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Abstract We are interested in the study of models describing the evolution of a
polymorphic population with mutation and selection in the specific scales of the bio-
logical framework of adaptive dynamics. The population size is assumed to be large
and the mutation rate small. We prove that under a good combination of these two
scales, the population process is approximated in the long time scale of mutations by
a Markov pure jump process describing the successive trait equilibria of the popula-
tion. This process, which generalizes the so-called trait substitution sequence (TSS),
is called polymorphic evolution sequence (PES). Then we introduce a scaling of the
size of mutations and we study the PES in the limit of small mutations. From this study
in the neighborhood of evolutionary singularities, we obtain a full mathematical jus-
tification of a heuristic criterion for the phenomenon of evolutionary branching. This
phenomenon corresponds to the situation where the population, initially essentially
single modal, is driven by the selective forces to divide into two separate subpopu-
lations. To this end we finely analyze the asymptotic behavior of three-dimensional
competitive Lotka–Volterra systems.
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1 Introduction

We consider an asexual population in which each individual’s ability to survive and
reproduce is characterized by a quantitative trait, such as the body size, the age at
maturity, or the rate of food intake. Evolution, acting on the trait distribution of the
population, is the consequence of three basic mechanisms: heredity, which transmits
traits to new offsprings, mutation, driving a variation in the trait values in the popula-
tion, and selection between these different trait values, which is due to the competition
between individuals for limited resources or area. Adaptive dynamics models aim at
studying the interplay between these different mechanisms [23,27,29]. One of the key
features of these models, observed in many simulations, is the emergence of pheno-
typic separation without geographic separation in the population [28]. In the sexual
case, it is related to the phenomenon of sympatric speciation [9]. When the initial
population is monomorphic (i.e. all individuals have the same trait), simulations show
that sometimes, one has the following phenomenon. The population stays essentially
single-modal centered around a trait that evolves continuously until some random
time. At this time it divides into two separate sub-populations. These sub-populations
are still in interaction but are centered around distinct traits at a distance increasing
with time. This phenomenon is called Evolutionary Branching. Our aim in this paper
is to understand the dynamics of the process in long time scales and to highlight this
evolutionary branching phenomenon. In particular, we want to give a rigourous proof
of a result stated by Metz et al. [28, Sect. 3.2.5], where conditions on the parameters
of the model allow one to predict whether evolutionary branching will occur or not.

Some mathematical approaches of this problem have been already developed. Some
papers examined the stationary behavior of the population [7,32]. Partial results have
also been obtained from deterministic models [2,8,11]. Our approach is different. It is
based on a stochastic individual-based model that details the ecological dynamics of
each individual. In addition, it aims at describing how evolutionary branching occurs
dynamically (i.e. in a non-stationary way): we first describe the approach of the pop-
ulation to a single modal equilibrium state, and next give a criterion to assess whether
evolutionary branching occurs or not at this point.

We follow the basic description of adaptive dynamics based on the biologically
motivated assumptions of rare mutations and a large population. Under these assump-
tions, we prove that the individual-based process can be approximated by a Markov
pure jump process on the set of point measures on the trait space. The transitions
of this process are given by the long time behavior of competitive Lotka–Volterra
systems. They describe the succession of mutant invasions followed by a fast compe-
tition phase between the mutant population and the resident one. In the mutation time
scale, and for large populations, the successful traits in the competition are given by
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the nontrivial equilibria of Lotka–Volterra systems which model the dynamics of the
sizes of each sub-population corresponding to each resident or mutant trait. We thus
generalize the situation introduced by Metz et al. [28] and mathematically developed
by Champagnat [4], when the parameters of the model prevent the coexistence of
two traits. In that case, the microscopic model converges to a monomorphic (one trait
support) pure jump process, called TSS. This limit involves a timescale separation
between the mutations and the population dynamics driving the competition between
traits.

In this article, we relax the assumption of non-coexistence and obtain a polymor-
phic evolution sequence (PES), allowing coexistence of several traits in the population,
from the same microscopic model described in Sect. 2.1. Simulations of an example
are shown in Sect. 2.2 in order to illustrate the phenomenon of evolutionary branch-
ing. In Sect. 2.3, we introduce the deterministic competitive Lotka–Volterra systems
describing the competition between traits. We prove in Sect. 2.4 that the PES takes the
form of a Markov jump process on the set of measures on the trait space X that are
finite sums of Dirac masses with positive weights, and we characterize the transitions
of this process in terms of the long time behavior of competitive Lotka–Volterra sys-
tems. In Sect. 3, we explain why the assumptions ensuring the convergence to the PES
are satisfied as long as no more than two traits coexist. In this case, the dynamics of
the PES can be explicitly characterized. Next (Sect. 4), we study the transition from a
monomorphic population to a stable dimorphic population, and give a full mathemat-
ical justification of the criterion for evolutionary branching proposed in [28], under
the assumption of small mutation effects. To this end, we first show in Sects. 4.1 that,
away from evolutionary singularities, the support of the PES stays monomorphic and
converges to an ODE known as the “canonical equation” [10]. Finally, in Sect. 4.2,
we characterize in Theorem 4.9 the situations when evolutionary branching occurs by
specializing to our situation the results of Zeeman [33] on the asymptotic behavior
of three-dimensional competitive Lotka–Volterra systems. This is the main result of
the paper.

Let us stress the delicate combination of the limits. Here we are concerned by
the combination of the limits of large populations and rare mutations, followed by a
limit of small mutations. An alternative approach would be first to study the limit of
large population alone, giving in the limit an integro-differential partial differential
equation for the density of traits [5]; and next to study a limit of small mutations on
this equation with a proper time scaling that would lead to some dynamics on the set
of finite sums of Dirac masses on the trait space. The second part of this program
has already been partly studied by Diekmann et al. [11] in a specific model, but is
related to difficult problems on Hamilton–Jacobi equations with constraints [2]. In
this case, evolutionary branching is numerically observed, but not yet fully justified.
Another approach would be to combine the three limits we consider directly at the
level of the microscopic model, allowing one to study the evolutionary process on
several time scales [3]. This requires a finer analysis of the invasion and competition
phases after the appearance of a new mutant. Note that all these approaches are based
on the same idea of separation between the time scales of mutation and competition,
whereas the model of Yu [32] does not satisfy this assumption. This may explain why
his results are different from ours (in particular, he does not observe evolutionary
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branching in a model where the fitness satisfies our branching criterion). This shows
the delicate influence of parameters scaling and of the specific ecological model on
the phenomenon of evolutionary branching.

2 Models and PES

Let us introduce here the main models on which our approach is based and give our
convergence result to the PES.

2.1 The individual-based model

The microscopic model we use is an individual-based model with density-depen-
dence, which has been already studied in ecological or evolutionary contexts by many
authors [5,14].
The trait space X is assumed to be a compact subset of R

l , l ≥ 1. For any x, y ∈ X ,
we introduce the following biological parameters

• λ(x) ∈ R+ is the rate of birth from an individual holding trait x .
• μ(x) ∈ R+ is the rate of “natural” death for an individual holding trait x .
• r(x) := λ(x)− μ(x) is the “natural” growth rate of trait x .
• K ∈ N is a parameter scaling the population size and the resources.
• α(x,y)

K ∈ R+ is the competition kernel representing the pressure felt by an indi-
vidual holding trait x from an individual holding trait y. It is not assumed to be a
symmetric function.

• uK p(x)with uK , p(x) ∈ (0, 1], is the probability that a mutation occurs in a birth
from an individual with trait x . Small uK means rare mutations.

• m(x, h)dh is the mutation law of a mutant trait x+h ∈ X , born from an individual
with trait x . Its support is a subset of the compact set {y − z : y, z ∈ X }.

We consider, at any time t ≥ 0, a finite number Nt of individuals, each of them holding
a trait value in X . Let us denote by x1, . . . , xNt the trait values of these individuals.
The state of the population at time t ≥ 0, rescaled by K , is described by the finite
point measure on X

νK
t = 1

K

Nt∑

i=1

δxi , (2.1)

where δx is the Dirac measure at x . Let 〈ν, f 〉 denote the integral of the measurable
function f with respect to the measure ν and Supp(ν) denote its support.
Then 〈νK

t , 1〉 = Nt
K and for any x ∈ X , the positive number 〈νK

t , 1{x}〉 is called the
density at time t of trait x .
Let MF denote the set of finite nonnegative measures on X , equipped with the weak
topology, and define

MK =
{

1

K

n∑

i=1

δxi : n ≥ 0, x1, . . . , xn ∈ X
}
.
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An individual holding trait x in the population νK
t gives birth to another individual

with rate λ(x) and dies with rate

μ(x)+
∫
α(x, y)νK

t (dy) = μ(x)+ 1

K

Nt∑

i=1

α(x, xi ).

The parameter K scales the strength of competition, thus allowing the coexistence
of more individuals in the population. A newborn holds the same trait value as its
progenitor with probability 1 − uK p(x), and with probability uK p(x), the newborn
is a mutant whose trait value y is chosen according to y = x + h, where h is a
random variable with law m(x, h)dh. In other words, the process (νK

t , t ≥ 0) is a
MK -valued Markov process with infinitesimal generator defined for any bounded
measurable function φ from MK to R by

L Kφ(ν) =
∫

X

(
φ

(
ν + δx

K

)
− φ(ν)

)
(1− uK p(x))λ(x)Kν(dx)

+
∫

X

∫

Rl

(
φ

(
ν + δx+h

K

)
− φ(ν)

)
uK p(x)λ(x)m(x, h)dhKν(dx)

+
∫

X

(
φ

(
ν− δx

K

)
−φ(ν)

)⎛

⎝μ(x)+
∫

X
α(x, y)ν(dy)

⎞

⎠ Kν(dx). (2.2)

For ν ∈ MK , the integrals with respect to Kν(dx) in (2.2) correspond to sums over all
individuals in the population. The first term (linear) describes the births without muta-
tion, the second term (linear) describes the births with mutation, and the third term
(non-linear) describes the deaths due to age or to competition. The density-dependent
non-linearity of the third term models the competition in the population, and hence
drives the selection process.

Let us denote by (A) the following three assumptions

(A1) λ,μ and α are measurable functions, and there exist λ̄, μ̄, ᾱ < +∞ such that

λ(·) ≤ λ̄, μ(·) ≤ μ̄ and α(·, ·) ≤ ᾱ.

(A2) r(x) = λ(x) − μ(x) > 0 for any x ∈ X , and there exists α > 0 such that
α ≤ α(·, ·).

(A3) There exists a function m̄ : R
l → R+ such that m(x, h) ≤ m̄(h) for any x ∈ X

and h ∈ R
l , and

∫
m̄(h)dh <∞.

For fixed K , under (A1) and (A3) and assuming that E(〈νK
0 , 1〉) <∞, the existence

and uniqueness in law of a process on D(R+,MK ) with infinitesimal generator L K

has been proved in [14]. Assumption (A2) prevents the population from exploding or
becoming extinct too fast.
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2.2 An example

The general birth–death-competition-mutation process described above has been heu-
ristically studied in various ecological or evolutionary contexts. Let us illustrate the
phenomenon of evolutionary branching with a simple example, where the parameters
of the model are adapted from a classical model of competition for resources [9,31].
In this model, there is a single optimal trait value for the birth rate and a symmetric
competition kernel. The parameters are the following:

X = [−2, 2]; μ(x) ≡ 0; p(x) ≡ p,

λ(x) = exp(−x2/2σ 2
b ), (2.3)

α(x, y) = α̃(x − y) = exp(−(x − y)2/2σ 2
α ).

and m(x, h)dh is the law of a N (0, σ 2) r.v. Y (centered Gaussian with variance σ 2)
conditioned on x + Y ∈ X .
The growth rate λ(x) is maximal at x = 0 and there is local competition between
traits, in the sense that α(x, y) is maximal for x = y and is small when |x− y| is large.
If the competition kernel was flat (α ≡ 1), evolution would favor mutant traits with
maximal growth rate. However, if competition is local, numerical simulations of the
microscopic model give different patterns, as shown in Fig. 1. In Fig. 1b, the popula-
tion, initially composed of traits concentrated around a single trait value, is driven by
the evolutionary forces to states where the population is composed of two (or more)
groups, concentrated around different trait values. This phenomenon of evolutionary
branching has been observed in many biological models (see e.g. [19,26,28]), includ-
ing populations with sexual reproduction (see e.g. [9]), for which this phenomenon
is believed to be a possible mechanism leading to sympatric speciation (speciation
without geographical separation).
In this particular model, the possibility of evolutionary branching appears numerically
to be governed by the values of σb and σα , which represent, respectively, the width of
the trait region with high growth rate and the interaction range. In Fig. 1a, σα > σb

and there is no evolutionary branching, whereas in Fig. 1b, σα < σb and evolutionary
branching occurs. We observe in both simulations that, in a first phase, the population
trait support is concentrated around a single trait value that converges to 0. In a sec-
ond phase, new mutants are subject to two different selective pressures: high growth
rate (traits close to 0) and competition (traits far from the rest of the population).
If σα is small enough, the decrease in competitive pressure compensates the loss of
reproductive efficiency near 0 and allows the appearance of new branches.
In order to analyze the phenomenon of evolutionary branching, we are going to con-
sider three biological asymptotics in the individual-based model: large population
(K → +∞), rare mutations (uK → 0) and small mutation amplitude (h replaced
by εh with ε → 0). These scales and the biological heuristics of this approach were
introduced in [28]. The combination of the first two scales (large population and rare
mutation) will give convergence of the individual-based process to the so-called PES
(Theorem 2.7 of Sect. 2.4.2). This convergence corresponds to approximating the
simulated dynamics of Fig. 1a and b by the one of Fig. 2a and b, respectively. Note
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Fig. 1 Numerical simulations of the trait distribution (upper panels) and population size (lower panels)
of the microscopic model with parameters (2.3). The initial population is composed of K individuals all
with trait −1.0. a p = 0.1, K = 1,000, σ = 0.01, σb = 0.9, σα = 1.0. b p = 0.1, K = 1,000, σ =
0.01, σb = 0.9, σα = 0.7

that the probability of mutation p has been drastically reduced in Fig. 2. The reason
why σ has been also increased is to make the jumps in the population state visible.
Simulations with σ = 0.01 and p = 0.0001 would also show jumps, but of course
much smaller ones. The biological heuristic of the convergence when K → ∞ and
uK → 0 is the following. Firstly, the assumption of rare mutations implies a separa-
tion between ecological (or population dynamics) and evolutionary (or mutation) time
scales: the selection process has sufficient time between two mutations to eliminate
disadvantaged traits. Secondly, the large population assumption allows one to assume
a deterministic population dynamics between mutations, so that the outcome of the
competition can be predicted. Then evolution proceeds by a succession of phases of
mutant invasion and very short phases of competition between traits, and only few
traits remain after competition between each mutation. The only randomness remain-
ing in the system comes from the mutation times and the mutant traits appearing in
the population.
The PES is a convenient tool to study evolutionary branching: in Sect. 4.2, we give a
precise definition for evolutionary branching in the PES (Definition 4.8), and we then
prove a branching criterion (Theorem 4.9), which turns out to reduce to the variance
criterion in this specific example.
Other simulations for small mutations are given in Fig. 3. In Fig. 3a, we observe that
for smaller σα , several evolutionary branching events can occur at different times.
This shows that evolutionary branching may be a transient property, not necessarily
well captured by invariant distribution properties. Note that, although our results on

123



52 N. Champagnat, S. Méléard

Fig. 2 Numerical simulations of the trait distribution (upper panels) and population size (lower panels) of
the microscopic model with parameters (2.3). The initial population is composed of K individuals all with
trait −1.0. a p = 0.0001, K = 1,000, σ = 0.08, σb = 0.9, σα = 1.0. b p = 0.0001, K = 1,000, σ =
0.08, σb = 0.9, σα = 0.7

evolutionary branching are restricted to the first branching event, the PES obtained in
Sect. 2.4.2 is well-defined in situations where more then two “branches” coexist in the
population, as in Fig. 3a. In Fig. 3b, the size of mutation jumps σ is divided by two
compared with Fig. 2b. The simulation shows that the amount of time needed for the
population to approach the trait value 0 is roughly multiplied by four with respect to
Fig. 2b. This will be mathematically justified in Theorem 4.4 of Sect. 4.1, where we
prove that the support of the PES with time rescaled as t/σ 2 converges when σ → 0
to the solution of an ordinary differential equation, known as the canonical equation
of adaptive dynamics.

2.3 Lotka–Volterra systems

As the previous heuristic argument shows, we need to study the competition between
a finite number of traits, say x1, . . . , xd , between two mutations. We are thus led to
study the individual-based process without mutation (uK = 0 for all K ≥ 1).
So fix x1, . . . , xd ∈ X and assume that, for all i ∈ {1, . . . , d}, 〈νK

0 , 1{xi }〉 has bounded
second-order moments and converges in distribution to ni (0) ∈ R+. Then, as proved
in [6, Theorem 4.2], when K →+∞, the process (〈νK

t , 1{x1}〉, . . . , 〈νK
t , 1{xd }〉) con-

verges in distribution for the Skorohod topology to the solution of the d-dimensional
competitive Lotka–Volterra system LV(d, x)with initial condition (n1(0), . . . , nd(0)),
defined below.
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Fig. 3 Numerical simulations of the trait distribution (upper panels) and population size (lower panels) of
the microscopic model with parameters (2.3). The initial population is composed of K individuals all with
trait −1.0. a p = 0.0001, K = 1,000, σ = 0.08, σb = 0.9, σα = 0.4. b p = 0.0001, K = 1,000, σ =
0.04, σb = 0.9, σα = 0.7

Definition 2.1 For any x = (x1, . . . , xd) ∈ X d , we denote by LV(d, x) the competi-
tive Lotka–Volterra system defined by

ṅ(t) = Fx(n(t)), t ≥ 0, (2.4)

where n(t) = (n1(t), . . . , nd(t)),

Fx
i (n) := ni G

x
i (n) where Gx

i (n) := r(xi )−
d∑

j=1

α(xi , x j )n j . (2.5)

The equilibria of LV(d, x) are given by the intersection of hyperplanes (Pi )1≤i≤d ,
where Pi has equation either ni = 0 or Gx

i (n) = 0. Let us introduce the following
notion of coexisting traits.

Definition 2.2 For any d ≥ 0, we say that x1, . . . , xd coexist if LV(d, x) admits a
unique non-trivial equilibrium n̄(x) ∈ (0,∞)d which is locally strongly stable, in
the sense that the eigenvalues of the Jacobian matrix of Fx at n̄(x) have all (strictly)
negative real part. In particular, for all i ∈ {1, . . . , d},

Gx
i (n̄(x)) = 0 and DFx(n̄(x)) = ((−α(xi , x j )n̄i (x)))1≤i, j≤d . (2.6)

Once x1, . . . , xd ∈ X coexist, the invasion of a mutant trait y ∈ X in this resident
population is governed by its initial growth rate. This growth rate is given by the
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so-called fitness function defined by

f (y; x) = f (y; x1, . . . , xd) = r(y)−
d∑

j=1

α(y, x j )n̄ j (x). (2.7)

The stability of the equilibria of Lotka–Volterra systems is governed by the sign of
this function.

Proposition 2.3 Assume that the traits x1, . . . , xd ∈ X coexist. Then

(i) For any i ∈ {1, . . . , d}, f (xi ; x1, . . . , xd) = 0.
(ii) If f (y; x1, . . . , xd) < 0, the equilibrium (n̄1(x), . . . , n̄d(x), 0) of the system

LV(d + 1, (x1, . . . , xd , y)) is locally strongly stable, and if f (y; x1, . . . , xd) >

0, this equilibrium is unstable, in the sense that the Jacobian matrix of the system
at this point has one positive eigenvalue.

Proof The first point is immediate. The second point comes from the following relation
between Jacobian matrices of Lotka–Volterra systems

DF (x1,...,xd ,y)(n̄1(x), . . . , n̄d(x), 0) =

⎛

⎜⎜⎜⎜⎜⎝

DFx(n̄(x))

−n̄1(x)α(x1, y)
...

−n̄d(x)α(xd , y)

0 · · · 0 f (y; x)

⎞

⎟⎟⎟⎟⎟⎠
.

Since x1, . . . , xd coexist, all the eigenvalues of DFx(n̄(x)) have negative real parts.

�

Examples 1. In the monomorphic case (d = 1), the competitive Lotka–Volterra
system LV(1, x) takes the form of the so-called logistic equation

ṅx = nx (r(x)− α(x, x)nx ). (2.8)

When r(x) > 0, the unique stable equilibrium of this equation is n̄(x) =
r(x)/α(x, x).

2. In the dimorphic case (d = 2), the system LV(2, (x, y)) takes the form

{
ṅx = nx (r(x)− α(x, x)nx − α(x, y)ny)

ṅ y = ny(r(y)− α(y, x)nx − α(y, y)ny).
(2.9)

Under Assumption (A2) and if α(x, x)α(y, y)−α(x, y)α(y, x) �= 0, the equilib-
ria of (2.9) are (0, 0), (n̄(x), 0), (0, n̄(y)) and a non-trivial equilibrium n̄(x, y),
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which may possibly belong to (0,∞)2, with

n̄1(x, y) = r(x)α(y, y)− r(y)α(x, y)

α(x, x)α(y, y)− α(x, y)α(y, x)
, (2.10)

n̄2(x, y) = r(y)α(x, x)− r(x)α(y, x)

α(x, x)α(y, y)− α(x, y)α(y, x)
. (2.11)

The fitness function takes the form

f (y; x) = r(y)− α(y, x)n̄(x). (2.12)

By Proposition 2.3, the stability of the equilibrium (n̄(x), 0) is governed by the
sign of f (y; x), and

f (x; x) = 0, ∀x ∈ X .

Moreover, the fitness function also gives a criterion for coexistence in the dimor-
phic case.

Proposition 2.4 There is coexistence in the system LV(2, (x, y)) if and only if

f (y; x) > 0 and f (x; y) > 0.

We refer to [24, Sect. 2.4.3] for a proof of this result.

3. In the trimorphic case (d = 3), the fitness of a mutant trait z in a population with
two coexisting resident traits x and y is given by

f (z; x, y) = r(z)− α(z, x)n̄1(x, y)− α(z, y)n̄2(x, y), (2.13)

where n̄1(x, y) and n̄2(x, y) are defined in (2.10) and (2.11).

2.4 Convergence to the PES

Our goal here is to examine the asymptotic behavior of the microscopic process when
the population size grows to infinity as well as the mutation rate converges to 0, in a
long time scale.

2.4.1 Assumptions

Let (B) denote the following Assumptions (B1) and (B2) on the Lotka–Volterra sys-
tems of Definition 2.1.

(B1) Given any x = (x1, . . . , xd) ∈ X d such that x1, . . . , xd coexist, for Lebes-
gue almost any mutant trait y ∈ X such that f (y; x) > 0, there exists a
neighborhood U ⊂ R

d+1 of (n̄1(x), . . . , n̄d(x), 0) such that all the solutions
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Fig. 4 Assumption (B1) prevents such situation

of LV(d+1, (x1, . . . , xd , y))with initial condition in U ∩ (0,∞)d+1 converge
as t →+∞ to a unique equilibrium in (R+)d+1, denoted by

n∗(x1, . . . , xd , y).

(B2) Writing for simplicity xd+1 = y and n∗ for n∗(x1, . . . , xd+1), let

I (n∗) := {i ∈ {1, . . . , d + 1} : n∗i > 0
}

and x∗ = (xi ; i ∈ I (n∗)).

Then, for Lebesgue almost any mutant trait xd+1 as above, {xi ; i ∈ I (n∗)}
coexist and

for all j �∈ I (n∗) , f (x j ; x∗) < 0.

Assumption (B1) prevents cycles or chaotic dynamics in the Lotka–Volterra systems.
Moreover, it also prevents situations as in Fig. 4, where the equilibrium n∗ is unsta-
ble. In this case, a solution of the Lotka–Volterra system LV(d + 1, (x1, . . . , xd , y))
starting from a point in any neighborhood of (n̄1(x), . . . , n̄d(x), 0), represented by the
curved line in Fig. 4, needs not converge to n∗.

Definition 2.5 An equilibrium n of LV(d, (x1, . . . , xd)) is hyperbolic if the Jacobian
matrix of LV(d, (x1, . . . , xd)) at n has no eigenvalue with 0 real part.

Assumption (B2) can also be replaced by one of the following two simpler assump-
tions.

(B3) For Lebesgue almost any mutant trait xd+1 as in (B1), n∗ is hyperbolic.
(B4) For Lebesgue almost any mutant trait xd+1 as in (B1), n∗ is strongly locally

stable.

Proposition 2.6 Assumptions (B1) and (B2) are equivalent to Assumptions (B1)
and (B3), and to Assumptions (B1) and (B4).
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Proof Let k := Card(I (n∗)). Assume that x1, . . . , xd+1 are reordered in a way such
that I (n∗) = {1, 2, . . . , k}. Then it is clear, by the definition of coexistence and the
fact that

DF (x1,...,xd+1)(n∗) =

⎛

⎜⎜⎜⎜⎜⎝

DFx∗(n∗1, . . . , n∗k) (−α(xi , x j )n∗j )1≤i≤k, k+1≤ j≤d+1

0
f (xk+1, x∗) 0

. . .

0 f (xd+1, x∗)

⎞

⎟⎟⎟⎟⎟⎠

that (B2) implies (B4) which also trivially implies (B3). Assuming (B3), the sta-
ble manifold theorem (see e.g. [20] pp. 13–14) says that the set of points such that
the solution of LV(d + 1, (x1, . . . , xd+1)) started at this point converges to n∗ is a
submanifold of (0,∞)d+1 of dimension l, where l is the number of eigenvalues of
DF (x1,...,xd+1)(n∗)with negative real part. In particular, if l < d+1, this manifold does
not contain an open set of (0,∞)d+1, which is in contradiction with (B1). Therefore,
l = d + 1, which implies (B2). 
�

In Sect. 3, various situations ensuring Assumptions (B1) and (B2) [or (B3), or (B4)]
will be discussed.

2.4.2 Definition of the PES and convergence theorem

We define M0 ⊂ MF by

M0 :=
{

d∑

i=1

n̄i (x)δxi ; d ≥ 1, x1, . . . , xn ∈ X coexist

}
.

Theorem 2.7 Assume (A) and (B). Take x1, . . . , xd ∈ X that coexist and assume that
νK

0 =∑d
i=1 nK

i δxi with nK
i → n̄i (x) in probability for all 1 ≤ i ≤ d. Assume finally

that

∀V > 0, log K � 1

K uK
� exp(V K ), as K →∞. (2.14)

Then, (νK
t/K uK

; t ≥ 0) converges to the M0-valued Markov pure jump process

(	t ; t ≥ 0) defined as follows: 	0 =∑d
i=1 n̄i (x)δxi and the process 	 jumps for all

j ∈ {1, . . . , d}

from
d∑

i=1

n̄i (x)δxi to
d∑

i=1

n∗i (x1, . . . , xd , x j + h)δxi

+n∗d+1(x1, . . . , xd , x j + h)δx j+h
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with infinitesimal rate

p(x j )λ(x j )n̄ j (x)
[ f (x j + h; x)]+
λ(x j + h)

m(x j , h)dh. (2.15)

The convergence holds in the sense of finite dimensional distributions on MF equipped
with the topology of the total variation norm.

Remark that, in general, the convergence cannot hold for the Skorohod topology (even
if the space MF is equipped with the weak topology). Indeed, it can be checked in
explicit examples that the total mass of the limit process has jumps. This is in con-
tradiction with the C-tightness of the sequence (νK

t/K uK
, t ≥ 0), which would hold in

case of convergence for the Skorohod topology.
The infinitesimal generator of the process (	t , t ≥ 0) is given by

Lϕ
(

d∑

i=1

n̄i (x)δxi

)
=
∫

X

d∑

j=1

p(x j )λ(x j )n̄ j (x)
[ f (x j + h; x)]+
λ(x j + h)

m(x j , h)dh

×
(
ϕ

(
d∑

i=1

n∗i (x1, . . . , xd , x j + h)δxi

+ n∗d+1(x1, . . . , xd , x j + h)δx j+h

)
− ϕ

(
d∑

i=1

n̄i (x)δxi

))
,

(2.16)

for all measurable bounded function ϕ.
We call this process PES, by analogy with the so-called TSS of Sect. 6.4 of [28] (see
also Sect. 3.1 below). Recall that the equilibrium n∗ needs not to have all nonzero
coordinates, which means that the number of traits in the support of the PES may not
be monotonous.
Note that it follows from Assumption (A) and from (2.6) that the jump rates of the
process 	 are bounded. Moreover, by Assumption (B2), for almost all mutant traits
y such that f (y; x) > 0,

∑d
i=1 n∗i (x1, . . . , xd , y)δxi + n∗d+1(x1, . . . , xd , y)δy ∈ M0.

Thus, the PES is well-defined on R+ and belongs almost surely to M0 for all time.
We now give the general idea of the proof, extending the biological heuristics

of [28]. We refer to Appendix A for the detailed proof.
Let us roughly describe the successive steps of mutation, invasion and competition.
The two steps of the invasion of a mutant in a given population are firstly the stabil-
ization of the resident population before the mutation and secondly the invasion of the
mutant population after the mutation.
Fix η > 0. In the first step, assuming that d traits x1, . . . , xd that coexist are pres-
ent, we prove that the population densities (〈νK

t , 1{x1}〉, . . . , 〈νK
t , 1{xd }〉) belong to

the η-neighborhood of n̄(x) with high probability for large K until the next mutant
y appears. To this aim, we use large deviation results on the problem of exit from a
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population size

0

Fig. 5 The three steps of the invasion of a mutant trait y in a monomorphic population with trait x

domain [15] to prove that the time needed for the population densities to leave the η-
neighborhood of n̄(x) is bigger than exp(V K ) for some V > 0 with high probability.
Therefore, until this exit time, the rate of mutation from trait xi in the population is
close to uK p(xi )λ(xi )K n̄i (x) and thus, the first mutation appears before this exit time
if one assumes that

1

K uK
� eV K .

In particular, the mutation rate from trait xi on the time scale t/K uK is close to

p(xi )λ(xi )n̄i (x).

In the second step, we divide the invasion of a given mutant trait y into 3 phases shown
in Fig. 5, in a similar way as done classically by population geneticists dealing with
selective sweeps [25].
In the first phase (between time 0 and t1 in Fig. 5), the number of mutant individuals is
small, and the resident population stays close to its equilibrium density n̄(x). There-
fore, the dynamics of the mutant individuals is close to a branching process with birth
rate λ(y) and death rate μ(y) +∑d

i=1 α(y, xi )n̄i (x). Hence, the growth rate of this
branching process is equal to the fitness f (y; x) of (2.7), describing the ability of the
initially rare mutant trait y to invade the equilibrium resident population with traits
x1, . . . , xd . If this fitness is positive (i.e. if the branching process is super-critical), the
probability that the mutant population reaches density η > 0 at some time t1 is close
to the probability that the branching process reaches ηK , which is itself close to its
survival probability [ f (y; x)]+/λ(y) when K is large.
In the second phase (between time t1 and t2 in Fig. 5), we use the fact that, when K →
+∞, the population densities (〈νK

t , 1{x1}〉, . . . , 〈νK
t , 1{xd }〉, 〈νK

t , 1{y}〉) are close to
the solution of the Lotka–Volterra system LV(d + 1, (x1, . . . , xd , y)) with the same
initial condition, on any time interval [0, T ]. Assumption (B1) ensures that, if η is
sufficiently small, then any solution to the Lotka–Volterra system starting in some
neighborhood of (n̄1(x), . . . , n̄d(x), 0) converges to a new equilibrium n∗ ∈ R

d+1 as
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time goes to infinity. Therefore, the population densities reach with high probability
the η-neighborhood of n∗ at some time t2.
Finally, in the last phase, we use the same idea as in the first phase: since n∗ is a
strongly locally stable equilibrium (Assumption (B2) ), we can approximate the den-
sities of the traits x j such that n∗j = 0 by branching processes which are sub-critical.
Therefore, they reach 0 in finite time and the process comes back to the first step until
the next mutation.
We will prove that the duration of these three phases is of order log K . Therefore,
under the assumption

log K � 1

K uK
,

the next mutation occurs after these three phases with high probability.

3 Particular cases and extensions of the PES

In this section, we discuss various situations when Assumptions (B1) and (B2) are
satisfied allowing one to explicitly obtain the PES.

3.1 The “no coexistence” case: an extension of the TSS

In this section we characterize the case when the PES is well defined until the first
co-existence time of two different traits. Let us introduce the assumption

(C1) For all x ∈ X , the set of y such that f (y; x) = 0 has Lebesgue measure 0,

where f (y; x) is defined in (2.12). It will be shown below that Assumption (B) with
d = 1 (only one resident trait) follows from (C1).
Let us now introduce the following killed PES (	(1)t , t ≥ 0) as a Markov jump process
on M0 ∪ {∂}, where ∂ is a cemetery state, with infinitesimal generator L(1) defined as
follows. For a bounded measurable function ϕ on M0 ∪ {∂}, we have L(1)ϕ(∂) = 0
and

L(1)ϕ(n̄(x)δx )

=
∫

X
(ϕ (n̄(x + h)δx+h)− ϕ(n̄(x)δx ))

×p(x)λ(x)n̄(x)
[ f (x + h; x)]+
λ(x + h)

1{ f (x;x+h)<0}m(x, h)dh

+
∫

X
(ϕ(∂)− ϕ(n̄(x)δx )) p(x)λ(x)n̄(x)1{ f (x;x+h)>0, f (x+h;x)>0}m(x, h)dh.

(3.1)

By construction, the killed PES (	(1)t , t ≥ 0) is always monomorphic before killing.
Once the killed PES reaches the cemetery state ∂ , it no longer jumps.
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We have the following corollary of Theorem 2.7.

Corollary 3.1 With the same assumption and notation as in Theorem 2.7, except that
Assumption (B) is replaced by Assumption (C1) and that d = 1, let

τK := inf{t ≥ 0 : Supp(νK
t ) = {x, y} such that (x, y) coexist}.

Then the process

(
νK

t
K uK

1{ t
K uK

≤τK

} + ∂ 1{ t
K uK

>τK

}, t ≥ 0

)
(3.2)

converges as K →+∞ to the killed PES (	(1)t , t ≥ 0) with initial condition 	(1)0 =
n̄(x)δx . The convergence is understood in the same sense as in Theorem 2.7.

Proof Let us first prove that Assumption (B) for d = 1 is implied by (C1). The asymp-
totic behavior of two-dimensional competitive Lotka–Volterra systems is well-known
(see e.g. [24]):

• if f (x; y) > 0 and f (y; x) < 0, any solution of LV(2, (x, y)) starting from
R+ × (0,∞) converges to n∗(y, x) = (n̄(x), 0),

• if f (x; y) < 0 and f (y; x) > 0, any solution of LV(2, (x, y)) starting from
(0,∞)× R+ converges to n∗(x, y) = (0, n̄(y)),

• if f (x; y) > 0 and f (y; x) > 0, any solution of LV(2, (x, y)) starting from
(0,∞)2 converges to n∗(x, y) = n∗(y, x) = n̄(x, y),

• if f (x; y) < 0 and f (y; x) < 0, (n̄(x), 0) and (0, n̄(y)) are both locally strongly
stable.

Moreover, all the equilibria are hyperbolic if and only if f (y; x) �= 0 and f (x; y) �= 0.
Therefore, Assumption (C1) implies Assumption (B) for d = 1 since m(x, h)dh is
absolutely continuous w.r.t. Lebesgue’s measure.
Therefore, the generator (3.1) corresponds to defining the killed PES	(1) as the PES,
and send it to the cemetery state ∂ as soon as a mutant trait x+h appears, that coexists
with the resident trait x ∈ X . Note that ∂ is reached as soon as a mutant appears, that
could coexist with the resident trait, even if this mutant actually does not invade the
population. That explains why the invasion probability [ f (x + h; x)]+/λ(x + h) does
not appear in the last line of (3.1).
Note that under Assumptions (A) and (C1), the killed PES (	(1)t , t ≥ 0) is almost
surely well-defined. The convergence of the processes (3.2) to 	(1) is obtained by a
proof easily adapted from the one of Theorem 2.7. 
�
Remark 3.2 The killed PES generalizes the so-called TSS, introduced in [28], and rig-
orously studied in [4]. The TSS is the support of the limiting process of the sequence
(3.2) in the case when the parameters of the microscopic model prevent the coexis-
tence of any two traits. Such an assumption, known as “Invasion-Implies-Fixation”
(IIF) principle [17] is given by:

(IIF) for all x ∈ X , almost all y ∈ X such that f (y; x) > 0 satisfy f (x; y) < 0.
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Hence, the PES 	 has the form

	t = n̄(Xt )δXt , t ≥ 0,

where X is called the TSS and is a Markov pure jump process on X with infinitesimal
generator

Lϕ(x) =
∫

Rl

(ϕ(x + h)− ϕ(x))p(x)λ(x)n̄(x) [ f (x + h; x)]+
λ(x + h)

m(x, h)dh. (3.3)

The killed PES (	(1)t , t ≥ 0) prevents the coexistence of two or more traits. Therefore,
this process is not suited to our study of evolutionary branching in Sect. 4. To this end,
we need to examine a more general situation.

3.2 The “no triple coexistence” case

In this section we characterize the case when the PES is well defined until the first
coexistence time of three different traits. To this aim, we first extend the fitness func-
tion f (z; x, y) of (2.13) to any x, y ∈ X such that f (x; y) f (y; x) > 0 (and not only
for the ones that coexist). It can be easily checked that α(x, x)α(y, y)−α(x, y)α(y, x)
cannot be 0 under this condition. This extension is needed in the results of Zeeman [33]
we use below.
We can now introduce the following assumption:

(C2) For all x, y ∈ X that coexist, the set of z such that f (x; z) = 0, f (z; x) =
0, f (y; z) = 0, f (z; y) = 0, f (x; y, z) = 0 or f (y; x, z) = 0 (when these
last quantities are defined) has Lebesgue measure 0.

We denote by (C) the assumption (C1)+(C2).
In the case when the mutant z invades a resident population with coexisting traits x

and y (i.e. if x, y, z satisfy f (x; y) > 0, f (y; x) > 0 and f (z; x, y) > 0 by Proposi-
tions 2.3 and 2.4), one needs to study the asymptotic behavior of the three-dimensional
competitive Lotka–Volterra system LV(3, (x, y, z)). The complete classification of
such 3-dimensional systems has been done by Zeeman [33] in terms of the signs of
the fitnesses involved in (C2). The case of coexisting x and y and invading z leads
to 10 classes of asymptotic behaviors represented in Figure 6, labelled with the same
numbers as in [33]. The precise meaning of these pictures is given in Appendix B.
Classes 7 and 8 correspond to the extinction of both resident traits and survival of
the mutant; classes 9 to 12 correspond to the extinction of one resident trait and the
coexistence of the two others; classes 26, 29, 31, 33 correspond to the coexistence of
the three traits. Thus the triple coexistence case is described by the set of traits

Ccoex :={(x, y, z)∈X 3 : LV(3, (x, y, z)) belongs to classes 26, 29, 31 or 33}. (3.4)

As can be checked from Fig. 6, if x and y coexist and f (z; x, y) > 0, then (x, y, z) ∈
Ccoex if and only if both of the following properties are satisfied
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Fig. 6 The different equivalence classes of phase portraits on � of three-dimensional competitive
Lotka–Volterra systems where two traits coexist and the last one has a positive fitness w.r.t. the two others

(P1) If f (y; x, z) is well-defined, then f (x; z), f (z; x) and f (y; x, z) have all the
same sign.

(P2) If f (x; y, z) is well-defined, then f (y; z), f (z; y) and f (x; y, z) have all the
same sign.

Similarly as in Sect. 3.1, we define the killed PES (	(2)t , t ≥ 0) as a Markov pure
jump process on M0 ∪ {∂}, with infinitesimal generator L(2). The latter is given
by (2.16) for d = 1, and for d = 2 and coexisting x1, x2, it is modified as follows. Let
ν :=∑2

i=1 n̄i (x1, x2)δxi , then

L(2)ϕ(ν) =
∫

Rl

2∑

j=1

(
ϕ

(
2∑

i=1

n∗i (x1, x2, x j + h)δxi + n∗3(x1, x2, x j + h)δx j+h

)

− ϕ(ν)

)
p(x j )λ(x j )n̄ j (x1, x2)

[ f (x j + h; x1, x2)]+
λ(x j + h)

1{(x1,x2,x j+h)�∈Ccoex}m(x j , h)dh

+
∫

Rl

2∑

j=1

(ϕ(∂)−ϕ(ν)) p(x j )λ(x j )n̄ j (x1, x2)1{(x1,x2,x j+h)∈Ccoex}m(x j , h)dh.

(3.5)

In (3.5), for (x, y, z) /∈ Ccoex, the notation n∗(x, y, z) denotes the unique stable equi-
librium of LV(3, (x, y, z)) given by classes 7 to 12 in Fig. 6.
This generator defines the killed PES as the PES, and sends it to the cemetery state as
soon as a mutant trait x3 appears in a dimorphic population of traits x1, x2 ∈ X such
that the Lotka–Volterra dynamics associated with traits x1, x2, x3 belongs to classes
26, 29, 31 or 33. Notice that the killed PES’s support has at most two traits at each
time.
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This killed PES is the limit of the individual-based process killed at the first triple-
coexistence time.

Corollary 3.3 With the same assumption and notation as in Theorem 2.7, except that
Assumption (B) is replaced by Assumption (C) and that d ∈ {1, 2}, let

τ̃K := inf{t ≥ 0 : Supp(νK
t ) = {x, y, z} such that (x, y, z) ∈ Ccoex}.

Then the process

(
νK

t
K uK

1{ t
K uK

≤τ̃K

} + ∂ 1{ t
K uK

>τ̃K

}, t ≥ 0

)
(3.6)

converges as K →+∞ to the killed PES (	(2)t , t ≥ 0) with initial condition 	(2)0 =∑d
i=1 n̄i (x)δxi .

Proof We first need to check that Assumption (C) implies Assumption (B) for d = 2
and for all (x, y, z) /∈ Ccoex. Since no pattern as in Fig. 4 occurs in diagrams 7 to 12
in Fig. 6, we see that Assumption (B1) is always satisfied for (x, y, z) /∈ Ccoex. More-
over, as before, all the steady states are hyperbolic if all the two- and three-dimensional
fitnesses are nonzero. Thus Assumption (B) is satisfied for all (x, y, z) ∈ X 3\Ccoex
as soon as Assumption (C2) is satisfied.
Remark that Assumption (B1) could be violated in Ccoex, either if the interior equi-
librium is surrounded by a stable cycle, or in diagram 26 in the case when the pattern
of Fig. 4 may appear.
Under Assumptions (A) and (C), the killed PES (	(2)t , t ≥ 0) is almost surely well-
defined. The convergence of the processes (3.6) to 	(2) is obtained by a proof easily
adapted from the one of Theorem 2.7. 
�
We will show in Sect. 4 that the killed PES obtained in this section is sufficient to
study the phenomenon of evolutionary branching when X ⊂ R.

3.3 Back to our example

Let us prove that Assumption (C) is satisfied by the parameters of the example of
Sect. 2.2.
Recall the definition of the function α̃ in (2.3). If Assumption (C1) were not true, then,
as the functions λ and α̃ can be extended as analytic functions on C, one should have

f (y; x) = 0, ∀y ∈ X = [−2, 2],

for at least one x ∈ [−2, 2]. In view of Formula (2.12) for f (y; x), this implies that
the functions r (which is λ in this case) and y �→ α̃(y − x) are linearly dependent,
which cannot hold unless σb = σα .
Similarly, if Assumption (C2) were not true, one would have either

f (x; z) = 0, ∀z ∈ X = [−2, 2],
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for some x ∈ [−2, 2], or

f (x; y, z) = 0, ∀z ∈ X = [−2, 2],

for some x �= y ∈ [−2, 2]. In the first case, this would mean that the function
z �→ λ(z)α̃(x − z) is constant, as α(z, z) = α̃(0) = 1. But this does not hold. In the
second case, in view of (2.13), (2.10) and (2.11), one would have that the family of
functions

{
1; z �→ α̃(z − y)2; z �→λ(z)α̃(y−z); z �→λ(z)α̃(x−z); z �→ α̃(x−z)α̃(y−z)

}

is linearly dependent. After some algebra, we want to prove that, if for some
a0, . . . , a4 ∈ R,

a0ez2/σ 2
α + a1 e2yz/σ 2

α + a2 e(x+y)z/σ 2
α + e−(σ

−2
b −σ−2

α )z2/2
(

a3 eyz/σ 2
α + a4 exz/σ 2

α

)

= 0

for all z ∈ R, then a0 = · · · = a4 = 0. If σb < σα , this can be easily deduced from
asymptotic considerations when z →+∞ and−∞. The case σb > σα can be handled
similarly.
Therefore, we have proved that, provided σb �= σα , the example of Sect. 2.2 satisfies
Assumption (C).
Note that in higher dimensions l, the previous argument, based on analytic functions
properties, cannot apply. However, the same method could apply for other large classes
of functions, for example if the functions λ and α̃ were polynomials in x ∈ X .

4 Evolutionary branching and small jumps

Our main goal in this section is to study the PES of Theorem 2.7 in order to establish
an evolutionary branching criterion. We will assume, in all that follows, that the initial
population is monomorphic (at time 0, all individuals have the same trait).
We have seen in Sect. 3.1 that, as long as there is no coexistence of two traits in the
population, the support of the PES	 is reduced to a single trait and	 = 	(1), where
	(1) is the killed PES with generator (3.1). In this section, our aim is to characterize
the traits around which coexistence is possible and how evolutionary branching can
then occur, as observed in Fig. 2b. To do so, following a general idea of the biological
literature [10,11,16–18,28], a key assumption is that the mutation amplitude is small.
Under this assumption, we study the behavior of the PES on large time scales, which
allows us to observe global evolutionary dynamics.
In Sect. 4.1, we prove that when ε tends to zero, the TSS with small mutation steps
scaled by ε, converges on the time scale t

ε2 , to the solution of a (deterministic) ODE,
called the canonical equation of adaptive dynamics, or, more simply the canonical
equation. We then obtain a similar result for the PES in dimension l = 1, and we
show that evolutionary branching can only occur on a longer time scale and in the

123



66 N. Champagnat, S. Méléard

neighborhood of specific points of the trait space called evolutionary singularities.
In Sect. 4.2, we give a precise definition of evolutionary branching and we prove the
main result of this section, giving a criterion for evolutionary branching in the limit
of small mutational jumps.
First, we introduce the following additional Assumptions (A′):

(A′1) There exists ε̄ > 0 such that for all x ∈ X and h ∈ Supp(m(x, .)), x + εh ∈ X
for all ε ≤ ε̄. This holds for example if X is convex for ε̄ = 1.

(A′2) The map (x, h) �→ m(x, h) is Lipschitz continuous on X × R
d .

(A′3) The functions λ(·) and μ(·) are C3 on X and the function α(·, ·) is C4 on X 2.

Later in this section, we will also need Assumption (A′′):

(A′′) We assume that the trait space is one-dimensional (l = 1) and that, for any x
in the interior of X , ∫

R− m(x, h)dh > 0 and
∫
R+ m(x, h)dh > 0.

The assumption that l = 1 is required as our proof of the evolutionary branching
criterion is based on monotonicity properties, which can be only used in dimension 1.
The second part of this assumption means that mutants can appear from a trait x on
both sides of x , which is biologically relevant.
Finally, let us introduce the parameter ε ∈ (0, ε̄] scaling the size of mutation. Thanks to
Assumption (A′1), it is possible to define a PES in which mutational jumps are scaled
by the parameter ε, by replacing in its generator (2.16) m(x j , h)dh by m(x j , h)dh ◦
H−1
ε for all j ∈ {1, . . . , d}, where Hε(h) = εh. Under Assumptions (A) and (B),

by Theorem 2.7, this “rescaled PES” (	εt , t ≥ 0) is well-defined for all time. If
only Assumptions (A) and (C) are satisfied, Corollary 3.3 only guarantees that the
rescaled PES exists until the first time of triple coexistence. In this case, we denote by
(	

(2),ε
t , t ≥ 0) the corresponding “rescaled killed PES”. Finally, we do a time scaling

of order 1/ε2 to obtain the process

	̃εt =
{
	ε

t/ε2 if Assumptions (A) and (B) are satisfied

	
(2),ε
t/ε2 if only Assumptions (A) and (C) are satisfied.

Since both 	εt and 	(2),εt agree as long as there is no triple coexistence, and since we
will only be interested in the sequel to the cases when the PES is monomorphic or
dimorphic, we will not need to distinguish between these two cases.

4.1 The PES and the canonical equation of adaptive dynamics

Doing a similar time scaling as for 	̃ε, we can define for all ε ∈ (0, 1], the ε-rescaled
TSS (Xεt , t ≥ 0) by modifying the generator (3.3) as follows: for any bounded mea-
surable function ϕ,

Lεϕ(x) := 1

ε2

∫

Rl

(ϕ(x + εh)− ϕ(x))[g(x + εh; x)]+m(x, h)dh, (4.1)
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where

g(y; x) = p(x)λ(x)n̄(x)
f (y; x)

λ(y)
, ∀x, y ∈ X .

Formally speaking, the multiplicative term ε−2 takes into account that the integral
term is of order ε2, since g(x; x) = f (x; x) = 0.
A key fact is that, as a consequence of Corollary 3.3, the process Xε can be coupled
with the process 	̃ε in such a way that

	̃εt = n̄(Xεt )δXεt , ∀t < τε, (4.2)

where τ ε is the first coexistence time:

τ ε := inf{t ≥ 0 : Supp(	̃εt ) = 2}
= inf{t ≥ 0 : f (Xεt ; Xεt−) > 0 and f (Xεt−; Xεt ) > 0}, (4.3)

by Proposition 2.4. We say that coexistence occurs in the PES 	̃ if τ ε < +∞.
Let us now state the convergence theorem of the rescaled TSS to the canonical equa-
tion of adaptive dynamics. Its proof, based on a standard uniqueness-compactness
method, is given in Appendix C.

Theorem 4.1 Assume (A) and (A′). Suppose also that the family of initial states
{Xε0}0<ε≤ε̄ is bounded in L

2 and converges in law to a random variable X0 as ε→ 0.
Then for each T > 0, the sequence (Xε)ε converges when ε → 0, for the Sko-
rohod topology of D([0, T ],X ), to the process (x(t), t ≤ T ) with initial state X0 and
with deterministic sample paths, unique solution of the ordinary differential equation,
known as canonical equation of adaptive dynamics:

dx(t)

dt
=
∫

Rl

h[h · ∇1g(x(t); x(t))]+ m(x(t), h)dh, (4.4)

where ∇1g denotes the gradient of g(y; x) with respect to the first variable y.

Remark 4.2 In the case when m(y, ·) is a symmetrical measure on R
l for all y ∈ X ,

Eq. (4.4) gets the classical form, heuristically introduced in [10],

dx(t)

dt
= 1

2
K (x(t))∇1g(x(t); x(t)), (4.5)

where K (x) is the covariance matrix of m(x, h)dh.

Let us now introduce some definitions and notation. In dimension l = 1, the canonical
equation (4.4) reads

dx(t)

dt
=
∫

R

h[h∂1g(x(t); x(t))]+ m(x(t), h)dh. (4.6)
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The equilibria of this equation are given by the points x∗ such that either ∂1g(x∗; x∗) =
0, or

∫
R+ m(x∗, h)dh = 0 and ∂1g(x∗; x∗) > 0, or

∫
R− m(x∗, h)dh = 0 and

∂1g(x∗; x∗) < 0 (because of the positive part involved in the integral). We will con-
centrate on the points such that ∂1g(x∗; x∗) = 0, or equivalently, ∂1 f (x∗; x∗) = 0,
since

∂1g(x; x) = p(x)n̄(x)∂1 f (x; x).

Remark that, since f (x; x) = 0 for all x ∈ X ,

∂1 f (x; x)+ ∂2 f (x; x) = 0, ∀x ∈ X (4.7)

∂11 f (x; x)+ 2∂12 f (x; x)+ ∂22 f (x; x) = 0, ∀x ∈ X . (4.8)

Therefore, ∂1 f (x∗; x∗) = ∂2 f (x∗; x∗) = 0.

Definition 4.3 The points x∗ ∈ X such that ∂1g(x∗; x∗) = 0, or equivalently,
∂1 f (x∗; x∗) = ∂2 f (x∗; x∗) = 0 are called evolutionary singularities (ES).

Note that under Assumption (A′′), all equilibria of (4.6) are evolutionary singularities,
except possibly the points of the boundary ∂X of X .

Recall the definition (4.3) of the first coexistence time τ ε. For any η > 0, we define
the entrance time of the process in a η-neighborhood of an ES x∗,

θεη (x
∗) = inf{t ≥ 0, Supp(	̃εt ) ∩ (x∗ − η, x∗ + η) �= ∅}. (4.9)

Theorem 4.4 Assume that (A), (A′), (A′′) and either (B) or (C) hold. Assume also
that 	̃ε0 = n̄(x0)δx0 where x0 is not an ES. Let x(t) be the solution to (4.4) such that
x(0) = x0 and let x∗ := limt→+∞ x(t). This limit exists and is finite as l = 1 and X
is compact, and x∗ is an equilibrium of (4.4). Assume that x∗ is an ES. Then,

(i) For any T > 0,

lim
ε→0

P(τ ε > T ) = 1.

(ii) For any T > 0, the process 	̃εt converges as ε → 0 to the (deterministic)
process n̄(x(t))δx(t) for the Skorohod topology on D([0, T ],MF ), where MF

is equipped with the weak topology.
(iii) For any η > 0, there exists ε0 > 0 such that, for all ε < ε0,

P(θεη (x
∗) ≤ τ ε) = 1,

and the process Xεt∧θεη (x∗) is a.s. monotone, where Xεt is defined by (4.2) for all

t < τε.

The proof of this result is based on Theorem 4.1, the coupling (4.2) and the following
lemma.
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Lemma 4.5 Assume (A), (A′) and (A′′).
(1) The solution x(t) of (4.4) starting from a point that is not an equilibrium cannot

attain an ES in finite time.
(2) Fix η > 0 and any connected subset S of {y ∈ X : |∂1 f (y; y)| > η}. Then, for

all y, z ∈ S close enough, f (y; z) f (z; y) < 0 and (z − y) f (z; y) has constant
sign.

(3) Assume that x0 = x(0) is not an ES and let IT = {x(t), t ∈ [0, T ]}. Then, for
any sufficiently small η′ > 0, for any y at a distance to IT smaller than η′ and for
any z sufficiently close to y, f (y; z) f (z; y) < 0 and (z− y) f (z; y) has constant
sign.

Proof (1) Let C be a constant such that x �→ ∫
R

h[h · ∂1g(x; x)]+m(x, h)dh is
C-Lipschitz. Then, for any ES x∗,

∣∣∣∣
d

dt
(x(t)− x∗)2

∣∣∣∣ ≤ 2 |ẋ(t)| |x(t)− x∗| ≤ 2C (x(t)− x∗)2.

Thus, |x(t)− x∗| ≥ |x(0)− x∗| exp(−Ct) > 0.
(2) Since ∂1 f (y; y) is continuous, ∂1 f (y; y) has constant sign for all y ∈ S. So fix
y ≤ z in S and assume that ∂1 f (y; y) > η and ∂1 f (y; y) > η. Since f (y; y) = 0,
a second-order Taylor–Lagrange expansion of f (z; y) at (y, y) implies that f (z; y) ≥
η(z − y)/2 provided that 0 ≤ z − y ≤ η/C ′, where C ′ > 0 is a constant uniformly
bounding the second-order derivatives of f (·; ·) on the compact set X 2. Similarly,
f (y; z) ≤ η(y−z)/2, and one obtains reversed inequalities when ∂1 f (y; y) < −η and
∂1 f (y; y) < −η. In any case, f (y; z) f (z; y) < 0 if |z−y| ≤ η/C ′ and (z−y) f (z; y)
has constant sign.
(3) Remark first that, from Point (1), η := inf y∈IT |∂1 f (y; y)| > 0. Therefore, for
η′ > 0 sufficiently small, {y ∈ X : dist(y, IT ) ≤ η′} ⊂ {y ∈ X : |∂1 f (y; y)| > η/2}.
The result then follows from Point (2). 
�
Proof of Theorem 4.4 (i) Recall from (4.2) that, before the stopping time τ ε, the sup-
port of 	̃εt is a singleton whose dynamics is that of the rescaled TSS (Xεt , t ≥ 0).
Because of Theorem 4.1, when ε → 0, the TSS is close to the canonical equation.
In particular, for all η′ > 0, its values on the time interval [0, T ] belong to the set
{x ∈ X : dist(x, IT ) ≤ η′} with probability converging to 1. Moreover, since X is
compact, Supp(m(x, ·)) ⊂ {x − y; x, y ∈ X } has diameter bounded by 2Diam(X ).
Therefore, the distance between a mutant trait and the trait of its progenitor in the
rescaled PES 	̃ε is a.s. less that 2εDiam(X ). Hence, because of Lemma 4.5 (3), for
η′ and ε small enough, on the event {sup0≤t≤T ‖Xεt − x(t)‖ < η′}, no mutant in the
PES can coexist with the resident trait before time T and thus τ ε > T .

(ii) This is an immediate consequence of (4.2), Theorem 4.1 and Point (i).
(iii) Fix η > 0. Let S be the connected component of X \⋃y∗ is an ES(y

∗−η, y∗+η)
containing x0 and let θεS denote the first exit time of the support of the PES 	̃ε

from S. Similarly as in Point (i), we deduce from Lemma 4.5 (2) that θεS ≤ τ ε a.s. if
η and ε are small enough. Moreover, the generator (4.1) of the TSS Xε involves the
positive part of f (x + εh; x), where h is drawn according to m(x, h)dh. Therefore,
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taking ε small enough and using Lemma 4.5 (2) again, a jump in the TSS before time
θεS is only possible towards larger trait values if (z− y) f (z; y) > 0 in Lemma 4.5 (2),
or towards smaller trait values conversely. Thus, the TSS process is a.s. monotone
before time θεS . By definition of the point x∗, we then see that the exit of the TSS from
the interval S can only occur in the direction of x∗, i.e. Xε

θεS
∈ (x∗ −η, x∗ +η). Hence

θεS = θεη (x
∗) a.s., and the proof of Theorem 4.4 is completed. 
�

Remark 4.6 Theorem 4.4 allows one to describe the phase of convergence before
evolutionary branching in Figs. 1b and 2b. This result also explains why the time of
convergence is approximately multiplied by four when the mutation size σ is divided
by two, in Figs. 2b and 3b.
Theorem 4.4 implies that, when the initial population is monomorphic and away from
evolutionary singularities, evolutionary branching can only occur in the neighborhood
of an evolutionary singularity, and after time T/ε2 with probability converging to 1
when ε→ 0, for all T > 0.

The next result shows that we can restrict to the ES that are not repulsive for the
canonical equation.

Proposition 4.7 Under the assumptions of Theorem 4.4, coexistence of two traits in
the PES 	̃ε can only occur in the neighborhood of evolutionary singularities x∗ ∈ X
which satisfy

∂22 f (x∗; x∗) ≥ ∂11 f (x∗; x∗). (4.10)

More precisely, for any neighborhood U of the set of evolutionary singularities satis-
fying (4.10), for all ε small enough,

P(τ ε < +∞ and Supp(	ετε−) �∈ U) = 0.

Proof Let us remark that an ES such that

∂11 f (x∗; x∗)+ ∂12 f (x∗; x∗) > 0. (4.11)

is always a repulsive point for the canonical equation, in the sense that, for any solution
x(t) of the canonical equation starting sufficiently close from x∗, the distance between
x(t) and x∗ is non-decreasing in the neighborhood of time 0. In other words, there
exists a neighborhood U of x∗ such that no solution of the canonical equation (4.6)
starting out of U can enter U . To see this, it suffices to observe that (4.11) implies that
there exists ηx∗ with

• ∂1g(x; x) > 0 if x ∈ (x∗, x∗ + ηx∗ ],
• ∂1g(x; x) < 0 if x ∈ [x∗ − ηx∗ , x∗).
Observe that, by (4.8), (4.11) is equivalent to ∂11 f (x∗; x∗)− ∂22 f (x∗; x∗) > 0.
Let S be the set of repulsive ES and define V = ∪x∗∈S(x∗ − ηx∗ , x∗ − ηx∗). Fix U
as in the statement of Proposition 4.7 and assume (without loss of generality) that
U ∩ V = ∅ and x �∈ U ∪ V . Let [a, b] be any connected component of X \ (U ∪ V).
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Since ∂1 f (y, y) �= 0 for all y ∈ [a, b], Lemma 4.5 (2) shows that coexistence never
happens in a monomorphic population with trait in X \ (U ∪ V) if ε is sufficiently
small. Similarly, for ε sufficiently small, no mutant in V born from a monomorphic
population with trait not belonging to V has a positive fitness. Therefore, the TSS
cannot drive the population inside V starting from outside. Thus, if coexistence occurs
in finite time, it must occur in U . This completes the proof of Proposition 4.7. 
�

4.2 Evolutionary branching criterion

In this section we prove a criterion of evolutionary branching.

4.2.1 Definition and main result

We first need to precisely define what we mean by evolutionary branching.

Definition 4.8 Fix ε > 0 and x∗ an ES. For all η > 0, we say that there is η-branching
at x∗ for the PES 	̃ε if

• there exists t1 > 0 such that the support of the PES at time t1 is composed of a
single point belonging to [x∗ − η, x∗ + η] (i.e. θεη (x

∗) <∞);
• there exists t2 > t1 such that the support of the PES at time t2 is composed of

exactly 2 points separated by a distance of more than η/2;
• between t1 and t2, the support of the PES is always a subset of [x∗−η, x∗+η], and

is always composed of at most 2 traits, and has nondecreasing (in time) diameter.

We only consider binary evolutionary branching. We will actually prove in Corol-
lary 4.14 that the subdivision of a single branch into three branches (or more) in the
neighborhood of an evolutionary singularity is a.s. impossible under the assumptions
of the following theorem. Note that the notion of evolutionary branching requires the
coexistence of two traits (i.e. τ ε < +∞), but also that these two traits diverge from
one another.
Our main result is the following.

Theorem 4.9 Assume (A), (A′), (A′′) and either (B) or (C). Assume also that 	̃ε0 =
n̄(x)δx and that the canonical equation with initial condition x converges to an ES x∗
in the interior of X such that

∂22 f (x∗; x∗) > ∂11 f (x∗; x∗) (4.12)

and ∂22 f (x∗; x∗)+ ∂11 f (x∗; x∗) �= 0. (4.13)

Then, for all sufficiently small η, there exists ε0 > 0 such that for all ε < ε0,

(a) if ∂11 f (x∗; x∗) > 0,P(η-branching at x∗ for 	̃ε) = 1.
(b) if ∂11 f (x∗; x∗) < 0,P(η-branching at x∗ for 	̃ε) = 0. Moreover,

P

(
∀t ≥ θεη (x∗), Card(Supp(	̃εt )) ≤ 2 and Supp(	̃εt ) ⊂ (x∗ − η, x∗ + η)

)

= 1,

where θεη (x
∗) has been defined in (4.9).
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This criterion appeared for the first time in [28, Sect. 3.2.5] with a heuristic justifica-
tion. We see that, locally around x∗, one of the two following events can occur almost
surely: either there is binary evolutionary branching and the two branches diverge
monotonously, or there is no evolutionary branching, and the population stays forever
inside any neighborhood of x∗. Coexistence can occur in this case, but cannot drive
the support of the population away from a small neighborhood of x∗. We will actually
prove that, in this case, as soon as there is coexistence of two traits in the population,
the diameter of the support of the PES cannot increase before it reaches 0 (i.e. until
the next time when the population becomes monomorphic).
The proof of this result is given in the following subsections. In Sect. 4.2.3, we prove
regularity results on the two- and three-dimensional fitness functions and give their
second order expansions in the neighborhood of evolutionary singularities. A first cor-
ollary of this result is given in Sect. 4.2.4 where, using the results of Zeeman [33] and
Fig. 6, we show that no triple coexistence can occur in the neighborhood of evolution-
ary singularities. Finally, a case by case study of the zone of coexistence and of the
signs of fitness functions in the neighborhood of an evolutionary singularity allows us
to conclude the proof in Sect. 4.2.5.
Before coming to the proof and in order to illustrate the difference between coexis-
tence and evolutionary branching, we state a result that will be needed in the course
of the proof of Theorem 4.9.

Proposition 4.10 Assume (A2) and that λ,μ and α are C2. Let x∗ ∈ X be any ES.

(a) If ∂11 f (x∗; x∗) + ∂22 f (x∗; x∗) > 0, then for all neighborhood U of x∗, there
exist x, y ∈ U that coexist.

(b) If ∂11 f (x∗; x∗) + ∂22 f (x∗; x∗) < 0, then there exists a neighborhood U of x∗
such that any x, y ∈ U do not coexist.

This shows that the criterion of evolutionary branching (∂11 f (x∗; x∗) > 0) is dif-
ferent from the criterion of coexistence (∂11 f (x∗; x∗) + ∂22 f (x∗; x∗) > 0). If
one assumes as in Theorem 4.9 that ∂22 f (x∗; x∗) > ∂11 f (x∗; x∗), the evolu-
tionary branching condition ∂11 f (x∗; x∗) > 0 implies the coexistence criterion
∂11 f (x∗; x∗)+∂22 f (x∗; x∗) > 0, as expected. The proof of this proposition is deferred
until Sect. 4.2.5.

4.2.2 Example

Let us come back to the example introduced in Sect. 2.2. The parameters of the model
satisfy Assumptions (A), (A′), (A′′) and (C) (see Sect. 3.3).
The fitness function is

f (y; x) = λ(y)− α(y, x)n̄(x)

= exp

(
− y2

2σ 2
b

)
− exp

(
− (x − y)2

2σ 2
α

)
exp

(
− x2

2σ 2
b

)
.
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Computation gives

∂1 f (x∗; x∗) = − x∗

σ 2
b

exp

(
− (x

∗)2

2σ 2
b

)
= 0 ⇐⇒ x∗ = 0.

Moreover, ∂11 f (0; 0) = 1
σ 2
α
− 1

σ 2
b

and ∂22 f (0; 0) = 1
σ 2
α
+ 1

σ 2
b
. Thus, the coexistence

criterion of Proposition 4.10 (a) is always satisfied. We furthermore observe that (4.12)
and (4.13) hold, and that

∂11 f (0; 0) > 0 ⇐⇒ σα < σb.

Then if σα < σb, we have almost surely branching and if σα > σb, we have only
coexistence. This is consistent with Fig. 2a and b.

4.2.3 Trait smoothness of fitnesses around evolutionary singularities

The problem of local expansion of fitness functions has been already studied in [12]
for general models. In this section, we establish regularity and expansion results on
our two- and three-dimensional fitness functions in the neighborhood of evolutionary
singularities. To this aim, we need the following lemma.

Lemma 4.11 Let h(x, y, z) be a Ck function for k ≥ 1 defined on X 3 such that
h(x, x, z) = 0 for all x, z ∈ X . Then, the function

(x, y, z) �→ h(x, y, z)

x − y

can be extended on {x = y} as a Ck−1 function ĥ(x, y, z) on X 3 by setting ĥ(x, x, z) =
∂1h(x, x, z) for all x, z ∈ X .

Proof Taylor’s formula with integral remainder yields

h(x, y, z)

x − y
=

1∫

0

∂1h(y + (x − y)u, y, z)du

for all x �= y. The right-hand side also has a sense for x = y and defines a Ck−1

function on X 3. 
�
Let x∗ ∈ X be an ES as in the statement of Theorem 4.9. By Assumptions (A) and (A′′),
the two-dimensional fitness function f (y; x) defined in (2.12) is well-defined for all
x, y ∈ X and is a C3 function. We can extend the definition of the three-dimensional
fitness function

f (z; x, y) = r(z)− α(z, x)n̄1(x, y)− α(z, y)n̄2(x, y),
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where n̄i (x, y), i = 1, 2, are defined in (2.10) and (2.11) to all x, y ∈ X such that

α(x, x)α(y, y)− α(x, y)α(y, x) �= 0,

and the following result holds for this extended three-dimensional fitness function.
We will also use the notation

a = ∂11 f (x∗; x∗) and c = ∂22 f (x∗; x∗). (4.14)

Note that, by (4.8),

∂12 f (x∗; x∗) = −a + c

2
. (4.15)

Proposition 4.12 Under the assumptions (A2), (A′3) and (4.13), the following prop-
erties hold.

(i) For all x, y ∈ X in a neighborhood of x∗,

x �= y �⇒ α(x, x)α(y, y) �= α(x, y)α(y, x).

This implies in particular that n̄(x, y) (defined in Definition 2.2) and f (·; x, y)
are well-defined for such x, y.

(ii) When x, y → x∗ in such a way that x �= y,

n̄1(x, y)+ n̄2(x, y) −→ n̄(x∗) = r(x∗)
α(x∗, x∗)

; (4.16)

f (z; x, y) −→ f (z; x∗), ∀z ∈ X . (4.17)

(iii) With the notation (4.14), as x, y → x∗,

f (y; x) = 1

2
(x − y)

(
c(x − x∗)− a(y − x∗)

)

+o
(|x − y| (|x − x∗| + |y − x∗|)). (4.18)

(iv) The function f (z; x, y) can be extended as a C2 function on {(x, y, z) : z ∈
X , x, y ∈ U} for some neighborhood U of x∗ in X . Still denoting by f (z; x, y)
the extended function, as x, y → x∗,

f (z; x, y) = a

2
(z − x)(z − y)+ o (|z − x | |z − y|) . (4.19)

Proof Let D(x, y) := α(x, x)α(y, y)− α(x, y)α(y, x). It follows from Lemma 4.11
that D(x, y)/(x − y) can be extended on X 2 as a C3 function, which has value

(∂1α(x, x))α(x, x)+ (∂2α(x, x))α(x, x)− (∂1α(x, x))α(x, x)

−α(x, x)(∂2α(x, x)) = 0
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at the point (x, x). Therefore, Lemma 4.11 can be applied once more to prove that
D(x, y)/(x − y)2 can be extended as a C2 function D̂(x, y) on X 2. Hence, an ele-
mentary computation involving the second-order Taylor expansion of D(x, y) yields
that

D(x, y) = (x − y)2
(
α(x∗, x∗)∂12α(x

∗, x∗)− ∂1α(x
∗, x∗)∂2α(x

∗, x∗)
)

+o(|x − y|2).

Thus, Point (i) follows from the fact thatα(x∗, x∗)∂12α(x∗, x∗) �= ∂1α(x∗, x∗)∂2α(x∗,
x∗), which is a consequence of (4.13). Indeed, one can check that

a = r ′′(x∗)− r(x∗) ∂11α(x∗, x∗)
α(x∗, x∗)

and c = −r ′′(x∗)+ 2r ′(x∗) ∂1α(x∗, x∗)
α(x∗, x∗)

+ r(x∗)α(x
∗, x∗) (∂11α(x∗, x∗)+2∂12α(x∗, x∗))−2∂1α(x∗, x∗) (∂1α(x∗, x∗)+∂2α(x∗, x∗))

α(x∗, x∗)2
.

Using the fact that

r ′(x∗) = r(x∗)∂1α(x∗, x∗)
α(x∗, x∗)

(4.20)

since x∗ is an ES, we have that

α2(x∗, x∗)(a + c) = 2r(x∗)
(
α(x∗, x∗)∂12α(x

∗, x∗)− ∂1α(x
∗, x∗)∂2α(x

∗, x∗)
)
.

Hence,

α(x∗, x∗)∂12α(x
∗, x∗)− ∂1α(x

∗, x∗)∂2α(x
∗, x∗) �= 0 ⇐⇒ a + c �= 0.

In particular, this implies that the function D̂(x, y) is non-zero in a neighborhood of
x∗.
For Point (ii), observe that

n̄1(x, y)+ n̄2(x, y) = r(x)α(y,y)−α(y,x)x−y + r(y)α(x,x)−α(x,y)x−y

(x − y)D̂(x, y)
.

By the proof of Lemma 4.11, the numerator can be extended as a C3 function h(x, y)
by setting

h(x, y) = −r(x)

1∫

0

∂2α(y, y + (x − y)u)du + r(y)

1∫

0

∂2α(x, y + (x − y)u)du
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for all x, y ∈ X . In particular, h(x, x) = 0 for all x ∈ X . Therefore, Lemma 4.11
can be applied once more to prove that n̄1(x, y) + n̄2(x, y) can be extended as a C2

function in the neighborhood of x∗ and that

lim
x,y→x∗, x �=y

n̄1(x, y)+ n̄2(x, y) =
∂h
∂x (x

∗, x∗)
D̂(x∗, x∗)

= r(x∗)∂12α(x∗, x∗)−r ′(x∗)∂2α(x∗, x∗)
α(x∗, x∗)∂12α(x∗, x∗)−∂1α(x∗, x∗)∂2α(x∗, x∗)

.

Hence, (4.16) and then (4.17) follow from (4.20).
Point (iii) is obtained from the fact that f (x; x) = 0, from Lemma 4.11 and from the
second-order Taylor expansion of f (y; x). In this computation, one must use the fact
that x∗ is an ES and (4.15).
The fact that f (z; x, y) is C2 in U ×U ×X can be proven exactly as the regularity of
n̄1(x, y)+ n̄2(x, y) above, observing that

f (z; x, y) = r(z)− r(x)α(z,x)α(y,y)−α(z,y)α(y,x)x−y + r(y)α(z,y)α(x,x)−α(z,x)α(x,y)x−y

(x − y)D̂(x, y)
.

Therefore, using the fact that f (x; x, y) = f (y; x, y) = 0, Lemma 4.11 can be
applied twice to prove that

f (z; x, y) = γ

2
(z − x)(z − y)+ o(|z − x | |z − y|)

for some constant γ ∈ R. The second-order Taylor expansion of f (z; x, y) shows that
γ = ∂11 f (x∗; x∗, x∗). Now, because of (4.17), ∂11 f (z; x∗, x∗) = ∂11 f (z; x∗) for all
z ∈ X . Hence γ = a, which ends the proof of Point (iv). 
�

Remark 4.13 Let us remark that, if x∗ is not an evolutionary singularity, Point (ii)
of Proposition 4.12 needs not to be true anymore, which may be surprising for the
intuition and which has been a source of errors in some biological works.

Moreover, if x∗ is an ES but Assumption (4.13) (a + c �= 0) is not true, Point (ii)
of Proposition 4.12 may also fail. Indeed, in the case when α(x, x)∂12α(x, x) �=
∂1α(x, x)∂2α(x, x) for x �= x∗,

n̄1(x, x)+ n̄2(x, x) = r(x)∂12α(x, x)− r ′(x)∂2α(x, x)

α(x, x)∂12α(x, x)− ∂1α(x, x)∂2α(x, x)

= r(x∗) (∂112α(x∗, x∗)+∂122α(x∗, x∗))−r ′(x∗)∂22α(x∗, x∗)−r ′′(x∗)∂2α(x∗, x∗)+ o(1)

α(x∗, x∗) (∂112α(x∗, x∗)+∂122α(x∗, x∗))−∂2α(x∗, x∗)∂11α(x∗, x∗)−∂1α(x∗, x∗)∂22α(x∗, x∗)+o(1)

as x → x∗. This expression involves r ′′(x∗), whose value is not imposed by the
assumptions. Therefore, changing the function r in such a way that r(x∗) and r ′(x∗)
are fixed but r ′′(x∗) changes also changes the value of limx,y→x∗ n̄1(x, y)+ n̄2(x, y).
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(a) (b)

Fig. 7 The shape of the three-dimensional fitness. a a < 0. b a > 0

4.2.4 On triple coexistence in the neighborhood of x∗

Points (iii) and (iv) of Proposition 4.12 allow one to determine the signs of the two-
and three-dimensional fitnesses in a trimorphic population with traits x, y, z close to
x∗. Combining this with the classification of Zeeman [33] (see Sect. 3.2, Fig. 6) gives
the following corollary.

Corollary 4.14 Assume (A′′). For any ES x∗ satisfying (4.12), (4.13) and such that
∂11 f (x∗; x∗) �= 0, there exists a neighborhood U of x∗ such that, for all distinct
x, y, z ∈ U , (x, y, z) �∈ Ccoex, where Ccoex is defined in (3.4).

Proof Let us assume for simplicity that x∗ = 0. We shall distinguish between the
cases a > 0 and a < 0, and prove in each case that the fitnesses cannot have any of the
sign configuration corresponding to the classes 26, 29, 31 and 33 in the neighborhood
of x∗. Since all these classes contain the pattern of Fig. 9 of Appendix B, we have (pos-
sibly after relabelling the traits x, y, z) that f (x; y) ≥ 0, f (y; x) ≥ 0, f (z; x, y) ≥ 0
and x < y.
Consider first the case a < 0. It follows from Proposition 4.12 (iv) that the function
f (·; ·, ·) has the shape of Fig. 7 (a) in the neighborhood of x∗. In particular, this implies
that x < z < y, f (z; x, y) > 0, f (x; y, z) < 0 and f (y; x, z) < 0 as soon as x, y, z
are sufficiently close to x∗. In view of Fig. 6, these conditions are incompatible with
classes 31 and 33. Moreover, ∂11 f (x; y) < 0 for all x, y sufficiently close to x∗.
Therefore, by Lemma 4.11,

∂

∂x

(
f (x; y)

y − x

)
= −

1∫

0

u∂11 f (y + u(x − y); y)du (4.21)

is positive for all x, y sufficiently close to x∗. Hence, since x < z < y, we have
f (z; y)/(y−z) > f (x; y)/(y−x) ≥ 0 and thus f (z; y) > 0. Similarly, f (z; x) > 0.
Together with f (z; x, y) > 0, these conditions are incompatible with classes 26 and
29. This ends the proof in the case when a < 0.
In the case when a > 0, by Proposition 4.12 (iv), f (·; ·, ·) has the shape of Fig. 7b in
the neighborhood of x∗. Therefore, z �∈ [x, y]. Assume for example that z < x < y.
By Proposition 4.12 (iv) again, f (x; y, z) < 0 and f (y; x, z) > 0. These conditions
are incompatible with class 33. Moreover, using the fact that ∂11 f (x; y) > 0 for
all x, y sufficiently close to x∗, it follows from the fact that (4.21) is negative that
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f (z; y)/(y− z) > f (x; y)/(y− x) ≥ 0 and thus that f (z; y) > 0. Similarly, because
of Assumption (4.12), ∂22 f (x; y) > 0 for all x, y sufficiently close to x∗. Therefore,
by Lemma 4.11,

∂

∂x

(
f (y; x)

y − x

)
= −

1∫

0

u∂22 f (y; y + u(x − y))du < 0

for all x, y sufficiently close to x∗. Thus, f (y; x) ≥ 0 implies that f (y; z) > 0.
Together with the fact that f (x; y, z) < 0, these conditions are incompatible with
classes 26, 29 and 31.
In the case when x < y < z, the method above proves that f (x; z) > 0, f (z; x) > 0
and f (y; x, z) < 0, which is again incompatible with classes 26, 29, 31 and 33. This
ends the proof of Corollary 4.14. 
�

4.2.5 The main proofs

We prove here Proposition 4.10, which gives a criterion for the coexistence of two
traits in the neighborhood of x∗, and we end the proof of Theorem 4.9. The proof of
Proposition 4.10 is based on the study of the region of double coexistence, defined as
{(x, y) ∈ X : f (x; y) > 0 and f (y; x) > 0} in the neighborhood of x∗. The proof of
Theorem 4.9 is based on a case-by-case study that extends the proof of Corollary 4.14.

Proof of Proposition 4.10 It follows from Proposition 4.12 (iii) that the set of (x, y) ∈
X such that f (y; x) = 0 is composed of the line {y = x} and of a C2-curve γ in
the neighborhood of x∗, containing (x∗, x∗) and admitting as tangent at this point the
line {a(y− x∗) = c(x − x∗)}. The curve γ is given by the Implicit Function Theorem
applied to f (y; x)/(y − x), which is a C2-function by Lemma 4.11. Since a < c, the
curves γ and {y = x} divide X 2 in the neighborhood of (x∗, x∗) into four regions.
Moreover, because of (4.18), f (y; x) changes sign when the point (x, y) changes
region by crossing either the line {y = x} or the curve γ .
It is elementary from a case-by-case study to check that coexistence can occur in the
neighborhood of x∗ if c > a > 0, a > c > 0,−a < c < 0 < a and a < 0 < −a < c,
and that coexistence cannot occur in the neighborhood of x∗ if c < −a < 0 < a, c <
a < 0, a < c < 0 and a < 0 < c < −a. The cases when coexistence is possible
are represented in Fig. 8. In these figures, the curve γ is represented by its tangent
line {a(y − x∗) = c(x − x∗)} and the sign of f (y; x) is represented by + and −
signs depending on the position of (x, y) with respect to γ and {y = x}. The sign of
f (x; y) is obtained by an axial symmetry of the figure with axis {y = x}. In Fig. 8,
we denote by γ s the mirror image of the curve γ with respect to this axis. The region
of coexistence is the one where f (y; x) > 0 and f (x; y) > 0.
Note that the expansion of f (y; x) done when proving Proposition 4.12 (iii) does
not make use of any assumption on a and c. Therefore, a similar study can be done
to treat the degenerate cases. One easily obtains that coexistence is possible in the
neighborhood of (x∗, x∗) if c = a > 0, c = 0 and a > 0 or a = 0 and c > 0. Simi-
larly, coexistence cannot occur in the neighborhood of (x∗, x∗) if c = a < 0, c = 0
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(a) (b)

(d)(c)

Fig. 8 In the four cases when coexistence is possible, these figures show the sign configuration of f (y; x)
depending on the position of (x, y) with respect to the curve γ and the line {y = x} and the region of
coexistence. For convenience, we assumed x∗ = 0. a c > a > 0. b −a < c < 0 < a. c a > c > 0. d
a < 0 < −a < c

and a < 0 or a = 0 and c < 0. The case c = −a is undetermined and depends on
higher-order expansions of the fitness function. 
�
Proof of Theorem 4.9 θεη (x

∗) <∞ a.s.
Let us first prove that, for all η > 0, for ε sufficiently small, θεη (x

∗) <∞ a.s. This is a
consequence of the fact that the TSS, which is equal to the support of the PES before
time θεη (x

∗), is monotone (Theorem 4.4 (iii) ), and that, because of Assumption (A′′),
the TSS has always a positive probability to have “big” jumps.
More precisely, consider first the case where x0 < x∗ and assume that P(θεη (x

∗) =
∞) > 0. Then, a.s. on this event, τ ε = ∞ and the TSS process stays for all positive
time in the interval I := [x0, x∗ − η]. As in the proof of Lemma 4.5 (2), since
∂1g(x; x) > 0 for all x ∈ I , by Assumption (A′′), for all x ∈ I, h ≥ 0 in the support

123



80 N. Champagnat, S. Méléard

of m(x, h)dh, and ε ≤ ε0 where ε0 > 0 is small enough,

+∞∫

0

[g(x + εh; x)]+m(x, h)dh > 0, ∀x ∈ I.

Fix ε ≤ ε0. Because of Assumption (A′), the previous quantity is continuous w.r.t.
x ∈ I . Therefore, there exists β > 0 such that

+∞∫

0

[g(x + εh; x)]+m(x, h)dh ≥ β, ∀x ∈ I.

Since |g(x+εh; x)| ≤ Cε|h| ≤ C |h| for some constant C and since m(·, ·) is bounded,
there exists β ′ > 0 such that

+∞∫

β ′
[g(x + εh; x)]+m(x, h)dh ≥ β/2, ∀x ∈ I.

In view of the generator (4.1) of the TSS, this means that, in the TSS, the rate of
jump at a distance bigger than β ′ is uniformly bounded from below in I . Therefore,
a.s. on the event {θεη (x∗) = ∞}, there must be infinitely many jumps in the TSS at
a distance bigger than β ′. Since the TSS is a.s. monotone, this is a contradiction. A
similar argument gives the same conclusion when x0 > x∗. 
�
Proof of Theorem 4.9 (b) case a = ∂11 f (x∗; x∗) < 0
It follows from Theorems 4.4 that for any fixed η > 0, for ε small enough, the PES
stays monomorphic until it reaches (x∗ −η, x∗ +η). Moreover, as shown in the proof
of Proposition 4.7, no mutant out of (x∗ − η, x∗ + η) can invade the population as
long as it is monomorphic with support inside this interval.
Now, by Proposition 4.10, when a < 0, coexistence may happen in the rescaled PES
if c = ∂22 f (x∗; x∗) > −a. In this case, at the first coexistence time τ ε, the two traits
x and y that coexist belong to (x∗ −η, x∗ +η) and are distant of less than 2εDiam(X )
since m(x, ·) has support in {x − y; x, y ∈ X }.
Let us examine what happens when a mutant trait z invades this population.
Remind that we showed in the proof of Corollary 4.14 that, if a < 0, x < y,
f (x; y)> 0, f (y; x)> 0 and f (z; x, y) > 0, then f (x; y, z) < 0, f (y; x, z) < 0,
f (z; y) > 0 and f (z; x) > 0. Examining Fig. 6, we see that these conditions are
incompatible with all classes except classes 7 and 9. Therefore, once the mutant z
invades, the new state of the rescaled PES can be either n̄(z)δz in the case of class
7, or either n̄1(x, z)δx + n̄2(x, z)δz or n̄1(y, z)δy + n̄2(y, z)δz in the case of class
9. In particular, we see that either the population becomes monomorphic again, or it
stays dimorphic, but the distance between the two traits of the support of the PES
has decreased. In addition, in both cases, the support of the new state of the PES is a
subset of (x∗ − η, x∗ + η). Hence, η-branching, as defined in Definition 4.8, cannot
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occur as soon as ε < η/(4Diam(X )). Moreover, this shows that, after time θεη (x
∗),

the support of the PES is always included in (x∗ − η, x∗ + η). This ends the proof of
Theorem 4.9 (b). 
�
Proof of Theorem 4.9 (a) case a > 0
By Proposition 4.10, when a > 0, under the assumptions of Theorem 4.9, we are in
the situation of Fig. 8a, and hence coexistence is always possible in the neighborhood
of x∗. Fix η > 0. We are going to prove that, if η is small enough, then for ε small
enough,

(i) the first time of coexistence τ ε is a.s. finite and Supp(	̃ετε−) ⊂ (x∗−η, x∗+η)
a.s.;

(ii) after time τ ε, the distance between the two points of the support of the rescaled
PES is non-descreasing and becomes a.s. bigger than η/2 in finite time, before
exiting the interval (x∗ − η, x∗ + η).

These two points will clearly imply Theorem 4.9 (a).
For Point (i), observe first that, by Proposition 4.7, if τ ε < +∞, then Supp(	̃ετε−) ⊂
(x∗ − η, x∗ + η). Thus we only have to prove that P(τ ε <∞) = 1.
Recall that Fig. 8a represents the sign configuration of the fitness function f (y; x).
The curves γ and {x = y} are the set of zeros of f (y; x). Recall that γ is C2 and that
the slope of γ at (x∗, x∗) is c/a. Recall also the definition of γ s as the symmetric of
γ w.r.t. the line {x = y}. Since c > a > 0 by assumption, the three curves only have a
single intersection point (x∗, x∗), and any vertical line sufficiently close to x∗ (as the
dashed vertical line in Fig. 8a ) only has a single intersection point with each of the
three curves γ, {x = y} and γ s , the closest from x∗ being the intersection point with
γ s , and the farthest, with γ . In view of the vertical line in Fig. 8a, because of the sign
configuration of f (y; x), when x and y are close enough to x∗, the only mutant traits
y that can invade the resident trait x in the PES are either closer to x∗ than x (i.e. are
below the line {x = y}when x > x∗, or above this line when x < x∗), or coexist with
x . In particular, if x and y are on opposite sides of x∗, they necessarily coexist.
This shows that, after time θεη (x

∗) and before time τ ε, the support of the PES (i.e. the
TSS) is monotonous. Therefore, the PES moves according to the arrows in Fig. 8a, by
a succession of mutant invasions (vertical arrows) and fixations (horizontal arrows),
until a vertical arrow enters the zone of coexistence. Since the TSS monotonously
approaches x∗ before τ ε, this picture explains why coexistence is going to occur
almost surely. The proof we give below is based on this argument, taking into account
the additional difficulty that the jump rate is almost zero in that case.
Fix ε < ε0. Taking ε0 small enough, it follows from (4.18) and from the inequality
c > a > 0 that, for all x sufficiently close from x∗ and h in the support of m(x, h)dh
such that (x − x∗)h ≤ 0,

[g(x + εh; x)]+ ≥ Cεh
(
(a − c)(x − x∗)+ aεh + O(|x − x∗| + ε|h|))

≥ C(c − a)

2
ε|h|(|x − x∗| + ε|h|),

for some C > 0. Similarly as for the proof of the fact that θεη (x
∗) <∞ a.s., we then

deduce from Assumptions (A′2) and (A′′) that there exist constants β, β ′ > 0 such
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that, for any x ∈ [x∗ − η, x∗ + η]
+∞∫

β ′
[g(x + εh, x)]+m(x, h)dh ≥ βε(|x − x∗| + ε) if x ≤ x∗,

−β ′∫

−∞
[g(x + εh, x)]+m(x, h)dh ≥ βε(|x − x∗| + ε) if x ≥ x∗.

Now, it follows from (4.18) that
∫
R
[g(x + εh, x)]+m(x, h)dh ≤ Cε(|x − x∗| + ε)

for some constant C > 0. This shows that each jump in the TSS before time τ ε has a
probability bigger than β/C to be larger than β ′. Moreover, the total jump rate in the
TSS from any point of [x∗ − η, x∗ + η] is lower bounded by βε2 > 0. Therefore, if
P(τ ε = ∞) > 0, almost surely on this event, the TSS monotonously would approach
x∗ from one side of x∗ and would have infinitely many jumps, among which infinitely
many would be bigger than β ′ > 0. This is impossible and thus P(τ ε = ∞) = 0.
For Point (ii), assume that the rescaled PES is dimorphic at some time t , with sup-
port {x, y}, x < y. Let us examine what happens when a mutant trait z invades this
population. Remind that we assume a > 0. In this case, as shown in the proof of
Corollary 4.14, reducing η if necessary, for all x, y, z ∈ (x∗ − η, x∗ + η) such that
x < y, f (x; y) > 0, f (y; x) > 0 and f (z; x, y) > 0, then

• either z < x < y and f (x; y, z) < 0, f (y; x, z) > 0, f (z; y) > 0 and f (y;
z) > 0,

• or x < y < z and f (x; y, z) > 0, f (y; x, z) < 0, f (z; x) > 0 and f (x; z) > 0.

Examining Fig. 6, we see that both situations are only compatible with classes 9, 10,
11 and 12. In the case where z < x < y, the inequalities f (y; z) > 0, f (z; y) and
f (x; y, z) < 0 imply that the equilibrium n̄(y, z) is stable, and in the case x < y < z,
the inequalities f (x; z) > 0, f (z; x) > 0 and f (y; x, z) < 0 imply that the equilib-
rium n̄(x, z) is stable. Now, in all the classes 9 to 12, there is only one stable equilibrium
point (represented by a filled dot •). Therefore, with the notation of Assumption (B),

n∗(x, y, z) =
{
(0, n̄1(y, z), n̄2(y, z)) if z < x < y,

(n̄1(x, z), 0, n̄2(x, z)) if x < y < z.
(4.22)

In other words, once the mutant z invades, the new state of the rescaled PES is
n̄1(x, z)δx + n̄2(x, z)δz if x < y < z or n̄1(y, z)δy + n̄2(y, z)δz if z < x < y.
In both cases, the distance between the two existing traits have increased.
In both cases, defining θ ′ as the first time where one of the points of the support of
the PES leaves (x∗ − η, x∗ + η), we see that for all t ∈ [τ ε, θ ′), the support of the
PES 	̃εt is always composed of exactly two traits {Y εt , Z εt }, with Y εt < Z εt . Moreover,
the process (Y εt , t ∈ [τ ε, θ ′)) is non-increasing, and the process (Z εt , t ∈ [τ ε, θ ′))
is non-decreasing. In particular, the diameter Z εt − Y εt of the support of the PES is
non-decreasing. Hence, in order to complete the proof, it suffices to prove that
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θ ′ <∞ a.s. and Diam(Supp(	̃εθ ′)) > η/2.

The fact that θ ′ < ∞ a.s. can be proved using Assumptions (A′′) and (4.18) in a
similar way as for Point (i) above. The lower bound of the diameter of the PES is a
consequence of the inequality

τ ε > θεκε(x
∗) a.s., where κ = 4cDiam(X )

c − a
, (4.23)

proved below. This shows that Y ετε and Z ετε belong to [x∗ − κ ′ε, x∗ + κ ′ε], where
κ ′ := κ + 2Diam(X ). Since the processes Y ε and Z ε are monotone, we deduce that

Y εθ ′ ≤ x∗ + κ ′ε and Z εθ ′ ≥ x∗ − κ ′ε.

Since one of the two numbers Y ε
θ ′ and Z ε

θ ′ must be outside of the interval [x∗−η, x∗+η],
we finally obtain that Diam(	̃ε

θ ′) ≥ η − κ ′ε > η/2 if ε is small enough.
Hence, it only remains to prove (4.23). For any x, y ∈ R such that

|x − x∗| ≥ 2c|x − y|
c − a

, (4.24)

we have

|y − x∗| ≥ |x − x∗| − |y − x | ≥ c + a

2c
|x − x∗|

and

|y − x∗| ≤ |x − x∗| + |y − x∗| ≤
(

1+ c − a

2c

)
|x − x∗|.

Since 0 < a < c, we have

c + a

2c
>

a

c
and 1+ c − a

2c
< 1+ c − a

a
= c

a
.

Now, {(y − x∗) = (c/a)(x − x∗)} is tangent to γ at (x∗, x∗) and {(y − x∗) =
(a/c)(x − x∗)} is tangent to γ s at (x∗, x∗). Therefore, for any x, y sufficiently close
to x∗ and satisfying (4.24), the point (x, y) is between the two curves γ and γ s (i.e.
below γ and above γ s if x > x∗, and below γ s and above γ if x < x∗, see Fig. 8a ).
In particular, x and y do not coexist. Therefore, at time τ ε, the two traits Y ετε and Z ετε
of the support of the PES must satisfy

∣∣Y ετε − x∗
∣∣ ∨ ∣∣Z ετε − x∗

∣∣ ≤ 2c

c − a

∣∣Y ετε − Z ετε
∣∣ ≤ 4cεDiam(X )

c − a
= κε,

since one of the traits Y ετε and Z ετε is a mutant born from the other trait. 
�
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Appendix A: Proof of Theorem 2.7

The proof of this result is very similar to the proof of [4, Theorem.1]. We do not repeat
all the details and restrict ourselves to the steps that must be modified. The general
idea of the proof follows closely the heuristic argument of Sect. 2.4.2. Its skeleton is
similar to the one in [4] for monomorphic populations.
For all ε > 0, t > 0, and � ⊂ X measurable, let

Aε,d(t, �) :=
{

Supp(νt/K uK ) ⊂ � has d elements that coexist, say x1, . . . , xd ,

and ∀1 ≤ i ≤ d, |〈νt/K uk , 1{xi }〉 − n̄i (x)| < ε
}
.

To prove Theorem 2.7, we establish that for all ε > 0, t > 0 and � ⊂ X measurable,

lim
K→+∞P(Aε,d(t, �)) = P(Supp(	t ) ⊂ � and has d elements). (A.1)

where (	t , t ≥ 0) is defined in Theorem 2.7. The first ingredient of the proof is the
following proposition, which generalizes Theorem 3 (a) and (b) of [4].

Proposition A.1 Assume that, for any K ≥ 1, Supp(νK
0 ) = {x1, . . . , xd} and

〈νK
0 , 1{xi }〉 ∈ C a.s., where C is a compact subset of R+. Let φ(t, (n1, . . . , nd)) denote

the value at time t of the solution of LV(d, x)with initial condition (n1, . . . , nd). Then,
for all T > 0,

lim
K→+∞ sup

1≤i≤d, t∈[0,T ]

∣∣∣〈νK
t , 1{xi }〉 − φi (t, (〈νK

0 , 1{x1}〉, . . . , 〈νK
0 , 1{xd }〉))

∣∣∣ = 0

a.s. (A.2)

This result is a direct corollary of Theorem 11.2.1 of [13], except for two small difficul-
ties. The first one is that Theorem 11.2.1 of [13] assumes that the function n �→ Fx(n)
involved in the definition (2.4) of the Lotka Volterra system is uniformly Lipschitz on
R

d+, which is not the case. However, observe first that, if ni ≤ M for some M > 0
for all i ∈ {1, . . . , d}, then φi (t, (n1, . . . , nd)) ≤ M ∨ (2λ̄/α) for all t ≥ 0. Indeed,
if there is equality for some t ≥ 0 and i ∈ {1, . . . , d}, then φ̇i (t, (n1, . . . , nd)) < 0.
Therefore, the coefficients of the system LV(d, x) are uniformly Lipschitz on the set
of states that can be attained by the solution of the system starting from any initial
conditions in a compact set. The second difficulty is that Theorem 11.2.1 of [13] only
implies that (A.2) holds on the event where there is no mutation between 0 and T . In
Lemma 2 (a) of [4], it is proved that for general initial condition νK

0 , the probability
of mutation on the time interval [0, T ] converges to 0, thus the conclusion follows.
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The second ingredient is the following exponential deviation estimate on the so-called
“problem of exit from an attracting domain” [15]. It generalizes Theorem 3 (c) of [4].

Proposition A.2 Let x1, . . . , xd ∈ X coexist. Then there exist constants c, V > 0
such that, for any sufficiently small ε > 0, if (〈νK

0 , 1{xi }〉)1≤i≤d belongs to the (ε/2)-
neighborhood of n̄(x), the time of exit of (〈νK

t , 1{xi }〉)1≤i≤d from the ε-neighborhood
of n̄(x) is bigger than eV K ∧ τ with probability converging to 1, where τ denotes the
first mutation time. Moreover, the previous result also holds if, for all i ∈ {1, . . . , d},
the death rate of an individual with trait xi

μ(xi )+
d∑

j=1

α(xi , x j )〈νK
t , 1{x j }〉 (A.3)

is perturbed by an additional random process that is uniformly bounded by cε.

Such results are fairly standard and can be proved in a variety of ways. We let the
proof to the reader. The first part of this proposition is used to prove that, when the
first mutation occurs, the population densities have never left the ε-neighborhood of
n̄(x) and the second is used to prove that, after the first mutation, as long as the mutant
population is small, the resident population densities do not leave the ε-neighborhood
of n̄(x). In this case, the additional term in (A.3) is α(xi , y)〈νK

t , 1{y}〉, where y is the
mutant trait, which is smaller that ᾱε if 〈νK

t , 1{y}〉 ≤ ε.
From these two results can be deduced the following lemma, which is the extension
of Lemma 2 (b) and (c) of [4]. The proof is a simple copy of the argument in [4].

Lemma A.3 Let Supp(νK
0 ) = {x1, . . . , xd} that coexist and let τ denote the

first mutation time. There exists ε0 such that, if (〈νK
0 , 1{xi }〉)1≤i≤d belongs to the

ε0-neighborhood of n̄(x), then, for any ε < ε0,

lim
K→+∞P

(
τ > log K , sup

1≤i≤d, t∈[log K ,τ ]
|〈νK

t , 1{xi }〉 − n̄i (x)| < ε

)
= 1,

K uK τ
L�⇒

K→∞ Exp

⎛

⎝
d∑

j=1

p(x j )λ(x j )n̄ j (x)

⎞

⎠

and lim
K→+∞P(at time τ, the mutant is born from trait xi ) = p(xi )λ(xi )n̄i (x)∑d

j=1 p(x j )λ(x j )n̄ j (x)

for all i ∈ {1, . . . , d}, where
L�⇒ denotes the convergence in law of real r.v. and

Exp(u) denotes the exponential law with parameter u.

The fourth ingredient is the following lemma, which is an extension of Lemma 3 of [4].

Lemma A.4 Let Supp(νK
0 ) = {x1, . . . , xd , y} where x1, . . . , xd coexist and y is a

mutant trait that satisfy Assumption (B). Let τ denote the first next mutation time, and
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define

τ1= inf{t≥0 : ∀i ∈ I (n∗), |〈νK
t , 1{xi }〉−n∗i |<ε and ∀i �∈ I (n∗), 〈νK

t , 1{xi }〉=0}
τ2= inf{t≥0 : 〈νK

t , 1{y}〉 = 0 and ∀i ∈ {1, . . . , d}, |〈νK
t , 1{xi }〉 − n̄i (x)| < ε}.

Assume that 〈νK
0 , 1{y}〉 = 1/K (a single initial mutant). Then, there exists ε0 such that

for all ε < ε0, if (〈νK
0 , 1{xi }〉)1≤i≤d belongs to the ε-neighborhood of n̄(x),

lim
K→+∞P(τ1 < τ2) = [ f (y; x)]+

λ(y)
, lim

K→+∞P(τ2 < τ1) = 1− [ f (y; x)]+
λ(y)

and ∀η > 0, lim
K→+∞P

(
τ1 ∧ τ2 <

η

K uK
∧ τ
)
= 1.

The proof of this lemma is similar to the proof of Lemma 3 in [4]. The main steps are
the following. Assume first that ε < 1/2. We introduce the following stopping times:

RK
ε = inf{t ≥ 0 : ∃i ∈ {1, . . . , d}, |〈νK

t , 1{xi }〉 − n̄i (x)| ≥ ε}
SK
ε = inf{t ≥ 0 : 〈νK

t , 1{y}〉 ≥ ε}
SK

0 = inf{t ≥ 0 : 〈νK
t , 1{y}〉 = 0}.

RK
ε is the time of drift of the resident population away from its equilibrium, SK

ε is the
time of invasion of the mutant trait (time t1 in Fig. 5) and SK

0 is the time of extinction
of the mutant trait. By the second part of Proposition A.2, it can be proven exactly as
in [4] that there exists ρ, V > 0 and c < 1 such that, for K large enough,

P

(
ρ

K uK
< τ

)
≥ 1− ε and P(SK

ε ∧ τ ∧ eK V < RK
ε/c) ≥ 1− ε.

Then, on [0, τ ∧ SK
ε ∧ RK

ε/c], by computing lower and upper bounds on the death rate
of a mutant individual, it can be easily checked that, for K large enough, almost surely,

	
1,ε
t

K
≤ 〈νK

t , 1{y}〉 ≤ 	
−1,ε
t

K

where, for i = 1 or−1,	i,ε is a continuous-time branching process such that	i,ε
0 = 1

and with birth rate (1− iε)λ(y) and death rate

μ(y)+
d∑

j=1

α(y, x j )n̄ j (x)+ i(d + 1)ᾱ
ε

c
.

Next, we use the results of Theorem 4 of [4] on branching processes in order to control
the probability that	i,ε/K exceeds ε before it reaches 0, and to upper bound the time
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at which one of these events happens. As in [4], we obtain that there exists C > 0
such that, for all η > 0, ε > 0 sufficiently small and K large enough,

P

(
τ2 < τ ∧ η

K uK
∧ SK

ε ∧ RK
ε/c

)
≥ 1− [ f (y; x)]+

λ(y)
− Cε

P

(
SK
ε < τ ∧ η

K uK
∧ SK

0 ∧ RK
ε/c

)
≥ [ f (y; x)]+

λ(y)
− Cε. (A.4)

On the event {SK
ε < τ ∧ SK

0 ∧ RK
ε/c}, we introduce for ε′ > 0 the stopping times

T K
ε = inf{t ≥ SK

ε : ∀i ∈ {1, . . . , d}, |〈νK
t , 1{xi }〉 − n∗i | < ε2

and |〈νK
t , 1{y}〉 − n∗d+1| < ε2},

U K
ε,ε′ = inf{t ≥ T K

ε : ∃i ∈ I (n∗), |〈νK
t , 1{xi }〉 − n∗i | ≥ ε′},

V K
ε = inf{t ≥ T K

ε : ∃i �∈ I (n∗), 〈νK
t , 1{xi }〉 ≥ ε}.

We next use the Markov property at time SK
ε and apply Proposition A.1 as in [4] to

obtain a constant C ′ > C such that, for K large enough,

P

(
SK
ε < T K

ε < τ ∧ η

K uK

)
≥ [ f (y; x)]+

λ(y)
− C ′ε.

Next, we can use again Proposition A.2 to prove that there exists V ′ > 0,C ′′ > C ′
and c′ < 1 such that

P

(
SK
ε < T K

ε < V K
ε ∧ τ ∧ eK V ′

< U K
ε,ε/c′

)
≥ [ f (y; x)]+

λ(y)
− C ′′ε.

In a last step, we can as before prove that, for all t ∈ [T K
ε ,U

K
ε,ε/c′ ∧ V K

ε ] and for all
i �∈ I (n∗),

〈νK
t , 1{xi }〉 ≤

	̃
i,ε
t

K
,

where 	̃i,ε is a continuous-time branching process such that 	̃i,ε
T K
ε
= "ε2 K # and with

birth rate λ(xi ) and death rate

μ(xi )+
∑

j∈I (n∗)
α(xi , x j )n

∗
j − Card(I (n∗))ᾱ ε

c′
.

Since, by Assumption (B2), f (xi ; x∗) < 0, this branching process is sub-critical if ε is
small enough. Hence, with arguments similar to the ones in [4] (especially the results
of Theorem 4), we can prove that there exist C ′′′ > 0 such that, for all η > 0, ε > 0
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sufficiently small and K large enough,

P

(
SK
ε < τ1 < τ ∧ η

K uK
∧U K

ε,ε/c′

)
≥ [ f (y; x)]+

λ(y)
− C ′′′ε.

Combining this with (A.4), we obtain Lemma A.4 by letting ε go to 0.
Finally, (A.1) is deduced from these lemmas exactly as in [4] and similarly, the proof
of Theorem 2.7 from (A.1). 
�

Appendix B: Explanation of Fig. 6

Let us comment the classification of the asymptotic behavior of three-dimensional
competitive Lotka–Volterra systems done by Zeeman [33]. Any three-dimensional
competitive Lotka–Volterra system admits an invariant hypersurface � called carry-
ing simplex, such that any non-zero solution of the system is asymptotic as t →+∞
to one in � (cf. [21]). � is a Lipschitz submanifold of R

3+ homeomorphic to the unit
simplex in R

3+ by radial projection. Moreover,� is a global attractor for the dynamics
in R

3+\{0} [22, Theorem 3]. In particular, one can deduce from the asymptotic behavior
of trajectories on� the asymptotic behavior of trajectories starting in a neighborhood
of �.
Zeeman obtained a full classification of the topological equivalence classes of
the three-dimensional competitive Lotka–Volterra systems by determining the 33
topological equivalence classes of those systems restricted on their carrying sim-
plex. (In an equivalence class, the trajectories of two systems are related by a
homeomorphism of R

3+). For a given system LV(3, (x, y, z)), the equivalence class
to which it belongs is determined by the sign of the two-dimensional fitnesses
f (x; y), f (y; x), f (x; z), f (z; x), f (y; z), f (z; y) and of the three-dimensional
fitnesses f (x; y, z), f (y; x, z), f (z; x, y) when they are defined. The equivalence
classes of [33] are characterized by drawing on the unit simplex of R

3+ the fixed points
and the limit cycles of the system, joined by their stable and unstable manifolds.1

The signs of the fitnesses correspond to the arrows in each diagram. For example,
f (y; x) > 0 means that, on the edge of the simplex that reach x and y, there is an
arrow starting from x in the direction of y. In other words, the unstable manifold of
(n̄(x), 0, 0) contains (a part of) the edge of the simplex that reach x to y. Similarly,
f (z; x, y) > 0 means that f (x; y) f (y; x) > 0, i.e. that LV(3, (x, y, z)) has as fixed
point (n̄1(x, y), n̄2(x, y), 0) with n̄1(x, y) > 0 and n̄2(x, y) > 0, represented as the
midpoint of the edge of the simplex linking x and y, and that this fixed point has an
unstable manifold pointing in the direction of the interior of the simplex. The situation
represented in Fig. 9 corresponds to this case, when x and y coexist.
In order to check if Assumption (B) holds, we only need to restrict to the equivalence
classes in which two traits coexist (the resident traits, say x and y), and the third

1 The stable manifold of an equilibrium is the set of starting points of the Lotka–Volterra system such that
the solution converges to this equilibrium. The unstable manifold is defined in the same way, but for the
time-reversed system.
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Fig. 9 The pattern on the carrying simplex that corresponds to the case where the two (resident) traits x
and y coexist and the third (mutant) trait z has a positive fitness f (z; x, y)

(mutant) trait (say z) satisfy f (z; x, y) > 0. This situation corresponds to the cases
when the carrying simplex has one side containing the pattern of Fig. 9. Among the
33 equivalence classes of [33], there are only 10 of them that satisfy this requirement,
shown in Fig. 6. We label them with the same numbers as in [33]. In Fig. 6, the figures
obtained by exchanging x and y belong to the same equivalence class. An attracting
fixed point of LV(3, (x, y, z)) is represented by a filled dot •, a repulsive fixed point
by an empty dot ◦, a saddle point by the intersection of its stable and unstable mani-
folds. When the interior fixed point (the non-trivial equilibrium) is not a saddle point,
it can be either stable or unstable. Depending on cases, this equilibrium can also be
surrounded by one or several stable or unstable cycles. In particular, the sign of the
fitnesses is not sufficient to determine the precise asymptotic behavior of the system
near the interior equilibrium. The undetermined type of these equilibria is represented
in Fig. 6 by the symbol $.

Appendix C: Proof of Theorem 4.1

We are actually going to prove that Theorem 4.1 holds under weaker assumptions,
that we omitted in Sect. 4 to simplify the presentation.

Theorem A.5 The statement of Theorem 4.1 holds if Assumptions (A′2) and (A′3)
are replaced by

(A′4) The map x �→ m(x, h)dh is Lipschitz continuous from X to the set of proba-
bility measures P(Rl), for the Wasserstein metric

ρ(P1, P2)

= inf

⎧
⎪⎨

⎪⎩

∫

Rl×Rl

|x−y| R(dx, dy); R∈P(Rl×R
l) with marginals P1 and P2

⎫
⎪⎬

⎪⎭
.

(A′5) The function

g(y; x) = p(x)λ(x)n̄(x)
f (y; x)

λ(y)
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is continuous on X 2, and of class C1 with respect to its first coordinate, where
f (·; ·) is defined in (2.12). Since X is a compact set of R

l , there exists a
constant G > 0 such that ∀x, y ∈ X , [g(y; x)]+ ≤ G.

Proof The proof follows a classical uniqueness-compactness argument.

(i) Uniqueness of the solution of Eq. (4.4) with given initial condition

Let us show that a(x) = ∫
Rl h[h · ∇1g(x; x)]+ m(x, h)dh is Lipschitz continuous on

X . We have

‖a(x)− a(x ′)‖ ≤
∫

Rl

‖h‖ × ∣∣[h · ∇1g(x; x)]+ − [h · ∇1g(x ′; x ′)]+
∣∣ m(x, h)dh

+

∥∥∥∥∥∥∥

∫

Rl

h[h · ∇1g(x ′; x ′)]+(m(x, h)− m(x ′, h))dh

∥∥∥∥∥∥∥
. (A.5)

Because of |[a]+ − [b]+| ≤ |a − b| and Assumption (A′), the first term of the right
hand side of (A.5) is bounded by some constant times ‖x − x ′‖.
If we denote by ξ the vector ∇1g(x ′; x ′) and ψ(h) = h[h · ξ ]+, then

‖ψ(h)− ψ(h′)‖ ≤ ‖(h − h′)[h · ξ ]+‖ + ‖h′([h · ξ ]+ − [h′ · ξ ]+)‖
≤ 2‖ξ‖ ‖h − h′‖ (‖h‖ + ‖h′‖).

Thus, using the dual form of the Kantorovich–Rubinstein metric (see Rachev [30]) and
(A′), one obtains that the second term of the right-hand side of (A.5) is also bounded
by some constant times ‖x − x ′‖. Hence Cauchy–Lipschitz Theorem can be applied
and (x(t), t ≥ 0) is uniquely defined.

(ii) The processes Xε, ε > 0, with generator Lε can be constructed on the same
probability space

Recall the definition of m̄ in Assumption (A3).

Lemma A.6 Assume (A) and (A′). Let (�,F ,P) be a probability space and
N (dh, dθ, ds) be a point Poisson measure on R

l × [0, 1] × R+ with intensity
Gm̄(h)dhdθds. Let ε > 0 and denote by N ε the image measure of N by the mapping
s �→ ε2s. Let Xε0 be a X -valued random variable, independent of N . Then the process
Xε defined by

Xεt = Xε0+
∫

Rl×[0,1]×[0,t]
(ε h) 1{

θ≤ [g(Xεs−+εh;Xεs−)]+
G

m(Xεs−,h)
m̄(h)

}N ε(dh, dθ, ds), (A.6)

is a jump Markov process with generator Lε. Its law will be denoted by PεXε0
.
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Indeed, for a bounded function ϕ on X ,

ϕ(Xεt ) = ϕ(Xε0)

+
∫

Rl×[0,1]×[0,t]

(
ϕ(Xεs− + εh)− ϕ(Xεs−)

)

× 1{
θ≤ 1

ε2
[g(Xεs−+εh;Xεs−)]+

G
m(Xεs−,h)

m̄(h)

}N ε(dh, dθ, ds)

= ϕ(Xε0)+ Mε,ϕ
t

+
t∫

0

∫

Rl×[0,1]

1

ε2

(
ϕ(Xεs + εh)−ϕ(Xεs )

)
g(Xεs+εh; Xεs )m(X

ε
s , h)dhdθds,

where Mε,ϕ is a martingale.

(iii) Tightness of the sequence of laws {PεXε0 }ε>0 of the processes (Xεt , t ≥ 0)

We will use Aldous’ criterion [1]. Let τ be a stopping time less than T and (δε) positive
numbers converging to 0 when ε → 0. We remark that |g(x + εh; x)| ≤ εC‖h‖, by
an expansion of g with respect to its first variable and the fact that g(x; x) = 0 and
since ∇1g is bounded by a constant C . We have

E(‖Xετ+δε − Xετ‖) = E

⎛

⎜⎝
τ+δε∫

τ

∫

Rl

‖εh‖[g(Xεs− + εh; Xεs−)]+ m(Xεs−, h)dh
ds

ε2

⎞

⎟⎠

≤ C M2δε,

where M2 =
∫ ‖h‖2m̄(h)dh. Then, for any α > 0,

P(‖Xετ+δε − Xετ‖ > α) ≤ C M2

α
δε → 0 when ε→ 0.

This gives the first part of Aldous’ criterion. For the second part, we have to prove
the uniform tightness of the laws of (supt≤T ‖Xεt ‖)ε>0. We use Itô’s formula to
write (Xεt )

2 from (A.6). Next, using Cauchy–Schwarz’ and Doob’s inequalities, we
obtain by a localization argument and Gronwall’s lemma that E(supt≤T ‖Xεt ‖2) ≤
CT (E(‖Xε0‖2) + 1), where CT is a constant depending on T,M2 and G. Since
(Xε0)0<ε≤1 is bounded in L

2, the tightness of the laws of (supt≤T ‖Xεt ‖)ε>0 follows.

(iv) Convergence of the generators

Let us now prove that

∀ϕ ∈ C2
b (X ), Lεϕ→ L0ϕ uniformly on X , (A.7)
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where Lε is defined in (3.3) and L0 is defined by

L0ϕ(x) =
∫

Rl

(h · ∇ϕ(x))[h · ∇1g(x; x)]+ m(x, h)dh,

where ∇ϕ(x) is the gradient vector of ϕ(x). We have,

∣∣∣Lεϕ(x)− L0ϕ(x)
∣∣∣ ≤

∫

Rl

[h · ∇1g(x; x)]+

×
∣∣∣∣
ϕ(x + εh)− ϕ(x)

ε
− h · ∇ϕ(x)

∣∣∣∣m(x, h)dh

+
∫

Rl

∣∣∣∣
ϕ(x + εh)− ϕ(x)

ε

∣∣∣∣×
∣∣∣∣

[
g(x + εh; x)

ε

]

+

− [h · ∇1g(x; x)x)]+|m(x, h)dh. (A.8)

Let us call I1 and I2 the quantities inside the integral in the first and the second term,
respectively. Now, ϕ is C1, g(x; x) = 0 and by Assumption (A′), g(x; y) is C1 with
respect to the first variable x . So, we can find θ1, θ2 and θ3 in [0, 1] depending on x
and h such that

I1 = [h · ∇1g(x; x)]+ × |h · ∇ϕ(x + θ3εh)− h · ∇ϕ(x)|;
I2 = |h · ∇ϕ(x + θ1εh)| × |[h · ∇1g(x + θ2εh; x)]+ − [h · ∇1g(x; x)]+|.

Since ϕ is in C2
b , and because of Assumption (A′), we can choose a number C such

that ∇ϕ and ∇1g are both C-Lipschitz and bounded by C on X and X 2 respectively.
Then

I1 ≤ C‖h‖ × ‖h‖C‖θ3εh‖ ≤ εC2‖h‖3;
I2 ≤ C‖h‖ × |h · ∇1g(x + θ2εh, x)− h · ∇1g(x, x)| ≤ εC2‖h‖3.

It remains to put these bounds in Equation (A.8) to obtain:
∣∣∣Lεϕ(x)− L0ϕ(x)

∣∣∣ ≤ 2εC2
∫

Rl

‖h‖3m(x, h)dh.

We conclude using Assumption (A′).
(v) Martingale problem for limiting distributions

Once we have the uniform tightness and the convergence of the generators, it is stan-
dard (cf. Ethier-Kurtz [13] Lemma 4.5.1) to deduce that any accumulation point P of
the family of laws {PεXε0 } on D([0, T ],X ) is the law of the process X solution to (4.4)
with initial state X0. The theorem then follows from the uniqueness proved in (i).


�
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