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Abstract We study zero-temperature Glauber dynamics on Z¢, which is a dynamic
version of the Ising model of ferromagnetism. Spins are initially chosen according
to a Bernoulli distribution with density p, and then the states are continuously (and
randomly) updated according to the majority rule. This corresponds to the sudden
quenching of a ferromagnetic system at high temperature with an external field, to one
at zero temperature with no external field. Define p.(Z9) to be the infimum over p
such that the system fixates at ‘+’ with probability 1. It is a folklore conjecture that
pe(Z4) = 1/2 for every 2 < d € N. We prove that p.(Z?) — 1/2asd — oo.
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1 Introduction

Perhaps the most extensively studied model in the statistical physics literature is the
Ising model of ferromagnetism on Z¢. Despite this, very little has been proved rig-
orously about the dynamics of the model, even when the temperature is zero. In
particular, it is conjectured that the critical threshold p.(Z?) for fixation at the Gibbs
state is equal to 1/2 in all dimensions, but the best known upper bound, due to Fontes
etal. [19],is only p. (Z?) < 1.1n this article we shall prove that this conjecture holds
asymptotically as d — oo.
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418 R. Morris

We begin with a precise definition of the question being investigated. Let G be a
(finite or infinite) graph, and endow each vertex x € V(G) withaspino (x) € {+, —},
and an independent random exponential clock C(x) (so the probability the clock does
not ring in time [s, s + t] is e~"). We shall investigate zero-temperature Glauber
dynamics on G, which is the following dynamic process: For each vertex x € V(G)
and each time r > 0, if the clock C(x) does not ring at time ¢, then the state o (x)
remains unchanged; if C(x) does ring at time ¢, then o (x) changes to agree with the
majority of the neighbours of x in G. (If there are an equal number of neighbours in
each state, then the new state is chosen uniformly at random.) Our question is the fol-
lowing: Given a probability distribution on the state (o (x) : x € V(G)) € {+, —}V(©@
at time ¢t = 0, what happens to the distribution of states as ¢t — oc0? In particular,
under what conditions do all vertices end up in the same state?

We shall be interested in the above question when G = 74 , the d-dimensional
square lattice, and when the states at time O are chosen according to the Bernoulli
distribution. More precisely, let p € (0, 1), and suppose the spins o (x) at time t = 0
are chosen independently at random, with P(o (x) is ‘+’) = p for each x € 7. We
say that 74 fixates at ‘+’ if, for each vertex x € 74, there is a time T (x) € [0, 00)
such that o (x) is ‘+’ for all times ¢t > T (x). Note that if the system does not fixate
then (in general) it is possible to have a mixture of vertices which are eventually ‘4,
vertices which are eventually ‘—’, and vertices which change state an infinite number
of times.

Define

Pc(Zd) := inf {p : P(Z? fixates at ‘+’) = 1},

The case d = 1 of this problem was first investigated by Erdds and Ney [17], who
studied the following, slightly simpler problem. Place a particle on each vertex of Z
except the origin, allow each to perform a (possibly biased, discrete time) random
walk on Z, and annihilate any pair of particles which cross paths. They conjectured
that, with probability 1, the origin is at some point occupied; in our problem this
corresponds to the origin changing state at least once. The conjecture of Erdés and
Ney was proved by Lootgieter [24] and by Schwartz [31] in discrete and continuous
time, respectively. Arratia [2] proved a much stronger result: that, for a wide class of
random starting configurations, every site is occupied an infinite number of times. It
follows easily from Arratia’s theorem that, for any p € (0, 1), in Glauber dynamics
on Z every site changes state an infinite number of times, and hence that p.(Z) = 1.

Ford > 2 the behaviour of the system is expected to be very different. The following
conjecture is folklore.

Conjecture 1 (Folklore)

1
pe(Z) = 5

forevery2 <d e N.

Although the problem of determining p.(G) has been studied by many authors,
and for various classes of infinite graphs G, surprisingly little is known. It is obvious

@ Springer



Zero-temperature Glauber dynamics on 74 419

that p.(Z¢) > 1/2, by symmetry, and it is straightforward to show that if p = 1/2
then P(Z fixates at ‘+°) = 0, using the fact (from ergodic theory) that fixation at ‘4’
has probability either O or 1. Nanda et al. [28] proved that moreover, if p = 1/2 and
G = 72, then (almost surely) no vertex fixates, i.e., the state of every vertex changes
an infinite number of times. However, even this simple statement is unknown if d > 3,
and on the hexagonal lattice the situation is different, with some vertices fixating at
‘+’ and others at ‘—’, see [22].

Glauber dynamics has also been studied in detail on the d-regular tree, T, (see
for example [10,13,21,26]), but even here very little has been proved about p.(7y).
Indeed, Howard [21] showed that p.(73) > 1/2, and it was proved by Caputo and
Martinelli [13] that p.(T;) — 1/2 asd — oo (in fact their result is more general, and
this statement is straightforward to prove in the zero-temperature case), but for every
d > 4 it is unknown whether or not p.(7y) = 1/2. For further results and problems
about the case p = 1/2, 0on 74 and on other graphs, see for example [12,21,29,32,33];
for a good account of Glauber dynamics at non-zero temperatures, see [25].

The best known upper bound on p.(Z?) is due to Fontes et al. [19]. They proved,
using multi-scale analysis, that pc(Zd) < 1, i.e., that for each d > 2, there is an
e = ¢e(d) > 0, such that if p > 1 — ¢ then fixation at ‘4’ occurs with probability 1.
They moreover showed that this fixation occurs in time with a stretched exponential
tail. The values of e(d) they obtain converge rapidly to 0 as d — oo (see Theorem 2
below), but despite this fact, their result will be a crucial tool in our proof.

We shall prove the following result.

Theorem 1

1
pe(Z) — 3

as d — oo.

We remark that the same result also holds (in the limit as d — ©0) if, instead of
choosing the state uniformly when the number of ‘+’ and ‘—’ neighbours are equal,
we were to choose it to be ‘+’ with probability o € (0, 1) (see also [19]). For simplic-
ity, however, we shall assume throughout that @« = 1/2, as in the definitions above.
We note also that the proof relies on very few properties specific to the lattice Z¢, and
so it is likely that the same techniques can be extended to a much wider family of
high-dimensional lattices (see Theorem 2.2 of [4]).

We shall moreover give concrete bounds on the rate of convergence of p.. These
will be easy to read out from our later results, and are certainly not optimal (since we
believe Conjecture 1 to be true). However, for the reader’s convenience, we state here
the precise result that we shall prove. Let ¢ > 0 and d € N, with ¢2d > 10'%logd.
Then

+ e.

N =

pe(Z9) <

We remark that, although the constant 10'° could be improved somewhat with a little
extra effort, the techniques in this paper do not work for small values of d.
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The proof of Theorem 1 is based on two couplings of Glauber dynamics on large
sub-blocks of Z¢ with bootstrap percolation, a monotone version of Glauber dynam-
ics which has itself been studied extensively (see for example [1,3,8, 14,20,30]), and
which we shall define in Sect. 2. We shall use powerful tools developed by Balogh
et al. [4] (see Lemma 4, below) to show that, after time 0(d5), very few vertices
are in state ‘—’. Finally we shall apply the result of Fontes et al. [19]. The crucial
point, throughout the proof, will be that we shall retain independence except at short
distances.

The rest of the paper is organised as follows. In Sect. 2 we recall the definition of
bootstrap percolation and the main results of [4,19], and give a sketch of the proof of
Theorem 1. In Sects. 3 and 4 we prove that by the end of the two couplings (which
occurs in time O (d”)), sufficiently many vertices are in state ‘4 that we may apply the
method of Fontes et al. [19]. Finally, in Sect. 5, we complete the proof of Theorem 1.

2 Bootstrap percolation

In this section we describe the main tools we shall use, and give a sketch of the proof
of Theorem 1. We begin by recalling the result of Fontes et al. [19]. The following
theorem, which is slightly more general than the one they state, is implicit in their
proof (see below). Let L € N, and partition Z¢ into blocks of size L in the obvious
way. Let p € (0, 1), and consider the collection 2 (L, p) of probability distributions

on {+, —}Zd satisfying the following conditions:

o(x) = o(y) if x and y are in the same block B. (Let o0 (B) = o (x) forx € B.)
P(o(B) is ‘+’) = p for every block B.

Given any collection of blocks {Bj, ..., Br} with ||B; — Bj|lcc > 2 whenever
i # j,the states 0 (By), ..., 0(By) are independent.
Now, define

pEL)(Zd) ;= inf {p : IP’(Zd fixates at ‘+’) = 1 forevery o € Q(L, p)},

where o is the initial distribution of states. Note in particular that p, z4 < pt(.l) (Z4).

Theorem 2 (Fontes et al. [19]) There exists an ¢ > 0 such that, for each2 <d € N,
and each L € N,

(@) (zd 1\
L

N2 <1 = —1 .
pe (L7 = € (2 L)

The theorem above follows from a multi-scale analysis, using ideas from
2-neighbour bootstrap percolation (defined below). Theorem 2 is slightly stronger
than Theorem 1.1 of [19], but follows from almost exactly the same proof. Indeed, the
definition of (L, p) above is precisely the ‘block-dynamics’ defined in Section 4
of [19]; the theorem applies to any initial distribution satisfying these conditions. In
order to obtain the dependence on L and d in Theorem 2, we adjust the proof in [19]
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as follows: set £9 = L in (4.1), increase #; by a factor of L4 in (4.2), and weaken the
upper bound (4.8) by a factor of L. For inequality (4.6) and Step 1 of the proof we
require ¢ := 1 — p < exp(8/q"'/@~1), for some polynomial § = §(d); for Step 2 we
require (roughly) that 71 > (1/gx)L%; and for Step 3 we require f;, < £;. The first
of these inequalities is satisfied if ¢ < d —0@ | the second and third are satisfied if
q < L~ We remark that in fact, by choosing £; much larger, one could improve the
bound in Theorem 2 to 1 — &(Ld)~ %@ We shall not need this slight strengthening
however; in fact a much weaker bound would suffice.

In order to prove Theorem 1 we shall replace the first stage of the argument of [19]
with a more careful calculation, using ideas from majority bootstrap percolation in high
dimensions. We remark that we shall not prove a result corresponding to Theorem 2.
Our method uses, and absolutely requires, total independence of initial states.

Before embarking on our sketch, let us recall first some of the tools and ideas of [4],
which will be crucial for the proof. First, given a (finite or infinite) graph G and an
integer r € N, we call r-neighbour bootstrap percolation on G the following deter-
ministic process. Let A C V(G) be a set of initially ‘infected’ vertices, and, at each
time step, let new vertices of G be infected if they have at least r infected neighbours,
and let infected vertices stay infected forever. Formally, set Ag = A, and

Arpr == A, U {fveV(G) : T NA|>r}

for each integer t > 0. The closure of A C V(G) is the set [A] = [J, A; of eventu-
ally infected vertices. We say that the set A percolates if eventually the entire vertex
set is infected, i.e., if [A] = V(G). If G is d-regular and r = [d /2], then we call the
process majority bootstrap percolation.

Bootstrap percolation was introduced by Chalupa et al. [16] in 1979, and has since
been studied by many authors, most frequently on Z¢ and [n]?, the d-dimensional
toruson {1, ..., n}d (see for example [1,4,7,14,30]), but also on trees [8,11,18] and
random regular graphs [9,23]. The elements of the set A are normally chosen indepen-
dently at random, and the main problem is to determine the critical threshold, p. (G, r),
at which percolation becomes likely. To be precise, write P,(G, r) for the probability
that A percolates in r-neighbour bootstrap percolation on G if the elements of A are
chosen independently at random, each with probability p, and define

pe(G,r) = inf{p : Py(G,r)=1/2}.

Balogh et al. [4] recently proved the following theorem about majority bootstrap per-
colation on [n]9.

Theorem 3 (Balogh et al. [4]) Let n = n(d) be a function satisfying
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or equivalently, d > ¢(loglogn)? logloglogn for some & > 0. Then

pe (n1.d) = 5 + o)

as d — o0.

We remark that the lower bound on d guarantees that [n]¢ is sufficiently ‘locally
tree-like’, in the sense that balls with small radii grow quickly. We shall use this obser-
vation again later in the proof of Theorem 1 (see Lemmas 10 and 12). Theorem 3
contrasts with the case where d is fixed, when pc([n]d, d) = o(1). For some recent,
much more precise results about the case d constant, see [5,6,15,20,27].

In order to prove the lower bound in Theorem 3, the authors introduced the following
modified bootstrap process. Let k, m > 0 and S O < V(G).

[ ] IfOSJSk_lvthen
sU+HD — ) {x S T(x) N SY)| Zr—(k—j)m}.

o Ifj >k then SUTD = §U U {x : [T(x)NSD| = r}.

We call this process Boot(r, k, m). Note that it dominates the original process (i.e., the
Boot(r, k, 0) process), in the sense that if the original process percolates, then so does
the modified process. It also has the extra property that if the original process does not
percolate (and m is chosen correctly), then the modified process almost always stops
quickly. (For a more precise formulation of this statement, see for example Lemma
6.3 of [4], or Lemma 4 below.)

We need one more definition.

Definition Given a (possibly infinite) graph G, an integer C € N, and a collection of
events £ = {E, : v € V(G)}, one for each vertex of G, we say that the events in £ are
C-independent if the following holds. Foreach k € N, if {vy, ..., vt} C V(G) satisfies
dg(vi,vj) > C forevery i # j, then the events {E,,, ..., Ey,} are independent.

We are now ready to give our sketch of the proof of Theorem 1. First let n = 29,
and partition Z¢ into blocks of size [1]¢ in the obvious way. Note that d = logn >
(log log n)* log log log 1, so the method of the proof of Theorem 3 will apply to these
blocks. Consider the graph G induced by one particular block, B. The basic idea is
as follows. First we run the majority bootstrap process on G, with the infected sites
being those initially in state ‘—’. Next we observe that, since (by Theorem 3) the
initial density of ‘—’ vertices is subcritical, very ‘few’ vertices change state. Finally,
we run Glauber dynamics until all the clocks associated with vertices of G have rung
at least once. If the states of the vertices after the bootstrap process were all indepen-
dent then, by Chernoff’s inequality, only about e | B| of them would have as many
‘=’ neighbours as ‘+’ neighbours (since very few have changed state), so almost all
should end up in state ‘+’. However, this is not the case: the bootstrap process brings
in long-distance dependence between the states. We shall therefore have to be a little
more clever.
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Indeed, what we actually do is to couple the original process P up to time d, with
a process Q, which is almost always biased towards state ‘—’, but which still fin-
ishes with all but (about) e‘52d|B| vertices in state ‘+’, and only has short-distance
dependencies! The process Q is as follows. First, run the Boot(d, 8, m) process for
‘—’ vertices in a slightly larger block B’ O B (in fact B’ is larger by a factor of 5/3),
with m = ed /24, for eight steps only. We remark that the number eight here could be
replaced by any k > 8; we need only that e¥*24k+1 > 4% (see Lemma 5).

Now, with probability about 1 — e_d4, the set of vertices in state ‘—’ thus obtained
will be closed under the majority bootstrap process, in which case no other ‘+’ vertex
in B can ever again change state in P, unless it is affected by vertices outside B’,
which (we shall show, see Lemma 14) is very unlikely to occur before time o(d).
We ignore (i.e., assume to be entirely ‘—’) those blocks for which either of these bad
events holds (i.e., those which are not closed under bootstrap, and those which are
affected by the state of some vertex outside B).

Assume from now on that neither of these two bad events holds for the block B,
and let X be the set of vertices in B which are ‘infected’ during the Boot(d, 8, m)
process. This set contains all of those vertices which are initially in state ‘+’, but
could potentially change state without being affected by anything outside B’. The
events {x € X},ecp are 17-independent, by the definition of the Boot(d, 8, m) pro-
cess. Moreover, we shall show, using the method of [4], that P(x € X) < 23_282”1 for
each x € B’ (see Lemma 6).

Now, let a vertex x € B’ be in state ‘—’ after the process Q if either its clock has
not yet rung in P by time d, or if it had at least d neighbours in state ‘—’ initially, or
if it has at least one neighbour in X. The probability that at least one of these events
occurs is at most

5 ) ) 1 1000
efd _}_6725 d +4d6728 d < 5d6728 d < (E)
since £2d > 10'%log d (see Lemma 7). Moreover, assuming that the two ‘bad’ events
defined above do not hold, the set of ‘—’ vertices obtained through Q contains that
obtained through P, run up to time d (see Lemma 5).
We have shown that up to time d, the process P may be ‘approximately’ coupled
with a process in which

P (o (x)is ‘= after time d) < d~ 1%,

and the events {o (x) is ‘—’ after time d},cp are 19-independent (we lose a little more
independence in going from X to Q). The proof is now completed in three more steps.
First, we describe a second coupling, with a process in which the probability a vertex
is ever again in state ‘—’ after time d (unless affected by vertices outside B’) is still at
most d 3% and in which these events are 120-independent (see Lemmas 10 and 11).
Next we deduce that after time 200d> + d, with very high probability every vertex of
B will be in state ‘4’ (see Lemma 12). Since n = 2¢ > 2004°, it is very unlikely
that the state of any vertex in B has by this point been affected by any vertex outside
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B’ (see Lemma 14). Finally, we apply Theorem 2 to the distribution of states obtained
on the blocks B.

Throughout the proof we shall have a large amount of leeway in our calculations,
and so we shall often be able to use very weak approximations. The crucial point,
however, is that the set X must be small (see Lemma 6); it is at this step that the proof
is sharp.

3 A coupling up to time d

In this section we shall prove the required facts about the processes P and Q. First let
us define P and Q precisely.

Let B be a block in Z4 of size [n]¢, where n = 3 x 29, and let B’ be a block with
the same centre as B, but of size [n]¢, where n’ = 5 x 2¢. The process P is simply
Glauber dynamics run on the graph Z4[ B'] (the subgraph of Z¢ induced by the set B')
with ‘4 boundary conditions.

Next we shall define the process Q on the block B’. Let A™ denote the set of vertices
initially in state ‘+’ in B’, and let A~ denote the set of vertices initially in state ‘—’,

ed
so A~ = B/\A™T. Let SO = A= letm = bR run the Boot(d, 8, m) process, defined

above, on the graph G = [n’]d (i.e., the torus with vertex set B’), and let X = S(S)\A_.
Finally, let the state o (x) of a vertex x € B’ be declared ‘—’ after the process Q if any
of the following is true:

e Its clock has not yet rung in P by time d.
e It has at least d neighbours in A™.
e It has at least one neighbour in X.

Let Z denote the set of vertices in B’ whose state is declared ‘—’ after Q.

Let F denote the event that there exists a vertex in B’ whose state is ‘—’ at time
d in P, but not after the process Q. We shall use the following result, which follows
immediately from Lemma 6.3 of [4].

1
Lemmad4 LetN,d € N, andlet G = [N]%. Lete > Oand p = 3 —e¢, and choose the
elements of S0 C V(G) independently at random, each with probability p. Further,

d
letm = ;—4 and 1 <k < 8. Then, in the Boot(d, 8, m) process, for every x € V(G),
k4D o) 8k+2dk+1
IE”(x eSS \S ) < exp (_—82"‘“(/( n 1)!) .

1
From this point onwards, let ¢ > 0 be arbitrary, let p = > + &, and let the elements

of AT C B’ be chosen independently at random, each with probability p. We shall
denote by P, probabilities which come from this distribution.

We begin by showing that Q is almost always more generous than P (in the trivial
coupling). Recall that F denotes the event that there exists a vertex in B whose state
is ‘=’ at time d in P, but not after Q.
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Lemma 5 Suppose ¢*d > 10'°logd. Then

810d9
P,(F) < (2n)dexp (_8139') < exp (—d4).

Proof Let x € B’, and suppose that o (x) is ‘—’ after time d in P, but that o (x) is ‘+’
after Q. By the definition of Q, the clock of x must have rung at least once before time
d, and x must have fewer than d neighbours in A~ in the torus on B’. Therefore it also
had fewer than d neighbours in A~ in the graph Z%[ B'] with ‘+ boundary conditions.
But its state after time d in P is ‘—’, so it must have gained a new ‘—’ neighbour, y
say, in P. Note that y ¢ X, since o (x) is ‘+” after Q.

Now, since the state of vertex y changed to ‘—’ in P, it must lie in the closure of the
set A~ under the d-neighbour bootstrap process on Z%[B’]. Hence it also lies in the
closure of A~ under the Boot(d, 8, m) process on the torus (since the original process
is dominated by the modified one). Let S©© = A~ and apply the Boot(d, 8, m) process
on the torus. By Lemma 4 we have, for each z € B/,

£10,9
P,(z € SONS®) < exp (—m) .

Thus, since |B’| < (2n)¢,

O\ ¢(8) d e'%d’
PSSO 2 1) < @n) exp(—8139,).

But if § (9)\S ®) — ¢, then all vertices in the closure of A~ (and not in A™) are also
in X (by the definition of X). But this implies that y € X, which is a contradiction.
Thus the event F is contained in the event S@\S® £ @, and the result follows. O

Next we show that the set X = S®\ 5O is likely to be small.

Lemma 6 Let x € B', and suppose g2d > 1010 logd. Then
1000
P,(x € X) < 2exp(—2¢%d) < (E) )

Proof We apply Lemma 4 to the torus [1']? on vertex set B'. Recall that the elements
of S = A~ are chosen independently at random with probability 1 — p = 1/2 —&.
Thus, by Chernoft’s inequality,

P, (x c S(l)\S(O)) < P, (BinQd,1— p) >d) < exp (-2&1) .
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Thus, by Lemma 4,

7
PyxeX)< > P, (x e S<"’+1>\S<m>)

m=0

) 7 M2 gm+1
< eXp (—28 d) + Zl exXp (—m)
m=

< 2exp (—282d) ,

since ¢2d > 1010 logd, as required. O

Finally we show that Z, the set of vertices in B’ whose state is ‘—’ after Q, is likely
to be small.

Lemma 7 Let x € B', and suppose *d > 10'° logd. Then
1000
P, (o (x) is ‘— after Q) < 5d exp(—2¢*d) < (Z) )

Proof There are three ways in which a vertex can be declared to be in state ‘—’ after

Q, and each of them is unlikely. Indeed,

e Since the clocks are exponential, the probability a given clock hasn’t yet rung by
time d is e <.

e Since the elements of the set A~ are chosen independently at random with proba-
bility 1/2 — ¢, and each vertex has 2d neighbours, the probability a vertex has at
least d neighbours in A~ is at most exp(—2¢2d), by Chernoff’s inequality.

e By Lemma 6, the probability that a vertex had a neighbour in X is at most

> Py(yeX) = 2dP,(y € X) < 4d exp(—2&%d).
yel'(x)
The result follows by summing these three probabilities. O

Define g := sup,cp Pp(y € Z), so we have g < d=19% by Lemma 7. We finish
the section with a trivial, but crucial observation.

Observation 8 Let G be the torus on vertex set B'. The events {(x € Z) : x € V(G)}
are 19-independent.

4 From time d to time O (d°)

Let B and B’ be as described in Sect. 3, and let Y denote the set of vertices in B’
in state ‘—’ after running the process P, i.e., Glauber dynamics on Z?[B'] with ‘4’
boundary conditions, up to time d. In the previous section we proved that, if £?d >

1010logd,thenthereexistsa(random) set Z C B’ which satisfiesP,(Z 2 Y) < e_dA,
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P,(x € Z2) < d=19% for each x € B’, and which is 19-independent. In this section
we shall deduce that, after enough extra time, the entire block B will be in state ‘4’
with high probability.

We begin by showing that, for each vertex x € B’, the probability that o (x) is ‘—’
in the process P at any time t > d is small. Again we use a coupling argument in
order to retain long-range independence. Let [Z]40 denote the closure of the set Z
after 40 steps of the Boot(d, 40, m) process on the torus on B’ (i.e., the set S (40) given
SO = 7), where m = d/80.

(We remark that the number 40 is simply chosen to be sufficiently large compared
with 19, and sufficiently small compared with d. Indeed, in the proof of Lemma 10,
below, we shall use the inequality |T'| > m’/2't! > d3k for t = 40, where m = d/80
and k ~ (2d)'® is the number of points within distance 18 of a vertex in Z<.)

Let F’ denote the event that, in the process P, any vertex outside [ Z]4g is ever again
in state ‘—’ after time d. We shall need the following simple approximation.

Observation 9 Let p € (0, 1) and n € N satisfy pn® < 1, and let S(n) ~ Bin(n, p).
Then
Py (S(n) = m) < 2p™?

for everym € [n].

Proof We have

n

P, (S(n) = m) < Z('Z)p" < 2(pm™ < 2p",

i=m

as claimed. The second inequality follows since pn < 1/2, and the third since pn <
/D |

The following lemma uses ideas from Lemmas 6.2 and 6.3 of [4].

Lemma 10 Suppose £2d > 10'logd. Then
P,(F') < 2exp (—d4) .

Proof We shall prove the lemma using Lemma 5, and the following claim.
Claim Let SO = Z andm = d /80. Then, in the Boot(d, 40, m) process,

P, (|S<41>\S<40>| > 1) < exp (—d“).

Proof of claim Recall that ¢ = sup,cp P)(y € Z) < d=19% and suppose that

x € SUD\S@O We start by showing that there exists a set T C S\ SO with
d(x,y) =40 for each y € T, such that
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Indeed, writing T'(x, j) := {v € B’ : d(x,v) = j} foreach j € N, let
Tj =T(x, j) N SH=)\g@0=7),

and observe that | 7| > m, i.e., that I" (x) must contain at least m vertices of S (40)\S (39,
To see this, simply note that if x ¢ S®O then |T'(x) N $©?| is at most d — m, and if
x € SUD\§@O then T (x) N S@O| is at least d.

Now, in exactly the same way, for each vertex y € T}, I'(y) must contain at least m
vertices of §@0=\§G9=1 Atleastm — j > m/2 of these are in I'(x, j + 1) (since y
has at most j neighbours outside I'(x, j + 1)), and therefore also in 7. Since each
vertex at distance j + 1 from x has at most j + 1 neighbours in I"(x, j), it follows that

Tl = — L
2(j+ 1)

Thus we obtain the set T = Ty, as claimed.

Now, consider the set U = I'(T) N I"(x, 41), and partition U into sets Uy, ..., U,
where k < 2(2d)18, so thatif y, z € U; for some j then d(y, z) > 19. (That we can
do so follows from the simple fact that x (G) < A(G) + 1, see for example Lemmas
3.6 and 6.1 of [4].) Since T C S(l)\S(O), each vertex of T has at leastd —40m = d /2
neighbours in § 0 = 7. Also, since T C I'(x, 40), each vertex of T sends at most 40
edges outside U.

It follows that there are at least (d/2 — 40)|T| > d|T|/3 edges from T to U N Z.
Moreover, each vertex of U sends at most 41 edges into 7', and so U contains at least
d|T|/123 vertices of Z. By the pigeonhole principle, for some set U; we have

ATl _

Nzl =z —— =
123k

since d > 1010,
But the events {(y € Z) : y € U;} are independent, by Observation 8, and

1 1000
U’ < Qad)*° ([—1) <1,

so by Observation 9,
B (lUjnzlzd') < 2477 < "

2 .
Now, we have at most (2n)d < ¢4 choices for the vertex x, and at most m < 2(2a?)18
choices for the set U;. Thus

P, (|S<41>\S<4°)| > 1) < (ed22(2d)18) P, (|UjﬁZ| zd‘*) < o
as claimed. O
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Now, recall that the event F' has probability at most e_d4 , by Lemma 5, and assume
that F does not hold, so Y C Z. Thus the sites ever again in state ‘— after time d in
the process P are a subset of [Y] C [Z], the closure under the usual majority bootstrap
rule. But if S\ @0 = ¢ then [Z] C [Z]40, and it follows that F’ does not hold.

Hence

Pp(F) < Bp(F) + Py (SU\SU £) < 2exp (-d*)

by Lemma 5 and the claim, as required. O
We now bound the probability that a vertex is contained in [Z]40.

Lemma 11 Let x € B', and suppose e*d > 10'°logd. Then

1500
Pp(x € [Zla0) = (3) -

and the events x € [Z]49 are 120-independent.

Proof If x € [Z]40, then there must exist an element of Z within distance 40 of x.
But the expected number of such elements is at most 2(2d y*g, and so

13500
P, (x € [Zla) < 2dQ2d)¥q < (3) :
The event x € [Z]49 depends only on vertices within distance 58 of x, so these events
are 120-independent. O
Finally, we deduce the bound we require.

Lemma 12 Let x € B', and suppose g2d > 1019 logd. Then
Py (o) is =" attime 2004° + d in P) < 3exp (—d*).

Proof Let T = d°, and suppose that o (x) is ‘=’ at time 2007 + d. Let E denote the
event that, at some point before time 2007 + d, a time interval of length T passes in
which the clock of some vertex within distance 200 of x does not ring. There are at
most 2(2d)2% such vertices, and if such an interval occurs then it contains an interval
of the form [T'j /2, T (j 4+ 1)/2]. There are 400 such intervals, and the probability that
a given clock does not ring in one of them is exp(—7/2). Hence,

dS
P,(E) < 800(2d)*® exp(—g) < 2"

For the rest of the proof, assume that E does not occur. Assume also that F’ does not
hold, so if o(y) is ‘—’ at some time ¢ > d, then it follows that y € [Z]49.
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Since E does not occur, the clock of x rings at some point in the interval [199T +
d,200T +d). Let t (x) denote the last time this happens before 2007 +d, and observe
that, since o (x) is ‘—’ attime 2007 +d, x must have a set R(1) of atleast d neighbours
in state ‘—’ at time 7 (x) > 1997 + d. Similarly, each clock associated with a vertex
of R(1) rings at some point in the interval [#(x) — T, #(x)). For each vertex y, let #(y)
denote the last time this happens, and observe that at time #(y) vertex y has at least
d neighbours in state ‘—’, of which at least d — 1 > d/2 are at distance two from
x (since it has only one neighbour outside I'(x, 2)). Each vertex in I'(x, 2) has only
two neighbours in I'(x, 1), and so there is a set R(2) C I'(x, 2) of at least |R(1)|d /4
vertices, which are each in state ‘—’ at some time after 1987 + d.

In general, for each 1 < j < 199 and each vertex z € R(j) C I'(x, j), there
exists a time #(z) > (200 — j — 1)T + d at which the clock of vertex z rings,
and z has at least d neighbours in state ‘—’, of which at least d — j > d/2 are
at distance j + 1 from x (since z has only j neighbours outside I'(x, j + 1)).
Each vertex in I'(x, j + 1) has at most j + 1 neighbours in I'(x, j), and so there
isaset R(j+ 1) C I'(x, j + 1) of at least

|R(j)Id
2+ 1D

vertices, which are each in state ‘—’ at some time after (200 — j — )T + d.

From this process (see also the proof of Lemma 10), we obtain sets R(k) C I'(x, k)
for each k € [200], such that for each vertex y € R(k), o(y) is ‘—’ at some time
t > (200 — k)T + d. Moreover, we have

dk
[R(k)| > W

for each k € [200]. Finally, note that each vertex of R(k) is in state ‘—’ at some time
after d, so must also be in [Z]49.

Now, let U = R(200), and partition U into sets Uy, . .., U,,, where m < 2(2d)“9,
sothatif y, z € U; for some j € [m], then d(y, z) > 120 in the torus on B’. Observe
that, by the pigeonhole principle, some set U; contains at least

200
[RQOD)| _ ( d 1 g
m  — \ 22002001 ) \202a)'9 ) =

vertices of [Z]a0, since d > 1010,
But the events {(y € [Z]40) : y € U;} are independent, and, by Lemma 11,

500
U, PP (5 € [Zlo) < (2d)* (é) <1

for every y € B’. Thus, by Observation 9,

20 Ry
P, (10 121l = d¥) = 2P, (v € [Z1a)™? = 7",
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Finally, we have at most m < 22d)M? choices for the set U j- Thus

P, (a(x) is ‘—’ at time 200d° + d in P) <P,(E) + P,(F) + 2(2d)119¢=3d"
< 3exp (—d4) s

by Lemma 10, as required. O

5 The proof of Theorem 1

In this section we shall put together the pieces and prove Theorem 1. We have shown
that, in the process P, for any vertex x € B/,

Py (o) s~ attime 200d° +d) < 3exp (—d*).

Thus the probability that there exists a vertex in B’ in state ‘— at this time is at most
exp(—d4 /2), since B’ has (n’ )d < ed2 vertices. However, this is in the process P, not
the original Glauber dynamics. We therefore need one more lemma. (See also Step 3
of the proof of Lemma 4.1 in [19], on which the following lemma is based.)

Define a path of clock-rings to be a sequence (xy, t1), . .., (X, ty) of vertex-time
pairs, where x; € 74 and t ;€ [0, 00), such that the following conditions hold:

e |xj41 —xjlli = 1 foreach j € [m —1].
o1 < < ly.
e The clock of vertex x; rings at time ¢; for each j € [m].

We say moreover that such a sequence is a path from x; to x,, in time [, #,,]. We
begin with a simple but key observation.

Observation 13 Let x,y € Z¢ and t € [0, 00). Suppose that there does not exist a
path of clock-rings from x to y in time [0, t]. Then the state of vertex y at time t is
independent of the state of vertex x at time Q.

Let F” denote the event that there exists a path of clock-rings from some vertex
outside B’ to some vertex inside B in time [0, T'], where T = 200d° + d. Note that,
by Observation 13, if F” does not occur, then the state of every vertex in B at time T
is the same in Glauber dynamics on Z? as it is in the process P, since the boundary
conditions cannot affect B.

Lemma 14 P,(F") < 272",

Proof For each r € N, there are at most (2n)4(2d)" paths of length r starting on the
boundary of B’. Given a time T € [0, 00), let P(r, T) denote the probability that

a particular path of length r, (x1, ..., x,) say, can be extended to a path of clock-
rings in time [0, T']. In other words, P (r, T) is the probability that there exist times
0<1t <--- <t <Tsuchthat (x1,11),..., (xr, 1) is a path of clock-rings. It is

clear that P(r, T') does not depend on the particular path we choose.
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We bound P(r, T') as follows. For each j € [r] choose ¢; to be the first time the
clock C(x;) rings after time #;_1. Let J; denote the event that #x — #, 1 < 2T /r, and
observe that

2T 2T
P,(Jp) =1 —exp{——) < —,
,

r

and that the events Ji are independent. Let J = er(: 1 I[Jx], where I denotes the
indicator function. Then,

r r\ (2T)"* 8T\
P(r,T) =Py =T) SHDP(JEE) = (7/2)(7) < (7) .

Now, applying this with » > 29 and T = 200d> + d, we obtain

o] r/2
Py(F") < > @n?@d) (87T) <27%

r=2d
as required. O

Finally, we are ready to prove Theorem 1.

1
Proof of Theorem 1 Lete > Oandlet p = S+e Letd € Nsatisfy ¢2d > 10 1logd,

and choose the elements of the set AT C Z? independently at random, each with prob-
ability p. Let n = 3 x 29, and partition Z? into blocks of size [1n]?, in the obvious
way.

We run Glauber dynamics for time 7 = 200d 5 +d, and then stop. Given a block B,
define the block B’ D B, and the process P on B’, as in Sect. 3. We say that B is a
good block if both of the following events occur in B’:

e The event F” does not occur.
e All of the elements of B are in state ‘4’ at time 7 in the process P.

Otherwise we say that B is a bad block.

Note that if B is good, then all the elements of B are in state ‘4’ at time 7 in
Glauber dynamics, by the comment after Observation 13. Also, by Lemmas 12 and
14, the probability that B is bad is at most

]P’,,(F”) + Z:]P’[7 (o(x)is ‘=" attime T in P) < 2_2d + 3n¢ exp (—d4)

xeB

d4
< exp (—?) .

Moreover, the event “B is good” depends only on what happens inside B’. Hence,
given any collection of blocks By, ..., By with ||B; — Bjlloc > 2 foreachi # j,
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Zero-temperature Glauber dynamics on 74 433

the events “B; is good” are independent, since the corresponding blocks B} are all
disjoint.

Hence we may couple the dynamics at time 7 with a distribution o € Q(n, p),

where p = P, (B is good). But

d* 1\
P, (Bisgood) > 1 — exp (—7) >1-¢ (2—) > p"W(zY),
n

by Theorem 2, and so the system fixates at ‘+’ with probability 1, as required. O
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