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Abstract Based ontwoindependentsamples X1, ..., X,, and X, 41, ..., X,, drawn
from multivariate distributions with unknown Lebesgue densities p and g respec-
tively, we propose an exact multiple test in order to identify simultaneously regions
of significant deviations between p and g. The construction is built from randomized
nearest-neighbor statistics. It does not require any preliminary information about the
multivariate densities such as compact support, strict positivity or smoothness and
shape properties. The properly adjusted multiple testing procedure is shown to be
sharp-optimal for typical arrangements of the observation values which appear with
probability close to one. The proof relies on a new coupling Bernstein type exponen-
tial inequality, reflecting the non-subgaussian tail behavior of a combinatorial process.
For power investigation of the proposed method a reparametrized minimax set-up is
introduced, reducing the composite hypothesis “p = ¢” to a simple one with the
multivariate mixed density (m/n)p + (1 — m/n)q as infinite dimensional nuisance
parameter. Within this framework, the test is shown to be spatially and sharply asymp-
totically adaptive with respect to uniform loss on isotropic Holder classes. The exact
minimax risk asymptotics are obtained in terms of solutions of the optimal recovery.
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516 A. Rohde

1 Introduction
Given two independent multivariate iid samples
X],...,Xm and Xm—t—l’--an

with corresponding Lebesgue densities p and g respectively, we are interested in
identifying simultaneously subregions of the densities support where p deviates sig-
nificantly from ¢ at prespecified but arbitrarily chosen level « € (0, 1). For this aim a
multiple test of the composite hypothesis Hy : p = g versus Hy : p # q is proposed,
built from a suitable combination of randomized nearest-neighbor statistics. The pro-
cedure does not require any preliminary information about the multivariate densities
such as compact support, strict positivity or smoothness and shape properties, and
it is valid for arbitrary finite sample sizes m and n — m. The hierarchical structure
of p-values for subsets of deviation between p and ¢ provides insight into the local
power of nearest-neighbor classifiers, based on the training set {X1, ..., X,}. Thus
our method is of interest in particular if the classification error depends strongly on
the value of the feature vector, related to recent literature on classification procedures
by Belomestny and Spokoiny [2].

There is an extensive amount on literature concerning two-sample problems. Most
of it is devoted to the one-dimensional case as there exists the simple but powerful
“quantile transformation”, allowing for distribution-freeness under the null hypothesis
of several test statistics. Starting from the classical univariate mean shift problem (see
e.g. [14]), more flexible alternatives as stochastically larger or omnibus alternatives
have been investigated for instance by Behnen et al. [1], Neuhaus [26,27], Fan [13],
Janic-Wréblewska and Ledwina [18], and Ducharme and Ledwina [7]. Our approach
is different in that it aims at spatially adaptive and simultaneous identification of local
rather than global deviations. In the above cited literature asymptotic power is dis-
cussed against single directional alternatives tending to zero at a prespecified rate,
typically formulated by means of the densities p and ¢ corresponding to the trans-
formed observations X; = H(X;), where H denotes the mixed distribution function
with density 4 = (m/n)p + (1 —m/n)q. Note that the mapping H coincides with the
inverse quantile transformation under the null.

For power investigation of our procedure a specific two-sample minimax set-up is
introduced. It is based on a reparametrization of (p, q) to a couple (¢, 1), reducing the
composite hypothesis “p = ¢ to the simple one “¢ = 0” with the multivariate mixed
density 4 as infinite dimensional nuisance parameter. The reparametrization concep-
tionally differs from the above described transformation for the univariate situation as
it cannot rely on the inverse mixed distribution function. Nevertheless it leads under
moderate additional assumptions in that case to the same notion of efficiency. In order
to explore the power of our method, the alternative is assumed to be of the form

{(p.q): (m/m)p+ (A —m/n)qg=h, ¢ €F, |lp|| =8} ey

for fixed but unknown %, some suitably chosen (semi-)norm || - ||, a constant § > 0 and
a given smoothness class . For any o € (0, 1) the quality of a statistical level-a-test
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Y is then quantified by its minimal power inf E(, 4%, where the infimum is running
over all couples (p, g) which are contained in the set (1). It is a general problem that
an optimal solution ¥ may depend on F and h. Since the smoothness and shape of
a potential difference p — ¢ are rarely known in practice, it is of interest to come up
with a procedure which does not depend on these properties but is (almost) as good as
if they were known, leading to the notion of minimax adaptive testing as introduced in
[36]. Note that here we have however & as an additional infinite dimensional nuisance
parameter.

The problem of data-driven testing a simple hypothesis is further investigated for
instance by Ingster [17], Eubank and Hart [12], Ledwina [22], Ledwina and Kallenberg
[21], Fan [13] and Diimbgen and Spokoiny [10] among others , the two-sample con-
text by Butucea and Tribouley [4]. The idea in common is to combine a family of
test statistics corresponding to different values of the smoothing parameters, respec-
tively; see, for instance, Rufibach and Walther [33] for a general criterion of multiscale
inference. The closest in spirit to ours is the procedure developed in Diimbgen and
Spokoiny [10] within the continuous time Gaussian white noise model and further
explored by Diimbgen [9], Diimbgen and Walther [11] and Rohde [32], all concerned
with univariate problems. Walther [38] treats the problem of spatial cluster analysis
in two dimensions.

The paper is organized as follows. In the subsequent section, a multiple ran-
domization test is introduced, built from a combination of suitably standardized
nearest-neighbor statistics. Its calibration relies on a new coupling exponential
bound and an appropriate extension of the multiscale empirical process the-
ory. Asymptotic power investigations and adaptivity properties are studied in
Sect. 3, where the reparametrized minimax set-up is introduced. It is shown
that our procedure is sharply asymptotically adaptive with respect to sup-norm
| - |l on isotropic Holder classes F, i.e. minimax efficient over a broad range
of Holder smoothness classes simultaneously. The application to local classifi-
cation is discussed in Sect. 4. The one-dimensional situation is considered sep-
arately in Sect. 5 where an alternative approach based on local pooled order
statistics is proposed. In that case the statistic does not depend on the observa-
tions explicitly but only on their order which in contrast to nearest-neighbor rela-
tions is invariant under the quantile transformation. Section 6.1 is concerned with
a decoupling inequality and the coupling exponential bounds which are essen-
tial for our construction. Both results are of independent theoretical interest. All
proofs and auxiliary results about empirical processes are deferred to Sects. 6.2
and 6.3.

2 Combining randomized nearest-neighbor statistics

The procedure below is mainly designed for dimension d > 2. The univariate case
contains a few special features and is considered separately in Sect. 5. Let X :=
(X1, ..., X;)" and denote by X, the pooled set of observations. Forany 0 < k < n—1,
the k’th nearest-neighbor of X € A}, with respect to the Euclidean distance is denoted
by X¥; we define X° := X. Note that the nearest-neighbors are unique a.s. The
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weighted labels are defined as follows

L if X is contained in the first sample

A(X) = [m i

otherwise.

In order to judge about some possible deviation of p from g on a given set B € B,

a natural statistic to look at is a standardized version of @n (B) — @,,(B) or more
sophisticated,

/ ks (x) (dB, (x) — dBu ()

B

for some kernel kp supported by B, where P, = m™! >, 8x, and @n = (n —
m)~! > i=mt1 dx; denote the empirical measures corresponding to the first and sec-
ond sample, respectlvely Note that the statistic is not distribution-free, and in order to
build up a multiple testing procedure several statistics corresponding to different sets
B have to be combined in a certain way.

2.1 Local nearest-neighbor statistics

Let ¥ : [0, 00) — R denote any kernel of bounded total variation with max,¢(0,00)
[ (x)] =¥ (0) =1and ¥(x) = 0 for x > 1. We introduce the local test statistics

«/—_ k X — Xt .
Ty m/m) (0 —m/n) ZV’(” ||2)A(X’.)

Vikn I1X; — X51I2
(m/nxl——m/n IX; —xl2 \, =~ ~
IEDn - d n 3
Y jin (MX'—-XHb)( () = Q)

where

, 2
. 1"*wu&—@m 1§wu&—%m
jkn~ = —_— - - —_—
n—1& 1X; = X512 ) n= 7 \IX; = X512
Every T)jx, is some in a certain sense standardized weighted average of the nearest-
neighbor’s labels and its absolute value should tend to be large whenever p is clearly
larger or smaller than ¢ within the random Euclidean ball with center X ; and radius
1X; = X5 2.

2.2 Adjustment for multiple testing

The idea is to build up a multiple test, combining all possible local statistics T'j,.
The typical way is to consider the distribution of the supremum sup; ; T'jxs, see, e.g.
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Gijbels and Heckmann [15]. The problem is that the distribution is driven by small
scales with a corresponding loss of power at larger scales, as there are many more
small scales which contribute to the supremum. Here, we aim at a supremum type test
statistic

T, := sup sup {|Tjkn| - Cjkn}’

O<k<n—1 1<j<n

where the constants C i, are appropriately chosen correction terms (independent of
the label vector A) for adjustment of multiple testing within every “scale” k of k-
nearest-neighbor statistics. These correction terms in the calibration aim to treat all
the scales roughly equally. Although the distribution of 7;, under the null hypothesis
depends on the unknown underlying distribution p = ¢, the conditional distribution
Lo(T,|X,) of the above statistic is invariant under permutation of the components of
the label vector A. Here and subsequently, the index “0” indicates the null hypoth-
esis, i.e. any couple (p,q) with p = ¢. Precisely, let the random variable IT be
uniformly distributed on the symmetric group S, of order n, independent of X. Then
Lo (T |Xy) = L (T, o] X,), where (T, o IT) (A) == T, (A, ..., Am,). Ele-
mentary calculation entails that

E (Tjkn o HIX,,) =0 and Var (Tjk,, o H’Xn) =1.

Thus the null hypothesis is satisfied if, and only if, the hypothesis of permutation
invariance (or complete randomness) conditional on X}, is satisfied.

An adequate calibration of the randomized nearest-neighbor statistics, i.e. the choice
of smallest possible constants C i, requires both, an exact understanding of their tail
behavior and their dependency structure. Note that the randomized nearest-neighbor
statistics have a geometrically involved dependency structure. Even in case of the rect-
angular kernel ¥ it depends explicitly on the “random design” &}, which incomplicates
the sharp-optimal calibration for multiple testing compared to univariate problems,
where the dependency of the single test statistics remains typically invariant under
monotone transformation of the design points. Also, the optimal correction originally
designed for Gaussian tails in Diimbgen and Spokoiny [10] does not carry over as only
the subsequent Bernstein type exponential tail bound is available.

A coupling exponential inequality Based on an explicit coupling, the following
proposition extends and tightens the exponential bounds derived in Serfling [34] for a
combinatorial process in the present framework. If not stated otherwise, the random
variable IT is uniformly distributed on S, independent of X.

Proposition 1 Let T}y, be as introduced above and define

d(m,n) = (Emin(i, n-S

m n—m

-1
)) with S ~ Bin (n, m/n).
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Then
22
P(|Tjkn01'l‘>8(m,n)n‘)c'n)gzexp _ 77/_l ’
l + ﬂ”_l/zyﬂm Rlp(m, n)
where

Rlp(m, ny = 2||1ﬂ||sup max(m, n — m)

3 m(n —m)

Remark The expression §(m, n) is the payment for decoupling which appears by
replacing the tail probability of a hypergeometric ensemble by that of the Binomial
analogon. For details we refer to Sect. 6.1. In the typical case 0 < liminf,(m/n) <
lim sup, (m/n) < 1 we obtain 6(m, n) = 140 (n=1/2). Compared to results obtained
for weighted averages of standardized, independent Bernoullis, the above Bernstein
type appears to be nearly optimal, i.e. subgaussian tail behavior (with leading constant
1/2) is actually not present.

Via inversion of the above exponential inequality, additive correction terms C i,
for adjustment of multiple testing are constructed. The next theorem motivates our
approach. The construction is designed for typical arrangements of the observa-
tion values which appear with probability close to one. To avoid technical expen-
diture, we restrict our attention to compactly supported densities. d,, denotes the dual
bounded Lipschitz metric (see, e.g. [37]) which generates the topology of weak conver-
gence. “—p, 7 refers to convergence in probability along the sequence of distributions
Pn).

Theorem 2 Define the test statistic

T, = sup {|Tjkn| - Cjkn}
1<j<n
O<k<n-—1

with
Cjkn =3 Ry ﬁ;ﬁ(m, m)jkn +8(m, n) /2T jkn,

where R, = n7]/2R¢, (m,n) and I ji, = log (l/yjk,,z). Assume that the sequence
of mixed densities h,, := (m/n)p, + (1 —m/n)q, on [0, 114 is equicontinuous and
uniformly bounded away from zero, while 0 < liminf, m/n < limsup, m/n < 1. Let
P, and Q, denote the probability measures corresponding to the densities p, and qy,
respectively. Then the sequence L (T,, oIl | Xn) of conditional distributions is tight in

(IP,‘?’“ ® Qf?("*m))—probability. Additionally,

dy (£ (Tn oIl ’ Xn)v AC(T]HIVL)) _)]P?m@@?(n—m) 0,
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where
| f() 11d Pren(x) dW(x) ‘
T]Hln = sup [0.1] _ 210g (I/Vrt,nz)
1e[0,119, Vrt,n
O<r=< max [x—t|2
xel0,114

1/2
with W a standard Brownian sheet in [0, 119, Vet i= (f[()’“d d)r,,n(x)zdx) and

Brin(x) = w(@)— / w(@)hmmz Vi ).

[0,1)4

The extra-term 3 R,y ﬁall(ﬁ(m, n)Ijk, in the constant C i, results from the expo-
nential inequality in Proposition 1 and can be viewed as an additional penalty for
non-subgaussianity. The theorem entails in particular that the sequence L£(7;, o IT | X},)
is weakly approximated in probability by a tight sequence of non-degenerate distribu-
tions £(Tj,,) which indicates that our corrections C i, are appropriately defined and
cannot be chosen essentially smaller. Note that the approximation £(7p, ) depends on
the unknown mixed distribution even under the null hypothesis.

2.3 The multiple rerandomization test

Let «4(X) = argminc. o {P (T, oIl < C|&,) > 1 —«} denote the generalized
(1 — a)-quantile of £ (T, o IT| X;,). Then we propose the conditional test

0 if T, < ke (X)
X)) =1, T

1 if T > ko (X).
Our method can be viewed as a multiple testing procedure. For a given set of obser-
vations {X1, ..., X,}, the corresponding test statistic exceeds the (1 — «)-quantile if,
and only if, the random set

Doi={By, (|| X4=X,] ) [ 12720 0<k=n—1; Tia 0> Cira O+ 00}

is nonempty, where B;(r) denotes the Euclidean ball in R4 with center ¢ and radius
r. Since the test is valid conditional on the set of observations, we may conclude that
p deviates from ¢ at significance level o on every Euclidean ball B;(r) € D,. In
order to reduce the computational expenditure and to increase sensitivity on smaller
scales, one may restrict one’s attention to pairs (j, k) for k < m for some integer
m € {l,...,n — 1}. Note the validity of the test does not require any assumption
about the densities.
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Recently, Walther [38] proposed a multiple test for cluster analysis in two dimen-
sions based on a suitable combination of local log-likelihood ratio statistics, evaluated
on a fixed choice of axis-parallel rectangles. These statistics are not linear in ﬁIBn and
@n, respectively, but result in a subgaussian tail-behavior.

3 Asymptotic power
3.1 Minimax-efficiency and spatial adaptivity: local alternatives I

In this section, we show that the above introduced multiple testing procedure pos-
sesses optimality properties in a certain minimax sense. Nonparametric comparison
of different samples was recently investigated in the minimax approach by Butucea
and Tribouley [4], in a rate-adaptive way and of a different sense from our results
here. We focus mainly on the considerably more involved problem of efficient adap-
tivity. Let us first introduce some notation. For any set J C [0, 1]¢ and function f
from [0, 119 — R, || f|l; := sup,c; | f(x)|. For any convex I C RY et Hq (B, L; )
denote the isotropic Holder smoothness class, which for 8 < 1 equals

HaB.LiD) = [ : 1= R: ¢ -9 = Lix - yIf}.

Let | B8] denote the largest integer strictly smaller than 8. For 8 > 1, Hg(B, L; I)
consists of all functions f : I — R that are | 8] times continuously differentiable

such that the following property is satisfied: if Py(f ) denotes the Taylor polynomial of
f at the point y € I up to the [ 8] th order,

f@) =P < Lilx—ylf forallx,yel

In particular the definition entails that f € Hg(8, L;RY) implies f o U €
Ha(B, L; RY) for every orthonormal transformation U € R?*¢. For any pair of
densities (p, ¢) on [0, 1]¢, let h(m, n, p, q) denote the corresponding mixed den-
sity (m/n)p + (1 — m/n)q. Fix a continuous density # > 0 and define ]—'}Em’”)(ﬁ, L)
to be the set of pairs of densities such that

pP—4q

¢(m,n, p,q) = Vhm,n, p.q)

Reparametrizing the composite hypothesis With the notation above,

cHy (ﬂ,L; (0. 1]”’) and h(m,n, p,q) = h.

p=h- (1 +a —m/n)¢/«/ﬁ) and g=h- (1 - (m/n)¢/¢ﬁ).

Consequently “p = ¢” is equivalent to “¢ = 07, and if (m/n)p + (1 —m/n)q = h
is kept fixed, the composite hypothesis “p = ¢ reduces to the simple hypothesis
“¢ = 0. In order to develop a meaningful notion of minimax-efficiency for the two-
sample problem we treat subsequently the mixed density 7 = h(m, n, p, q) as fixed
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but unknown infinite dimensional nuisance parameter for testing the hypothesis
Ho: ¢ =0 versus Hyq: ¢ #0.

Note that in case that 4 is uniformly bounded away from zero and p is close to g, ¢
coincides approximately with the difference 2 (ﬁ - ﬁ), see also the explanation
subsequent to Theorem 3.

Remark 1Tt is worth being noticed that the optimal statistic for testing Hp against any
fixed alternative ¢ equals the likelihood ratio statistic

m

¢ - ¢
x =[] (1 +(1 - m/”)ﬁ(xi)) H (1 - (m/n)ﬁ(xj))v

i=1 Jj=m+1

dPgn,n,p,q)
dP(m,n,h,h)

whose distribution still depends on & under the null. Here and subsequently, the
subscript (m, n, p, q) indicates the distribution with density [/, p []/_,, 4 ¢- The
rational behind the reparametrization is to eliminate the dependency on the nuisance
parameter / in the expectation under the null of the first and second order term of the
log-likelihood expansion, resulting in asymptotic independence of % for its distribution
under the hypothesis for any local sequence (¢,,).

The subsequent theorem is about the lower bound of hypothesis testing within the
above defined classes of densities.

Theorem 3 (Minimax lower bound) Let

nlogn
Pmpn =\ ——<

B/(2B+d)
m(n —m))

and define c(B, L) =\ ——
QB+d)llvpl3

where yg defines the solution to the optimal recovery problem (2) below. Assume

that the sequence of mixed densities (h,) on [0, 11¢ is equicontinuous and uniformly

bounded away from zero. Then for any fixed § > 0 and every nondegenerate rectangle

J o, 11,

lim sup inf Ewn,pg) ¥n < «
T (paeFt M (B.L):
@11y =(1=8)c(B,L) pm,n

for arbitrary tests V¥, at significance level < .

Note that v, may depend on (8, L) and even on the nuisance parameter %, as
already does the Neyman—Pearson test for testing Hy against any one-point alterna-
tive.

We now turn to the investigation of the test introduced in Sect. 2. To motivate the
choice of an optimal kernel for our test statistics and its relation to the optimal recovery
problem, let us restrict our consideration to the Gaussian white noise context, leading
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in case of univariate Holder continuous densities on [0, 1] with 8 > 1/2 to locally
asymptotically equivalent experiments

hy (1) hy (1)
n = n e
NG dWi(t) and dX,,(t)=q,(t)dt+ T 5

for two independent Brownian motions W; and W> on the unit interval ([28], Theo-
rem 2.7 with fy = h, and Remark 2.8). Actually, &, is identifiable using the semi-
martingal quadratic variation of the processes X1, and X5, respectively. A multiscale
statistic built from standardized differences of kernel estimates

V(m/n)(I —m/n)
1 v/Rnll2

then yields a distribution under the null close to ours in Theorem 2, up to the fact
that our local integrals in dimension one are taken with respect to a Brownian bridge,
reformulated to a Wiener process integrator by change of the integrand. Concerning
the optimization of ¥, the quantity to be maximized within this Gaussian white noise
context appears to be the expectation of the single test statistics under the least favor-
able alternatives as their variances do not depend on the mean. In case &, = 1 this
expression equals

Xmn(f)=Pn(l) dt+

dW> (1)

/lﬁ(t) (dX1n (1) — dX24(1))

0 Jo@ y@)de
$€H, (B.L;[0,1]): 1112
lplly =5

’

leading to the dual representation of the optimal recovery problem (see [5]).

The optimal recovery problem in higher dimension In the framework of isotro-
pic Holder balls, the optimal recovery problem leads to the solution y = yg of the
optimization problem

Minimize ||y [, overall y € Hy (,3, 1; Rd) with y(0) > 1. )

The closedness of Hy (B8, 1; RY) N {y ‘R4 — R| y(0) > 1} in L, entails that the
solution exists, its convexity implies furthermore uniqueness whence by isotropy of
the functional class Hy (B, 1; R4 ) it must be radially symmetric. In case 8 < 1, one

easily verifies that yg(x) = ¥g (lx]2) = (1 — ||x||g) . In its generality, the opti-
+

mal recovery problem in higher dimension has not yet been investigated. Considering
the partial derivatives of y along the coordinate axes entails that v/ is necessarily
contained in H (B, L; R). However, the transferred optimization problem

minimize/l//(r)2|r|d_ldr over all ¥ with ¥ (||.|2) e Hg(B, I; R) and ¢ (0)>1
(3)
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does not coincide with the univariate optimal recovery problem due to the addi-
tional weighting by |r|¢~! which comes into play by polar coordinate transformation.
Whether the solution of (3) for B > 1 is compactly supported or not is still open. For
the case of univariate densities, it is known that the solution of the optimal recovery
problem has compact support for any § > 0 [23], but an explicit solution in case
B > 11is known for § = 2 only. Concerning details and advice on its construction,
see [6] and [24]. For dimension d > 1, see [19].

The next Theorem is about the asymptotic power of the multiple test developed
in Sect. 2. We restrict our attention to compact rectangles of (0, 1)? to avoid bound-
ary effects. This restriction may be relaxed by the use of suitable boundary kernels,
extending those of [25] for the univariate regression case to higher dimension.

Theorem 4 (Adaptivity and minimax efficiency) Let ¢, , denote the multiple reran-
domization test at significance level a, based on the kernel ygl{- > 0} rescaled to
[0, 1]. In case of unbounded support of Vg, we may use a truncated solution Yg g =
Ygl{0 < - < K}. Let O < liminf, m/n < limsup, m/n < 1. Assume that (hy,) is
equicontinuous and uniformly bounded away from zero. Then for any fixed § > 0,
there exists a K > 0 such that

lim inf inf Ponnpg) (bre =1) =1
" (paeF (B .L): "
161l >(A+8)c(B. L) om n

for any nondegenerate compact rectangle J C (0, 1)4.

In particular, the test is sharp-optimal adaptive with respect to the second Holder
parameter L. While in view of the results in [17] the optimal rate of testing may be
expected, some technical effort had to be done to propose a calibration achieving even
sharp minimax-optimality.

Remark Tt is worth being noticed that the procedure achieves the upper bound uni-
formly over a large class of possible mixed densities. The intrinsic reason is that
conditioning on &), is actually equivalent to conditioning on I?]I,,, which indeed is a
sufficient and complete statistic for the nuisance functional H,,.

Remark (Sharp adaptivity with respect to  and L) Our construction, including the
procedure especially designed for the one-dimensional situation, involves one ker-
nel, shifted and rescaled depending on location and volume of the nearest-neighbor
cluster under consideration. Due to the dependency of the optimal recovery solution
yg on B, the corresponding test statistic 7, = T, (8) achieves sharp adaptivity with
respect to the second Holder parameter L only. Taking in addition the supremum 7," :=
SUPge[ . A1 T, (B) over all kernels yg within a compactrange [Bo, f1] C (0, 00), sharp
adaptivity with respect to both Holder parameters may be attained, provided that the
above supremum statistic still defines a tight sequence (in probability), i.e. the cor-
responding sequence of 1 — a-quantiles «(X) is stochastically bounded. Then the
convergence
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Pinnpran) (T > K3 0) 2 Ponnpran (T30 B =Chin(B) > k5X0) — 1
asn — oo

for a suitably chosen random couple (}';1 , 75,1) and any choice of 8 could be be extracted

from the proof of Theorem 4. At least for 8 € [Bo, 1] this tightness may be deduced

from the fact that the unimodal and symmetric ¥g(||.||2) depends continuously on

B in the sup-norm—in particular £ (( f qbff )(x)d W(x))(t )) as defined in Theo-
,r

rem 2 with ¥ = g depends continuously on f in the topology of weak convergence.

A general investigation especially for 8 > 1 is beyond the scope of this article.

The next theorem shows however that our procedure simply based on the rectan-
gular kernel is rate-adaptive with respect to both Holder parameters (8, L). Due to
the fact that it combines locally all nearest-neighbor scales at the same time, it even
adapts to inhomogeneous smoothness of p — g, i.e. achieves spatial adaptivity.

Theorem 5 (Spatial rate-optimality) Let ¢, , denote the multiple rerandomization test
based on the rectangular kernel. Assume that 0 < liminf, m/n < limsup, m/n < 1.
Then for any fixed k € N and parameters (B, ..., Bk, L1,...,Lg), K > 0 and
any collection of disjoint compact rectangles J; C [0, 1]d, i =1,...,k, there exist
constants d; = d(B;, L;, K) with

lim inf inf Pnnpg) (Ji NDu(X) #BVi=1,... k) =1.

n—>00 (p.9):
(p—q)1s; €Ha(BisLizJi)
prq”‘/,- Zdi Pm.,n (ﬂ[)v
h(m,n,p,q)5; = K

3.2 The stylized type of locally constant alternatives on small and large scales: local
alternatives II

The results from the previous paragraph deal with small scales of different (arbitrary)
order depending on the smoothness classes under consideration. In particular, the
minimax lower bound is concerned with scales tending to zero as m,n — o0, and
it is not yet clear that there is no substantial loss at rather large scales. The size of
possible deviation ||¢||sup and the scale (here ~ (||@ | Sup/L)l/ﬂ) are linked in a specific
way depending on the smoothness class under consideration, because the smoothness
assumptions do not allow for arbitrarily fast decay to zero. The next theorem is differ-
ent in spirit. We do not focus on smoothness classes but on stylized situations with ¢
being lower bounded by a “plateau” of absolute value ¢,/ \/r@ within a ball By (6,).
With A denoting the Lebesgue measure on [0, 1]d, define

j_&m’”)(c,x, 8) == {p, g A-densities on [0, 119 : ¢(m, n, p, q)(2)
c

=
vnsd

Vze By(),0<c< néd},
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T (e x,8) = {p,q A-densities on [0, 119 : ¢ (m, n, p, ¢)(2)

—c
__- d
< WVZGBX(S),O<c§\/r?}

and
(m,n) . 7(m,n) (m,n)
g (c,x,8):=J; (e, x,8)UT """ (c, x,90).

Theorem 6 Assume that 0 < liminf, m/n <limsup, m/n < 1.

(1) If ¥ is any sequence of tests at significance level a € (0, 1), then

inf E Y, — 1
(Poa)EGm Gy x8) (m,n,p,q) Yn

implies that n5;‘f — 00 and ¢, — 0.
(i) If ¥, , describes the multiple rerandomization test based on the rectangular
kernel at significance level a € (0, 1),

3 k

inf En,n,p.q) 1//,“1 — 1,
(P.9)€G"™ M (cy,x,84)
h(m,n,p,q)>K >0

provided that nS;‘f — oo and /log(1/6,)/c, — O.

In particular our test is also consistent against local alternatives of the type «, ¢ /+/n
for k, — 00, ¢ # 0. Comparing (i) and (ii) demonstrates that the adaptive search for
the location of deviations costs an additional logarithm of its inverse scale. One may
read out of the proof that the restriction for the sequence (c;) in (ii) can be slightly
refined.

4 Application to classification
Suppose we are given an iid sample (X;, ¥;), i = 1, ..., n, where the marginal dis-

tribution of X; is assumed to be Lebesgue-continuous with density & on R4, and Y;
takes values in {0, 1} with

P(Yi=1]X; =x) = p(x).
Then M := 3! | Y; ~ Bin(n, ) with A := f,o(x)h(x)dx. Assuming A € (0, 1)
to be known, the question of local classification is to identify simultaneously sub-
regions in RY where p deviates significantly from A which results in local testing

the hypothesis

Hy: p=X versus Hy: p # A
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Imitating our procedure introduced in Sect. 2, we may combine suitably standardized
local weighted averages of labels, but the standardization differs due to the fact that
the sum of (strictly) positive labels is random and not fixed, in particular Y7, ..., ¥y
are stochastically independent. Consequently, we may then rely the procedure on the
classical Bernstein exponential inequality for weighted averages of standardized Ber-
noullis. Of course, the optimal separation constant for testing “o = A” within some
Euclidean ball B;(r) and its complement depends on the amount of observations in
B;(r), whence analogously to the consideration above for the two-sample problem we
may use the reparametrization of (p, 1) to (¢, h) with

_ P—A
¢ = A(l—k)ﬂ'

The power optimality results carry over to the classification context with similar argu-
ments as used in the proof of Theorem 4. We omit its explicit formulation at this
point.

5 Distribution-freeness via quantile transformation: the case d = 1

The one-dimensional situation allows for an alternative and more elegant approach
based on order relations. For let X(1y, ..., X(,) denote the order statistic built from
the pooled sample and define for any 0 < j < k < n the local test statistics

= 1 k .
Uy 12 YOTDI=) 1 5, (;TJ) AX).

Njkn NG -

where

n . . n . 2
2. 1 i—jy_1 =i
Tk "n—l%(“’(k—j) né*”(k—j))

Compared to the procedure described in the previous section, we omit the explicit
dependence of the weights on the observed values. Note that in contrast to near-
est-neighbor relations, the order remains invariant under quantile transformation, i.e.
rank(H, (X;)) = rank(X;), resulting in distribution-freeness of the corresponding
multiscale statistic under the null. Suppose the null hypothesis is satisfied for some
Lebesgue continuous distribution on the real line. Then conditional on the order sta-
tistics as well as unconditional, the label vector is uniformly distributed on the set

n
{A ef{n/m,—n/(n —m)}": ZAI._I = O].
i=1
The described test statistics are local versions of classical Wilcoxon rank sum statis-

tics. We omit any further investigation as the calibration for multiple testing can be
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done analogously to that proved in Theorem 2—but keep in mind that the approxi-
mating Gaussian multiscale statistic under the null hypothesis will be independent of
the nuisance functional H,, due to the quantile transformation. Note that the use of
typical mathematical tools for power investigation of rank statistics like Hoeffding’s
decomposition is getting involved because the kernel /g for 8 < 1isnotdifferentiable.

6 Proofs and further probabilistic results
6.1 Decoupling inequality and coupling exponential bounds

This section contains the coupling exponential bounds, i.e. in this context for weighted
averages from a hypergeometric ensemble. Using a different technique, namely an
explicit coupling construction, the subsequent proposition extends results of Hoeff-
ding [16] on decoupling of expectations of convex functions in the arithmetic mean of
a sample without replacement. Whereas in the latter case decoupling with constant 1
is actually correct, a simple counterexample for an ensemble of two elements already
shows that the result does not extend to arbitrary weighted averages, and some payment
for decoupling appears to be necessary.

Proposition 7 (Decoupling inequality) Let Z1, Z3, ..., Z, be iid with
P(Zi=1)=" and P(Zi=0)=1—". 0<m<n.
n n

Leta € R" with 3"}, a; =0and ¥V : R — R be convex. Then
n n n
]E(\y (Za,-z,») > zi= m) < ]E\I-'(S(m, n) Zaizi),
i=1

i=1 i=1
-1 . S n—-S . m
Sd(m,n)”" := Emin{ —, , S~ Bin (n,—).

m n—m n

with

In particular, §(m, =1+ O(n’l/z)for m/n— A€ (0,1).

Proof Let X be uniformly distributed on the set

n
{x e {0, 1}": in = m}
i=1
and let S ~ Bin(n, m/n) such that X and § are independent. Define
M:={i: X;=1}.

Conditional on X and S, the random vector Z € {0, 1}"* is constructed as follows:
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If S > m,let Z; = 1 foralli € M and let (Z;);cpc be uniformly distributed on the
set

[ze (UR VN P =S—m}.
ieM¢
For § <m,let Z; = 0foralli € M and let (Z;);cp be uniformly distributed on
[z efo.pM:> 7= S].
ieM

Note that Zy, ..., Z, are iid Bin(1, m/n). Then

X, S)) (Jensen inequality)

(
IE\I/(I l;wa, +1{S > m)} (lézﬂ;a, zerai))
e
(

n—>S
I{S Za, + I{S > m} _mZa[) (since X7, a; =0)

lEM ieM

) ] z a; X ,) (Jensen inequality).

Furthermore,

Emin(ﬁ, n_S):l—E((S_m)_ +(S_m)+)
m n—m m n—m

g tS=m
min(m, n — m)
-~ 1_ A(m, n)
> NG
with A(m,n) = Jmmn — m)/min(m, n — m), which is uniformly bounded for
m/n — i e (0,1). O
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Using the decoupling above, the next proposition presents the exponential bounds
for the combinatorial process which are essential for our construction. It implies Prop-
osition 1 and improves in particular exponential tail bounds for the hypergeometric
distribution of Serfling [34] in the coefficient in front of 5> for m/n close to zero or
one, moderate n and large n. Note that this coefficient is crucial for the efficiency of
the testing procedure. The results may also be compared with the decoupling based
exponential tail bounds in de la Pena [29,30].

Proposition 8 (Coupling exponential inequalities) Let Z1, ..., Z, be iid with

P(Zi=)="2 and P(Zi=0)=1—-"2, 0<m<n.
n n

Let i1, ..., Y real valued numbers with  its arithmetic mean and denote

2= Var (Z viZ
i=1

Zz _m) ";E’;:’f;zw—@?

Then in case of Ym n # O,

(‘ ymnzzp, (z ——) I > 8(m. n)n

i=1

< 2 exp (_L)
- 14+n Ry, m,n)

<2ex 31 + ?
- P 2c(m,n)  2c(m,n)?)’

where
R(lﬁ7 m, n) = wmax(ﬂ’ 1 — ﬁ) and
3 Ym,n n n
max(m,n — m)
cm,n) = ———
m(n —m)
Proof With

M = wl’nax(ﬂ’ 1— ﬁ)
Ym,n
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we obtain for any r > 0

1 < m n
IP>(7/m,n ;VIZ (Zl a ;) > 8(m7 n))’] ;Zl = m)

:P(l ix%—&wz—%)>ammn

Ymn i 5

i=1

< exp (—t %) E[exp(% Zn: (Wi _ &) (Zi _ %))

= i=1
n
n ! o _m .
< exp (—t M) Eexp(M - ; (i — ) (Z, p )) (Proposition 7)
gexp(#(e’—l—t)—t%), 4

whereby the last inequality follows from the fact that for any random variable Y with
|Y| <1,EY = 0and Var(Y) = 02,

Eexp(tY) <1+02(e' —1—1) < exp (az(et —1- t)).

Elementary algebra shows that (4) is minimized with the choice ¢ := log (1 + nM),
which yields first a Bennett exponential bound (see [3]) and because of (14 x) log(1+
X)—x > (x2/2)/(1 + x/3) consequently the Bernstein type

C n’/2
>2=n) <0 (-55s)

i=1

P( 1 ﬁ:%(z,_%)>amLmn

Ym.,n i1

A symmetry argument provides the same bound for ¥; replaced by —1/;, which com-

pletes the proof of the first inequality. Using that y,, , > +/(m/n)(1 —m/n) max; |;
— 1|, we obtain the second asserted inequality from

2 /2
14+n9M/3 — 1+ncim,n)/3
_ n _ n
© 2c¢(m, n)/3  2c(m,n)/3(1 +nc@m,n)/3)
n 1

Z%wﬂyd_kmmﬂm'
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6.2 Auxiliary results about empirical processes

This section collects results in the context of empirical processes which are essential
for the next section. For any totally-bounded pseudo-metric space (7, p), we define
the covering number

N, 7,p):=min47y: 7o C 7T, ing,o(t,to)feforallteT].
ISP

Let B(7) denote the Borel-o-field on 7 induced by the pseudo-metric p (which
induces a topology in the usual sense, although without the Hausdorff-property if it is
not a metric) and let  C [0, 117 be a family of measurable functions. For any prob-
ability measure P on B(7), consider the pseudo-distance dp (f, g) := f |f —gldP
for f, g € F. Then for any u > 0, the uniform covering numbers of F are defined as
N, F) := sup p N(u, F,dp), where the supremum is running over all probability
measures P on B(7).

Theorem 9 ([11, technical report]) Let Z = (Z(t));e7 be a stochastic process on a
totally bounded pseudo-metric space (T, p). Let K be some positive constant, and
for § > 0 let G(-, ) a nondecreasing function on [0, 00) such that for all n > 0 and
s, te7,

P [ |Z(s) — Z(1)]

> G(n,S)] < Kexp(—n) ifp(s, 1) =34. (%)
p(s, 1)

Then for arbitrary § > 0 and a > 1,

Ké
P{|Z(s) — Z(t)| = 12J(p(s, 1), a) for some s,t € T, with p(s, t) <38} < >
a

where T is a dense subset of T, and

€

J(e, a) = /G(log(aD(u)z/u), u)du,
0
D) =D, 7, p) :=max{#7,:7, C T, p(s,t) > u fordifferent s, t € 1,}.

Remark Suppose that G (17, §) = ¢ n? for some constants g, g > 0. In addition let
D) < Au~8 for0 < u < 1 with constants A > 1 and B > 0. Then elementary
calculations show that for 0 < € < landa > 1, J(¢,a) < Ce (log(e/€))? with

C =g max (1 + 2B, log(aAz))q fOl (log(e/2))? dz.

For the proof of Theorem 2 the subsequent extension of the Chaining Lemma VIL.9
in Pollard [31] and Theorem 8 in the technical report to Dmbgen and Walther [11]
will be used. It complements in particular the existing multiscale theory by a uniform
tightness result and to a situation where only a sufficiently sharp uniform stochastic
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bound on local covering numbers is available, which typically involves additional log-
arithmic terms. The situation arises for example in the multivariate random design case
where a non-stochastic bound obtained via uniform covering numbers and VC-theory
may be too rough.

Theorem 10 (Chaining) Let (Y,),eN be a sequence of random variables such that
Y, takes values in some Polish space Y,. For any y, € Y,, let (Z,(t; yn))ze?'yn

be a stochastic process on some countable, metric space (’]}n, on(., yn)), where
(s 3 yn) < 1. Suppose that the following conditions are satisfied:

(i) There are measurable functions o,(.;Y,) : Ty, — (0,1] and G,(.,8) :
[0, 00) — [0, 00) such that for arbitrary s,t € Ty,, n > 0and § > 0,

P (12001, Yl = 00(t: Ya)Ga01,8) | Ya) < 2exp(=n) if 0ut: Ya) = 5,
lon (15 Yn) — on(s; Yy)]
s,t€Ty, on(s, 15 Yy)

< C < oo for some constant C > 0,

G,(n,3
{t €Ty, :0n(t; Yy) =8} is compact, and G,:=sup  sup n(1,6) o
neNn>0,0<é<l1 1+ n

(ii) There exists a sequence (Cy),eN of measurable sets and positive constants
A, B, W, o such that

N(us, {t € Ty, : 0u(t: Yn) < 8}, pu(., 3 ¥n)) < Au=B87" [log (e/(s))]*
foru, § € (0,1]

whenever Y, € C,.

For constants q, Q > 0 define

Z,(s;Yy) — Z,(1; Y,
An(8,q. Q: Yy):= sup | _”(S n) = 2 _”)' <0t
5,0€Ty, :pn(s,;Yn) <8 on(s, t; Yy)llog(e/ou(s, t; Yu))]4

Then there exists a constant C =C(G,, A, B, W, a, q, Q) > 0 such that for 0 <5 <1

< Gn (Wlog (1/0,(t; Yn)) + Cloglog(e/on(t; Yn)), 0u(t; Yn))

")

Y,,) - C/ log(e/8) whenever Y, € C,.

P (lzn(t; Yl
on(t; Yy)

+ C/log(e/on(t; Yy)) on {t : 0y(t; Yy) < 8}

is at least P (An(28, q, Q;Yn)
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If in particular PY(C,) — 1 and limg\ o inf, P (A,, 6,q, 0; 1)
then the sequence

Y,,) =1a.s.,

E( sup [M - G,,(Wlog (1/0u(t; Yn))
teTy,

on(t; Yy)
y,,)

is tight in (]P’Y")-probability, provided that inf,, SUP;eT;, On (t; Yn) > Oa.s.

+ Cloglog (E/Un(t; Yn))a on(t; Yn))]

Remark Note that in case of G(n, §) = (Kn)l/ “ with k > 1, we obtain by the series
expansion of (1 +z)* for0 <« < l and |z] < 1

G (Wlog(1/8) 4+ Cloglog(e/d), §) + C/ log(e/$)
= (cW log(1/6)'/* + 0 (loglog(e/8)[log(e/8)]'/ ")
= (kW log(1/8)Y< +o(1) as s N\, 0.

Proof The proof of the first part follows in spirit that of Diimbgen and Walther [11],
technical report, and is sketched in the extended version of this article.

Concerning the tightness in probability as stated in the second part of the theorem,
notice that the result does not follow by an immediate continuity argument because
the metric (and the metric space) change with both, Y, and n, hence some additional
uniformity is required. For0 < § < 8 < 1let U, (8, §'; Y,,) be defined by

| Zn(2; V)l .
sup L — Gu(Wlog (1/04(t; Yy))
Un(UYnI)]?(Bv‘S/] O'n(l, Yn)
tely

+C 10g10g (E/O'n(t; Yn))’ Un(t; Yn))]~
First observe that for any fixed K > 0,

IP’(Un(O, 1.Y,) > K

Yn) < IP’(Un(O,(S; Y,) > K2

Yn)

+P (U,,(S, 1.Y,) > K2 Yn). (6)

The first part of Theorem 10 implies that the first term on the right-hand-side in (6)
is bounded by 1 — P (A,(23, g, Q; Y,)|Y,) + C/log(e/s) for K > 2C/log(e/s)
whenever Y, € C,. Concerning the second term in (6), note that

1
U@, 1: %) = = inf Ha@3Y) 45 swp | Zu(s V)|
8el8,1] )

l‘ETynZ
on(t;Yn)=>48
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Yn) =0 a.s.

For e > 0 and y, € Cy, let t1(yn), ..., tm(y,) (Yn) be a maximal subset of 7,, with
Pn(ti, tj; yu) > € for arbitrary different indices i, j € {1,...,m(y,)}. Note that
m(y,) < Ae~B[log(e/e)]* by assumption (ii). Then condition (i) implies that

Then the conclusion follows if we establish that

lim limsupIP’(sup |Z,,(t; Y,,)| >K; Y, e(C,

K—00 p—soo 1Ty,

K=00 n—o0 s (Yn)

lim hmsupIP( sup | Zy (i) Ya) | > K| Yy =yn)=0 a.s. (7)
i=1

On the other hand, we have on the set A, (¢, g, Q; Y;,) the bound

sup |Zy(1; Yy)| < Qellog(e/e)]? sup | Zn(6i(Yn); Yo) |- ®)

teTy, i=1,...m(Yy)

With ¢ tending to zero sufficiently slowly, (7) and (8) show together with the stochastic
equicontinuity condition lims g inf, P (A,, 6,q,0; 1) ’ Y,,) =1la.s.

Y, = yn) =0 a.s.

Since the assumption inf, sup,er, on(t; Yn) > 0 a.s. guarantees

lim llmsupIP’(sup ‘Z (t; Y)’ > K

K—oco pn—oco €Ty,

lim sup]P’(Un
K—oo p

n) =0a.s.,
the tightness in (PY7)-probability is proved. O

6.3 Proofs of the main results

Proof of Theorem 2 Let A, := m/n.In view of the T}, s, the behavior of the process

| x; - x

L (i) veme)

1<j<n,0<k<n-—1

conditional on A}, needs to be investigated, where A o IT|X}, is uniformly distributed
on the set

i Xy = (1, =1/ =2} D M) =0
xeX,
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For notational convenience it seems useful to redefine the process on the random index
set
A (1|

viathemap (j, k) — (Xj, H X;— X]]‘ || 2) and extend it to a process (Y;, (¢, 7)) ¢ ryeT

Xj—Xl;Hz): l§j§n,0<k§n—l}

with 7 := {(t,r) : 1 €[0,1], 0 < r < max, g ¢ lx — ]2} by the definition

Ya(t,r) = /ny/an (1 = ay) / v (@) (P} (x) — dQJ (x)).

where f@,? and @,I? denote the empirical measures based on the permutated variables
Xnay, -+ Xnem) and Xagn41y, - - -» X, respectively. Let

Tu(t, 12 == Var (Y,,(t, " l X,,)

2
— L/ |:¢ (M) _/1// (w) dﬁn(z)] dﬁn(x),
n—1 r r

with Jﬁln the empirical measure of the observations X1, ..., Xj.

In the sequel we make use of the results in the previous section twice—in order to
prove the tightness and weak approximation in probability of the sequence of con-
ditional test statistics and within the “loop” we use the chaining arguments again to
establish a sufficiently tightened uniform stochastic bound for the covering numbers
below.

1. (SUBEXPONENTIAL INCREMENTS AND BERNSTEIN TYPE TAIL BEHAVIOR) The
inversion of the conditional Bernstein type exponential inequality in Proposition 8
shows that for any n > 0,

(I Y, (t,r) . )
Pl | = > Gn (0, Vu(t, 1)) | Xn ) <2 exp(—n),
Vn(ta r)

where
R R R 5 5\ 12
G (0, a0, 7)) i= Ra Gat. ) 11+ ((Ra G 1, 1) 1) +26(m, m)?)

with

21 supv/An (1T — Ap)
3min(A,, | — A /nt

R, (t) :=8(m,n)
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Let the random pseudo-metric p, on 7 be defined by

B (0. 7). (1)) == Var (Yn (t,r) — Yot 1)

Xn)

= n”j[ / Wir (2) — Yy (0))2 d T (x)

2
- (/ (Wrer (x) — Yrprpr (X)) dﬁn(x)) :|,

with ¢ (x) == ¢ (@) . Then the application of the second exponential inequality
of Proposition 8 implies for any fixed (¢, r), (t/, ') € 7 that

]P)(}Yn(tvr) - Yn(tlvr/)} > 16\71 ((tsr)v (tlvr/)) qr}‘X}’l) = 2 exp(_n)v

where

O, (1 —Ap)
2max(A,, 1 — 1,)2

q :=2(1 + (1og2)1).

II. (RANDOM LOCAL COVERING NUMBERS) We need a bound for the local ran-
dom covering numbers N ((u8)'/%, {(¢,r) € T, : ¥u(t, )* < 8}, py). This is the most
involved part of the proof. In contrast to previous work we aim at a uniform stochastic
bound. In order to establish a sufficiently sharp upper bound, the following two claims
are established:

(i) Let

Pan ((1,1), (1, V’))2 = / Wrr () — Yy (0))? d I ()

o~

and define d,, for arbitrary different points in 7, via

d* =max [E73,,. 4/n] (14 Clog (4¢ [ max [E73,.4/n])).

with C a positive constant to be chosen later. Note that the map x +— x
V14 2Clog(y/e/x) is subadditive for x € (0, 1], hence d, defines a metric. Fur-

thermore let y,* ;== Ey5, — (]E?Ln)z, where

2
Pinlt,r)? = ( / wumﬁn(x)) and P, (1,r)% = / Y (x)2dH, (x).

Then there exist a constant C’ > 0 and a sequence (C,),cn of measurable sets with
PE" g Q;Q?(n_m)(cn) — 1, such that forany § > 0, u € (0, 1] withu$ > 4/n and any
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realization (X1, ..., X,,) € C,

N (ws)? fa.r e T 7t r? < ). 70)

= N (@2 1) € T yant.n? = C'6 loge/8))*}. dn),

if ¥ is not rectangular. In case of the rectangular kernel, the set

{t.1) € T yant.)? = C'8 log(e/o))*)

in the covering number has to be replaced by

[t.r) €T yante 1) = €5 loge/))?)

U {(t,r) €T, ponlt,r)? = 1-C's (10g(e/8))4}.

(ii) There exists a constant A >0, independent of u,dé and n, such that when-
ever ué > 4/n, the upper bound given in (i) is again bounded from above by
Au—@thg—1 (log[ e/(u8)])5(d+1) . Moreover, the latter bound remains valid with 7°
in place of 7.

Note that we do not rely our bound directly on uniform covering numbers and Vap-
nik—Cervonenkis (VC) theory as the envelope I{X € A} only allows for a bound
of order =282, which would result in the loss of efficiency of the procedure, and a
pre-partitioning of 7,, as used in the proof of (ii) seems to be rather involved.

Proof of (i): we first derive a uniform stochastic bound for the random metric 03 .
Recall that every function ¥ of bounded total variation is representable as a difference
of isotonic functions ¥ (1 and v . With the definition of the subgraphs

sgr( ,‘j)) - {(x,y) €0, 11¢ xR: y < 1//,<;'>(x)}, i=1,2,

the set {sgr( ,(j)) 1 (t,r) € T} has a VC-dimension bounded by d + 3 [37] with
envelope TV (). Consequently, the uniform covering numbers N (e, F) with

F = {(l,lftr - 1;0t’r’)2 (), (t/’ V/) € T}

are bounded by Ce™* for some real-valued @ > 0 and some constant C > 0. The
boundedness of ¥ shows that F is uniform Glivenko—Cantelli in particular (see [8],
for instance). As an immediate consequence,

nli)n;oP(H Bon (1), (0 1)) = B (1 1), (', 7)) fof > a) —0, (9

for any § > 0. However such a bound is not sufficient for our purposes. Because of
IV llsup < 1, the squared random metric ﬁ% ,, is 1/n times the sum of » independent
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random variables with absolute values < 4, hence
o~ ’ / 2 4 o~ ! / 2
Var (P (121 1)) = ZE (P2 (). (1))’
4 - 0>
< max [—, E (p2,n ((t.r), (") )] :
n

Now the application of Bernstein’s exponential inequality (see [35]) entails

o~ / / 2_ -~ !/ /7 2 2
P(Ipz,n (0,1, (1) = Epan (1. 7). (¢, 7)) ‘>n) e (_ n?/2 )

max[4/n, Bz, ((t, 1), (¢, 1))?] 1+1/3

<2 ) +9
exp|—= =
= P\ 737175

for arbitrary points (¢, r), (t/,r') € 7. Le. ﬁ%n Eﬁzzn, standardized by max {4/ n,
,o2 n} has (uniformly) subexponential tails. Analogously, the process ,o2 n = ]E/o2 n

has subexponential increments with respect to the metric D, given by
- 2
D, (@, b) := max [1/;1, E (ﬁgn(a) — ﬁ%n(b)) } I{a#b), abeTxT.

Note that max[4/n, Eﬁ% ] s Lipschitz continuous with respect to 5,,. Theorem 9
shows that the above ingredients imply that limsx o inf,, P (An 6,1, 0; &) | X,,) =1
for some adequately chosen Q > 0, where we use the definition of .4, from The-
orem 10 with ¥, = &), and Z,, = f)‘%’n — Ef)\in. Now we may apply the latter to
conclude that there exists some universal constant C > 0 such that the probability of
the event

{720 (@10, @) =B (1) )|
> C max [4/n, Epan (1, 7). (7, r’))z]
x log (4 e/ max [4/n, Epan (£ 7). (¢, r/))2])
for some (1, ), (', ') with B, (1,7, (¢, 0)* =8} (10)

is bounded by some function £(8") independent of n with lims o £(8") = 0. Since the
probability in (9) is antitonic in § for any fixed n with limes 0 as n — oo for any fixed
3, there exists a sequence §, \, 0 along which the result of (9) still holds true. Thus,
combining (9) and (10) for a sequence &' = &), \ 0 sufficiently slowly implies the
existence of a sequence of sets (A,),en With P& @ Q®*~")(A,) — 1 such that

1/2 1/2
P2.n < max [4/11 IE,o2 n] (1 + Clog (4e/max [4/n E,o2 n]))
whenever X € A,.
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The treatment of the random set
Bs = {(t,r) €T, ynt,r)? < 8}

is similar in spirit but more involved because the random quantity ?,12 is not repre-
sentable as a sum of independent variables. However we can use the decomposition
[(m — 1)/ n]'y\n2 = ')72%” — )7]2”. Before deriving a stochastic bound, we notice the
following: if ¢ describes the rectangular kernel, we have ?22" = Yin, le.

7, =72, =75, (1-72).
In this case, the random set B:; is consequently contained in the union
{ﬁngza}u{ﬁnzl—za}. (11)
Consider the general case. Using that

Var (71,01, 1) = 2Z(]‘EWX)2 Edr () < E (Pt ) (12

i=1

N

and

n

Var (7ot r7) = Z(Ellfn(X) —(Ex/ftr(m)) LB (Rt 7). (3)

i=1

we may apply the above chain of arguments for 5%,n to 71, and 5/\2%” together with
the upper bounds in (12) and (13) for the standardization respectively and obtain the
existence of a constant C; > 0 such that

1/2
C1 max [l/n, )/22”]

Yin — T : log (eﬁ/ max [1/n, y£,1]1/2)

172
C1 max [l/n, yzzn]

G ' log (eﬁ/ max [l/n, sz,n]l/z)

whenever X € D, for some sequence (Dy),en With asymptotlc probability 1, uni-
formly evaluated at (¢,7) € T Note that y; , > 1/n, y2 o = 1/nforall (z,7) € T

The same holds true with a constant C> > 0 and a sequence (D)), <N With asymptotic
probability 1 and y; , and y, ,, replaced by 7722n and y22’ ,,- Using the lower bound for

=< T/\l,n <Vin+

@ Springer



542 A. Rohde

5/\2%" and the upper bound for 7] ,, a bit of algebra yields

. 5 5 , 112 K , 112 2
Bs C yzgn—ylﬁn§8+max [l/n, Vz,n] ﬁ log eﬁ/max [l/n, )/2,”]

whenever X € D, N D,’l, 8 > 1/n. Here and from now on, K denotes some universal
constant, not dependent on n and (z, r). Its value may be different in different expres-
sions. Now we first consider the case

sup sup (yﬁn/yzz’n) <C' <l
neN (t,r)e7

Then the above condition shows that

12 K 172\ 1%
y22n(1 —C) <68 +max [l/n,yzzn] 7 |:10g (eﬁ/max [1/n,y22n] )]

< 2max iS, max [l/n’ )/22)”]1/2 % |:10g (e«/;/ max [l/n, sz,n]l/z)ir],

which entails that 722,;1 < K 8[log(e/8)]* for § > 1/n by the isotonicity of x >
)c[log(e/x)]4 on (0, 1]. On the other hand, the case

sup sup (yl%n/yz%n) =1 (14)
neN (t,r)eT

implies already that v is equal to the rectangular kernel: if the sup is attained it is obvi-
ous. The equicontinuity of (%4,),cN and its uniformly bounded L{-norm ||h,||; = 1
imply its uniform boundedness, hence relative compactness in the topology of uniform
convergence by the Arzela—Ascoli-Theorem. There therefore exists at least a uniformly
convergent subsequence (/1,,,(,y) with (uniformly) continuous limit, say 4, along this
result holds true as well, because max; )7 ()/12 " / y22’ n) depends continuously on the

mixed density. This however implies that ¥ describes the rectangular kernel, because
the uniform limit / of that subsequence is bounded away from zero. Hence in case of
(14), we consequently obtain by (11)

Bs < {v3, = Ks og(e/s)*} U {y2, = 1= K5 (log(e/o))*}
whenever X € D, N D,, § > 1/n.

Proof of(ii): Since ¢ is of bounded total variation, there exists some finite measure
such that forany 0 < z1 < z2 < I, [ (z1) — ¥ (22)| < ulz1, z2]. With

[— ! _
M(t, 1 rr) = |:O, u} A |:()’ M}

r r
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we obtain

Epsn (1, 1), (1)) < / Wi () — Y ()2 dHly ()
< K/,u(Mx(t,t/, r,r)) dH, (x)
= K//I{y e Mc(t,t',r,r")}dH, (x)du(y) (Fubini)

< K sup /I{y € My(t,t',r,r')} dH,(x). (15)
yelo,1]

Then y € M, (¢, ¢, r,r’) implies that x € B, (ry) ABy (r’y). Since hj, is uniformly
bounded from above, we obtain that (15) is not greater than K (B,(r)ABy(r')).
Consequently, d,, < K d if d, > 4/n with the metric d defined in (16), due to the
isotonicity of x +— x(1 + Clog(e/x)) for x € (0,1], C > 0. ¢ attains its maxi-
mum 1 at 0, hence there exists some r* > 0 such that ¥ (||x|2) > 1/2 whenever
lx|l2 < r*. Using in addition the uniform boundedness of h, away from zero we
obtain y2 , (¢, r)?>K-r? (t,r) € T. We now start bounding the covering numbers

N ((u6)1/2, {(r, P eT :yanlt,r)? <Ks (10g(e/6))4}, d),

where the metric d on 7 x 7 is pointwise defined by
d ((t.r), (') = (B.(r) ABy () (1+c log [V e/k (B,(r)AB,/(r’))]) (16)

with V = )\(Bo(\/z)) the volume of the d-dimensional Euclidean ball with radius
Vd. Again by the isotonicity of x > xlog(e/x) for x € (0, 1], the inequal-

ity d ((t,r), @, ) = & (B,(r)AB,/(r/))l/2 < ¢&/y/log(V e/e?) implies that
d ((t,r), (', r")) is not greater than (2C + 1)!/?¢. Thus in order to finish claim (i), it
is sufficient to bound

N ud 1/2 . T4 <50 sndl g 7
(W) Awnerirt <sogesnyt].a)  amn

First note that there exists a finite collection of at most m < K /(§[log(e /1Y points
f1. ...ty such that the set {(t,r) € T : r < §(log(e/8))*} is contained in the union
U | A; with

A= {(r, 1) eT:B(r)C B, ([K/a(log(e/s))“]l/d)}

@ Springer



544 A. Rohde

for some universal K’ > 0. The rotation and translation invariance of the Lebesgue
measure leads to the rescaling invariance for the covering numbers

N (81/2’ {(t,r) : B;(r) C Bo(R)}, &>

- N ((S/Rd)l/z, {(t. ) : B,(r) C Bo(1)), J). (18)

But a minimal d- (¢/R%)!/?-net of the set {(t,7) € T : B,(r) C Bo(1),r =r'}
for some fixed r' > &'¢/R contains not more than M = K[R%/e]? ele-
ments (t1,7), ..., (ty, ") with K uniformly in r’ € (¢'/4/R, \/d], noticing that
MB;(r)ABy(r)) < K|t —t'|lor? " and r < +/d. Now fix a K (¢/R%)-netty, ..., ty
withrespectto ||-||2 and observe that A(B, (r) A B, (")) < Kr¢='(r—r') forr > r',r <
V/d, which shows that the quantity (18) is bounded by K (R?/e)d*1 (with K uniformly
in ¢ and R). Correspondingly, this holds true for N ((u&/ log[e/(ué)])l/z, A, c?),
hence the covering number (17) is bounded by A(S’lu’(‘”l)(10g(eﬁ48))5<d+1) for
some universal constant A > 0. An analogous bound holds for 7, in place of
T (and u8 > 4/n): If (t1,r1), ..., (t, rr) denotes an e-net with respect to d in
B C T, we may define a 2&-net (¢,71), ..., (&x,7x) in 7, N B via the definition
@G, 7)) = argmin(t 1eT.NB d ((t,r), (¢, r;)). The corresponding covering numbers in
case of the rectangular kernel for the sets {)/22 ,>1—Kélog (e / 5)4} can be treated
with similar arguments, which concludes the proof of (ii).

In order to line up with the requirements of Theorem 10, let us remark that the
proof of that chaining requires only the special choice u = u(§) = (log(e/8))”
for some exponent y < 0, which entails that § < n~!(logn)® for some a > 0
in case u§ < 4/n. But for any o’ > 0, ﬁ{(z,r) € ﬁ rd < Kn_l(logn)“/} =
>t {(Xi, r) € ’]A;, rd < Kn_l(log n)“/}, and with the same arguments as used in
(i) we obtain forr,f = n’l(log n)"‘/ that the inequality ]ﬁln (B, (rn)) < KX(B;(rp))logn
holds, uniformly in ¢z € [0, 1], with asymptotic probability 1, which entails
ji{(t, e, rl< Kn’l(logn)"‘/] =0, (n(logn)"‘”) for some o’ > 0.

III. (TIGHTNESS AND WEAK APPROXIMATION IN PROBABILITY) As a consequence
of the above exponential inequalities in step I and the bound for the uniform covering
numbers N (8, 7), Theorem 9 shows

Xn) =0,

(19)

Yo(t,r) —Yu(t', 1’
lim 1im sup P Yt 1) = Yu 0, ) >

Sup = / / _ li /
0 n—>00  \ 5 ((t.r). "1 <8 Pu((t, 1), (', ")) log (e /Pu((2,7), (1, 77)))

where the sup within the brackets is even running over elements of 7 x 7. Now the
application of Theorem 10 entails that £ (7, o IT| X,) is tight in (]P’ffm ® Q;?("_m))—

probability. What remains being proved is the weak approximation. Starting from
(19), the uniform convergence (9) implies in particular the asymptotic stochastic
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Xn)zo

Since to any subsequence of the metric p, there exists some uniformly convergent sub-
subsequence as a consequence of the relative compactness of (h,),cN in the uniform
topology, it suffices (via proof of contradiction) for the weak approximation in prob-
ability

equicontinuity

lim limsup &Y, P* sup Yo(t,r) = Yu(t',r)| > &
6\0 N 00 (Pn-an, n) pn((t,r),(t’,r’))fts } }

forall ¢ > 0.

d {2 (406, Memrer | 2), £(Zatner) | — pomggsom O

to establish the convergence of finite dimensional distributions. Here, d,, is defined
via the outer expectations E*. For let {(t1, r1), ..., (t, r¢)} be a collection of points
from 7 . Denote furthermore a,;(X;) := n_1/2«/)»n(l — An) Y (X;). Then

(Yn(t,r))(t,r)e’]' = (Zart(Xi)A(ti)) s
i=1

(t,r)eT

with 7/ the i’th nearest-neighbor of ¢ within &j,. Let (Z, (¢, ) )e7 be pointwise

be defined by Z,, (¢, r) := /A, (1 — Xy) f¢£';)(x)dW(x). Using that 2 cov (X1, X»)
equals Var(X1) 4+ Var(X») — Var(X| — X») for two random variables X and X», one
finds that [(n — 1)/n]cov (Yn (t,r), Y, r") ‘ Xn) equals

1 —~ 1 _ 2
) / (Yir (x) — Yy (x))* dH, (x) + 5 (/ Wer (x) — Yy (x)) dH, (X))

1 .
s / Vo (02d L (x)

1 . 2 . 1 - 2
-3 ( / wtr<x>dHn(x>) +3 / Vi (P d By ()~ ( / Vw0, (x)) .

(20)

Replacing the empirical measure ]ﬁIn by its expectation H,,, the above six expressions
in (20) coincide with the covariance cov (Z,, (t,r), Z,(t',r )) of the limiting process

Zy. Define @) :=n~! 37_ a") (X), j = 1.... k. Since

rjtj

2
max; (ar(;’t)j (Xi) — a" )

Ek AV N 0 (11— o0)
- 2 P;@m®Q;l®(ﬂ*m)
= (a0 -
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and |cov (Y, (t,r), Yo (', ') | ) — cov (Z,(t,7), Zy(t', 7)) | — pemggen-m 0
by an application of the weak law of large numbers for triangular arr:;ys to each of
the expressions in (20) separately, Hdjek’s Central Limit Theorem for permutation
statistics extended for the multivariate setting yields the desired weak convergence in
probability of the finite dimensional distributions. For notational convenience, define

6.8 = sup  {|TjxnoTl| — Cjn}
(k)
(s<)/n(j~k)§5/
and
o (x) dW (x) |
S,(8,8):= su | i —J21og (1 /v, (¢, H?) L.
(0.0):= s X V2108 (131, 1)?)

S<yu(t.r)<d’

Since SUP, e\ 7, d(t, ’/T;) — pemgQen-m Oand SUDP(j k): v (k)8 |C.,'kn—(2 l"jk,,)l/2|

— pom Q20— 0 as n — o0, it follows from the above established results that

dw (E (Tnn (6’ 1) | Xn)v £ (Sl‘l (61 1))) —>P?m®@,§m_m) O

for any fixed § € (0, 1]. An application of Theorem 10 as well as its subsequent
Remark imply that

%{n limsup EP (TnH(O, 8) > ¢ | Xn) =0 and %i\r%lim supP (S,(0,8) >e)=0

n—o0 n—oo

for any ¢ > 0. Thus, because obviously lims\ o lim sup,,_, o, P (5,(8, 1) < —¢) =0,
we obtain

du (L (110, 1| X,), £(Su(0, 1) —> pomggenm 0.

O

Proof of Theorem 3 Let C be some compact rectangle of J. Fix 8 > 0. For any integer
k > 11letC, x C C be some maximal subset of points such that ||x — y||» > 2k, and
B, (ké,) C C for arbitrary different points x, y € C, x. Then #Cp x ~ (k(Sn)_d. Now

let ¢, » be the solution of the subsequent optimization problem:
(*) Minimize || g||2 under the constraints

g € Ha(B. L:RY), supp(g) S By(ksy). g(x) = L[, /g(z)v hn(2)dz = 0.

These constraints define a closed and convex set in L» ([0, 119 ) which is non-empty
for k sufficiently large [and uniformly in n due to the equicontinuity of (%,) and
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the rescaling property, see subsequently to (24)]. Consequently in the latter case, the
argmin ¢, , exists and is unique. The resulting density candidates

Pran=hn - (14(1=0n/m) §un /V/hi) and qu=hy - (1=n/m)prn Vo)

are non-negative and thus contained in ]—'}ET’”) as soon as additionally

— h( < Pxn() < ;() for all x € C,.

T—m/n

This is guaranteed for sufficiently large n when sequence (3, ), <N tends to zero. For any
statistical level-a-test ¥ = (B8, L, hy) : Rdxn [0, 1] for testing the hypothesis
“¢ = 0” it holds true that

min E(m n,Px,ns9x, n)l// —o= min ]E(m n, Px,ns9x, n)w ]E(m n,hn, hn)lp
XECn XEC,,

1

= ﬁc_k Z E(m,n,l?x.n,qx,n)l/f _E(ms"vhn,hn)w
n,

x€Cp i

1 AP mn,py .qr.n)
<Emn,hnn) > bl (x) -1

dP
n.k x€Cuy (m,n,hy hy)

2n

For short we write g for K, ,,5,,n,) in the sequel. Note that the test is allowed to
depend on the nuisance functional 4, (in fact the log-likelihood and its distribution
do). Now we aim at determining §,, such that the right-hand-side tends to zero as n goes
to infinity. Although X (supp(¢>x,,,) N supp(qby,n)) = 0 for any different x, y € Cy x,
the likelihood-ratios

AP, pyn.gen)
Len:= M(X)

AP, 1)

n

= H(l—}—(l—(m/n))ix_"(x )) I1 (1—(m/ )32()( ))

i=1 i=m+1

are not independent. However, they are independent conditional on the random vector
Ap = (Ax.n)xec,, With entries

=@l =m | Xi —xll2 =k}, 2{i >m [ X; —xll2 < kdn}).

Note that Eo(Ly ,|A,) = Eg Ly, = 1. Following at this point standard truncation
arguments as, for instance, in Diimbgen and Walther [11], proof of Lemma 7.4, it turns
out to be sufficient for the convergence to zero of (21) to find 8, and y = y, € (0, 1]
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such that the ratio

I+y
max —— gL 22
x€Cy k (ﬁ Cn,k)y 0 Fon ( )

tends to zero as n goes to infinity. But

1+y m
[/hn(z) (1+(1_m/n)?f_((z))) dz]

I+y e
| fro (1= mm&20) o)

I+y
IEOLx,n

1 m
1
= {1+ 374 (140 (68)) (= /) [ grn(ePt
0
1 1 n—m
x {145y +y) (1+0(8F)) (m/n)z/@,n(z)zdz . (23)
0

using the bound (1 + A)'*Y < 1+ (1+y)A + 271y (1 + y)A? 4 3y A?|A| for
|A| < 1. Now let ¢ be the solution to the following optimization problem
(*x) Minimize ||g]|2 subject to

g € Ha(B, L; RY), supp(g) < Bo(k), g(0) =1, /g(x)dx =0. @4

Notice the rescaling property L(S,’?g(./&n) € Hq(B, L; RY) with supp (Lé‘,’fg(./(Sn)) =

Bo(8,k) and L8Lg(0) = Ls? © g € Hu(B, L; RY) with supp(g) = Bo(k) and
g(0) = 1. Due to the equicontinuity of (k,),cN,

lim sup sup |h,(x) —h,(z)| =0,
Jimy sup sup |n() = hn @]

whence
/ Gxn () dz = (14 0(1)) L*62P7 | gy |13 (25)

because the minimum in (x) depends continuously on the mixed density %, as can be
seen using a Lagrange multiplier for the centering constraint. Note that the o(1)-term
is uniformly in x € Ci ,. Now the combination of (23) and (25) shows that for §,
sufficiently small, (22) is bounded by

1 .
exp (n(m/n)(l —m/mzy(+ VIL?2P g 113 (1 + 0(1)) — y log(t ck,n)).
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By construction,  C , > di - 6,; 4 for some constant d; > 0. Now fix § > 0 and define

(B.L) 2d LYP )’3/ .
L) = ———— .
* 26 + el

Observe that the sequence ci(B, L) is increasing in k. We need to check that
limg— o0 |Pkll2 = || v l2. Note that in contrast to (24), the solution of (2) does not inte-
grate to zero in general and it remains still open if y4 is compactly supported ford > 2
and B > 1. Starting from yg, it is sufficient to construct a sequence pg x satisfying the
constraints of the optimization problem () such thatlimy . |78,k |l2 = |l¥sll2- Then
the equality limg_, oo lPell, = llygll2 follows from [lyg«ll2 > @ ll2. The existence
is sketched in the appendix of the extended version of this article. As a consequence
there exists some k&’ € N such that ¢(8, L)(1 — 8) < cp(B, L)(1 — §/2). Now one
verifies that the lower bound is established with the choice

5 (ck/(ﬂ, Ly - a/z)p,,)l/ﬂ
n -— L

1/2

and some sequence y = y,, — 0 with lim, y,,(logn)'/< = oo. O

Proof of Theorem 4 By virtue of Theorem 2, the sequence £ (T,, oll | Xn) is tight in
(]P’f?m ® (@f?("_m))—probability, resulting in stochastic boundedness of the sequence

of random quantiles (/ca (X))n <y The bounded total variation of the kernel for g < 1
is a consequence of its monotonicity, for 8 > 1 it results from the continuous differen-
tiability of ¥4 x and its compact support. For notational convenience the dependency
on B and K is suppressed. They are arbitrary but fixed unless stated otherwise. First
note that for any random couple ( Jns kn) it holds true that

P, pugn) (Tn > kX)) = Pinn, porgn) (T.ﬁfnn ~Citn > KQ(X)).

Hence it is sufficient to prove that for any sequence (¢, ), N of admissible alternatives
there exists a random sequence of (jy, kn)peny With T3 7 — C5 2 — pamgee-m

0. As in the proof of Theorem 2 define y, (7, 7)? := Epy (¢, r)*> — (]Ef/],n(t, r))z,
1
(t,r) € T. Let t, := argmax,c; ¢a(0)| and r, := (l¢hnllsup/L)""". Define

() = (X5, X5, = Xz, |) with

(Jins kn) == jakrgninn A (Bi, (rn) A By, (I1X; — Xill2))-

Now let the process S,, on 7 pointwise be defined by

N ) Xi
R A ) Z¢(” rtllz)A(X).

\/_ i=1
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Furthermore let us introduce the random varlables (tni - Tni), based on the indices
( Jnis km ) which are defined analogously to ( Jns k,,) but with the minimum running over

theset j, k € {1, ..., n}\{i}only. Then, recalling the definition ¥, (x) := ¥ (@),

[ (S0 7) = Sa )|

Vn(tn’ n)
A/ 1—Xxn) 1
o Vi (([ ZE tnTn (X ) wlnrn (X ))
- > E(Wrg, (X0) = Y, (X0) '
" i=m+1
(1 - n 1

Z Vg (Xi) — Y7 (X0)
=1

Vn(tnv n) I’l

n

n
Y B (0~ Vi, 00)|
n—m .
i=m+1
«/A Van(I=2n) 1 |n “ . |
Vn(tn, rn) f ZE (I//?;li;\ni (Xl) - I/ftnrn (Xl))
- z E(%iﬁn(xi) - wtnrn(Xi)) ‘
n—m
i=m+1
_ VA —2) 4 (n n )
Vn(tnrn) \/—lllﬁllsupmax m n—m
JAg(1—2A,) 1 "
Vn((tn, )_n E {% ;/ (%i?ni (X) = Yy, (x)) pn(x)dx
(V70 () = Vi, (X)) qn(x)dx] , (26)
i=m+1

whereby we used for the first term in the last inequality that (7,;,7,;) differs from
@,?n) for at most two indices i, j € {1, ..., n}; the second term follows by includ-
ing and evaluating the conditional expectation given (tni s Tni) as X; is independent
of (t,i,7ni). Replacing again (7,;,7;) by (t,,7y), the second expression behind the
inequality in formula (26) is bounded by

VA (1 4 n n
Y (ins ) [||¢||supmax(m )
VT =)

Vu(tns )

n—m

‘]E[/( 7 () = Y, (X)) (pn(X)—qn(X))dX] ‘ 27)
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Now we can make use of the fact that | p,(x) — ¢, (x)| = [ga()Vh(X)| <
Cli¢nllsup With C := sup,, sup, | v/h,(x)|. Recall that ||/, ||sup is uniformly bounded
due to the equicontinuity assumption on (%,),cn and the constraint on the Li-norm

lhnll1 = 1, whence the term in (27) is not greater than
oY ¢nllswp o (/ [V (0 = W, () ‘dx). 28)
Y (tns 1)

Using the bounded total variation 7'V (y) of ¥ and M, and p as defined in the proof
of Theorem 2, the integral which appears in (28) can be bounded by

E ( [ 193,60 = n, )dx)

fE(/M(Mx(tn,rn’};a?n))dx)
=E(//I{y c an,,,r,,,a,a)}dxdu(y>) (Fubini)

<TV()E sup (/l{y € Mx(tn,rn,ﬁ,ﬁl)}dx)
]

yel0,1
= TVW)EA (B, (r) AB;, 7))
=0 (rd='n™11), (29)

using in the last bound besides the stochastic convergence rate n~'/ the uniform

integrability of the sequences (n!/ At =t I2), (nl/ a7, — ral) which result from
P (Iltn = tall2 > x) = [T=; P(Xi & By, (x)) ~ (1= A(B,,(x) N[0, 1])))" (= (1 -
Vxdymif B, (x) € [0, 119) and P (|75 — rn| > x) < 2P ([t — tull2 > x/2). Here, V
denotes the volume of the d-dimensional Euclidean unitball, i.e. V = 74/ (d/2+1).
Together with (26-28) this shows that for any sequence of admissible alternatives

(Pn)neN

| E (S G Fa) = Su(tn, 7)) | _ 0 (rg/2—l+ﬁn71/d+l/2)' (30)
Y (tn, )

If in particular [|¢, |lsup = O (((log n)/n)ﬂ/(zﬂ”)), the term in (30) is of order
0 ((log n)B+d/2=1D/2p+d) n—(2ﬁ/d)/(2ﬂ+d))_

We need to check that

Vi (tns )

= —pomgoen-m L. 3D
Vn@arn) Fereo

@ Springer



552 A. Rohde

For this we use the decomposition [(n — 1)/n]p, (¢, r)* = Van(t, 2 —P1at, ). To
this end note first that

i%,]@’a) - ’V\n,](tn’ rn) i

1 n
< Wiz = Vun [l gy 227 {Xi € By, Ga) 0 By, ()}
i=l1

1 n
+ 209 llswp~ D1 {Xi € By, G) ABy, (o)}
i=1
n

1
wpy 21 {Xi € B, ()}

i=1

= || [ l/ft,,r,,

1 n
+ 20l D1 {Xi € By, @) ABy, ()}

i=1

= 0, ()0, ) + 0, (1~ ™1) = 0 (vt ().

The “0,,(1)”-term results from the Holder continuity of v (for 8 > 1 the first deriva-
tive of ¥ is uniformly bounded on [— K, K]), supp (tﬂ,n m— ViR ) = By, (ra)UBg, )
and the fact that r, > (c(B, L) pmn/L)"? while B, — 1, ~ n=14, 7 — p, ~ n=1/d.
The case i = 2 is done analogously (taking the square). To verify (31) it remains to be
shown that 7, (t,, 1) /Vu(th, 1) — 1 = 0 p (1) which however is a simple consequence
of Chebychef’s inequality since for any 8 > 0 and any sequence of admissible alter-
natives (¢, )N, the sequence v, (t,, rn) ~ rfll /2 or some subsequence decreases (if it
decreases) at a slower rate than n~!/2. The above considerations show in particular
that

Con = 3Ry (m,n)
Jnknn \/%]7;!6;17,’.\}1)

_ \/2 10g (Y (tn, ) ~2) + 0p(1),

$0n. mylog (7u(E 7 2) + 5, m)y/2log (7l T ~2)

using in addition that § (m, n) = 1 + o=, Consequently,

ES; (th, 12)

T+ —Cr7.=0,()+
K b Vn(tn, 1)

Jn Jnknn = (1+0[J(1))_\/210g (Vn(tn’ "n)_z), (32)

and it has to be verified that the latter quantity goes to infinity. Recall that
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2
Yt 1) = / Vir, ()2 (x)dx — / Yiyr, () By (X)dx
[0, 174 [0,114
:(1+0(r;f)) / Vi (0)2h (x)dx. (33)
[0,11¢

We first assume that r, = o(1), i.e. ||, |lsup = o(1). Using that

limsup sup sup |h,(x) —h,(t)| =0,
INO n 40,174 x€B, (8)

which follows by the same argument as used in Theorem 3 and the fact that any
sequence of centers (#,),cN has a convergent subsequence by the compactness of
[0, 11,

7 n(x)d
B ) _ oy Y O
Vnlln,T'n I:f[O,l]d Wl‘nrn (x)2dx:|

I+o(1). (34)

Using the approximation in (33) we obtain analogously

172

V2108 (b ) 2) = | 210g [ 1 / o) / Vo, x| | (39)

[0,114

Recall that vy = ¥4 ¢ with K the bound of the support. Standard calculation shows
that the bounded L;-norm of yg implies

| [ Vg x @@nCdx || [ Wiy, ()P0 (x)dx |
L/ I/fz,,rn;ﬁ,K(Jc)zdx]1/2 L/ ‘/ftnrn;ﬁ(x)zdx]m

withcxg — 0as K — oo,

(I+ck)

but note that the total variation T'V (5 k) is increasing in K. Define now §, :=
(1 +8)c(B, L) pm.n- Then by its construction, 8,Vy,,,.8 € Ha (,3, L; Rd). Moreover,
by the closedness in L; and the convexity of the sets {¢ € Ha(B, L;RY) : ¢ (t,) > 8,,}
and {¢ € Hq(B, L; RY) : ¢ (t,) < —8,}. it results finally from convex analysis and
the definition of yg that

| [ Vi pdu(dx | 87 18613 _ LI
=5, ,
[f Wirnep(0)2dx] " 1Wt,r,:112 !
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Combining (33-35), one verifies for the expression of the right hand side in (32) that
it possesses the approximation

(32) = 0,(1) + VA (1 = )8 2 lyglla (1 + ck)

2\
_(2,3+d) log (n/ logn)

2dL4/8
=0,()+/logn| —
’ QCB+d)llypl

24\
_(2,3+d) V1og (n/logn),

which goes to infinity for K sufficiently large. If there exists a sequence (¢,),cN of
admissible alternatives such that lim sup,,_, oo Pin.n, pr.q) (Tn > k(X)) < 1, there
exists by the considerations above a subsequence (for simplicity also denoted by (1))
along which ||¢, [|sup stays uniformly bounded away from zero. But the bounds (30)
and (31) show that

12
) L™CP gl (14c ) (148)%/CAH!

ESulln. 70) = BSi 1) _ (n=12) (14 0, (1),

J/n 6;1 ’ 7f\}’l)
as well as the logarithmic correction term Co ko are in this case of smaller order than
|ESy (¢, r)|, which concludes the proof by contradiction. O

Proof of Theorem 5 Following the considerations of the proof of Theorem 4,
it has to be established that there exist random sequences ( jni,km-)n N with

Jni

natives as formulated in Theorem 5 and any fixed K > 0

Bx- (”X;”. — X;m. ||2) C Ji,i = 1,...,k, such that for any sequence of alter-

tim inf P, p,.q,) (T;“_;m_ ~Ciz, > Ka(x)) =1, i=1,...,k

Then the result follows because the finite intersection of sets with asymptotic proba-
bility equal to 1 has asymptotically mass 1 as well. Inspired by the arguments in [32]
for the univariate regression context, we first establish the following:

For ¢, € Ha (B. L: [0, 1]9) with [, llqup < 1 and x* = argmax (o 3 [¢n (x|,
there exists some constant ¢ = ¢(8, L) > 0 and a compact ball B = B(¢,) C R?
with center x* such that

1
1 (BN10.107) = clgu 1P and |40 | = 5[ gu x|
forall x € B N[0, 1]. (36)

Assume that 8 > 1 (the above inequality is trivial in case 8 < 1). With j = (j1, ..., ja)
we denote subsequently some multi-index, where | j| = ji+- - -+ jg defines its length,
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x/ = H?:l xl'.ii and D/ = 8|f|/[8x{‘, ..., 9x"] the partial differential operator.
Let¢p € Hy (,3, L; [0, 1]d) with [|¢[lsup = D > 0. By the definition of the isotropic
Holder class we have | (x) — T.")(x)] < Lllx — y|l£ (< Lv/@"), which entails that
sup,, ”Ty(f)”[o’]]d <D+ L\/Eﬁ. In order to establish (36), note that for any poly-
nomial P = ZI jl<1p) @ jx/ , the topology induced by the metrics corresponding to
the two norms ||'P||(1) = Sup,co.1)¢ | P(x)| and [|P||(2) := max; |a;| respectively
on the ring of polynomials of total degree at most |8] on [0, 1]¢ is the topology
of uniform convergence, hence these two norms are equivalent. Consequently, the

boundedness of the polynomial T;f ) by D+ Ld P uniformly in y implies that there
exists some constant C = C(B) such that || D/ ¢ lsup < C (D + L) for all multi-indices
J with |j| < | B]. Now the Mean Value Theorem implies for some intermediate point
ze{x+t(x*—x);0<t <1}

| (Vo) (x —x*) |
Va sup || D19 plhx = "l
Jiljl=1

|p(x) —p(x™) |

IA

<VdC (D+L)|x — x*|».

Thus,

1 " . d
|¢(X)| > §|¢(.X )| for all x in Bx* (m) N [O, 1] .

If ¢ € Hq (B, L: [0, 1]¢) with ||¢]lsup = 8 < 1, then the function gs, for x € [0, 1]¢
pointwise defined by gs(x) := 8¢ (81/Fx + x*) - T {§'/Px + x* € [0, 119} is ele-
ment of Hy(B, L; supp(gs)) with [|gsllsup = 1. Note that supp(gs) is a convex set.
Therefore, the above considerations imply that |¢ (x)| > §/2 on

B L 0,11
* nfo, 11°.
(NEC(l + L)) 011

But then its Lebesgue measure is always greater than ¢|8|¢/# for some constant ¢ =
¢(B, L), independent of § and x*, hence (36) is established.

Let now B;, L; € (0, co) fixed but arbitrary, J; C [0, 119 some nondegenerate
rectangle, d;n = pn — qn a sequence of functions with ¢~3n| g € Ha(Bi, Li; J;). It
has to be shown that there exists a universal constant k; = k;(B;, L;, ¢) such that

Tﬁﬁnn — —> pamgQen-m 00 whenever ||¢,|l;, > kiom.n. First, we choose a

compact ball B; ((;3,,) with center x* := argmax, Ji |q3,, (1) satistying A(B; (&n) NnJ;) >
¢l (x2)[4/F and (36). Let the couple (7, 7) = (an X5 - Xg, ||2) be defined by

Cﬁlign n

(s ) 1= argmin 2 (Bx; (1X; = Xell2) A Bi(@n)).
j.ke{l,...,n}
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Consulting the proof of Theorem 4, this definition of @,’r})ﬁllows for an approxi-
mation as in (32). Since |, (x)| > 27! P lly; for all x € B;i(pn) N Bz, () N Ji,

ES, (t,, ) N/ A2
Yt rn) _M’””’ IJ—ihm [ (Bi@w) 0 B, o) 0110, 11) ]
= Cllgall P (14 0(1)

for some universal constant C = C (K, (Ay),en) > 0. Now the asserted result is
easily deduced for a sufficiently large constant k;. O

Proof of Theorem 6 (i) Let (p, q, m,n) be such that h = h, = o1 and ¢, the
sequence of piecewise constant functions on [0, 11 with On(2) = ¢/ \/nSg for z €

By (6,), ¢n(2) = —c,,/,/nS,‘f for z € By (kd,) \ By (8,) and equals zero otherwise,
where k = «k(d) > 1 is such that A (Byx(k8,) \ Bx(6,)) = A (Bx(6,)) and 0 < ¢, <

/ndd. Then

APn,n,pr.a0) )_ S _ .
log( T, X) —Elog(w(l m/n)n (X))

+ > log (1— (m/n)gu(X,))

j=m+1

with (Xg)gen iid uniformly distributed on [0, 1]¢ under the hypothesis ¢, = 0. Note
that

AP ,n, pu.gn)
Lm.n.h.h [10 (#(Z)
(m,n,h,h) | 108 AP o)

Nn —m
o,
=L El I+1- El R’
2 log( +( m/n)r )+ og( — (m/n) 257 ])

with (Ri)ken, (R)keN, Ny and Ny, all independent, where (Ri)ien and (R})ken
are sequences of iid Rademacher variables and

N,, ~ Bin (m v/cda,‘f), Np—m ~ Bin (n—m, deaff) and V=r2T (d/2+1).

Suppose first that n8;‘," +/> 00. By extracting a subsequence if necessary we may assume
that m/n — X € (0, 1), cn/w/nS;‘f — ¢ € [0, 1] and nSff — V_IK_dy. Then, with
— denoting weak convergence,

dP
Limmih) [log (Mm)ﬂ — Q 37)
AP on,n b,
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with the convolution

Q= (,i oo (L (i log (1 — MR,-)))

i=1
14

[ X ptkhe | Dtog (14 (1 = 2eR))
k'=0

j=1

and the Poisson weights p,, (k) := e "uk/k!. Since J e#dQ(z) = 1, we can apply
Le Cam’s notion of contiguity ([20], Chapter 3) to conclude that

lim sup En,n, pp.gn) ¥n(X) < 1.
n—oo
Consequently n8¢ — oco. Now assume that n8¢ — oo but ¢, /4 oco. Without loss

of generality we may assume that ¢, — ¢’/+/Vk4 € [0, oo). Then Lindeberg’s CLT
entails that (37) holds true with

_ 2.2 _9\2.72
Q ;:N(_%, (1- )»))ch/z) . N(_m%, Al — A)ZC/Z)‘

Again, the limiting distribution satisfies f e*d Q(z) = 1, whence ¢, — oo.
(i1) We begin as in the proof of Theorem 4, but with ¢, := x,r, := 8, and ¢,/ w/n(S;‘f
the size of the lower-bounding plateau. Without loss of generality we may assume that

On(2) > cn//ndd forall z € By(8y,), i.e. ¢, € j_s(_m’”)(cn, x, 8,). Adjusting (26-30)
yields

|IE (Sn(fnvgn) - Sn(xs 5n)) |
Vi (X, Sn)

=0 (Bn_ln_l/dc,,) (1 + ()p(l)).
The arguments of the proof of Theorem 4 apply again and lead to the expansion

T3t = Citon = Op(D + 0 (8577 1e,) (14 0,(1)
ES, (x, 8,)
Yn (X, 8n)

(1+0p(1) = /2log (yu(x. 672, (38)

while with the same reasoning as in the proof of Theorem 5

S0 <t oL sl = O+ o)

Va (X, 8n) Jnsd "

forsome constant C =C (d, (Ay)eN) > Oand\/2 log(yn(x, 5,,)—2) =0(1)/log(1/8,).

Thus, if \/log(1/6,)/c, — 0 and nég — 00, (38) goes to infinity and the result
follows. |
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