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Abstract In this paper a stochastic reaction diffusion system is considered, which
models the spread of a finite population reacting with a non-renewable resource in the
presence of individual based noise. A two-parameter phase diagram is established to
describe the large time evolution, distinguishing between certain death or possible life
of the population.

Keywords Stochastic PDE · Dawson–Watanabe process · Exit measures · Phase
diagram · Oriented percolation

Mathematics Subject Classification (2000) 60H12 · 35K57

1 Introduction

1.1 Statement of results

In this paper we study the stochastic reaction diffusion system on Rd , for d ≤ 3,

{
∂t u = �u + βuv − γ u + √

u Ẇ ,

∂tv = −uv.
(1.1)

One interpretation for this equation is that the solution u ≥ 0 describes the distribu-
tion of a population on Rd at times t ≥ 0 and that v ≥ 0 is the density of a nutrient
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562 C. Mueller, R. Tribe

gradually used up by the population. The noise W is a space-time white noise, and
the multiplicative factor

√
u models ‘individual based’ noise. This noise arises in

situations where each individual in the population contributes independently to the
noise, so that the variance of the noise is proportional to the population density. In
dimensions d ≤ 3, linear scaling reduces the number of possible parameters to two.
We have chosen to take the diffusion coefficient, the rate at which the nutrient is used,
and the noise coefficient all to be one, leaving two parameters β, γ ≥ 0, which we
think of as a reaction rate and a death rate.

The main results concern the long time behaviour of solutions. Without noise there
are travelling wave solutions and it is expected that sufficient noise can destroy these
waves. For our description of the long time behaviour, we take an initial condition
u0 = μ in M(Rd), the space of finite measures in Rd , and an initial nutrient level
v0(x) taking a constant value which, by scaling again, we have taken to be 1. We say
that certain death occurs for the parameters values β, γ if

P
[
ut = 0 for large t

] = 1 for any initial condition μ ∈ M(Rd) and v0 = 1.

We say that possible life occurs for the parameter values β, γ if

P [ut �= 0 for all t] > 0 for any non-zero initial condition μ ∈ M(Rd) and v0 = 1.

The main results of the paper describe a phase diagram for the parameter values β, γ
at which certain death or possible life occur.

Theorem 1 Consider solutions to (1.1) with initial condition v0 = 1. Then for any
values of the parameters β, γ ≥ 0 either possible life or certain death occurs.

• When d = 3, there exists a non-decreasing function β → �(β) ∈ (0, β) so that
when 0 ≤ γ < �(β) possible life occurs and when γ > �(β) certain death
occurs. Moreover

0 < lim inf
β→0

β−2�(β) ≤ lim sup
β→0

β−2�(β) < ∞,

• When d = 2 there exists a critical curve β → �(β) ∈ [0, β) as in dimension d = 3
(but allowing the possibility that �(β) = 0 for small β).

• When d = 1 certain death occurs for any γ, β ≥ 0.

Remarks 1. The estimates in the paper imply certain bounds on the critical curve.
In Sect. 6.3 we show that �(β)/β → 1 as β → ∞. Some higher order large
β asymptotics should be attainable, and we believe that β − �(β) ∼ β−2/(6−d)

(see the remarks in Sect. 6.3). Many other questions remain, such as regularity of
� and the behaviour on the critical curve. Most importantly perhaps, we do not
know the small β behaviour in d = 2, though we conjecture (see Sect. 7.3) that
there is certain death for γ = 0 and small enough β.

2. The possible life behaviour is not an example of global coexistence of two species,
for locally the population ut becomes extinct (see Lemma 9). Rather one expects
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A phase diagram for a stochastic reaction diffusion system 563

the process to live on a moving front travelling through space, and behind this
moving front the process dies away. It is therefore more analogous to the weak
survival results for the contact process on a homogeneous tree (see [10, Sect. I.4]).

3. A key difficulty in dealing with many reaction diffusion systems is the lack of
pathwise comparison results (which were crucial to the arguments for the scalar
equation studied in [11]). For example if two solutions u, ũ satisfy u0 ≤ ũ0 one
should not expect that ut ≤ ũt for t > 0. To replace these arguments, the key
new method in this paper is the use of comparison results for the total occupation
measure

∫ ∞
0 ut dt and total exit measure u∂D∞ of solutions on a domain D. Some

intuition behind this is given in Sect. 1.2.
4. Using scaling (as in Lemma 3) one can investigate the dependence on other param-

eters. For example the equation

{
∂t u = �u + uv − γ0u + √

σu Ẇ ,

∂tv = −uv, v0 = 1.

can be reduced to the standard form (1.1), by a linear change of variables, with
the parameters becoming γ = γ0σ

−2/(4−d) and β = σ−2/(4−d). The main the-
orem shows that possible life occurs, for example when d = 3, if 0 ≤ γ0 <

�(σ) for some � : (0,∞) → (0, 1) and satisfying limσ→0�(σ) = 1 and
limσ→∞�(σ) = 0 at certain rates. One reason for choosing β, γ as our parame-
ters is that we have natural monotonicity in these parameters which is unclear for
other choices—for example we do not know if � is decreasing.

5. One can investigate, via phase plane methods, the possibility of travelling waves
for the corresponding deterministic system ∂t u = �u+uv−γ u, ∂tv = −uvwith
v0 = 1. (With no noise term and β > 0 we can remove one more parameter by
linear scaling, leaving only γ ≥ 0.) We require γ ≤ 1, else the death term exceeds
the reaction term resulting in death. Fix k ∈ Rd with |k| = 1. Looking for a trav-
elling wave solution of the form ut (x) = U ((x · k)− ct), vt (x) = V ((x · k)− ct)
with c > 0, we set W = U ′ to obtain the first order system

U ′ = W, V ′ = 1

c
U V, W ′ = γU − cW − U V .

The steady states are (U, V,W ) = (0, a, 0) for any a. By scaling we assume the
untouched nutrient level is 1 and seek a path in phase space connecting (0, 0, 0) to
(0, 1, 0), so that u is a travelling ‘hump’, behind the wave the nutrient is used up and
ahead it is untouched. Linearizing around (0, 0, 0)we find the eigenvalues satisfy
λ = 0 or λ2 + cλ− γ = 0. So for any γ > 0 we have real eigenvalues λ1 < 0 =
λ2 < λ3. Linearizing around (0, 1, 0) we obtain λ = 0 or λ2 + cλ+ (1 − γ ) = 0.
For γ < 1 we get λ1 < λ2 < 0 = λ3 when c2 ≥ 4(1 − γ ). Complex roots,
which imply the impossibility of a (non-negative) travelling wave, occur when
c2 < 4(1 − γ ). The equations are three dimensional and degenerate and we have
not done a rigorous analysis. Based on the above local picture, the following seems
the reasonable best guess: there is a unique path connecting (0, 0, 0) to (0, 1, 0)
which stays in the good region U, V > 0 precisely if c2 ≥ 4(1 − γ ) and hence a
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travelling wave for all γ < 1 and with speeds greater than or equal to 2
√

1 − γ .
The main result supports the conjecture that the deterministic travelling waves are
stable to small enough individual based noise noise in dimensions d = 2, 3.

1.2 A description of key techniques and the layout of the paper

In this section we explain some of the intuition and tools used in the proofs, empha-
sising the new ideas.

When β = 0, solutions u to (1.1) are Dawson–Watanabe processes with underly-
ing Brownian motion and mass annihilation at rate γ . In dimensions d ≥ 2, Dawson–
Watanabe processes are singular measures (ut (dx) : t ≥ 0). However, as shown by
Sugitani [15], when d ≤ 3 the occupation measures

∫ t
s ur dr are absolutely continuous

with respect to Lebesgue measure, with densities u(s, t, x). This will remain true for
for solutions to (1.1) and hence the formal solution vt (x) = v0(x) exp(−u(0, t, x))
will make sense as a function. Using this idea, we construct solutions to (1.1) in d ≤ 3
by a change of measure starting from a Dawson–Watanabe process; a reverse argument
yields uniqueness in law of solutions.

The results on possible life use a construction of a supercritical oriented percolation
process, coupled to a solution of (1.1), so that if the oriented percolation survives so too
does the solution. The use of an embedded oriented percolation to show survival was
first developed for interacting particle systems (see Durrett [4] for many examples).
Similar methods have been used before by the authors to establish a one-parameter
phase transition for a noisy version of the KPP equation [11]. The results on certain
death in dimensions d ≥ 2 are simpler, and the background idea is a comparison with
a subcritical branching process (for which simple moment estimates show death).

When possible life occurs, one expects that the process lives on a front propagating
with asymptotically linear speed. Noisy oscillations around this linear speed mean that
it is not possible to predict exactly where in space, at a given time t , to look for the
living part of the solution (that is where it is in the process of exploiting the nutrient).
This leads to the wish to apply the percolation comparison in space at random times.
To overcome this technical problem, we freeze the process at random stopping times,
by means of exit measures. The exit measures can be constructed by solving (1.1) on a
domain D with Dirichlet boundary conditions and measuring the total flux of mass out
of the boundary of the domain. Suitable comparison results do hold for this model, not
for ut (dx) but for the total exit measures u∂D∞ (dx). For example if u0(dx) and ũ0(dx)
are supported inside D and u0(dx) ≤ ũ0(dx), then one can construct solutions for
which u∂D∞ (dx) ≤ ũ∂D∞ (dx). It turns out that the total exit measures are stochastically
monotone both in the initial conditions and in the parameters β, γ . A spatial Markov
property, analogous to that found for Dawson–Watanabe processes by Dynkin in [5],
shows that exit measures can be constructed iteratively on larger and larger domains,
and is used to set up the percolation comparison. It is this spatial Markov property
especially, that means the use of the special form of noise

√
uẆ is needed for our

methods.
Intuition as to why comparison results hold for the total exit measures is easiest for

particle approximations to (1.1), where population particles may react with nutrient
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particles leading to death of a nutrient particle and the creation of extra population
particles. The total exit measures do not depend on the time at which particles hit the
exit of the domain D. It does not affect the final level of the nutrient v∞(x) if we
change the order that particles pass through position x . For example, we may think of
the initial mass ũ0(dx) as being composed of blue particles, identical to those from
u0(dx) and some extra red particles represented by ũ0(dx) − u0(dx). We freeze the
extra red particles until all the blue particles have died or are frozen on ∂D. Then we
may run the red particles through whatever is left of the nutrient, but this can only
lead to a larger exit measure. The reader may wish to draw a diagram illustrating the
possible interactions for the simplest non-trivial case of two population particles and
a single nutrient particle—it was such a diagram that initiated this work.

1.2.1 Layout

In Sect. 2 we state the existence, uniqueness and comparison results for occupation
and exit measures. Section 3 contains the change of measure arguments needed for
the proof of existence and uniqueness, and the proof of the existence of a critical
curve �(β). Approximations to solutions, using a discretized nutrient, are given in
Sect. 4, together with tightness and convergence results. Comparison results for the
approximations are established in Sect. 5 together with the weak convergence argu-
ments allowing us to pass to the continuous limit. However, the arguments for life (in
Sect. 6) and death (in Sect. 7) can be read after the statement of the comparison results
in Sect. 2.

2 Statements of existence, uniqueness and comparison results

2.1 Definition of solutions

We need to consider solutions to (1.1) on domains D. Throughout the paper our
domains are taken to be either (i) connected open sets with smooth boundary; or (ii)
open boxes, that is of the form D = ∏

i (ai , bi ) for −∞ ≤ ai < bi ≤ ∞. This restric-
tion allows us to quote estimates on the Green’s functions for the domain. Moreover,
boxes will be all that we need for the blocking arguments in Sects. 6 and 7. We will
look for solutions with zero Dirichlet boundary conditions, that is where the popula-
tion is killed on reaching the boundary. This will be encoded by the test functions for
the martingale problem below. We let Ck

b (D) be the space of k-times continuously
differentiable functions φ : D → R for which φ and its derivatives can be extended to
be continuous bounded functions on the closure D. Let C2

0 (D) be the subset of those
φ ∈ C2

b (D) for which φ = 0 on ∂D. Note that solutions on D = Rd are a special
case of the definition below, and in this case C2

0 (D) reduces to the space of bounded
functions with two bounded continuous derivatives.

Notation We write M(D) for the space of finite measures on D with the topology
of weak convergence. For μ ∈ M and (suitable) measurable functions f, g : D → R
we will write μ( f ) for

∫
D f (x)μ(dx) and 〈 f, g〉 for

∫
D f (x)g(x)dx .
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We look for solutions (u, v) = (ut (dx), vt (x) : t ≥ 0, x ∈ D) to (1.1) defined on
some filtered probability space (�, (Ft ),F , P). The solutions will be in the sense of
martingale problems. The adapted process u will have continuous paths in M(D). Let
P be the (Ft ) predictable sets in�×[0,∞) and B(D) be the Borel subsets of D. The
process v will be predictable and non-increasing, that is the map (ω, t, x) → vt (x)(ω)
will be P × B(D) measurable, and such that the paths t → vt (x) ∈ [0, 1] are non-
increasing for all x , almost surely. We say that such a pair (u, v) is a solution to (1.1)
on D if for φ ∈ C2

0 (D)

ut (φ) = u0(φ)+
t∫

0

us (�φ + βvsφ − γφ) ds + mt (φ), Pa.s. (2.1)

〈vt , φ〉 = 〈v0, φ〉 −
t∫

0

us(vsφ)ds, Pa.s. (2.2)

where mt (φ) is a continuous (Ft ) local martingale, with m0(φ) = 0 P a.s., and with
quadratic variation

[m(φ)]t =
t∫

0

us(φ
2)ds, Pa.s. (2.3)

If, in addition, P[u0 = μ, v0 = f ] = 1, for some measurable f : D → [0, 1] and
μ ∈ M(D), we say the solution has initial condition (μ, f ).

We will wish to keep track of the flux of mass that exits to the boundary ∂D by
time t , which creates the so called exit measure u∂D

t (dx) on ∂D. For a determinis-
tic equation, this flux would be given by a surface integral

∫ t
0

∫
∂D ∇u · N̂d S ds for

an outward unit normal N̂ . A simple way to treat this process in the noisy setting,
where these derivatives do not exist, is to extend the martingale problem formulation
to test functions φ ∈ C2

b (D). The exit measure will take values in M(∂D), the space
of finite measures on ∂D with the topology of weak convergence. We look for an
adapted M(∂D) valued process t → u∂D

t , with non-decreasing continuous paths, so
that u∂D

0 = 0 P a.s. and for φ ∈ C2
b (D)

ut (φ) = u0(φ)+
t∫

0

us (�φ + βvsφ − γφ) ds − u∂D
t (φ)+ mt (φ), Pa.s. (2.4)

where mt (φ) is a continuous (Ft ) local martingale, with m0(φ) = 0 P a.s., and with
quadratic variation as in (2.3).

The following existence and uniqueness result is shown in Sect. 3.2, using a change
of measure argument starting with a Dawson–Watanabe process on D.

Notation We let C([0,∞), E) be the space of continuous functions with values in a
metric space E , with the topology of uniform convergence on compacts. Both M(D)
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and M(∂D) are metrizable as Polish spaces. Let�D be the space C([0,∞),M(D)×
M(∂D)). We write (Ut ,U ∂D

t ) for the canonical random variables on �D , U for the
Borel subsets of�D and (Ut ) for the canonical filtration. Note that in the case D = Rd

where ∂D = ∅ the second component of the path space becomes trivial.

Notation Let B(D, [0, 1]) be the space of Borel measurable f : D → [0, 1]. We give
B(D, [0, 1]) the sigma field generated by 〈 f, I (A)〉 for all bounded Borel A ⊆ D.

Theorem 2 Suppose d ≤ 3 and D is a domain as described above. Fix β, γ ≥ 0.

(i) For any μ ∈ M(D) and f ∈ B(D, [0, 1]), there exists a solution (u, v) to (1.1)
on D with initial conditions (μ, f ).

(ii) For any solution, the law of (ut : t ≥ 0) on C([0,∞),M(D)) is uniquely
determined by the law of (u0, v0).

(iii) For any solution and 0 ≤ s ≤ t , the occupation measure
∫ t

s ur dr is absolutely
continuous with respect to Lebesgue measure, and there is a continuous ver-
sion of the density (s, t, x) → u(s, t, x) on 0 < s ≤ t, x ∈ D, almost surely.
Moreover, setting u(0, t, x) = lims↓0 u(s, t, x) we have,

vt (x) = v0(x)e
−u(0,t,x) for all t > 0, for almost all x ∈ D, P a.s.

(iv) For any solution (u, v) there exists an adapted exit measure process u∂D =
(u∂D

t : t ≥ 0), with non-decreasing continuous paths in M(∂D), satisfying the
extended martingale problem (2.4). Moreover, for all t ≥ 0, there exists a mea-
surable map Rt : C([0, t],M(D)) → M(∂D) so that u∂D

t = Rt ((us : s ≤ t))
almost surely.

(v) Let Q D,β,γ
μ, f be the law of (u, u∂D) on �D for a solution with initial condition

(μ, f ). Then (μ, f ) → Q D,β,γ
μ, f (B) is measurable for any Borel B ⊆ �D.

Moreover, the family of laws (Q D,β,γ
μ, f : μ ∈ M(D), f ∈ B(D, [0, 1])) satis-

fies the following strong Markov property: for any solution (u, v) defined on
(�, (Ft ),F , P), and any finite (Ft ) stopping time τ ,

E
[
h(uτ+·)|Fτ

] = Q D,β,γ
uτ ,v0 exp(−u(0,τ )) [h(U·)] Pa.s,

for all bounded measurable h : C([0,∞),M(D)) → R.

We note one consequence of these results: using part (iii), whenever (u, v) is a
solution we may replace v by the process v0(x) exp(−u(0, t, x)) and it will still be a
solution.

The following scaling lemma will be very useful in allowing us to transfer large or
small parameters to terms in the equations that are convenient. We find our intuition
stronger when working in regimes with small or large values of parameters, rather
than small or large space and time scales. This lemma allows us to transfer between
these two regimes.
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Lemma 3 Suppose that (u, v) is a solution to (1.1) on D. For a, b, c, e > 0 define

ũt (A) = a

cd
ubt (cA), ṽt (x) = evbt (cx)

where cA = {cx : x ∈ A}. Then (ũ, ṽ) is a solution on c−1 D, in the sense described
above, to the equation

{
∂t ũ = b

c2�ũ + bβ
e ũ ṽ − bγ ũ +

√
ab
cd ũ Ẇ ,

∂t ṽ = − b
a ũ ṽ.

Furthermore, for A ⊆ ∂(c−1 D), we have ũ∂(c
−1 D)

t (A) = (a/cd)u∂D
bt (cA).

The equation for (ũ, ṽ) follows immediately by scaling the martingale problem
(2.1,2.2). The scaling of the exit measures follows by matching the finite variation
parts of the semimartingale decomposition of ũt (φ) and of (a/cd)ubt (φ(·/c)) for
φ ∈ C2

b (c
−1 D) given in the corresponding extended martingale problems.

2.2 Decomposition results for the total occupation and exit measures

Notation For a solution (u, v) to (1.1) we write u[s,t] for the occupation measure∫ t
s ur dr (so that u[s,t](dx) = u(s, t, x)dx P a.s.) and write

u[0,∞) = lim
t→∞ u[0,t], u(0,∞, x) = lim

t→∞ u(0, t, x), and u∂D∞ = lim
t→∞ u∂D

t

for the total occupation measure on D and its density, and for the total exit measure
on ∂D.

The lemmas below are stated under the restriction that D is bounded, which implies
(see Sect. 3.3) that the total occupation and exit measures are almost surely finite. The
first lemma describes the monotonicity of the total occupation and exit measures with

respect to the initial conditions (μ, f ). We write
D= for equality in distribution.

Lemma 4 Fix a bounded domain D and initial conditions μ = μ− + μ+ and f =
f − + f +. The law of the total occupation and exit measures of a solution (u, v) to
(1.1) on D with initial conditions (μ, f ) can be decomposed as

(
u[0,∞), u∂D∞

) D=
(

u−
[0,∞) + u+

[0,∞), u∂D,−∞ + u∂D,+∞
)

(2.5)

in either of the following two ways:

(i) (u−, v−) is a solution with initial conditions (μ−, f ) and, conditional on σ {u−},
the process (u+, v+) is a solution with initial conditions u+

0 = μ+ and v+
0 = v−∞

(where v−∞ = limt→∞ v−
t );
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(ii) (u−, v−) is a solution with initial conditions (μ, f −) and, conditional on σ {u−},
the process (u+, v+) is a solution with initial conditions u+

0 = β f +(1 −
exp(−u−(0,∞))) dx and v+

0 = f exp(−u−(0,∞)).

In part (i) the process (u+, v+) starts with massμ+ and runs it through whatever is left
of the nutrient after u− has died out. In part (ii), the process v+

0 ia again the leftover
nutrient after u− has died out, and u+

0 is the extra mass that u− would have created had
the extra nutrient f + been present (see Example 2 in Sect. 5.2 for a discrete analogue
of this).

The next lemma shows monotonicity in the parameters β, γ . Note that the exit and
occupation measures are (stochastically) increasing in μ, f, β and decreasing in γ ,
which leads to a slightly different formulation of the γ−, γ+ decomposition.

Lemma 5 Fix a bounded domain D, and parameter values β = β− + β+ and γ− =
γ +γ+. The law of the total occupation and exit measures of a solution (u, v) to (1.1)
on a bounded domain D with initial conditions (μ, f ) and parameter values (β, γ )
can be decomposed as in (2.5) in either of the following two ways:

(i) (u−, v−) is a solution with initial conditions (μ, f ) and with parameter values
β−, γ and, conditional on σ {u−}, the process (u+, v+) is a solution with initial
conditions u+

0 = β+( f −v−∞)dx and v+
0 = v−∞ and with parameter values β, γ ;

(ii) (u−, v−) is a solution to (1.1) with initial conditions (μ, f ) and parameter values
β, γ− and, conditional on σ {u−, v−}, the process (u+, v+) is a solution with
initial conditions u+

0 = γ+u−
[0,∞) and v+

0 = v−∞ and with parameter values
β, γ .

A special case of the Lemma 5 (i) will be particularly useful. The total exit mea-
sure can be built up in two stages: first run a process with β = 0 (which is the well
understood Dawson–Watanabe process) and then run a second solution started with
the mass that the nutrient would have produced from the first process.

The following simpler comparison will often be useful. It states, roughly, that if
we convert some of the nutrient available into the equivalent amount of initial mass at
time zero then we obtain a healthier process, in the sense of stochastic ordering.

Lemma 6 Fix a bounded domain D and initial conditions μ and f, g. Let (u, v) and
(ũ, ṽ) be solutions to (1.1) on D with initial conditions (μ, f +g) and (μ+βg dx, f ),
respectively. Then for any bounded measurable F : M(D) × M(∂D) → R that is
non-decreasing in both variables

E[F(u[0,∞), u∂D∞ )] ≤ E[F(ũ[0,∞), ũ∂D∞ )].

The final lemma is a spatial Markov property, analogous to that known for Dawson–
Watanabe processes. We choose two domains D− ⊆ D+. We allow the boundaries
∂D− and ∂D+ to intersect, but we need this intersection not to be too complicated,
and for this we ask that

(∂D− ∩ ∂D+) ∩ (∂D−\∂D+)has surface measure zero in∂D−. (2.6)
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This is satisfied for example if both domains are boxes. We writeμ|A for the restriction
of a measure μ to a set A.

Lemma 7 Fix bounded domains D− ⊆ D+ satisfying (2.6). Suppose (u, v) is a solu-
tion to (1.1) on D+ started at (μ, f ). Then the law of the total occupation and exit
measures satisfies

(
u[0,∞), u∂D+

∞
) D=

(
u−

[0,∞) + u+
[0,∞), u∂D−,−∞ |∂D+ + u∂D+,+∞

)

where (u−, v−) is a solution to (1.1) on D− with initial conditions (μI (D−), f I (D−))
and, conditional on σ {u−}, the process (u+, v+) is a solution on D+ with initial con-
ditions

u+
0 = u∂D−,−∞ |D+ + μI (D+\D−) and v+

0 = v−∞ I (D−)+ f I (D+\D−).

Remark As indicated in the introduction, these lemmas will be proved for discretized
approximations to solutions, where the nutrient is used up in finitely many steps, and
then via a passage to the limit. We spent considerable energy trying to find a proof
using the continuum equation (1.1) directly. Approaches using a change of measure
(since the lemmas are easy to prove for a Dawson–Watanabe process) typically failed
because the decomposition (2.5) holds only for the total occupation and exit mea-
sures and fails for these measures at times t < ∞. Another approach, using Laplace
functionals, is sketched in remark (b) of Sect. 3.2. On the other hand, we found the dis-
cretized approximations, in particular particle pictures, were the easiest testing ground
for exploring possible extensions of these results to other models.

3 Change of measure arguments

In Sect. 3.1 we review some results on Dawson–Watanabe processes and indicate when
these imply estimates for solutions of (1.1). Section 3.2 gives the proof of Theorem 2,
and Sect. 3.3 contains the proof of the existence of the critical curve �(β).

3.1 Results from Dawson–Watanabe processes

A Dawson–Watanabe process, with underlying Brownian spatial motion, killed at the
exit of a domain D, and with a (deterministic) bounded, measurable mass annihila-
tion/creation rate η : D → R, is the solution on D, in the same sense as in Sect. 2.1,
to the equation

∂t u = �u − ηu + √
u Ẇ . (3.1)

We shall abbreviate Dawson–Watanabe processes as DW processes. In the caseη(x) =
γ ∈ R is constant we will call the process a DW(D, γ ) process. We describe below
some results for DW processes that we shall need, and we mostly indicate where to
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A phase diagram for a stochastic reaction diffusion system 571

find the proofs, or how to adapt them, from the literature. The surveys by Perkins [12]
and Dawson [2] are our main sources. However, we give proofs for some of the results
on exit measures, that are perhaps not in the literature, at the end of this subsection.

A number of the estimates (for example moment bounds, estimates on the speed of
the support, estimates on the extinction probability) also hold for solutions to (1.1).
One way to see this is to set up a pathwise coupling for (u, v) a solution to (1.1) on D
so that u(1)t ≤ ut ≤ u(2)t where u(1) is a DW(D, γ ) process and u(2) is a DW(D, γ −β)
process. We do not go through the steps to construct this coupling since, as we indicate
below, the proofs of the desired estimates are typically based on stochastic calculus
and are easily adapted to follow from the martingale problem for solutions to (1.1).

3.1.1 Martingale problems

We quickly repeat here the martingale problem definition for solutions. A continuous,
adapted M(D) valued process u, on some filtered space (�, (Ft ),F , P), is a solution
to (3.1) if for φ ∈ C2

0 (D)

ut (φ) = u0(φ)+
t∫

0

us (�φ − ηφ) ds + mt (φ), Pa.s. (3.2)

where mt (φ) is a continuous (Ft ) local martingale with quadratic variation [m(φ)]t =∫ t
0 us(φ

2)ds almost surely. Solutions, starting from μ ∈ M(D), exist and are unique
in law on C([0,∞),M(D)). Furthermore, for any solution there will exist an adapted
process (u∂D

t ) with non-decreasing continuous paths in M(∂D), called the exit mea-
sure process, so that for φ ∈ C2

b (D)

ut (φ) = u0(φ)+
t∫

0

us (�φ − ηφ) ds − u∂D
t (φ)+ mt (φ), Pa.s. (3.3)

where mt (φ) is a continuous local martingale with variation as before. The almost
sure linearity mt (φ + ψ) = mt (φ) + mt (ψ), implies that if φn ∈ C2

0 (D) converge
bounded pointwise to φ ∈ C2

b (D) then mt (φn) → mt (φ) in probability (since [m(φ−
φn)]t → 0). Now (3.2) and (3.3) imply that u∂D

t (φ) is measurable function of the
path (us : s ≤ t). Choose a countable family (φk)k=1,... in C2

b (D) so that the map
μ → (μ(φk))k=1,... is a continuous injection from M(∂D) into R∞ (with the topol-
ogy of uniform convergence on compacts). Using the measurable inverse of this map,
one can construct a measurable map Rt : C([0, t],M(D)) → M(∂D) so that

u∂D
t = Rt ({us : s ≤ t}) Pa.s. (3.4)

These maps show that the law of (u, u∂D) on �D is determined by the law of u on
C([0,∞),M(D)). Also, for any DW process on D, the exit measure process can be
constructed by using the maps Rt and then regularizing the path over the rationals.
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Notation We denote by Q D,η
μ the law on �D of a DW process and its exit mea-

sure (u, u∂D) on D, with mass annihilation/creation rate η as above, and starting at
μ ∈ M(D). We write Q D,γ

μ in the case that η(x) = γ .

The mapμ → Q D,η
μ (B) is measurable for any Borel B ⊆ �D; furthermore the family

of laws (Q D,η
μ : μ ∈ M(D)) form a strong Markov family in that for any solution u

defined on (�, (Ft ),F , P), and any finite (Ft ) stopping time τ ,

E
[
h(uτ+·)|Fτ

] = Q D,η
uτ [h(U·)] Pa.s,

for all bounded measurable h : C([0,∞),M(D)) → R. The measurability and strong
Markov property follow from the Laplace functional (3.6) below by, for example, the
arguments used in the [12, proof of Theorem II.5.1].

For a DW process u, one can extend the local martingales to a local martingale
measure, which we write as mt (φ) = ∫ t

0

∫
D φsm(dx, ds), and is defined for φ :

[0,∞)×�× D → R that are P × B(D) measurable and satisfy
∫ t

0 us(φ
2
s )ds < ∞

for all t ≥ 0. The integral produces a continuous (Ft ) local martingale with qua-
dratic variation [m(φ)]t = ∫ t

0 us(φ
2
s )ds. This follows as in [12] Proposition II.5.4.

The same construction applies to give a local martingale measure for solutions to
(1.1), and this will be needed in our change of measure arguments. One simple use
of these extensions is to allow time dependent test functions in the martingale prob-
lem. Since the exit measures u∂D

t are non-decreasing, they induce a unique measure
du∂D

t (dx) on [0,∞)× ∂D characterized by the measure of the rectangles (s, t] × A
being u∂D

t (A) − u∂D
s (A). We will write the integral of ψ : [0, t] × ∂D → R with

respect to this measure as
∫ t

0 du∂D
s (ψs). Then, if φ : [0, T ] × D → R is in the class

C1,2
b ([0, T ]×D), whereφ and one partial derivative in time (denoted φ̇) and two partial

derivatives in space exist and have continuous bounded extensions to [0, T ] × D, the
following decomposition holds:

ut (φt )=u0(φ0)+
t∫

0

us
(
�φs +φ̇s −ηφs

)
ds−

t∫
0

du∂D
s (φs)+mt (φ) Pa.s. (3.5)

This follows using easier versions of the arguments in [12, Proposition II.5.7]. More-
over, the analogous extension works for solutions to (1.1).

3.1.2 Laplace functionals

Suppose first that D has a smooth boundary and that η : D → R is smooth and
bounded. The Laplace functional of the solution, the occupation measure and the exit
measure is given, for smooth bounded h(1) : D → R, h(2) : [0, t] × D → R and
h(3) : [0, t] × ∂D → R by

Q D,η
μ

[
e−Ut (h(1))−

∫ t
0 Us (h

(2)
s )−∫ t

0 dU ∂D
s (h(3)s )

]
= e−μ(φt ), (3.6)
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where (φs(x) : s ∈ [0, t], x ∈ D) is the unique solution, smooth on [0, t] × D, to

{
∂sφs = �φs − ηφs − φ2

s
2 + h(2)t−s on D,

φs = h(3)t−s on ∂D for s ∈ [0, t], and φ0 = h(1) on D.
(3.7)

This follows by checking that s → exp(−Us(φt−s)−
∫ s

0 Ur (h
(2)
r )dr −∫ s

0 dU ∂D
r (h(3)r ))

is a martingale for s ∈ [0, t]. If in addition η ≥ 0 and D is bounded, the total occu-
pation U[0,∞) = limt↑∞ U[0,t] and total exit measures U ∂D∞ = limt↑∞ U ∂D

t are finite
almost surely and have Laplace functional

Q D,η
μ

[
e−U[0,∞)(h1)−U ∂D∞ (h2)

]
= e−μ(φ), (3.8)

for smooth bounded h1 : D → [0,∞) and h2 : ∂D → [0,∞), where (φ(x) : x ∈ D)
is the unique solution, smooth on D, to

�φ = φ2

2
+ ηφ − h1 on D, φ = h2 on ∂D. (3.9)

This follows by examining the martingale t → exp(−Ut (φ)−
∫ t

0 Us(h1)−U ∂D
t (h2)).

On bounded domains, and when η ≥ 0, there exist finite solutions to (3.9) when
h1, h2 are negative and sufficiently small. In particular, the exponential moment
Q D,η
μ [exp(+θU ∂D∞ (1)+ θU[0,∞)(1))] is finite for sufficiently small θ > 0.
When the domain D is a box the associated p.d.e.’s have unique solutions that are

smooth inside D and continuous on D, and the formulae for the Laplace functionals
still hold, and can be established by an approximation argument. Indeed, one concrete
way to do this is to suppose, without loss, that D contains the origin and to replace
the test functions above by φt (x/(1 + ε)) and φ(x/(1 + ε), which are smooth in D.

Remark (a). From the PDE viewpoint, it is natural to use (3.3) as a means of characteriz-
ing the exit measures t → u∂D

t (dx), that is purely as exit fluxes (as is suggested in [13]).
Although we do not need such a characterization, since we have other constructions of
the exit measure, we briefly sketch such an approach, and for convenience we consider
deterministic initial condition μ and smooth bounded domain D. Construct the mar-
tingale measure m(dx, ds) from a DW(D, γ ) process. Then for smooth h : ∂D → R
we may uniquely find φh ∈ C2

b (D) solving the Dirichlet problem�φh = 0 on D and
φh = h on ∂D. Use the formula (3.3) with the test function φh to define a continuous
path t → u∂D

t (h) (although we have yet to establish that the values u∂D
t (h) arise from

a measure u∂D
t on ∂D). By adding the decompositions (3.3) for φg and φh we find

that u∂D
t (g + h) = u∂D

t (g) + u∂D
t (h) almost surely. Since ‖φh‖∞ ≤ ‖h‖∞, we can

deduce a first moment bound sups≤t E[|u∂D
s (h)|] ≤ C(μ, t, γ )‖h‖∞ from the corre-

sponding bounds for u. For φ ∈ C2
b (D) with φ = h on ∂D, the decomposition (3.3)

holds by adding the decompositions for φh and φ−φh . Then the first moment bounds
allow the decompositions to be extended to time dependent test functions φ(t, x) as
above. In particular we find, for h ≥ 0, that E[exp(−λu∂D

t (h))] ≤ exp(−μ(φt ))
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where ∂tφ = �φ − γφ − φ2

2 on D, and φt = λh on ∂D, and φ0 = 0. The inequality
here arises since we do not yet know that u∂D

t (h) ≥ 0 and so we have to localize
via the stopping times τn = inf{t : ut (1) ≥ n}, and we obtain an upper bound by
passing to the limit using Fatou’s Lemma. However letting λ → ∞ now implies that
u∂D

t (h) ≥ 0 almost surely. It is then not hard to establish the existence of a mea-
sure u∂D

t so that u∂D
t (h) = ∫

∂D h du∂D
t . Finally the Markov property implies that

u∂D
t − u∂D

s is non-negative and hence the paths of u∂D
t are non-decreasing.

Remark (b). Mimicking the calculus that leads to the Laplace functional above, one
can show that for solutions to (1.1) that

exp

⎛
⎝−ut (φ)− u[0,t](h1)− u∂D

t (h2)+ β

t∫
0

us(vsφ)ds

⎞
⎠

is a martingale when φ solves (3.9) with η = γ . One deduces, by letting t → ∞, that

E
[
e−u[0,∞)(h1)−u∂D∞ (h2)+β〈φ f,1−exp(−u(0,∞))〉] = e−μ(φ).

We do not know if this formula, as one varies h1, h2, characterizes the law of
(u[0,∞), u∂D∞ ). If it did characterize the law, a simple proof of all the decomposi-
tion lemmas from Sect. 2.2 would result, since it is straightforward to use calculus for
both parts of the decompositions to yield the above formula for the sum.

3.1.3 Some moments

Estimates on moments for the total mass process ut (1), starting from a deterministic
initial condition, follow by choosing φ = 1 in (3.3), using u∂D

t (1) ≥ 0, by the usual
arguments (localizing by the stopping times τn = inf{t : ut (1) ≥ n} and apply-
ing Gronwall’s inequality). By rewriting (3.3), again with φ = 1, as an equation for
u∂D

t (1), one can then deduce moments for the exit measures. These arguments show,
for instance, that for for p ≥ 1

Q D,γ
μ

[
sup
t≤T
(Ut (1))

p + |U ∂D
T (1)|p

]
≤ C(p, T, γ )

(
(μ(1)+ (μ(1))p) . (3.10)

In particular, starting from a deterministic initial condition the processes mt (φ) are
true martingales. The same arguments apply to solutions to (1.1), and lead to

Q D,β,γ
μ, f

[
sup
t≤T
(Ut (1))

p+|U ∂D
T (1)|p

]
≤ Q D,γ−β

μ

[
sup
t≤T
(Ut (1))

p+|U ∂D
T (1)|p

]
.

(3.11)
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(We abuse logical order here, and below, by writing Q D,β,γ
μ, f before checking that

these laws are uniquely defined. In such cases we mean that the arguments apply to
all solutions to (1.1).)

We will need the first and second moment formulae, for measurable g, h ≥ 0,

Q D,γ
μ [Ut (g)]=μ(G D,γ

t g),

Q D,γ
μ [Ut (g)Us(h)]=μ(G D,γ

t g)μ(G D,γ
s h)+

t∧s∫
0

μ(G D,γ
r (G D,γ

t−r g G D,γ
s−r h))dr, (3.12)

where G D,γ
t g(x) = ∫

D G D,γ,x
t (y)g(y)dy and G D,γ,x

t (y) is the killed Green’s func-

tion G D,γ,x
t (y) = e−γ t G D,x

t (y) for the domain D (that is G D,x
t (y) is the transition

density of a Brownian motion killed on its exit from D). These can be proved by using
the time dependent test functions φ(g) and φ(h), where φ(g)s = G D,γ

t−s g for s ∈ [0, t],
in (3.5). For smooth g, h compactly supported in D, this test function has the required
regularity, and the moment formulae can then be extended to general g, h by monotone
class methods. In particular the same methods apply to the martingale problem for
solutions to (1.1) and give the bounds, for g ≥ 0 and k = 1, 2,

Q D,γ
μ

[
(Ut (g))

k
]

≤ Q D,β,γ
μ, f

[
(Ut (g))

k
]

≤ Q D,γ−β
μ

[
(Ut (g))

k
]
, (3.13)

illustrating the natural intuition that less killing leads to larger solutions.

3.1.4 Extinction probabilities and speed of propagation

The probability of extinction for DW(Rd , γ ) processes is given by Q Rd ,γ
μ [Ut = 0] =

exp(−λ(γ )t μ(1)) where λ(γ )s is determined for s ∈ (0, t] by

λ̇(γ ) = −1

2
(λ(γ ))2 − γ λ(γ ), and λ

(γ )
s → ∞ as s ↓ 0.

This follows by examining the martingale s → exp(−λ(γ )t−sUs(1)) for s ∈ (0, t] (see
the derivation of (3.15) below). This same argument applies to solutions of (1.1) to
give the bounds

Q Rd ,γ−β
μ [Ut =0]≤ Q D,β,γ

μ, f [Ut =0] and Q Rd ,β,γ

μ, f [Ut =0]≤ Q Rd ,γ
μ [Ut =0]. (3.14)

DW processes, started from finite measures, are compactly supported at all times
t > 0. The same will apply for solutions u to (1.1), by the absolute continuity of the
law of u with respect to a DW process (see Sect. 3.2). However we need a quanti-
tative bound on the size of the support and we use two estimates for this behaviour,
based on the results from Dawson et al. [3]. For R > 0 let DR = (−R, R)d . Choose
0 ≤ ξR ≤ 1 smooth and satisfying {ξR > 0} = D

c
R . Then for M ≥ 0 and smooth

bounded η : DR → R, let φs = φ
(M,R,η)
s be the unique non-negative solution to
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φ̇ = �φ − 1

2
φ2 − ηφ, φ0 = MξR .

Then, for s > 0, φ(M,R,η)s ↑ φ(R,η)s < ∞ as M ↑ ∞ and moreover φ(R,η)s (x) → 0 as
R → ∞ (use a comparison argument and [3, Lemma 3.6]). Taking expectations of the
martingale exp(−Us(φ

(M,R,η)
t−s )) at times s = 0 and s = t , and then letting M → ∞,

one finds that Q Rd ,η
μ [Ut (D

c
R) = 0] = exp(−μ(φ(R,η)t )). The same proof shows, when

γ − β f ≥ η, the bound

Q Rd ,β,γ

μ, f

[
Ut (D

c
R) = 0

]
≥ Q Rd ,η

μ

[
Ut (D

c
R) = 0

]
. (3.15)

Letting R → ∞ shows that solutions to (1.1) started from compactly supported μ ∈
M(Rd) must have compact support at any time t > 0.

Similarly, let ψs = ψ
(M,R,η)
s be the unique non-negative solution to

ψ̇ = �ψ − 1

2
ψ2 − ηψ + MξR, ψ0 = 0.

Then, for |x |< R, ψ
(M,R,η)
s (x)↑ψ(R,η)s (x)<∞ as M ↑ ∞ and moreover

ψ
(2,R,γ )
s (x)→ 0 as R → ∞ (argue as in [3, Theorem 3.3 (ii)]). Examining the

process exp(−Us(ψ
(M,R,η)
t−s )) as above one finds that Q Rd ,η

μ [U[0,t](D
c
R)= 0] =

exp(−μ(ψ(R,η)t )) and the same proof shows, when γ − β f ≥ η, the bound

Q Rd ,β,γ

μ, f

[
U[0,t](D

c
R) = 0

]
≥ Q Rd ,η

μ

[
U[0,t](D

c
R) = 0

]
. (3.16)

Letting R → ∞ shows that solutions to (1.1) started from compactly supported μ
remain compactly supported at all times. Comparisons (based on maximum princi-
ples for example) can be used to give more concrete estimates. For example suppose
that �w ≤ (1/2)w2 − ηw on DR and inf{w(x) : x ∈ ∂DR−ε} ↑ ∞ as ε ↓ 0. Then
ψ
(R,−η)
t ≤ w on DR for all t so that, when η ≥ β f − γ , for μ supported inside DR

Q Rd ,β,γ

μ, f

[
U[0,∞)(D

c
R)=0

]
≥ Q Rd ,−η

μ

[
U[0,∞)(D

c
R)=0

]
≥exp(−μ(w)). (3.17)

3.1.5 Occupation density

Define a putative density U (s, t, x) for U[s,t] on path space �D by setting, for 0 <
s ≤ t, x ∈ D,

U (s, t, x) = lim inf
ε↓0

1

εd

t∫
s

Ur

(
[x, x + ε)d ∩ D

)
dr. (3.18)

We also set U (0, t, x) = lims↓0 U (s, t, x).
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Sugitani [15] studied the occupation measure under the law Q Rd ,0
μ of a DW pro-

cess on Rd . His main result extends to our processes on more general domains, and
with bounded annihilation/creation rates, as follows: Q D,η

μ almost surely, the process
(s, t, x) → U (s, t, x) is continuous over 0 < s ≤ t, x ∈ D, and x → U (s, t, x) acts
as a density for U[s,t]. One way of representing the density is via a Green’s function

formula, as follows. Let G D,x
[0,t] = ∫ t

0 G D,x
s ds and G D,γ,x

[0,t] = ∫ t
0 G D,γ,x

s ds. Then, for a
fixed t > δ > 0 and x ∈ D,

U (δ, t, x) = Uδ(G
D,x
[0,t−δ])+

t∫
δ

∫
D

G D,x
[0,t−s](z)(−η(z)Us(dz)ds + M(dz, ds))

Q D,η
μ a.s. (3.19)

where M(dz, ds) is the martingale measure associated to U . Moreover, for k ∈ N ,

Q D,η
μ [U (δ, t, x)k] ≤ C(k, δ, μ, ‖η‖∞, T ) for all x ∈ D, t ∈ [δ, T ]. (3.20)

When the initial condition is more one may take δ = 0 in (3.19), and indeed this is
the case if μ has a bounded density.

In particular, when μ(dx) = βdx we have, for k ∈ N ,

Q D,η
βdx [U (0, t, x)k] ≤ C(k, β, ‖η‖∞, T ) for all x ∈ D, t ∈ [0, T ]. (3.21)

It is not hard to extend Sugitani’s proof of the representation formula to hold for
domains D and with annihilation/creation terms, and also to bound the moments
(inductively in k). Sugitani’s proof of continuity is via Kolmogorov’s continuity crite-
rion and moments of increments. We omit the details since we will follow Sugitani’s
arguments to establish a similar increment estimates for approximations to solutions
in Sect. 4.2, and some of the key steps are illustrated there.

The second moment formula (3.12) lead to the moment

Q D,γ
μ

[
U 2(0, t, x)

]
=

(
μ(G D,γ,x

[0,t] )
)2 +

t∫
0

μ(G D,γ
s ((G D,γ,x

[0,t−s])
2))ds.

We use the bound G D,γ,x
t ≤ e−γ t G Rd ,x

t and the estimate

q(t) :=
∫
(G Rd ,x

[0,t] (y))
2dx ≤ C(d)t (4−d)/2 for all x, y when d ≤ 3.

One can now deduce that

Q D,γ
μ

⎡
⎣∫

D

(U (0, t, x))2dx

⎤
⎦ ≤ C(d, γ )

⎛
⎝μ2(1)q(t)+ μ(1)

t∫
0

q(s)ds

⎞
⎠ . (3.22)
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Again, one has that Q D,β,γ
μ, f

[〈U 2(0, t), 1〉] ≤ Q D,γ−β
μ

[〈U 2(0, t), 1〉].
3.1.6 A construction of the exit measure process and the spatial Markov property

A convenient way to construct the exit measure processes was developed in Perkins
[13], which will be useful in our proof of a coupling version of the spatial Markov
property lemma below. This exploits a historical DW process, which is a process of
random measures on the space of paths, where intuitively the paths trace the posi-
tions of the ancestors of the particles in a DW process. To explain the construction,
we recall some notation from [13] for the historical Brownian DW process (which is
only required in this one subsection): on the path space C([0,∞), Rd) let C be the
Borel σ -field and (Ct ) the canonical filtration; M(C) is the space of finite measures on
C([0,∞), Rd) with the topology of weak convergence; on�H = C([0,∞),M(C))
let H be the Borel sets and (Ht ) the canonical coordinate variables. Write Qη

H,μ for
the law on (�H ,H) of a historical Brownian DW process, with branching rate one,
with bounded measurable annihilation/creation rate η : Rd → R, and with initial
condition μ ∈ MF (Rd). Letting N be the Qη

H,μ null sets we define a filtration by
Ht = ∩s>tσ {Hr : r ≤ s} ∨ N . The canonical process H = (Ht ) is a historical
DW process with creation/annihilation η on (�H ,H,Ht , Qη

H,μ). In the notation from

[13], it solves the martingale problem (M P)0,μ1,2I,0,η̂, where η̂(s, y) = η(ys).

For (Ct ) predictable C : [0,∞) × C([0,∞), Rd) → R, having left continuous
paths of bounded variation, Theorem 2.23 of Perkins [13] constructs the integral of C
along the paths of a historical DW process as the limit (in probability, or almost surely
along a subsequence)

t∫
0

Hs(dCs) = lim
n→∞

∞∑
i=1

I (tn
i < t)Htn

i
(Ctn

i
− Ctn

i−1
), where tn

i = i2n . (3.23)

Note that the process
∫ t

0 Hs(dCs) is non-decreasing whenever Cs is also non-
decreasing.

Fix a bounded domain D and define τ = τ(y) = inf{t ≥ 0 : yt �∈ D} for
y ∈ C([0,∞), Rd), and where inf{∅} = 0. Define a measure ut (dx) on D by

ut (dx) =
∫

C([0,∞),Rd )

I (yt ∈ dx, t ≤ τ, τ > 0)Ht (dy).

If μ is supported inside D we may omit the indicator I (τ > 0). For bounded measur-
able φ : ∂D → R define

u∂D
t (φ) =

t∫
0

Hs(dCφ
s ), where Cφ

s (y) = φ(yτ )I (s > τ > 0).

123



A phase diagram for a stochastic reaction diffusion system 579

By definition u∂D(φ) ≥ 0 if φ ≥ 0 and u∂D(φ + ψ) = u∂D(φ) + u∂D(ψ) almost
surely. Using these properties, it is not hard to show that there is an (Ht measurable)
random measure u∂D

t on ∂D so that u∂D
t (φ) = ∫

∂D φ(x)du∂D
t (dx) almost surely.

Let Z(dy, dt) denote the martingale measure associated to H (constructed for
example in [13, Sect. 2]) and use the notation Z0(dy, ds) = Z(dy, ds) − η(ys)

Hs(dy)ds, that is an integral against Z0(dy, ds) means the difference of two inte-
grals. This notation is borrowed from [13] and will save space since these two integrals
frequently appear with the same integrand. We may apply the historical Ito formula
([13] Theorem 2.14) to the process Yt (y) = yt∧τ , since the stopped path yt∧τ . For
φ ∈ C1,2

b ([0,∞)× Rd) this yields

∫
φt∧τ (yt∧τ )Ht (dy) = μ(φ0)+

t∫
0

∫
(φ̇ +�φ)s∧τ (ys∧τ )I (s ≤ τ)Hs(dy)ds

+
t∫

0

∫
φs∧τ (ys∧τ )Z0(dy, ds) for t ≥ 0, a.s. (3.24)

Using Proposition 2.7 from [13] we have also, Qη
H,μ a.s. for all t ≥ 0,

∫
φ0(y0)I (τ = 0)Ht (dy)=μ(I (Dc)φ0)+

t∫
0

∫
φ0(y0)I (τ = 0)Z0(dy, ds). (3.25)

Finally, Theorem 2.23 of [13] shows, when Cφ
t (y) = φτ (yτ )I (t > τ > 0),

Ht (C
φ
t ) =

t∫
0

Hs(dCφ
s )+

t∫
0

∫
φτ (yτ )I (s > τ > 0)Z0(dy, ds)

for t ≥ 0 a.s. (3.26)

Note that

ut (φt ) =
∫
φt∧τ (yt∧τ )Ht (dy)−

∫
φ0(y0)I (τ = 0)Ht (dy)− Ht (C

φ
t ).

Combining this with (3.24, 3.25, 3.26) shows that

ut (φt ) = μ(φ0 I (D))−
t∫

0

Hs(dCφ
s )+

t∫
0

∫
φs(ys)I (s ≤ τ, τ > 0)Z(dy, ds)

+
t∫

0

∫
(φ̇ +�φ − ηφ)s(ys)I (s ≤ τ)Hs(dy)ds for t ≥ 0 a.s. (3.27)
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An approximation argument shows that (3.27) continues to hold for φ ∈ C1,2([0, t]×
D). Taking time independent φ shows that the extended martingale problem (3.3)
holds for (u, u∂D). To check the regularity of the paths, note that the path t → ut (φ)

is continuous for φ ∈ C2
0 (D) by (3.2). To establish continuity when φ ∈ C2

b (D),
we use an estimate of the amount of mass near the boundary of D. For ε > 0 let
φD,ε(x) = (1 − ε−1d(x, ∂D)) ∨ 0. If μ(∂D) = 0 then Ut (∂D) = 0 for all t ≥ 0,

Q Rd ,η
μ almost surely. This follows since t → Ut (∂D) is continuous (see [12, Theorem

III.5.1] and use absolute continuity between Q Rd ,η
μ and Q Rd ,0

μ ) and has zero first
moment. Since φD,ε ↓ I (∂D), for such μ we have

sup
t≤T

Ut (φD,ε) ↓ 0 as ε ↓ 0, Q Rd ,η
μ almost surely. (3.28)

Note the simple coupling

ut ≤ ũt for all t ≥ 0 (3.29)

where ũ is a DW(Rd ) process with creation/annihilation η, both with the same initial
condition. This is natural since ũ does not have the killing on the boundary of D,
and follows by setting ũt (dx) = ∫

I (yt ∈ dx)Ht (dy). This coupling ensures that
(3.28) is also true for supt≤T ut (φD,ε). This implies the continuity of t → ut (φ) for
φ ∈ C2

b (D), and hence of t → ut ∈ M(D). The continuity of t → u∂D
t (h) for

h ∈ C2
b (∂D) follows from the continuity of all other terms in (3.3). This implies the

paths t → u∂D
t are continuous, and they are non-decreasing by definition. So u is a

DW process on D, with annihilation/creation rate η, with exit measure u∂D , and with
initial condition μI (D).

Dynkin [5] established a spatial Markov property for DW processes. We will need
the following slight variant of the standard statement. The lemma is reasonably clear
at the approximation level of discrete branching trees, but we choose to give a proof
in the continuum setting using historical calculus.

Lemma 8 Let D− ⊆ D+ be bounded domains. Fix μ ∈ M(D+). There exists a
coupling of three processes: u a DW(D+, γ ) process with initial condition μ; u− a
DW(D−, γ ) process with initial condition μI (D−); and u+ which, conditional on

σ {u−}, is a DW(D+, γ ) process with initial condition μI (D+\D−) + u∂D−,−
[0,∞) |D+;

and moreover these processes satisfy the splitting

(
u[0,∞), u∂D+

∞
)

=
(

u−
[0,∞) + u+

[0,∞), u∂D−,−∞ |∂D+ + u∂D+,+∞
)

almost surely. (3.30)

Proof Define τ± = inf{t : yt �∈ D±}. As above, we suppose the canonical process
(Ht ) is a historical DW process with constant annihilation rate γ on (�H ,H,Ht ,
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Qγ

H,μ). Define

ut (dx) =
∫

I (yt ∈ dx, t ≤ τ+) Ht (dy),

u−
t (dx) =

∫
I (yt ∈ dx, t ≤ τ−, τ− > 0) Ht (dy)

u∂D+
t (φ) =

t∫
0

Hs(dCφ,+
s ), u∂D−,−

t (φ) =
t∫

0

Hs(dCφ,−
s ),

where Cφ,+
s (y) = φ(yτ+)I (s > τ+) for bounded measurable φ : ∂D+ → R and

Cφ,−
s (y) = φ(yτ−)I (s > τ− > 0) for bounded measurable φ : ∂D− → R. The

earlier arguments leading to (3.27) show that this defines processes (u, u∂D+
) and

(u−, u∂D−,−) having laws Q D+,γ
μ and Q D−,γ

μI (D−) as desired.

There exist random measures I on [0,∞)× D+ and I∂D+
on [0,∞)× ∂D+ satis-

fying, for bounded measurable φ : [0,∞)× D+ → R and ψ : [0,∞)× ∂D+ → R,

I(φ) =
∞∫

0

∫
φt−τ−(yt )I (t ∈ (τ−, τ+])Ht (dy)dt

I∂D+
(ψ) =

∞∫
0

Hs(dĈψ
s ) where Ĉψ

s (y) = ψτ+−τ−(yτ+)I (s > τ+ > τ−).

We will show that conditional on σ {u−}, the law of (I, I∂D+
) is that of (Ut (dx)dt,

dU ∂D
t (dx)) under the law Q D+,γ

μI (Dc)+u∂D−,−∞ |D+
. This allows us to define (u+, u∂D+,+)

with the required law so that

I(φ) =
∞∫

0

u+
t (φt )dt and I∂D+

(ψ) =
∞∫

0

du∂D+,+
s (ψs).

The splitting (3.30) for the total occupation measures holds since

u−
[0,∞)(A) =

∞∫
0

∫
I (yt ∈ A, t ≤ τ−, τ− > 0)Ht (dy)dt

=
∞∫

0

∫
I (yt ∈ A, t ≤ τ−)Ht (dy)dt
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while

u[0,∞)(A) =
∞∫

0

∫
I (yt ∈ A, t ≤ τ+)Ht (dy)dt,

I([0,∞)× A) =
∞∫

0

∫
I (yt ∈ A, t ∈ (τ−, τ+])Ht (dy)dt.

Note that for A ⊆ ∂D+

u∂D+
∞ (A) =

∞∫
0

Hs(dC A,+
s ) where C A,+

s (y) = I (yτ+ ∈ A, s > τ+),

u∂D−,−∞ (A) =
∞∫

0

Hs(dC A,−
s ) where C A,−

s (y) = I (yτ− ∈ A, s > τ− > 0),

I∂D+
([0,∞)× A) =

∞∫
0

Hs(dĈ A
s ) where Ĉ A

s (y) = I (yτ+ ∈ A, s > τ+ > τ−).

Note also that C A,−
s (y) = I (yτ+ ∈ A, s > τ+ = τ− > 0) since A ⊆ ∂D+. Then the

splitting for the total exit measures holds since

C A,+
s = Ĉ A

s + C A,−
s + I (yτ+ ∈ A, s > τ+ = 0)

and Ht (τ
+ = 0) = 0 for all t ≥ 0, Qγ

H,μ a.s.

To identify the conditional law of (I, I∂D+
) we will use the Laplace function-

als. Choose non-negative, continuous bounded h(2),± : [0,∞) × D± and h(3),± :
[0,∞)×∂D± which are zero for t ≥ T . Let φ̂± ∈ C1,2([0, T ]×D±)∩C([0, T ]×D±)
be the unique non-negative mild solution to

− ˙̂
φ± =�φ̂±−γ φ̂±− 1

2
(φ̂±)2+h(2),± on D±, φ̂±

T =0 and φ̂± =h(3),± on ∂D±.

We extend these by letting φ̂±
t = 0 for t ≥ T . It is enough to show

E

[
e−I(h(2),+)−I∂D+

(h(3),+) ∣∣σ {u−}
]

= e−u+
0 (φ̂

+
0 ) (3.31)
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where u+
0 is defined as μI (D+\D−)+ u∂D−,−∞ |D+ . This in turn will be implied by

E

[
e+u+

0 (φ̂
+
0 )e−I(h(2),+)−I∂D+

(h(3),+)e− ∫ ∞
0 u−

s (h
(2),−
s )ds−∫ ∞

0 du∂D−,−
s (h(3),−s )

]
= e−μ(φ̂−

0 )

(3.32)

for all h(2),−, h(3),−.
A comparison of the martingale problem for time dependent test functions (3.5)

with (3.27) shows that if φ : [0,∞)×∂D+ → R and Cφ,+
s (y) = φτ+(yτ+)I (s > τ+)

then
∫ t

0 Hs(dCφ,+
s ) = ∫ t

0 du∂D+
s (φs) (and a similar representation for a du∂D−,−

t inte-

gral). Suppose first that φ̂− is in C1,2
b ([0, T ] × D−). Then using (3.27) on the domain

D−, one finds that �−
t defined by

�−
t = e−u−

t (φ̂
−
t )−

∫ t
0 u−

s (h
(2),−
s )ds−∫ t

0 du∂D−,−
s (h(3),−s )

is a martingale which satisfies �−∞ = e− ∫ T
0 u−

t (h
(2),−
t )dt−∫ T

0 du∂D−,−
t (h(3),−t ) and

�−
t =e−μ(φ̂−

0 ) −
t∫

0

∫
�−

s φ̂
−
s (ys)I (s ≤ τ−, τ− > 0)Z(dy, ds) for t ≥ 0 a.s.

(3.33)

An approximation argument shows (3.33) continues to hold when φ̂− ∈ C1,2([0, T ]×
D−)∩C([0, T ]× D−). We now develop a similar representation for the Laplace func-
tional of (I, I∂D+

). Set

Yt = ((t − τ−)+ − (t − τ+)+), yt∧τ+)

=
⎛
⎝

t∫
0

I (s ∈ (τ−, τ+])ds,

t∫
0

I (s ≤ τ+)dy(s)

⎞
⎠ .

For φ ∈ C1,2
b ([0,∞)× Rd) we have, using the historical Ito formula again,

∫
φ(Yt )Ht (dy) = μ(φ0)+

t∫
0

∫
φ(Ys)Z

0(dy, ds)

+
t∫

0

∫
φ̇(Ys)I (s ∈ (τ−, τ+])+�φ(Ys)I (s ≤ τ+)Hs(dy)ds.
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On {t > τ+} we have Yt = (τ+ − τ−, yτ+) so that

∫
φ(Yt )I (t > τ+)Ht (dy) =

∫
φτ+−τ−(yτ+)I (t > τ+)Ht (dy)

= Ht (Ĉ
φ
t )+

∫
φ0(yτ−)I (t > τ+ =τ−)Ht (dy). (3.34)

Using Theorem 2.23 of [13],

Ht (Ĉ
φ
t ) =

t∫
0

Hs(dĈφ
s )+

t∫
0

∫
φτ+−τ−(yτ+)I (s > τ+ > τ−)Z0(dy, ds).

On {t ≤ τ−} we have Yt = (0, yt ) so that

∫
φ(Yt )I (t ≤ τ−)Ht (dy) =

∫
φ0(yt∧τ−)I (t ≤ τ−)Ht (dy)

=
∫
φ0(yt∧τ−)Ht (dy)+

∫
φ0(yτ−)I (t > τ−)Ht (dy).

(3.35)

By the historical Ito formula again

∫
φ0(yt∧τ−)Ht (dy) = μ(φ0)+

t∫
0

∫
φ0(ys∧τ−)Z0(dy, ds)

+
t∫

0

∫
�φ0(ys)I (s ≤ τ−)Hs(dy)ds.

We may combine some terms from (3.34) and (3.35) as follows, again using Theorem
2.23 of [13],

∫
φ0(yτ−)I (t > τ−)Ht (dy)−

∫
φ0(yτ−)I (t > τ+ = τ−)Ht (dy)

=
∫
φ0 I (D+)(yτ−)I (t > τ−)Ht (dy)

= Ht (C
φ0 I (D+),−
t )+

∫
φ0 I (D+)(y0)I (t > τ− = 0)Ht (dy)

=
t∫

0

Hs(dCφ0 I (D+),−
s )+ μ(φ0 I (D+\D−))

+
t∫

0

∫
φ0 I (D+)(yτ−)I (t > τ−)Z0(dy, ds).
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The last six displayed equations hold for all t ≥ 0 almost surely, and a little book-
keeping combines them to yield

∫
φt−τ−(yt )I (t ∈ (τ−, τ+])Ht (dy)+

t∫
0

Hs(dĈφ
s )

−
⎛
⎝μ(φ0 I (D+\D−))+

t∫
0

Hs(dCφ0 I (D+),−
s )

⎞
⎠

=
t∫

0

∫
φs−τ−(ys)I (s ∈ (τ−, τ+])Z(dy, ds)

+
t∫

0

∫
(φ̇ +�φ − γφ)s−τ−(ys)I (s ∈ (τ−, τ+])Hs(dy)ds.

If we now suppose that φ̇+�φ−γφ−(1/2)φ2+h = 0 for some h ∈ Cb([0,∞)×Rd)

then �+
t defined by

�+
t = exp(+μ(φ0 I (D+\D−))+

t∫
0

Hs(dCφ0 I (D+),−
s )

−
∫
φt−τ−(yt )I (t ∈ (τ−, τ+])Ht (dy))

× exp

⎛
⎝−

t∫
0

Hs(dĈφ
s )−

t∫
0

∫
hs−τ−(ys)I (s ∈ (τ−, τ+])Hs(dy)ds

⎞
⎠

is a non-negative local martingale and satisfies

�+
t = 1 −

t∫
0

∫
�+

s φs−τ−(ys)I (s ∈ (τ−, τ+])Z(dy, ds) for t ≥ 0 a.s. (3.36)

An approximation argument shows that (3.36) continues to hold with φ = φ̂+ and
h = h(2),+. With this choice, and extending φ̂+

t = 0 for t ≥ T , we let t → ∞ to find
that

�+
t → exp

(
+u+

0 (φ̂
+
0 )− I(h(2),+)− I∂D+

(h(3),+)
)
.
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Combining (3.33) and (3.36) we have

e+u+
0 (φ̂

+
0 )−I(h(2),+)−I∂D+

(h(3),+) e− ∫ ∞
0 u−

t (h
(2),−
t )dt−∫ ∞

0 du∂D−,−
t (h(3),−t )

= e−μ(φ̂−
0 ) −

∞∫
0

∫
�−

t �
+
t φ̂

+
t−τ−(yt )I (t ∈ (τ−, τ+])Z(dy, dt)

−
∞∫

0

∫
�+

t �
−
t φ̂

−
t (yt )I (t ≤ τ−, τ− > 0)Z(dy, dt) (3.37)

(noting that the cross variation of the two stochastic integrals is zero). Note that
�+

t ≤ exp(+‖φ̂+‖∞u+
0 (1)). The quadratic variation of the first stochastic integral on

the right hand side of (3.37) is therefore bounded

‖φ̂+‖2∞ exp(+2‖φ̂+‖∞(μ(1)+ u∂D−,−∞ (1))u[0,∞)(1)

The finiteness of small positive exponential moments for the total exit measure

u∂D−,−∞ (1) implies that the stochastic integral has mean zero if the norm ‖φ̂+‖∞ is
small, which in turn is satisfied if the norms ‖h(2),+‖∞ and ‖h(3),+‖∞ are small
enough. Similarly the other stochastic integral is mean zero. Taking expectations
in (3.37) establishes the conditional Laplace functional (3.31) when ‖h(2),+‖∞ and
‖h(3),+‖∞ are sufficiently small. But this is sufficient to characterize the conditional
law. ��

3.2 Existence and uniqueness via change of measure

Proof of Theorem 2 Many of the change of measure arguments we will use can be
found in Sect. IV.1 of Perkins [12]. Fix f ∈ B(D, [0, 1]), and on the path space
(�D,U ,Ut , Q D,0

μ ) use the path space density from (3.18) to set Vt (x) = f (x)
exp(−U (0, t, x)), where we use the convention exp(−∞) = 0. Note that V is
P ×B(D)measurable and has non-increasing paths as required. Define the stochastic
integral

Mβ,γ, f
t =

t∫
0

∫
D

(βVs(x)− γ )M(dx, ds) (3.38)

where M(ds, dx) is the martingale measure on [0,∞)× D constructed from U under
Q D,0
μ (as explained in Sect. 3.1.1). A simple version of the arguments in [12] The-

orem IV.1.6.(b) implies that the stochastic exponential Et (Mβ,γ, f ) is a true martin-
gale, so that there exists a measure Q D,β,γ

μ, f on the path space (�D,U) satisfying

d Q D,β,γ
μ, f /d Q D,0

μ = Et (Mβ,γ, f ) on Ut . It is straightforward to check via Girsanov’s

theorem that the triple (Ut ,U ∂D
t , Vt ) solve, under Q D,β,γ

μ, f , the extended martingale
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problem (2.3) and (2.4) for solutions to (1.1). The regularity of U (s, t, x) will imply
that (2.2) holds, namely for all bounded measurable φ

(Vt , φ) = ( f, φ)−
t∫

0

Us(Vsφ)ds, Q D,β,γ
μ, f a.s. (3.39)

This would be trivial, by the fundamental theorem of calculus, were Us(dx) to have
continuous density in (s, x). We show at the end of this section that it follows in our
more singular setting. This completes the proof of part (i) of Theorem 2.

To show uniqueness of solutions, we take a solution (u, v) to (1.1) on D, on a fil-
tered space (�, (Ft ),F , P), with an arbitrary F0 measurable starting condition. Let
m(dx, dt) be the local martingale measure extending the local martingales mt (φ). We
now reverse the change of measure argument. The local martingale defined by

mβ,γ, f
t = Et

(∫ ∫
(γ − βvs(x))m(dx, ds)

)

is in fact a true martingale (argue as in [12] Theorem IV.1.6.(a), noting that the deter-
ministic initial conditions there are not needed for this argument). Defining Q by
d Q/d P = mβ,γ, f

t on Ft , one finds that (ut ) solves the martingale problem for a
DW(D, 0) process under Q, and so Q is determined on σ {us : s ≤ t} by the law
of u0. By Sugitani’s results listed in Sect. 3.1, the occupation measures u[s,t] have
densities (under P or Q), and moreover that there is a density (t, x) → u(s, t, x) that
is continuous on {(s, t, x) : 0 < s ≤ t, x ∈ D}. Knowing this one shows that v is
given by (see the argument at the end of this section)

vt (x) = v0(x)e
−u(0,s,x) for all t ≥ 0, for almost all x , P a.s. (3.40)

where u(0, s, x) = limr↓0 u(r, s, x). Now we may replace the change of measure by

d Q/d P = Et

(∫ ∫ (
γ − βv0(x)e

−u(0,s,x)
)

m(dx, ds)

)
on Ft .

since the two exponential martingales are equal upto a null set. Inverting one finds

d P = Et

(∫ ∫ (
βv0(x)e

−u(0,s,x) − γ
)

m̃(dx, ds)

)
d Q on Ft .

where m̃(dx, ds) is the local martingale measure determined by the local martingales
found in the martingale problem of u under Q. The stochastic exponential is a measur-
able function of (v0, {us : s ≤ t}). Applying the Markov property of u under Q at time
t = 0, we find that P is determined on σ {us : s ≤ t} by the law of (u0, v0). Indeed, for
each t ≥ 0 there is a measurable kernel pt (μ, f, B) for f ∈ B(D, [0, 1]), μ ∈ M(D)
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and Borel B ⊆ M(D) so that

P[ut ∈ d B] =
∫
B

∫
M(D)

pt (μ, f, B)P[u0 ∈ dμ, v0 ∈ d f ]. (3.41)

Under Q, and therefore under P , there exists an exit measure process u∂D satisfy-
ing u∂D

t = Rt ({us : s ≤ t}) almost surely. Another Girsanov calculation starting
with the extended martingale problem under Q, shows that the exit measures sat-
isfy the extended martingale problem for (1.1) under P . This completes the proof
of parts (ii),(iii) and (iv) of Theorem 2. For part (v), note that the measurability of
the maps (μ, f ) → Q D,β,γ

μ, f (B) follows from the analogous measurability of Q D,0
μ

and the fact that, for t ≥ 0, the derivative d P/d Q D,0
μ on Ft is a measurable map of

( f, {us : s ≤ t}). The strong Markov property for the laws Q D,β,γ
μ, f can be deduced

either from the strong Markov property for the DW laws Q D,γ
μ , or more easily from

the uniqueness of the one dimensional distributions for the martingale problem (use
(3.41) and follow the argument in [12, Theorem II.5.6]). ��
Remark It is straightforward to show that uniform integrability of the martingale
t → Et (Mβ,γ,1) under Q Rd ,0

μ for some μ �= 0 (or that of t → Et (Mβ,0,1) under

Q Rd ,γ
μ ) is equivalent to certain death for the parameters (β, γ ). See the remark in

Sect. 7.1.

Proof of (3.39) Suppose (νs : 0 ≤ s ≤ t) is a continuous path in M(Rd). Suppose
also that (n(s, x) : s ≤ t, x ∈ Rd) is bounded and continuous and that

∫ s
0 νr dr =

n(s, x)dx as measures for s ≤ t . Let Tδ denote the heat semigroup with generator �,
and write T ∗

δ for the dual semigroup acting on measures. For continuous compactly
supported ψ , we shall argue that

∫
(1 − e−n(t,x))ψ(x)dx = lim

δ↓0

∫
(1 − e−Tδn(t,x))ψ(x)dx

= lim
δ↓0

t∫
0

∫
e−Tδn(s,x)ψ(x)T ∗

δ νs(dx)ds

=
t∫

0

∫
e−n(s,x)ψ(x)νs(dx)ds.

Since the measures T ∗
δ νs have densities, the paths s → Tδn(s, x) are absolutely con-

tinuous for almost all x . So the second equality above follows by expanding s →
exp(−Tδn(s, x)) as an integral of its derivative over [0, t] and then interchanging s
and x integrals. The third equality holds since Tδn(s, x) → n(s, x) uniformly over
s ≤ t and x in the support of ψ , and since T ∗

δ νs → νs weakly.

The assumptions above hold, Q D,β,γ
μ, f almost surely, if we take νs(dx) = ψ(x)

Uε+s(dx), for some ε > 0 and continuous ψ , with compact support in D, and take
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A phase diagram for a stochastic reaction diffusion system 589

the corresponding density n(s, x) = ψ(x)U (ε, ε + s, x). Choosing continuous ψ
compactly supported in D and ψ ≡ 1 on the support of ψ we obtain, almost surely,

∫
e−U (ε,t,x)ψ(x)dx =

∫
ψ(x)dx −

t∫
ε

∫
e−U (ε,s,x)ψ(x)Us(dx)ds.

To pass to the limit ε ↓ 0 in this equation note that for t ≥ ε

∫ ∣∣∣e−U (ε,t,x) − e−U (0,t,x)
∣∣∣ dx ≤

∫
U (0, ε, x)dx =

ε∫
0

Us(1)ds → 0 as ε ↓ 0,

and similarly

∣∣∣∣∣∣
t∫
ε

∫
e−U (ε,s,x)ψ(x)Us(dx)ds −

t∫
ε

∫
e−U (0,s,x)ψ(x)Us(dx)ds

∣∣∣∣∣∣

≤ ‖ψ‖∞
t∫
ε

Us(U (0, ε))ds

≤ ‖ψ‖∞
∫

U (0, t, x)U (0, ε, x)dx

which converges in L2 to zero, as ε ↓ 0, by (3.22). This leads to

∫
e−U (0,t,x)ψ(x)dx =

∫
ψ(x)dx −

t∫
0

∫
e−U (0,s,x)ψ(x)Us(dx)ds

for continuous compactly supportedψ . We may extend to general bounded measurable
ψ : D → R by monotone class arguments, and choosing ψ = f φ for φ ∈ C0

b (D)
shows that (3.39) holds. ��
Proof of (3.40) First, we may use a density argument to ensure 〈vt , φ〉 = 〈v0, φ〉 −∫ t

0 us(vsφ)ds for all t ≥ 0 and all continuous φ with compact support in D, P a.s.
Now we can argue pathwise. Fix a sample point ω so that the above happens and so
that also (r, s, x) → u(r, s, x) is continuous over x ∈ D, 0 < r ≤ s ≤ t . Choose
a partition 0 < s = t0 < t1 < · · · < tN = t with maxi (ti − ti−1) = δ. Choosing
φ(x) = exp(−u(tn−1, t, x))ψ(x), for some continuous ψ ≥ 0 with compact support
A ⊆ D, we find

〈
vtn , e−u(tn−1,t)ψ

〉
=

〈
vtn−1 , e−u(tn−1,t)ψ

〉
−

tn∫
tn−1

us

(
vse−u(tn−1,t)ψ

)
ds.
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A little rearrangement leads to

〈
vtn , e−u(tn ,t)ψ

〉
=

〈
vtn−1 , e−u(tn−1,t)ψ

〉
− E1

n + E2
n

where Ei
n ≥ 0 are given by

E1
n =

tn∫
tn−1

us

(
e−u(tn−1,t)(vs − vtn )ψ

)
ds ≤ ‖ψ‖∞

〈
u(tn−1, tn)I (A), vtn−1 − vtn

〉

and, using 0 ≤ ez − 1 − z ≤ 2z2 for z ∈ [0, 1],

E2
n =

〈
vtnψe−u(tn−1,t), eu(tn−1,tn) − 1 − u(tn−1, tn)

〉

≤ 2‖ψ‖∞
〈
I (A), u2(tn−1, tn) ∧ 1

〉
.

Now sum over the partition to find

〈vt , ψ〉 =
〈
vs, e−u(s,t)ψ

〉
−

∑
n

E1
n +

∑
n

E2
n .

The error bounds above, and the fact that

max{u(s′, t ′, x) : s ≤ s′ ≤ t ′ ≤ t, |s′ − t ′| ≤ δ, x ∈ A} → 0 as δ → 0,

imply that
∑

n Ei
n → 0 as δ → 0. Thus vt (x) = vs(x) exp(−u(s, t, x)) for almost all

x . The non-increasing paths t → vt (x) ensures that vt (x) = vs(x) exp(−u(s, t, x))
for all 0 < s < t , for almost all x . Since lims↓0 vs(x) = v0(x) for almost all x (use
the non-increasing paths of v and (2.2)) we reach the conclusion (3.40). ��

We conclude this section with the proof of local extinction of solutions.

Lemma 9 Suppose that γ > 0. Then, for compact A ⊆ Rd,

Q Rd ,β,γ

μ, f

[
U[t,∞)(A) = 0

] → 1 as t → ∞.

Proof Although not directly used, we first give a weaker fixed t extinction result whose
proof is similar to the support results in Sect. 3.3. Fix R > 0 and let 0 ≤ ψR ≤ 1 be
smooth and satisfy {ψR > 0} = BR = {x : |x | < R}. Let φ(M)t (x) be the solution, for
x ∈ Rd , t ≥ 0, of

∂tφ = �φ − γφ − φ2

2
+ βφ I (t ≤ 1), φ0 = MψR .
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Then stochastic calculus shows that, under Q Rd ,β,γ

μ, f ,

d
(

e−Us (φ
(M)
t−s )

)
≥ −βe−Us (φ

(M)
t−s )Us(Vsφ

(M)
t−s )I (s ≤ t − 1)ds + martingale increments

so that,

Q Rd ,β,γ

μ, f [Ut (BR) = 0]

= lim
M→∞ Q Rd ,β,γ

μ, f

[
e−MUt (ψR)

]

≥ e−μ(φt ) − βQ Rd ,β,γ

μ, f

⎡
⎣

∞∫
0

Us(Vsφt−s)I (s ≤ t − 1)ds

⎤
⎦ , (3.42)

where φ = limM→∞ φ(M). As in the extinction results in Sect. 3.1.4, a compari-
son argument shows that φt is bounded for all t > 0. Moreover, then ‖φt‖∞ → 0
as t → ∞, so that the term exp(−μ(φt )) → 1. Similarly, for fixed (s, ω) we have

Us(Vsφt−s) → 0 as t → ∞. To justify the conclusion that Q Rd ,β,γ

μ, f [Ut (BR) = 0] → 1
as t → ∞ we will dominate the second term on the right hand side of (3.42) by

Q Rd ,β,γ

μ, f

⎡
⎣

∞∫
0

Us(Vsφ
∗)ds

⎤
⎦= Q Rd ,β,γ

μ, f

[∫
φ∗(x) f (x)(1−e−U (0,∞,x))dx

]
≤〈φ∗, 1〉

where φ∗(x) = supt≥1 φt (x), and where we are argue as in (3.39) for the first equality.
But, for γ > 0 and where Tt is convolution with the heat kernel pt (x),

φ∗(x) ≤ sup
t≥0

e−γ t Ttφ1(x)

≤ sup
t

⎧⎪⎨
⎪⎩

∫
|y|≤1

φ1(x + y)e−γ t pt (y)dy

⎫⎪⎬
⎪⎭ +

∫
|y|≥1

φ1(x + y) sup
t

{e−γ t pt (y)}dy

≤ sup{φ1(z) : |z − x | ≤ 1} + C(γ )
∫
φ1(x + y)e−γ 1/2|y|dy.

The fact that 〈φ∗, 1〉 < ∞ can now be deduced from the boundedness and exponential
decay of φ1, which follow from comparison arguments as in [3, Lemma 3.1].

The stronger conclusion of the lemma follows by a similar argument using a slightly
more complicated test function. Suppose thatψR satisfies in additionψR = 1 on BR−1.
Fix t0, t1 ≥ 0 and redefine φ as the solution to

∂tφ = �φ − γφ − φ2

2
+ MψR I (t ≤ t1)+ βφψR+2 I (t ≤ t1 + 1), φ0 = 0.
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Some calculus shows that, under Q Rd ,β,γ

μ, f ,

d(exp(−Us(φt0+t1−s)− MU[t0,t0∨s](ψR)))

= exp(−Us(φt0+t1−s)− MU[t0,t0∨s](ψR))(−βUs(Vsφt0+t1−s)+ βUs(φt0+t1−sψR+2)I (s ≥ t0 − 1)
)

dt

up to martingale increments. Taking expectations we have

Q Rd ,β,γ

μ, f

[
e−MU[t0,t0+t1](ψR)

]
≥ e−μ(φt0+t1 )

−βQ Rd ,β,γ

μ, f

⎡
⎣

t0+t1∫
0

Us(φt0+t1−s Vs)−Us(φt0+t1−sψR+2)I (s ≥ t0−1)ds

⎤
⎦ .

(3.43)

There is a unique non-negative solution φ (see the arguments of [7]) to

�φ = γφ + φ
2

2
− βφψR+2 on Bc

R and φ(x) ↑ ∞ as |x | ↓ R.

A comparison argument shows that φt (x) ≤ φ(x) for t ≤ t1 + 1 and |x | > R. Also
φt1+t ≤ λt for t > 0 where

λ̇s = −γ λs − λ2
s

2
+ βλs I (s ≤ 1) and λs ↑ ∞ as s ↓ 0.

Moroever, as in the fixed t argument,

φt1+1+s ≤ e−γ s Tsφt1+1 ≤ e−γ s Ts(φ ∧ λ1) := φs .

Using these bounds in (3.43) we obtain for t0 > 1

Q Rd ,β,γ

μ, f

[
e−MU[t0,t0+t1](ψR)

]

≥ e−λt0μ(1) − βQ Rd ,β,γ

μ, f

⎡
⎢⎣

t0−1∫
0

Us(Vsφt0−s−1)ds +
∞∫

t0−1

Us(Vsφ I (Bc
R+1))ds

⎤
⎥⎦ .

Now we let M, t1 → ∞ to obtain the same upper bound for Q Rd ,β,γ

μ, f [U[t0,∞)(Bc
R) =

0]. As t0 → ∞ we have λt0 → 0. The conclusion of the lemma follows as in the fixed
t result using the domination

∫ ∞
0 Us(Vsφ

∗
)ds ≤ 〈φ∗

, 1〉 where φ
∗= max{φ I (Bc

R+1),

sups φs}. The integrability 〈φ∗
, 1〉 < ∞ follows as in the fixed t result using the

exponential decay of the function φ. ��
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3.3 Existence of the critical curve �(β)

For a DW(D, γ ) process the death time time τ = inf{t : Ut = 0} is finite, and then
U[0,∞) = U[0,τ ] and U ∂D∞ = U ∂D

τ are finite measures, Q D,γ
μ almost surely. Using

the change of measure from Sect. 2.2 the same holds for the law Q D,β,γ
μ, f when D

is a bounded domain. Indeed the change of measure martingale Mβ,0, f from (3.38)
satisfies

[
Mβ,0, f

]
t
= β2

t∫
0

∫
D

f 2(x)e−2U (0,s,x)Us(dx)ds

= β2

2

∫
D

f 2(x)
(

1 − e−2U (0,t,x)
)

dx

by arguing as in the proof of (3.39). This is bounded independently of t , for a bounded
domain D, so that Et (Mβ,0, f ) is a uniformly integrable martingale, ensuring the above
almost sure properties carry over to the law Q D,β,γ

μ, f .
A similar argument leads to the following lemma, which shows that either certain

death or possible life must occur, for each pair of parameter values β, γ .

Lemma 10 If Q Rd ,β,γ
μ,1 [Ut �= 0 for all t] is strictly positive for some μ ∈ M(Rd)

then it is strictly positive for all non-zero μ ∈ M(Rd).

Proof Step 1: We claim that the laws of solutions Q Rd ,β,γ

μ, f and Q Rd ,β,γ
μ,g are mutually

absolutely continuous on the entire sigma field U∞ = σ {Ut : t ≥ 0}, provided that f
and g differ only on a compact set. To see this, consider the Radon-Nikodym deriva-
tive between the two laws, which is the stochastic exponential E(M) arising from the
martingale Mt = β

∫ t
0

∫
Rd ( f − g)(x)e−U[0,s](x)M(dx, ds). Then, if 0 ≤ f, g ≤ 1 are

supported inside the compact set A,

[M]t = β2

t∫
0

∫

Rd

( f − g)2(x)e−2U[0,s](x)Us(dx)ds

≤ β2

t∫
0

∫
A

e−2U[0,s](x)Us(dx)ds

= β2

2

∫
A

(
1 − e−2U[0,t](x)

)
dx ≤ β2

2
|A|. (3.44)

The exponential martingale is therefore uniformly integrable which establishes the
claim.

Step 2: A result of Evans and Perkins [6] shows that, for any fixed t > 0, the laws
Q D,0
μ [Ut ∈ ·] and Q D,0

μ̃
[Ut ∈ ·] of two DW(Rd , 0) processes started at non-zero μ, μ̃
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are mutually absolutely continuous on M(Rd). The change of measure ideas used
to show existence and uniqueness imply that the same absolute continuity holds for

Q Rd ,β,γ

μ, f [Ut ∈ ·] and Q Rd ,β,γ

μ̃, f [Ut ∈ ·].
Now we combine the two steps. Suppose μ, μ̃ are non-zero and compactly sup-

ported, and that started at (μ, 1) the solutions may survive. Then

0 < Q Rd ,β,γ
μ,1 [Ut �= 0 for all t]

=
∫

B(Rd ,[0,1])×M(Rd )

Q Rd ,β,γ
ν,g [Ut �= 0 for all t] Q Rd ,β,γ

μ,1 [Ut0 ∈ dν, f e−U (0,t0)∈dg]

by the Markov property at time t0 > 0. By the compact support property of solutions,
f exp(−U (0, t0)) is identically one outside a compact set, almost surely. So, using
step one,

0<
∫

B(Rd ,[0,1])×M(Rd )

Q Rd ,β,γ
ν,1 [Ut �=0 for all t] Q Rd ,β,γ

μ,1 [Ut0 ∈dν, f e−U (0,t0)∈dg]

=
∫

M(Rd )

Q Rd ,β,γ
ν,1 [Ut �= 0 for all t] Q Rd ,β,γ

μ,1 [Ut0 ∈ dν].

By step two above we obtain 0 <
∫
M Q Rd ,β,γ

ν,1 [Ut �= 0 for all t] Q Rd ,β,γ

μ̃,1 [Ut0 ∈ dν]
and undoing the steps we find that the process with initial conditions (μ̃, 1) may
survive.

To remove the restrictions that μ, μ̃ be compactly supported, recall that the solu-
tions are compactly supported at any time t > 0 almost surely. Hence, if solutions may
live from some general μ �= 0, they may, by applying the Markov property at time
t > 0, live from some, and hence all, non-zero compactly supported initial conditions.
Any solution started at non-zero μ̃ will have positive probability of being alive and
compactly supported at small times t > 0 (use the continuity of the total mass process)
and hence, by the Markov property again, may live for all time. ��

The next two lemmas give a characterization of certain death, which allows us to
reduce the question of possible life/certain death to the study of the total exit mea-
sures solutions on bounded domains. The existence of a non-decreasing critical curve
follows from this, since these exit measures are stochastically monotone in β, γ .

Lemma 11 Suppose μ ∈ M(Rd) is compactly supported. Then Q Rd ,β,γ

μ, f almost
surely

{Ut = 0 for large t} = {U[0,∞) is compactly supported}.

Proof The inclusion {Ut = 0 for larget} ⊆ {U[0,∞) is compactly supported} follows
from the compact support property (3.16). Let DL = (−L , L)d . We claim for any L ,
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P a.s., there exists a t > 0 so that either Ut (dx) = 0 or Ut (Dc
L) > 0 must occur. This

implies the opposite inclusion.
Applying the first and second moment bounds (3.12, 3.13), and the simple estimate

P[Z > 0] ≥ (E[Z ])2/E[Z2] for a non-negative variable Z , we may find ε1 > 0,
depending only L , β, γ , so that Q D,β,γ

μ, f [U1(Dc
L) > 0] ≥ ε1 for all f ∈ B(D, [0, 1])

and μ(1) ≥ 1. Using the extinction probability (3.14) we may find ε2 > 0, depending
only on β, γ , so that Q D,β,γ

μ, f [U1 = 0] ≥ ε2 for all f ∈ B(D, [0, 1]) and μ(1) ≤ 1.
Applying the Markov property at time t , we obtain

Q Rd ,β,γ

μ, f

[
Ut+1(dx) = 0 or Ut+1(D

c
L) > 0 | Ut

] ≥ ε1 ∧ ε2.

Iterating this estimate over the integers t = 1, 2, . . . and applying Borel–Cantelli
completes the argument. ��
Lemma 12 Suppose μ ∈ M is compactly supported in D. Then

Q Rd ,β,γ
μ,1

[
U[0,∞)(D

c) = 0
] = Q D,β,γ

μ,1 [U ∂D∞ = 0].

Proof We may construct a coupling of solutions (u−, v−) and (u+, v+) as follows:
(u−, v−) is a solution to (1.1) on D with initial conditions (μ, 1); u∂D,− is the associ-
ated exit measure process; τ = inf{t : u∂D,−

t > 0}; and conditional on σ {u−, v−} the
process (u+, v+) has the law of a solution on Rd started at the random initial condition
u+

0 = u−
τ and v+

0 = v−
τ . One way to do this is to use the measurability of (μ, f ) →

Q D,β,γ
μ, f and construct a skew-product measure on the product space �D × �Rd . We

may also suppose that v−
t = exp(−u−(0, t)) and v+

t = exp(−u−(0, τ ) − u+(0, t))
for all t ≥ 0. Now define (ut , vt ) = (u−

t , v
−
t ) for t ≤ τ and (ut , vt ) = (u+

t−τ , v+
t−τ )

for t ≥ τ . Then vt is a measurable function of (us : s ≤ t) and this can be used to
check that, with respect to the filtration σ {us : s ≤ t}, the process v is predictable
and non-increasing. For φ ∈ C2

b (R
d), we may apply the extended martingale problem

for (u−, v−) to the restriction of φ on D. Combining with the martingale problem
for (u+, v+) we find that (u, v) is a solution on Rd with initial conditions (μ, 1).
Moreover on the set {τ = ∞} we have that u[0,∞)(Dc) = u−

[0,∞)(D
c) = 0. Thus

Q Rd ,β,γ
μ,1

[
U[0,∞)(D

c) = 0
] ≥ P [τ = ∞] = Q D,β,γ

μ,1

[
U ∂D∞ = 0

]
.

For the converse inclusion we construct (u−, v−) a solution to (1.1) on Rd with initial
conditions (μ, 1); τ = inf{t : u−

t (D
c) > 0}; and conditional on σ {u−, v−} a pro-

cess (u+, v+) with the law of a solution on D started at the random initial condition
u+

0 = u−
τ and v+

0 = v−
τ . A result of Perkins (see [12, Theorem III.5.1] and use absolute

continuity) implies that the paths of t → u−
t (D

c) are almost surely continuous. So
we may define (ut , vt ) as above and the process u is almost surely continuous. A test
function φ ∈ C2

0 (D)may be extended to φ̃ ∈ C2
b (R

d). Applying the martingale prob-
lem for (u−, v−) to φ̃ and the martingale problem for (u+, v+) to φ, we find that (u, v)
is a solution on D with initial conditions (μ, 1). Moreover, choosing u∂D

t = u∂D,+
(t−τ)+
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on t > τ and u∂D
t = 0 for t ≤ τ one finds the extended martingale problem is solved.

Then on the set {τ = ∞} we have that u∂D∞ = 0 and thus

Q D,β,γ
μ,1

[
U ∂D∞ = 0

]
≥ P [τ = ∞] = Q Rd ,β,γ

μ,1

[
U[0,∞)(D

c) = 0
]

completing the proof. ��

Using the above results and the comparison results stated in section 2.2 we will
now deduce the existence of an non-decreasing critical curve � as in Theorem 1.

Corollary 13 There exists an non-decreasing function �(β) : [0,∞) → [0,∞] so
that for 0 ≤ γ < �(β) possible life occurs and for γ > �(β) certain death occurs.

Proof Lemmas 10, 11 and 12 show, forμ �=0, that Q Rd ,β,γ
μ,1 [Ut =0 for large t ≥0]=1

if and only if Q Rd ,β,γ
δ0,1

[Ut = 0 for large t ≥ 0] = 1 if and only if Q Rd ,β,γ
δ0,1

[U[0,∞)

is compactly supported] = 1 if and only if

sup
n

Q Dn ,β,γ
δ0,1

[U ∂Dn∞ = 0] = 1.

But Lemma 5 shows that these probabilities are non-increasing inβ and non-decreasing
in γ . The result follows by setting �(β)= sup{γ ≥0 : supn Q Dn ,β,γ

δ0,1
[U ∂Dn∞ =0]<1}.

��

Remark The change of measure (3.38) can be used to show that (β, γ ) → Q D,β,γ
μ,1

[U ∂D∞ =0] is continuous when D is bounded, and hence that Q Rd ,β,γ
μ,1 [Ut =0 for large t]

is lower semicontinuous in β, γ . This does not seem to have any immediate implica-
tions for the continuity of �.

4 Approximations

The proof of the decomposition results in Sect. 2.2 is rather clear for particle systems
that approximate our reaction diffusion system. Our first proofs used a full particle
approximation with population and nutrient particles living on discrete lattices. We
later realized that the key to establishing the comparisons was to discretise the effect of
the nutrient, and we here present an approximation where the reaction with the nutrient
occurs in a finite number of discrete ‘packages’ but the population still evolves as a
continuum SPDE. This intermediate approximation makes passage to the limit easier
to establish. This passage to the limit is broadly similar to many in the literature, and
the points of most interest are perhaps (i) that the nutrient interaction is singular as a
function of the population measure u, and requires tightness of the occupation densi-
ties; (ii) that convergence of the exit measures follows quite simply from convergence
of the population measures, via the extended martingale problem (2.4).
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4.1 Construction of the approximation

The approximations will depend on a parameter N , which we will suppress in the
notation in this section. Fix a domain D ⊆ Rd and partition it as a disjoint union of
sets D = ∪D j , where each set D j has diameter at most N−1. Choose a finite number
of functions (ψk : 1 ≤ k ≤ K ), each of the form N−1 I (x ∈ D j ) for some D j in the
partition. Each ψk will represent a small package of nutrient which may be triggered
to produce new population. The function f = ∑

k ψk ≤ 1 will be our approximation
to the initial nutrient level.

Choose a probability space equipped with the following independent families: an
i.i.d. family of rate one exponential variables ek for k ≥ 1; independent DW(D, γ )
processes (uk,t : t ≥ 0), for k ≥ 0, with initial conditions

u0,0 = μ, and uk,0 = βψk(x)dx for k ≥ 1.

Let (u∂D
k,t : t ≥ 0) be the associated exit measures processes. Given realizations

of these variables, the approximation can be constructed pathwise. We will list as
St ⊆ {1, . . . , K } the labels of those nutrient packages that have been triggered by
time t , and denote by τk ∈ [0,∞] the time at which the kth nutrient package is
triggered. Thus S0 = ∅ and St = {k : τk ≤ t}. The approximation will satisfy

ut = u0,t +
∑
k∈St

uk,t−τk , u∂D
t = u∂D

0,t +
∑
k∈St

u∂D
k,t−τk

, vt =
∑
k �∈St

ψk . (4.1)

Moreover we want the approximation process to be triggered in such a way that

τk = inf
{

t : u[0,t](ψ̂k) > ek

}
for k ≥ 1

where ψ̂k = ψk/〈ψk, 1〉. This uniquely specifies a process, which can be constructed
pathwise by defining the triggering times τk and the processes ut , vt inductively over
the intervals between triggers (and where, on a null set, packages may be simulta-
neously triggered).

We now derive a martingale problem for the approximation. On the intervals
[τk, τk+1) the approximation process evolves as a finite sum of DW processes. So
it satisfies the following martingale problem: for φ ∈ C2

b (D)

ut (φ) = μ(φ)+
t∫

0

us (�φ − γφ) ds − u∂D
t (φ)+

∑
s≤t

Dsus(φ)+ mt (φ), (4.2)

where mt (φ) is a continuous martingale with quadratic variation
∫ t

0 us(φ
2)ds and

where Dsus(φ) is the jump us(φ) − us−(φ) at time s. We can compensate the jump
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term as

∑
s≤t

Dsus(φ) = β

t∫
0

∑
k �∈Ss

〈φ,ψk〉us(ψ̂k)ds + E (1)t (φ) (4.3)

where E (1)t (φ) is a martingale with jumps bounded by βN−d−1‖φ‖∞ and with pre-
dictable brackets process given by

d〈E (1)(φ)〉t = β2
∑
k �∈St

〈φ,ψk〉2ut (ψ̂k)dt

≤ β2‖φ‖2∞N−d−1
∑
k �∈St

ut (ψk)dt ≤ β2‖φ‖2∞N−d−1ut (1)dt. (4.4)

The term N−d−1 arises from bounding 〈1, ψk〉 ≤ N−d−1 (since 0 ≤ ψk ≤ N−1 and
the diameter of the support of ψk is at most N−1). Examining the variation of the
function φ over the support of ψk , we can approximate

∣∣∣〈φ,ψk〉us(ψ̂k)− us(ψk φ)

∣∣∣ ≤ N−1‖∇φ‖∞us(ψk)

and rewrite the compensator in (4.3) as β
∫ t

0 us(vsφ)ds up to an error of size O(N−1).
Combining these estimates we have

ut (φ) = μ(φ)+
t∫

0

us (�φ + βvsφ − γφ) ds − u∂D
t (φ)+ mt (φ)

+E (1)t (φ)+ E (2)t (φ) (4.5)

where the second error term E (2)t (φ) is controlled by

∣∣∣E (2)t (φ)− E (2)s (φ)

∣∣∣ =
∣∣∣∣∣∣β

t∫
s

∑
k �∈Sr

(
〈φ,ψk〉ur (ψ̂k)− ur (φψk)

)
dr

∣∣∣∣∣∣

≤ β
(
(N−1‖∇φ‖∞) ∧ ‖φ‖∞

) t∫
s

ur (1)dr. (4.6)

Taking φ = 1 in (4.5) we find that

ut (1) ≤ μ(1)+ (β − γ )

t∫
0

us(1)ds + mt (1)+ E (1)t (1).
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From this, via the standard argument (localizing, applying Burkholder’s inequality to
control the martingales and Gronwall’s inequality), one can derive the moment bound,
for any p > 0 and T < ∞,

E

[
sup
t≤T

|ut (1)|p

]
≤ C(p, β, γ, T )

(
1 + (μ(1))p) . (4.7)

We now consider the martingale decomposition of t → vt (x). For x ∈ D let
Dx be the partition element that contains x , let ψx (y) = N−1 I (y ∈ Dx ) and ψ̂x =
ψx/〈ψx , 1〉. Then a nutrient package satisfiesψk(x) > 0 only ifψk = ψx . The process
t → vt (x) is a pure jump process with compensator given as in

vt (x) = f (x)−
t∫

0

∑
k �∈Ss

ψk(x)us(ψ̂k)ds + mv
t (x)

= f (x)−
t∫

0

vs(x)us(ψ̂x )ds + mv
t (x) (4.8)

for a martingale mv
t (x) with jumps bounded by N−1 and with predictable brackets

process

d〈mv(x)〉t =
∑
k �∈St

ψ2
k (x)ut (ψ̂k)dt ≤ N−1vt (x)ut (ψ̂x )dt. (4.9)

We can solve the equation (4.8) for vt (x) as

vt (x) = e−u[0,t](ψ̂x )

⎛
⎝ f (x)+

t∫
0

e−u[0,s](ψ̂x )dmv
s (x)

⎞
⎠ . (4.10)

4.2 Tightness of the approximations

To pass to the limit in the martingale problems for the approximation we require tight-
ness estimates. We tried deriving these from known tightness estimates for each of
the DW processes used as building blocks, however the random start times caused
some difficulties in combining the estimates, so we proceed by repeating Sugitani’s
estimates for our discretized approximation.

We now include the dependence on N and write the approximation constructed in
Sect. 4.1 as (u(N ), v(N )).

Proposition 14 Let D be a bounded domain. Suppose the approximation (u(N ), v(N ))
has initial conditions u(N )0 = μ(N ) and v(N )0 = f (N ) ≤ 1 satisfying that μ(N ) → μ

weakly and f (N ) → f in L1(D) for some f ∈ B(D, [0, 1]). Then
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600 C. Mueller, R. Tribe

(i) the laws of (u(N )) are tight in D([0,∞),M(D)) and limit points are continuous,
(ii) for δ > 0, the laws of the occupation densities (u(N )(δ, t +δ, x) : t ≥ 0, x ∈ D)

are tight in C([0,∞),C(D))

where C(D) is the space of continuous functions with the topology of uniform con-
vergence on compacts.

Proof The moment bound (4.7) allows us the uniform control on total mass moments:

E

[
sup
t≤T

|u(N )t (1)|p

]
≤ C(p, T, β, γ )

(
1 + (μ(N )(1))p

)
. (4.11)

To control the moments of the approximate densities, the following simple upper
bound for u(N ) is useful. Triggering all the nutrient packages (uk : 1 ≤ k ≤ KN )

used in the construction of u(N ) at time zero gives the process ũ(N )t = ∑KN
k=0 uk,t . This

satisfies

u(N )(0, t, x) ≤ ũ(N )(0, t, x) for all x ∈ D and t ≥ 0. (4.12)

Moroever ũ(N ) has the law Q D,γ
μ(N )+β f (N )dx

of a DW(D, γ ) process.

Now fix φ ∈ C2
0 (D). Using the decomposition (4.5), we consider the increment

|u(N )t (φ)− u(N )s (φ)| for 0 ≤ s < t . This leads, via the total mass moment bounds and
Burkholder’s inequality, to the estimate

E

[
sup

r∈[s,t]

∣∣∣u(N )r (φ)− u(N )s (φ)

∣∣∣p
]

≤ C
(
|t − s|p/2 + N−(d+1)p

)

for all N and s, t ∈ [0, T ], (4.13)

where C < ∞ depends only on β, γ, φ, p, T and supN μ
(N )(1) (we suppress this

dependence below). The term N−(d+1)p comes from the size of the jumps in the
Burkholder inequality, for a cadlag martingale M , in the form E[sups≤t |Ms |p] ≤
C p E[[M]p/2

t ] + C p E[sups≤t |Ds M |p]. The estimate (4.13) gives, via a Chebychev
inequality,

P

[
sup

s∈[t,t+N−(d+1)]

∣∣∣u(N )s (φ)− u(N )t (φ)

∣∣∣ ≥ N−1/2

]
≤ C N−dp/2.

By summing over the grid t j = j N−(d+1) and applying Borel Cantelli, we find that

∣∣∣u(N )s (φ)− u(N )t (φ)

∣∣∣ ≤ 2N−1/2

whenever 0 ≤ s, t ≤ T and |s − t | ≤ N−(d+1), for all large N , P a.s. (4.14)
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We claim that (4.13) is sufficient to imply that u(N )(φ) is tight in D([0,∞), R)
and has continuous limit points. To see this we smooth the sample paths by setting
u(N )t = N d+1u(N )[t,t+N−(d+1)]. Then t → u(N )(φ) is continuous and

∣∣∣u(N )t (φ)−u(N )s (φ)

∣∣∣≤2N (d+1)|t−s|‖φ‖∞ sup
r≤T +1

u(N )r (1) for all N and s, t ∈ [0, T ].

This together with (4.13) implies that E[|u(N )t (φ) − u(N )s (φ)|p] ≤ C |t − s|p/2 for
s, t ∈ [0, T ]. Hence the laws of u(N )(φ) are tight in C([0, T ], R). But (4.14) shows
that the error supt≤T |u(N )t (φ)− u(N )t (φ)| → 0 almost surely and u(N )t (φ) has the the

same continuous limit points as u(N )t (φ).
We now state a compact containment condition. Let Dε = {x ∈ D : d(x, Dc) > ε}.

Choose smooth φD,ε : D → [0, 1] satisfying φD,ε = 0 on D2ε and φD,ε = 1 on
D\Dε . We also suppose that φD,ε is decreasing in ε. We claim that for all δ > 0 there
exists ε(δ) > 0 satisfying

lim
δ→0

lim sup
N→∞

P

[
sup
t≤T

u(N )t (φD,ε(δ)) ≥ δ

]
= 0. (4.15)

We postpone the proof of this to the end of the section. This condition controls the
amount of mass near the boundary and allows us to extend the tightness of u(N )t (φ)

above to all φ ∈ C0
b (D) by an approximation argument. It also is the compact con-

tainment hypothesis in [12, Theorem II.4.1], from which we obtain the tightness of
u(N ) in D([0,∞),M(D)) and the continuity of the limit points.

To establish the tightness of the occupation densities we use the following increment
estimate. Under the hypotheses of Proposition 14, we claim there exist 0 < αi < ∞
and finite C , depending on β, γ, p, δ, δ′, T, D and supN μ

(N )(1)+ ( f (N ), 1), so that

E
[
|u(N )(δ, s, x)− u(N )(δ, t, y)|p

]
≤ C

(|t − s|α1 p + |x − y|α2 p) (4.16)

for all δ ≤ s, t ≤ T and x, y ∈ D\Dδ′ . This implies tightness of (t, x) → u(N )(δ, t, x)
in C([δ,∞),C(D)), where C(D) is the space of continuous functions with the topol-
ogy of uniform convergence on compacts.

To establish (4.16) we use a Green’s function representation for the density (note
the density exists since it exists for each component part uk,t ). It is convenient to break
the approximation into two parts

u(N )t = u0,t + û(N )t where û(N )t =
∑
k∈St

uk,t−τk . (4.17)

For the process û(N ) we may consider û(N )(0, t, x) since the nutrient packages do
not start at a singular initial condition. Indeed combining the Green’s function
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representation (3.19) for each uk,t−τk and summing over k ∈ St we obtain

û(N )(0, t, x) =
t∫

0

∫
D

G D,x
[0,t−s](z)

(
−γ û(N )s (dz)+ m̂(N )(dz, ds)

)

+
∑
s≤t

Dsus(G
D,x
[0,t−s]) (4.18)

where m̂(N ) is the martingale measure associated to û(N ). We now consider increments
of this representation. There are many terms, so we choose to illustrate the idea on one
key noise term and on the jump term. We shall also state all the underlying estimates
on the kernel G D,x

[0,t]. First

G D,x
[0,t](z) ≤ G R3,x

[0,t] (z) ≤ C |x − z|−1 for t > 0 and x, z ∈ R3

and the analogous bounds G R2,x
[0,t] (z) ≤ C(T )(1 ∨ ln(1/|x − z|) and G R,x

[0,t](z) ≤ C(T )
when t ≤ T . Also

|G D,x
[0,t](z)− G D,x

[0,t ′](z)| ≤ C(d, δ)|t − t ′||x − z|−d

for all t, t ′ and x, z ∈ D and

|G D,x
[0,t](z)− G D,y

[0,t](z)| ≤ C(d, δ, T )|x − y|(1 + |x − z|1−d)

for t, t ′ ≤ T and x, y ∈ Dδ , z ∈ D satisfying |x − z| ≥ 2|x − y|. These estimates are
explicit calculations when D = Rd . One way to obtain them for general D is via a
suitable coupling argument.

Consider the term K (t, x) = ∫ t
0

∫
G D,x

[0,t−s](z)m̂(N )(dz, ds). The time increment
K (t + s, x)− K (t, x) can be split into two terms, defined by

K1 =
t∫

0

∫
G D,x

[0,t+s−r ](z)− G D,x
[0,t−r ](z)m̂

(N )(dz, dr),

K2 =
t+s∫
t

∫
G D,x

[0,t−r ](z)m̂
(N )(dz, dr).

Using a Burkholder inequality, and the kernel estimates above we find, when d = 3,

E[|K1|p] ≤ C(p)E

⎡
⎢⎣

∣∣∣∣∣∣
∫
D

û(N )(0, t, z)
(
|z − x |−2 ∧ s2|z − x |−6

)
dz

∣∣∣∣∣∣
p/2

⎤
⎥⎦ .
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A comparison as in (4.12) combined with the moments (3.21) shows that
supz E[û(N )(0, t, z)p/2] ≤ C(p, β, T ) when t ≤ T and z ∈ D. This leads to
E[|K1|p] ≤ C(p, β, T, D)s p/4. Similarly, again when d = 3 and t + s ≤ T , apply
Holder’s inequality to find

E[|K2|p] ≤ C(p)E

⎡
⎢⎣

∣∣∣∣∣∣
T∫

0

I (r ∈ [t, t + s])û(N )r (|x − ·|−2)

∣∣∣∣∣∣
p/2⎤

⎥⎦

≤ C(p)E

⎡
⎢⎣

∣∣∣∣∣∣
T∫

0

I (r ∈ [t, t + s])û(N )r (dz)

∣∣∣∣∣∣
p/8 ∣∣∣∣∣∣

T∫
0

û(N )r (|x − ·|−8/3)

∣∣∣∣∣∣
3p/8⎤

⎥⎦

≤ C(p)|s|p/8 E

[
| sup

t≤T
û(N )t (1)|p/8

∣∣∣∣
∫

û(N )(0, T, z)|x − z|−8/3dz

∣∣∣∣
3p/8

]

≤ C(p, β, T, D)|s|p/8.

In this second estimate we do not have the optimal power of s, but have shown how
to rely only on the simple moments estimates for supt≤T û(N )t (1) and u(N )(0, T, z).

The jump term in the representation (4.18) can also be easily handled, since the
sum of all jumps in the measure t → ut is at most βdx . For example, an increment
in x is bounded using the kernel estimates above, when d = 2 and x, y ∈ Dδ satisfy
|x − y| ≤ 1/2,

∣∣∣∣∣
∑
s≤t

Dsus(G
D,x
[0,t−s])− Dsus(G

D,y
[0,t−s])

∣∣∣∣∣
≤ β

∫
D

sup
s≤t

|G D,x
[0,t−s](z)− G D,y

[0,t−s](z)|dz

≤ C(T )β
∫

B(x,|x−y|1/2)
(1 ∨ ln(1/|x − z|))+ (1 ∨ ln(1/|y − z|))dz

+C(δ, T )β|x − y|
∫

D\B(x,|x−y|1/2)
1 + |x − z|−1dz

≤ C(β, D, δ, T )|x − y|(1 ∨ ln(1/|x − y|).

Other terms in the Green’s function representation of the increment û(0, t, x), and in
all dimensions d = 1, 2, 3, can be controlled by similar estimates.

From (4.17) we have u(N )(δ, t, x) = u0(δ, t, x) + û(N )(δ, t, x) and we have con-
trolled the increments of û(N )(0, t, x), and hence of û(N )(δ, t, x) = û(N )(0, t, x) −
û(N )(0, δ, x). The increment estimates for u0(δ, t, x) are similar, except that one
restricts to δ > 0 and uses (3.20). One also needs estimates on the fixed time measure
u0,δ to control the increments of u0,δ(G

D,x
[0,t−δ]). For this, use the method of Lemma
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III.3.6 in Perkins [12] to show, for p ∈ [0, 2) and suitable c0 = c0(p) > 0, that
E[exp(c0u0,δ(|x − ·|−p)] ≤ C(d, supn μn(1), δ, p) < ∞, which is sufficient. ��
Proof of the compact containment (4.15) We start by showing that

sup
N

E
[
u(N )[0,T ](φD,ε) ∧ 1

]
→ 0 as ε ↓ 0. (4.19)

Indeed, arguing as in (3.28) we have

Q Rd ,γ
μ

[
U[0,T ](φD,ε) ∧ 1

] ↓ 0 as ε ↓ 0. (4.20)

Moreover the continuity of the laws μ → Q Rd ,γ
μ on C([0,∞),M(Rd)) ensures that

the expectation in (4.20) is a continuous function of μ. Therefore the limit in (4.20) is
uniform over the compact set K D,L of measures supported in D and with total mass
μ(1) ≤ L . By the coupling (4.12) and the simple comparison (3.29) we find

E
[
u(N )[0,T ](φD,ε) ∧ 1

]
≤ Q D,γ

μ(N )+β f (N )dx

[
U[0,T ](φD,ε) ∧ 1

]

≤ Q Rd ,γ

μ(N )+β f (N )dx

[
U[0,T ](φD,ε) ∧ 1

]

which leads to (4.19).
To control the supremum supt≤T u(N )(φD,ε), we will establish a modulus of con-

tinuity that is uniform in N and ε. Let G D
t φ denote the action of the Green’s function

as defined by G D
t φ(x) = ∫

D G D,x
t (y)φ(y)dy. Then, arguing as above, we have

sup
N

sup
t≤T

μ(N )(G D
t φD,ε) → 0 as ε → 0. (4.21)

For φ ∈ B(D, [0, 1]), the measurable functions from D to [0, 1], define

Xt (N , φ)=u(N )t (φ)− μ(N )(G D
t φ) and Xt (N , φ)= N d+1

t+N−(d+1)∫
t

Xs(N , φ)ds.

We may extend the decomposition (4.5) to time dependent test functions as in
Sect. 3.1.1. For smooth φ compactly supported inside D, using the test function
(s, x) → G D

t−sφ(x) in (4.5), over the interval s ∈ [0, t], leads to the Green’s func-
tion representation for Xt (N , φ). This representation in turn can be used to reach an
increment estimate

E[|Xt (N , φ)− Xs(N , φ)|p] ≤ C
(
|t − s|p/2 + N−(d+1)p

)
for all N and s, t ∈ [0, T ],

123



A phase diagram for a stochastic reaction diffusion system 605

where C depends on p, T but not on φ or N . This requires (see Perkins [14, Corollary
5] for this argument) only a smoothing property of the Green’s kernel, namely we use:

sup
x∈D

∫
D

|G D,x
u (y)− G D,x

t (y)|dy ≤ C(D)t−1(u − t) for all 0 < t < u.

This estimate holds by direct calculation for the case where D = Rd , and thereby
when D is a box, since then the Green’s kernel is a finite combination of reflected
copies of the free space Green’s kernel. For domains with a smooth boundary, it can
be derived from Corollary 5 of Davies [1].

The smoothed version Xt (N , φ) satisfies E[|Xt (N , φ)−Xs(N , φ)|p] ≤ C |t−s|p/2

for all N and s, t ∈ [0, T ]. The argument from Perkins [14, Theorem 1] then shows
that for all φ ∈ B(D, [0, 1]), there exists a random c(φ, N , T ) > 0 so that

∣∣Xt (N , φ)− Xs(N , φ)
∣∣ ≤ |t − s|1/3

whenever s, t ∈ [0, T ] and |t − s| ≤ c(φ, N , T ) (4.22)

and moreover that P[c(φ, N , T ) ≤ δ] → 0 as δ ↓ 0 uniformly over N and φ ∈
B(D, [0, 1]). The point here is that the estimates on c(φ, N , T ) depend only on total
moment bounds and on ‖φ‖∞.

It is straightforward to combine (4.19), (4.21) and (4.22) to see that there exists
ε(δ) > 0 so that

lim
δ→0

sup
N

P

[
sup
t≤T

u(N )t (φD,ε(δ)) ≥ 2δ

]
= 0. (4.23)

Indeed, consider the set

{
sup
t≤T

u(N )t (φD,ε) ≥ 2δ, c(φD,ε, N , T + 1) ≥ δ3

}
.

If δ > 1 and supN supt≤T +1 μ
(N )(G D

t (φD,ε)) ≤ δ4/8, then on this set we have

supt≤T Xt (N , φD,ε) ≥ δ and the modulus of continuity ensures that
∫ T

0 Xt (N , φD,ε)

dt ≥ δ4/4, and thence that
∫ T

0 u(N )t (φD,ε)dt ≥ δ4/8. But this has small probability
by (4.19) and Markov’s inequality. So (4.23) follows by first choosing δ so that that
P[c(φD,ε, N , T + 1) ≤ δ3] is small, uniformly in N and ε, and then choosing ε so
that supN supt≤T +1 μ

(N )(G D
t (φD,ε) ≤ δ4/8 and supN E[u(N )[0,T ](φD,ε) ∧ 1] is small.

To remove the time smoothing in 4.23), we would like to apply (4.14). However,
since φD,ε does not lie in C2

0 (D), there is an extra exit measure term when deriving the
increment estimate (4.13). However the exit measure is non-negative and we can still
deduce the one sided estimate u(N )t (φ) ≤ u(N )s (φ)+2N−1/2 whenever 0 ≤ s < t ≤ T
and |t − s| ≤ N−(d+1), for all large N , P a.s, and this is sufficient to deduce from
(4.23) the desired compact containment estimate. ��
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4.3 Passage to the limit

The aim now is to prove Theorem 15 below, showing that the approximations con-
structed in Sect. 4.1 converge in law to solutions of (1.1). The method is to pass to the
limit in the approximate martingale problem (4.5) and confirm that any limit point of
the sequence of approximations must be a solution to (1.1). Many steps in the argu-
ment are quite standard (see, for example, the arguments in [12, Proposition II.4.2]),
so we concentrate on those that concern the interaction term and the exit measures.

Since we wish to let N → ∞, we again include this dependence in the notation.
Assume the hypotheses of the tightness Proposition 14. For any subsequence, we may
choose a sub-subsequence where the approximations and their occupation densities
converge in distribution. By a Skorokhod embedding, we may choose versions of
these approximations that converge almost surely. Without changing notation for the
version and labelling the convergent sub-subsequence still as N , we may suppose
there exists a limit process u, with continuous paths in M(D) and a continuous field
(u(s, t, x) : 0 < s ≤ t, x ∈ D) so that, almost surely,

sup
s≤t

∣∣∣u(N )s (φ)− us(φ)

∣∣∣ → 0, for all φ ∈ C0
b (D) and t < ∞, (4.24)

sup
x∈A,s∈[δ,t]

∣∣∣u(N )(δ, s, x)−u(δ, s, x)
∣∣∣→0, for all 0< δ≤ t<∞ and compact A⊆ D.

(4.25)

Note that u(s, t, x) must act as a density for u[s,t](dx) for 0 < s ≤ t . Since also
s → u(s, t, x) is non-increasing we may set vt (x) = f (x) exp(−u(0, t, x)) =
lims↓0 f (x) exp(−u(s, t, x)).

Fix φ ∈ C2
0 (D). Consider the martingale problem (4.5) for u(N ) at a fixed t ≥ 0,

noting that u∂D,(N )
t (φ) = 0. The terms u(N )t (φ), μ(N )(φ) and

∫ t
0 u(N )s (�φ − γφ)ds

converge pathwise as N → ∞ by (4.24). The error terms E (1,N )t (φ) and E (2,N )t (φ)

converge to zero (in L2 and pathwise respectively) using the estimates (4.4) and (4.6)
and the moment bounds (4.11). To handle the key term

∫ t
0 u(N )s (v

(N )
s φ)ds we approx-

imate, using (4.10),

t∫
0

u(N )s (v(N )s φ)ds =
t∫

0

u(N )s

(
f (N )e−u(N )[0,s](ψ̂·)φ

)
ds + E (3,N )t (φ)

where the error term is bounded by

∣∣∣E (3,N )t (φ)

∣∣∣ =
∣∣∣∣∣∣

t∫
0

u(N )s

(
φe−u(N )[0,s](ψ̂·)m̃v,N

s

)
ds

∣∣∣∣∣∣
≤ ‖φ‖∞

∫
D

u(N )(0, t, x) sup
s≤t

m̃v,N
s (x) dx (4.26)
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and m̃v,N
t (x) = ∫ t

0 exp(−u(N )[0,s](ψ̂x ))dmv,N
s (x). Doob’s inequality, and the estimate

(4.9), shows that

E

[
sup
s≤t

|m̃v,N
t (x)|2

]
≤ 2N−1

t∫
0

E

[
e−2u(N )[0,s](ψ̂x )u(N )s (ψ̂x )

]
ds ≤ N−1.

The comparison (4.12) shows that E
[
(u(N )(0, t, x))2

]≤ Q D,γ
μ(N )+β IDdx

[
(U (0, t, x))2

]
.

Applying Cauchy–Schwarz to (4.26), and using the the estimate (3.22), we find that
E(|E (3,N )t (φ)|) → 0 as N → ∞.

For δ ∈ (0, t) we write

t∫
0

u(N )s

(
f (N )e−u(N )[0,s](ψ̂·) φ

)
ds

=
t∫
δ

u(N )s

(
f e−u(N )[δ,s](ψ̂·) φ

)
ds +

t∫
δ

u(N )s

(
( f − f (N ))e−u(N )[δ,s](ψ̂·) φ

)
ds

+
δ∫

0

u(N )s

(
f (N )e−u(N )[0,s](ψ̂·) φ

)
ds+

t∫
δ

u(N )s

(
f (N )(e−u(N )[0,s](ψ̂·)−e−u(N )[δ,s](ψ̂·))φ

)
ds

=
t∫
δ

u(N )s

(
f e−u(N )[δ,s](ψ̂·) φ

)
ds + E (4,N )t (φ)+ E (5,N )t (φ)+ E (6,N )t (φ). (4.27)

The error term E (5,N )t (φ) is bounded by ‖φ‖∞
∫ δ

0 u(N )s (1)ds and converges to zero,

uniformly in N , as δ → 0. The error term E (6,N )t (φ) is bounded by

‖φ‖∞
t∫

0

u(N )s (u(N )[0,δ](ψ̂·))ds = ‖φ‖∞
∫
D

u(N )(0, t, x)u(N )[0,δ](ψ̂x )dx .

The approximate density u(N )[0,δ](ψ̂x ) satisfies

∫
D

(u(N )[0,δ](ψ̂x ))
2dx ≤

∫
D

(u(N )(0, δ, x))2dx .

This, together with Cauchy-Schwarz as above, shows that E (6,N )t (φ) converges to zero
in L1, uniformly in N , as δ → 0. The error term E (4,N )t (φ) is bounded by
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‖φ‖∞
t∫

0

u(N )s

(
| f (N ) − f |

)
= ‖φ‖∞

∫
D

u(N )(0, t, x)| f (N )(x)− f (x)|dx .

Since f (N ) are bounded we have f (N ) → f in L2(D) and combined with (3.22) we
see that E (4,N )t (φ) → 0 in L2.

The first term on the right hand side of (4.27) converges pathwise, for fixed δ, to∫ t
δ

us( f exp(−u(δ, s))φ)ds as N → ∞. This follows from (4.24, 4.25) when f ∈
C0

b (D), and for general measurable f we can approximate in L2 by continuous f̃ and

control the error as for the error term E (4,N )t (φ). The limit
∫ t
δ

us( f exp(−u(δ, s))φ)ds

is, by repeating the above approximations, close, for small δ, to
∫ t

0 us(vsφ)ds. The con-

clusion is that the key term
∫ t

0 u(N )s (v
(N )
s φ)ds converges, in probability, to

∫ t
0 us(vsφ)ds.

We may now define a continuous process mt (φ), for φ ∈ C2
0 (D), by the formula

(2.1). The convergence of all other terms ensures that m(N )
t (φ) → mt (φ) in proba-

bility. Moreover, standard arguments yield that mt (φ) is a martingale with respect to
σ {us : s ≤ t}, and with the correct quadratic variation (note that we have uniform
moment control by (4.11)). Thus the limiting process (u, v) is a solution to the mar-
tingale problem for (1.1) started from (μ, f ) with respect to its natural filtration
σ {us : s ≤ t}. We have almost proved the following convergence result.

Theorem 15 Let D be a bounded domain. Suppose the approximation (u(N ), v(N ))
has initial u(N )0 = μ(N ) and v(N )0 = f (N ) ≤ 1 satisfying that μ(N ) → μ weakly and
f (N ) → f in L1(D) for some f ∈ B(D, [0, 1]). Then,

(i) the laws (u(N ), u∂D,(N )) converges in distribution on D([0,∞),M(D)) ×
C([0,∞),M(∂D)) to the limit Q D,β,γ

μ, f ;

(ii) for any T < ∞, the law of the triple (u(N )[0,T ], u∂D,(N )
T , v

(N )
T ) on M(D) ×

M(∂D)×L1(D) converges to the law of (U[0,T ],U ∂D
T , f exp(−U (0, T )))under

Q D,β,γ
μ, f .

Completion of the proof. The convergence of the exit measures can be deduced from
the extended martingale problem for test functions φ ∈ C2

b (D). Indeed, return to
the sub-subsequence studied before the statement of the theorem. Since (u, v) solves
(1.1) there is a continuous exit measure process u∂D solving the extended martin-
gale problem. Using an approximation argument by φn ∈ C2

0 (D), it follows that

m(N )
t (φ) → mt (φ) in probability for all φ ∈ C2

b (D). Choose φ ∈ C2
b (D) so that

h = φ|∂D is non-negative on ∂D. Then passing to the limit in the extended approxi-
mate martingale problem (4.5) for u(N ), we have shown convergence of all but one of
the terms, so that this last term u∂D,(N )

t (h)must also converge in probability to u∂D
t (h).

The fact that t → u(N ),∂D
t (h) and t → u∂D

t (h) are non-decreasing and continuous

imply, at least along a further subsequence and for all t , that sups≤t |u(N ),∂D
s (h) −

u∂D
s (h)| → 0 in probability. A further subsequence argument allows us to conclude

the same for a countable dense set in C0
b (∂D), and this implies that u∂D,(N ) → u∂D in

C([0,∞),M(∂D)). The uniqueness in law of (u, u∂D) for solutions to (1.1) implies
the convergence of (u(N ), u∂D,(N )) in part (i).
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Based on (4.10), the proof of the L1 convergence of part (ii) uses similar, but
slightly simpler, tricks as above when dealing with the convergence of the key term∫ t

0 u(N )s (v
(N )
s φ)ds, and the details are omitted. ��

5 Proof of the decomposition results

This section contains the proofs of the decomposition results stated in Sect. 2.2. In
Sect. 5.1 we show that the exit and occupation measures of the approximate discrete
nutrient process, as constructed in Sect. 4.1, can be done in two stages. In Sect. 5.2, five
different examples of this two-stage construction lead to five decomposition results
for the approximation processes. Passage to the limit is done in Sect. 5.3.

5.1 A two-stage construction of the approximations

The construction of the approximation process given in Sect. 4.1 is a pathwise con-
struction. The approximation is constructed as a deterministic procedure, which we call
the basic construction, applied to fixed realizations of the non-interacting DW(D, γ )
processes (uk : k = 0, 1, . . .) and exponential variables (ek : k = 1, 2, . . .). In this
section we show that the occupation and exit measures from this construction can be
built up in two stages, where each stage applies the basic construction to a certain set of
variables. This is described in a somewhat abstract manner, and the reader might want
to look ahead at one of the five examples in Sect. 5.2 to be convinced it is a natural
idea. For the rest of this subsection we act pathwise, supposing a single realization has
been fixed of the underlying variables.

Integrating over t in (4.1), or letting t → ∞, we obtain

u[0,∞) = u0,[0,∞) +
∑

k∈S∞
uk,[0,∞) and u∂D∞ = u∂D

0,∞ +
∑

k∈S∞
u∂D

k,∞, (5.1)

where S∞ = limt→∞ St is the set of labels of nutrient packages that are ever trig-
gered. So the total occupation and exit measures are determined by the set S∞ and the
total occupation and exit measures of the non-interacting DW processes. Moreover
for k ∈ S∞ we have

u0,[0,∞)(ψ̂k)+
∑

j∈S∞
u j,[0,∞)(ψ̂k) > ek

while for the k �∈ S∞ the converse inequality holds. This is exactly the condition that
S∞ is a fixed point of the mapping T defined in the abstract lemma below, once the
choices A = {1, . . . , K } and

e(k) = ek, f (k) = u0,[0,∞)(ψ̂k), M( j, k) = u j,[0,∞)(ψ̂k) for j, k ∈ A

have been made.
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Lemma 16 Suppose A is a finite set, and fix e, f : A → [0,∞) and M : A × A →
[0,∞). Define, for B ⊆ A,

T (B) =
{

a ∈ A : f (a)+
∑
b∈B

M(b, a) > e(a)

}
. (5.2)

Then there is a unique smallest fixed point S ⊆ A of T , that is T (S) = S and S is
contained in any other fixed point. Moreover if B ⊆ S then T n(B) equals S for large
n.

Proof Since M(a, b) ≥ 0 we see that if B ⊆ B ′ then T (B) ⊆ T (B ′). So T n(∅)
increases to a limit S which must be a fixed point of T . Any other fixed point S′
contains T n(∅) for all n and hence contains S and the uniqueness of the smallest fixed
point is clear. If B ⊆ S then T n(∅) ⊆ T n(B) ⊆ T n(S) = S and the result follows
since T n(∅) = S for large n. ��

It is straightforward to check that S∞ is the smallest fixed point of T . Indeed, let km

be the label of the mth nutrient package to be triggered, and let τm be the time it is trig-
gered; then the definition of τm shows, when τm < ∞, that km ∈ T ({k1, . . . , km−1}).
Inductively, {k1, . . . , km} ⊆ T m(∅) must hold and letting m → ∞ shows that S∞ is
contained in the smallest fixed point of T .

Example 0 To illustrate the use of this lemma, we give here the analogue of the com-
parison Lemma 6 for the approximation processes. Suppose that

∑L
k=1 ψk = f and∑K

k=L+1 ψk = g. Then running the basic construction on the processes (uk : k =
0, 1, . . . , K ) and exponential variables (ek : k = 1, . . . , K ) we obtain the approx-
imation process (u, u∂D, v) started at μ and with initial nutrient level f + g, and
the triggered set S∞ that is the smallest fixed point of a mapping T . We now set
ũ0 = u0 + ∑K

k=L+1 uk . Now running the basic construction on the realizations of
(ũ0, u1, u2, . . . , uL) and the exponential variables (ek : k = 1, . . . , L) we obtain an
approximation process (ũ, ũ∂D, ṽ) started at μ+ βg dx and with initial nutrient level
f , and the triggered set S̃∞ that is the smallest fixed point of a corresponding mapping
T̃ . Moreover, for A ⊆ {1, . . . , L},

T̃ (A) =
⎧⎨
⎩k ∈ {1, . . . , L} : ũ0,[0,∞)(ψ̂k)+

L∑
j=1

I ( j ∈ A)u j,[0,∞)(ψ̂k) > ek

⎫⎬
⎭

=
⎧⎨
⎩k ∈ {1, . . . , L} : u0,[0,∞)(ψ̂k)

+
K∑

j=1

I ( j ∈ A ∪ {L + 1, . . . , K })u j,[0,∞)(ψ̂k) > ek

⎫⎬
⎭

= T (A ∪ {L + 1, . . . , K })\{L + 1, . . . , K }.
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Choosing A = ∅ and then iterating we find that T n(∅)\{L + 1, . . . , K } ⊆ T̃ n(∅) and
hence, by Lemma 16, that S∞\{L + 1, . . . , K } ⊆ S̃∞. Combining this with (5.1)
shows that (u[0,∞), u∂D∞ ) is smaller than (ũ[0,∞), ũ∂D∞ ).

We now describe the two-stage procedure, which will build up the set S∞ of trig-
gered nutrient packages in two steps. We suppose there is a splitting of each of the
DW processes (uk : k = 0, . . . , K ), and their exit measures, into two parts, u−

k and
u+

k , each with continuous measure valued paths, and satisfying

(
uk,[0,∞), u∂D

k,∞
)

=
(

u−
k,[0,∞) + u+

k,[0,∞), u∂D,−
k,∞ + u∂D,+

k,∞
)
. (5.3)

In stage one we apply the basic construction using the processes (u−
k : k =0, 1, . . . , K )

and the exponential variables (ek : k = 1, . . . , K ) to create a process (u−, v−) and a
set S−∞ of triggered nutrient packages. In particular

u−
[0,∞) = u−

0,[0,∞) +
∑

k∈S−∞

u−
k,[0,∞). (5.4)

We then define û0,t = u+
0,t + ∑

k∈S−∞ u+
k,t and, for k ∈ {1, . . . , K }\S−∞,

ûk,t = uk,t and êk = ek − u−
0,[0,∞)(ψ̂k)−

∑
j∈S−∞

u−
j,[0,∞)(ψ̂k). (5.5)

In stage two we run the basic construction on the processes û0 and (ûk : k ∈
{1, . . . , K }\S−∞), with the nutrient packages triggered using the values (êk : k ∈
{1, . . . , K }\S−∞). This leads to a second process (u+, v+) and a second set of trig-
gered nutrient packages S+∞ ⊆ {1, . . . , K }\S−∞ satisfying

u+
[0,∞) = u+

0,[0,∞) +
∑

k∈S−∞

u+
k,[0,∞) +

∑
k∈S+∞

uk,[0,∞). (5.6)

Adding (5.4) and (5.6) and comparing to (5.1), we see that u[0,∞) = u−
[0,∞) + u+

[0,∞)

will hold provided that the equality S∞ = S−∞ ∪ S+∞ holds. A similar argument
shows that this equality is also sufficient to ensure that the total exit measures satisfy
u∂D∞ = u∂D,−∞ + u∂D,+∞ .

To verify this equality we use the following second abstract lemma. With the choices

e(k) = ek, f ±(k) = u±
0,[0,∞)(ψ̂k), M±( j, k) = u±

j,[0,∞)(ψ̂k) for j, k ∈ A

note that the definition of f̂ , ê, M̂ in the lemma corresponds to the definition of û0, êk

in the stage two construction. The conclusion of the lemma then implies that the
equality S∞ = S−∞ ∪ S+∞ does indeed hold.

For the statement of the lemma we denote the unique smallest fixed point in
Lemma 16 by S = S(A, e, f,M) to indicate its dependence.
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Lemma 17 Suppose A is a finite set, and fix e, f −, f + : A → [0,∞) and M−,M+ :
A× A → [0,∞). Set M = M−+M+ and f = f −+ f +. Then the fixed point S(A, e,
f,M) can be broken into two subsets as follows. First let S− = S(A, e, f −,M−).
Then define, for a ∈ A\S−,

f̂ (a) = f +(a)+
∑

b∈S−
M+(b, a), ê(a) = e(a)− f −(a)−

∑
b∈S−

M−(b, a)

and write M̂ for the restriction of M to (A\S−) × (A\S−). Then ê ≥ 0 and if S+ is
the fixed point S(A\S−, ê, f̂ , M̂) we have

S(A, e, f,M) = S− ∪ S+.

Proof Let T (respectively T − and T +) be the map defined by (5.2) used for the def-
inition of S (respectively S− and S+). The fact that ê(a) ≥ 0 for a ∈ A\S− follows
from the fact that S− is a fixed point of T −.

Since f ≥ f − and M ≥ M− we see that T −(B) ⊆ T (B). (Note in particular
S− ⊆ T n(S−) for all n ≥ 1.) Then (T −)n(∅) ⊆ T n(∅) for all n and hence S− ⊆ S.

For B ⊆ A\S− we have

T +(B) =
{

a ∈ A\S− : f̂ (a)+
∑
b∈B

M̂(b, a) > ê(a)

}

=
⎧⎨
⎩a ∈ A\S− : f +(a)+

∑
b∈S−

M+(b, a)+
∑
b∈B

M(b, a) > e(a)− f −(a)

−
∑

b∈S−
M−(b, a)

⎫⎬
⎭

=
⎧⎨
⎩a ∈ A\S− : f (a)+

∑
b∈B∪S−

M(b, a) > e(a)

⎫⎬
⎭

= T (B ∪ S−)\S−.

Applying this first to B = ∅ and iterating, we obtain (T +)n(∅) = T n(S−)\S−. The
equality here uses S− ⊆ T n(S−). Using the final statement of Lemma 16, we may let
n → ∞ to obtain S+ = S\S− as desired. ��

5.2 Comparison theorems for the approximations

Notation We denote the law of the approximation (ut , u∂D
t : t ≥ 0) constructed in

Sect. 4.1, on the space D([0,∞),M(D))× C([0,∞),M(∂D)), by QN ,D,β,γ
μ, f .

We now give five examples of the two stage construction of the last section, each
leading to a decomposition theorem for the discrete nutrient approximation process.
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In each example we describe the processes u−
k , u+

k used for the splitting (5.3). We let

G− = σ {u−
0 } ∨ σ {S−∞} ∨ σ {u−

k I (k ∈ S−∞) : 1 ≤ k ≤ K }

be the information gained by observing the stage one process.

Example 1 (Decomposition for the initial condition μ) Suppose that μ = μ− + μ+.
Take independent DW(D, γ ) processes (u−

0,t ) and (u+
0,t ), with initial conditions μ−

and μ+. Then u0,t = u−
0,t + u+

0,t is still a DW(D, γ ) process. Using independent
DW(D, γ ) processes (uk : 1 ≤ k ≤ K ) started at uk,0 = ψk , we set

u−
k,t = uk,t and u+

k,t = 0 for 1 ≤ k ≤ K and t ≥ 0

so that the splitting (5.3) holds trivially. The first stage leads to a process (u−, u∂D,−)
with law QN ,D,β,γ

μ−, f . The memorylessness property of exponentials implies that, condi-

tional on G−, the variables (êk : k ∈ {1, . . . , K }\S−∞) defined in (5.5) remain indepen-
dent rate one exponential variables. The processes ûk for k ∈ {0, 1, . . . , K }\S−∞ are,
conditionally on G−, independent DW(D, γ ) processes. Note that v−∞ = ∑

k �∈S−∞ ψk

is G− measurable. The second stage therefore produces a process (u+, u∂D,+) which,
conditional on G−, has law QN ,D,β,γ

μ+,v−∞
.

Example 2 (Decomposition for the initial condition f ) We split the set of nutri-
ent package labels into two parts {1, . . . , L} and {L + 1, . . . , K } and set f − =∑L

k=1 ψk, f + = ∑K
k=L+1 ψk . Then we form the splitting (5.3) out of the independent

DW(D, γ ) processes (uk : 0 ≤ k ≤ K ) started atμ,ψ1, . . . , ψK as follows: for t ≥ 0

u−
k,t =

{
uk,t for 0 ≤ k ≤ L ,
0 for L + 1 ≤ k ≤ K ,

and u+
k,t =

{
0 for 0 ≤ k ≤ L ,
uk,t for L + 1 ≤ k ≤ K .

The first stage of the construction produces a process (u−, u∂D,−)with law QN ,D,β,γ
μ, f − .

Note that u+
0 = û0,0 = β

∑K
k=L+1 ψk I (k ∈ S−∞) and v+

0 = ∑
k �∈S−∞ ψk are measur-

able with respect to the sigma field G−. Moreover, as above, the variables (êk, ûk :
k ∈ {1, . . . , K }\S−∞) are, conditionally upon G−, independent exponential variables
and DW(D, γ ) processes. The second stage therefore produces a process (u+, u∂D,+)
which, conditional on G−, has law QN ,D,β,γ

u+
0 ,v

+
0

.

Example 3 (Spatial Markov property) We fix domains D− ⊆ D+. We will choose the
finite partition D+ = ∪D j used in the construction of the approximation so that each
D j is either a subset of D− or a subset of D+\D−. Then a subset, which we list as
(ψk : 1 ≤ k ≤ L), will satisfy

∑L
k=1 ψk = f I (D−) and

∑K
k=L+1 = f I (D+\D−).

We apply the spatial Markov Lemma 8 to find processes (uk, u−
k , u+

k : 0 ≤ k ≤ K ) so
that (uk : 0 ≤ k ≤ K ) are independent DW(D+, γ ) processes with initial conditions
μ,ψ1, . . . , ψK ; (u−

k : 0 ≤ k ≤ K ) are independent DW(D−, γ ) processes with initial
conditions μI (D−), ψ1, . . . , ψL , 0, . . . , 0; and, conditional on σ {u−

k : 0 ≤ k ≤ L},
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(u+
k : 0 ≤ k ≤ K ) are independent DW(D+, γ ) processes with initial conditions

u+
0,0 = μI (D+\D−)+u∂D−,−

0,[0,∞)|D+ , u+
k,0 = u∂D−,−

k,∞ |D+ for 1 ≤ k ≤ L and u+
k,0 = ψk

for L + 1 ≤ k ≤ K . In addition, the Lemma 8 ensures the splitting

(
uk,[0,∞), u∂D+

k,∞
)

=
(

u−
k,[0,∞) + u+

k,[0,∞), u∂D−,−∞ |∂D+ + u∂D+,+
k,∞

)
for 0 ≤ k ≤ K .

This gives a suitable splitting as in (5.3) for the two part construction, where the exit
measures are all evaluated as measures on ∂D+. The first stage of the construction

produces a process (u−, u∂D−,−) with law QN ,D−,β,γ
μI (D−), f I (D−). The second stage pro-

duces a process (u+, u∂D+,+) which, conditional on G−, has law QN ,D+,β,γ
u+

0 ,v
+
0

, where

u+
0 = μI (D+\D−)+ u∂D−,−

[0,∞) |D+ and v+
0 = f I (D+\D−)+ v−∞ I (D−).

Example 4 (Decomposition for the birth rate β) Fix β = β− + β+. Take indepen-
dent DW(D, γ ) processes (u−

k , u+
k : 0 ≤ k ≤ K ) with initial conditions u−

0,0 = μ,

u+
0,0 = 0, u−

k,0 = β−ψk and u+
k,0 = β+ψk . Set uk = u−

k +u+
k so that (uk : 0 ≤ k ≤ K )

satisfy the splitting (5.3) and are themselves DW(D, γ ) processes. Then the first stage

of the construction produces a process (u−, u∂D,−) with law QN ,D,β−,γ
μ, f . The second

stage produces a process (u+, u∂D,+) which, conditional on G−, has law QN ,D,β,γ
u+

0 ,v
+
0

,

where u+
0 = β+( f − v−∞) dx and v+

0 = v−∞.

Example 5 (Decomposition for the death rate γ ) Fix γ− = γ +γ+. Lemma 18 below
ensures we can find processes (uk, u−

k , u+
k : 0 ≤ k ≤ K ) satisfying the splitting (5.3)

and so that (uk : 0 ≤ k ≤ K ) are independent DW(D, γ ) processes with initial con-
ditions μ,ψ1, . . . , ψK ; (u−

k : 0 ≤ k ≤ K ) are independent DW(D, γ−) processes
with initial conditions μ,ψ1, . . . , ψK ; and, conditional on σ {u−

k : 0 ≤ k ≤ K },
(u+

k : 0 ≤ k ≤ K ) are independent DW(D, γ ) processes with initial conditions
(γ+u−

k,[0,∞) : 0 ≤ k ≤ K ). Then the first stage of the construction produces a process

(u−, u∂D,−) with law QN ,D,β,γ−
μ, f . The second stage produces a process (u+, u∂D,+)

which, conditional on G−, has law QN ,D,β,γ
u+

0 ,v
+
0

, where u+
0 = γ+u−

[0,∞) and v+
0 = v−∞.

Lemma 18 Suppose γ− = γ + γ+. There exists a coupling of three processes: u
a DW(γ, D) process with initial condition μ; u− a DW(γ−, D) process with initial
condition μ; and u+ which, conditional on σ {u−}, is a DW(γ, D) process with initial
condition γ+u−

[0,∞); and moreover these processes satisfy the splitting

(
u[0,∞), u∂D∞

)
=

(
u−

[0,∞) + u+
[0,∞), u∂D,−∞ + u∂D,+∞

)
.

Proof Construct a coupling of two processes (u−, ũ) as follows. Let u− be a
DW(D, γ−) process with initial condition μ. Conditionally on σ {u−}, let ũ be a
DW process on the space D × R, with spatial motion that is Brownian on the first
component D and zero on the second component R, with annihilation rate γ and with
initial condition γ+ur (dx)I (r ≥ 0)dr . If we define
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A phase diagram for a stochastic reaction diffusion system 615

u+
t (dx) = ũt (dx × R) and u∂D,+

t (A) = u∂(D×R)
t (A × R) for A ⊆ ∂D

then conditionally on σ {u−} the process u+ is a DW(D, γ ) process started at γ+u−
[0,∞)

and with exit measure u∂D,+. Define measures I on [0,∞)×D and I ∂D on [0,∞)×∂D
by

I (h(2))= I −(h(2))+ I +(h(2))=
∞∫

0

u−
s (h

(2)
s )ds+

∞∫
0

∫
D×R

h(2)s+r (x)ũs(dx, dr) ds,

I ∂D(h(3)) = I ∂D,−(h(3))+ I ∂D,+(h(3))

=
∞∫

0

dsu∂D
s (h(3)s )+

∞∫
0

∫
∂(D×R)

h(3)s+r (x)dsũs(dx, dr)

for bounded measurable h(2) : [0,∞) × D → R and h(3) : [0,∞) × ∂D → R.
We claim that (I (dt, dx), I ∂D(dt, dx)) has the same law as (Ut (dx)dt, dtU ∂D

t (dx))

under Q D,γ
μ . This allows us to define the the required process (u, u∂D) using (I, I ∂D)

and the required splitting follows from the definitions of I and u+.
To establish the claim on the law of (I, I ∂D) we fix smooth non-negative h(2)s (x),

h(3)s (x) that vanish for s ≥ t . It is enough to check that E[exp(−I (h(2))−I ∂D(h(3)))] =
exp(−μ(φt )) where (φs : s ∈ [0, t]) is the solution to the log-Laplace equation (3.7).
We start by calculating the conditional expectation E[exp(−I (h(2)) − I ∂D(h(3)))|
σ {u−}]. Note the almost sure limits

I +(h(2)) = lim
N→∞

N−1∑
k=0

∞∫
0

∫

D×[ k
N ,

k+1
N )

h(2)
s+ k

N
(x)ũs(dx, dr)ds

= lim
N→∞

N−1∑
k=0

∞∫
0

X K ,s

(
h(2)

s+ k
N

)
ds

and

I ∂D,+(h(3)) = lim
N→∞

N−1∑
k=0

∞∫
0

∫
∂(D×R)

Ir∈[ k
N ,

k+1
N )

h(3)
s+ k

N
(x)dsũs(dx, dr)

= lim
N→∞

N−1∑
k=0

∞∫
0

ds X∂D
K ,s

(
h(2)

s+ k
N

)

where (Xk,t : t ≥ 0), for k = 0, 1, . . ., are defined by Xk,t (A) = ũt (A×[ k
N ,

k+1
N )) and

are, conditionally on σ {u−}, independent DW(D, γ ) processes with initial conditions
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616 C. Mueller, R. Tribe

Xk,0 = γ+u−
[ k

N ,
k+1

N ]. Using the Laplace functional (3.6) of (Xk, X∂D
k ) we find

E[e−I +(h(2))−I ∂D,+(h(3))|σ {u−}] = lim
N→∞ exp(−γ+

N−1∑
k=0

u−
[ k

N ,
k+1

N ](φt− k
N
))

= e−γ+ ∫ t
0 u−

s (φt−s )ds .

Then we complete the expectation as

E[e−I (h(2))−I ∂D(h(3))] = E[e− ∫ t
0 u−

s (h
(2)+γ+φt−s )ds−∫ t

0 ds u∂D,−
s (h(3)s )]

which can be calculated again using the Laplace functional of (u−, u∂D,−). It is
straightforward to check the required log-Laplace function is solved by φ and this
proves the claim. ��

Remark A more natural splitting for the final example is to let (u−
k , u+

k ) solve, for
each k, the system

∂t u
− = �u− − γ−u− + √

u− Ẇ −,
∂t u

+ = �u+ + γ+u− − γ u+ + √
u+ Ẇ +,

with u+
0 = 0 and with orthogonal martingale terms. Then u−

k is a DW(D, γ−) pro-
cess and uk = u−

k + u+
k is a DW(D, γ ) process. The first stage of the construction

produces a process (u−, v−) with law QN ,D,β,γ−
μ, f . The second stage produces a pro-

cess (u+, v+) which, conditional on G−, has the law of the approximation process
with parameters β, γ , but with an extra immigration term γ+u−. This leads to a cor-
responding decomposition for solutions with immigration to (1.1), but we shall not
make any use of it.

5.3 Completion of the proof of the comparison results

This section contains the proofs of the decomposition Lemmas 4, 5, 6 and 7, using the
comparison results for the approximations from Sect. 5.2 with the convergence of the
approximations established in Sect. 5.1.

We start with a simple estimate controlling the death time τ = inf{t : Ut = 0}
for the approximation processes on a bounded domain uniformly in N . The change
of measure argument given at the beginning of Sect. 3.3 can be used to show the lim-
iting death time has a tail Q D,β,γ

μ, f [τ ≥ t] ≤ C(β, p, |D|, μ)t−p for any p < 1. This
argument does not apply directly to the approximations since they are not absolutely
continuous with respect to a DW process. However, the argument below follows the
same main idea. It is combined with a first moment argument that leads to a suboptimal
bound, but which is sufficient for our needs.
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A phase diagram for a stochastic reaction diffusion system 617

Lemma 19 There exists C(β) < ∞ so that for all t ≥ e and N ≥ 1

QN ,D,β,γ
μ, f [τ ≥ t] ≤ C(β)

(
(μ(1))1/2 + 〈 f, 1〉

)
ln(t)−1.

Proof Take an approximation process u with law QN ,D,β,γ
μ, f . Taking φ = 1 in the

martingale problem (4.5) and λs = 2/s, so that λ̇s = −λ2
s/2, we find for fixed t > 0

and s ∈ [0, t)

de−λt−s us (1)

= e−λt−s us (1)
(

us(1)(λ̇t−s + 1

2
λ2

t−s + γ λt−s)ds + λt−sdu∂D
s (1)−βλt−sus(vs)ds

)

+
∑
s≤t

Ds(e
−λt−s us (1))+ λt−se−λt−s us−(1)Dsus(1)+ martingale increments

≥ −βλt−se−λt−s us (1)us(vs)ds + martingale increments.

Let m(dx, ds) be the continuous martingale measure constructed from the martin-
gales mt (φ) in (4.5) and, as in the change of measure arguments, set Mt = ∫ t

0

∫
vs(x)

m(dx, ds). Then Ito’s lemma, using the cross variation,

d
[
Es(−βM), e−λt−s us (1)

]
s

= βλt−se−λt−s us (1)Es(−βM)d [Ms,ms(1)]s

= βλt−se−λt−s us (1)Es(−βM)us(vs)ds

shows that s → Es(−βM)(1 − exp(−λt−sus(1)) is a non-negative supermartingale
on s ∈ [0, t). Taking expectations at sn ↑ t , we find

E [Et (−βM)I (τ > t)] ≤ lim
n→∞ E

[
Esn (−βM)(1 − e−λt−sn usn (1))

]

≤
(

1 − e−λtμ(1)
)

≤ 2μ(1)/t.

Let σK = inf{s : ∫ s
0 us(vs)ds ≥ K }. Then, using Cauchy-Schwarz, and vs ≤ f ≤ 1,

(P [τ > t, σK > t])2 ≤ E [I (τ > t)Et (−βM)] E
[

I (σK > t)E−1
t (−βM)

]

≤ 2μ(1)

t
E

[
I (σK > t)Et (+βM)eβ

2
∫ t

0 us (v
2
s )ds

]

≤ 2μ(1)

t
eβ

2 K . (5.7)
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To control σK we use a crude first moment bound. From (4.8) we obtain

E[(vt , 1)] = 〈 f, 1〉 −
t∫

0

∫
D

E[vs(x)us(ψ̂x )]dxds = 〈 f, 1〉 −
t∫

0

E[us(vs)]ds

(using the fact that v is constant on the partition sets D j ). Then P[σK ≤ t] ≤ 〈 f, 1〉/K
by Markov’s inequality. Combining this with (5.7) and the choice K = c ln t , for small
c = c(β), leads to the desired bound. ��

We may characterize the total occupation and exit measures via the Laplace func-
tional, defined by

�φ,ψ(ν1, ν2) = e−ν1(φ)−ν2(ψ)

for ν1 ∈ M(D), ν2 ∈ M(∂D), 0 ≤ φ ∈ C0
b (D) and 0 ≤ ψ ∈ C0

b (∂D). Fix
μ ∈ M(D) and f ∈ L1(D), for a bounded domain D. Choose approximations pro-
cesses with initial nutrient levels 1 ≥ f (N ) → f in L1 and μ(N ) → μ weakly.
Theorem 15 (ii) implies that

lim
N→∞ QN ,D,β,γ

μ(N ), f (N )

[
�φ,ψ(U[0,∞),U

∂D∞ )
]

= lim
N→∞ lim

T →∞ QN ,D,β,γ
μ(N ), f (N )

[
�φ,ψ(U[0,T ],U ∂D

T )
]

= lim
T →∞ lim

N→∞ QN ,D,β,γ
μ(N ), f (N )

[
�φ,ψ(U[0,T ],U ∂D

T )
]

= lim
T →∞ Q D,β,γ

μ, f

[
�φ,ψ(U[0,T ],U ∂D

T )
]

= Q D,β,γ
μ, f

[
�φ,ψ(U[0,∞),U

∂D∞ )
]
. (5.8)

The interchange of limits is justified by the above lemma, which gives uniform (in N )
control on QN ,D,β,γ

μ(N ), f (N )
[UT = 0], and the fact that U[0,∞) = U[0,T ] and U ∂D∞ = U ∂D

T

on the set {Ut = 0}.
Proof of Lemma 6 Returning to Example 0 in Sect. 5.1 we see that, taking approxi-
mations f (N ), g(N ) ≤ 1 converging to f, g as above, and noting that g(N )(x)dx →
g(x)dx in M(D),

QN ,D,β,γ
μ, f (N )+g(N )

[
�φ,ψ(U[0,∞),U

∂D∞ )
]

≥ QN ,D,β,γ
μ+βg(N )dx, f (N )

[
�φ,ψ(U[0,∞),U

∂D∞ )
]
.

Passing to the limit as above we find that

Q D,β,γ
μ, f +g

[
�φ,ψ(U[0,∞),U

∂D∞ )
]

≥ Q D,β,γ
μ+βg dx, f

[
�φ,ψ(U[0,∞),U

∂D∞ )
]
.

This inequality between the Laplace functionals implies the desired stochastic domi-
nation. ��
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Proof of Lemma 4 part (i) Consider the decomposition u−, u+ given in Sect. 5.2
example 1, with initial conditions μ = μ− + μ− and f (N ) → f in L1(D). Then
pathwise

�φ,ψ(u[0,∞), u∂D∞ ) = �φ,ψ(u
−
[0,∞) + u+

[0,∞), u∂D,−∞ + u∂D,+∞ ). (5.9)

As above, the expectation of the left hand side converges, as N → ∞, to Q D,β,γ
μ, f[

�φ,ψ(U[0,∞),U ∂D∞ )
]
. Using the law of (u+, v+) conditional on G−, the limit of the

expectation of the right hand side can be written as

lim
N→∞ E

[
�φ,ψ(u

−
[0,∞), u∂D,−∞ ) QN ,D,β,γ

μ+,v−∞

[
�(U[0,∞),U

∂D∞ )
]]

= lim
N→∞ lim

T →∞ E

[
�φ,ψ(u

−
[0,T ], u∂D,−

T ) QN ,D,β,γ
μ+,v−

T

[
�φ,ψ(U[0,∞),U

∂D∞ )
]]

= lim
T →∞ Q D,β,γ

μ−, f

[
�φ,ψ(U[0,T ],U ∂D

T ) Q D,β,γ
μ+, f e−U (0,T )

[
�φ,ψ(U[0,∞),U

∂D∞ )
]]

= Q D,β,γ
μ−, f

[
�φ,ψ(U[0,∞),U

∂D∞ ) Q D,β,γ
μ−, f e−U (0,∞)

[
�φ,ψ(U[0,∞),U

∂D∞ )
]]
.

The interchange in limits follows as above, using v−
T = v−∞ on {u−

T = 0}. The N → ∞
limit holds using the convergence of (u−

[0,T ], u∂D,−, v−
T ) given by Theorem 15 (ii) and

(5.8) above. The final identity between Laplace functionals implies the desired result.
��

Proof of Lemma 5 The proofs of both parts of this lemma follow closely the argu-
ment used for the proof of Lemma 4 part (i) above. For example, for part (i) take the
decomposition u−, u+ given in Sect. 5.2 example 4, so that (5.9) holds, and with initial
conditions μ and f (N ) → f in L1. Then argue as above, noting that

lim
N→∞ E

[
�φ,ψ(u

−
[0,T ], u∂D,−

T )QN ,D,β,γ
β+( f −v−

T )dx,v−
T

[
�φ,ψ(U[0,∞),U

∂D∞ )
]]

= Q D,β−,γ
μ, f

[
�φ,ψ(U[0,T ],U ∂D

T ) Q D,β,γ
β+ f (1−e−U (0,T ))dx, f e−U (0,T )

×
[
�φ,ψ(U[0,∞),U

∂D∞ )
]]

using the fact that if v−
T converges in L1(D) then β+( f −v−

T )dx converges in M(D).
Part (ii) is entirely similar starting with example 5 in Sect. 5.2. ��
Proof of Lemma 7 We can follow the previous argument closely, but we write this
out since we have to be a little careful about the two domains. To indicate that we
use the joint Laplace functional acting on measures on D+ and ∂D+, we denote
it by �+

φ,ψ . Take the decomposition u−, u+ given in Sect. 5.2 example 3, so that

�+
φ,ψ(u[0,∞), u∂D+

∞ ) = �+
φ,ψ(u

−
[0,∞)+u+

[0,∞), u∂D−,−∞ |∂D+ +u∂D+,+∞ ). Taking expec-

tations, the left hand side converges, as N → ∞, to Q D+,β,γ
μ, f

[
�+
φ,ψ(U[0,∞),U ∂D+

∞ )
]
.
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For this proof only, set μ− = μI (D−), μ+ = μI (D+\D−), f − = f I (D−), f + =
f I (D+\D−) and f (N ),− = f (N ) I (D−), f (N ),+ = f (N ) I (D+\D−). The limit of
the right hand side can be evaluated as

lim
N→∞ E

[
�+
φ,ψ(u

−
[0,∞), u∂D−,−∞ |∂D+)

QN ,D+,β,γ
μ++u∂D−,−∞ |D+ , f (N ),++v−∞ I (D−)

[
�+(U[0,∞),U

∂D+
∞ )

]]

= lim
N→∞ lim

T →∞ E

[
�+
φ,ψ(u

−
[0,T ], u∂D−,−

T |∂D+)

QN ,D+,β,γ
μ++u∂D−,−

T |D+ , f (N ),++v−
T I (D−)

[
�+
φ,ψ(U[0,∞),U

∂D+
∞ )

]]

= lim
T →∞ Q D−,β,γ

μ−, f −

[
�+
φ,ψ(U[0,T ],U ∂D−

T |∂D+)

Q D+,β,γ
μ++U ∂D−

T |D+ , f ++ f e−U (0,T ) I (D−)

[
�+
φ,ψ(U[0,∞),U

∂D+
∞ )

]]

= Q D−,β,γ
μ−, f −

[
�+
φ,ψ(U[0,∞),U

∂D−
∞ |∂D+)

Q D+,β,γ
μ++U ∂D−

∞ , f ++ f e−U (0,∞) I (D−)

[
�+
φ,ψ(U[0,∞),U

∂D+
∞ )

]]
.

The limits above follow as in the previous examples, once we have established that

u∂D−,−
T |∂D+ converges in M(∂D+) and u∂D−,−

T |D+ converges in M(D+). Both of

these follow from the convergence of u∂D−,−
T in M(∂D−) under the hypothesis (2.6),

since this hypothesis ensures that the limit law of U ∂D−
T under Q D−,β,γ

μ−, f − does not charge

the discontinuity set S = (∂D− ∩ ∂D+) ∩ (∂D−\∂D+) (check the first moment of
U ∂D−

T (S) is zero). ��

Proof of Lemma 4 part (ii) To allow this case to follow from the same argument as
the earlier examples we need a slight improvement in Theorem 15 part (ii). Taking the
two stage construction from Sect. 5.2 example 3, we need to consider two parts of the
approximate density, namely

v−
t =

∑
1≤k≤L

ψk I (k �∈ S−
t ) and v+

t =
∑

L<k≤K

ψk I (k �∈ S−
t ).

Now consider a sequence of models indexed by N in which f (N ),± → f ± in L1(D)
and where f = f − + f +. Then Theorem 15 part (ii) can be extended to show that the
law of the quadruple (u(N )[0,T ], u∂D,(N )

T , v
(N ),−
T , v

(N ),+
T ) on M(D)×M(∂D)×L1(D)×
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L1(D) converges to the law of (U[0,T ],U ∂D
T , f − exp(−U (0, T )), f +exp(−U (0, T )))

under Q D,β,γ
μ, f . This can be shown as in Theorem 15 once one notes that the analogue

of (4.8) holds for v±, namely that there are martingales mv,±
t such that

v±
t (x) = f (x)−

t∫
0

v±
s (x)us(ψ̂x )ds + mv,±

t (x).

The initial conditions for stage two of the construction can be expressed in terms of
v± as u+

0 = β( f + − v+∞)dx and v+
0 = v−∞ + v+∞ and the passage to the limit then

follows the same lines as previous examples. ��

6 Life

6.1 Embedded oriented percolation processes

In the proofs of possible life, the main step is to construct a discrete one-dimensional
oriented percolation (OP) (ω( j, k) : ( j, k) ∈ L) where L = {( j, k) : j, k ∈ Z , j ≥
1, j + k is even}, so that life occurs if the percolation is supercritical. The variables
ω( j, k) will be defined in terms of the exit measures for solutions to (1.1) on a series
of boxes. We will choose a parameter L > 0 controlling the length scale. In the grid of
points x L

j,k = (3 j L , 2kL) in d = 2 or x L
j,k = (3 j L , 2kL , 0) in d = 3, the x1 direction

will play the usual role of time, and the x2 direction the role of space for the comparison
OP process. For this argument we therefore need to be in dimension d ≥ 2.

We will freeze the mass of the solution as it exits the boxes D(n) = (−3nL , 3nL)d

for n = 1, 2, . . . We define exit measures un,∂D(n)∞ inductively. Choose an initial
condition μ supported in D(1) and let (u1, v1) be a solution on D(1) started from
(μ, 1). Suppose that (u j , v j ) have been defined for j = 1, . . . , n. Then, conditional
on σ {u j : j = 1, . . . , n} we let (un+1, vn+1) be a solution on D(n + 1) started from

un+1
0 = un,∂D(n)∞ , and vn+1

0 (x) =
{
vn∞(x) x ∈ D(n),
1 x ∈ D(n + 1)\D(n).

Repeated use of the spatial Markov property in Lemma 7 shows that un,∂D(n)∞ has the
same law as the exit measure U ∂D(n)∞ under the law Q D(n),β,γ

μ,1 .
In the hyperplane x1 = 0 we define the box IL = {x : |x | ≤ L , x1 = 0}. Define,

for j, k ∈ L,

ω̃( j, k) =
{

1 if u j,∂D( j)∞
(

x L
j,k + IL

)
> M ,

0 otherwise.

Set ω̃(0, k) = 0 if k �= 0 and ω̃(0, 0) = I (μ(IL) ≥ M). Define for ( j, k) ∈ L,

ω( j, k) =
{

1 if ω̃( j − 1, k − 1) = ω̃( j − 1, k + 1) = 0,
ω̃( j, k) otherwise.
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We aim to show, for suitable choice of the length and mass scales L and M , that
(ω( j, k) : ( j, k) ∈ L) is a 3-dependent oriented site percolation with density at least
1 − ε. We recall the definition of this from Durrett [4]: whenever ( jn, kn) ∈ L, for
1 ≤ n ≤ N , satisfy | jn − jm | ≥ 3 or |kn − km | ≥ 3 for all n �= m, then

P[ω( jn, kn) = 0 for 1 ≤ n ≤ N ] ≤ εN . (6.1)

We write (0, 0) → ( j, k) when there exist a sequence of points 0 = k0, k1, . . . , k j−1,

k j = k so that so that |km −km−1| = 1 for 0 < m ≤ j and satisfyingω(m, km) = 1 for
1 ≤ m ≤ j . Then let C0 = {( j, k) : (0, 0) → ( j, k)} be the cluster of sites connected
to the origin. This definition is sufficient for the key property of percolation to hold:
Theorem 4.1 of [4] shows that when ε ≤ ε0 = 6−196 then P[|C0| < ∞] ≤ 1/20,
where |C0| is the cardinality of C0. In particular, if the initial condition is such that
ω̃(0, 0) = 1, that is μ(IL) ≥ M , then

Q D(n),β,γ
μ,1 [U ∂D(n)∞ �= 0] = P[un,∂D(n)∞ �= 0] ≥ P[|C0| = ∞]

is bounded away from zero, and by Lemmas 11 and 12, possible life occurs.
It remains to check the hypothesis (6.1) of being a 3-dependent oriented site perco-

lation. We do this inductively. By conditioning on GK = σ {u j : j = 1, . . . , K } (and
setting G0 to be the trivial sigma field) it suffices to show an estimate of the form

P[ω(K + 1, kn) = 0 for 1 ≤ n ≤ N0 | GK ] ≤ εN0 .

whenever |kn − km | ≥ 3 for all n �= m. If ω̃(K , kn − 1) = ω̃(K , kn + 1) = 0 for some
n then the conditional expectation is zero. So we may also restrict to the set where, for
each n, there exists k̃n ∈ {kn − 1, kn + 1} for which ω̃(K , k̃n) = 1. We let D(K , n)
be the box x L

K ,k̃n
+ D3L . Note that the boxes D(K , n) for n = 1, . . . , N0 are disjoint

and contained in D(K + 1).
We now apply the spatial Markov property Lemma 7 to the pairs of domains

D− = D(K , n) ⊆ D(K + 1) = D+, for n = 1, . . . , N0 in succession. Since the
domains D(K , n) are disjoint, this amounts to constructing, conditional on σ {u j : j =
1, . . . , K }, independent solutions (uK+1,n, vK+1,n) on D(K , n)with initial condition

uK+1,n
0 =uK ,∂D(K )∞ I (D(K , n)), and v

K+1,n
0 (x)=

{
vK∞(x) x ∈ D(K , n) ∩ D(K ),
1 x ∈ D(K , n)\D(K ),

for n = 1, . . . , N0. Then an exit measure ũK+1,∂D(K+1)∞ can be constructed by run-
ning one further solution, conditionally on these N0 processes, that starts with the
combined exit measures of (uK+1,n : n = 1, . . . , N0) on their domains and any part
of uK ,∂D(K )∞ that is unused, and run until the exit from D(K + 1). This leads to a
construction of an exit measure ũK+1,∂D(K+1)∞ that, by the spatial Markov property,
is equal in law to uK+1,∂D(K+1)∞ , but that is pathwise larger than the sum of the exit
measures

∑N0
n=1 uK+1,n,∂D(K ,n)∞ restricted to ∂D(K + 1). This in turn implies, since

123



A phase diagram for a stochastic reaction diffusion system 623

the solutions (uK+1,n, vK+1,n) are conditionally independent, that

P[ω(K + 1, kn) = 0 for 1 ≤ n ≤ N0 | GK ]

≤
N0∏

n=1

P[uK+1,n,∂D(K ,n)∞ (x L
K+1,kn

+ IL) ≤ M | GK ]

By translational invariance, and the monotonicity in the initial measure, the condition
(6.1) will then follow from an estimate of the form

Q D3L ,β,γ

μ, f [U ∂D3L∞ (x L
1,±1 + IL) ≤ M] ≤ ε

whenever f ≥ I (x1 ≥ 0) and μ is supported on IL with μ(1) ≥ M . (6.2)

By monotonicity in f it is enough to consider just the case f = I (x1 ≥ 0). We
shall check this block estimate in the next two subsections for two different regions
of parameter values (β, γ ).

6.2 Proof that lim infβ→0�(β)/β
2 > 0 in dimension d = 3

After applying the scaling in Lemma 3 with the choices a = c = Lβ−1, b =
L2β−2, e = 1, solutions to (1.1) with the parameter values (β, L−2β2) in d = 3
become solutions to the rescaled equation (6.3) studied in the following lemma. Undo-
ing this scaling, the lemma shows that the block estimate (6.2) holds for solutions to
(1.1) when β ∈ (0, 1] and with the choices

γ = L−2
0 (ε)β2, L = L0(ε)β

−1, and M = L2
0(ε)β

−2.

Choosing ε = ε0, the value from in Sect. 6.1 that ensures the OP is supercritical, the
OP comparison implies possible life for the parameter values (β, L−2

0 (ε0)β
2), and

thus lim inf �(β)/β2 ≥ L−2
0 (ε0) as β → 0.

Lemma 20 Consider solutions, in d = 3, on the domain D3 = (−3, 3)3 to the equa-
tion

{
∂t u = �u + L2β−1uv − u + √

u Ẇ ,

∂tv = −Lβ−1uv, v0(x) = I (x ∈ H),
(6.3)

where H = {x : x1 ≥ 0}. For any ε > 0 there exists L0 = L0(ε) ≥ 1 so that,
whenever (u, v) is a solution to (6.3) with parameters L0 and β ∈ (0, 1], and with an
initial condition μ supported in I1 = {x : x1 = 0, |x | ≤ 1} and satisfying μ(1) ≥ 1,

P
[
u∂D3∞ (x1,±1 + I1) ≤ 1

]
≤ ε.

where x1,1 = (3, 2, 0) and x−1,1 = (−3, 2, 0).
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624 C. Mueller, R. Tribe

Remark The intuition for the lemma comes from taking L large, ignoring for a
moment the diffusion, killing and noise terms and reducing to the ODE system
∂t x = L2β−1xy, ∂t y = −Lβ−1xy, where, for L large, the solution converges fast
to x∞ = x0 + Ly0. Thus the nutrient leads to a large build-up of mass, which in turn
leads to a high probability that the exit measure is large. The corresponding scaling in
dimension d = 2 fails to produce this large build up of mass.

Proof We first construct a DW process u− on D3 with law Q D3,1
μ . Then, conditional

on σ {u−}, we construct a solution (u+, v+) to (6.3) on D3 with initial conditions

u+
0 = L I (x ∈ H)(1 − e−Lβ−1u−(0,∞,x))dx and v+

0 = I (x ∈ H)e−Lβ−1u−(0,∞,x).

Lemma 5, after a suitable linear scaling, shows that u∂D3,−∞ + u∂D3,+∞ has the same
law as the total exit measure u∂D3∞ of a solution to (6.3) started at μ. Lemma 5 also
implies that the exit measure u∂D3,+∞ is stochastically larger than the exit measure
U ∂D3∞ where U has the law Q D3,1

u+
0

of a DW process, conditionally on σ {u−}. Choose

smooth h : ∂D3 → [0, 1] so that {h > 0} = x1,1 + I1 (the case of x1,−1 is symmetric).
Then

E

[
e−u

∂D3∞ (x1,1+I1)

]
≤ E

[
e−u

∂D3∞ (h)
]

≤ E

[
Q D3,1

u+
0

[e−U
∂D3∞ (h)]

]

= E
[
e−u+

0 (w)
]

where, using the DW Laplace functional from (3.8), �w = 1
2w

2 + w on D3 and
w = h on ∂D3. Let c0 = inf{w(x) : x ∈ D2 ∩ H}. Then a comparison argument
shows that c0 ∈ (0,∞). Using the initial condition of u+

0 we continue, for β ≤ 1 and
L ≥ 1,

E

[
e−u

∂D3∞ (x1,1+I1)

]
≤ Q D3,1

μ

⎡
⎢⎣exp

⎛
⎜⎝−L

∫
H∩D3

(
1 − e−Lβ−1U (0,∞,x)

)
w(x)dx

⎞
⎟⎠

⎤
⎥⎦

≤ Q D3,1
μ

⎡
⎢⎣exp

⎛
⎜⎝−Lc0

∫
H∩D2

(
1 − e−U (0,∞,x)

)
dx

⎞
⎟⎠

⎤
⎥⎦

=: p(L , μ).

We will show that p(L , μ) converges to zero, as L → ∞, uniformly over μ as stated
in the lemma. Then a Chebychev argument finishes the proof.

It is not difficult to see that U[0,1](D2 ∩ H) > 0, Q D3,1
μ almost surely, whenever

μ(1) �= 0 and μ is supported on I1. It is possible to argue this directly from the
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A phase diagram for a stochastic reaction diffusion system 625

Laplace functional, but it follows also from results in the literature. Indeed the pro-
jection of the process onto {x2 = · · · = xd = 0} is a DW process started at cδ0, so
one can use absolute continuity and the strong law of the logarithm for the closed
support shown in Tribe ([16]). Since x → U (0,∞, x) is lower semi-continuous, the
set {x ∈ D2 ∩ H : U (0,∞, x) > 0} is open and almost surely non-empty by the
above. This implies that p(L , μ) → 0 as L → ∞ for each non-zero μ. Lemma 4
shows that μ → p(L , μ) is non-increasing, so we may restrict to the set M1(I ) of
measures supported in I and with total mass one. Note that M1(I ) is compact in
the weak topology. Since L → p(L , μ) is also non-increasing, the required uniform
convergence follows by a Dini argument if we can show that μ → p(L , μ) is upper
semi-continuous. This will be true since p(L , μ) is the decreasing limit of p(L , μ, ε)
as ε ↓ 0, where

p(L , μ, ε) = Q D
μ,1

⎡
⎢⎣exp

⎛
⎜⎝−Lc0

∫
D2∩H

(
1 − e−U (ε,ε−1,x)

)
dx

⎞
⎟⎠

⎤
⎥⎦

Increment estimates (similar to those in (4.16) show that the laws Q D
μ,1(U (ε, ε

−1) ∈
d f ) on C(D2, R) are tight, uniformly over μ ∈ M1(I ). This in turn implies that the
map μ → Q D

μ,1(U (ε, ε
−1) ∈ d f ) and hence also μ → p(L , μ, ε) is continuous,

which finishes the proof. ��

6.3 Proof that limβ→∞ β−1�(β) = 1.

We fix κ ∈ (0, 1) and show there exists β0 = β0(κ) so that possible life occurs
whenever β ≥ β0 and γ = κβ. Since �(β) ≤ β this implies the desired limit.

Lemma 21 Fix κ ∈ (0, 1) and smooth η : D3 → [0, 1] compactly supported inside
D3 ∩ {x : x1 > 0} and so that η = 1 on D2 ∩ {x : x1 ≥ 1}. Consider, in dimensions
d ≥ 2, solutions on the domain D3 = (−3, 3)d to the equation for a DW process
given by

∂t u = �u + θ

(
1 + κ

2
η − κ

)
u + √

σu Ẇ . (6.4)

Given ε > 0 we may choose θ0(ε), σ0(ε) > 0 so that for any solution u to (6.4) with
parameters σ0 and θ0, and initial condition μ ∈ M1(I1),

P
[
u∂D3

1 (x1,±1 + I1) ≥ 1
]

≥ 1 − ε

where x1,±1 = (3,±2, . . .).

Proof Choose h : ∂D3 → [0, 1] so that {h > 0} = x1,1 + I1 (the case x1,−1
being symmetric). Using the Laplace functional from (3.6) and scaling, we have
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626 C. Mueller, R. Tribe

E[exp(−u∂D3
1 (h))] = exp(−μ(φ1)) where

{
∂tφ = �φ + θ

( 1+κ
2 η − κ

)
φ − σ

2 φ
2 on D3,

φ = h on ∂D3 for t ≥ 0, and φ0 = 0 on D3.
(6.5)

As σ → 0 the solution φ1 converges to φ1 where φ is the solution of (6.5) with σ = 0.
Since φ is decreasing in the parameter σ , the convergence is uniform over x ∈ I1.

We claim that φ1(x) → ∞ as θ → ∞ and that the convergence is uniform over
x ∈ I1. One way to see this is via the Feynman-Kac representation for φ, namely

φ1(x) = Ex

[
h(Xτ )I (τ ≤ 1)e

θ
∫ τ

0

(
1+κ

2 η(Xs )−κ
)

ds
]

where X is a Brownian motion (with generator �) and τ = inf{t : Xt ∈ ∂D3}. Note
that if Xs ∈ D2 ∩ {x : x1 ≥ 1} then ( 1+κ

2 η(Xs) − κ) ≥ (1 − κ)/2. Now we use the
support theorem for Wiener measure. There is an open set of paths Ox ⊆ C([0, 1], Rd)

where f ∈ Ox satisfy f0 = x , f exits D3 before time 1 and
∫ τ

0 (
1+κ

2 η( fs)− κ)ds >
(1 − κ)/4. Then φ1(x) ≥ exp(θ(1 − κ)/4)Ex [h(Xτ )I (X · ∈ Ox )]. Moroever Ox can
be chosen so that Ex [h(Xτ )I (X · ∈ Ox )] is bounded below uniformly over x ∈ I1,
establishing the claim. Then we may choose θ0(ε) and then σ0(ε) so that

P
[
u∂D3

1 (x1,1 + I1) ≤ 1
]

≤ P
[
u∂D3

1 (h) ≤ 1
]

≤ e e−μ(φ1) by Markov’s inequality

≤ e e−μ(φ1) + ε

2
by the suitable choice of σ0(ε)

≤ ε by the suitable choice of θ0(ε)

which completes the proof. ��
Lemma 22 Consider, in dimensions d = 2 or 3, solutions on the domain D3 to the
equation

{
∂t u = �u + θu (v − κ)+ √

σu Ẇ ,

∂tv = −δuv, v0 = I (x1 ≥ 0).
(6.6)

Given ε > 0 we may choose θ1(ε), σ1(ε), δ1(ε) > 0 so that for any solution (u, v) to
(6.6), with parameter values θ1, σ1 and δ ≤ δ1, and with initial condition μ supported
on I1 satisfying μ(1) ≥ 1,

P
[
u∂D3∞ (x1,±1 + I1) ≥ 1

]
≥ 1 − ε

where x1,±1 = (3,±2, . . .).

Proof By the monotonicity in μ given in Lemma 4, it is enough to consider μ ∈
M1(I1). Fix θ1 = θ0(ε/2) and σ1 = σ0(ε/2) from the previous lemma. Let η be as
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A phase diagram for a stochastic reaction diffusion system 627

in the previous lemma and let K be the closed support of η. We consider a solution to
(6.6) on path space and set

τδ = inf{t : δU (0, t, x) ≥ (1 − κ)/2 for some x ∈ K }.

Note that V (t, x) = exp(−δU (0, t, x)) ≥ 1 − (1 − κ)/2 for t ≤ τδ and x ∈ K . This
implies that

V (t, x)− κ ≥ 1 + κ

2
η(x)− κ for t ≤ τδ and x ∈ D3.

Informally, upto the time τδ the process dominates a solution to (6.4). More care-
fully, we may expand the process exp(−us(φ1−s) − u∂D3

s (φs)) over the interval s ∈
[0, τδ∧1], withφ as in the previous lemma, to obtain an upper bound on the the Laplace
functional E[exp(−u∂D3

1 (h))I (τδ ≥ 1)]. This shows that P[u∂D3∞ (x1,±1 + I1) ≤
1, τδ ≥ 1] ≤ ε/2 for all μ ∈ M1(I1) (and for any choice of δ > 0).

It remains to estimate P[τδ < 1]. Informally, we can control this by choosing δ
small and the fact that the process is dominated by a DW(D3,−θ1) process. Rather than
use the natural pathwise comparison, which is messy (although possible) to establish
in this non-Lipschitz setting, we exploit a change of measure argument. Let Qμ be the
law of (u, u∂D3) on path space�D3 of the DW process satisfying ∂t u = �u+√

σ1u Ẇ
starting at μ. Set

Mt = σ−1
1 θ1

t∫
0

∫ (
eδU (0,s,x) − κ

)
Z(dx, ds)

and let Et (M) be the associated stochastic exponential. Arguing as in Sect. 3.2, under
the the measure d P|Ut = Et (M)Qμ, the process U is a solution to (6.6). Then

P[τδ < 1] = Qμ

[Eτδ∧1(M)I (τδ < 1)
]

≤
(

Qμ

[
Eτδ∧1(pM)e((p−1)/2)[M]τδ∧1

])1/p (
Qμ[τδ < 1])1/q (6.7)

for a dual pair p−1 +q−1 = 1. Note that [M]t ≤ σ−2
1 θ2

1 U[0,t](1) for t ≤ τδ . Reversing
the change of measure, under the law E(pM)d Qμ the process has a mass creation
at most at rate pθ1 up to time τδ . For small enough θ > 0 the exponential moments
Q D3,−pθ1
μ [exp(θU[0,1](1))] are finite, and bounded uniformly overμ ∈ M1(I1). Thus

we may choose p = p(ε) > 1 so that the first term on the right hand side of (6.7) is
bounded uniformly over μ ∈ M1(I1), and it remains to estimate Qμ[τδ < 1]. Note
that

Qμ[τδ < 1] ≤ Qμ

[
min{1, 2δ(1 − κ)−1 sup

x∈K
U (0, 1, x)}

]
:= p(δ, μ).
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628 C. Mueller, R. Tribe

The continuity of the occupation density U (0, 1, x) for x ∈ K (the finite spead of
support ensures that the solution does not hit K immediately) implies that supx∈K
U (0, 1, x) is finite, and so that p(δ, μ) ↓ 0 as δ ↓ 0. But p(μ, δ) is the deceasing
limit of p(δ, μ, ε) as ε ↓ 0 where

p(δ, μ, ε) = Qμ

[
min{1, 2δ(1 − κ)−1 sup

x∈K
U (ε, 1, x)}

]
.

Arguing as in the proof of Lemma 20, the functions p(δ, μ, ε) are continuous inμ and
hence p(δ, μ) is upper semicontinuous, ensuring that the convergence p(δ, μ) → 0
is uniform over M1(I1). This allows us to choose δ1 to ensure that P[τδ < 1] ≤ ε/2
for all μ ∈ M1(I1) and completes the proof. ��

Now chooose ε = ε0 the value that ensure the OP process is supercritical. Using
the scaling lemma 3 for a solution to (1.1) with the choices b = θ1(ε0)β

−1, a = b2,
cd = abσ1(ε0) and e = 1, the scaled solution ũ solves (6.6) with the parameter values
θ1, σ1 and δ = θ1β

−1. Choosing β sufficiently large that δ ≤ δ1(ε0) we see that the
block estimate (6.2) holds, ensuring possible life.

Remark The correct large β asymptotics can be seen from the following formal argu-
ment. Choose γ = β − θβ2/(6−d) for some θ > 0. Applying the scaling in Lemma 3
with the choices a = β−(d−2)/(6−d), b = β−2/(6−d), c = β−1/(6−d) and e = 1 we
find the scaled equation solves

{
∂t u = �u + β(4−d)/(6−d)u

(
v − (1 − θβ−(4−d)/(6−d))

) + √
u Ẇ ,

∂tv = −β−(4−d)/(6−d)uv, v0 = 1.

Letting v = 1 − β−(4−d)/(6−d)v̂ we may rewrite this equation as ∂t u = �u + θu −
uv̂ + √

u Ẇ and ∂t v̂ = u(1 − β−(4−d)/(6−d)v̂). This suggests that as β → ∞ the
system converges to the one parameter system

{
∂t u = �u + θu − uv + √

u Ẇ ,

∂tv = u, v0 = 0.
(6.8)

This limiting equation arises as the limit of spatial SIR epidemics, see Lalley [8]
and Lalley and Zheng [9]. There is monotonicity of total occupation and exit mea-
sures in θ and one expects that there is a critical θc so that solutions to (6.8) die
for θ < θc and may live for θ > θc. It is therefore reasonable to conjecture that
limβ→∞ β−2/(6−d)(β−�(β)) = θc. There is no obvious line of proof for this conjec-
ture, since it is not obvious that a life or death block estimate will hold for θ close to θc.
However such block estimates should hold for sufficiently large and small θ leading to
upper and lower asymptotics of the same order. However note that the block construc-
tion we have presented in Sect. 6.2 uses initial nutrient condition f = I (x1 ≥ 0), and
the above intuition does not apply as such. One needs a more careful block construc-
tion where the nutrient level is controlled, and this in turn seems to require a stronger
version of the spatial Markov property. We will present these details in a subsequent
paper.
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A phase diagram for a stochastic reaction diffusion system 629

We remark that a similar one parameter scaling limit should hold for the small β
asymptotic. Indeed letting β → 0 in (6.3) suggest that the small β behaviour when
γ = L−2β2 should approximate the one parameter system

∂t u = �u + Lδσ(x) − u + √
u Ẇ where σ(x) = inf{t : U (0, t, x) > 0}.

The analogous conjecture is that that this equation makes sense, that it has has a critical
value Lc, and that the limit �(β)/β2 exists and equals Lc.

7 Death

7.1 Death in dimension d = 1

We will show that death is certain when γ = 0, β ≥ 0 and d = 1.

Lemma 23 There are closed bounded intervals I (μ) ⊆ (∞,∞), indexed by μ ∈
M(R), and probabilities pβ > 0, for β ≥ 0, so that when μ is compactly supported

Q R,β,0
μ,1 [U[0,∞)(I (μ)

c) = 0] ≥ pβ.

By arguing as in the proof of Lemma 12, one may check that

Q R,β,0
μ, f [U[0,∞)(I

c) = 0] = Q(−M,M),β,0
μ, f |(−M,M)

[U[0,∞)(I
c) = 0] (7.1)

whenever I is a closed interval supporting μ and satisfying I ⊆ (−M,M). We define
stopping times iteratively as follows. Let τ1 = inf{t : Ut (I (μ)c) > 0} (with inf{∅} =
+∞). Supposing τn < ∞ we set

τn+1 = inf{t ≥ τn : Ut (I (Uτn )
c) > 0}.

If τn = ∞ then we let τn+1 = ∞. Set p(μ, f ) = Q R,β,0
μ, f [U[0,∞)(I (μ)c) > 0]. The

decomposition in Lemma 4 and (7.1) show that f → p(μ, f ) is non-decreasing. By
the lemma above, Q R,β,0

μ,1 [τ1 < ∞] = p(μ, 1) ≤ 1 − pβ . By the strong Markov
property at τn we have on the set {τn < ∞}

Q R,β,0
μ,1 [τn+1 < ∞|Uτn ] = p(Uτn , exp(−U (0, τn)))

≤ p(Uτn , 1) ≤ 1 − pβ.

Then iterating the lemma shows that

Q R,β,0
μ,1 [U[0,∞) is not compactly supported] ≤ Q R,β,0

μ,1 [τn < ∞] ≤ (1 − pβ)
n

completing the proof of death by the characterization in Lemma 11.
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Proof of Lemma 23 Choose a closed bounded interval Ĩ = Ĩ (μ) ⊆ (−∞,∞) so
that Q R

μ,0[U[0,∞)( Ĩ c) = 0] ≥ 1/2. This is possible since paths die out and are

compactly supported. Without loss we may assume Ĩ has length at least 2. Now
set I = Ĩ + [−1, 1]. Choose M so that I ⊆ (−M,M). By (7.1) we must show
Q(−M,M),β,1
μ,0 [U[0,∞)(I c) = 0] ≥ pβ . Construct processes (u−, u+, v+) so that u−

is a DW((−M,M), 0) process started at μ, and conditional on σ {u−} the process
(u+, v+) is a solution to (1.1) on (−M,M) with parameters (β, 0) and initial con-
ditions u+

0 = β(1 − e−u−(0,∞,x))dx and v+
0 = e−u−(0,∞). Then Lemma 5 (i) shows

that u−
[0,∞) + u+

[0,∞) has the same law as U[0,∞) under Q(−M,M),β,0
μ,1 . On the set

{u−
[0,∞)( Ĩ

c) = 0} we have u+
0 ≤ β I (x ∈ Ĩ )dx . When this occurs, Lemma 6 shows

that the total occupation measure u+
[0,∞) becomes stochastically larger if we replace

the initial conditions (u+
0 , v

+
0 ) by (β I (x ∈ Ĩ )dx, I ((−M,M)\ Ĩ )). Therefore on

{u−
[0,∞)( Ĩ

c) = 0},

P[u+
[0,∞)(I

c(μ)) = 0| σ {u−}] = Q(−M,M),β,0
u+

0 ,v
+
0

[U[0,∞)(I
c) = 0]

≥ Q(−M,M),β,0
β I (x∈ Ĩ )dx,I ((−M,M)\ Ĩ )

[U[0,∞)(I
c) = 0]

= Q R,β,0
β I (x∈ Ĩ )dx,I ( Ĩ c)

[U[0,∞)(I
c) = 0] by (7.1)

≥ Q R,−β I ( Ĩ c)

β I (x∈ Ĩ )dx
[U[0,∞)(I

c) = 0]

≥ exp(−β
∫

Ĩ

w(x)dx) using (3.17)

provided that w solves

�w ≤ 1

2
w2 − ηw on int(I ) and w(x) ↑ ∞ as x → ∂ I (7.2)

with smooth η ≥ 0 satisfying η ≥ β on I\ Ĩ . The proof will be complete if we find such
a function w and show that there is an upper bound on

∫
Ĩ w(x)dx that is independent

of the length of the interval I .
Choose smooth non-increasing η : [0,∞) → [0, 1] so that η(x) = 1 for x ∈ [0, 1]

and η(x) = 0 for x ≥ 2. There is a unique non-increasing w(x) ≥ 0, for x ∈ (0,∞)

that solves

�w = 1

2
w2 − 2βηw on (0,∞), w(x) → ∞ as x → 0 and w(x) → 0 as x → ∞.

Moreover the decay as x → ∞ ensures that
∫ ∞

1 w(x)dx < ∞. Suppose I (μ) = [a, b]
and Ĩ = [a +1, b −1], where b ≥ a +4. Thenw(x) = w(x −a)+w(b − x) satisfies
the required properties (7.2) with the choice η(x) = βη(x − a)+ βη(b − x). ��
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Remark The extinction estimates for a DW(R, γ ) can be used to show that

Q R,γ
δ0

[U[0,∞)([−L , L]c) > 0] ∼ exp(−γ 1/2 L) for large L .

This in turn yields the finiteness of small positive exponential moments of
∫
(1 −

exp(−2U (0,∞, x))dx which implies, via Novikov’s criterion, that the exponential
martingale t → Et (Mβ,0,1) is uniformly integrable for small β and hence certain
death. We omit the details since this simple method does not seem to be applicable for
large β in d = 1 or any β > 0 in dimension d > 1.

7.2 A block estimate for death

By Lemmas 11 and 12, to establish certain death for some parameter values (β, γ ) it
is sufficient to choose a non-zero compactly supported μ and show that

lim
n→∞ Q Rd ,β,γ

μ,1

[
U ∂Dn∞ = 0

]
= 1. (7.3)

It can be simpler to verify the following block estimate, which will imply (7.3) via
a simple iteration reminiscent of the more direct branching process comparison used
in [11].

Lemma 24 Suppose that there exists L ,M > 0 so that for all μ supported in DL =
[−L , L]d and satisfying μ(1) ≤ M the following bounds hold:

Q D3L ,β,γ
μ,1

[
U ∂D3L∞ �= 0

]
< ε0 and Q D3L ,β,γ

μ,1

[
U ∂D3L∞ (1)

]
< ε0 M, (7.4)

where ε0 = 1/(4 · 3d). Then (7.3) holds for μ = Mδ0 and hence certain death holds
for (β, γ ).

Proof We want to break a measureμ ∈ M(Rd) into submeasures supported on blocks
of size L and of mass at most M . We consider translates x + [−L , L)d for x ∈ 2L Zd

and break the restriction ofμ on x +[−L , L)d into at most Int[M−1μ(x +[−L , L)d)]
parts, each of measure at most M (here Int[z] is the smallest integer greater than or
equal to z). We require only that this splitting is done in a measurable manner. Let
NL ,M (μ) be the number of pieces into which μ is thus decomposed, that is

NL ,M (μ) =
∑

x∈L Zd

Int
[

M−1μ(x + [−L , L)d)
]
.

We now inductively define a sequence (Xn : n ≥ 0) of random measures. Let X0 =
Mδ0. Let X1 = u(1),∂D3L∞ for a solution (u(1), v(1)) to (1.1) on D3L with initial con-
ditions u(1)0 = X0 and v(1)0 = 1. The spatial Markov property (Lemma 7) and the
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632 C. Mueller, R. Tribe

monotonicity of exit measures with respect to the initial nutrient level (Lemma 4 (ii)),
imply that for R ≥ 3L

Q DR ,β,γ

X0,1

[
U ∂DR∞ = 0

]
≥ E

[
Q DR ,β,γ

X1,1
[U ∂DR∞ = 0]

]
.

Then inductively, provided that Xn−1 �= 0, we choose one of the submeasures X̃n−1
that form the decomposition of Xn−1 as in the first paragraph (in some measurable
manner), and denote its supporting cube as xn−1 + [−L , L)d . Let D(n) = xn−1 +
(−3L , 3L)d . Conditionally independent of (u( j), v( j) : j = 1, . . . , n − 1) we run a
solution (u(n), v(n)) to (1.1) on D(n)with initial conditions u(n)0 = X̃n−1 and v(n)0 = 1.
We then set

Xn = Xn−1 − X̃n−1 + u(n),∂D(n)∞ . (7.5)

When Xn−1 = 0 we set Xn = 0.
We apply the decomposition Lemma 5 (i) to the domain D(n) to see that the total

exit measure on ∂D(n) started from (Xn−1|D(n), 1) can be constructed in two parts as

u(n),∂D(n)∞ + ũ(n),∂D(n)∞ where ũ(n) is a solution on D(n) started at Xn−1|D(N ) − X̃n−1
and initial nutrient level exp(−u(n)(0,∞)). The monotonicity of exit measures in the
nutrient level shows that ũ(n),∂D(n)∞ is stochastically smaller than the total exit measure
of a solution on D(n) started at (Xn, 1). Noting that Xn is certainly supported inside
D(2n+1)L , the spatial Markov property then gives, for R ≥ (2n + 1)L ,

Q DR ,β,γ

X0,1

[
U ∂DR∞ = 0

]
≥ E

[
Q DR ,β,γ

Xn ,1
[U ∂DR∞ = 0]

]
. (7.6)

Using the simple inequality Int[z] ≤ z + I (z > 0), the hypotheses of this lemma
imply, when Xn �= 0, that

E[NL ,M (u
(n),∂D(n)∞ )] ≤ 3d(ε0 + ε0) ≤ 1/2.

Note from (7.5) that NL ,M (Xn) ≤ NL ,M (Xn−1)−1+NL ,M (u
(n),∂D(n)∞ )when Xn−1 �=

0. Then n → NL ,M (Xn) is a N valued supermartingale whose only possible limit point
is zero, which implies that Xn = 0 for large n, almost surely. Then (7.6) implies the
sufficient condition (7.3) for certain death. ��

As an illustration of this block condition, we shall use it to show for any β > 0
there exists γ < β so that certain death occurs for (β, γ ). This implies that�(β) < β.
The following lemma will imply that the block estimates will hold when γ = β, and
a perturbation argument will ensure they hold γ sufficiently close to β.

Lemma 25 Consider solutions in the domain D3 = (−3, 3)d to the equation

{
∂t u = b−(4−d)/d�u + bβu(v − 1)+ √

u Ẇ ,

∂tv = −uv, v0 = 1.
(7.7)
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Then, given ε > 0, there exists b0 = b0(β, d, ε) > 0 so that for b ≥ b0, and whenever
u0 = μ is supported in D1 and satisfies μ(1) ≤ 1,

E
[
u∂D3∞ (1)

]
< ε and P

[
u∂D3∞ �= 0

]
< ε.

Remark Note that (7.7) comes from (1.1) via the scaling lemma with the choices
e = 1, a = b, c = b2/d . Undoing this scaling shows that the block estimates (7.4)
hold when γ = β and L = b2/d ,M = b with b = b0(β, d, ε0).

Proof We first consider solution to (7.7) on the smaller domain D2 and estimate the
expected total exit measure. Using Lemma 6 we can and shall, at the expense of obtain-
ing a stochastically larger exit measure, change the initial condition to μ+ I(D2)(dx)
and the initial nutrient to v0 = (1 − (bβ)−1)I (D2). With these changes the reaction
term bβu(v − 1) is at most −u. Let φb,r (x) solve b−(4−d)/d�φb,r = φb,r on the
domain Dr with boundary conditions φb,r = 1 on ∂Dr . Calculus shows for r > 2
that ut (φb,r )+u∂D2

t (φb,r ) is a non-negative supermartingale. Taking expectations and
r ↓ 2 we find E[u∂D2∞ (1)] ≤ ∫

D2
φb,2(x)(μ(dx)+dx). As b → ∞, φb,2(x) decreases

to zero as b → ∞ for x ∈ D2 (argue, for example, using the probabilistic represen-
tation) and therefore uniformly for x ∈ D1. This implies that E[u∂D2∞ (1)] → 0 as
b → ∞, uniformly over μ as in the statement of the lemma.

For a solution to (7.7) on D3 we apply the spatial Markov property Lemma 7 with
the subdomain D2. Using also extinction estimates as in (3.17) this shows that, when
μ supported in D1,

E[u∂D3∞ (1)]v ≤ E[u∂D2∞ (1)] and P[u∂D3∞ (1)>0]≤ E[1−e−u
∂D2∞ (w)]≤ E[u∂D2∞ (w)]

provided that b−(4−d)/d�w ≤ w2/2 on D3 and inf{w(x) : x ∈ ∂Dr } → ∞ as r ↑ 3.
The test functionw(x) = 12

∑d
i=1(xi +3)−2 +(3−xi )

−2 satisfies these requirements
provided b ≥ 1 and also sup{w(x) : x ∈ ∂D2} < ∞. The lemma now follows from
our control on the expected exit mass E[u∂D2∞ (1)]. ��

The proof that�(β) < β will follow from Lemma 24 once we have shown that on
a box D, the block estimates Q D,β,γ

μ,1 [U ∂D∞ �= 0] and Q D,β,γ
μ,1 [U ∂D∞ (1)] are continuous

as γ ↑ β, uniformly over μ supported in a certain strict sub-box and with a certain
bounded total mass. This follows by a change of measure argument. Indeed the deriva-
tive d Q D,β,γ

μ,1 /d Q D,β,β
μ,1 on Ut is given by the exponential martingale Et ((β−γ )M(1))

where Mt (1) is the martingale part of Ut (1). Note that [M(1)]t = U[0,t](1). The
uniform integrability of Et ((β − γ )M(1)), when β − γ is small, follows from the
finiteness of the exponential moments

Q D,β,β
μ,1

[
exp(λU[0,∞)(1))

] ≤ Q D,0
μ

[
exp(λU[0,∞)(1))

] = eμ(φ
(λ)) < ∞
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where φ(λ) solves, for small enough λ > 0, �φ(λ) = −(1/2)(φ(λ))2 − λ on D and
φ(λ) = 0 on ∂D. Then

∣∣∣Q D,β,γ
μ,1

[
U ∂D∞ (1)

]
− Q D,β,β

μ,1

[
U ∂D∞ (1)

]∣∣∣2

≤
(

Q D,β,β
μ,1

[
U ∂D∞ (1)(E∞((β − γ )M(1))− 1)

])2

≤ Q D,β,β
μ,1

[
(U ∂D∞ (1))2

]
Q D,β,β
μ,1

[
(E∞((β − γ )M(1))− 1)2

]
.

Then Q D,β,β
μ,1 [(U ∂D∞ (1))2] ≤ Q D,0

μ [(U ∂D∞ (1))2] can be bounded in terms of the total
mass μ(1) while, when β − γ is small enough,

Q D,β,β
μ,1

[
(E∞((β − γ )M(1))− 1)2

]

= Q D,β,β
μ,1

[
e2(β−γ )M∞(1)−(β−γ )2U[0,∞)(1)

]
− 1

≤
(

Q D,β,β
μ,1

[E∞(4(β − γ )M(1))
])1/2 (

Q D,β,β
μ,1

[
e6(β−γ )2U[0,∞)(1)

])1/2 − 1

≤
(

Q D,0
μ

[
e6(β−γ )2U[0,∞)(1)

])1/2 − 1

=
(

exp(μ(φ(λ))
)1/2 − 1

where λ = 6(β − γ )2. Since φ(λ) decreases to 0 as λ ↓ 0, this shows the required
continuity in γ . The argument for Q D,β,γ

μ,1 [U ∂D∞ �= 0] is similar.

7.3 Proof that �(β) ≤ c1β
2 in d = 3

We sketch a rather simple argument for death, based on the decomposition in Lemma 5
(i). This decomposition suggests we may construct the total occupation measure for

a solution to (1.1) in two parts: u−
[0,∞) from a process u− with law Q Rd ,γ

μ , and u+
[0,∞)

from a solution u+ to (1.1) that conditional on σ {u−} has initial condition u+
0 (dx) =

β(1 − exp(−u−(0,∞, x))dx . The expected initial mass E[u+
0 (1)] can be exactly

calculated via the Laplace functional of u−(0,∞, x) and shown to be bounded by
c0βγ

−1/2μ(1). This suggests, when c0βγ
−1/2 < 1, that this decomposition can be

iterated leading to a convergent geometric series and a finite total occupation measure.
We now formalise this argument, working on finite domains and with exit measures.

Lemma 26 When c0βγ
−1/2 < 1 we have

Q DL ,β,γ
μ,1

[
U ∂DL∞ (1)

]
≤ μ(φ(L))+ μ(1)

∞∑
k=1

(c0βγ
−1/2)k
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where φ solves �φ(L) = γφ(L) on DL and φ(L) = 1 on ∂DL, and c0 = ∫
R3 ψ(x)dx

where (ψ(x) : R3\{0}) is the maximal solution to

�ψ = 1

2
ψ2 + ψ on R3\{0},

ψ(x) → 0 as |x | → ∞ and ψ(x) → ∞ as |x | → 0. (7.8)

Remark The maximal solution ψ can be constructed as follows. Non-negative solu-
tions ψ(ε) to �ψ(ε) = (1/2)(ψ(ε))2 + ψ(ε) on {x : 0 < ε < |x | < ∞}, with
boundary conditions ψ(ε)(x) → 0 as |x | → ∞ and ψ(ε)(x) → ∞ as |x | ↓ ε

exist and are unique (take limits through increasing boundary conditions, using the
supersolution 12(|x | − ε)−2 as an upper bound for existence and using the maximum
principle for uniqueness.) Moreover ψ(ε) decrease as ε ↓ 0 to function ψ defined on
R3\{0}. Interior regularity estimates show that ψ solves (7.8). Any other solution will
be bounded byψ(ε) on {x : ε < |x | < ∞} by another maximum principle comparison
argument. Since this is true for any ε the function ψ must be the maximal solution.
Note thatψ(x) ≤ 12|x |−2 so thatψ is integrable near the origin. Another comparison
on {x : |x | > 1} against the solution to the linear problem �φ = φ shows that ψ has
exponential decay at infinity so that c0 = ∫

ψ(x)dx < ∞.

Proof L , β, γ are fixed throughout. For convenience in this proof we let F(μ, f ) =
Q DL ,β,γ

μ, f [U ∂DL∞ (1)] and let �(μ, dν) be the the measurable kernel given by the law

of β(1 − exp(−U (0,∞, x))dx on M(DL) under Q DL ,γ
μ . Then the decomposition in

Lemma 5 (i), monotonicity and the exact formula for exit measures of superprocesses
(derived, say, from (3.8)) imply

F(μ, 1) = Q DL ,γ
μ

[
U ∂DL∞ (1)

]
+ Q DL ,γ

μ

[
F(β(1 − e−U (0,∞,x)dx, e−U (0,∞,x))

]

≤ Q DL ,γ
μ

[
U ∂DL∞ (1)

]
+ Q DL ,γ

μ

[
F(β(1 − e−U (0,∞,x)dx, 1)

]

= μ(φ(L))+
∫

F(ν, 1)�(μ, dν). (7.9)

Define the range by R = ∪δ>0 ∪t≥δ support(Ut ), where support(μ) is the closed
support of μ. Then

∫
ν(1)�(μ, dν) = β

∫
DL

Q DL ,γ
μ

[
1 − e−U (0,∞,x)

]
dx

≤ β

∫
DL

Q DL ,γ
μ [{x} ∈ R] dx = β

∫
DL

μ(ψ̃(γ,x))dx

where ψ̃ = ψ̃(γ,x) defined for y ∈ DL\{x} is the maximal solution to

�ψ̃ = 1

2
ψ̃2 + γ ψ̃ on DL\{x}, ψ̃ = 0 on ∂DL and ψ̃(y) → ∞ as |y − x | → 0.
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The final equality follows using mostly the arguments in [12, Theorem III.5.7 (a)]
(and constructing ψ̃(γ,x) as in the above remark). A comparison argument shows
that ψ̃(γ,x)(y) ≤ γψ(γ 1/2(y − x)) and this leads to the bound

∫
ν(1)�(μ, dν) ≤

c0βγ
−1/2μ(1). Note that φ(L) ≤ 1. We can now interate the inequality (7.9) and the

lemma will follow once we have show that the remainder term converges to zero, and
this will follow from the fact that F(μ, 1) → 0 when μ(1) → 0. To see this, note that

F(μ, 1) ≤ Q DL ,β,γ
μ,1

[
U ∂DL∞ (1)I (τ > t)

]
+ Q DL ,β,γ

μ,1

[
U ∂DL

t (1)
]

≤
(

Q DL ,β,γ
μ,1

[
(U ∂DL∞ (1))2

]
Q DL ,β,γ
μ,1 [τ > t]

)1/2 + Q DL ,γ−β
μ

[
U ∂DL

t (1)
]

≤
(

Q DL ,γ

μ+β I (DL )dx

[
(U ∂DL∞ (1))2

]
Q DL ,β,γ
μ,1 [τ > t]

)1/2 + μ(θt )

where ∂θ = (β − γ )θ on [0, t] × DL , θ0 = 0 and θ = 1 on [0, t] × ∂DL . Note the

term Q DL ,γ

μ+β I (DL )dx

[
(U ∂DL∞ (1))2

]
is bounded by C(L , β, γ ) < ∞ for μ(1) ≤ 1.

The term Q DL ,β,γ
μ,1 [τ > t] converges to zero as t → ∞, uniformly over μ(1) ≤ 1, for

instance by the estimate in Lemma 19. These together allow us to see that F(μ, 1) → 0
when μ(1) → 0 completing the proof. ��

To complete the proof that �(β) ≤ c1β
2 we will apply the lemma above to a

sequence of domains D(n) := Dnγ−1/2 , and show that the expected exit measures

decay geometrically. Scaling shows that the solution φ(γ
−1/2) from the above lemma

satisfies φ(γ
−1/2)(x) = φ̂(γ 1/2x) where�φ̂ = φ̂ on D1 and φ̂ = 1 on ∂D1. Moroever

a comparison argument shows that φ((n+1)γ−1/2)(x) ≤ φ(γ
−1/2)(0) = φ̂(0) < 1 for

x ∈ ∂D(n). The lemma therefore implies that

Q D(n+1),β,γ
μ,1

[
U ∂D(n+1)∞ (1)

]
≤μ(1)

(
φ̂(0)+(c0βγ

−1/2)(1−c0βγ
−1/2)−1

)
(7.10)

whenever μ is supported on ∂D(n). We may now choose γ = c1β
2 with c1 < ∞

large enough that the right hand side of (7.10) is at most (1/2)(1+ψ̂(0))μ(1) < μ(1).
Iterating shows when μ is supported on ∂D(1) that

Q D(n+1),β,c2β
2

μ,1

[
U ∂D(n+1)∞ (1)

]
≤ ((1 + φ̂(0))/2)nμ(1).

This implies certain death. Indeed the spatial Markov property and the extinction
estimate (3.17) show that

Q D(n),β,c2β
2

μ,1

[
U ∂D(n)∞ �= 0

]
≤ Q D(n),β,c2β

2

μ,1

[
1 − e−U ∂D(n−1)∞ (w)

]
→ 0 as n → ∞

where

w(x) =
3∑

i=1

(
2β + 12

(xi + nγ−1/2)2

)
+

(
2β + 12

(nγ−1/2 − xi )2

)
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satisfies �w ≤ (1/2)w2 − βw on D(n). Certain death follows from Lemmas 11
and 12.

Remark The approach above can be applied to the case of d = 2 and small β. An
analysis of the first moment shows that when γ = exp(−C/β) the above series con-
struction converges for suitable C and hence certain death. We do not include the
details since the argument is quite crude and it seems easier to conjecture that there
is death when γ = 0 for small β. Note however that when γ = 0 a first moment
argument will not show death since the first moment Q DR ,β,0

μ,1 [U ∂DR∞ (1)] → ∞ as
R → ∞. We hope to comment on this in a subsequent paper.
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