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Abstract Let Tn,m = Zn × Zm , and define a random mapping φ : Tn,m → Tn,m

by φ(x, y) = (x + 1, y) or (x, y + 1) independently over x and y and with equal
probability. We study the orbit structure of such “quenched random walks” φ in the
limit m, n → ∞, and show how it depends sensitively on the ratio m/n. For m/n near
a rational p/q, we show that there are likely to be on the order of

√
n cycles, each of

length O(n), whereas for m/n far from any rational with small denominator, there are
a bounded number of cycles, and for typical m/n each cycle has length on the order
of n4/3.

Mathematics Subject Classification (2000) 60D05

1 Introduction

We study a model of monotone non-intersecting lattice paths in Z
2. While this is

a classically studied model in statistical mechanics, related to Dyson’s Brownian
motion and random matrices, there are few studies concerned with the influence
of the boundary conditions at the critical point of the model. The authors of [3]
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studied a model in a similar setting, finding some surprising “resonance” phenom-
ena, which showed how the shape of the domain—in particular the rationality of
the aspect ratio—had a strong influence on the partition function and other observ-
ables in the model. Here we study a model very closely related to that in [3], on
which we can obtain more accurate and complete information using simple prob-
abilistic methods. One of our goals is to explain some of the conjectured behav-
ior in [3]. However we feel that our model is of primary interest as an example of
a quenched random dynamical system for which a fairly complete analysis can be
obtained.

For positive integers m, n let �n,m be the sublattice of Z
2 generated by (n, 0) and

(0, m). Let Tn,m = Z
2/�n,m ∼= Z/nZ × Z/mZ, the n, m-torus. We will consider

configurations consisting of collections of vertex-disjoint monotone lattice cycles on
Tn,m . The law on such configurations that we consider has two simple definitions.

Firstly, we define φ : Tn,m → Tn,m by setting φ(x, y) to be equal, with equal
probability, either to (x + 1, y) or (x, y + 1), these choices being made independently
over the nm vertices of Tn,m . We call φ a quenched random walk. Each φ represents
a dynamical system, with at least one periodic orbit. The law on disjoint unions of
cycles that we consider is given by the collection of distinct orbits of this randomly
selected φ.

The dynamical system φ is equivalent to another model, the cycle-rooted spanning
forest. We may make Tn,m into a directed graph, with each vertex (x, y) having two
outgoing edges, that point to (x + 1, y) and (x, y + 1). A cycle-rooted spanning for-
est is a subgraph in which each vertex has one outgoing edge. The components in
these subgraphs may be several, but each component contains a single cycle (directed
northeast), which is topologically nontrivial. The remaining edges of the component
form in-directed trees, attached to this cycle. The uniform probability measure on
cycle-rooted spanning forests is called the CRSF measure, μC RSF . Each component
is referred to as a cycle-rooted spanning tree. See Fig. 1.

It is not hard to see that the cycles of the quenched random walk φ are precisely
the cycles in the CRSF model. We simply define φ(x, y) to be the vertex pointed to
by the random outgoing edge from (x, y) in the CRSF.

The model is closely related to the monotone non-intersecting lattice path (MNLP)
model, which was studied in [3]. The state space of the measure again consists of col-
lections of disjoint, monotone northeast-going lattice cycles. A given configuration is
chosen according to a Boltzmann measure μ at temperature T , which is the probability

measure assigning to a configuration a probability proportional to e− Eb Nb+Ec Nc
T . Here,

Eb and Ec are positive constants, and Nb and Nc denote the total number of eastgoing
or northgoing steps in the configuration.

In [3], the behaviour of the MNLP model was examined near its critical tempera-
ture T , which is the temperature at which e−Eb/T + e−Ec/T = 1. In the critical case,
a configuration is being chosen with probability proportional to bNb cNc , where b, c
satisfy b + c = 1.

The two models, CRSF and MNLP, have similarities in their definition, and we
will shortly explain their connection more precisely. As [3] showed, MNLP is ame-
nable to an exact solution analysis using Kasteleyn theory. The CRSF model, on the
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Monotone loop models and rational resonance 615

Fig. 1 A quenched random
walk and its orbit structure, with
the cycles highlighted

other hand, has a dynamical definition that permits a more geometric discussion of its
behaviour.

The authors of [3] determine that the behaviour of MNLP depends sensitively, for
large tori, on the aspect ratio m/n of the torus, with radical changes in behaviour occur-
ring near rational values for this ratio. In Theorem 1 of [3], for example, an asymptotic
expression for the value of partition function (whose definition we will shortly give),
and for the mean and variance of the number of northgoing edges present in an MNLP
configuration is computed. Figure 3 of [3] illustrates a conjecture of [3]: the number of
edges typically present in an MNLP configuration appears to be highly peaked when
the aspect ratio is precisely equal to a given small rational, it experiences a rapid decay
if the aspect ratio is slightly increased or decreased, and, strikingly, it increases again
if the change in aspect ratio is further accentuated, while still remaining “far” from
other rationals.

Consider the critical case of MNLP where b = c = 1/2 (we might consider other
values of b, c such that b + c = 1, but this is essentially indistinguishable, for asymp-
totic behaviour, from changing the aspect ratio of the torus). In this case, MNLP assigns
a weight of 2−|C| to any configuration C, a disjoint union of north- and east-going
cycles, where |C| is the total number of edges of C. We define Z M N L P = ∑

C 2−|C|,
where the sum is over all configurations, so that the probability of a configuration is
2−|C|/Z M N L P . The quantity Z M N L P is the partition function of the MNLP model.

We now discuss the relation between the two models, MNLP and CRSF. Consider
a variant of CRSF, called oriented CRSF, which is given by the uniform measure on
cycle-rooted spanning forests, each of whose cycles is given an orientation (either to
the northeast, or the southwest). We can exhibit a measure-preserving correspondence
between MNLP and oriented CRSF. Indeed, if we take a sample of MNLP, and orient
each of its cycles in the southwesterly direction, and then assign to each remaining
vertex in the torus an edge pointing to the east or to the north, independently and with
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Fig. 2 Cycles in a sample when
n = m = 1,000

equal probability, declaring that the newly formed cycles, if any, are to be oriented in
the northeasterly direction, we claim that the resulting law is the uniform measure on
oriented cycle-rooted spanning forests. We see this as follows: for a given cycle-rooted
spanning forest whose cycles are oriented, the procedure will alight on this configura-
tion if, firstly, the sample of MNLP happens to pick its set C of southwesterly oriented
cycles and, secondly, the correct choice of north or east outgoing edges is made in each
of the remaining vertices. The probability of the first event is 2−|C|/Z M N L P , while
the second then occurs with probability 2−(mn−|C|). So the probability of obtaining the
given oriented cycle-rooted spanning forest, which is 2−mn Z−1

M N L P , does indeed not
depend on the configuration of the oriented CRSF.

This argument also demonstrates that the number of oriented CRSFs is given by
2mn Z M N L P . We also know that it is equal to the sum over CRSFs of 2� cycles, or to
2mn

EC RSF (2� cycles), since there a total of 2mn CRSFs.
We summarise these deductions:

Theorem 1.1 The MNLP model is in measure-preserving correspondence with ori-
ented CRSF, and

EC RSF

(
2�cycles

)
= Z M N L P , (1)

That is, the partition function for the MNLP model is the expected value of 2 to the
number of components in the CRSF model.

In [3] it was conjectured that Z M N L P ≥ 2. This follows trivially from (1).
In this paper we study the number and the length of cycles in CRSF, as well as their

homology class. Our results, which we shortly outline, yield a geometric understand-
ing of CRSF: the sharp changes in behaviour that occur near rational choices for the
aspect ratio for a large torus, and the remaining generic case in which the aspect ratio
is not close to any small rational (Figs. 2, 3).
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Monotone loop models and rational resonance 617

Fig. 3 Cycles in two samples when n = 1,090, m = 1,000. In the first there is one cycle with homology
class (9, 10)

1.1 Outline

In Sect. 2, we prove two propositions, the first detailing the behaviour of the number of
cycles when m−n = O(n1/2), and the second when n1/2 <<

∣
∣m−n

∣
∣ <<

√
2n log n.

We show that, in the first case, �(n1/2) cycles are likely to be present in the CRSF,
while this number experiences a rapid decay as we enter the second case. In Sect. 3,
we turn to the behaviour of the model when m = n + C

√
n log n, where C >

√
2 is a

fixed constant, showing that precisely one loop is likely to exist, and that this loop is
global in nature, having length n3/2+o(1). We see, then, that the mean number of edges
present in the CRSF configuration, as the aspect ratio is perturbed from m/n = 1 by
varying the value of m, is peaked at an order of n3/2 when

∣
∣m/n − 1

∣
∣ = O(n−1/2),

falls below nε when m = n + (
√

2 + c)
√

n log n for c = c(ε) a small negative con-
stant, and then rises again to n3/2+o(1) as this constant is taken to be positive. These
phases appear to correspond to the primary spike, the valley, and the secondary spike
observed for the mean total length of cycles in MNLP near a given rational aspect
ratio that is described in Section 6 of [3].

In Sect. 4, we extend these results to the case m/n close to a rational p/q. In Sect. 5,
we deal with the case that m/n is not close to a rational with small denominator. In
this case, typically, a constant number of cycles form, each having a length of order
n4/3. These cycles cross the torus about n1/3 times and divide it into pieces whose
widths are about n2/3.

1.2 Notation

We identify Tn,m with the rectangle {0, . . . , n − 1} × {0, . . . , m − 1} in Z
2. A closed

orbit (or cycle) has homology class (p, q) if it crosses any horizontal line q times
and any vertical line p times. We refer to such an orbit as a (p, q)-cycle. Two dis-
joint closed orbits necessarily have the same homology class, and p, q are necessarily
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618 A. Hammond, R. Kenyon

relatively prime, since the orbits are simple closed curves. The length of a (p, q)-cycle
is np + mq edges; it necessarily has np horizontal edges and mq vertical edges.

A strand of a cycle C = {c0, c1, . . . , cn}, with cn = c0, is defined to be a subpath
{ci , ci+1, . . . , c j−1, c j } between two consecutive passes of the line x = 1

2 , that is,
such that (ci−1, ci ) and (c j−1, c j ) are successive pairs whose terms have x-coordinate
equal to zero and one respectively. A cycle is partitioned by the set of its strands.

For a particular realization of φ, and for (p, q) ∈ N
2, we write N(p,q) for the

number of cycles of homology class (p, q), and N = ∑
(p,q)∈N2 N(p,q) for the total

number (note that exactly one term in the sum is nonzero).
For each (i, j) ∈ {0, . . . , n − 1} × {0, . . . , m − 1}, associate a random walk Wi, j :

N → Tn,m , starting at (i, j) and whose steps are independently up and to the right
with equal probability. We call such a random walk an up-right random walk.

The CRSF can be obtained by iteratively running the random walks
{Wi j }0≤i≤n−1,0≤ j≤m−1, stopping each when it intersects its trace or the trace of those
run earlier. We will form the configuration in this way, or by some variation of this
approach. Although in constructing the CRSF, we have no cause to examine the walks
after they intersect themselves, the independence properties of the walks without stop-
ping will be useful in the proofs of the propositions.

Similarly to the definition of a strand of a cycle, we say that a walk Wx,y performs a
traversal on the interval {t1, . . . , t2−1} if the x-coordinate of Wx,y is m−1, 0, m−1, 0
at times t1 − 1, t1, t2 − 1, t2 respectively (the first condition we omit if t1 = 0), and t2
is the first return to the line x = 0 after t1. That is, a traversal is a horizontal crossing
of the torus by the walk.

2 The primary spike and the valley when m ≈ n

We discuss in this section the case when m − n = O(
√

n). In this case there are many
(1, 1)-cycles. This case is generalized to m/n ≈ p/q in Sect. 4.

Proposition 1 Let ρ ∈ (0,∞) be fixed and m = n + ρ
√

n(1 + o(1)). There exists
c = c(ρ) > 0 with the following property. The probability that each closed orbit has
homology class (1, 1) exceeds 1 − exp{−cn1/2}. The number N(1,1) of such orbits
satisfies

P

(
N(1,1) > cn1/2

)
≥ 1 − exp

{
−cn1/2

}

for all sufficiently large n. Moreover there exists a (large) C > 0 so that we have

P

(
N(1,1) > Cn1/2

)
≤ exp

{
−C−1n1/2

}

for all sufficiently large n.

Proof Let K > 0 be large but fixed as n → ∞. We partition the torus into strips of
width 2K

√
n, parallel to the closed path y = (m/n)x . That is, let Ai , i ∈ {0, . . . ,


 m
2K

√
n
� − 1} denote the set of vertices in the i th strip:
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Monotone loop models and rational resonance 619

Ai =
{
(x, y) ∈ Tn,m : 2K n1/2i ≤ |y − (m/n)x | < 2K n1/2(i + 1)

}
.

The last strip, A
 m
2K

√
n
�, may be thinner than the others, but this does not matter for

our purpose.
We will form the CRSF configuration in the following way. Let zi = 
K n1/2(2i +

1)� be the y-coordinate of the point on the line x = 0 in the center of the i th strip. We
will run the walks W0,zi , i = 1, 2, . . . in increasing order, stopping any such walk at
the stopping time σi , where

σi = min
{

j ≥ 0 : W0,zi ( j) �∈ Ai , or W0,zi ( j) = W0,zi (t) for some t < j
}

denotes the first time at which W0,zi either leaves ∂ Ai or hits its own trace.
After these segments of random walks have been run, we choose an arbitrary order

of successive sites as the initial locations of further random walks, until a cycle-rooted
spanning forest has been determined.

Let Ei , i ∈ {0, . . . , 
 m
2K

√
n
�} denote the event that the walk W0,zi remains in Ai

during its first two traversals, and that its first return to the line {x = 0} occurs at
a y-coordinate exceeding zi , while its second return has a y-coordinate at most zi .
We claim that P(Ei ) > c = c(ρ) > 0. Indeed, let {X j : j ∈ N} denote the number
of upward displacements made by W0,zi between its j − 1-st and j th rightward dis-
placements. The event that W0,zi remains in Ai during its first two traversals occurs
precisely when

∣
∣
∣
∣
∣
∣

j∑

k=1

Xk − mj

n

∣
∣
∣
∣
∣
∣
≤ K n1/2 (2)

for each j ∈ {1, . . . , 2n}. The condition on m implies that
∣
∣mj

n − j
∣
∣ ≤ 2

√
nρ(1+o(1))

for such values of j , from which we learn that (2) is implied by the inequalities

∣
∣
∣
∣
∣
∣

j∑

k=1

Xk − j

∣
∣
∣
∣
∣
∣
≤ (K − 3ρ) n1/2 (3)

each being satisfied, for j ∈ {1, . . . , 2n}. For the occurrence of Ei , we require in
addition that

n∑

k=1

Xk − m ∈
[
0, K n1/2

]
(4)

and that

2n∑

k=1

Xk − 2m ∈
[
−K n1/2, 0

]
. (5)
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Equivalent to (3) is the assertion that the random walk
∑ j

i=1 2−1/2(Xi − 1), that
has a step distribution with mean zero and variance one, has a maximum absolute
value of at most (K − 3ρ)(n/2)1/2, among j ∈ {1, . . . , 2n}. As (3) is sufficient for
(2), so are (4) and (5) implied by

n∑

k=1

2−1/2 (Xk − 1) ∈
[

3ρ√
2

n1/2,
K − 3ρ√

2
n1/2

]

(6)

and

2n∑

k=1

2−1/2 (Xk − 1) ∈
[

− K − 3ρ√
2

n1/2,− 3ρ√
2

n1/2
]

. (7)

We have then that P(Ei ) ≥ pn , where pn is the probability that each of the conditions
(3), (6) and (7) is satisfied. By Donsker’s theorem [1, page 365], we have that pn → p
as n → ∞, where

p = P

({

sup
t∈[0,2]

∣
∣B(t)

∣
∣ ≤ K − 3ρ√

2

}

∩
{

B(1) ∈
[

3ρ√
2
,

K − 3ρ√
2

]}

∩
{

B(2) ∈
[

− K − 3ρ√
2

,
−3ρ√

2

]})

, (8)

with B : [0,∞) → R denoting a standard Brownian motion. Note that p > 0: the
event

{

B(1) ∈
[

3ρ√
2
,

K − 3ρ√
2

]}

∩
{

B(2) ∈
[

− K − 3ρ√
2

,
−3ρ√

2

]}

occurs with positive probability, because B(1) and B(2) − B(1) are independent nor-
mal random variables. Conditionally on the pair (B(1), B(2)) taking a given value in
the set [ 3ρ√

2
,

K−3ρ√
2

]× [− K−3ρ√
2

,
−3ρ√

2
], there is a uniformly positive probability that the

first condition in the event on the right-hand-side of (8) is satisfied, as we see from the
law of the maximum of a Brownian bridge [1, exercise 8.2, page 391].

Thus, indeed, each event Ei has a positive probability >c(ρ), bounded below inde-
pendently of n and i .

If Ei occurs, then, at the stopping time σi , the walk W0,zi hits its own trace. The
choice of the order of the walks in the formation of the CRSF configuration ensures
that this event produces a (1, 1)-cycle in Ai . Moreover, the events Ei are pairwise
independent. Thus, the number N(1,1) of (1, 1)-cycles is bounded below by a binomial
random variable with parameters 
 m

2K
√

n
� and c(ρ). If the configuration contains one

(1, 1)-cycle, then all the other cycles are also of this type, so the absence of a (1, 1)-
cycle implies that Ei does not occur for any i ∈ {0, . . . , 
m/(2K n1/2)�−1}. We infer
the first two statements of the proposition.
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To treat the last assertion, we form the CRSF by running the random walk W00 and
adding an edge (x, y)(x ′, y′) traversed by W00 to the configuration on each occasion
for which the site (x, y) is visited by W00 for the first time, until a cycle-rooted span-
ning forest is formed. We may assume that at least one (1, 1)-cycle is formed, or,
equivalently, that every cycle in the configuration is a (1, 1)-cycle.

Define the wraparound time of the walk W00 to be the earliest time t such that the
set W00[0, t] of vertices visited by the walk up to time t has the property that every
(1, 1)-cycle in Tn,m intersects W00[0, t].

We record the successive maxima and minima of the y-coordinate of the intersec-
tion of the walk W00 with the line {x = 1

2 } (i.e. the first horizontal step after each
visit to the line x = 0). Let u0 = X1 be the y-coordinate of the walk on the first
occasion that it crosses the line x = 1

2 . When the walk next crosses the line {x = 1
2 },

its y-value, which, with the natural choice of shift by a multiple of m, we take to be∑n+1
i=1 Xi − m, may or may not exceed u0. If it is greater than u0, we record its value

as u1, and, if it is smaller than u0, we record it as v1. We do not set the value of either
u1 or v1 if

∑n+1
i=1 Xi − m equals u0. The y-value of the walk on the occasion of the

kth return to the line {x = 1/2} is given by
∑kn+1

i=1 Xi − km. We iteratively record
the successive maxima of these statistics as u2, u3, . . . and the successive minima as
v2, v3, . . ..

We no longer record either maxima or minima on a return to {x = 1/2} if this
return occurs after the wraparound time. Let {u0, . . . , u J1} and {v1, . . . , vJ2} denote
the final record. Let Q denote the set of horizontal edges crossing {x = 1/2} that are
traversed by the walk at one of the recorded times.

By assumption, in each tree T of the CRSF configuration lies a unique (1, 1)-cycle,
and in this cycle lies a unique horizontal edge e = e(T ) that crosses the line {x = 1/2}.
Let E denote the set of edges of the form e(T ) for some tree T in the configuration.
Let e0 ∈ E be the element in E lying in the cycle in the configuration which is the
last to be formed.

We claim that

E \ {e0} ⊆ Q. (9)

To see this, note that if a (1, 1)-cycle C lies in the configuration, there exists a vertex
c ∈ C and t, s ∈ N, t < s, such that the walk W00 makes its first and second visits to
c at times t and s, the set W00[t + 1, s] is the vertex set of C , and

W00 [t, s] ∩ W00 [0, t − 1] = ∅. (10)

We call t the start-time of the cycle C , and s, the end-time.
Note that the start-time of C necessarily occurs before the wraparound time. The

intervals of time during which distinct cycles of the CRSF configuration form being
disjoint, we learn that every cycle except possibly that which forms last has an end-time
that occurs before the wraparound time.

We claim that the cycle C , whose vertex set is W00[t + 1, s], either lies above or
below the configuration W00[0, t −1] present prior to its formation. More precisely, the

123
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y-coordinate of every vertex W00(n), n ∈ {t, . . . , s}, exceeds the maximum y-coordi-
nate of any W00(m), m ∈ {0, . . . , t − 1}, sharing its x-coordinate, or the y-coordinate
of every such vertex is less than the corresponding minimum. Indeed, this statement is
readily verified from (10), with the aid, for example, of the intermediate value theorem.

We have shown that every edge e ∈ E , except possibly e0, is traversed before the
wraparound time, at a time which is recorded on either the {ui } or {vi } list. That is,
we have obtained (9).

Note then that

N = |E | ≤ |Q| + 1 = J1 + J2 + 2, (11)

the inequality by (9).
We now show that, if ρ = 0, then for i ∈ {1, 2}, and if ρ > 0, for i = 1,

P

(
Ji > Cn1/2

)
≤ exp

{
−C−1n1/2

}
, (12)

for C sufficiently large. Indeed, the sequence of increments {ui+1 − ui : i ∈ N}
consists of independent random variables, each of which has, for small enough c,
probability at least c of exceeding n1/2. To see this, note that the value u j+1 will be
recorded on the first return to {x = 1/2} after that at which u j is recorded, provided
that this return occurs at a higher value of y, which occurs with probability at least
2−1(1 + o(1)), in which case, the difference u j+1 − u j will exceed n1/2 with positive
probability, by the central limit theorem. If a proposed entry u j exceeds m, then the
wraparound time has already occurred, and the entry is not recorded. We see that (12)
follows.

Suppose now that ρ > 0. Then for any k,

P (J2 > k) ≤ γ k, (13)

for some γ = γ (ρ) ∈ (0, 1). Indeed, it is readily seen that a new term is added to
the v-sequence, independently of its history, with a probability that is bounded away
from one. So J2 satisfies (12) in this case also.

This completes the proof of the last assertion of the proposition. ��

The number of cycles experiences a rapid decline as the value of m is increased
beyond that treated in Proposition 1.

Proposition 2 We set m = n + 
C
√

n log n�, for C ∈ (0,∞) a fixed constant. Then

E
(
N(1,1)

) = 1

2
√

π
n

1
2 − C2

4

(

1 + O

(
(log n)3

n1/2

))

.

Remark The principal interest of this result is for values C ∈ (0,
√

2), in which case,
all cycles are of homology class (1, 1) with high probability. Indeed, the proof of the
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Monotone loop models and rational resonance 623

first part of Proposition 1 may be adapted to show that every cycle in the configuration
is a (1, 1)-cycle with probability exceeding

1 − exp

{

− c
n1/2−C2/4

√
log n

}

,

where c > 0 is a small constant.

Proof We estimate the expected number EN(1,1) of (1, 1) cycles as follows. Every
(1, 1) cycle contains exactly one of the edges (0, y)(1, y), for y = 0, . . . , m − 1.
Hence, the number of (1, 1) cycles is equal to the number of edges (0, y)(1, y) with
0 ≤ y < m that are present in the CRSF configuration and are such that the trajectory
begun at (1, y) first visits the line {x = 1/2} at (1/2, y). Thus,

E
(
N(1,1)

) = mP ({Z = m} ∩ {(0, 0)(1, 0) ∈ C}) ,

where C denotes the CRSF configuration, and Z denotes the y-coordinate of the tra-
jectory starting at (1, 0) on its first return to the line x = 1

2 . Noting that Z = m implies
that (0, 0)(1, 0) ∈ C, we obtain

E
(
N(1,1)

) = mP (Z = m) . (14)

Note further that Z = ∑n
i=1 Yi , where {Yi : i ∈ {1, . . . , n}} is an independent

sequence of geometric random variables of mean one and variance two. We find that

P (Z = m) = P

(
n∑

i=1

(Yi − 1) = 
C
√

n log n�
)

.

We require a local limit theorem for a sum of independent identically distributed
random variables in a regime of moderate deviations. Theorem 3 of [6] yields

P

(
n∑

i=1

(Yi − 1) = 
C
√

n log n�
)

= 1

2
√

π
n− 1

2 − C2
4

(

1 + O

(
(log n)3

n1/2

))

,

so that the result follows from (14), since m = n + O(
√

n log n). ��

3 The secondary spike when m ≈ n

We prove two propositions regarding the behavior of the model in a regime where
m = n + C

√
n log n, with |C | ∈ (

√
2,∞) a fixed constant. In Proposition 3, we

show that it is likely that there is a cycle of length n3/2+o(1), and, in Proposition 4, we
establish that it is likely to be the only cycle.
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624 A. Hammond, R. Kenyon

Proposition 3 For |C | >
√

2, set m = n +C
√

n log n(1+o(1)). Then, for any ε > 0
and for n sufficiently large,

P

(

any cycle has length at least
n3/2

3|C |√log n

)

≥ 1 − n
1
2 − C2

4 +ε .

Proof We treat the case that C < 0, the other being similar. Let φ∗ : {0, . . . , m−1} →
N be the y-coordinate of the return map of the line x = 0 to itself. That is, let
(0, φ∗(y)) = φτ (0, y) where τ = τy > 0 is the first time that φτ (0, y) has x-coor-
dinate zero after the first positive time at which it has a strictly positive x-coordinate.
Note that y < y′ implies φ∗(y) ≤ φ∗(y′), in other words φ∗ is non-decreasing.

For i ∈ N, let Di denote the event that

φ∗ (
iεC
√

n log n�
)

> (i + 1)εC
√

n log n.

Note that, for any given y, we may write φ∗(y) = y−m+∑n
i=1 Yi , where {Yi : i ∈ N}

is an independent sequence of geometric random variables of mean one and variance
two. By Theorem 5.23 of [5], we have the bound

P (Di ) ≥ 1 − C0n− C2
4 (1−ε)2

, (15)

for some large constant C0. Set D =⋂
 m
Cε

√
n log n

�
i=0 Di . We claim that, if D occurs, then

φ∗(k) ≥ k for all k ∈ {0, . . . , m − 1}. Suppose on the contrary φ∗(k) < k. Let j ∈ N

be maximal such that 
 jεC
√

n log n� ≤ k. Then

φ∗ (
 jεC
√

n log n�
)

≤ φ∗(k) < k < 
( j + 1)εC
√

n log n� < φ∗ (
 jεC
√

n log n
)

,

a contradiction.
For i ∈ N, let Ei denote the event that

φ∗ (
iC
√

n log n�
)

≤ 
(i + 2)C
√

n log n�.

Arguing similarly to (15), we note that

P (Ei ) ≥ 1 − C0n− C2
4 , (16)

where C0 again denotes a large constant.

Set E =⋂
 m
C

√
n log n

�
i=0 Ei .

Define y0 = 0 and for i > 0 define yi = φ∗(yi−1). We will show that, if E occurs,

yi+1 − yi ≤ 3C
√

n log n (17)
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for each i ∈ N. Let j ∈ {1, . . . , 
 m
C

√
n log n

� + 1} satisfy


( j − 1)C
√

n log n� ≤ yi < 
 jC
√

n log n�.

We have that

yi+1 = φ∗ (yi ) ≤ φ∗ (
 jC
√

n log n�
)

≤ 
( j + 2)C
√

n log n� ≤ yi + 3C
√

n log n,

the first inequality since φ∗ is non-decreasing, the second due to the occurrence of E j .
We have obtained (17).

Let K ∈ N be maximal subject to yK < m (note that K is finite if D occurs). We
claim that, on the event D, any cycle has at least K strands, and that, on the event E ,
K ≥ m

3C
√

n log n
.

Indeed, setting Ci = {yi , . . . , yi+1} for i ∈ {0, . . . , K −1}, we have that φ∗(Ci ) ⊆
Ci+1 for such i , if D occurs. The monotonicity of φ∗ implies that any cycle contains
a point (0, a1) with a1 ∈ C1 and, by the sequence of inclusions, distinct points (0, ai )

with ai ∈ Ci for each value of i . Hence, the cycle has at least K strands.
The lower bound on K follows by noting that, from (17),

m − 3C
√

n log n ≤ yK =
K−1∑

i=1

(yi+1 − yi ) ≤ 3C(K − 1)
√

n log n.

The proof is completed by noting the following bounds on P(D) and P(E), which
follow from (15) and (16):

P(D) ≥ 1 − 2C0n1/2− C2
4 (1−ε)2

Cε
√

log n

and

P(E) ≥ 1 − 2C0n1/2− C2
4

C
√

log n
.

��
Proposition 4 Set m = n +C

√
n log n (1 + o(1)) with |C | >

√
2. Then, in the CRSF,

for each ε > 0,

P (there exist at least two disjoint cycles) ≤ n
1
2 − C2

4 +ε

for n sufficiently large.
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Remark As the proof will show, in the presence of one cycle of the length given in
the statement of Proposition 3, the conditional probability of another cycle decays as
exp{−n1/2+o(1)}. In the regime that Propositions 3 and 4 treat, then, the most probable
means by which two cycles form is by local fluctuations in the generating random walks
that create two (1, 1)-cycles. This occurs with a probability that decays polynomially
in n.

Proof Recall the events D and E , the quantity K and the intervals Ci from the proof
of Proposition 3. Suppose that the event D ∩ E occurs. Let ai be the intersection of a
cycle with the interval Ci . Then

ai+1 − ai ≤ yi+2 − yi ≤ 6C
√

n log n.

Suppose that the CRSF configuration is formed by firstly running the random walk
W0,0 until it meets its own trace, and then running the walks W0,wi until existing trees
or the current trace is hit, where wi ∈ {0, . . . , m − 1} are selected in an arbitrary
manner from the subset of the line {x = 0} not yet belonging to any tree.

If two cycles are to be present in the configuration, then, for some z1 with a1 < z1 <

a2, W0,z1 must not meet the first cycle before it hits its own trace. Set z0 = w1, and
let zi denote the y-coordinate of the i th return of the walk W0,w1 to the line {x = 0}.

In the event D ∩ E , if W0,w1 does not meet the first cycle before visiting its own
trace, then

ai < zi < ai+1 (18)

for each i ∈ {1, . . . , K − 2}.
We sample the sequence zi when i is a multiple of L = 
nε�. Note that (18) implies

that

|a( j+1)L − a j L+1| ≤ |z( j+1)L − z j L | ≤ |a( j+1)L+1 − a j L | (19)

for each j . So z( j+1)L − z j L is restricted to an interval of length at most 12C
√

n log n.
The quantity z( j+1)L − z j L has the distribution of

∑nL
i=1 Xi − mL , where {Xi } is a

sequence of independent geometric random variables of mean one and variance two
(these are the vertical displacements of the walk W0z in between successive rightward
movements).

Now (19) at the given value of j requires that this sum
∑nL

i=1 Xi of independent
random variables lie in a fixed interval of length at most 12C

√
n log n. It follows read-

ily from Theorem 3 of [6] that the probability of this event is maximized by choosing
the interval to be centred at nL , and, thus, to be bounded above by

C0
12C

√
n log n√
nL

≤ n− ε
2 .
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Thus, on the event D ∩ E , the probability that each of the inequalities (19) is satisfied
is at most

(
n−ε/2

)n1−ε

≤ exp{−n1−ε}.

The bounds on the probabilities of D and E presented in the proof of Proposition 3
complete the proof. ��

4 Near m/n = p/q

We extend the previous results to the case m/n is near a rational p/q with small
denominator.

Proposition 5 Let p, q be fixed and relatively prime. Let ρ ∈ (0,∞) be fixed and
m = (p/q)n + ρ

√
n(1 + o(1)). For c > 0 small enough, each closed orbit has

homology class (p, q) with probability at least 1 − exp{−cn1/2}, while

P

(
N(p,q) > cn1/2

)
≥ 1 − exp

{
−cn1/2

}

for sufficiently large n. For C > 0 sufficiently large, we have

P

(
N(p,q) > Cn1/2

)
≤ exp

{
−C−1n1/2

}

for sufficiently large n.

Proof The first part of the proof is essentially the same as the proof of Proposition 1,
with the following changes. We again partition the torus into strips, but in this case the
strips have horizontal length pn instead of n. Thus each strip winds p times around
horizontally, and q times vertically, before closing up. The direction of the strip is now
parallel to the closed curve of homology class (p, q) on the torus, and the width of
the strips is still 2K

√
n for some large K .

For the second half of the proof, we require some variations on the sequence of
maxima and minima that we record. We divide returns to the line {x = 1/2} into p
classes, according to the value of the index of the return reduced mod p. We then form
p separate lists {u j

i }, {v j
i } of maxima and minima, where the y-coordinate of the kth

return to the line {x = 1/2} is entered as a maximum u j
i or as a minimum v

j
i on the

list j , j = k mod p, if this y value exceeds, or is less than, any y-coordinate for an
l-return to the line {x = 1/2} with l mod p equal to j .

We define the wraparound time to be that moment at which there no longer exists a
cycle of homology (p, q) that is disjoint from the existing trace of W00. We no longer
record the y-coordinate of a return to the line {x = 1/2} after the wraparound time.

Let {u j
i : 0 ≤ i ≤ J j

1 } and {v j
i : 1 ≤ i ≤ J j

2 } denote the maxima and minima
recorded on the j th list. Similarly to the case treated in Proposition 1, the y-coordinate
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628 A. Hammond, R. Kenyon

of each horizontal edge crossing {x = 1/2} is recorded on one of the lists, for each
cycle in the configuration, except possibly the last one. We learn that

N ≤
p∑

j=1

(
J j

1 + J j
2 + 1

)
+ p.

The proof is completed by estimating the tail of the random variables J j
1 and J j

2 as in
the previous proof. ��

Proposition 6 We set m = (p/q)n + C
√

n
√

log n, for C ∈ (0,
√

2p). Then

EN(p,q) =
√

p

2q
√

π
n

1
2 − C2

4p

(

1 + O

(
(log n)3

√
n

))

.

Proof We replace the (1, 1)-cycles considered in the proof of Proposition 2 by (p, q)-
cycles, and note the following variation: we have

E
(
N(p,q)

) = mP ({Z = pm} ∩ {(0, 0)(1, 0) ∈ C} ∩ A) ,

where, in this instance, Z denotes the y-coordinate of the trajectory starting at (1, 0)

on its pth return to the line {x = 1/2}. The event A is that the walk W0,0, after
visiting (0, 1), does not meet itself before its p-th return to the line {x = 1/2}. Not-
ing that P(A

∣
∣(0, 0)(0, 1) ∈ C) ≥ 1 − exp{−cn}, and that Z = pm implies that

(0, 0)(0, 1) ∈ C , we see that

E
(
N(p,q)

) = mP (Z = pm)

(

1 + O (exp {−cn})
)

.

Noting that Z = pm if and only if
∑pn

i=1 Xi = pn + p
C
√

n log n�, and applying
Theorem 3 of [6], we find that

P (Z = pm) = 1

2
√

πp
n− 1

2 − C2
4p

(

1 + O

(
(log n)3

√
n

))

.

We thus have

E
(
N(p,q)

) =
√

p

2q
√

π
n

1
2 − C2

4p

(

1 + O

(
(log n)3

√
n

))

.

��

The next two propositions, whose proofs mimic those of Propositions 3 and 4, treat
the secondary spike for a torus with aspect ratio close to a general rational.

123



Monotone loop models and rational resonance 629

Proposition 7 Let p, q ∈ N be relatively prime. Set m = (p/q)n + C
√

n log n, for
|C | >

√
2p. Then, for K = K (p, q),

P

(

there exists a loop of length at least
n3/2

√
log n

)

≥ 1 − n
1
2 − C2

4p +ε
,

as n → ∞.

Proposition 8 Set m = (p/q)n + C
√

n log n (1 + o(1)) with |C | >
√

2p. Then, in
the CRSF, for each ε > 0,

P (there exist at least two disjoint cycles) ≤ n
1
2 − C2

4p +ε
,

for n sufficiently large.

5 The irrational regime

Let m, n ∈ N with Cn > m > n for a constant C > 1.
We begin by collecting some elementary facts about continued fractions. These can

be found in, for example, [2]. Let

m

n
= a0 + 1

a1 + 1
a2+···+ 1

al

be the continued fraction decomposition of m/n. Define p0/q0 = a0 and for 0 ≤ j ≤ l,
define

p j

q j
= a0 + 1

a1 + 1
a2+···+ 1

a j

to be the rational approximants to m/n.
We have pk

qk
< m

n ≤ pk+1
qk+1

for k ≤ l even and pk+1
qk+1

≤ m
n <

pk
qk

for k ≤ l odd. In

each case, pk+1
qk+1

is the closer endpoint to m/n. Also | pk
qk

− pk+1
qk+1

| = 1
qkqk+1

. Hence,

n

2q j+1
< |np j − mq j | <

n

q j+1
(20)

We also have

pk = ak pk−1 + pk−2

qk = akqk−1 + qk−2.

Choose j0 so that

q j0 ≤ n1/3 < q j0+1. (21)
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630 A. Hammond, R. Kenyon

We will invoke upper bounds on certain coefficients ak as hypotheses. In this regard,
note that, for typical m, n, the maximum of the coefficients ak behaves as a multiple
of log n. Indeed, writing D(m, n) for this maximum, the main result of [4] shows that,
for each ε > 0, and uniformly in α > ε as x → ∞.

∣
∣
∣ {(a, b) : 0 ≤ a < b ≤ x, gcd(a, b) = 1, D(a, b) > α log x}

∣
∣
∣

∼ 3π−2x2
(

1 − exp
{
−12α−1π−2

})
.

Theorem 5.1 Define j0 as in (21). For each k ∈ N, there exists c = c(k) > 0 inde-
pendent of n and m, such that the probability that there at least k cycles, each of
homology class (p j0 , q j0), is at least c.

Remark The length of each such cycle is equal to np j0 +mq j0 ≥ nq j0 ≥ nq j0+1/(a j0 +
1) > n4/3/(a j0 + 1). Since a j0 is typically O(1), we see that, for n large and most
choices of m, cycles of length n4/3 form with positive probability in the CRSF con-
figuration.

Proof We argue the case k = 2, the general one being no harder. Note that

∣
∣
∣

p j0

q j0
− m

n

∣
∣
∣ <

1

q j0q j0+1
,

so that
∣
∣
∣

p j0

q j0
− m

n

∣
∣
∣ <

1

q j0 n1/3 , (22)

which implies, by 1 ≤ m
n ≤ C and (21), that

q j0

2
≤ p j0 < (C + 1)q j0 .

Using (21), then,

p j0

C + 1
≤ n1/3. (23)

Note that, by (22), |np j0 − mq j0 | < n2/3. Let R1 be the closed line/loop through the
origin of slope mq j0/np j0 on the torus. The vertical distance between strands of R1

is m/p j0 ≥ n2/3

C+1 . Let S1 be a strip centered on R1 and of width n2/3

3(C+1)
. Let S2 be a

translate of S1 which is disjoint from S1.
The probability that W0,0 does not exit S1 before making a cycle can be bounded

as follows. It suffices that:

1. The walk stays in the strip for two circuits, i.e. for 2p j0 returns to the line x = 0.
2. At the end of the first circuit (at the p j0 -th return) the walk is in the upper half of

the strip.
3. At the end of the second circuit the walk is in the lower half of the strip.
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In the notation used to argue that P(Ei ) ≥ c in the proof of Proposition 1, the first
event is

{

sup
�∈{1,2,...,2p j0 n}

∣
∣
∣
∣
∣

�∑

i=1

Xi − �
mq j0

np j0

∣
∣
∣
∣
∣
≤ n2/3

6(C + 1)

}

.

Using |1 − mq j0
np j0

| ≤ 1
p j0 n1/3 , we may now argue similarly to the deduction of P(Ei ) ≥

c that the three events listed above occur simultaneously with a probability that is
positive, uniformly in n ≥ n0 and n < m < Cn. ��

Theorem 5.2 Fix ε > 0, and choose j so that q j ≤ n1/3−ε/2 < q j+1. Suppose that
a j < nε/2 and a j+1 ≤ nε/4. Then

P

(
there is a cycle of length at most O

(
n4/3−ε

))
≤ exp

{
−cnε/2

}
.

Proof From (20) we have |np j − mq j | > n
2q j+1

. This implies that after p j traversals,

the strands of the ray R of slope 1 starting at the origin do not come within n
2q j+1

of
each other. In particular, there is an embedded strip U = U j , centered on the ray R
starting at the origin, of width n

2q j+1
and horizontal length np j .

By assumption, a j < nε/2 so that q j+1 < (a j +1)q j < (nε/2+1)n1/3−ε/2 < 2n1/3.
This implies that the strip U j has width at least n2/3/4. Arguing similarly to (23),

p j

C + 1
≤ n1/3−ε/2. (24)

Suppose that the CRSF configuration is formed by firstly running the walk W0,0
until it hits its trace. If the walk W0,0 remains in the strip U j until it hits itself,
forming a cycle, then the cycle to which (0, 0) belongs has length at least mq j ≥
nq j+1/(a j+1 + 1) ≥ 2−1n4/3−(3/4)ε , since a j+1 ≤ nε/4. Each cycle has the same
length. Hence, the event that there is a cycle of length at most n4/3−ε implies that
the walk W0,0 leaves the strip U j before reaching its end. The strip U j having hor-
izontal length np j ≤ (C + 1)n4/3−ε/2 by (24), we see that, with {Xi : i ∈ N}
being defined in the proof of Proposition 1, if

∣
∣
∑ j

i=1 Xi − j
∣
∣ ≤ n2/3/8 for each

j ∈ {1, . . . , 
(C + 1)n4/3−ε/2�}, then the walk W0,0 remains in U j until reaching its
end.

A brief argument using Theorem 5.23 of [5] yields

P

⎛

⎝ max
0≤ j≤(C+1)n4/3−ε/2

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi − j

∣
∣
∣
∣
∣
∣
< n2/3/8

⎞

⎠ > 1 − e−cnε/2

which completes the proof. ��
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Theorem 5.3 Fix ε > 0 and choose k < � so that pk ≤ n1/3− 7
48 ε < pk+1 and

p� ≤ n1/3+ 47
48 ε < p�+1. Suppose that max {ak+1, al+1} < n

5
48 ε . Then

P

(
there is a cycle of length at least n4/3+ε)

)
≤ exp

{
−n

ε
7

}
.

Proof We in fact prove a modified statement: choose k ≤ � so that pk ≤ n1/3−βε <

pk+1 and p� ≤ n1/3+γ ε < p�+1, and suppose that max{ak+1, al+1} < nαε . Let
δ > α + β with β > α. Then

P

(
there is a cycle of length at least 3n4/3+γ ε

)
≤ e−nβε+o(1) + e−n(γ−α−2δ)ε+o(1)

.

(25)

The statement of the proposition then follows by the choices α = 5/48, β = 7/48,
δ = 13/48 and γ = 47/48.

Let E be the event

E =
⎧
⎨

⎩
max

j∈{1,...,npk }

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi − j

∣
∣
∣
∣
∣
∣
≤ n2/3

⎫
⎬

⎭

and F be the event

F =
⎧
⎨

⎩
max

j∈{1,...,np�}

∣
∣
∣
∣
∣
∣

j∑

i=1

Xi − j

∣
∣
∣
∣
∣
∣
≥ n2/3+δε

⎫
⎬

⎭
.

Suppose that the CRSF configuration is formed by firstly running the walk W0,0
until it hits its trace. We claim that, on the event E ∩ F , the walk W0,0 completes a
cycle before its ql -th return to the line {x = 0}. To see this, note that after pk returns
to x = 0, the ray R splits the x-axis into intervals of lengths between m/pk+1 and
m/pk . We have

n1−αε

2pk
<

m

pk+1
<

m

n1/3 nβε <
m

pk
<

2Cn1+αε

pk+1
,

so these intervals are of order at least m/pk+1 ≥ n/pk+1 ≥ m
2Cn1/3 n(β−α)ε ≥

(2C)−1n2/3+(β−α)ε and at most m/pk ≤ Cn/pk ≤2C m
n1/3 nβεnαε ≤ 2C2n2/3+(α+β)ε .

Due to the occurrence of E , the path W0,0 lies within n2/3 of these points, and, due to
β > α, the path of W0,0 does not intersect itself before time npk . For the event F , at
some point before the p�-th return there is a displacement of at least n2/3+δε from R.
Since δ > α + β the path must intersect itself.

The number of horizontal steps in the cycle to which (0, 0) is rooted is at most
npl ≤ n4/3+γ ε . We have demonstrated that W0,0 hits its trace before the first moment
j at which

∣
∣∑ j

i=1 Xi − j
∣
∣ ≥ n2/3+δε . We learn that the number of vertical steps in
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the cycle is at most npl + n2/3+δε ≤ 2n4/3+γ ε . Hence, on the event E ∩ F , the cycle
to which (0, 0) is rooted has length at most 3n4/3+γ ε .

By invariance under vertical translation, the probability that there exists a cycle
whose length exceeds 3n4/3+γ ε is at most mP(E ∩ F).

With the aid of Theorem 5.23 of [5],

P (E) ≥ 1 − e−nβε+o(1)

. (26)

To obtain an analogous bound on P(F), we split the time interval [1, . . . , npl ] into
a succession of intervals, each but the last of length n4/3+2δε . (We discard the final,
shorter interval.) If Fc is to occur, the mean-zero random walk X j − j must make a
displacement of at most n2/3+δε in each of these intervals. By the central limit theo-
rem, the probability of such a displacement is at most a constant strictly less than one,
uniformly in high values of n. These displacements being independent for the disjoint
intervals under consideration, we find that P(Fc) ≤ cL , where L is the number of
such intervals, and c is a constant less than one. Note that

L ≥ npl

n4/3+2δε
− 1.

Using pl ≥ pl+1
al+1+1 >

pl+1
nαε+1 ≥ 2−1n(γ−α)ε , we conclude that

P (F) ≥ 1 − e−c′n(γ−α−2δ)ε

, (27)

for some constant c′ > 0. From (26) and (27), we obtain (25). ��
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