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Abstract We prove an optimal Gaussian upper bound for the densities of isotropic
random walks on R

d in spherical case (d ≥ 2) and ball case (d ≥ 1). We deduce
the strongest possible version of the Central Limit Theorem for the isotropic random
walks: if S̃n denotes the normalized random walk and Y the limiting Gaussian vector,
then E f (S̃n) → E f (Y ) for all functions f integrable with respect to the law of Y . We
call such result a “Strong CLT”. We apply our results to get strong hypercontractivity
inequalities and strong Log-Sobolev inequalities.
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1 Introduction

Let σd be the normalized Lebesgue measure on the unit sphere Sd−1
1 , d ≥ 2. Let

X1, X2, . . . , Xn be independent random vectors with the distribution σd . The sequence
(Sn)n , where S0 = 0 and Sn = X1 + · · · + Xn , describes an isotropic random walk in
R

d . Evidently, the distribution of X1 + · · · + Xn is given by σ ∗n
d (written shortly σ n

d ).
Similarly, we will consider μd , the uniform measure of the unit ball Bd in R

d ,
d ≥ 1 and the related isotropic random walk.

Isotropic random walks were thoroughly examined; the history, useful facts and
formulae concerning them can be found e.g. in the monograph of Hughes [17].

One of important applications of isotropic random walks is that in R
d , d ≥ 1, we

can approximate the standard Gaussian measure by (normalized) convolution pow-
ers of σd or μd . If S̃n = Sn√

n
denotes the normalized random walk, by the Central

Limit Theorem, the sequence S̃n converges weakly to a Gaussian random vector Y . In
Sect. 2 of this article we show that for d ≥ 2 the densities of S̃n are bounded by const
× gY where gY is the density of the limiting Gaussian distribution (Theorems 2.1 and
2.4) in both isotropic cases σd and μd , as well as in some other related cases, see
Subsection 2.3. Gaussian bounds of convolutions of compactly supported symmetric
measures with bounded densities have been proved by Hebisch and Saloff-Coste [14]
but our optimal estimate by the limiting density gY cannot be deduced from [14]. As
a corollary of this optimal estimate we prove that

E f (S̃n) → E f (Y ) for all f ∈ L1(gY dy), (1)

i.e. the convergence holds for any function f integrable with respect to the law of Y . It
is an essential strengthening of the classical Central Limit Theorem for the sequence
Xn and its strongest possible version. We call our limit theorem a “Strong Central
Limit Theorem”. It should not be confused with the “strong approximation” results,
i.e. the construction of sums of random vectors together with approximating Gaussian
vectors on the same probability space, e.g. the strong KMT approximation [18].

For the considered uniform measures, our Strong Central Limit Theorems gener-
alize to d dimensions a strengthened CLT proved on R by Fomin [9], see Remark 2.9.

In Sect. 3 we discuss the 1-dimensional case of symmetric Bernoulli distributions
σ1 = 1

2 (δ−1 +δ1). The distributions of S̃n = Sn√
n

are discrete measures and it is natural
to compare their tails with the Gaussian tail. An optimal Gaussian upper bound for
the tails P(S̃n > x), see Proposition 3.2, is a special case of results of Pinelis [19],
solving the Eaton’s conjecture.

We can thus say that in Sect. 2 we have generalized Pinelis’ estimate to the d-
dimensional case and uniform measures on spheres and balls, for which comparing
the densities with the limiting Gaussian density is more adequate.

The research on the tail estimates of sums of random variables and processes has
been very active in recent 20 years and there is a rich literature on this subject (see
e.g. [6,15,16,20]). However estimates of corresponding densities are not considered
in this literature.
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From the optimal Gaussian bound for the tails, we deduce in Theorem 3.4 a
1-dimensional version of the strong Central Limit Theorem:

E f (S̃n) → E f (Y ) for all monotonic f ∈ L1(gY dy). (2)

We also show an example that without some additional assumption (such as monoto-
nicity) the convergence in (2) may fail.

As an application, in Sect. 4 we show how to use our strong Central Limit Theorems
to obtain direct proofs of strong hypercontractivity and strong logarithmic Sobolev
inequalities for log-subharmonic functions and the Gaussian measure in R

d , d ≥ 1.
This approach mirrors, to some extent, Gross’s proof of the Gaussian log-Sobolev
inequality in [12].

2 Isotropic random walks in R
d for d ≥ 2

2.1 Sphere case σd

If X = (X (1), X (2), . . . , X (d)) is a random vector with the distributionσd , then E(X) =
(0, 0, . . . , 0) and Cov(X (i), X ( j)) = 1

d δi j , that is, the covariance matrix of X is
� = 1

d I ; in order to justify the last assertion observe that if Y = (Y1, . . . , Yd) is a

standard Gaussian vector in R
d , then Y

|Y | has the uniform distribution on Sd−1
1 .

Define γd = N (0, 1
d I ), the Gaussian measure with the density gd(y) =

( d
2π

)d/2e− d|x|2
2 on R

d .
Let X1, X2, . . . , Xn be independent random vectors with the distribution σd . By

the Central Limit Theorem the distribution of normalized sum S̃n = X1+···+Xn√
n

tends

weakly to γd . In the language of convolutions this means that after normalization, σ n
d

tend weakly to γd .
It turns out that for n > d + 2 the measures σ n

d are absolutely continuous with
respect to the Lebesgue measure. Indeed, the characteristic function of σ n

d equals

(
σ̂d(y)

)n =
(

�

(
d

2

)(
2

|y|
)d/2−1

Jd/2−1(|y|)
)n

,

where Jd/2−1 is a Bessel function of the first kind (see e.g. [17, (2.30)]). When n > d+2
this characteristic function is absolutely integrable, which implies that the density of
σ n

d exists and is bounded and continuous. For fixed d let us denote by fn(x) the density
of σ n

d . We notice that for n ≤ d + 2, the density fn can exist and be unbounded, see
[17].

By the Local Central Limit Theorem [4, Th.19.1], the densities f S̃n
of the normal-

ized sums S̃n = Sn√
n

, i.e. the functions (
√

n)d fn(
√

n x), tend uniformly to the Gaussian

density gd(y) = ( d
2π

)d/2e− d |x|2
2 . In the main theorem of this section we show that the

quotient of these densities and of the limiting Gaussian density is bounded.
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Theorem 2.1 (Optimal Gaussian Bound for σ n
d ). Let d ≥ 2. There exists a constant

Cd such that for all x ∈ R
d and n > d + 2 there holds

fS̃n
(x) = (

√
n)d fn(

√
n x) ≤ Cd

(
d

2π

)d/2

e− d |x|2
2 . (3)

Remark 2.2 For the random walk Sn = X1 + · · · + Xn the inequality (3) reads as
follows: for any x ∈ R

d and n > d + 2,

fn(x) ≤ Cd

(
d

2π n

)d/2

e− d |x|2
2n . (4)

The measures σd and γd are rotationally invariant and so are their densities. Denote
f̃n(r) = fn(|x|) for |x| = r . The estimates (3) and (4) are equivalent to the following
inequality

f̃n(r) ≤ Cd

nd/2 e− d r2
2n . (5)

To simplify the notation we write Cd for a modified constant. In order to prove Theo-
rem 2.1, we will justify (5).

Proof From the Local Central Limit Theorem it follows that for any a > 0 there exists
some ca > 0 such that (3) holds for all x with |x| ≤ a and n > d + 2, that is

(
√

n)d fn(
√

n x) ≤ ca

(
d

2π

)d/2

e− d |x|2
2 .

Equivalently, for all n > d + 2

f̃n(r) ≤ ca

(
d

2π n

)d/2

e− d r2
2n , r ≤ a

√
n.

Hence it is enough to prove (5) for r ≥ a
√

n.
The maximal distance of Sn to the origin after n steps of the walk is less or equal

to n so that fn(x) = 0 for |x| > n. Consequently, when n = d + 3, the inequality (5)
holds for all r and a constant C .

Let a = 3
√

d and Cd = max(ca, C). We will show by induction that (5) holds for
this Cd . As we have noticed above, (5) is true for n = d + 3.

We have

fn+1(x) =
∫

Sd−1
1

fn(x − u)dσd(u). (6)
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The function fn depends only on |x − u| = (r2 + 1 − 2r cos(x, u))1/2. The function
fn+1 is also radial, so fn+1(x) = fn+1(0, . . . , |x|). For x′ = (0, . . . , |x|) we have
cos(x′, u) = ud . We obtain

f̃n+1(r) =
∫

Sd−1
1

f̃n

(√
r2 + 1 − 2rud

)
dσd(u).

Taking spherical coordinates in R
d with ud = R cos φ (cf. [17, p.61]) we get

f̃n+1(r) = |Sd−2
1 |

|Sd−1
1 |

π∫

0

f̃n

(√
r2 + 1 − 2r cos φ

)
sind−2 φ dφ, (7)

where |Sd−1
1 | = 2πd/2/�(d/2) is the measure of the unit sphere in R

d . Note that
formula (7) is also true for d = 2 with |S0

1 | = 2.
Suppose that for some n > d + 2 and all 0 ≤ r ≤ n the inequality (5) is true. Then,

by this assumption, we have

f̃n+1(r) = |Sd−2
1 |

|Sd−1
1 |

π∫

0

f̃n

(√
r2 + 1 − 2r cos φ

)
sind−2 φ dφ

≤ Cd

nd/2

�(d/2)√
π�((d − 1)/2)

π∫

0

e− d(r2+1−2r cos φ)
2n sind−2 φ dφ

= Cd

nd/2

�(d/2)√
π�((d − 1)/2)

e− d(r2+1)
2n

π∫

0

e
dr cos φ

n sind−2 φ dφ

= Cd

nd/2

�(d/2)√
π�((d − 1)/2)

e− d(r2+1)
2n

√
π2d/2−1�((d − 1)/2)

×
( n

dr

)d/2−1
Id/2−1

(
dr

n

)

= Cd

nd/2 �

(
d

2

)
e− d(r2+1)

2n

(
2n

dr

)d/2−1

Id/2−1

(
dr

n

)
,

because, by [2, (9.6.18)], we have

π∫

0

ex cos θ sind−2 θ dθ = √
π2d/2−1�((d − 1)/2)x1−d/2 Id/2−1(x), (8)

where Iα is a modified Bessel function of order α.
We want to show that for r ≥ a

√
n + 1 the last estimate for f̃n+1(r) is less than

Cd
(n+1)d/2 e− d r2

2(n+1) , i.e. to prove that for r ≥ a
√

n + 1
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�

(
d

2

)(
2n

dr

)d/2−1

Id/2−1

(
dr

n

)
≤
(

n

n + 1

)d/2

e
d(r2+1)

2n − dr2
2(n+1) .

But

d(r2 + 1)

2n
− dr2

2(n + 1)
= dr2

2n(n + 1)
+ d

2n
,

hence it is enough to show that

�

(
d

2

)(
2n

dr

)d/2−1

Id/2−1

(
dr

n

)
≤
(

n

n + 1
e1/n

)d/2

e
dr2

2n(n+1) .

Now

n

n + 1
e1/n = n

n + 1

(
1 + 1

n
+ · · ·

)
> 1,

hence it is enough to prove that for r ≥ a
√

n + 1

�

(
d

2

)(
2n

dr

)d/2−1

Id/2−1

(
dr

n

)
≤ e

dr2
2n(n+1) . (9)

For this, we use Taylor expansions of both sides. By the well-known formula
[2, (9.6.10)]

Iα(x)

(x/2)α
=

∞∑

k=0

(x/2)2k

k!�(α + k + 1)
(10)

and thus the left-hand side of (9) is equal to

LHS = �

(
d

2

) ∞∑

k=0

( dr
2n )2k

k!�(d/2 + k)
= �

(
d

2

) ∞∑

k=0

( r
n )2k( d

2 )2k

k!�(d/2 + k)
.

The right-hand side of (9) is equal to

RHS = e
dr2

2n(n+1) = e( r
n )2· d

2 · n
n+1 =

∞∑

k=0

( r
n )2k( d

2 )k( n
n+1 )k

k! ,

hence the difference

RHS − LHS =
∞∑

k=0

( r
n )2k( d

2 )k

k!

[(
n

n + 1

)k

− �(d/2)

�(d/2 + k)

(
d

2

)k
]

.
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Denote the quantity in the square bracket: An,k = ( n
n+1 )k − �(d/2)

�(d/2+k)
( d

2 )k . It is

easy to check that An,0 = 0 and An,1 = − 1
n+1 . Now we show that for k = 2, 3, . . .,

we have An,k > 0. Indeed, for k = 2

An,2 =
(

n

n + 1

)2

− �(d/2)

�(d/2 + 2)

(
d

2

)2

=
(

n

n + 1

)2

− 1
d
2 ( d

2 + 1)

(
d

2

)2

=
(

n

n + 1

)2

− d/2
d
2 + 1

=
(

n

n + 1

)2

− d

d + 2
> 0, if n ≥ d + 2.

For k ≥ 3 we estimate:

An,k =
(

n

n + 1

)k

− �(d/2)

�(d/2 + k)

(
d

2

)k

=
(

n

n + 1

)k

− (d/2)k−1

( d
2 + 1) . . . ( d

2 + k − 1)
> 0,

because for k = 2 we chose n such that ( n
n+1 )2 > d

d+2 , and for k ≥ 3 this implies

(d/2)k−1

( d
2 + 1) . . . ( d

2 + k − 1)
≤
((

n

n + 1

)2
)k−1

<

(
n

n + 1

)k

.

Finally,

RHS − LHS > − 1

n + 1
·
( r

n

)2 d

2
+ 1

2!
( r

n

)4
(

d

2

)2
[(

n

n + 1

)2

− d

d + 2

]

=
( r

n

)2 d

2

[
1

2

( r

n

)2 d

2

((
n

n + 1

)2

− d

d + 2

)

− 1

n + 1

]

.

Now, if r > a
√

n + 1 > a
√

n then

1

2

( r

n

)2 d

2

((
n

n + 1

)2

− d

d + 2

)

>
1

n

da2

4

((
n

n + 1

)2

− d

d + 2

)

.

When d ≥ 2 and n ≥ d + 2 we have (( n
n+1 )2 − d

d+2 )−1 < 2d2. Thus for a ≥ 3
√

d
the following inequality holds

1

n

da2

4

((
n

n + 1

)2

− d

d + 2

)

>
1

n + 1
.


�
We can now deduce the following strengthened Central Limit Theorem.

Theorem 2.3 (Strong CLT for σd ) Let d ≥ 2, Y be a random Gaussian vector with
law γd and f ∈ L1(γd). Then limn E f (S̃n) = E f (Y ).
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Proof Let kn(x) = √
n fn(

√
n x) be the density of the normalized sum S̃n =

X1+···+Xn√
n

. By the Local Central Limit Theorem, limn f kn = f gd . By Theorem 2.1,

| f kn| ≤ Cd | f gd | ∈ L1(Rd). By the Dominated Convergence Theorem
∫

f (x)

kn(x) dx → ∫
g(x)dγd(x). 
�

2.2 Ball case μd

Let (X1, X2, . . . , Xd) be a random vector with the uniform distribution μd on the
unit ball Bd in R

d . When d ≥ 2, we have in polar coordinates (for 0 ≤ r ≤ 1 and
s ∈ Sd−1

1 )

dμd(r, s) = drd−1 dr
ds

|Sd−1
1 |

Now σd(ds) = ds
|Sd−1

1 | is a probability measure on the unit sphere and so is drd−1 dr

on the unit interval.
Because E(X2

1 + · · · + X2
d) = ∫ 1

0 r2 · drd−1 dr = d
∫ 1

0 rd+1 dr = d
d+2 , hence

E(X2
i ) = 1

d+2 and the covariance matrix of (X1, X2, . . . , Xd) equals 1
d+2 I . Observe

that for d = 1 the formula E(X2
1) = 1

d+2 also holds.

The weak limit of normalized sums S̃n = X1+···+Xn√
n

is νd = N (0, 1
d+2 I ), the

Gaussian measure with the density hd(y) = ( d+2
2π

)d/2e− (d+2) |x|2
2 on R

d . The Gauss-
ian measure approximating μn , the law of Sn = X1 + · · · + Xn , has the radial part

g(R) = ( d+2
2πn )d/2e− (d+2)R2

2n . Denote by fn the density of μn
d .

Theorem 2.4 (Optimal Gaussian Bound for μn
d ). Let d ≥ 1. There exists a constant

Cd such that for all x ∈ R
d and n ≥ 1 there holds

fS̃n
(x) = (

√
n)d fn(

√
n x) ≤ Cd

(
d + 2

2π

)d/2

e− (d+2) |x|2
2 . (11)

Proof Similarly as in the proof of Theorem 2.1, by the Local CLT we see that it is
sufficient to prove that there exist constants C, a > 0 such that

f̃n(R) ≤ C

nd/2 e− (d+2)R2
2n , R > a

√
n, n ∈ N. (12)

We set a = 2. The proof of the inequality (12) will proceed by induction. The starting
point of induction n0 will be specified later. There is a constant C = C(n0) such that
(12) holds for all R > 0 and n = 1, . . . , n0.

Analogously to (6) we have

fn+1(x) =
∫

Bd

fn(x − u)dσd(u). (13)

Here we divide the proof into two cases d ≥ 2 and d = 1.
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Case d ≥ 2. Applying the polar coordinates, similarly as the formula (7), we obtain

f̃n+1(R) = |Sd−2
1 |

|Sd−1
1 |

1∫

0

π∫

0

fn

(√
r2 + R2 − 2r R cos φ

)
drd−1 sind−2 φ dφdr.

Using the assumption f̃n(R) ≤ Cd
nd/2 e− (d+2)R2

2n and the formula (8) we get

f̃n+1(R) ≤ Cd

nd/2

1∫

0

drd−1e− (d+2)(r2+R2)
2n �

(
d

2

) Id/2−1

(
(d+2)r R

n

)

(
(d+2)r R

2n

)d/2−1 dr.

We want to prove that for n sufficiently big and all R > a
√

n there holds the
following inequality

�

(
d

2

) 1∫

0

drd−1e− (d+2)(r2+R2)
2n

Id/2−1

(
(d+2)r R

n

)

(
(d+2)r R

2n

)d/2−1 dr ≤
(

n

n + 1

)d/2

e− (d+2)R2

2(n+1) .

This is equivalent to the following

�

(
d

2

) 1∫

0

drd−1e− (d+2)r2
2n

Id/2−1

(
(d+2)r R

n

)

(
(d+2)r R

2n

)d/2−1 dr ≤
(

n

n + 1

)d/2

e
(d+2)R2

2n(n+1) .

When 0 < r < 1 and n > d + 2, we have 0 <
(d+2)r2

2n < 1
2 so that for such r and n

there holds

e− (d+2)r2
2n ≤ 1 − (d + 2)r2

2n
+ 1

2

(
(d + 2)r2

2n

)2

≤ 1 −
(

1 − d + 2

4n

)
(d + 2)r2

2n
.

Thus, by positivity of the function Id/2+1, it is enough to prove that

�

(
d

2

) 1∫

0

drd−1

(

1 −
(
1 − d+2

4n

)
(d + 2)r2

2n

)
Id/2−1

(
(d+2)r R

n

)

(
(d+2)r R

2n

)d/2−1 dr

≤
(

n

n + 1

)d/2

e
(d+2)R2

2n(n+1) . (14)
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We have to evaluate two integrals involving Bessel functions. By [11, (5.52.1), page
624]

∫
xp+1 Ip(x) dx = xp+1 Ip+1(x), hence

1∫

0

rd/2 I d
2 −1

(
(d + 2)r R

n

)
dr =

nI d
2

(
(d+2)R

n

)

(d + 2)R
.

Integrating by parts and using identityxIp−1(x)−xIp+1(x) = 2pIp(x) [11, (8.486.1),
page 918], we get

1∫

0

rd/2+2 I d
2 −1

(
(d + 2)r R

n

)
dr =

n
[
dnI d

2 +1

(
(d+2)R

n

)
+ (d + 2)RI d

2 +2

(
(d+2)R

n

)]

(d + 2)2 R2 .

Consequently, the left-hand side of (14) is

�( d
2 + 1)

8n2

⎡

⎢
⎣
(

8n2 − 4n(d + 2) + (d + 2)2
) I d

2

(
(d+2)R

n

)

(
(d+2)R

2n

)d/2

+ (d + 2)(4n − d − 2)
I d

2 +1

(
(d+2)R

n

)

(
(d+2)R

2n

)d/2+1

⎤

⎥
⎦.

Write g1 = �( d
2 +1)

�( d
2 +k+1)

and g2 = �( d
2 +1)

�( d
2 +k+2)

. By the formula (10) the last quantity is

equal

∞∑

k=0

(
(d+2)R

2n

)2k

k!
(

g1
8n2 − 4n(d + 2) + (d + 2)2

8n2 + g2
(d + 2)(4n − d − 2)

8n2

)
.

The right-hand side of (14) has the following expansion:

(
n

n + 1

)d/2

e
(d+2)R2

2n(n+1) =
∞∑

k=0

(
(d+2)R

2n

)2k

k!
(

n

n + 1

) d
2 +k ( 2

d + 2

)k

.

Thus inequality (14) is equivalent to the following inequality for expansions:

∞∑

k=0

Bn,k

(
(d+2)R

2n

)2k

k! ≥ 0, (15)
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where for fixed d ≥ 2 we define the coefficients

Bn,k =
(

n

n + 1

) d
2 +k ( 2

d + 2

)k

− g1
8n2 − 4n(d + 2) + (d + 2)2

8n2

− g2
(d + 2)(4n − d − 2)

8n2 .

We have

Bn,0 =
(

n

n + 1

)d/2

− 1 + 4nd − d(d + 2)

8n2 ∼ −d(d + 2)(d + 4)

48n3 , as n → ∞.

We will show that Bn,k > 0 for all k ≥ 3 and that for R > a
√

n there holds

Bn,0 + Bn,1

(
(d + 2)R

2n

)2

+ 1

2
Bn,2

(
(d + 2)R

2n

)4

> 0. (16)

We have

Bn,1 = 2

d + 2

(
n

n + 1

)d/2+1

− 2

d + 2

(
1 − 4n(d + 2) − (d + 2)2

8n2

)
− 4n − d − 2

2n2(d + 4)

and if we put R = a
√

n in the second term of the inequality (16), then we get

Bn,1

(
(d + 2)a

√
n

2n

)2

∼ − a2(d + 2)2

2(d + 4)n2 , as n → ∞.

Similarly, the third term of the inequality (16) for R = a
√

n satisfies

1

2
Bn,2

(
(d + 2)a

√
n

2n

)4

∼ a4(d + 2)2

4(d + 4)n2 , as n → ∞.

In order that inequality (16) holds for n > n0(d), the parameter a must fulfill the
condition

1

n2

(
−d(d + 2)(d + 4)

48n
− a2(d + 2)2

2(d + 4)
+ a4(d + 2)2

4(d + 4)

)
> 0,

which is true for n > n0(d), if only

a4(d + 2)2

4(d + 4)
>

a2(d + 2)2

2(d + 4)
,

and this is true for a >
√

2. In the bi-squared polynomial p(x) = Ax4 + Bx2 + C
from (16), we have A > 0 and p(0) = C < 0, hence p(a

√
n) > 0 implies p(R) > 0

for all R > a
√

n and the inequality (16) holds for such R.
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Finally let us show that Bn,k > 0 if k ≥ 3. Let ε > 0. We have Bn,k =
( 2

d+2 )k[( n
n+1 )

d
2 +k − E] where

E = (d + 2)k−1

(d + 4) . . . (d + 2k)

[
1 + (4n − d − 2)

4n
· d + 2

n
· d + 2k + 4

d + 2k + 2

]

< (1 + ε)
(d + 2)k−1

(d + 4) . . . (d + 2k)
,

because d+2
n can be as small as we want, if n is big enough. This implies that it is

sufficient to prove that for some small ε and n big enough there holds

(
n

n + 1

) d
2 +k

> (1 + ε)

(
d + 2

d + 4

)k−2 d + 2

d + 2k
> (1 + ε)

(d + 2)k−1

(d + 4) . . . (d + 2k)
.

Choose ε > 0 such that (1+ ε) d+2
d+4 < 1. Then for n big enough and k ≥ 3 there holds

(
n

n + 1

) d
2 +2

> (1 + ε)
d + 2

d + 4
> (1 + ε)

d + 2

d + 2k
and

n

n + 1
>

d + 2

d + 4
.

The inequality Bn,k > 0 for k ≥ 3 is proved.
Case d = 1. In this case μ1 is the uniform distribution on the interval [−1, 1] with
the density f (x) = 1

2 1[−1,1](x). We will show that for a constant C1

fn(x) = f ∗n(x) ≤ C1√
2πn

e− 3x2
2n .

Suppose that for all x ∈ R and some n ∈ N there holds fn(x) ≤ C1√
2πn

e− 3x2
2n . Then,

by (6)

fn+1(x) =
1∫

−1

fn(x − u)
du

2
≤

1∫

−1

C1√
2πn

e− 3(x−u)2
2n

du

2
.

We have to prove that

1∫

−1

C1√
2πn

e− 3(x−u)2
2n

du

2
≤ C1√

2π(n + 1)
e− 3x2

2(n+1) ,

which is equivalent to

1∫

−1

e− 3(x−u)2
2n

du

2
≤
√

n

n + 1
e− 3x2

2(n+1) .
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But the left-hand side of the above is equal to

1∫

−1

e− 3(x−u)2
2n

du

2
= e− 3x2

2n

1∫

−1

e
3xu

n e− 3u2
2n

du

2
.

For −1 ≤ u ≤ 1 and n ≥ 2 there holds 0 ≤ 3u2

2n ≤ 3
4 and we can estimate

e− 3u2
2n from above by three first terms of its Taylor expansion. This gives the following

inequality

1∫

−1

e
3xu

n e− 3u2
2n

du

2
≤

1∫

−1

e
3xu

n

(
1 −

(
1 − 3

4n

)
3u2

2n

)
du

2

= sinh
( 3x

n

)

3x
n

−
(

1 − 3

4n

)[
2n2 + 9x2

18x3 sinh

(
3x

n

)
− nx

3x3 cosh

(
3x

n

)]
.

Now we have to show that for x > a
√

n there holds

sinh
( 3x

n

)

3x
n

−
(

1 − 3

4n

)[
2n2 + 9x2

18x3 sinh

(
3x

n

)
− nx

3x3 cosh

(
3x

n

)]
≤
√

n

n + 1
e

3x2
2n(n+1) .

We expand both sides in Taylor series and get

RHS =
∞∑

k=0

( 3x
n

)2k

6kk!
(

n

n + 1

)k+ 1
2

,

LHS =
∞∑

k=0

( 3x
n

)2k
[
1 − 3

2n + 3
n(2k+3)

+ 9
8n2 − 9

4n2(2k+3)

]

(2k + 1)!

so that RHS − LHS =∑∞
k=0 Bn,k

( 3x
n )2k

k! , where

Bn,k =
(

n

n + 1

)k+ 1
2 1

6k
− k!

(2k + 1)!
(

1 − 3

2n
+ 3

n(2k + 3)
+ 9

8n2 − 9

4n2(2k + 3)

)
.

In particular, Bn,0 = ( n
n+1 )

1
2 − 1 + 1

2n − 3
8n2 , Bn,1 = 1

6 ( n
n+1 )

3
2 − 1

6 (1 − 9
10n + 27

40n2 )

and Bn,2 = 1
36 ( n

n+1 )
5
2 − 2!

5! (1 − 15
14n + 45

56n2 ). We observe that Bn,0 ∼ −5/(16n3),
Bn,1 ∼ −1/(10n) and Bn,2 ∼ 1/90.

The rest of the proof is similar to the proof of the case d ≥ 2. Put x = a
√

n and
consider the fourth degree polynomial of a

wn(a) = Bn,0 + Bn,1

(
3a

√
n

n

)2

+ 1

2
Bn,2

(
3a

√
n

n

)4

.
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For large n we have

wn(a) ∼ − 5

16n3 − 9a2

10n2 + 9a4

10n2 = 1

n2

(
− 5

16n
− 9a2

10
+ 9a4

10

)
.

For all n, if a ≥ √
2, then wn(a) > 0.

It remains to prove that Bn,k > 0 for k ≥ 3. Observe first that

− 3

2n
+ 3

n(2k + 3)
+ 9

8n2 − 9

4n2(2k + 3)
= 3

2n

[
−1+ 1

k + 3/2
+ 3

2n

(
1

2
− 1

2k + 3

)]
<0

for k ≥ 3 and n ≥ 2. Hence it is enough to show that for k ≥ 3

1

6k

(
n

n + 1

)k+1/2

− k!
(2k + 1)! > 0.

We must show that for n > n0(d) and all k ≥ 3

(
n

n + 1

)k+1/2

>
6kk!

(2k + 1)! = 6k

(k + 1)(k + 2) . . . (2k + 1)
.

We check by simple calculations that this is true for k = 3, 4, 5. For instance for
k = 3 and n big enough ( n

n+1 )3+1/2 > 63

4·5·6·7 = 18
70 . When k ≥ 6, we have

6k

(k + 1)(k + 2) . . . (2k + 1)
<

(
6

7

)k 1

2k + 1
.

We notice that n
n+1 > 6

7 for n > 6 and ( n
n+1 )

1
2 > 1

2k+1 for n ≥ 1. This ends the proof.

�

In the same way as the Theorem 2.3 we prove

Theorem 2.5 (Strong CLT for μd ) Let d ≥ 1. Let Y be a random Gaussian vector
with law νd and f ∈ L1(νd). Then limn E f (S̃n) = E f (Y ).

Remark 2.6 The Fourier transform of the uniform distribution on the sphere σd is
well known, cf. Folland [8, p.248], Stein–Weiss [21, Chapter 4], and is expressed by a
Bessel function J(d/2)−1. Consequently the Fourier transform of σ n

d is also explicitly
known. However, using the inverse Fourier transform in order to estimate the density
of σ n

d does not seem feasible, due to the oscillations of Bessel functions.
Similar remarks may be done for the measures μd .

2.3 Convolutions

The Optimal Gaussian Bound is inherited by convolutions of measures having this
property. Below we write S̃n(X) = (X1 + · · · + Xn)/

√
n.
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Proposition 2.7 Let (Xi ), (Y j ) be independent random variables with laws μ and ν,
with zero means and covariance matrices A and B respectively. Suppose that μ and
ν satisfy the Optimal Gaussian Bound inequality:

f S̃n(X)
≤ C1 fN (0,A), f S̃n(Y )

≤ C2 fN (0,B).

Then

fS̃n(X+Y )
≤ C1C2 fN (0,A+B),

i.e. the measure μ ∗ ν satisfies the Optimal Gaussian Bound inequality.

Proof We have S̃n(X + Y ) = S̃n(X) + S̃n(Y ), so

f S̃n(X+Y )
= f S̃n(X)

∗ f S̃n(Y )
≤ C1C2 fN (0,A) ∗ fN (0,B)

and the Proposition follows. 
�
It is clear that Theorems 2.1 and 2.4 hold for uniform measures σd(r) and μd(r) on
spheres and balls of radius r > 0, respectively. By Proposition 2.8 we obtain

Corollary 2.8 Finite convolutions of measures σd(r) (when d ≥ 2) and μd(s) satisfy
the Optimal Gaussian Bound inequality and the Strong Central Limit Theorem.

Remark 2.9 In [9] Fomin studies on R a Central Limit Theorem strengthened in the
following way. Let γ be the standard normal law with density g(x) = dγ (x) =

1√
2π

e−x2/2. Let Hγ be a Hilbert space of Borel functions on R, equipped with the
norm

‖ u ‖=
⎛

⎝
∞∫

−∞
u2(x)ex2/2 dx

⎞

⎠

1/2

.

In the main Theorem of [9] sufficient conditions are given for a probability density
p(x) on R in order that pn(x) = √

n p∗n(
√

nx) converges in Hγ to the standard
Gaussian density g(x). It is shown that the uniform density on [−√

3,
√

3] verifies
this property.

By the Local CLT and the dominated convergence theorem, it is easy to see that if
p∗n satisfies an Optimal Gaussian Bound inequality, then pn(x) converges in Hγ to
the limiting Gaussian density γ . Thus Theorems 2.1, 2.4 and 2.8 imply that the den-
sities of σ n

d , μn
d as well as of their finite convolutions converge in Hγ to the limiting

Gaussian density γ . Theorem 2.4 implies the main Theorem of [9] for the uniform
symmetric measures (without giving the rate of convergence).

On the other hand, in Proposition 13 of [9], a class of symmetric bounded densities
with compact support is indicated for which pn do not converge in Hγ . To belong to
this class it is enough that

∫∞
T p(x)dx > exp(−T 2/4) for some T > 0. Consequently,

for such densities p there is no Optimal Gaussian Bound inequality.
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It would be interesting to characterize the class of probability densities on R
d for

which an Optimal Gaussian Bound inequality holds. This question seems however
difficult. An analogous question for the convergence of pn in Hγ was not solved in
[9].

3 Isotropic random walk in R
1

Let X1, X2, . . . be independent random variables with the same symmetric Bernoulli
distribution, P(Xn = 1) = P(Xn = −1) = 1

2 , and put Sn = X1 + · · · + Xn . By μn

we denote the distribution of the normalized sum S̃n = Sn√
n

. Theorem 3.1 is a result of
Pinelis [19, Cor.2.6], obtained in answer to the Eaton’s conjecture. Another proof of
Theorem 3.1 was given by Bobkov et al. [5].

Let Y be the standard normal N (0, 1) random variable. If  is the distribution
function of Y , then the tail �(x) = 1 − (x).

Theorem 3.1 Let x = (x1, . . . ,xn) ∈ R
n and xxT = 1. There exists a constant

C > 0 such that for any u > 0 and n ∈ N

P (|x1 X1 + · · · + xn Xn| > u) ≤ C(1 − (u)) = C�(u).

Using Theorem 3.1 with xi = 1/
√

n, i = 1, . . . , n, we obtain

Proposition 3.2 (Optimal Gaussian Bound for σ n
1 ) There exists C > 0 such that for

all x > 0 and all n ∈ N

�n(x) = P(S̃n > x) ≤ C P(Y > x) = C�(x).

Observe that a weaker form of Proposition 3.2 was obtained by Talagrand [22, (1.3)],
as a strengthening of the Hoeffding inequality see e.g. [7, Prop.1.3.5].

In order to prove a 1-dimensional strengthened Central Limit Theorem, we need
the following Proposition.

Proposition 3.3 If g ∈ L1(γ ) is in C1([0,∞)) and g is strictly increasing on [x0,∞)

for an x0 ≥ 0 then

∞∫

x0

gdγ = g(x0)�(x0) +
∞∫

x0

g′�dx. (17)

In particular, g′� ∈ L1(Leb).
The formula (17) is also true with Bernoulli-type measures μn in the place of the

Gaussian law γ

∞∫

x0

gdμn = g(x0)�n(x0) +
∞∫

x0

g′�ndx, n ∈ N. (18)
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Proof In order to prove (17), we define Y x0 as a bounded and positive random variable
with law γ |[x0,∞)/γ ([x0,∞)). By Fubini theorem we write

1

γ ([x0,∞))

∞∫

x0

gdγ = Eg(Y x0) =
∞∫

0

P(g(Y x0) > x)dx

=
⎛

⎜
⎝

g(x0)∫

0

+
∞∫

g(x0)

⎞

⎟
⎠ P(g(Y x0) > x)dx = g(x0) +

∞∫

g(x0)

P(g(Y x0) > x)dx.

The function g is a C1 bijection of [x0,∞) and [g(x0), G), where G = limx→∞ g(x).
In the last integral we change the variables u = g−1(x) and we obtain

∞∫

g(x0)

P(g(Y x0) > x)dx =
G∫

g(x0)

P(g(Y x0) > x)dx =
∞∫

x0

P(Y x0 > u)g′(u)du

and (17) follows. The proof for symmetric binomial measures μn is analogous. 
�
Theorem 3.4 (Strong CLT for σ1) If g ∈ L1(γ ) is in C1([0,∞)) and g is strictly
monotonous on [x0,∞) for an x0 ≥ 0, then the DeMoivre–Laplace CLT holds for g:

∞∫

0

gdμn →
∞∫

0

gdγ, n → ∞.

Proof In the proof we suppose that g is strictly increasing on [x0,∞). By the Central
Limit Theorem

∫ x0
0 gdμn → ∫ x0

0 gdγ and �n(x) → �(x), n → ∞. In order to
establish the convergence of integrals on [x0,∞), write the formula (18). The conver-
gence of the term

∫∞
x0

g′�ndx to
∫∞
x0

g′�dx follows by the Dominated Convergence
Theorem if we use the Proposition 3.2 and the integrability of g′� with respect to the
Lebesgue measure on R

+. An application of (17) ends the proof. 
�
In order to get a strong Central Limit Theorem from Proposition 3.1 in dimension

one, some additional assumptions (such as monotonicity) must be put on f . This is
showed by the following example.

Counterexample on the real line. For n = 4k2 we have

μ4k2({2k}) = P

(
S4k2 − 2k2

k
= 2k

)
= P

(
S4k2 = 4k2

)
=
(

1

2

)4k2

.

Consider the following continuous function f : R → R: for k = 1, 2, . . . put
f (k) = 34k2

and f (k ± 4−4k2
) = 0. Now let f be linear and continuous on intervals

(k − 4−4k2
, k) and (k, k + 4−4k2

). Finally put f (x) = 0 on the complement of
∪∞

k=1[k − 4−4k2
, k + 4−4k2 ].
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Let γ1 denote the standard Gaussian distribution on the real line. Because f is
nonnegative and the standard Gaussian density on R is bounded by 1√

2π
, we have the

following estimate:

0 <

∞∫

−∞
f (x) dγ1(x) =

∞∑

k=1

k+4−4k2
∫

k−4−4k2

f (x) dγ1(x) <
1√
2π

∞∑

k=1

k+4−4k2
∫

k−4−4k2

f (x) dx

= 1√
2π

∞∑

k=1

34k2

44k2 <

∞∑

k=1

(
3

4

)k

= 3.

On the other hand we have

∞∫

−∞
f (x) dμ4k2(x) ≥ f (k)μ4k2({2k}) = 34k2

24k2 −→ ∞, as k → ∞.

Of course, after a simple modification we can construct f of class C∞, having the
same integration properties.

4 Applications: strong hypercontractivity and Log-Sobolev inequalities

Applications of the Central Limit Theorem in studying hypercontractivity and Log-
arithmic Sobolev Inequalities (LSI) have always been important and useful, see [1,
12,13]. In this section we show how the strengthened Central Limit Theorems we
obtained, allow to deduce strong hypercontractivity and Euler type LSI inequalities
from analogous properties proved for symmetric Bernoulli measures on R or for
uniform spherical measures on R

d , d ≥ 2.
Denote fr (x) = f (rx). In [10] an elementary and short proof was given, of the

following strong hypercontractivity inequality for a symmetric Bernoulli measure and
for log–convex functions ( f is log–convex if f ≥ 0 and log f is convex).

Proposition 4.1 If m = 1
2 (δ1 + δ−1) then one has

‖ fr‖1/r2,m ≤ ‖ f ‖1,m (19)

for every r ∈ (0, 1] and any log–convex function f .

In [10] we proved the following strong hypercontractivity (SHC) inequality for a
Gaussian measure, using the classical Nelson’s hypercontractivity inequality and prop-
erties of the Mehler kernel. We give here a direct proof, using Proposition 4.1 and
Theorem 3.4.

Corollary 4.2 Let γ be the standard Gaussian measure N (0, 1) on R. Then one has

‖ fr‖1/r2,γ ≤ ‖ f ‖1,γ (20)

for every r ∈ (0, 1] and any log-convex function f .
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Proof We use the notation μn from Sect. 3. From [10] we know that (19) holds for all
Bernoulli-type measures μn :

(∫
fr (x)1/r2

dμn(x)

)r2

≤
∫

f (x)dμn(x).

It is sufficient to show that the integrals
∫∞

0 h dμn converge to
∫∞

0 h dγ for h equal

to log-convex functions f and f 1/r2

r . As a positive convex function, h is bounded on
R

+ or strictly increasing on an interval [x0,∞). The convergence
∫

h dμn → ∫
h dγ

follows respectively from the usual CLT or from Theorem 3.4. 
�
A function f ≥ 0 on R

d is called log-subharmonic if log f is subharmonic. In [10] it
was shown by an elementary classical argument of norm differentiation that a (SHC)
inequality

‖ fe−t ‖q,μ ≤ ‖ f ‖p,μ for t ≥ c · 1

2
log

q

p
, 0 < p ≤ q < ∞, (21)

for log-subharmonic functions f and a compactly supported measure μ implies a
strong LSI inequality for log-subharmonic functions f ,

∫
f 2 log f 2dμ − ‖ f ‖2

2,μ log ‖ f ‖2
2,μ ≤ c

∫
f E f dμ (22)

where E is the Euler operator E = x ·∇ and f ∈ C1 is such that all the integrals in (22)
converge. Recall that E is the generator of the dilation semigroup Tt f = fe−t . In cor-
respondence to the terminology “strong hypercontractivity”, we called the inequality
(22) strong LSI or Euler type LSI.

The strengthened CLT’s allow us to deduce a strong LSI for a Gaussian measure
from the LSI proved for spherical measures.

Corollary 4.3 The strong LSI (22) holds with c = 1 for Gaussian measures γd , d ≥ 1.

Proof The SHC inequality (21) holds with c = 1 for the measures σd and for their
normalized convolution powers. For d = 1 this is Proposition 4.1; for d ≥ 2 this fol-
lows from results of Beckner [3] who proved the classical Nelson’s hypercontractivity
for the Poisson semigroup and the uniform spherical measures σd , d ≥ 2. The strong
hypercontractivity for σd and log-subharmonic functions follows from the classical
hypercontractivity in a similar way as in the proof of (SHC) for Gaussian measures in
[10].

Consequently, we get the inequality (22) for μn = (σ n
d ) ,̃ where ˜ denotes the stan-

dard normalization. An application of Theorem 2.3 ends the proof of the Corollary
for d ≥ 2. When d = 1, we show, similarly as in the proof of Corollary 4.2, that the
usual CLT or its strengthened version given in Theorem 3.4 apply to all terms of (22)
with μ = μn , for n → ∞. 
�
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