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Abstract Ito’s construction of Markovian solutions to stochastic equations driven
by a Lévy noise is extended to nonlinear distribution dependent integrands aiming at
the effective construction of linear and nonlinear Markov semigroups and the corre-
sponding processes with a given pseudo-differential generator. It is shown that a con-
ditionally positive integro-differential operator (of the Lévy–Khintchine type) with
variable coefficients (diffusion, drift and Lévy measure) depending Lipschitz continu-
ously on its parameters (position and/or its distribution) generates a linear or nonlinear
Markov semigroup, where the measures are metricized by the Wasserstein–Kantoro-
vich metrics. This is a non-trivial but natural extension to general Markov processes
of a long known fact for ordinary diffusions.

Keywords Stochastic equations driven by Lévy noise · Nonlinear integrators ·
Wasserstein–Kantorovich metric · Pseudo-differential generators · Linear and
nonlinear Markov semigroups
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1 Introduction and formulation of main results

By C(Rn) (respectively C∞(Rn)) we denote the Banach space of continuous bounded
functions on Rn (respectively its subspace of functions vanishing at infinity) with the
sup-norm denoted by ‖ · ‖, and Ck(Rn) (resp. Ck

c (Rn)) denotes the Banach space of
k times continuously differentiable functions with bounded derivatives on Rn (resp.
its subspace of functions with a compact support) with the norm being the sum of the
sup-norms of a function and all its partial derivative up to and including the order k.
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96 V. N. Kolokoltsov

For an f ∈ C1(Rn) the gradient will be denoted by

∇ f = (∇1 f, . . . ,∇n f ) =
(

∂ f

∂x1
, . . . ,

∂ f

∂xn

)
.

For a measure ν and a mapping F we denote by νF the push forward of ν with respect
to F defined as νF (A) = ν(F−1(A)).

Further basic notations: 1M is the indicator function of a set M , M(Rd) is the set of
finite positive Borel measures on Rd , Br is the ball of radius r centered at the origin,
and the pairing ( f, μ) for f ∈ C(Rd), μ ∈ M(Rd) denotes the usual integration. The
bold letters E and P will denote expectation and probability. A positive number in the
square bracket, say [x], will denote the integer part of it. By the small letter c we shall
denote various constants indicating in brackets (when appropriate) the parameters on
which they depend.

It is well known (the Courrège theorem, see, e.g. [10]) that the generator L of a con-
servative (i.e. preserving constants) Feller semigroup in Rd is conditionally positive
( f ≥ 0, f (x) = 0 �⇒ L f (x) ≥ 0) and if its domain contains the space C2

c (Rd),
then it has the following Lévy–Khintchine form with variable coefficients:

L f (x) = 1

2
(G(x)∇,∇) f (x) + (b(x),∇ f (x))

+
∫

( f (x + y) − f (x) − (∇ f (x), y)1B1(y))ν(x, dy), (1)

where G(x) is a symmetric non-negative matrix and ν(x, .) a Borel measure on Rd

(called Lévy measure) such that

∫
Rn

min(1, |y|2)ν(x; dy) < ∞, ν({0}) = 0. (2)

The inverse question on whether a given operator of this form (or better to say its
closure) actually generates a Feller semigroup is non-trivial and attracted lots of atten-
tion. One can distinguish analytic and probabilistic approaches to this problem. The
existence results obtained by analytic techniques require certain non-degeneracy con-
dition on ν, e.g. a lower bound for the symbol of pseudo-differential operator L (see,
e.g. [3,4,10–16] and references therein), and for the construction of the processes via
usual stochastic calculus one needs to have a family of transformations Fx of Rd pre-
serving the origin, regularly depending on x and pushing a certain Lévy measure ν to
the Lévy measures ν(x, .), i.e. ν(x, .) = νFx (see, e.g. [1,5,24]). Of course yet more
non-trivial is the problem of constructing the so called nonlinear Markov semigroups
solving the weak equations of the form

d

dt
( f, μt ) = (Lμt f, μt ), μt ∈ P(Rd), μ0 = μ, (3)
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Lévy–Khintchine operators with Lipschitz coefficients 97

that should hold, say, for all f ∈ C2
c (Rd), where Lμ has form (1), but with all coeffi-

cients additionally depending on μ, i.e.

Lμ f (x) = 1

2
(G(x, μ)∇,∇) f (x) + (b(x, μ),∇ f (x))

+
∫

( f (x + y) − f (x) − (∇ f (x), y)1B1(y))ν(x, μ, dy). (4)

Equations of type (3) play indispensable role in the theory of interacting particles
(mean field approximation) and exhaust all positivity preserving evolutions on mea-
sures subject to certain mild regularity assumptions (see, e.g. [17,24]). A resolving
semigroup Ut : μ 	→ μt of the Cauchy problem for Eq. (3) specifies a so called
generalized or nonlinear Markov process X (t), whose distribution μt at time t can be
determined by the formula Ut−sμs from its distribution μs at any previous moment s.

In the case of diffusions (when ν vanishes in (1) or (4)) the theory of the corre-
sponding semigroups is well developed, see [22] and more recent achievements in [9].
Also well developed is the case of pure jump processes, see, e.g. the treatment of the
Boltzmann equation (spatially trivial) in [25].

The goal of the present paper is to exploit the idea of nonlinear integrators (see
[8,21]) combined with a certain coupling of Lévy processes in order to push forward
the probabilistic construction in a way that allows the natural Lipschitz continuous
dependence of the coefficients G, b, ν on x, μ with measures equipped with their
Wasserstein metric (see the definition below). Thus obtained extension of the stan-
dard SDEs with Lévy noise represents a probabilistic counterpart of the celebrated
extension of the Monge mass transformation problem to the generalized Kantorovich
one. To streamline the exposition we shall use Ito’s approach (as exposed in detail in
[24]) for constructing the solutions of stochastic equations directly via Euler approxi-
mation scheme bypassing the theory of stochastic integration itself. Roughly speaking
the idea is to approximate a process with a given (formal) generator (or pre-generator)
by processes with piecewise Lévy paths.

For a random variable X we shall denote by L(X) the distribution (probability law)
of X . Recall that the so called Wasserstein–Kantorovich metrics Wp, p ≥ 1, on the
set of probability measures P(Rd) on Rd are defined as

Wp(ν1, ν2) =
(

inf
ν

∫
|y1 − y2|pν(dy1dy2)

)1/p

, (5)

where inf is taken over the class of probability measures ν on R2d that couple ν1 and
ν2, i.e. that satisfy∫ ∫

(φ1(y1) + φ2(y2))ν(dy1dy2) = (φ1, ν1) + (φ2, ν2) (6)

for all bounded measurable φ1, φ2. It follows directly from the definition that

W p
p (μ,μ′) ≤ E|X − X ′|p (7)

whenever μ = L(X) and μ′ = L(X ′).
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98 V. N. Kolokoltsov

For random variables X, Z we shall write sometimes shortly Wp(X, Z) for
Wp(L(X),L(Z)) (with some obvious abuse of notation).

It is well known (see, e.g. [27]) that (P(Rd), Wp), p ≥ 1 is a complete metric
space and that the convergence in this metric space is equivalent to the convergence
in the weak sense combined with the convergence of the pth moments. In case p = 1
the celebrated Monge–Kantorovich theorem states that

W1(μ1, μ2) = sup
f ∈Lip

|( f, μ1) − ( f, μ2)|,

where Lip is the set of continuous functions f such that | f (x) − f (y)| ≤ |x − y| for
all x, y.

We shall need also the Wasserstein distances between the distributions in the Sko-
rohod space D([0, T ], Rd) of cadlag paths in Rd defined as

Wp,T (X1, X2) = inf

(
E sup

t≤T
|X1(t) − X2(t)|p

)1/p

, (8)

where inf is taken over all couplings of the distributions of the random paths X1, X2.
Notice that this distance is linked with the uniform (and not Skorohod) topology on
the path space.

To compare the Lévy measures, we shall need an extension of these distances to
unbounded measures. Namely, let Mp(Rd) denote the class of Borel measures μ on
Rd\{0} (not necessarily finite) with a finite pth moment (i.e. such that

∫ |y|pμ(dy) <

∞). For a pair of measures ν1, ν2 from Mp(Rd) we define the distance Wp(ν1, ν2)

by (5), where inf is now taken over all ν ∈ Mp(R2d) such that (6) holds for all φ1, φ2
satisfying φi (.)/|.|p ∈ C(Rd). It is easy to see that for finite measures this definition
coincides with the previous one and that if measures ν1 and ν2 are infinite, the distance
Wp(ν1, ν2) is finite.1

Moreover, by the same argument as for finite measures (see [23] or [27]) one shows
that whenever the distance Wp(ν1, ν2) is finite, the infimum in (5) is achieved, i.e.
there exists a measure ν ∈ Mp(R2d) such that

Wp(μ1, μ2) =
(∫

|y1 − y2|pν(dy1dy2)

)1/p

. (9)

Theorem 1.1 Let an operator L have form (1), where

‖√G(x1) −√
G(x2)‖ + |b(x1) − b(x2)| + W2(1B1(.)ν(x1; .), 1B1(.)ν(x2; .))

≤ κ|x1 − x2| (10)

1 Let a decreasing sequence of positive numbers ε1
n be defined by the condition that ν1 can be decom-

posed into the sum ν1 = ∑∞
n=1 νn

1 of the probability measures νn
1 having the support in the closed

shells {x ∈ Rd : εn
1 ≤ |x | ≤ εn−1

1 } (where ε0
1 = ∞). Similarly εn

2 and νn
2 are defined. Then the sum

ν = ∑∞
n=1 νn

1 ⊗ νn
2 is a coupling of ν1 and ν2 with a finite

∫ |y1 − y2|pν(dy1dy2).
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Lévy–Khintchine operators with Lipschitz coefficients 99

with a certain constant κ , and

sup
x

⎛
⎜⎝√G(x) + |b(x)| +

∫
B1

|y|2ν(x, dy)

⎞
⎟⎠ < ∞. (11)

Let the family of finite measures {1Rd\B1
)(.)ν(x; .)} be uniformly bounded, tight and

depend weakly continuously on x. Then L extends to the generator of a conservative
Feller semigroup.

Remark 1 (i) The boundedness condition (11) is not essential and can be dispensed
with by the usual localization arguments (see [19]). (ii) Once the well posedness of
the equation (3) generated by L is obtained, it implies various extensions of the results
on the corresponding boundary value problems, problems with unbounded coeffi-
cients, fractional dynamics, Malliavin calculus, Banach space valued SDE, stochastic
monotonicity (see [5,6,16,18,20,26]) obtained earlier for particular cases.

For example, assumption on ν is satisfied if one can decompose the Lévy measures
ν(x; .) in the countable sums ν(x; .) = ∑∞

n=1 νn(x; .) of probability measures so that
W2(νi (x; .), νi (z; .)) ≤ ai |x − z| and the series

∑
a2

i converges. It is well known that
the optimal coupling of probability measures (Kantorovich problem) cannot always
be realized via a mass transportation (a solution to the Monge problem), thus leading
to the examples when the construction of the process via standard stochastic calculus
would not work. On the other hand, no non-degeneracy is assumed in this exam-
ple leading to serious difficulties when trying to apply analytic techniques in these
circumstances.

Another important particular situation is that of a common star shape of the mea-
sures ν(x; .), i.e. if they can be represented as

ν(x; dy)=ν(x, s, dr) ω(ds), y ∈ Rd , r = |y| ∈ R+, s = y/r ∈ Sd−1, (12)

with a certain measure ω on Sd−1 and a family of measures ν(x, s, dr) on R+. This
allows to reduce the general coupling problem to a much more easily handled one-
dimensional one, because evidently if νx,y,s(dr1dr2) is a coupling of ν(x, s, dr) and
ν(y, s, dr), then νx,y,s(dr1dr2)ω(ds) is a coupling of ν(x; .) and ν(y; .). If one-dimen-
sional measures have no atoms, their coupling can be naturally organized via pushing
along a certain mapping. Namely, the measure νF is the pushing forward of a measure
ν on R+ by a mapping F : R+ 	→ R+ whenever

∫
f (F(r))ν(dr) =

∫
f (u)νF (du)

for a sufficiently rich class of test functions f , say for the indicators of intervals. Sup-
pose we are looking for a family of monotone continuous bijections Fx,s : R+ 	→ R+
such that νFx,s = ν(x, s, .). Choosing f = 1[F(z),∞) as a test function in the above
definition of pushing yields
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100 V. N. Kolokoltsov

G(x, s, Fx,s(z)) = ν([z,∞)) (13)

for G(x, s, z) = ν(x, s, [z,∞)) = ∫∞
z ν(x, s, dy). Clearly if all ν(x, s, .) and ν are

unbounded, but bounded on any interval separated from the origin, have no atoms and
do not vanish on any open interval, then this equation defines a unique continuous
monotone bijection Fx,s : R+ 	→ R+ with also continuous inverse. Hence we arrive
to the following criterion.

Proposition 1.1 Suppose the Lévy measures ν(x; .) can be represented in the form
(12) and ν is a Lévy measure on R+ such that all ν(x, s, .) and ν are unbounded, have
no atoms and do not vanish on any open interval. Then the family ν(x; .) depends
Lipshitz continuously on x in W2 whenever the unique continuous solution Fx,s(z) to
(13) is Lipschitz continuous in x with a constant κF (z, s) enjoying the condition

∫
R+

∫

Sd−1

κ2
F (r, s)ω(ds)ν(dr) < ∞. (14)

Proof By the above discussion the solution F specifies the coupling νx,y(dr1dr2
ds1ds2) of ν(x; .) and ν(y; .) via

∫
f (r1, r2, s1, s2)νx,y(dr1dr2ds1ds2) =

∫
f (Fx,s(r), Fy,s(r), s, s)ω(ds)ν(dr),

so that for Lipschitz continuity of the family ν(x; .) it is sufficient to have

∫
R+

∫

Sd−1

(Fx,s − Fy,s)
2ω(ds)ν(dr) ≤ c|x − y|2,

which is clearly satisfied whenever (14) holds.

The particular case of ν(x, s, .) above having densities with respect to the Lebesgue
measure on R+ is discussed in much detail in [24].

The point to make here is that a coupling for the sum of Lévy measures can be
organized separately for each term allowing to use the above statement for star shape
components and, say, some discrete methods for discrete parts.

Theorem 1.1 is a straightforward corollary of our main theorem that we shall formu-
late now. To make our exposition more transparent we shall present the main arguments
in the case of Lμ having the form

Lμ f (x) = 1

2
(G(x, μ)∇,∇) f (x) + (b(x, μ),∇ f (x))

+
∫

( f (x + z) − f (x) − (∇ f (x), z))ν(x, μ; dz) (15)

with ν(x, μ; .) ∈ M2(Rd). Let Yτ (z, μ) be a family of Lévy processes depending
measurably on the points z and probability measures μ in Rd and specified by their
generators
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Lévy–Khintchine operators with Lipschitz coefficients 101

L[z, μ] f (x) = 1

2
(G(z, μ)∇,∇) f (x) + (b(z, μ),∇ f (x))

+
∫

( f (x + y) − f (x) − (∇ f (x), y))ν(z, μ; dy) (16)

where ν(z, μ) ∈ M2(Rd). Under the conditions of Theorem 1.2 given below, the
existence of such a family follows from the well known randomization lemma2 (see,
e.g. [11], Lemma 3.22), because by Proposition A.1 the mapping from z, μ to the law
of the Lévy process Yτ (z, μ) is continuous, hence measurable, and consequently, by
this Lemma (with Z being the complete metric space D(R+, Rd), and hence a Borel
space) one can define all Yτ (z, μ) on the single standard probability space [0, 1]. Let us
stress for clarity that the processes Yτ (x, μ) depend on x, μ only via the parameters of
the generator, i.e. say, the random variable ξ = x + Yτ (x,L(x)) has the characteristic
function

Eeipξ =
∫

Eeip(x+Yτ (x,L(x))μ(dx).

Our approach to solving (3) is via the solution to the following nonlinear distribution
dependent stochastic equation with nonlinear Lévy type integrators:

X (t) = X +
t∫

0

dYs(X (s),L(X (s))), L(X) = μ, (17)

with a given initial distribution μ and a random variable X independent of Yτ (z, μ).
We shall define the solution through the Euler type approximation scheme, i.e. by

means of the approximations X τ
μ:

X τ
μ(t) = X τ

μ(lτ) + Y l
t−lτ (X τ

μ(lτ),L(X τ
μ(lτ))), L(X τ

μ(0)) = μ, (18)

where lτ < t ≤ (l + 1)τ, l = 0, 1, 2, . . . , and Y l
τ (x, μ) is a collection (depending

on l) of independent families of the Lévy processes Yτ (x, μ) introduced above. Clearly
these approximation processes are cadlag.

For x ∈ Rd we shall write shortly X τ
x (kτ) for X τ

δx
(kτ).

By the weak solution to (17) we shall mean the weak limit of X τk
μ , τk =2−k, k → ∞,

in the sense of the distributions on the Skorohod space of cadlag paths (which is of
course implied by the convergence of the distributions in the sense of the distance
(8)). Alternatively one could define it as a solution to the corresponding nonlinear
martingale problem (see below the proof of the main theorem) or directly via the
construction of the corresponding stochastic integral. This issue is addressed in detail

2 It states that if μ(x, dz) is a probability kernel from a measurable space X to a Borel space Z , then there
exists a measurable function f : X × [0, 1] → Z such that if θ is uniformly distributed on [0, 1], then
f (X, θ) has distribution μ(x, .) for every x ∈ X .
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102 V. N. Kolokoltsov

in [19], our purpose here being the construction of a Markov process with a given
generator.

The following is our main result.

Theorem 1.2 Let an operator Lμ have form (15). Moreover assume that

‖√G(x, μ) −√
G(z, η)‖ + |b(x, μ) − b(z, η)| + W2(ν(x, μ; .), ν(z, η; .))

≤ κ(|x − z| + W2(μ, η)), (19)

holds true with a constant κ and

sup
x,μ

(√
G(x, μ) + |b(x, μ)| +

∫
|y|2ν(x, μ, dy)

)
< ∞. (20)

Then

(i) for any μ ∈ P(Rd) ∩ M2(Rd) the approximations X τk
μ converge to a process

Xμ(t) in the sense that

sup
μ

sup
t∈[0,t0]

W 2
2

(
X τk

μ ([t/τk]τk), Xμ(t)
) ≤ c(t0)τk (21)

for any t0, and even stronger

sup
μ

W 2
2,t0

(
X τk

μ , Xμ

) ≤ c(t0)τk, (22)

where c(t0) depends only on the upper bounds in (19), (20);
(ii) the distributions μt = L(Xμ(t)) depend 1/2-Hölder continuous on t in the met-

ric W2 and Xμ(t) depend Lipschitz continuously on the initial condition in the
following sense:

sup
t∈[0,t0]

W 2
2 (Xμ(t), Xη(t)) ≤ c(t0)W 2

2 (μ, η); (23)

(iii) the processes

M(t) = f (Xμ(t)) − f (Xμ(0)) −
t∫

0

(
LL(Xμ(s)) f (Xμ(s))

)
ds (24)

are martingales for any f ∈ C2(Rd); in other words, the process Xμ(t) solves
the corresponding (nonlinear) martingale problem;

(iv) the distributions μt = L(Xμ(t)) satisfy the weak nonlinear equation (3) (that
holds for all f ∈ C2(Rd));
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Lévy–Khintchine operators with Lipschitz coefficients 103

(v) the resolving operators Ut : μ 	→ μt of the Cauchy problem (3) form a nonlinear
Markov semigroup, i.e. they are continuous mappings from P(Rd) ∩ M2(Rd)

(equipped with the metric W2) to itself such that U0 is the identity mapping and
Ut+s = UtUs for all s, t ≥ 0. If L[z, μ] do not depend explicitly on μ the opera-
tors Tt f (x) = E f (Xx (t)) form a conservative Feller semigroup preserving the
space of Lipschitz continuous functions.

This theorem is proved in the next section. In Sect. 3 we obtain some regularity
criteria for the Markov semigroups constructed.

Remark 2 (i) It is more or less straightforward to establish the tightness of approxima-
tions (18), which allows to deduce a converging subsequence (see [24] or [7] for the
linear (μ-independent) case). However, this does not allow to deduce the markovia-
nity (semigroup property) of the limit, for which the full convergence obtained here
is needed. (ii) Unfortunately, we are not stating any uniqueness of the solution to our
nonlinear martingale problem, nor of the extension of the pre-generator leading to a
Feller semigroup. One way of establishing uniqueness is via a more efficient study of
regularity initiated in Sect. 3. (iii) It seems promising to link the coupling method pro-
posed here with the Malliavin calculus for jump processes, which is currently under
development (see [2] and references therein).

A simple meaningful example is given by the nonlinear kinetic equations

d

dt
( f, μt ) = (L f, μt ) +

∫
(K (x, y),∇ f (x))μt (dx)μt (dy), (25)

with L being of form (1) with Lipschitz continuous coefficients and K being a bounded
Lipschitz continuous mapping R2d 	→ Rd , which arise as the mean-field limit for
potentially interacting Feller processes.

Theorem 1.1 follows now from Theorem 1.2 by the standard perturbation theory,
since dividing the generator into two parts, where the first part is the integral term with
the Lévy measure reduced to Rd\B1, one gets a sum of two generators, one of which
is bounded in C∞(Rd) (as follows from the assumed tightness) and the other satisfies
Theorem 1.2.

It is worth noting that in a simpler case of generators of up to the first order the con-
tinuity of Lévy measures with respect to a more easy handled metric W1 is sufficient,
as shows the following result, whose proof is omitted (as being a simplified version
of the proof of Theorem 1.2).

Theorem 1.3 Let an operator Lμ have the form

Lμ f (x) = (b(x, μ),∇ f (x)) +
∫

( f (x + z) − f (x))ν(x, μ; dz),

ν(x, μ; .) ∈ M1(Rd). (26)

and

|b(x, μ) − b(z, η)| + W1(ν(x, μ; .), ν(z, η; .)) ≤ κ(|x − z| + W1(μ, η)) (27)
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104 V. N. Kolokoltsov

holds true with a constant κ . Then for any μ ∈ P(Rd)∩M1(Rd) there exists a process
Xμ(t) solving (17) (with analogously defined Yτ (z, μ)) such that

sup
μ

W1,t0

(
X τk

μ , Xμ

) ≤ c(t0)τk, (28)

the distributions μt = L(X (t)) depend 1/2-Hölder continuous on t in the metric
W1 and Xμ(t) depend Lipschitz continuously on the initial condition in the following
sense:

W1(Xμ(t), Xη(t)) ≤ c(t0)W1(μ, η). (29)

Moreover, the processes (24) are martingales for any f ∈ C1(Rd) and the distribu-
tions μt = L(Xμ(t)) satisfy the weak nonlinear equation (3) (that holds for all f ∈
C1(Rd)). If L[z, μ] do not depend explicitly on μ the operators Tt f (x) = E f (Xx (t))
form a conservative Feller semigroup.

In Appendix we describe a coupling of Lévy processes that is crucial for our pur-
poses.

2 Proof of Theorem 1.2

We shall consider all times to be uniformly bounded, which is not a restriction as long
as this bound can be arbitrary.

Step 1 (uniform continuity of the approximations with respect to initial data).
One has

W 2
2 (x1 + Ys(x1,L(x1)), x2 + Ys(x2,L(x2))) ≤ E|ξ1 − ξ2|2

for any random variable (ξ1, ξ2) with the projections ξi = xi +Ys(xi , μi ), μi = L(xi ),
i = 1, 2. Let us choose the coupling described by the characteristic function

Eei(p1ξ1+p2ξ2) =
∫

R4d

eip1(x1+y1)+i p2(x2+y2)μ(dx1dx2)Ps
x1,x2,μ1,μ2

(dy1dy2),

where μ is an arbitrary coupling of the random variables x1, x2 and Ps is the coupling
of the Lévy processes Ys(xi , μi ) given by Proposition A.1. Consequently,

E|ξ1 − ξ2|2 = − d2

dp2 |p=0 Eeip(ξ1−ξ2)

=
∫

R4d

|(x1 + y1) − (x2 + y2)|2μ(dx1dx2)Ps
x1,x2,μ1,μ2

(dy1dy2),
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Lévy–Khintchine operators with Lipschitz coefficients 105

which by (47) does not exceed

∫

R2d

(
|x1 − x2|2 + cs[|x1 − x2|2 + W 2

2 (L(x1),L(x2))]
)

μ(dx1dx2).

Consequently, by (7),

E|ξ1 − ξ2|2 ≤
∫

R2d

(1 + 2cs)|x1 − x2|2μ(dx1dx2). (30)

Hence, taking infimum over all couplings, yields

W 2
2 (x1 + Ys(x1,L(x1)), x2 + Ys(x2,L(x2))) ≤ (1 + 2cs)W 2

2 (L(x1),L(x2)). (31)

Let us stress that our estimates work not only for diadic times, but for all times. Hence,
applying inequality (31) inductively, yields

W 2
2 (X τ

μ(s), X τ
η(s)) ≤ e1+2cs W 2

2 (μ, η) (32)

with a constant c uniformly for all τ ≤ 1, s > 0, μ, η ∈ P(Rd) ∩ M2(Rd).

Step 2 (subdivision and the existence of the limit of the marginal distributions).
We want to estimate the W2 distance between the random variables

ξ1 = x + Yτ (x, μ) = x ′ + Y ′
τ/2(x, μ), ξ2 = z′ + Y ′

τ/2(z
′, η′),

where the families Ys and Y ′
s are independent,

x ′ = x + Yτ/2(x, μ), z′ = z + Yτ/2(z, η),

and μ = L(x), η = L(z), η′ = L(z′). We shall couple ξ1 and ξ2 using sequentially
Proposition A.1. Namely, we shall define it by the equation

E f (ξ1, ξ2) =
∫

R6d

f (x + v1 + y1, z + v2 + y2)

× μ̃(dxdz)Pτ/2
x,z,μ,η(dv1dv2)Pτ/2

x,z′,μ,η′(dy1dy2) (33)

for f ∈ C(R2d), where, μ̃ is a coupling of μ and ν and say, Pτ/2
x,z′,μ,η′ is the cou-

pling of the Lévy processes Y ′
τ/2(x, μ) and Y ′

τ/2(z
′, η′) with z′ = z + v2 given by

Proposition A.1 (note that the probability law η′ is the function of z, η).
Now by (48)

W 2
2 (ξ1, ξ2) ≤ E|ξ1 − ξ2|2

≤ E|x ′ − z′|2 + cτ [E|x ′ − z′|2 + E|x − z′|2 + W 2
2 (μ, η′)].
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Hence, by (30) and (7) W 2
2 (ξ1, ξ2) does not exceed

W 2
2 (x, z)(1 + 2cτ)(1 + cτ) + 2cτE|x − z′|2

and consequently also

W 2
2 (x, z)(1 + 2cτ) + 4cτE(Yτ/2(z, η))2

(with another constant c) so that

W 2
2 (ξ1, ξ2) ≤ W 2

2 (x, z)(1 + cτ) + cτ 2

(with yet another c), because the second moments of our processes Yτ are bounded
due to assumption (20). Consequently

sup
s∈[(k−1)τ,kτ ]

W 2
2 (X τ

μ(s), X τ/2
μ (s)) ≤ cτ 2 + (1 + cτ)W 2

2 (X τ
μ((k − 1)τ ), X τ/2

μ ((k − 1)τ )).

(34)

By induction one estimates the l.h.s. of this inequality by

τ 2[1 + (1 + cτ) + (1 + cτ)2 + · · · + (1 + cτ)(k−1)] ≤ c−1τ(1 + cτ)k ≤ c(t0)τ.

Repeating this subdivision and using the triangle inequality for distances yields

sup
s≤t0

W 2
2 (X τ

μ(s), X τ/2m

μ (s)) ≤ c(t0)τ.

This implies the existence of the limit X τk
x ([t/τk]τk), as k → ∞, in the sense of (21).

Step 3 (improving convergence and solving the martingale problem)
The processes

Mτ (t)= f (X τ
μ(t)) − f (X)−

t∫
0

L[X τ
μ([s/τ ]τ), μτ[s/τ ]] f (X τ

μ(s)) ds, μ = L(X),

(35)

where μτ
l = L(X τ

μ(lτ)), are martingales by Dynkin’s formula, applied to Lévy pro-
cesses Yτ (z, μ). Our aim is to pass to the limit τk → 0 to obtain the martingale
characterization of the limiting process. But let us first strengthen our convergence
result.

Observe that the step by step inductive coupling of the trajectories X τ
μ and X τ

η used
above to prove (32) actually defines the coupling between the distributions of these
random trajectories in the Skorohod space D([0, t0], Rd) for any t0, i.e. a random
trajectory (X τ

μ, X τ
η) in D([0, t0], R2d). One can construct the Dynkin martingales for
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this coupled process in the same way as above for X τ
μ. Namely, for a function f of

two variables with bounded second derivatives the process

Mτ (t) = f (X τ
μ(t), X τ

η(t)) −
t∫

0

L̃s f (X τ
μ(s), X τ

η(s)) ds, μ = L(xμ), η = L(xη),

is a martingale, where L̃ t is the coupling operator (44) constructed from the Lévy
processes Y with parameters X τ

μ([t/τ ]τ), μτ[t/τ ] and X τ
η([t/τ ]τ), ητ[t/τ ].

Choosing f (x, y) = |x − y|2 leads to the martingale of the form

|X τ
μ(t) − X τ

ν (t)|2 +
t∫

0

O(1)|X τ
μ(s) − X τ

ν (s)|2 ds

(the estimate for the integrand follows from (46) and the assumed Lipschitz conti-
nuity of the coefficients of L). Applying the martingale property in conjunction with
Gronwall’s lemma yields

sup
s≤t

E|X τ
μ(s) − X τ

ν (s)|2 ≤ c(t)E|Xμ(0) − Xν(0)|2, (36)

giving another proof of (32). Moreover, applying Doob’s maximal inequality (with
p = 2) to the vector-valued martingale of the form

M̃τ (t) = X τ
μ(t) − X τ

η(t) +
t∫

0

O(1)|X τ
μ(s) − X τ

η(s)| ds

constructed from f (x, y) = x − y and using (36) yields

E sup
s≤t

|M̃τ (s)|2 ≤ c(t)E|Xμ(0) − Xν(0)|2,

which in turn implies

E sup
s≤t

|X τ
μ(s) − X τ

η(s)|2 ≤ c(t)E|Xμ(0) − Xν(0)|2.

This allows one to improve (32) to the estimate of the distance on paths:

W 2
2,t0(X τ

μ, X τ
η)2 ≤ c(t0)W 2

2 (μ, η). (37)

Similarly one can strengthen the estimates for subdivisions leading to the con-
vergence of the distributions on paths (22). Namely, using coupling (33) sequentially
leads to the coupled process (X τ

μ(t), X τ/2
μ (t)), which is a Lévy process on each interval

[τk/2, τ (k + 1)/2] if conditioned on its value at τk/2. Hence one again can construct

123



108 V. N. Kolokoltsov

the corresponding Dynkin martingales. Applying it, as above, to the functions |x − y|2
and (x − y) in conjunction with Doob’s maximum inequality leads first to the estimate

W 2
2,t0(X τ

μ, X τ/2
μ (kτ)) ≤ c(t0)τ,

and then (via the triangle inequality for W 2
2,t ) to

W 2
2,t0(X τ

μ, X τ/2m

μ (kτ)) ≤ c(t0)τ.

Consequently the sequence X τ/2m

μ is Cauchy in W2,t0 for m → ∞ uniformly for all
probability laws μ with a uniformly bounded second moment.

Using the Skorohod theorem for the weak converging sequence of random trajec-
tories X τk

μ (let us stress again that the convergence with respect to the distance (8)
implies the weak convergence of the distributions in the sense of the Skorohod topol-
ogy), one can put them all on a single probability space forcing the processes X τk

μ to
converge to Xμ almost surely in the sense of the Skorohod topology.

Passing to the limit τ = τk → 0 in (35), using the continuity and boundedness
of f and L f and the dominated convergence theorem allows to conclude that the
martingales Mτ (t) converge almost surely and in L1 to the martingale

M(t) = f (Xμ(t)) − f (X) −
t∫

0

(LL(Xμ(s)) f )(Xμ(s)) ds,

in other words that the process Xμ(t) solves the corresponding (nonlinear) martingale
problem.

Step 4 (completion)
Observe now that (32) implies (23). Moreover, the mapping Tt f (x) = E f (Xx (t))

preserves the set of Lipschitz continuous functions. In fact, if f is Lipschitz with the
constant h, then

|E f (X τ
x ([t/τ ]τ)) − E f (X τ

z ([t/τ ]τ))| ≤ hE‖X τ
x ([t/τ ]τ) − (X τ

z ([t/τ ]τ)‖
≤ h

(
E‖X τ

x ([t/τ ]τ) − (X τ
z ([t/τ ]τ)‖2

)1/2
.

for any coupling of the processes X τ
x and X τ

z . Hence by (32)

|E f (X τ
x ([t/τ ]τ)) − E f (X τ

z ([t/τ ]τ))| ≤ hc(t0)W2(x, z).

In particular, Tt preserves constant functions. Similarly one shows (first for Lipschitz
continuous f and then for all f ∈ C∞(Rd) via standard approximation) that

sup
t∈[0,t0]

sup
x

|E f (X τk
x ([t/τk]τk)) − E f (Xx (t))| → 0, k → ∞, (38)

123



Lévy–Khintchine operators with Lipschitz coefficients 109

for all f ∈ C∞(Rd). Moreover, as the dynamics of averages of the approximation
processes clearly preserve the space C∞(Rd), the same holds for the limiting map-
pings Tt . Consequently Tt f = E f (Xx (t)) is a positivity preserving family of contrac-
tions in C(Rd) that preserve constants and the space C∞(Rd). Hence the mappings
Ut : μ 	→ μt form a (nonlinear) Markov semigroup, and if L[z, μ] do not depend
explicitly on μ, the operators Tt f (x) = E f (Xx (t)) form a conservative Feller semi-
group. The Markov (or semigroup) property of the solutions follows from the con-
struction (a detailed discussion of this fact in a similar situation is given in [24]).

From the inequality

W 2
2 (L(X τ

μ(lτ)), L(X τ
μ((l − 1)τ ))) ≤ E

[
Y l−1

τ

(
X τ

μ((l − 1)τ ), L(X τ
μ((l − 1)τ ))

)]2 ≤ cτ

it follows that the curve μt depends 1/2-Hölder continuously on t in W2.
Finally, to prove (3) one writes using the martingale properties of M(t):

d

dt
( f, μt ) = lim

s→0

1

s
E( f, Xμ(t + s) − Xμ(t)) = lim

s→0

1

s
E

t+s∫
t

(LL(Xμ(s)) f )(Xμ(s)) ds

= (Lμt f, μt )) + lim
s→0

1

s
E

t+s∫
t

[(LL(Xμ(s)) f )(Xμ(s)) − Lμt f (Xμ(t)] ds,

implying (3) by the continuity of μt .

3 Regularity

Discussing regularity we reduce our attention for simplicity to Feller processes. It is
known (see, e.g. [17]) that from the sufficient regularity of non-homogeneous versions
of these Feller processes one can naturally deduce the uniqueness and regularity for
the corresponding nonlinear problems.

By Ck
Lip (respectively Ck∞) we shall denote the subspace of functions from Ck(Rd)

with a Lipschitz continuous derivative of order k (respectively with all derivatives up
to order k vanishing at infinity).

We shall discuss in detail only the first derivative.

Theorem 3.1 Assume the conditions of Propositions A.4 and A.5 hold. Then the
spaces C1

Lip and C1
Lip ∩ C1∞ are invariant under the semigroup Tt constructed above

from the generator

L f (x) = 1

2
(G(x)∇,∇) f (x) + (b(x),∇ f (x))

+
∫

( f (x + y) − f (x) − (∇ f (x), y))ν(x, dy), (39)
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and for any f ∈ C1
Lip, φ ∈ L1 ∩ C∞(Rd)

d

dt
(Tt f, φ) = (LTt f, φ), t ≥ 0. (40)

Proof First let us calculate ∇ j Eg(X τ
x (kτ)) for an arbitrary k and g ∈ C1

Lip(R
d). One

has

Eg(X τ
x (kτ)) =

∫
g(x + z1 + · · · + zk)Pτ

x (dz1) · · · Pτ

x+∑k−1
m=1 zm

(dzk).

As

∇ j Eg(X τ
x (kτ)) = lim

h→0

1

h
(Eg(X τ

x+he j
(kτ)) − Eg(X τ

x (kτ)))

does not depend on coupling, one can write

∇ j Eg(X τ
x (kτ)) = lim

h→0

1

h

∫
(g(x + he j + w1 + · · · + wk) − g(x + v1 + · · · + vk))

×Pτ
x+he j ,x (dw1dv1) · · · Pτ

x+he j +∑k−1
m=1 wm ,x+∑k−1

m=1 vm
(dwkdvk)

= lim
h→0

∫ [
(∇g(x + v1 + · · · + vk), e j + w1 − v1

h
· · · + wk − vk

h
)

+O(1)
1

h
|he j + w1 − v1 + · · · + wk − vk |2

]

×Pτ
x+he j ,x (dw1dv1) · · · Pτ

x+he j +∑k−1
m=1 wm ,x+∑k−1

m=1 vm
(dwkdvk).

The term with O(1) vanishes as it can be rewritten by Proposition A.1 as

lim
h→0

O(1)
1

h

∫
|he j + w1 − v1 + · · · + wk−1 − vk−1|2(1 + cτ)

×Pτ
x+he j ,x (dw1dv1) · · · Pτ

x+he j +∑k−2
m=1 wm ,x+∑k−2

m=1 vm
(dwk−1dvk−1),

and consequently, iterating this procedure as

lim
h→0

1

h
O(1)h2(1 + cτ)k = 0.

Hence

∇ j Eg(X τ
x (kτ))= lim

h→0

1

h

∫
(∇g(x + v1+· · ·+vk), he j + w1−v1+· · · + wk −vk)

×Pτ
x+he j ,x (dw1dv1) · · · Pτ

x+he j +∑k−1
m=1 wm ,x+∑k−1

m=1 vm
(dwkdvk).
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Assume now first that g is from the Schwartz space S(Rd) so that Proposition A.5
applies and one can write

∫
(∇g(x + v1 + · · · + vk), he j + w1 − v1 + · · · + wk − vk)

×Pτ

x+he j +∑k−1
m=1 wm ,x+∑k−1

m=1 vm
(dwkdvk)

=
∫ d∑

jk , jk−1=1

∇ jk g(x + v1 + · · · + vk)(he j + w1 − v1 + · · · + wk−1 − vk−1)
jk−1

×
(
δ

jk
jk−1

+ z jk
k

)
Qτ

D jk−1ν(x+∑k−1
m=1 vm)

(dzkdvk) + O(τ )|wk−1 − vk−1|2.

Consequently, as the last term does not contribute to the limit h → 0, and iterating
this procedure one obtains

∇ j Eg(X τ
x (kτ)) =

∫ d∑
j1,..., jk=1

∇ jk g(x + v1 + · · · + vk)

×
(
δ

j
j1

+ z j1
1

) (
δ

j1
j2

+ z j2
2

)
· · ·
(
δ

jk
jk−1

+ z jk
k

)
× Qτ

D j ν(x)
(dz1dv1)Qτ

D j1ν(x+v1)
(dz2dv2) · · ·

Qτ

D jk−1ν(x+∑k−1
m=1 vm )

(dzkdvk), (41)

which is the rigorous explicit form of the (a priori not clearly defined but intuitively
appealing) expression

E∇g(x + Y 0
τ (x) + Y 1

τ (X (τ )) + · · · + Y k−1
τ (X ((k − 1)τ ))

×
(

1 + ∂Y k−1
τ (X ((k − 1)τ ))

∂ X ((k − 1)τ )

)
· · ·
(

1 + ∂Y 0
τ (x)

∂x

)
.

Approximating arbitrary g by functions from the Schwartz space one can conclude
that (41) holds for all g ∈ C1

Lip(R
d).

We want to show now that these derivatives are Lipschitz continuous. To shorten
the formulas let us do it for the case of d = 1 only. In this case

∇Eg(X τ
x (kτ)) =

∫
∇g(x + v1 + · · · + vk)(1 + z1) · · · (1 + zk)

×Qτ
Dν(x)(dz1dv1)Qτ

Dν(x+v1)
(dz2dv2) · · · Qτ

Dν(x+∑k−1
m=1 vm )

(dzkdvk),

(42)
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and by Proposition A.4 one can write

∇Eg(X τ
x1

(kτ)) − ∇Eg(X τ
x2

(kτ))

=
∫

[∇g(x1 + v1 + · · · + vk)(1 + z1) · · · (1 + zk)

−∇g(x2 + ṽ1 + · · · + ṽk)(1 + z̃1) · · · (1 + z̃k)
]

×Qτ
Dν(x1,x2)

(dz1dz̃1dv1d ṽ1)Qτ
Dν(x1+v1,x2+ṽ1)

(dz2dz̃2dv2d ṽ2) · · ·
×Qτ

Dν(x1+∑k−1
m=1 vm ,x2+∑k−1

m=1 ṽm )
(dzkdz̃kdvkd ṽk).

Writing

∇g(x1 + v1 + · · · + vk)(1 + z1) · · · (1 + zk)

−∇g(x2 + ṽ1 + · · · + ṽk))(1 + z̃1) · · · (1 + z̃k)

= (∇g(x1 + v1 + · · · + vk) − ∇g(x2 + ṽ1 + · · · + ṽk))(1 + z1) · · · (1 + zk)

+∇g(x2 + ṽ1 + · · · + ṽk)[(1 + z1) · · · (1 + zk) − (1 + z̃1) · · · (1 + z̃k)],

and applying the Hölder inequality to estimate the integral over each of these two
terms yields the estimate

|∇Eg(X τ
x1

(kτ)) − ∇Eg(X τ
x2

(kτ))| ≤ κ[I 2
0 (k, x1, x2) + I 2

1 (k, x1, x2)]

with κ depending on the norm and the Lipschitz constant of ∇g, where

I 2
0 (k, x1, x2) =

∫
(x1 − x2 + v1 − ṽ1 + · · · + vk − ṽk)

2|(1 + z1)
2 · · · (1 + zk)

2

×Qτ
Dν(x1,x2)

(dz1dz̃1dv1d ṽ1) · · · Qτ

Dν(x1+∑k−1
m=1 vm ,x2+∑k−1

m=1 ṽm )

×(dzkdz̃kdvkd ṽk).

and

I 2
1 (k, x1, x2) =

∫
[(1 + z1) · · · (1 + zk) − (1 + z̃1) · · · (1 + z̃k)]2

×Qτ
Dν(x1,x2)

(dz1dz̃1dv1d ṽ1) · · · Qτ

Dν(x1+∑k−1
m=1 vm ,x2+∑k−1

m=1 ṽm )

×(dzkdz̃kdvkd ṽk).

By (56)

I 2
0 (k, x1, x2) ≤ (1 + cτ)I 2

0 (k − 1, x1, x2) ≤ · · · ≤ (1 + cτ)k(x1 − x2)
2.
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It remains to estimate I 2
1 . It would be convenient here to introduce special notations

for the products:

Zk = (1 + z1) · · · (1 + zk), Z̃k = (1 + z̃1) · · · (1 + z̃k).

Now one can write

Zk − Z̃k = Zk−1(1 + zk) − Z̃k−1(1 + z̃k) = (1 + zk)(Zk−1 − Z̃k−1) + (zk − z̃k)Z̃k−1,

so that

[Zk − Z̃k]2 = (1 + zk)
2(Zk−1 − Z̃k−1)

2 + (zk − z̃k)
2 Z̃2

k−1

+2(1 + zk)(zk − z̃k)(Zk−1 − Z̃k−1)Z̃k−1.

Plugging this into the expression for I 2
1 yields

I 2
1 (k, x1, x2) ≤ (1 + cτ)I 2

1 (k − 1, x1, x2) + cτ I 2
0 (k − 1, x1, x2)

+cτ
∫

(Zk−1 − Z̃k−1)Z̃k−1 Qτ
Dν(x1,x2)

×(dz1dz̃1dv1d ṽ1) · · · Qτ

Dν(x1+∑k−2
m=1 vm ,x2+∑k−2

m=1 ṽm )

×(dzk−1dz̃k−1dvk−1d ṽk−1),

where  in the last integral is a function of x1, x2, v j , ṽ j such that

|| ≤ c|x1 − x2 + v1 − ṽ1 + · · · + vk−1 − ṽk−1|.

Hence, applying to this last integral again the Hölder inequality yields

I 2
1 (k, x1, x2) ≤ (1 + cτ)I 2

1 (k − 1, x1, x2) + cτ I 2
0 (k − 1, x1, x2),

which taking into account the above bound for I 2
0 rewrites as

I 2
1 (k, x1, x2) ≤ (1 + cτ)I 2

1 (k − 1, x1, x2) + cτ |x1 − x2|2

with yet another c as long as t = τk remains bounded. Using this formula recursively
implies

I 2
1 (k, x1, x2) ≤ cτ |x1 − x2|2(1 + (1 + cτ) + · · · + (1 + cτ)k) ≤ c(kτ)|x1 − x2|2.

Consequently one obtains the uniform estimate

|∇Eg(X τ
x1

(kτ)) − ∇Eg(X τ
x2

(kτ))| ≤ κc(kτ)|x1 − x2|.

Hence from the sequence of the uniformly Lipschitz continuous functions
∇E f (X τk

x (s)), k = 1, 2, . . . , one can choose a convergent subsequence the limit being
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clearly ∇E f (Xx (t)), showing that E f (Xx (t)) ∈ C1
Lip. The uniform convergence

implies E f (Xx (t)) ∈ C1
Lip ∩ C1∞ whenever the same holds for f .

To complete the proof of the theorem it remains Eq. (40). But this is easy: for t = 0
it follows by approximating f with fn ∈ C2(Rd) and then for arbitrary t it follows
by the invariance of the class C1

Lip under Tt .
Second derivative can be analyzed similarly, but the assumptions and calculations

become essentially longer.

Appendix A: Coupling of Lévy processes

We describe here the natural coupling of Lévy processes leading in particular to the
analysis of their weak derivatives with respect to a parameter. Recall that by Ck

Lip we

denote the subspace of functions from Ck(Rd) with a Lipschitz continuous derivative
of order k.

Proposition A.1 Let Y i
s , i = 1, 2, be two Lévy processes in Rd specified by their

generators

Li f (x)= 1

2
(Gi∇,∇) f (x) + (bi ,∇ f (x)) +

∫
( f (x + y) − f (x) − (∇ f (x), y))νi (dy)

(43)

with νi ∈ M2(Rd). Let ν ∈ M2(R2d) be a coupling of ν1, ν2, i.e. (6) holds for all
φ1, φ2 satisfying φi (.)/|.|2 ∈ C(Rd). Then the operator

L f (x1, x2) =
[

1

2
(G1∇1,∇1) + 1

2
(G2∇2,∇2) + (

√
G2

√
G1∇1,∇2)

]
f (x1, x2)

+(b1,∇1 f (x1, x2)) + (b2,∇2 f (x1, x2))

+
∫

[ f (x1 + y1, x2 + y2) − f (x1, x2) − ((y1,∇1)

+(y2,∇2)) f (x1, x2)]ν(dy1dy2) (44)

(where ∇i means the gradient with respect to xi ) specifies a Lévy process Ys in R2d

with the characteristic exponent

ηx1,x2(p1, p2) = −1

2

∣∣∣√G(x1)p1 +√
G(x2)p2

∣∣∣2 + ib(x1)p1 + ib(x2)p2

+
∫

(eiy1 p1+iy2 p2 − 1 − i(y1 p1 + y2 p2))ν(dy1dy2),

that is a coupling of Y 1
s , Y 2

s in the sense that the components of Ys have the distribu-
tion of Y 1

s and Y 2
s , respectively. Moreover, if f (x1, x2) = h(x1 − x2) with a function

h ∈ C2(Rd), then
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L f (x1, x2) = 1

2

((√
G1 −√

G2

)2 ∇,∇
)

h(x1 − x2) + (b1 − b2,∇h)(x1 − x2)

+
∫

[h(x1 − x2 + y1 − y2) − h(x1 − x2)

−(y1 − y2,∇h(x1 − x2)]ν(dy1dy2). (45)

In particular, if f (x1, x2) = |x1 − x2|2, then

L f (x1, x2) = tr
(√

G1 −√
G2

)2 + 2(b1 − b2, x1 − x2)+
∫

|y1−y2|2ν(dy1dy2).

(46)

Finally

E|ξ + Y 1
t − Y 2

t |2 = |ξ + t (b1 − b2)|2

+t

(
tr
(√

G1 −√
G2

)2 +
∫ ∫

|y1 − y2|2ν(dy1dy2)

)
, (47)

implying

E|ξ + Y 1
t − Y 2

t |2

= |ξ |2 + O(t)

[
|ξ |2 + |b1 − b2|2 + tr

(√
G1 −√

G2

)2 +
∫ ∫

|y1 − y2|2ν(dy1dy2)

]
,

(48)

Proof Straightforward. In fact, clearly Ys couples Y 1
s , Y 2

s , because say ηx1,x2(p1, 0)

is the characteristic exponent of Y 1
s . Equation (45) follows from (44). The second

moment (47) is found either by twice differentiating the characteristic function, or by
the Dynkin formula in conjunction with (45).

Similarly one obtains

Proposition A.2 Let Y i
s , i = 1, 2, be two Lévy processes in Rd specified by their

generators

Li f (x) = (bi ,∇ f (x)) +
∫

( f (x + y) − f (x))νi (dy) (49)

with νi ∈ M1(Rd). Let ν ∈ M1(R2d) be a coupling of ν1, ν2, i.e. (6) holds for all
φ1, φ2 satisfying φi (.)/|.| ∈ C(Rd). Then the operator

L f (x1, x2) = (b1,∇1 f (x1, x2)) + (b2,∇2 f (x1, x2))

+
∫

[ f (x1 + y1, x2 + y2) − f (x1, x2)]ν(dy1dy2) (50)
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specifies a Lévy process Ys in R2d that is a coupling of Y 1
s , Y 2

s such that for all t

E|ξ + Y 1
t − Y 2

t | ≤ |ξ | + t

(
|b1 − b2| +

∫ ∫
|y1 − y2|ν(dy1dy2)

)
. (51)

Proof One approximates |y| by a smooth function, applies Dynkin’s formula and then
passes to the limit.

Next, let Yt (z) be a family of Lévy processes in Rd parametrized by points z ∈ Rd

and specified by their generators

L[z] f (x) = 1

2
(G(z)∇,∇) f (x) + (b(z),∇ f (x))

+
∫

( f (x + y) − f (x) − (∇ f (x), y))ν(z; dy) (52)

where ν(z; .) ∈ M2(Rd). We are interested in defining the process ∂
∂z Yt (z).

We shall describe this process via a certain derivative type operator on Lévy mea-
sures connected with a coupling. Namely, let νx1,x2(dy1dy2) be a family of
M2-couplings of ν(x1; .), ν(x2; , .) (in the sense that νx1,x2 ∈ M2(R2d) and (6)
holds for all φ1, φ2 such that φi (.)/|.|2 ∈ C(Rd)). For instance, these could be opti-
mal couplings with respect to the cost function |y1 − y2|2, i.e. those couplings, where
the infimum in the definition of W2(ν(x1, .), ν(x2, .)) is attained.

Let Th(y1, y2) = ((y1 − y2)/h, y2) and the measure ν
Th

T −1
h (ξ,x)

on R2d be defined

as the push forward of νx+hξ,x = νT −1
h (ξ,x)

by Th , i.e.

∫ ∫
f (z, y)ν

Th

T −1
h (ξ,x)

(dzdy) =
∫ ∫

f

(
y1 − y2

h
, y2

)
νx+hξ,x (dy1dy2).

Clearly ν
Th

T −1
h (ξ,x)

is a Lévy measure with a finite second moment whenever this is the

case for νx+hξ,x . The relevant smoothness of ν will be defined now as the existence
of the weak limit

Dξ νx = lim
h→0

ν
Th

T −1
h (ξ,x)

,

i.e.

lim
h→0

∫ ∫
g(y1, y2)ν

Th

T −1
h (ξ,x)

(dy1dy2) =
∫ ∫

g(y1, y2)Dξ νx (dy1dy2),
g(y1, y1)

y2
1 + y2

2

∈ C(R2d ).

To see the rational behind this definition observe that if ν(x, .) = νFx with a given ν

and a family of transformations Fx (.), then

∫ ∫
f (y1, y2)ν

Th

T −1
h (ξ,x)

(dy1dy2) =
∫ ∫

f

(
Fx+hξ (y) − Fx (y)

h
, Fx (y)

)
ν(dy),
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so that

Dξ νx = ν(ξ,∇Fx (.)),Fx (.)

is the push forward of ν with respect to y 	→ ((ξ,∇Fx (y)), Fx (y)) (∇ is the deriv-
ative with respect to x). On the other hand, if νz,x has a density, i.e. νz,x (dy1dy2) =
νz,x (y1, y2)dy1dy2. then Dξ νx has the density

lim
h→0

hdνx+hξ,x (y + hz, y).

If the coupling is optimal (is given by minimizers in the definition of the W2- distance)
this derivative is connected with the derivative of W2 via the formula

∫
|z|2 Dξ νx (dzdy) =

(
d

dh
|h=0 W2(ν(x + hξ ; .), ν(x; .))

)2

.

We shall need further only the partial derivatives Diνx = Dei νx in the directions
of the co-ordinate vectors ei . The reason for introducing these derivatives lies in the
observation that its action on Lévy measures corresponds to the derivation of Lévy
processes. More precisely, the following holds.

Proposition A.3 Let Yt (z) be the family of the Lévy processes in Rd , z ∈ Rd , specified
by their generators (52). Suppose

√
G(x), b(x) ∈ C1(Rd) and ν(x, .) is smooth in the

above sense (i.e. D jν are well defined with respect to a certain coupling). (i) Then
the coupled random variables in R2d

(h−1(Yt (x + he j ) − Yt (x)), Yt (x))

in R2d has a weak limit that we denote (∇ j Yt (x), Yt (x)) and that has the distribution
Qt

D j ν(x)
of the Lévy process at time t with the characteristic exponent

η
j
x (q, p) = −1

2

[
∇ j

√
G(x)q +√

G(x)p
]2 + i(∇ j b(x), q) + i(b(x), p)

+
∫

(eiqz+i py − 1 − i py − iqz)D jνx (dzdy). (53)

(i i) Moreover, if g ∈ C1
Lip(R

2d), then the partial derivatives ∇ j Eg(x, Yt (x)) exist
and

∇ j Eg(x, Yt (x)) =
∫ (

∇ j g(x, y) +
(

∂g

∂y
(x, y), z

))
Qt

D j ν(x)
(dzdy) (54)

(∇ j means the derivative with respect to the variable x).
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Proof (i) The characteristic exponent of the Lévy process Th(Yt (T
−1
h (e j , x)) is

η
j,h
x (q, p)

= −1

2

∣∣∣√G(x + he j )
q

h
+√

G(x)
(

p − q

h

)∣∣∣2 + i
(

b(x + he j ),
q

h

)

+ i

(
b(x),

(
p − q

h

)
+
∫ (

eiy1q/h+iy2(p−q/h) − 1 − i(y1 − y2)
q

h
− i py2

))

× νT −1
h (e j ,x)

(dy1dy2),

which clearly converges to (53).
(ii) One has

1

h

[
Eg(x + he j , Yt (x + he j )) − Eg(x, Yt (x))

]

= 1

h
E
[
g(x + he j , Yt (x + he j )) − g(x, Yt (x))

]
,

where the last expectation can be taken with respect to any coupling of Yt (x+he j )

and Yt (x). Hence it can be written as

∫ ∫ (
∇ j g(x, y2) +

(
∂g

∂y
(x, y2),

y1 − y2

h

)

+ O(1)
1

h
(h2|ξ |2 + |y1 − y2|2

)
Pt

x+he j ,x (dy1dy2).

By the property of the coupling (Proposition A.1) the term with O(1) tends to zero
as h → 0. Consequently

d

dh
|h=0 Eg(x + he j , Yt (x + he j )) =

∫
∇ j g(x, y)Pt

x (dy)

+ lim
h→0

∫ ∫ (
∂g

∂y
(x, y2),

y1 − y2

h

)
Pt

x+he j ,x (dy1dy2),

implying (54) due to statement (i).

So far we have got only partial derivatives. We are now interested in their continuity
which clearly is linked to the continuity of the measures Diνx . It turns out that the
relevant notion of continuity is a bit finer than the W2-continuity used above. Next
two statements reveal two ’crucial bits’ of this continuity.

Proposition A.4 Under the assumptions of Proposition A.3 assume additionally that
G(x), b(x) ∈ C1

Lip(R
d) and that the Lévy measures D jνx are Lipschitz continuous

in the following sense: for any x1, x2 ∈ Rd and j = 1, . . . , d there exists a Lévy
coupling D j (x1, x2) of the Lévy measures D jνx1 , D jνx2 such that
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∫

R4d

[
|y1 − y2|2(1 + |z1|2 + |z2|2) + |z1 − z2|2

]

D j (x1, x2)(dz1dz2dy1dy2) ≤ κ|x1 − x2|2 (55)

with a constant κ . Let Qt
D j (x1,x2)

denote the distribution at time t of the Lévy process
that couples (∇ j Yt (x1), Yt (x1)) and (∇ j Yt (x2), Yt (x2)) according to Proposition A.1,
i.e. the Lévy process in R4d specified by the characteristic exponent

η
j
x1,x2 (q1, q2, p1, p2) = −1

2

∣∣∣∇ j
√

G(x1)q1 + ∇ j
√

G(x2)q2 +√
G(x1)p1 +√

G(x2)p2

∣∣∣2

+ i(∇ j b(x1)q1 + ∇ j b(x2)q2 + b(x1)p1 + b(x2)p2)

+
∫

(eiy1 p1+iy2 p2+i z1q1+i z2q2 − 1 − i(y1 p1 + y2 p2 + z1q1 + z2q2)

× D j
x1,x2 (dz1dz2dy1dy2).

Then for any ξ ∈ Rd

∫

R4d

[
|ξ + y1 − y2|2(1 + |z1|)2 + |z1 − z2|2

]
Qt

D j (x1,x2)
(dz1dz2dy1dy2)

≤ |ξ |2 + ct (|ξ |2 + |x1 − x2|2) (56)

with a constant c uniformly for finite times, and for any g ∈ C1
Lip(R

2d) the function

Eg(x, Yt (x)) belongs to C1
Lip(R

d) (also uniformly for finite times).

Proof The moment estimates (56) are obtained directly from the derivatives of the
characteristic function as in Proposition A.1. For the second statement we write

|∇ j Eg(x1, Yt (x1)) − ∇ j Eg(x1, Yt (x1))| ≤
∫

R4d

Qt
D j (x1,x2)

(dz1dz2dy1dy2)

×
∣∣∣∣∇ j g(x1, y1) − ∇ j g(x2, y2) +

(
∂g

∂y
(x1, y1), z1

)
+
(

∂g

∂y
(x2, y2), z2

)∣∣∣∣

(the derivative ∇ j with respect to x), which does not exceed

∫

R4d

((|x1 − x2| + |y1 − y1|(1 + |z1| + |z2|) + |z1 − z2|)Qt
D j (x1,x2)

(dz1dz2dy1dy2),

and which in turn does not exceed
√

t |x1 − x2| due to (56) and the Hölder inequality.
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In case ν(x, .) = νFx for a family of transformations Fx (.) the coupling D j (x1, x2)

can be obtained as
∫

f (z1, z2, y1, y2)D j (x1, x2)(dz1dz2dy1dy2)

=
∫

f (∇ j F(x1, y),∇ j F(x2, y), F(x1, y), F(x2, y))ν(dy),

and the condition (55) is fulfilled whenever the derivatives ∂
∂x F(x, y) are bounded

and Lipschitz continuous.
By Dνx we shall denote the vector {D jνx } and by Qt

Dν(x) the vector {Qt
D j ν(x)

},
j = 1, . . . , d.

Proposition A.5 Under the assumptions of Proposition A.3 assume additionally that
G(x), b(x) ∈ C1

Lip(R
d) and that the function

∫ ∫
(y1 − y2, e j )(e

iy2 p − 1)νx,z(dy1dy2)

is differentiable in x around x = z with uniform estimates, more precisely that

∫ ∫
(y1 − y2, e j )(e

iy2 p − 1)νx,z(dy1dy2)

=
(

∂

∂x
|x=z

∫ ∫
(y1 − y2, e j )(e

iy2 p − 1)νx,z(dy1dy2), x − z

)

+O(1 + |p|)|x − z|2. (57)

Then for a continuous function g represented via the inverse Fourier transform as

g(y) =
∫

eiyp ĝ(p) dp, (1 + |p|)ĝ(p) ∈ (L1(Rd))d ,

one has the estimate

E(Yt (x) − Yt (z), g(Yt (z))) =
∫

(y1 − y2, g(y2))Pτ
x,z(dy1dy2)

=
∫ ∫

(w, g(y))(Qt
Dν(z)(dwdy), x − z)

+O(t)|x − z|2
∫

(1 + |p|)|ĝ(p)| dp. (58)

Proof Comparing the r.h.s of (57) with the definition of Dνx yields∫ ∫
(y1 − y2, e j )(e

iy2 p − 1)νx,z(dy1dy2)

=
(∫ ∫

(w, e j )(e
iyp − 1)Dνx (dwdy), x − z

)
+ O(1 + |p|)|x − z|2. (59)
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Now one has

∫
(y1 − y2, e j )e

iy2 p Pt
x,z(dy1dy2)

= −i
∂

∂q j
|q=0 E exp{i(Yt (x) − Yt (z))q + iYt (z)p}

= −i
∂

∂q j
|q=0 exp{tηx,z(q, p − q)}

= t

[
i
(√

G(z)
(√

G(x) −√
G(z)

)
p
) j + (b(x) − b(z)) j

+
∫

(y1 − y2)
j (eipy2 − 1)νx,z(dy1dy2)

]
EeiYt (z)p

= t

(
i

2
(∇(G(z)p) j + ∇b j (z) +

∫ ∫
w j (eipy − 1)(Dνx (dwdy), x − z

)
EeiYt (z)p

+O(t)(1 + |p|)|x − z|2.

Consequently,

∫
(y1 − y2, g(y2))Pt

x,z(dy1dy2)

= t
∫ (

i

2
∇(G(z)p, ĝ(p)) + ∇(b(z), ĝ(p))

+
∫ ∫

(w, ĝ(p))(eipy − 1)Dνx (dwdy), x − z

)
EeiYt (z)p dp

+O(t)
∫

(1 + |p|)ĝ(p) dp|x − z|2.

Similarly

∫ ∫
w j eipy Qt

Dν(z)(dwdy) = −i
∂

∂q j
|q=0

exp

{
t

∣∣∣∣−1

2

(
∇√G(z)q +√

G(z)p
)∣∣∣∣

2

+ i(∇b(z)q + b(z))

+
∫ ∫

(eiqw+i py − 1 − i py − iqw)Dνx (dwdy)

}

= t

(
i

2
∇(G(z)p) j + ∇b j (z) +

∫ ∫
w j (eipy − 1)Dνx (dwdy)

)
EeiYt (z)p,

implying (58).
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To differentiate the Lévy process for the second time, one needs of course the ’sec-
ond derivative’ of the Lévy measure defined similarly to the first one. Namely, one
needs the existence of the limit

lim
h→0

∫
f

(
z1 − z2

h
,

y1 − y2

h
, z2, y2

)
D j (x + hek, x)(dz2dz1dy2dy1)

=
∫

f (w, zk, z j , y)Dkj
x (dwdz j dzkdy) (60)

whenever f (w, zk, z j , y)/(w2 + z2
j + z2

k + y2) ∈ C(R4d) with Dkj
x (dwdz j dzkdy)

belonging to M2(R4d). The following is a straightforward analog of Proposition A.3.

Proposition A.6 Under the assumptions of Proposition A.3 assume that G(x), b(x) ∈
C2(Rd) and the measures Dkj

x ∈ M2(R4d) are well defined by (60). (i) Then for any
j, k the process

(∇k∇ j Yt (x),∇kYt (x),∇ j Yt (x), Yt (x))

is defined weakly in R4d and has the distribution Qt
D jkν(x)

of the Lévy process at time
t with the characteristic exponent

η
jk
x (r, qk, q j , p) = −1

2

∣∣∣∇k∇ j

√
G(x)q + ∇k

√
G(x)qk + ∇ j

√
G(x)q j +√

G(x)p
∣∣∣2

+ i[(∇k∇ j b(x), q) + (∇kb(x), qk) + (∇ j b(x), q j ) + (b(x)p)]
+
∫

[eirw+iqk zk+iq j z j +i py − 1 − i(rw + qk zk + q j z j + py)]
× Dkj

x (dwdzkdz j dy). (61)

(i i) Moreover, if g ∈ C2
Lip(R

d), the partial derivatives ∇k∇ j Eg(x + Yt (x)) exist and

∇k∇ j Eg(x + Yt (x)) =
∫

Qt
Dkj ν(x)

(dwdzkdz j dy)

⎡
⎣ d∑

l,m=1

∇m∇l g(x + y)

×(δm
k + zm

k )(δl
j + zl

j ) +
d∑

l=1

∇g(x + y)wl

]
(62)

(∇ means the derivative with respect to the variable x).
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