2, by Chernoff’s bound (Lemma 3) we have

P̂
(
Svi < k, i = 0, . . . , n − 1; Svn ≥ k

) ≤ P
(
Svn ≥ k

) ≤ (EB)−ne−λ�k .

(Note here that we used that the size-biasing does not affect the motion along a single
branch, so that P̂ and P are exchangeable in this context.) For n ≥ k2, we can apply
Theorem 6 to the reverse random walk (Sn − Sn−i , i = 0, . . . , n) and the exponential
change of measure in Lemma 5 to obtain

P̂
(
Svi < k, i = 0, . . . , n − 1, Svn ≥ k

) = O

(
k

n3/2

e−λ�k

(EB)n

)

,

uniformly over all n ≥ k2. Summing these two bounds yields

P (R ≥ k ) ≤ k2e−λ�k + O

⎛

⎝
∑

n≥k2

ke−λ�k

n3/2

⎞

⎠ = O(k2e−λ�k).

Finding a good lower bound for the tail probabilities for M is more technical. We
believe that the tail bounds of Lemma 11 are in fact of the correct order.

Lemma 11 For a critical killed branching random walk, if E
[
B log8 B

]
< ∞ then

P (M = k ) = �

(
e−λ�k

k

)

.
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Since M ≤ R Lemmas 10 and 11 together already sandwich P (M = k ) in a rel-
atively small interval. There are two reasons we are unable to prove matching upper
bounds for Lemma 11. The first is that Theorem 6 only applies when k = O(

√
n),

which one of the reasons we are required to split the sum in Lemma 10. The second is
that when n is much less than k2, the large deviations regime of Svn begins to change.
In principle, the uniform version of Theorem 4 proved by Petrov [46,47] could be used
in this case. However, to obtain matching bounds it would still be necessary to exploit
the fact that the random walk must remain positive—in other words, some ballot-style
sample path probability bound would still be needed in this regime and, as far as we
are aware, no such result has been proved.

Before proving Lemma 11, we introduce some relevant notation. Given v ∈ U and
w ≺ v (i.e. w � v and w 	= v), let wv be the first node after w on the path from w to
v. If w ∈ L , we define the (shifted) maximum

Mw = max{Sx − Sw : x ∈ L , w � x},

and we let M̂w be the equivalent in L̂ . In the tilted setting, for a vertex vi along the
spine, we define the maxima off the spine,

R̂�vi = max{Sx − Svi : x ∈ T̂ , vi � x, vi+1 	� x}
M̂�vi = max{Sx − Svi : x ∈ L̂ , vi � x, vi+1 	� x},

(10)

where we set M̂�vi = −∞ if vi /∈ L̂ . In the following, for v ∈ L we write L v =
{x ∈ L : v � x}; similarly, when v ∈ L̂ , we define L̂ v = {x ∈ L̂ : v � x}.
For any k and n, let Mk,n be the event that the maximum is k, the maximum is first
(level-wise) achieved by a single individual v ∈ Ln , and no other node w ∈ L \ L v

has displacement k or higher. In symbols, we have

Mk,n = {M = k, ∃ v ∈ Ln : Sv = k, ∀w ∈ L \ L v, Sw < k}. (11)

Also, let

Bk,n = {v ∈ Ln : Sv = k, ∀w ∈ L \ L v, Sw < k},

so Mk,n = {M = k} ∩ {Bk,n 	= ∅}. We will end up working with respect to the tilted
tree T̂ and its pruned subtree of living nodes L̂ , and make corresponding versions of
the above events and variables—so, for example:

B̂k,n = {v ∈ L̂n : Sv = k, ∀w ∈ L̂ \ L̂ v, Sw < k}.

The following lemma is the crucial lower bound on the probability of existence of
particles with a large displacement.
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Lemma 12 For a critical branching random walk, if E
[
B log8 B

]
< ∞ then uni-

formly for all k ≥ 1 and all n with k2 ≤ n ≤ 2k2,

P
(
Mk,n

) = �

(
ke−λ�k

n2

)

= �

(
e−λ�k

k3

)

.

We remark that Lemma 11 follows immediately from Lemma 12; the events Mk,n are
disjoint, so we have

P (M = k ) ≥
∑

k2≤n≤2k2

P
(
Mk,n

) = �

(
e−λ�k

k

)

.

Proof of Lemma 12 We first remark that Bk,n is either empty or contains just one
individual—so in particular P

(
Bk,n 	= ∅ ) = E|Bk,n|. We will in fact prove that

P
(
Bk,n 	= ∅ ) = �

(
ke−λ�k

n2

)

. (12)

From the preceding equation, the lemma follows immediately as

P
(
Mk,n

) = P
(
M = k

∣
∣ Bk,n 	= ∅) · P

(
Bk,n 	= ∅ )

.

However, if Bk,n 	= ∅ then there is a single individual v ∈ Ln with Sv = k, and for
all w ≺ v, Sw < k and no descendent u of w such that u 	∈ L v has Su ≥ k. Thus,
if Bk,n 	= ∅ then for {M = k} to occur it suffices that the node v has no descendants
u ∈ L with Su > Sv . The probability of the latter event is bounded below by the
probability that of sup{Su : u ∈ T v} ≤ Sv , i.e., that Rv = 0. Since in the critical
branching random walk R → −∞ a.s. by (1), we have P (R = 0 ) > 0. Thus,

P
(
Mk,n

) = �
(
P

(
Bk,n 	= ∅ ))

.

To prove the lemma it thus suffices to establish (12). By linearity of expectation we
have

P
(
Bk,n 	= ∅ ) =

∑

T ⊂U≤n

P
(
Bk,n 	= ∅ ∣∣ T≤n = T

) · μ[T ]≤n

=
∑

T ⊂U≤n

∑

v∈Tn

P
(
v ∈ Bk,n

∣∣ T≤n = T
) · μ[T ]≤n

= (EB)n
∑

T ⊂U≤n

∑

v∈Tn

P
(
v ∈ Bk,n

∣∣ T≤n = T
) · μ̂�[T, v]≤n

= (EB)n · P̂(vn ∈ B̂k,n). (13)
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To bound P̂
(
vn ∈ Bk,n

)
, we first introduce the concept of a useful walk. Let m0 =

m0(c) be the constant whose existence is guaranteed by Corollary 9 (in the current
setting, c = √

2). We say that the random walk, S0, S1, . . . , Sn , is (k, n)-useful if

Sn = k, 0 ≤ Si < k ∀0 < i ≤ n, and Sn−m < k − m1/7 ∀m ≥ m0.

We let Uk,n be the event that the random walk leading to vn in L̂n is (k, n)-useful,
and remark that Uk,n is a precise analogue of the event in Corollary 9. If Uk,n occurs,
then for {vn ∈ B̂k,n} to occur it suffices that the following events occur:

R̂�vn−i < i1/7 ∀m0 ≤ i ≤ n and R̂�vn−i ≤ 0 ∀0 ≤ i < m0.

We remark that the events Uk,n , {R̂�vn−i ≤ 0}, i = 1, . . . , m0 −1, and {R̂�vn−i < i1/7},
i = m0, . . . , n are mutually independent. This holds as, first, Uk,n depends only on
edge weights on the path from the root to vn , second each random variable R̂�vn−i

depends only on the subtree of T̂ leaving vn−i off this path, and third, these subtrees
are disjoint for distinct i .

Let 
 ≥ 1 be large enough that the number of children Ci ofvi satisfies P (Ci ≤ 
 ) ≥
1/2. Then,

P̂(R̂�vi ≤ 0) ≥ 1

2
· P̂(R̂�vi ≤ 0 | Ci ≤ 
) ≥ 1

2
· P (R ≤ 0 )
 · P (X ≤ 0 )
 .

The latter probability is at least ε > 0 by (1) and since EX < 0, so

P̂(R̂�vn−i ≤ 0, ∀0 ≤ i = 0 < m0) ≥ εm0 > 0. (14)

The lower bound in the lemma then follows from the next two inequalities

P̂
(
Uk,n

) = �

(
k

n2

e−λ�k

(EB)n

)

and P̂(R̂�vn−i < i1/7 ∀m0 ≤ i ≤ n) = �(1).

The first equation is an immediate consequence of Corollary 9 and the exponential
change of measure result Lemma 5. The second equation follows from the observation
that the random variables R̂�vi , i ≥ 0, are i.i.d., and Lemma 13 below. From these two
bounds, (13) and (14), we immediately obtain

P
(
Bk,n 	= ∅ ) = �

⎛

⎝(EB)n · P̂
(
Uk,n

) ·
∏

m0≤i≤n

P̂(R̂�vn−i < i1/7)

⎞

⎠ = �

(
ke−λ�k

n2

)

,

proving the lemma.

Lemma 13 Let R̂�vi be as defined by (10). If E
[
B log8 B

]
< ∞ then as n → ∞, we

have

P̂(R̂�vn−i < i1/7 ∀0 ≤ i ≤ n) = �(1).
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Proof To shorten notation, we will in fact bound P̂(R̂�vi < i1/7 ∀0 ≤ i ≤ n)—which
by symmetry is identical to the quantity we wish to bound. As noted above, the events
{R̂�vi < i1/7} are independent for distinct i since they depend on disjoint subtrees of
L̂ . Next, recall that Ci is the number of children of vi aside from vi+1 and is distrib-
uted as B̂ − 1. Call these children vi,1, . . . , vi,Ci , let the displacement from vi to vi, j

be Xi, j , and let the subtree of L̂ rooted at vi, j be Li, j (note that it is distributed as
L ).

Now fix i . Then for {R̂�vi < i1/7} to occur, it suffices that for each j = 1, . . . , Ci ,
the following inequality holds Rvi, j + Xi, j ≤ i1/7. We thus have, for independent R
and X ,

P̂(R̂�vi < i1/7) ≥
∞∑

k=1

P (Ci = k ) · P(R + X < i1/7)k

≥
∞∑

k=1

(k + 1)P (B = k + 1 )

EB
· P(X < i1/7/2)k · P(R < i1/7/2)k .

(15)

By Lemmas 3 and 10, respectively, applied to the first and second probabilities in
the last line above, for some c1, c2 > 0 and all i sufficiently large (say i ≥ i0) we
obtain the following bound:

P(X < i1/7/2) · P(R < i1/7/2) ≥ (1 − c1e−λ�i1/7/2) · (1 − e−λ�i1/7/2)

≥ 1 − c2e−λ�i1/7
> 1/2.

Since when x < 1/2, log(1 − x) > −2x , we have, for i ≥ i0,

P(R < i1/7/2)k · P(X < i1/7/2)k ≥ exp
(
−2kc2e−λ�i1/7

)

≥ 1 − 2kc2e−λ�i1/7

≥ 1 − i−2,

for all k ≤ k�(i) = �eλ�i1/7
/(2c2i2)�.

Furthermore, since E
[
B log8 B

]
< ∞, for any integer m ≥ 2 we have the bound

P (Ci ≥ m ) =
∑

k>m

kP (B = k )

EB
≤

∑

k>m

kP (B = k )

<
1

log8 m

∑

k>m

k log8 k · P (B = k )

<
E

[
B log8 B

]

log8 m
.
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So, truncating the sum in (15) at k�, for i large enough that

log8

(
eλ�i1/7

2c3i2

)

≥ (λ�i1/7)8

2
,

we obtain

P̂(R̂�vi < i1/7) ≥
k�∑

k=1

(k + 1)P (B = k + 1 )

EB
·
(

1 − i−2
)

≥ (
1 − P

(
Ci > k�

)) ·
(

1 − i−2
)

≥
(

1 − 2E
[
B log8 B

]

(λ�i1/7)8

)

·
(

1 − i−2
)

>
1

2
,

the last inequality holding for i sufficiently large (say i ≥ i1, for i1 ≥ i0 large enough).
Taking a product over i ≥ i1 yields

∏

i1≤i≤n

P̂(R̂�vi < i1/7) ≥
n∏

i=i1

{(

1 − 3E
[
B log8 B

]

(λ�i1/7)8

)

·
(

1 − 1

i2

)}

≥
∏

i≥i1

(

1 − 3E
[
B log8 B

]

(λ�i1/7)8

)

·
∏

i≥i1

(
1 − 1

i2

)
= �(1), (16)

since all factors are positive. (More precisely, the last lower bound follows from the
inequality e−x ≥ 1 − x , valid for x > 0, by taking logarithms.) For smaller values
of i , fix m ≥ 1 large enough that P (Ci ≤ m ) ≥ 1/2, and note that in order for
R̂�vi < i1/7 to occur it suffices that first, Ci ≤ m and second, Rvi, j + Xi, j ≤ 0 for
each j = 1, . . . , Ci . Taking ε > 0 small enough that P (R + X ≤ 0 ) > 2ε, we then
have

P̂(R̂�vi < i1/7) ≥ 1

2
P̂(R̂�vi < i1/7 | Ci ≤ m) ≥ εm,

which implies that

∏

0≤i<i1

P̂(R̂�vi < i1/7) ≥ εmi2 = �(1).

Combining this last equation with (16) completes the proof.

5 The size of the progeny: Proof of Theorem 1

In this section, we prove our main result, Theorem 1, using the analysis of the shape
of random walks in Sect. 3.
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Lemma 14 For a well-controlled critical killed branching random walk, the total
progeny Z satisfies E [Z ] < ∞.

Proof Recall that Ln denotes the set of un-killed nodes n levels away from the root.
Using the size-biasing from (2), we have

E [Z ] =
∑

n≥0

E [|Ln|]=
∑

n≥0

(EB)n ·P̂(vn ∈ L̂n)=
∑

n≥0

(EB)n · P (Si ≥ 0 ∀0≤ i ≤n )

=
∑

n≥0

(EB)n ·
∑

k≥0

P (Si ≥ 0, 1 ≤ i ≤ n; Sn = k ) .

Since the killed branching random walk is critical, e f (λ�) = EB and �′(λ�) = 0.
Splitting the above sum at k = log2 n, using the transfer of the ballot result of Theo-
rem 6 into the regime of large deviations, and Chernoff’s bound (Lemma 3), we see
that, for n large enough, the terms of the series above satisfy

E [|Ln|] ≤ (EB)n ·
�log2 n�∑

k=0

P (Si ≥0, 0≤ i ≤ n; Sn = k ) + (EB)n · P
(

Sn ≥ log2 n
)

≤ C1

�log2 n�∑

k=0

ke−λ�k

n3/2 + e−λ� log2 n ≤ C2n−3/2,

for some constants C1, C2. It follows immediately that E [Z ] < ∞.

We now use a similar lower bounding technique in order to complete the proof of
Theorem 1.

Lemma 15 For a critical killed branching random walk, if E
[
B log8 B

]
< ∞ then

we have E
[
Z log Z

] = ∞.

Proof When M = k occurs, there is a node u ∈ L such that Su = k. For each u ∈ U ,
denote by Mu

k the event that M = k and that additionally u ∈ L , Su = k, and u is the
lexicographically least node in L for which Su = k (for this we recall that the nodes
of U are labelled by

⋃∞
n=0 N

n , for our notion of lexicographic ordering). The events
Mu

k are disjoint for distinct u and k, and

{M = k} =
⋃

u∈U
Mu

k ,

123



Total progeny in killed branching random walk 283

so, writing Zu = |{v ∈ L : u � v}| for the set of living nodes in the subtree rooted
at u, we have

E
[
Z log Z

] =
∑

k≥0

∑

u∈U
E

[
Z log Z | Mu

k

]
P

(
Mu

k

)

≥
∑

k≥0

P (M = k ) · inf
u∈U

E
[

Z log Z | Mu
k

]

≥
∑

k≥0

P (M = k ) · inf
u∈U

E
[

Zu log Zu | Mu
k

]
(17)

To bound E
[

Zu | Mu
k

]
we first re-express the events Mu

k . Let Eu
k be the event that

u is the lexicographically least node in L for which Su = k. Also, write Mu for
max{Sv : v ∈ L , u 	� v}. Recall that Mu is the maximum position relative to u in
the subtree of L rooted at u. Now fix u ∈ U arbitrarily, and express the event Mu

k as
follows.

Mu
k = {Su = k} ∩ {u ∈ L } ∩ {Mu = 0} ∩ Eu

k ∩ {Mu ≤ k}.

Given that Su = k, u ∈ L , and Mu = 0, the random variable Zu is independent of
the events Eu

k and {Mu ≤ k}. Thus,

E
[

Zu | Mu
k

] = E
[

Zu | Su = k, u ∈ L , Mu = 0
]

≥ E
[

Zu1[Mu=0]
∣∣ Su = k, u ∈ L

]
.

Now let Ru = max{Sv − Su : v ∈ T , u � v}, and note that if Ru = 0 then certainly
Mu = 0, and so the previous equation gives

E
[

Zu | Mu
k

] ≥ E
[

Zu1[Ru=0]
∣∣ Su = k, u ∈ L

]
.

Given that Su = k and that u ∈ L , Zu consists of all descendants v ∈ T with u � v

such that for all w with u � w � v, Sw − Su ≥ −k, so

E
[

Zu | Mu
k

] ≥ E
[|{v ∈ T : Sw ≥ −k ∀ w � v}| · 1[R=0]

]

≥ E
[|{v ∈ T : Sv = −k, 0 ≥ Sw ≥ −k ∀ w � v}| · 1[R=0]

]

≥
∑

k2≤n≤2k2

E
[|{v ∈ Tn : Sv = −k, Sw ≥ −k ∀ w � v}| · 1[R=0]

]
.

(18)
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By size-biasing, we have

E
[|{v ∈ Tn : Sv = −k, 0 ≥ Sw ≥ −k ∀ w � v}| · 1[R=0]

]

= (EB)n · P̂
(
Svn = −k, 0 ≥ Sw ≥ −k ∀ w � vn, R = 0

)

= (EB)n · P̂
(
Svn = −k, 0 ≥ Svi ≥ −k ∀ 0 ≤ i ≤ n

)

×P̂(R = 0 | Svn = −k, 0 ≥ Svi ≥ −k ∀ 0 ≤ i ≤ n) (19)

By an argument just as that used in Lemma 12, it is straightforward to see that there
is γ0 > 0 such that for all k sufficiently large and all k2 ≤ n ≤ 2k2,

P̂(R = 0 | Svn = −k, 0 ≥ Svi ≥ −k ∀ 0 ≤ i ≤ n) ≥ γ0.

Also, by Corollary 8 applied to the random walk {Sn−i − Sn}0≤i≤n , together with
Lemma 5, we obtain that

P̂
(
vn ∈ Tn, Svn = −k, 0 ≥ Svi ≥ −k ∀ 0 ≤ i ≤ n

) = �

(
1

k3

eλ�k

(EB)n

)

,

and so combining (18) and (19) with the two preceding equations, it follows that there
exist γ1 > 0 and K1 ≥ 0 such that for all k ≥ K0,

E
[

Zu | Mu
k

] ≥ γ1

∑

k2≤n≤2k2

eλ�k

k3 = γ1
eλ�k

k
.

By the conditional Jensen’s inequality applied to the convex function x �→ x log x ,
we then have that for some γ2 > 0 and K2 ≥ 0, for all k ≥ K2 and all u ∈ U ,

E
[

Zu log Zu | Mu
k

] ≥ E
[

Zu | Mu
k

]
log E

[
Zu | Mu

k

] ≥ γ2eλ∗k,

so by (17) and Lemma 11

E
[
Z log Z

] ≥ γ2

∑

k≥K2

eλ∗kP (M = k ) = �

⎛

⎝
∑

k≥K2

1

k

⎞

⎠ = ∞.

6 Proofs of the ballot results

We first state two basic lemmas that will be useful in the proof of Theorem 7. We
include a proof of the first, simple result for completeness.

Lemma 16 If EX = 0 and E[X2] < ∞ then for all α and β with 0 < α < β, there
is γ > 0 such that for all n large enough and all n′ with 0 < n′ ≤ n,

P
(

|Sn′ | ≤ α
√

n, max
1≤i≤n

|Si | ≤ β
√

n

)
≥ γ.
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Proof We assume for simplicity that E[X2] = 1. Let W be a standard Brownian
motion. By Exercise III.3.15 in [48], there is γ > 0 such that for all n and n′ with
0 < n′ ≤ n,

P

(

sup
0≤t≤n

|Wt | ≥ β + α

2
· √

n, |Wn′ | ≤ α

2
· √

n

)

≥ 2γ.

Furthermore, by Donsker’s theorem [19] (see also [49], I.8.3), the random walk S can
be embedded in W such that for all n large enough,

P
(

max
1≤k≤n

|Sk − Wk | ≥ min{α, β − α}
2

· √
n

)
≤ γ.

Combining the two preceding bounds completes the proof.

We will also use the following lemma, Lemma 3.3 from [45]:

Lemma 17 Let Sn, n ≥ 0 be a random walk with step X, E [X ] = 0. For h ≥ 0, let
Nh be the first time n ≥ 0 that Sn < −h. Then for any a > 0 there are constants
c1, c2, c3 such that for all n:

(a) for all h with 0 ≤ h ≤ a
√

n, P (Nh ≥ n ) ≥ c1 · (h + 1)/
√

n;
(b) for all h with 0 ≤ h ≤ a

√
n, E

[
S2

n

∣∣ Nh > n
] ≤ c2n; and

(c) for all h ≥ 0, P (Nh ≥ n ) ≤ c3 · (h + 1)/
√

n.

We additionally require the following uniform local limit theorem. This is a weakening
of Theorem 1 from [52]. (See also [47].)

Theorem 18 ([52]) Fix any c > 0 and a random variable X with lattice Z. If EX = 0
and 0 < E[X2] < ∞ then for all integers x with |x | ≤ c

√
n,

P (Sn = x ) = (1 + o(1))
e−x2/(2nE[X2])
√

2πE[X2]n ,

where o(1) → 0 as n → ∞ uniformly over all x in the allowed range.

Finally, a useful trick, both in proving Theorem 7 and when applying the theorem and
its corollaries, is to turn the random walk “upside-down and backwards”. By this we
mean that we consider the random walk Sr with Sr

0 = 0 and, for 0 ≤ i < n, with

Sr
i+1 = −(Xn + · · · + Xn−i ) = Sr

i − Xn−i .

We refer to Sr as “the reversed random walk”.

Proof of Theorem 7 For simplicity, we assume that E[X2] = 1. We also assume that
k ≥ 0, as the case k < 0 follows from the case k ≥ 0 by considering the reversed
random walk Sr . The upper bound of the theorem is immediate from Theorem 6 as
the requirements in Theorem 7 are more restrictive. To prove the lower bound, first

123



286 L. Addario-Berry, N. Broutin

let δ = min{ε/11, 1/(5c3)}, where c3 is the constant from Lemma 17. Let N− be the
first time n ≥ 0 that Sn ≤ −m, and let N+ be the first time n ≥ 0 that Sn ≥ 5δ

√
n.

The events that N− ≥ �n/4� and that N+ ≤ �n/4� are increasing in the values of the
random walk steps, so they are positively correlated and by FKG inequality [7,26,31]

P (N+ ≤ min{�n/4�, N−} ) ≥ P (N+ ≤ �n/4�, N− ≥ �n/4� )

≥ P (N+ ≤ �n/4� ) · P (N− ≥ �n/4� ) .

By Lemma 17,

P (N− ≥ �n/4� ) ≥ c1(m + 1)√�n/4� ≥ 2c1(m + 1)√
n

,

and

P (N+ ≤ �n/4� ) ≥ 1 − c3(2δ
√

n + 1)√�n/4� ≥ 1

2
,

for n large enough. So for n large enough,

P (N+ ≤ min{�n/4�, N−} ) ≥ c1(m + 1)√
n

. (20)

Next, since E
[|X |3] < ∞, we have P (X ≥ t ) = o(t−3), so by the union bound, for

all n large enough,

P
(

max
1≤i≤n

Xi ≥ δ
√

n

)
≤ c1

2
√

n
.

It follows from this fact and (20) that

P
(
N+ ≤ min{�n/4�, N−}, SN+ ≤ 6δ

√
n

) ≥ P (N+ ≤ min{�n/4�, N−} )

−P
(

max
1≤i≤n

Xi > δ
√

n

)

≥ c1(m + 1)

2
√

n
. (21)

Applying Lemma 16 to the random walk restarted at time N+, we see that there is
γ1 > 0 such that for any fixed α with 1/4 < α < 1/2, and n large enough

P
(

|S�αn� − SN+| ≤ δ
√

n, max
N+<i≤�αn� |Si − SN+| ≤ 2δ

√
n

)
≥ γ1.
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From this fact and (21), it follows by the strong Markov property and the fact that
8δ < ε that

P
(
k + 4δ

√
n ≤ S�αn� ≤ k + 7δ

√
n,−m ≤ Si < k + ε

√
n ∀ 0 < i ≤ �αn� )

≥ c1γ1(m + 1)

2
√

n
. (22)

To shorten coming formulas, let E1 be the event whose probability is bounded in (22).
Next, let Sr be the random walk with Sr

0 = 0 and, for 0 ≤ i < n, Sr
i+1 = Sr

i −Xn−i .
Just as we derived (22), one can see that there is γ2 > 0 such that for n sufficiently
large,

P
(

4δ
√

n ≤ Sr�αn� ≤ 7δ
√

n,−(k + m) ≤ Sr
i < ε

√
n ∀ 0 < i ≤ �αn�

)

≥ c1γ2(k + m + 1)

2
√

n
. (23)

We denote by E2 the event whose probability is bounded in (23). Also, let Y =
S�αn� − Sr�αn�, so that

Sn = Y +
�(1−α)n�∑

i=�αn�+1

Xi .

Observe that, if E1 ∩ E2 occurs, necessarily 3δ
√

n ≤ k − Y ≤ 3δ
√

n. To see this,
note for example that k − Y = −3δ

√
n can only occur if S�αn� = k + 7δ

√
n and

Sr�αn� = 4δ
√

n.
Let q = �(1 − α)n� − �αn�, and for 1 ≤ i ≤ q, let

Li = S�αn�+i − S�αn�, and let Ri = S�(1−α)n�−i − S�(1−α)n�,

so in particular Lq = −Rq . Given that E1 and E2 occur, in order that Sn = k, that
Si ≥ −m for all i = 1, . . . , n, and that Si < k + ε

√
n for all 0 < i < n, it suffices

that

– Lm = S�(1−α)n� − S�αn� = k − Y (we call this event E3), and
– for all i with 1 ≤ i ≤ q, we have min{k−Y, 0}−δ

√
n ≤ Li < max{k−Y, 0}+δ

√
n

(we call this event E4).

These events are depicted in Fig. 1. By (22) and (23), to prove the lower bound it
thus suffices to show that there is γ3 > 0 not depending on m, k, or n such that for all
n sufficiently large,

P (E3, E4 | E1, E2 ) ≥ γ3√
n
. (24)
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Fig. 1 E3 ensures that the middle portion of the random walk “lines up” with the outer portions. E4 requires
that the middle portion of the random walk stays between the two solid black horizontal lines. Given that
E1 and E2 occur, these two horizontal lines must lie between k and k + ε

√
n, so E4 (more than) ensures

that the middle portion of the random walk stays between −m and k + ε
√

n

Assuming that (24) holds, since E1 and E2 are independent, combining (22), (23),
and (24) proves the claimed lower bound and completes the proof. We now turn to
establishing (24).

Let N = [−3δ
√

n, 3δ
√

n] ∩ Z. Since |k − Y | ≤ 3δ
√

n, by the independence of
disjoint sections of the random walk, we then have

P (E3, E4 | E1, E2 ) ≥ min
p∈N

P
(

Lq = p, min
1≤i≤q

Li ≥ −p− − 4δ
√

n, max
1≤i≤q

Li ≤ p+ + 4δ
√

n

)
, (25)

where p− = − min{p, 0} and p+ = max{p, 0}. Now fix p ∈ N arbitrarily. For the
remainder of the proof we assume that p ≥ 0, since the proof for the case p < 0
is obtained mechanically from the proof of the former by reversing the roles of the
random walks L and R. Thus, the above probability becomes

P
(

Lq = p, min
1≤i≤q

Li ≥ −δ
√

n, max
1≤i≤q

Li ≤ p + δ
√

n

)
.

Let Bp be the event that min1≤i≤q Li ≥ −4δ
√

n and that max1≤i≤q Li ≤ p + 4δ
√

n.
We bound P

(
Lq = p, Bp

)
by first writing

P
(
Lq = p, Bp

) = P
(
Lq = p

) − P
(
Lq = p, Bp

)
, (26)
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where Bp denotes the complement of the event Bp. By Theorem 18, since q = �(n)

and p = O(
√

n),

P
(
Lq = p

) = (1 + o(1))
e−p2/(2q)

√
2πq

= �

(
1√
n

)
, (27)

where o(1) → 0 as n → ∞, uniformly over all p ∈ N (recall that we assume
E[X2] = 1). To bound P

(
Lq = p, Bp

)
from above, we first further divide the events

{Lq = p} and Bp. Let q ′ = �n/2� − �αn�. Observe that {Lq = p} occurs if and only
if Rq = −p. Similarly, if {Lq = p} occurs, then for Bp to occur one of the following
events must occur: either

1. min1≤i≤q ′ Li < −4δ
√

n (we call this event Cb); or
2. max1≤i≤q ′ Li > p + 4δ

√
n (we call this event Ct ); or

3. min1≤i≤q−q ′ Ri < −(p + 4δ
√

n) (we call this event Db); or
4. max1≤i≤q−q ′ Ri > 4δ

√
n (we call this event Dt ).

Thus,

P
(
Lq = p, Bp

) ≤ P
(

Lq = p, Cb
)

+ P
(
Lq = p, Ct )

+P
(

Rq = −p, Db
)

+ P
(
Rq = −p, Dt )

. (28)

To complete the proof, it suffices to show that the sum on the right-hand side of (28)
is at most (1 + o(1))e−p2/(2q)/(2

√
2πq), as (25) and (26), and (27) then imply that

P (E3, E4 | E1, E2 ) = �(1/
√

n), as required. We will show that each of the four
terms on the right-hand side of (28) is at most (1 + o(1))e−p2/(2q)/(8

√
2πq), from

which the required bound follows. We provide all the details only for the bound on
P

(
Ct , Lq = p

)
, as the other bounds follow by rote applications of the same technique.

Since E[|X |3] < ∞, we have P
(
max1≤i≤q ′ |X�αn�+i | ≥ δ

√
n

) = o(1/
√

n), and
so

P
(
Ct , Lq = p

) ≤ P
(

Ct , Lq = p, max
1≤i≤q ′ |X�αn�+i | < δ

√
n

)
+ o

(
1√
n

)
. (29)

By Kolmogorov’s maximal inequality [See, e.g., 22,47],

P
(

Ct , max
1≤i≤q ′ |X�αn�+i | < δ

√
n

)
≤ P

(
Ct ) = P

(
max

1≤i≤q ′ Li > p + 4δ
√

n

)

≤ E[L2
q ]

(4δ
√

n)2

= E[X2] · q

16δ2n

≤ ((1 − 2α)n + 1)

16δ2n
≤ 1

16
(30)
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for all n sufficiently large, as long as we take α close enough to 1/2 that (1−2α) < δ2.
Furthermore, by the independence of disjoint sections of the random walk and a simple
conditioning, we have that

P
(

Lq = p

∣∣∣∣ Ct , max
1≤i≤q ′ |X�αn�+i | < δ

√
n

)

≤ max
1≤i≤q ′

4δ
√

n≤ j≤5δ
√

n

P
(
Lq = p

∣∣ Li = p + j, Li−1 ≤ p + 4δ
√

n
)
.

= max
1≤i≤q ′

4δ
√

n≤ j≤5δ
√

n

P
(
Sq−i = − j

)

For any i with 1 ≤ i ≤ q ′, we have q−i ≥ q−q ′ ≥ �(1−α)n�−�n/2� ≥ q/2 = �(n)

and j = O(
√

n), and it follows by Theorem 18 that

P
(

Lq = p

∣∣
∣∣ Ct , max

1≤i≤q ′ |X�αn�+i | < δ
√

n

)

≤ (1 + o(1)) max
1≤i≤q ′,4δ

√
n≤ j≤5δ

√
n

e− j2/(2(q−i))

√
2π(q − i)

≤ (1 + o(1))
e−p2/(2q)

√
πq

,

the second inequality holding since j ≥ 4δ
√

n > |p| and since q−i ≥ q/2. Combined
with (29) and (30), the latter inequality yields that

P
(
Ct , Lq = p

) ≤ (1 + o(1))
e−p2/(2q)

16
√

πq
≤ (1 + o(1))

e−p2/(2q)

8
√

2πq
.

An essentially identical proof shows that the same bound holds for P
(
Cb, Lq = p

)
,

and the same reasoning applied to the reversed random walk R shows that the same
bound holds for P

(
Rq = −p, Db

)
and for P

(
Rq = −p, Dt

)
. Combining these four

bounds in (28) yields the required bound on P
(
Lq = p, Bp

)
and completes the proof.

The following result strengthens Corollary 8; the strengthened version will be help-
ful in proving Corollary 9. Taking m = 0 yields Corollary 8.

Lemma 19 Fix c > 1. If E
[|X |3] < ∞ Then under the conditions of Theorem 7, for

all n and all k and m with c−1 ≤ k/
√

n ≤ c and 0 ≤ m ≤ c
√

n,

P (Sn =k,−m ≤ Si <k ∀ 0< i <n )=�c

(
(m + 1)(k + m + 1)

n2

)
=�c

(
m + 1

n3/2

)
.

Proof Define the backwards random walk Sb by Sb
0 = 0 and for i ≥ 0, Sb

i =
Sb

i−1 + Xn−i . In order that Sn = k and that −m ≤ Si ≤ k for all 0 < i < n, it
is necessary and sufficient that for some integer s with −m ≤ s ≤ k, we have
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– S�n/2� = s and −m ≤ Si ≤ k for all i with 0 ≤ i ≤ �n/2� (call this event As), and

– Sb�n/2� = k − s and 0 ≤ Sb
i ≤ k + m for all i with 0 ≤ i ≤ �n/2� (call this event

Bs).

The events As and Bs are independent and, for s 	= s′, As and As′ are disjoint and Bs

and Bs′ are disjoint. Furthermore, for any s with k/3 ≤ s ≤ 2k/3,

min{k − s, m + s} ≥ k/3 ≥ √
n/(3c) >

√�n/2�/(3c),

so for such s we can apply Theorem 7 with ε = 1/(3c) to bound P (As ) and P (Bs ).
Since both m + s and k − s are �c(n1/2) for all s in the above range, we thus have

P (Sn = k,−m ≤ Si ≤ k ∀ 0 < i < n ) ≥
∑

k/3≤s≤2k/3

P (As, Bs )

= �c

⎛

⎝
∑

k/3≤s≤2k/3

(m + 1)(m + s + 1)

n3/2 · k − s

n3/2

⎞

⎠

= �c

(
m + 1

n3/2

)
, (31)

proving the lower bound. To prove the upper bound, we observe that for any s with
−m ≤ s ≤ k, by dropping the condition that Si ≤ k for i from 1 to �n/2� from the
definition of As we may use Theorem 6 to obtain the bound

P (As ) = Oc

(
(m + 1)(m + s + 1)

n3/2

)
,

and we may similarly see that P (Bs ) = Oc((k − s)/n3/2). Summing these bounds
over −m ≤ s ≤ k yields the requisite upper bound.

Applying Theorem 7 to the first m steps of the random walk, and applying Lemma 19
to the random walk restarted at time m yields the following corollary. This is straight-
forward and we omit the details.

Corollary 20 Fix c > 0. If E
[|X |3] < ∞ then for all n, all k with c−1 < k/

√
n ≤ c,

all 1 ≤ m ≤ n/2 and all j ≤ min{√m, k/2},

P (Sn = k; 0 ≤ Si ≤ k ∀ 0 ≤ i < n; Sm = j ) = �

(
( j + 1)2 · (k + 1)

m3/2 · (n − m)2

)
.

If X satisfies the conditions of the above theorems and corollary, then so does −X ,
and so applying Corollary 20 to the reversed random walk Sr and rewriting the result
in terms of S, we obtain the following.
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Corollary 21 Fix c > 0. If E
[|X |3] < ∞ then for all n, all k with c−1 < k/

√
n ≤ c,

all 1 ≤ m ≤ n/2 and all j ≤ min{√m, k/2},

P (Sn = k; 0 ≤ Si < n ∀ 0 ≤ i < n; Sn−m = k − j ) = �c

(
( j + 1)2 · (k + 1)

m3/2 · (n − m)2

)
.

Proof of Corollary 9 First, let Fn,k be the event that Sn = k and 0 ≤ Si < k for all i
such that 0 ≤ i < n. Let also Hn,k be the event that Fn,k occurs, and k/4 ≤ S�n/2� ≤
k/2. For each integer m with k/4 ≤ m ≤ k/2, we will consider the following two
events:

– S�n/2� = m and Si ≤ 3k/4 for all 0 ≤ i ≤ n/2. (We call this event Am .)
– Writing S�

i = S�n/2�+i − S�n/2�, we have S�
n−�n/2� = k −m and −m ≤ S�

i ≤ k −m
for 0 ≤ i ≤ n − �n/2�. (We call this event Bm .)

For all n sufficiently large and for any m in the above range, if Am and Bm both occur
then Hn,k occurs. Now apply Theorem 7 to the event Am , and Lemma 19 to the event
Bm , and use the independence of Am and Bm to see that

P (Am, Bm ) = P (Am ) · P (Bm ) = �c

(
m

n3/2 · mk

n2

)
= �c

(
k

n5/2

)
,

so summing over k/4 ≤ m ≤ k/2, we obtain that there is some constant γ (c) > 0 for
which

P
(
Hn,k

) ≥ γ (c)k

n2 . (32)

Next, for fixed integer m0 > 0, let Bn,k(m0) be the event that there is m ∈ [m0, n/2]
for which Sn−m > k − m1/7. By Corollary 21, we have

P
(
Fn,k; Bn,k(m0)

) ≤
�n/2�∑

m=m0

�m1/7�∑

j=1

P
(
Fn,k, Sn−m = k − j

)

= Oc

⎛

⎝
�n/2�∑

m=m0

�m1/7�∑

j=1

( j + 1)2 · (k + 1)

m3/2 · (n − m)2

⎞

⎠

= Oc

⎛

⎝
�n/2�∑

m=m0

k + 1

m15/14 · n2

⎞

⎠

= Oc

(
k + 1

m1/14
0 n2

)

.

We may thus find m0 = m0(c) large enough that

P
(
Hn,k, Bn,k(m0)

) ≤ P
(
Fn,k, Bn,k(m0)

) ≤ γ (c)k

2n2 .
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Combining this bound with (32), we obtain that

P
(

Hn,k, Bn,k(m0)
)

≥ γ (c)(k + 1)

2n2 . (33)

The inequality 3k/4 ≤ k − k1/7 clearly holds for all k ≥ c−1√n as long as n is
sufficiently large. Thus, for n sufficiently large, if Hn,k and Bn,k(m0) both occur, then
the desired event

Sn = k, 0 ≤ Si < k ∀ 0 ≤ i < n, and Sn−i ≤ k − i1/7 ∀m0 ≤ i ≤ n

also occurs, which by (33) yields the result.
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