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Abstract We construct a natural measure μ supported on the intersection of a
chordal SLE(κ) curve γ with R, in the range 4 < κ < 8. The measure is a func-
tion of the SLE path in question. Assuming that boundary measures transform in a
“d-dimensional” way (where d is the Hausdorff dimension of γ ∩ R), we show that
the measure we construct is (up to multiplicative constant) the unique measure-valued
function of the SLE path that satisfies the Domain Markov property.
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1 Introduction

1.1 Statement of main result

Let γ be a chordal SLE(κ) curve in H with 4 < κ < 8. In this range of κ it is
well known that the intersection of γ with the real line is a random set with fractional
dimension, and in the recent papers [2,15] it has been shown that the Hausdorff dimen-
sion of γ ∩ R is almost surely d := 2 − 8/κ . This result gives some information on
the size of γ ∩ R, but it is still only a qualitative description. Two instances of γ ∩ R
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332 T. Alberts, S. Sheffield

will be very different as point sets, even though their Hausdorff dimension will be the
same. The purpose of this paper is to gain more information on the local structure of
γ ∩R by constructing a measure on it, somewhat analogous to the local time measure
on the zeros of a Brownian motion. That is, we define a measure-valued function μ

of γ which is almost surely supported on γ ∩ R. For each finite interval I , we will
interpret the quantity μ(I ) as a kind of d-dimensional “volume” of γ ∩ I . Although
we will not prove that the measure we construct is equivalent to the most well known
notions of d-dimensional volume (for example, it remains an open question whether
it is equivalent to d-dimensional Minkowski measure on γ ∩ R, or is some sort of
Hausdorff content), we will see that it is the unique d-dimensional volume measure
on γ ∩ R with certain natural conformal covariance properties.

The construction of our measure is inspired by a similar work in progress by the
second author and Greg Lawler (see [10]), but many of the ideas can already be found
in [9]. Although in spirit our work is very similar to the work of Lawler and Sheffield,
there are differences that we should highlight. First, the measure they are constructing
is supported on the SLE(κ) curve in the interior of the domain, while ours deals only
with the intersection of the curve with the boundary in the range 4 < κ < 8. Second,
although most of the content of [10] is geared toward constructing a measure supported
on γ , they interpret this measure as a “natural time parameterization” for the curve
and most of their work is draped in the language of the time parameterization. Finally,
the technical lemmas they use to establish the existence of a non-trivial measure are
very different from the ones we use. In both this work and [10], the key idea in the
construction of the measure is an appeal to the Doob–Meyer decomposition theorem,
which gives a unique way of writing a supermartingale as a local martingale minus
a predictable, non-decreasing process (all processes here are assumed to be cadlag;
see Sect. 4 for a precise definition of a predictable process). Our work builds on a
recent “two-point martingale” discovered by Schramm and Zhou [15] and uses the
well established theory of the Doob–Meyer decomposition to give a clean and direct
proof of the existence of the measure. Lawler and Sheffield, on the other hand, have
no such two-point martingale available and they are forced to rewrite many of the
original proofs of the Doob–Meyer theory to fit their specific circumstances.

The intuition behind the use of Doob–Meyer is very simple. Let Kt be the SLE hull
at time t . As the curve goes from 0 to ∞ it swallows all of the points on the positive real
axis R+. Since SLE curves are non-self-crossing, after an interval I has been swal-
lowed it is impossible for the curve to return to it. As we stated earlier, our intention is
that the measure of I will in some sense describe the d-dimensional volume of the set
γ ∩ I . Hence, it is reasonable to assume that the measure of I is completely determined
at its swallowing time, which is random but still a stopping time. At any time t ≥ 0
we can always decompose I into a left interval I ∩ Kt of swallowed points and a right
interval I\Kt of unswallowed points, and if μ is any Borel measure on R+ then

μ (I ) = μ (I ∩ Kt ) + μ (I\Kt ). (1)

Assuming that μ (I ∩ Kt ) is measurable with respect to the filtration generated by
γ [0, t], taking conditional expectations of both sides of (1) gives

E
[
μ(I )| γ [0, t]] = μ (I ∩ Kt ) + E

[
μ (I\Kt )| γ [0, t]]. (2)
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The process μ (I ∩ Kt ) is non-decreasing with t , since Kt is, and assuming that
μ(I ) has finite expectation, the left hand side of (2) is a martingale. Consequently,
E
[
μ (I\Kt )| γ [0, t]] must be a supermartingale, and (2) is its Doob–Meyer decom-

position. This gives a strategy for constructing μ. The idea is to identify a natural,
explicit formula for the supermartingale, and then define the process μ (I ∩ Kt ) to
be the non-decreasing part of its Doob–Meyer decomposition. Taking t → ∞ gives
μ(I ), since all points are eventually swallowed, and then repeating the process for all
intervals I uniquely determines μ.

Our choice of E
[
μ (I\Kt )| γ [0, t]]will ultimately be determined by a requirement

that the boundary measure we construct satisfies a certain Domain Markov property.
Suppose we are given γ [0, t] (and the corresponding hull Kt ) and let ht : H\Kt → H

be the unique conformal map such that ht (γ (t)) = 0, ht (∞) = ∞, and ht (z) ∼ z as
z → ∞. The usual Domain Markov property for SLE says that the image curve

γ t (s) := ht (γ (t + s)), s ≥ 0

is independent of γ [0, t] and has the SLE law in H from 0 to ∞. A similar statement
should also hold for the boundary measure. To formulate this statement, we first need
to articulate how we wish our measure to transform under a conformal map φ. Just as
“lengths” are locally stretched by a factor of |φ′| and “areas” by a factor of |φ′|2, it is
natural to expect the measure of a d-dimensional set to be locally changed by a factor
of |φ′|d .

Definition 1.1 Let D1 and D2 be simply connected domains and let φ be a conformal
map of D1 onto D2. Assume that φ′ extends continuously to all of ∂ D1. Let ν be a
measure supported on ∂ D1. The d-dimensional covariant transform of ν by φ is the
measure νd,φ on ∂ D2 defined by

νd,φ(φ(A)) :=
∫

A

∣∣φ′(w)
∣∣d dν(w)

for all Borel subsets A of ∂ D1. We will also use the convenient infinitesimal shorthand

dνd,φ(φ(w)) = ∣∣φ′(w)
∣∣d dν(w).

If φ′ does not extend continuously to all of ∂ D1 then we define the measure only
on sets φ(A) ⊂ ∂ D2, where A is a Borel set that is contained within any boundary
segment S ⊂ ∂ D1 to which φ′ does extend continuously.

With this definition in hand we state our main result:

Theorem 1.2 Let P be the chordal SLE(κ) measure on curves in H from 0 to ∞. Up
to redefinition on a set of P-measure zero, there is a unique measure-valued function
μ on curves γ (defined as a measure on R+ for P almost all γ ) with the following
properties:

1. Scaling: μ(r ·) has the same law as rdμ(·).
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2. Finite Expectation/Normalization: E [μ ((0, 1])] = 1/d.
3. Measurability: The process given by restricting μ to Kt , i.e. μ (· ∩ Kt ), is pre-

dictable.
4. Domain Markov Property: Given γ [0, t], the conditional law of μd,ht (where

we have restricted μ to R+\Kt , on which ht is smooth) is the same as the original
law of μ restricted to ht (R+\Kt ).

In addition, the measure almost surely

(i) is supported on γ ∩ R+,
(ii) is singular with respect to Lebesgue measure,

(iii) is free of atoms,
(iv) and assigns positive mass to an open interval if and only if the curve hits that

interval.

Moreover, for any interval I ⊂ R+

E [μ (I ∩ Kt )] = 1

�
( 12−κ

2κ

)
∫

I

∞∫

x2/2t

xd−1u
12−κ

2κ
−1e−u du dx .

The uniqueness part of Theorem 1.2 is essentially guaranteed by the uniqueness of
the Doob–Meyer decomposition, provided that we can find an explicit supermartin-
gale to take the place of E

[
μ (I\Kt )| γ [0, t]]. In fact the extra scaling, normalization

and Domain Markov properties of μ uniquely determine what E
[
μ (I\Kt )| γ [0, t]]

must be. The scaling implies that E [μ (r I )] = rdE [μ (I )] for any interval I ⊂ R+;
from this we can deduce that there exists a constant C > 0 such that E [μ (I )] =
C
∫

I xd−1 dx , or in the infinitesimal shorthand E [dμ(x)] = Cxd−1 dx . The normal-
ization implies that C = 1. A corollary of the Domain Markov property is that the
conditional expectation of μd,ht given γ [0, t] is the same as the a priori expectation
of μ; that is

E
[

dμd,ht (ht (x))
∣∣ γ [0, t]] = ht (x)d−1 d(ht (x)) = ht (x)d−1h′

t (x) dx,

for unswallowed points x ∈ R+\Kt . But by definition of the d-dimensional covariant
transform, this is the same as

E
[

h′
t (x)ddμ(x)

∣∣∣ γ [0, t]
]

= ht (x)d−1h′
t (x) dx,

which, since h′
t (x) is measurable with respect to the information in γ [0, t], implies

that

E
[

dμ(x)| γ [0, t]] =
(

h′
t (x)

ht (x)

)1−d

dx .
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To simplify notation we will write

Mt (x) :=
(

h′
t (x)

ht (x)

)1−d

, Xt (I ) :=
∫

I\Kt

Mt (x) dx .

In Sect. 3 we will see that Mt (x) is actually a positive local martingale for each x ∈ R+,
and that for each x it is almost surely the case that Mt (x) → 0 as t ↑ Tx , where Tx is
the swallowing time of x by the SLE hull. If we define Mt (x) to be zero for t ≥ Tx ,
then we have

Xt (I ) =
∫

I

Mt (x) dx .

In Sect. 5 we will see that Xt (I ) is actually a supermartingale. By the argument out-
lined earlier we can use its non-decreasing process to construct the measure μ. The
difficult part of the construction is in showing that Xt (I ) actually admits a decompo-
sition as a martingale minus a predictable, non-decreasing process. This form of the
decomposition is not guaranteed for any positive supermartingale. What is true, as we
will describe in more detail in Sect. 4, it that a positive supermartingale can always
be uniquely decomposed as a local martingale minus a predictable, non-decreasing
process. The latter decomposition, however, can be “trivial” in the sense that the non-
decreasing process may turn out to be identically zero. In fact, one surprising result
of this paper is that while for each x ∈ R+ the process Mt (x) is itself a local mar-
tingale—and hence admits only a trivial decomposition —the integral Xt (I ) admits
a non-trivial decomposition. This illustrates the fact that an average of non-negative
local martingales with respect to a given filtration need not be a local martingale (even
though an average of non-negative martingales is a martingale by Fubini’s theorem).

The details of constructing the Doob–Meyer decomposition for Xt (I ) are the sub-
ject of Sect. 5. To mention some keywords, we first must show that the process Xt (I )
satisfies a uniform integrability condition called the class D property. This is a tech-
nical condition that a priori seems difficult to verify, but actually turns out to be
easily satisfied thanks to a recent “two-point” martingale discovered by Schramm and
Zhou. After establishing the class D property we also show that Xt (I ) is regular.
This additional property guarantees that the increasing part corresponding to Xt (I ) is
continuous which, as we will see in Sect. 6, proves that our boundary measure is free
of atoms.

In Sect. 7 we discuss the relationship between our work and the work of Schramm
and Zhou [15], which motivated much of this paper. Schramm and Zhou also used
Mt (x) to construct what is implicitly the same boundary measure as ours, although
they constructed it only as a γ -dependent subsequential limit of approximating mea-
sures με and were only able to show convergence on an event of positive probability
(less than one). Via another abstract appeal to the Doob–Meyer decomposition, we
are able to strengthen the method of taking a limit of the με and show that there is a
fixed subsequence ε j tending to zero along which με j converges weakly to μ, with
probability one. Details of the latter point occupy Sect. 7.2. In Sect. 7.4 we show how
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the με measures lead to a natural conjecture that our boundary measure on γ ∩ R+ is
in fact the same as the Minkowski measure, up to some fixed deterministic constant.

The rest of the paper is organized as follows: in Sect. 2 we briefly set up nota-
tion and establish a few preliminary facts. In Sect. 3 we discuss the local martingale
Mt (x) and describe many of its properties, including the two-point bound of Schramm
and Zhou which is essential to our work. In Sect. 4 we lay out the statement of the
Doob–Meyer decomposition and associated lemmas that we will use to construct our
measure. Sect. 5 is mostly devoted to verifying that Xt (I ) satisfies the hypotheses
of the theorems listed in Sect. 4, and then using the non-decreasing part of Xt (I ) to
construct our boundary measure. In Sect. 6 we prove that the boundary measure of
Sect. 5 has all the properties of Theorem 1.2, including the important Domain Markov
property. Sect. 7 discusses the relationship between our boundary measure and the
approximate measures of Schramm and Zhou.

2 Notation and preliminaries

First we briefly establish some notation. By the symmetry of the SLE curve about the
imaginary axis it is enough to construct our measure only on the positive reals, which
we will denote by R+. Given a Borel set A ∈ B (R+), we will use |A| to denote the
Lebesgue measure of A.

Throughout this paper it will be convenient to work with a single abstract probability
space (	,F , P). Our heavy usage of the Doob–Meyer decomposition requires many
precise statements about martingales, and it is easier to deal with a single probability
measure and filtration everywhere. Let {Bt ; t ≥ 0} be a one-dimensional standard
Brownian motion on our probability space with B0 = 0 almost surely, and let Ft be
the filtration it generates (where F0 is augmented to include all P-negligible sets).
With this definition Ft satisfies what are commonly called the usual conditions in the
literature on stochastic processes (i.e. Ft is right continuous and F0 contains all the
P-negligible events in F ; for a further explanation and a precise definition of right
continuity the interested reader can consult [6, Chap. 1, Definition 2.25]). For our
purposes it is sufficient to know that the usual conditions are a technical requirement
of the standard Doob–Meyer decomposition theorem (as well as many other standard
theorems in stochastic calculus).

2.1 SLE and Bessel processes

Chordal SLE on (	,F , P) is constructed via the Loewner equation

∂t gt (z) = a

gt (z) − Ut
, g0(z) = z, (3)

where a = 2/κ and Ut = −Bt . This differs from the standard notation introduced in
[14] but is convenient since many of our parameters are in terms of 1/κ rather than
κ . Let γ be the SLE curve generated by gt . In many instances we will also use γ
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as shorthand for the trace γ [0,∞); it will be clear from the context which we are
referring to.

In this paper we will only consider the range 1/4 < a < 1/2 (4 < κ < 8). For
each z ∈ H, let Tz be the stopping time at which the solution to (3) explodes. It is well
known in SLE that for κ > 4, Tz is finite almost surely for each z ∈ H. The SLE hull
Kt is defined as

Kt := {z ∈ H : Tz ≤ t}.

At any time t > 0, Kt ∩R is a closed interval with zero in its interior. Note that Kt ∩R

is not the same as γ [0, t] ∩ R : the former is the set of points swallowed by the curve
and the latter is the set of points hit by the curve. In fact, we have the strict inclusion

γ [0, t] ∩ R ⊂ Kt ∩ R

since hit points are swallowed points but not necessarily vice-versa.
For ease of notation, we will write ht for the shifted maps

ht (z) = gt (z) − Ut .

For fixed t > 0, both gt and ht are analytic on H\Kt . In fact ht is the unique conformal
map from H\Kt to H such that ht (γ (t)) = 0, ht (∞) = ∞, and ht (z) ∼ z as z → ∞.
From Ut = −Bt and (3) it follows that

dht (z) = a

ht (z)
dt + d Bt , h0(z) = z. (4)

By convention we set ht (0) = 0 for all t ≥ 0. For each x ∈ R+, the stochastic
differential equation (4) identifies ht (x) as a Bessel process on the real line, and the
solution ht can be regarded as a stochastic flow on R+. Note that

Tz = inf{t ≥ 0 : ht (z) = 0}.

Occasionally we will need to make use of the flow started from a later time, so for
s, t ≥ 0 we define Bt,s := Bt+s − Bt , Ft,s := σ(Bt,s; s ≥ 0), and the flow ht,s by

dht,s(z) = a

ht,s(z)
ds + d Bt,s, ht,0(z) = z,

where all differentials are with respect to s. Again we adopt the convention that
ht,s(0) = 0 for all s ≥ 0. It can easily be shown that there is an event of full prob-
ability on which the flow {ht,s(z)} is well-defined for all s, t > 0 and z ∈ H by, for
example, constructing the corresponding flows gt,s for (3) using the usual determin-
istic existence theory for ODEs, and then shifting the solutions via the paths Bt,s . The
Markov property for the Brownian motion implies that the process

{
ht,s(z); s ≥ 0, z ∈ H

}

123



338 T. Alberts, S. Sheffield

is independent of Ft and has the same law as the process
{

ht (z); t ≥ 0, z ∈ H

}
. It is

clear from the definitions of ht and ht,s that

ht+s(z) = ht,s(ht (z)) (5)

for all z ∈ H and all s, t ≥ 0. We further define

γ t (s) := ht (γ (t + s)), Kt,s := ht (Kt+s), s ≥ 0,

and then ht,s can be characterized as the unique conformal map from H\Kt,s onto H

such that ht,s(γ
t (s)) = 0, ht,s(∞) = ∞ and ht,s(z) ∼ z as z → ∞.

From now on we will only be interested in the Bessel flow restricted to R+. There
are some basic properties of the flow that we will use repeatedly. We list them below.
For a general survey of Bessel processes see [13, Chap. XI], and for more on flows
arising from stochastic differential equations see [7].

Proposition 2.1 The following are true:

(a) The processes {ht (x); t ≥ 0, x > 0} and {r−1hr2t (r x); t ≥ 0, x > 0} have the
same law.

(b) For a ≥ 1/2 (κ ≤ 4) we have P (Tx = ∞ for all x ∈ R+) = 1.
(c) For a < 1/2 (κ > 4) we have P (Tx < ∞ for all x ∈ R+) = 1.
(d) If 0 < x < y, then 0 < ht (x) < ht (y) for all t < Tx .
(e) If 0 < x < y, then Tx ≤ Ty.
(f) For a > 1/4 (κ < 8) and 0 < x < y, the event Tx = Ty has positive probability.
(g) For a ≤ 1/4 (κ ≥ 8) and 0 < x < y, the event Tx = Ty has probability zero.
(h) For a > 0, we have 0 ≤ h′

t (x) ≤ 1 for all x ∈ R+ and t < Tx .

Statement (a) says that Bessel processes have the same scaling property as Brown-
ian motion, which is easily checked. Statements (b) and (c) tell us in what ranges of a
the flow sends points to zero, which in the SLE context corresponds to the values of κ

for which the curve can hit the real line. Statement (d) says that the flow preserves the
order on the real line, while statement (e) says that Tx is a non-decreasing function of
x . Statement (f) is very important for this paper. For the Bessel flow it says that two
distinct points on R+ can be sent to zero at the same time, which in the SLE context
means that the points can be swallowed by the curve at the same time, at least in the
range 4 < κ < 8. In fact there is an exact expression for P

(
Tx = Ty

)
; see (10) for

the exact formula and [8, Proposition 6.34] for details of the computation. Statement
(g) says that in the κ ≥ 8 range the curve hits points on R+ individually. Statement
(h) says that the flow is always a contraction on R+. Proofs of (b)–(h) can be found in
[8, Proposition 1.21].

The dimension d := 2 − 8/κ = 2 − 4a of γ ∩R will be used throughout the paper,
as will β := 1 − d = 4a − 1. Note that 0 < d < 1 and 0 < β < 1. For ht satisfying
(4) and x ∈ R+, a central fact of our paper is that

Mt (x) :=
(

h′
t (x)

ht (x)

)β
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is a local martingale for t ∈ [0, Tx ), with M0(x) = x−β . In fact, using (4) and Ito’s
Lemma it is easily verified that

d log Mt (x) = − β

ht (x)
d Bt − 1

2

(
β

ht (x)

)2

dt

for t < Tx , and therefore

Mt (x) = x−β exp

⎧
⎨

⎩
−

t∫

0

β

hs(x)
d Bs − 1

2

t∫

0

(
β

hs(x)

)2

ds

⎫
⎬

⎭
. (6)

Equivalently,

d Mt (x)

Mt (x)
= −β

ht (x)
d Bt , t < Tx . (7)

Observe that since 0 ≤ h′
t (x) ≤ 1 for all t < Tx (Proposition 2.1(h)), we have the

basic inequality

Mt (x) ≤ ht (x)−β (8)

for all t < Tx . We will make use of this in Sect. 5.
We also define Mt (x) started from a later time by

Mt,s(x) :=
(

h′
t,s(x)

ht,s(x)

)β

.

Again the Markov property of Brownian motion implies that {Mt,s(x); s ≥ 0, x > 0}
is independent of Ft and has the same law as the process {Mt (x); t ≥ 0, x > 0}. An
immediate consequence of relation (5) is

Mt+s(x) = Mt,s(ht (x))h′
t (x)β . (9)

The latter relation will be important in Sect. 6 for proving that the measure we will
construct has the Domain Markov property.

We will usually be interested in Mt (x) when it grows large, so we define the stopping
time

T ε
x = inf{t ≥ 0 : Mt (x) ≥ ε−β} ∧ Tx .

Note that T ε
x ≤ Tx , with strict inequality if and only if Mt (x) ≥ ε−β for some t < Tx .

We also define

Mε
t (x) = Mt∧T ε

x
(x).
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By definition, Mε
t (x) is a bounded local martingale and therefore a martingale. We

will also need to keep track of points x for which Mt (x) grows large, so for t ≥ 0 and
ε > 0 we define the random sets

Cε
t :=

{

x ∈ R+ : sup
0≤s≤t

Ms(x) ≥ ε−β

}

.

Note that for each ε > 0, Cε
t is Ft -measurable. Moreover Cε

t increases as t increases
and decreases as ε decreases, so we define

Cε :=
⋃

t≥0

Cε
t , Ct :=

⋂

ε>0

Cε
t ,

and

C :=
⋃

t≥0

Ct =
⋂

ε>0

Cε .

Note that the last equality is not completely trivial, but only uses that limε↓0 T ε
x =

Tx < ∞.
The sets Cε

t are meant to provide approximations to γ [0, t] ∩ R+, but are nicer
to work with because membership in Cε

t is determined by the behavior of a family
of martingales. These martingales are easier to analyze than the SLE curve itself. We
will see in Sect. 3 that the approximation is good in that each element of Cε

t is at most
distance 4ε from γ [0, t], and that each Ct is a subset of γ [0, t]∩R+. Similar sets first
appeared in [15], although they only considered Cε and did not let the sets vary with
time.

2.2 Random measures on R+

Throughout this paper we will freely use the term “random measures on R+”. There
is room for misinterpretation as to what precisely this means, so we use this section
to give an exact definition.

Let M be the space of positive Borel measures on R+. We endow it with the
topology of weak convergence and let the measurable sets be the Borel σ -field. By a
random measure on R+ we mean an F-measurable function μ : 	 → M. Usually
when working with a random measure we do not explicitly write the dependence of μ

on ω ∈ 	, which we feel keeps the notation simpler and cleaner. For A ∈ B (R+) we
regard μ(A) as a random variable μ(A) : 	 → R+. On the rare occasion where we
wish to write the measure of a particular set A for a particular ω ∈ 	 we will write
μ(A)(ω).

Recall that to construct a deterministic Borel measure ν on R+ it is enough to
define it as a countably additive set function on a field that generates B (R+). The
Carathéodory Extension Theorem (see [16, Theorem 1.1]) then allows one to uniquely
lift ν to a countably additive measure defined on all of B (R+). To construct a random
measure one may use the above procedure for all (or almost all) ω ∈ 	.
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3 The local martingale Mt(x) and the sets Cε
t

3.1 The local martingale Mt (x)

In this section we study the local martingale Mt (x) introduced in Sect. 1. One reason
that this local martingale is natural is that, in a sense that we will make precise below,
Mt (x) describes the conditional probability of the point x being hit by the SLE curve,
given the curve up to time t . Indeed, [12] proves that for ε > 0

F(ε) := P (γ ∩ [1, 1 + ε] �= ∅) = �(2a)

�(1 − 2a)�(4a − 1)

ε∫

0

du

u2−4a(1 − u)2a
. (10)

Letting

ca = �(2a)

�(1 − 2a)�(4a)
,

it is easy to see that

F(ε) ∼ caε4a−1

as ε ↓ 0. By the SLE scaling relations, it follows that for x > 0

P (γ ∩ [x, x + ε] �= ∅) = P
(
γ ∩

[
1, 1 + ε

x

]
�= ∅

)
= F

( ε

x

)
∼ ca

( ε

x

)β

.

Having observed the curve γ [0, t] and mapping back to the half-plane via ht , it follows
that, on the event t < Tx ,

P (γ ∩ [x, x + ε] �= ∅| γ [0, t]) = F

(
ht (x + ε) − ht (x)

ht (x)

)
. (11)

The map ht is also analytic at x on the event t < Tx , and therefore

F

(
ht (x + ε) − ht (x)

ht (x)

)
∼ ca

(
εh′

t (x)

ht (x)

)β

, ε ↓ 0.

Thus

Mt (x) = lim
ε↓0

ε−βP (γ ∩ [x, x + ε] �= ∅| γ [0, t]) /ca . (12)

In this limiting sense Mt (x) describes the conditional probability, having observed
γ [0, t], that the curve will hit the point x . Consequently the following result is not
surprising, and merely expresses the fact that any fixed point on the line is almost
surely not hit by the curve, in the range 4 < κ < 8.
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Lemma 3.1 Fix an x > 0. Then with probability 1,

lim
t↑Tx

Mt (x) = 0.

Proof Recalling Eq. (6) and letting

u(t) =
t∫

0

(
β

hs(x)

)2

ds,

consider the time changed martingale M̃u(x) := Mt−1(u)(x). Under this time change

M̃u(x) = x−β exp
{

B̃u − u

2

}
,

where B̃u is the standard Brownian motion defined by

B̃u = −
t−1(u)∫

0

β

hs(x)
d Bs .

On this time scale it is clear that M̃u → 0 almost surely as u ↑ ∞ since B̃u− u
2 → −∞.

If u (Tx ) = ∞, then

lim
t↑Tx

Mt (x) = lim
u↑∞ M̃u(x) = 0

and the proof is complete. A number of authors, for example [4] or [8], prove that
u (Tx ) = ∞, but the proof is so simple that we repeat it here. Let S0 := 0, and for
n ≥ 0 define Sn := inf

{
t ≥ 0 : ht (x) = x2−n

}
. Then

Tx∫

0

ds

hs(x)2 =
∞∑

n=0

Sn+1∫

Sn

ds

hs(x)2 =
∞∑

n=0

log h′
Sn

(x) − log h′
Sn+1

(x),

the last equality being a consequence of (4). The summands are independent by the
Strong Markov Property, and identically distributed by the scaling property of ht (x)

from Proposition 2.1(a). Since they are all positive it follows that u (Tx ) = ∞ almost
surely. ��
Remark Schramm and Zhou also give a proof of Lemma 3.1, although their proof
uses an extremal length argument involving the SLE hull itself, whereas ours is purely
probabilistic.

Corollary 3.2 The set of exceptional x > 0 for which limt↑Tx Mt (x) �= 0 has Lebes-
gue measure zero, almost surely.
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Proof This follows by Fubini’s theorem, since the Lebesgue measure is non-negative
and

E
[∣∣∣∣

{
x > 0 : lim

t↑Tx
Mt (x) �= 0

}∣∣∣∣

]
=

∞∫

0

P
(

lim
t↑Tx

Mt (x) �= 0

)
dx = 0.

��
Remark In the introduction we showed that the natural supermartingale to consider
in constructing the measure is

∫
I\Kt

Mt (x) dx . Corollary 3.2 shows that

P

⎛

⎜
⎝
∫

I∩Kt

Mt (x) dx = 0 for all t ≥ 0

⎞

⎟
⎠ = 1.

Hence we gain nothing by integrating over I ∩ Kt as well, so that

P

⎛

⎜
⎝
∫

I\Kt

Mt (x) dx =
∫

I

Mt (x) dx for all t ≥ 0

⎞

⎟
⎠ = 1.

In the rest of the paper we will write

Xt (I ) :=
∫

I

Mt (x) dx,

which is notationally more convenient. Equivalently one can also adopt the convention
that Mt (x) = 0 for t ≥ Tx , which also gives equality of the two integrals.

It is important to note that Mt (x) is a local martingale only, and not a proper
martingale as the next result shows. A similar result for the corresponding interior
point martingale appears in [10], although they were not able to compute an explicit
expression for E [Mt (x)].

Proposition 3.3 The local martingale Mt (x) is a supermartingale that is not a proper
martingale. In fact

E [Mt (x)] = Qx (Tx > t) x−β,

where Qx is the measure on paths such that

d Bt = −β

ht (x)
dt + dWt , t < Tx
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for some Qx -Brownian motion Wt , and consequently

dht (x) = 1 − 3a

ht (x)
dt + dWt , t < Tx

under Qx . The probability Qx (Tx > t) can be explicitly computed as

Qx (Tx > t) = 1

� (3a − 1/2)

x2/2t∫

0

u3a−3/2e−udu. (13)

Proof Since Mt (x) is a positive local martingale it is automatically a supermartingale.
For Mε

t (x), a corollary of (7) is that

d Mε
t (x)

Mε
t (x)

= −β

ht (x)
1
{
t ≤ T ε

x

}
d Bt . (14)

Since Mε
t (x) is a proper martingale, we can define a new probability measure Qx by

d Qx

d P

∣∣∣∣Ft

= Mε
t (x)

Mε
0 (x)

.

Note that Qx , as defined above, also implicitly depends on ε. Since

Mε
t (x) = Mt (x)1

{
T ε

x > t
}+ MT ε

x
1
{
T ε

x ≤ t
}
, (15)

and Mε
t (x) is a P-martingale, by taking expectations on both sides of (15),

E
[
Mt (x)1

{
T ε

x > t
}] = Mε

0 (x) − E
[
MT ε

x
(x)1

{
T ε

x ≤ t
}]

.

Note that all expectations are with respect to P . The event {T ε
x ≤ t} is FT ε

x
-measurable,

so therefore

E
[
MT ε

x
(x)1

{
T ε

x ≤ t
}] = Mε

0 (x)E
[

MT ε
x
(x)

Mε
0 (x)

1
{
T ε

x ≤ t
}
]

= Mε
0 (x)E

[
d Qx

d P

∣∣∣∣FT ε
x

1
{
T ε

x ≤ t
}
]

= Mε
0 (x)Qx

(
T ε

x ≤ t
)
.
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Since Mt (x) = 0 P-almost surely for t ≥ Tx ,

E [Mt (x)] = E [Mt (x)1 {Tx > t}]
= lim

ε↓0
E
[
Mt (x)1

{
T ε

x > t
}]

= lim
ε↓0

(
1 − Qx

(
T ε

x ≤ t
))

Mε
0 (x)

= Qx (Tx > t) x−β.

The second equality is by monotone convergence. From this identity, we can prove
that Mt (x) is not a local martingale under P by showing that Qx (Tx > t) < 1 for t
sufficiently large. By (4), (14), and Girsanov’s Theorem, it follows that ht (x) satisfies
the SDE

dht (x) = a − β

ht (x)
dt + dWt = 1 − 3a

ht (x)
dt + dWt ,

under Qx (at least for t < T ε
x ), where Wt is a Qx -Brownian motion. But for 1/4 < a <

1/2 we have that −1/2 < 1 − 3a < 1/4, and it is immediate from Proposition 2.1(c)
that Qx (Tx > t) < 1.

To compute Qx (Tx > t) exactly, we refer the reader to [18, p. 98, Proposition 1],
where it is proved that, under Qx , x2/(2Tx ) has the gamma density with parameter
3a − 1/2, i.e.

Qx

(
x2

2Tx
∈ dt

)
= t3a−3/2e−t

�(3a − 1/2)
dt.

Note that in the notation of [18], Yor’s T0 is the same as our Tx , his a is our x , and his
ν is the same as 3a − 1/2. ��
Remark The reference [18] is an excellent source for computations involving Bes-
sel processes. Specifically, we point out that the explicit Radon–Nikodym derivatives
between Bessel laws of different dimensions [18, p. 97, formula (2.c)] can be used
to compute E [Mt (x)] in an alternative (but equivalent) way. These Radon–Nikodym
derivatives appear in the SLE context in [17].

Remark The case a = 1/3 (κ = 6) is particularly interesting, since in that case ht (x)

is a simple Brownian motion under Qx , and

Qx (Tx > t) = Qx

(
min

0≤s≤t
B∗

s > 0

)
,

where B∗
s is a Qx -Brownian motion with B∗

0 = x . By symmetry this is the same as

Qx

(
max

0≤s≤t
B∗∗

s < x

)
,
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where B∗∗
s is a Qx -Brownian motion with B∗∗

0 = 0. The reflection principle for
Brownian motion (see [6]) gives the well-known result that the running maximum of
a Brownian motion has the same law as its absolute value, so that the latter is just

Qx
(∣∣B∗∗

t

∣∣ < x
) =

√
2

π t

x∫

0

e−y2/2t dy =
√

2

π

x/
√

t∫

0

e−y2/2 dy.

This agrees with the formula of Proposition 3.3 by a simple change of variables.

3.2 The Schramm–Zhou two–point martingale

Schramm and Zhou were able to derive a so called two-point martingale for M . Let

u(z) = (1 − z)−β
2 F1(2a, 1 − 4a, 4a; 1 − z),

where 2 F1 denotes the hypergeometric function; see [1] for their properties. Let 0 <

x < y. Then an application of Ito’s Lemma shows that

u

(
ht (x)

ht (y)

)
Mt (x)Mt (y)

is a local martingale for t ∈ [0, Tx ). Using properties of hypergeometric functions,
Schramm and Zhou also show that

q1 := inf
z∈(0,1)

u(z),

q2 := sup
z∈(0,1)

(1 − z)βu(z)

are both finite and positive. From this they are able to derive the following two results
(see Sections 2.2 and 4 of [15]), which we include here. Since Proposition 3.4 is a
slight extension of the one in [15] we provide a proof.

Proposition 3.4 Let 0 < x < y, and τ be a stopping time with P (τ < ∞) = 1. Then
for 0 < κ < 8 there exists a constant c, depending only on κ , such that

E [Mτ (x)Mτ (y)] ≤ cx−β(y − x)−β.
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Proof Let Zt = ht (x)/ht (y). Recall that u (Zt∧τ ) Mt∧τ (x)Mt∧τ (y) is a positive local
martingale, and therefore a supermartingale. By Fatou’s Lemma,

E [Mτ (x)Mτ (y)] ≤ lim inf
t↑∞ E [Mt∧τ (x)Mt∧τ (y)]

≤ lim inf
t↑∞ E [u (Zt∧τ ) Mt∧τ (x)Mt∧τ (y)] /q1

≤ u(Z0)M0(x)M0(y)/q1

= u(x/y)x−β y−β/q1

≤ q2

q1
(1 − x/y)−β x−β y−β.

The third inequality uses the supermartingale property. ��
Applying Proposition 3.4 to the stopping time τ = t ∧ T εx

x ∧ T
εy
y yields:

Corollary 3.5 Let 0 < x < y and εx , εy ≥ 0. Then

P
(

x ∈ Cεx
t , y ∈ C

εy
t

)
≤ c

(
εxεy

)β
x−β (y − x)−β

for the same constant c as in Proposition 3.4.

3.3 The sets Cε
t

Here we describe the relation between the sets Cε
t and γ [0, t] ∩ R+. In light of (12),

which roughly describes Mt (x) as the conditional probability that x is hit by the curve,
we should expect that if Mt (x) grows large then the curve must be close to x . The
next lemma quantifies this intuition. It can also be found in both [2,15], and detailed
proofs can be found in those papers.

Lemma 3.6 If x ∈ Cε
t then dist(x, γ [0, t]) ≤ 4ε. Consequently,

∣∣Cε
t

∣∣ is an increasing
function of t only at times t for which the curve is within distance 4ε of the real line.

Remark Lemma 3.6 shows that Ct ⊂ γ [0, t] ∩ R+. It would be extremely helpful if
the converse to the lemma were true, i.e. if dist(x, γ [0, t]) ≤ K ε for some constant
K , then x ∈ Cε

t . If this were true then we would have Ct = γ [0, t] ∩ R+. Schramm
and Zhou are able to give a partial converse when the curve approaches the real line
“without making fjords”. In this paper we will not use their converse, but we note their
important result that dimH Ct = dimH γ [0, t] ∩ R+ for all t > 0 (they only prove the
case t = ∞, but scaling properties easily extend the result to all t > 0). Hence, at
least as measured by Hausdorff dimension, Ct is not much smaller than γ [0, t] ∩ R+,
and in particular is non-empty for all t > 0.

Remark The sets Cε
t are meant to act as a “thickening” of γ [0, t] ∩ R+ by intervals

whose length is of order ε, but as the last remark shows, Cε
t may miss still miss some

points of γ [0, t] ∩ R+. They also have the opposite problem: they may include too
much. Consider the case where the SLE curve comes close to an interval without ever
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touching the real line nearby. The lemma says that the points of the interval will likely
(but not necessarily) belong to Cε

t , even though they may be far from γ [0, t] ∩ R+.
For SLE curves this is not much of a problem, since transience of the curve means that
it cannot come arbitrarily close to the interval without hitting it, and therefore when ε

becomes sufficiently small the points in the interval will cease to belong to Cε
t . Note,

however, that the ε at which these “extra points” vanish is a function of the curve in
question, and therefore random.

4 The Doob–Meyer decomposition

4.1 The Doob–Meyer decomposition for supermartingales

In this section we briefly review some basic facts about the Doob–Meyer decompo-
sition. We will only state the definitions and theorems that we will use, and refer the
reader to [6] or [13] for very well written introductions to the Doob–Meyer theory.
For an extremely detailed and rich treatment, we recommend [3]. The notation we
use will most closely resemble Section 1.4 of [6] and is self-contained to this section;
specifically it does not refer to notation of previous or future sections unless explicitly
stated so.

Throughout this section we will assume that Zt is a supermartingale with respect
to a filtration Ft , defined on some interval of time [0, ζ ], for a stopping time ζ called
the lifetime of Z . As before, we assume that Ft satisfies the usual conditions.

Definition 4.1 The supermartingale Z is said to be of class D if the family

{Zτ : τ ≤ ζ is an almost surely finite stopping time}

is uniformly integrable.

Definition 4.2 Z is said to be regular if for every l > 0, and every non-decreasing
sequence of stopping times τn with P (τn ≤ l) = 1 and τ := limn→∞ τn , one has

lim
n→∞ E

[
Zτn

] = E [Zτ ].

Definition 4.3 The predictable σ -field is the coarsest σ -field on 	 × R+ for which
all continuous, Ft -adapted processes are measurable. A process At is predictable if
the map (ω, t) → At (w) from 	× R+ into (R+,B (R+)) is measurable with respect
to the predictable σ -field.

Theorem 4.4 (Doob–Meyer decomposition) Let Z be a supermartingale of class D
defined on [0, ζ ]. Then there exists a predictable, non-decreasing process A that is
right-continuous with left limits, such that A0 = 0, Aζ is integrable, and

Zt = E
[

Aζ − At
∣∣Ft

]+ E
[

Zζ

∣∣Ft
]
.
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If one defines Mt := E
[

Aζ + Zζ

∣
∣Ft

]
, then M is a martingale and the above repre-

sentation can be written as

Zt = Mt − At .

This decomposition is unique up to indistinguishability, i.e. if M ′ and A′ are a martin-
gale and a predictable, non-decreasing process resp. satisfying the above properties,
then

P
(
Mt = M ′

t , At = A′
t ∀ t ≥ 0

) = 1.

Lastly, if Z is regular then A is continuous. If Z is continuous, then M and A are both
continuous.

Our use of the decomposition will be to show that a specific supermartingale X (to
be defined in the next section) is regular and of class D. This X will satisfy Xζ = 0
almost surely, so that in particular Mt = E

[
Aζ

∣∣Ft
]
.

Remark The notion of predictability is somewhat technical, but is best understood in
the setting of discrete parameter processes where the analogous condition is that “An

is Fn−1-measurable”. We want to emphasize that predictability is important for the
uniqueness part of the Doob–Meyer decomposition, but it is not a concept that we
will explicitly use in this paper. The supermartingale Xt (I ) that we will decompose
will turn out to be continuous, and therefore its non-decreasing part will be as well,
and it suffices to know that continuous processes are always predictable. Moreover,
predictable processes are always adapted to Ft (by definition), and so condition three
of Theorem 1.2 implies that μ (· ∩ Kt ) is Ft -measurable. This further implies that
the measure of an interval is completely determined at its swallowing time, as was
previously mentioned.

We will also consider a certain ε-approximation X ε to our supermartingale X ,
and the corresponding Doob–Meyer decomposition X ε = Mε − Aε . It will turn out
that X ε increases to X as ε ↓ 0, so it is natural to ask if the corresponding parts
of the Doob–Meyer decomposition might also converge. The next theorem gives an
affirmative answer.

Theorem 4.5 [3, Chapter VII, Section 20] Let Zn be an increasing sequence of posi-
tive supermartingales, where the limit Z belongs to class D and is regular. Let An and
A denote the non-decreasing processes associated to Zn and Z, respectively. Then for
all stopping times T ,

lim
n→∞ E

[∣∣An
T − AT

∣
∣] = 0.

4.2 The Doob–Meyer decomposition without the class D property

One might naturally wonder if the class D property is actually important in the above
decomposition. As we mentioned in the introduction, even without the class D prop-
erty any supermartingale can always be uniquely decomposed as a local martingale
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minus a predictable, non-decreasing process. For a precise statement of this result we
refer the reader to [3, Chap. VII, Section 12]. Any positive local martingale is automat-
ically a supermartingale and therefore admits this decomposition, but by uniqueness
the non-decreasing part must be zero. In particular, Mt (x) has only this trivial decom-
position. This tells us how not to build our measure: the Doob–Meyer decomposition
of the integral

∫

I

Mt (x) dx

is not the integral of the Doob–Meyer decomposition for Mt (x). In other words, the
Doob–Meyer decomposition does not necessarily commute with integration.

5 Construction of the measure

In this section we use the Doob–Meyer decomposition to construct the measure on
γ ∩ R+ described in Theorem 1.2. Most of the section is devoted to analyzing the
process Xt (I ).

5.1 The process Xt (I )

In this section we study the stochastic process

Xt (I ) :=
∫

I

Mt (x) dx

for intervals I ⊂ R+. With this definition Xt is the random measure on R+ whose
Radon–Nikodym derivative with respect to Lebesgue measure is Mt (x). However, in
this section we will mostly be concerned with the process Xt (I ) for a fixed interval I .
Most of the results can be generalized from intervals to arbitrary A ∈ B (R+).

First note Xt (I ) is finite almost surely at a fixed time t ≥ 0 since, by Fubini’s
theorem,

E [Xt (I )] =
∫

I

E [Mt (x)] dx < ∞.

The last inequality is an easy consequence of the explicit form of E [Mt (x)] in (13).
Fubini’s theorem also shows that Xt (I ) is a supermartingale, since

E [ Xt (A)|Fs] =
∫

A

E [ Mt (x)| Fs] dx ≤
∫

A

Ms(x) dx = Xs(A).
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for 0 ≤ s < t . The inequality follows from Mt (x) being a non-negative supermartin-
gale. In fact Mt (x) is a local martingale, which might lead one to speculate that Xt (I )
is also a local martingale. In the next section we will see that this is not the case. We
will see that Xt (I ) admits a decomposition as a martingale minus a non-decreasing
part that is not identically zero, and therefore it cannot be a local martingale.

We will also use the notation

TI := inf{t ≥ 0 : I is entirely swallowed by γ } = sup
x∈I

TI , (16)

which is again a stopping time. Note also that TI = Tsup I . For t ≥ TI , Corollary 3.2
shows Mt (x) as a function of x is identically zero except for a possible set of Lebesgue
measure zero. Hence Xt (I ) = 0 for t ≥ TI .

Using Proposition 3.4, we are also able to give an upper bound on the expected
squared mass of an interval I under Xt .

Proposition 5.1 Let I = (x1, x2] ⊂ R+ be an interval. Then there exists a constant
c∗, depending only on κ , such that

E
[

Xτ (I )2
]

= E

⎡

⎢
⎣

⎛

⎝
∫

I

Mτ (x) dx

⎞

⎠

2
⎤

⎥
⎦ ≤ c∗x−β

1 |I |1+d

for every stopping time τ with P (τ < ∞) = 1.

Proof By Proposition 3.4,

E

⎡

⎢
⎣

⎛

⎝
∫

I

Mτ (x) dx

⎞

⎠

2
⎤

⎥
⎦ =

∫

I

∫

I

E [Mτ (x)Mτ (y)] dx dy

≤ 2c

x2∫

x1

y∫

x1

x−β(y − x)−β dx dy

≤ 2cx−β
1

x2∫

x1

y∫

x1

(y − x)−β dx dy

= 2c
x−β

1

1 − β

x2∫

x1

(y − x1)
1−β dy

= 2c
x−β

1

(1 − β)(2 − β)
(x2 − x1)

2−β.

Recalling that d = 1 − β finishes the proof. ��
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Corollary 5.2 Let I = (x1, x2] with 0 < x1 < x2 < ∞. Then as a function of x2,
Xt (I ) has a version that is Hölder-γ continuous, for any γ < d/2.

Proof This follows by an application of Proposition 5.1 and the Kolmogorov–Centsov
Theorem. ��

Using Proposition 5.1, we are able to show that Xt does not assign large amounts
of mass to small intervals.

Corollary 5.3 Let I = (x1, x2] with 0 < x1 < x2 < ∞. Let {Ik,n}1≤k≤2n be a
partition of I into 2n subintervals of length |I |2−n. Then for α with 0 < α < d/2,

P

(

max
1≤k≤2n

sup
t≥0

Xt
(
Ik,n

) ≥ 2−nα for infinitely many n

)

= 0.

Proof For a fixed ε > 0, recall that the process Mε
t (x) is, for each x > 0, a positive

martingale that is bounded above by ε−β . By Fubini’s Theorem, it follows that for an
interval I ⊂ R+ the process

∫

I

Mε
t (x) dx

is also a positive martingale that is bounded above by ε−β |I |. Using that M∞(x) =
ε−β1 {x ∈ Cε} and the bound

E
[
Mε∞(x)Mε∞(y)

] = ε−2βP
(
x, y ∈ Cε

) ≤ cx−β(y − x)−β

of Corollary 3.5, Doob’s L p-inequality gives that

E

⎡

⎢
⎣

⎛

⎝sup
t≥0

∫

I

Mε
t (x) dx

⎞

⎠

2
⎤

⎥
⎦ ≤ 4E

⎡

⎢
⎣

⎛

⎝
∫

I

Mε∞(x) dx

⎞

⎠

2
⎤

⎥
⎦

= 4
∫

I

∫

I

E
[
Mε∞(x)Mε∞(y)

]
dxdy

≤ 4c∗x−β
1 |I |1+d .

where c∗ is as in Proposition 5.1. Since the right hand bound is independent of ε, by
Fatou’s Lemma this extends to

E

⎡

⎢
⎣lim inf

ε↓0

⎛

⎝sup
t≥0

∫

I

Mε
t (x) dx

⎞

⎠

2
⎤

⎥
⎦ ≤ 4c∗x−β

1 |I |1+d .
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We will now extend the same bound to the integral of Mt (x). First, letting G be the
event

G :=
{

lim
ε↓0

T ε
x = Tx ∀ x > 0

}
,

we have P (G) = 1. Since Mε
t (x) = Mt∧T ε

x
(x), we have

lim inf
ε↓0

Mε
t (x) ≥ Mt (x) ∀ x > 0, t ≥ 0. (17)

for all ω ∈ G. In fact, it is true that

lim inf
ε↓0

Mε
t (x) = lim

ε↓0
Mε

t (x) = Mt (x)

so long as x �∈ C∞. The only problem occurs when x ∈ C∞ and t ≥ Tx , in which
case Mt (x) is defined to be zero, whereas lim infε↓0 Mε

t (x) = ∞. Regardless, (17) is
all that we require, and using it and Fatou’s Lemma we have, for all ω ∈ G,

∫

I

Mt (x) dx ≤ lim inf
ε↓0

∫

I

Mε
t (x) dx ∀ t ≥ 0.

It is easy to verify the deterministic fact that

sup
t≥0

lim inf
ε↓0

∫

I

Mε
t (x) dx ≤ lim inf

ε↓0
sup
t≥0

∫

I

Mε
t (x) dx,

and therefore

E

⎡

⎢
⎣

⎛

⎝sup
t≥0

∫

I

Mt (x) dx

⎞

⎠

2
⎤

⎥
⎦ ≤ E

⎡

⎢
⎣lim inf

ε↓0

⎛

⎝sup
t≥0

∫

I

Mε
t (x) dx

⎞

⎠

2
⎤

⎥
⎦

≤ 4c∗x−β
1 |I |1+d . (18)

From (18) the rest of the proof follows easily. By Markov’s inequality we have

P

⎛

⎝sup
t≥0

∫

I

Mt (x) dx > λ

⎞

⎠ ≤ 4c∗λ−2x−β
1 |I |1+d .

This gives the bound
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P

(

max
1≤k≤2n

sup
t≥0

Xt (Ik,n) dx ≥ 2−nα

)

= P

⎛

⎝
2n⋃

k=1

{

sup
t≥0

Xt (Ik,n) ≥ 2−nα

}⎞

⎠

≤
2n∑

k=1

P

(

sup
t≥0

Xt (Ik,n) ≥ 2−nα

)

≤ 4
2n∑

k=1

22nαc∗x−β
1

(|I | 2−n)1+d

= 4c∗x−β
1 |I |1+d 2−n(d−2α),

and then an application of the Borel–Cantelli lemma completes the proof. ��
We will also be interested in how the process Xt (I ) evolves over time. It is clear

intuitively what is happening. When the tip of the SLE curve is not in I , the local
martingales Mt (x) do not grow large and therefore behave like martingales. Since
Xt (I ) is an integral of these martingales (which are all positive), it follows that Xt (I )
also behaves like a martingale when the tip is not on I . This will force that the non-
decreasing part of the Doob–Meyer decomposition for Xt (I ) can only be growing
when γ (t) ∈ I , which is to be expected. The rest of this section puts this intuition on
a solid foundation.

Definition 5.4 For an interval I ⊂ R+, define the process Yt (I ), t ≥ 0, by

Yt (I ) := inf
x∈I\Kt

ht (x).

Hence Yt (I ) is keeping track of the leftmost unswallowed point of I under the flow.
It follows that Yt (I ) is almost surely continuous in t , and that it goes to zero almost
surely as t ↑ TI . The times t < TI for which Yt (I ) = 0 are exactly the times at which
γ (t) ∈ I (note we have to take the closure since I may not contain the endpoints of
the interval). Using this process we define the following stopping times:

Definition 5.5 Fix an interval I ⊂ R+. For ε > 0, recursively define the sequence of
stopping times τ ε

n by τ ε
0 = 0 and

τ ε
2n+1 := inf

{
t > τε

2n : Yt (I ) ≤ ε
}
,

τ ε
2n+2 := inf

{
t > τε

2n+1 : Yt (I ) > 2ε
}
.

Hence intervals of time
(
τ ε

2n, τ ε
2n+1

)
are downcrossings of the Yt (I ) process from

2ε to ε, and intervals
(
τ ε

2n+1, τ
ε
2n+2

)
are upcrossings from ε back to 2ε. Therefore only

upcrossings can contain the times at which γ (t) ∈ I , and on the downcrossings the
set I ∩ Kt of swallowed points in I is not growing. In other words, if τ ε

2n < t < τε
2n+1

then

I\Kt = I\Kτ ε
2n

.
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During a downcrossing the ht (x) are uniformly bounded below by ε, hence

sup
τ ε

2n<t<τε
2n+1

sup
x∈I\Kt

Mt (x) ≤ ε−β,

by inequality (8). We also have the following property of the stopping times:

Lemma 5.6 For a fixed ε > 0, τ ε
n → ∞ almost surely as n → ∞.

Proof The Yt (I ) process can only have finitely many upcrossings or downcrossings
since it is continuous, and since the process goes to zero almost surely there is a last
n such that τ ε

2n+1 ≤ TI . After that τ ε
m = ∞ for m > 2n + 1. ��

Lemma 5.7 For a fixed ε > 0 and for any n ≥ 0, the process Z ε
n(t) := Xt∧τ ε

2n+1
(I )−

Xt∧τ ε
2n

(I ) is a continuous martingale.

Proof First suppose that N is the largest integer such that τ ε
2N+1 ≤ TI . Then for

M > N we have τ ε
2M = τ ε

2M+1 = ∞ and therefore Z ε
M (t) is identically zero.

For n ≤ N , observe that we may write

Xt∧τ ε
2n+1

(I ) − Xt∧τ ε
2n

(I ) =
∫

I

Mt∧τ ε
2n+1

(x) − Mt∧τ ε
2n

(x) dx

=
∫

I\Kτε
2n

Mt∧τ ε
2n+1

(x) − Mt∧τ ε
2n

(x) dx .

For the integrand we have the bound

sup
t>0

sup
x∈I\Kτε

2n

∣∣∣Mt∧τ ε
2n+1

(x) − Mt∧τ ε
2n

(x)

∣∣∣ ≤ 2ε−β

(the bound is for all t since the process is clearly flat for t �∈ (τ ε
2n, τ ε

2n+1)). Hence
for each x ∈ I\Kτ ε

2n
the integrand is a local martingale that is uniformly bounded

above, and therefore is a martingale. An application of Fubini’s Theorem shows that
Z ε

n(t) is also a martingale. To get the continuity, observe that Z ε
n(t) is a martingale

with respect to the Brownian filtration Ft , and therefore by the martingale represen-
tation theorem (see, for example, [11, Chap. IV, Theorem 43 and Corollary 1]) is
automatically continuous. ��
Corollary 5.8 Fix an interval I ⊂ R+. Let τI = inf{t ≥ 0 : γ (t) ∈ I }. Then the
process Xt∧τI (I ) is a continuous martingale.

Proof Let τ ε
I := inf{t ≥ 0 : dist(I, γ [0, t]) ≤ 4ε}. Then clearly τ ε

I increases to τI

almost surely as ε ↓ 0. Let

T ε
I := inf

{
t ≥ 0 : sup

x∈I
Mt (x) ≥ ε−β

}
= inf

x∈I
T ε

x .
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If T ε
I < ∞, then since Mt (x) is analytic in x there must be an x0 ∈ I such that

MT ε
I
(x0) ≥ ε−β . Lemma 3.6 then implies that dist(I, γ [0, T ε

I ]) ≤ 4ε, hence τ ε
I ≤ T ε

I .
We will actually show that the process Xt∧T ε

I
(I ) is a continuous martingale for every

ε > 0, and then take a limit as ε ↓ 0 to prove the statement. Note that by definition of
T ε

I ,

sup
t≥0

sup
x∈I

Mt∧T ε
I
(x) ≤ ε−β.

Hence the Mt∧T ε
I
(x) are local martingales that are uniformly bounded above and so

are martingales. The standard application of Fubini’s theorem then shows that

Xt∧T ε
I
(I ) =

∫

I

Mt∧T ε
I
(x) dx

is also a martingale. Continuity of Xt∧T ε
I

follows again by the martingale representa-
tion theorem. ��

Remark Note that τI is very closely related to the first time that Yt (I ) = 0. In fact,
on the event {τI < ∞} they are the same, but on the event that the curve doesn’t hit
I the first time that Yt (I ) = 0 is the swallowing time TI of I , which is finite, while
τI = ∞.

Proposition 5.9 Fix an interval I ⊂ R+. Then

P
(
Xt (I ) is continuous on

{
t ≥ 0 : γ (t) �∈ I

}) = 1.

Proof First suppose that I is closed. Then γ (t) ∈ I if and only if Yt (I ) = 0. Moreover,
since γ is almost surely continuous and I is closed it follows that

{t ≥ 0 : γ (t) �∈ I }

is almost surely open. From these two facts it follows that

⋃

ε>0
ε∈Q

⋃

n≥0

(
τ ε

2n, τ ε
2n+1

) = {t ≥ 0 : γ (t) �∈ I } .

But by Lemma 5.7 we have

P

⎛

⎜⎜
⎝Xt (I ) is continuous on

⋃

ε>0
ε∈Q

⋃

n≥0

(
τ ε

2n, τ ε
2n+1

)

⎞

⎟⎟
⎠ = 1.
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If I is not closed then the statement is true for Xt (I ). But the processes Xt (I ) and
Xt (I ) are indistinguishable, i.e.

P
(
Xt (I ) = Xt (I ) for all t ≥ 0

) = 1,

since I\I consists of at most the two endpoints of I . ��
Proposition 5.10 For any interval I ⊂ R+, the process Xt (I ) is almost surely con-
tinuous with Xt (I ) = 0 for t ≥ TI .

Proof By Proposition 5.9, any discontinuity of I could only occur at a time t for which
for which γ (t) ∈ I . We will show that Corollary 5.3 forbids having a discontinuity at
such times.

Suppose that γ (T ) ∈ I . Let {Ik,n}1≤k≤2n be a partition of the interval I into 2n

subintervals of length |I |2−n (they may overlap at the endpoints). We divide the sub-
intervals into four different types:

(i) subintervals that have been completely swallowed strictly before time T ,
(ii) subintervals that have not been hit or swallowed before time T ,

(iii) subintervals containing γ (T ),
(iv) subintervals containing I ∩ KT −.

The Xt process for subintervals of type (i) is identically zero after the swallowing
time; hence Xt (Ik,n) is continuous at time T if Ik,n is of type (i). Corollary 5.8 implies
that Xt (Ik,n) is continuous at time T for subintervals of type (ii). Writing

Xt (I ) =
2n∑

k=1

Xt (Ik,n),

it follows that a discontinuity of Xt (I ) at time T can only be caused by intervals of
type (iii) or (iv). There are at most two intervals of type (iii) (there is usually only
one, there are two only if γ (T ) lies on a shared endpoint of different Ik,n). The type
(iv) intervals are those containing the last point of I that γ hits before time T ; as such
there are at most two subintervals of type (iv). If Xt (I ) has a discontinuity of size δ at
time T then one of the four subintervals of type (iii) or (iv) must have a discontinuity
of size δ/4 at time T . Thus for all n ≥ 0 there exists an integer kn such that

sup
|t−T |≤ε

Xt (Ikn ,n) − inf|t−T |≤ε
Xt (Ikn ,n) ≥ δ/4

for all ε > 0. The infimum being non-negative implies that

sup
t>0

Xt (Ikn ,n) ≥ δ/4

for all n ≥ 0. But Corollary 5.3 says that the latter event has probability zero, from
which the result follows. ��

123



358 T. Alberts, S. Sheffield

5.2 The Doob–Meyer decomposition for Xt (I )

For an interval I = (x1, x2] with 0 < x1 < x2 < ∞, we prove in this section that
Xt (I ) has a Doob–Meyer decomposition as a martingale minus a predictable, non-
decreasing process. The strategy is to use the proofs of Sect. 5.1 to verify that Xt (I )
satisfies the hypotheses of Theorem 4.4.

Proposition 5.11 The process Xt (I ) can be uniquely decomposed as

Xt (I ) = Nt (I ) − At (I ),

where Nt (I ) is a continuous martingale and At (I ) is a continuous, non-decreasing
process with A0(I ) = 0 and ATI (I ) integrable. In fact, Nt (I ) = E

[
ATI (I )

∣∣Ft
]
.

Moreover, both Nt (I ) and At (I ) are constant for t ≥ TI .

Proof By Theorem 4.4, it is enough for the existence part of the decomposition to
show that Xt (I ) is of class D. This property is immediate from Proposition 5.1, since
if τ is a stopping time with P (τ < ∞) = 1 then

E
[

Xτ (I )2
]

< ∞,

and the bound is independent of τ . The continuity of At (I ) follows from the continuity
of Xt (I ) in Proposition 5.10. In fact the continuity of Xt (I ) implies that both parts
Nt (I ) and At (I ) are continuous.

To show that Nt (I ) and At (I ) are constant for t ≥ TI it is enough to observe that
Xt (I ) = 0 for t ≥ TI . The martingale Nt (I ) can be equal to the non-decreasing
process At (I ) only if the two processes are the same constant. ��

5.3 Definition of the boundary measure

We now have all the tools we need to properly define the boundary measure. The basic
construction is to take the terminal values ATI (I ) of the non-decreasing processes and
encode them all into a single measure. We conclude the section with an alternative but
useful characterization of the boundary measure.

Definition 5.12 (Definition of the boundary measure) Define the collection of inter-
vals

Q := {I = (x1, x2] : 0 < x1 < x2 < ∞, x1, x2 ∈ Q} .

For each I ∈ Q, define

μ(I ) := ATI (I ).

It is easy to see that μ is almost surely countably additive on the field generated by
Q and that this field generates B (R+), so by the Carathéodory Extension Theorem μ

can be uniquely extended to a Borel measure on R+.
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Proposition 5.13 For all t ≥ 0, the random measure μ (· ∩ Kt ) is Ft -measurable.

Proof It suffices to prove that the random variable μ (I ∩ Kt ) is Ft -measurable for
each interval I ⊂ R+. The set I ∩ Kt = {x ∈ I : Tx ≤ t} is Ft -measurable since the
Tx are all stopping times. If I ∩ Kt = ∅ then μ (I ∩ Kt ) = 0. If I ⊂ Kt then t ≥ TI ,
and by definition μ (I ) = ATI (I ). ��

Hence for intervals I ⊂ R+, μ (I ∩ Kt ) is a non-decreasing, adapted process such
that

μ (I ∩ Kt ) +
∫

I

Mt (x) dx

is a martingale with respect to P and Ft . Uniqueness of the Doob–Meyer decomposi-
tion tells us that μ (I ∩ Kt ) is the unique (up to indistinguishability) such process that
can be added to

∫
I Mt (x) dx to get a martingale. As in the introduction we therefore

have the decomposition

E [μ(I )| Ft ] = μ (I ∩ Kt ) +
∫

I

Mt (x) dx .

The next theorem gives a similar but more precise characterization of the random
measure μ.

Theorem 5.14 Let (	,F , P) be a probability space with a P-Brownian motion
{Bt ,Ft ; t ≥ 0} on it. If the filtration Ft satisfies the usual conditions, then there
exists a unique random measure μ unique up to an event of P-measure zero such that

1. μ (· ∩ Kt ) is a predictable process,
2. μ (I ∩ Kt )+

∫
I Mt (x) dx is, for every interval I ⊂ R+, a martingale with respect

to P and Ft .

Note that the random measure μ is implicitly a function of the Brownian motion
Bt , its filtration Ft , and the measure P .

Remark To avoid having to constantly say “for every interval I ⊂ R+”, we will use
the infinitesimal shorthand to state part two of the theorem as

1 {x ∈ Kt } dμ(x) + Mt (x) dx

is a martingale with respect to P and Ft .

Corollary 5.15 For all bounded, measurable functions f : R+ → R

1 {x ∈ Kt } f (x) dμ(x) + f (x)Mt (x) dx
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is a martingale with respect to P and Ft . Moreover, if f is non-negative then
f (x)dμ(x) is the unique random measure whose restriction to Kt is predictable and
such that

1 {x ∈ Kt } f (x) dμ(x) + f (x)Mt (x) dx

is a martingale with respect to P and Ft .

Proof The case f (x) = 1 is exactly statement two of Theorem 5.14. Hence the lemma
also holds if f is a simple function (i.e. constant on intervals). The first statement is
then proved by approximating bounded, measurable functions by simple functions.

For the second statement, note that f ≥ 0 implies that
∫

I f (x)Mt (x) dx is a
supermartingale (since Mt (x) is). Uniqueness of the Doob–Meyer decomposition
means that there is only one predictable non-decreasing process that can be added to
f (x)Mt (x) dx to get a martingale; by the first part that process must be 1 {x ∈ Kt } f (x)

dμ(x). ��

6 Properties of the measure

Having now constructed the random measure on R+ that was described in Sect. 1, we
proceed to show that it has all of the properties of Theorem 1.2. We begin with the
Domain Markov property.

6.1 Domain Markov property of μ

In this section we prove that the measure μ of Sect. 5.3 satisfies the Domain Markov
property of Theorem 1.2. The idea of the proof is intuitively clear. Given Ft , consider
the future SLE curve and hull mapped back to H via ht , i.e.

γ t (s) := ht (γ (t + s)), Kt,s := ht (Kt+s), s ≥ 0.

Then γ t is independent of Ft but has the law of γ . Consequently the boundary measure
corresponding to γ t is independent of Ft and has the law of the boundary measure
for H. We will show that the d-dimensional covariant transform of the boundary mea-
sure for γ (restricted to R+\Kt ) is exactly the boundary measure for γ t (restricted to
ht (R+\Kt )).

It is easier to prove the above using the Brownian motions that generate γ and
γ t , rather than the curves themselves. We will also prove the more general version
in which the fixed time t is replaced by a stopping time T . If {Bt ,Ft ; t ≥ 0} is
the Brownian motion generating γ then clearly {BT,s,FT,s; s ≥ 0} is the Brownian
motion generating γ T . It is easy to verify that {BT,s,FT +s; s ≥ 0} is also a Brownian
motion under P; we prove a theorem about it first. Note that BT,s generates both the
sequence of conformal maps hT,s and the family of martingales MT,s(x).
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Theorem 6.1 Let T be an Ft -measurable stopping time. Let μ respectively μ∗ be the
unique random measure of Theorem 5.14 associated to {Bt ,Ft ; t ≥ 0} respectively
{BT,s,FT +s; s ≥ 0}. Then

P
(
μd,hT = μ∗ restricted to hT (R+\KT )

) = 1.

Further, μ∗ is also the unique random measure associated to {BT,s,FT,s; s ≥ 0}.
Proof Since h′

T (x)d is a positive, continuous function, Corollary 5.15 implies that
h′

T (x)ddμ(x) is the unique random measure on R+ such that 1 {x ∈ KT +s} h′
T (x)ddμ(x)

is FT +s measurable and

1 {x ∈ KT +s} h′
T (x)ddμ(x) + MT +s(x)h′

T (x)d dx (19)

is a martingale (in s) with respect to P and FT +s . By definition of the d-dimensional
covariant transform we have dμd,hT (hT (x)) = h′

T (x)ddμ(x), and by the identity
(9) we have MT +s(x)h′

T (x)d = MT,s(hT (x))h′
T (x). Making the change of variables

y = hT (x), which is valid for x ∈ R+\KT , Eq. (19) therefore says that

1
{

y ∈ KT,s
}

dμd,hT (y) + MT,s(y) dy

is a martingale with respect to P and FT +s . On the other hand, by definition μ∗ is the
unique random measure on R+ such that

1
{

y ∈ KT,s
}

dμ∗(y) + MT,s(y) dy

is a martingale with respect to P and FT +s . Uniqueness forces that

dμd,hT (y) = dμ∗(y).

Note this equality only holds for y ∈ hT (R+\KT ), which explains why μ∗ must be
restricted to hT (R+\KT ) in the statement of the theorem.

Finally, note that both the measure μ∗(· ∩ KT,s) and the martingales MT,s are
FT,s-measurable (they are all determined by BT,s , which is FT,s-measurable), and
since

1
{

y ∈ KT,s
}

dμ∗(y) + MT,s(y) dy

is an FT +s martingale, it is also a martingale with respect to the smaller filtration FT,s .
This proves that μ∗ is the unique random measure associated to {BT,s,FT,s; s ≥ 0}.

��
From Theorem 6.1 we easily prove the Domain Markov property of μ.

Corollary 6.2 (Strong Domain Markov property of μ) Let T be an Ft -stopping time.
Given Ft , the d-dimensional covariant transform of μ, restricted to R+\KT , has the
law of the original measure restricted to hT (R+\KT ).
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Proof Let μ∗ be the random measure associated to {BT,s,FT,s; s ≥ 0}. By Theo-
rem 6.1 we know that μd,hT = μ∗ restricted to hT (R+\KT ), with probability one.
But BT,s is independent of FT by the strong Markov property of Brownian motion,
and therefore μ∗ is also independent of FT . ��
Remark The strong version of the Domain Markov property is useful to apply at stop-
ping times T for which γ (T ) ∈ R+ almost surely. In such a case it is easy to see that
hT (R+\KT ) = R+ almost surely, and the result is that the FT -conditional law of
μd,hT is the same as the original law of μ on all of R+ (no restriction required). In
this sense these types of stopping times are renewal times for the boundary measure.

We can also restate the Domain Markov property in an alternative but equivalent
way.

Corollary 6.3 (Alternative statement of Domain Markov property of μ) For any Ft -
stopping time T , the FT -conditional law of the measure-valued process 1 {x ∈ KT +t }
dμ(x), t ≥ 0, is the law of the process

1 {x ∈ KT } dμ(x) + 1
{
hT (x) ∈ K ∗

t

} ∣∣h′
T (x)

∣
∣−d

dμ∗(hT (x)),

where μ∗ and K ∗
t are independent copies of μ and Kt , respectively.

Remark Corollary 6.3 can be thought of in the following way: suppose we have
observed the SLE hull and the corresponding measure up to the stopping time T .
Given that, the law of the part of μ that is generated after time T can be realized
by taking the measure μ∗ corresponding to a new and independent SLE hull K ∗

t in
the upper half plane, and then transforming (in the d-dimensional covariant way) the
restriction of μ∗ to hT (R+\KT ) back to R+\KT via h−1

T .

6.2 General properties

In this section we show that the boundary measure satisfies all the properties of The-
orem 1.2.

Proposition 6.4 Fix a closed interval I ⊂ R+. Then the process μ (I ∩ Kt ) is flat on
the open set of times {t ≥ 0 : γ (t) �∈ I }.
Proof On any open interval of time for which γ (t) �∈ I the set of swallowed points
I ∩ Kt is not increasing, hence the same can be said of the process μ (I ∩ Kt ). ��
Corollary 6.5 For an interval I ⊂ R+ we have

E [μ (I ∩ Kt )] =
∫

I

∞∫

x2/2t

x−β

�(3a − 1/2)
u3a−3/2e−u du dx .
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Proof Since 1 {x ∈ Kt } dμ(x) + Mt (x) dx is a martingale we have

E

⎡

⎣μ (I ∩ Kt ) +
∫

I

Mt (x) dx

⎤

⎦ = E

⎡

⎣μ (I ∩ K0) +
∫

I

M0(x) dx

⎤

⎦ =
∫

I

x−β dx .

Therefore

E [μ (I ∩ Kt )] =
∫

I

x−β − E [Mt (x)] dx .

Substituting in the exact expression (13) for E [Mt (x)] completes the proof. ��
Remark Note that E [μ (I )] = E [μ (I ∩ K∞)] = ∫

I x−β dx .

Lemma 6.6 (Scaling property of μ) For any r > 0, the random measure μ(r ·) has
the same law as the random measure rdμ(·).
Proof Using the Bessel scaling relation ht (x) ≡ r−1hr2t (r x) of Proposition 2.1(a), it
is easy to verify that the process {Mt (x); t ≥ 0, x > 0} has the same law as

{
rβ Mr2t (r x); t ≥ 0, x > 0

}

for any r > 0. Hence for any interval I ⊂ R+,

∫

I

rβ Mr2t (r x) dx ≡
∫

I

Mt (x) dx .

Changing variables on the left yields

∫

r I

Mr2t (x) dx ≡ rd
∫

I

Mt (x) dx .

The random measure associated to the left-hand side is μ(r ·) and the random measure
associated to the right-hand side is rdμ(·). This completes the proof. ��
Lemma 6.7 Let Jε := (0, ε). Then

P (μ (Jε) > 0 for all ε > 0) = 1.

Proof The event {μ (Jε) > 0} is FTε -measurable, hence

{μ (Jε) > 0 for all ε > 0} =
⋂

ε>0

{μ (Jε) > 0}
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is F0+-measurable. By Blumenthal 0–1 law, the latter event has probability either zero
or one. Hence it is enough to show that there exists a ρ > 0 such that P (μ (Jε)) ≥ ρ

for every ε > 0. By the scaling rule of Lemma 6.6 we have

P (μ (Jε) > 0) = P
(
ε−dμ (J1) > 0

)
= P (μ (J1) > 0) ,

and clearly P (μ (J1) > 0) > 0 since E [μ (J1)] > 0. ��
Proposition 6.8 Let I ⊂ R+ be an open interval. Then

P (μ (I ) > 0 |τI < ∞ ) = 1,

where τI := inf {t ≥ 0 : γ (t) ∈ I }.
Proof Write I = (x1, x2) with 0 < x1 < x2 < ∞. First note that P (τI < ∞) > 0
by Eq. (10), so the conditioning is well defined. Let μ∗ be the random measure asso-
ciated to the Brownian motion {BτI ,s,FτI ,s; s ≥ 0}. Since γ (τI ) ∈ I on {τI < ∞},
Theorem 6.1 says that μd,hτI

= μ∗ for almost all ω ∈ {τI < ∞}. Lemma 6.7 says that
for almost all ω ∈ {τI < ∞} we have μ∗((0, ε)) > 0 for every ε > 0; in particular
μ∗((0, hτI (x2))) = μ∗(hτI (I\KτI )) > 0 since hτI (x2) > 0. Thus

P
(
μd,hτI

(
hτI (I\KτI )

)
> 0

∣∣
∣ τI < ∞

)
= 1.

But by definition of the d-dimensional covariant transform

μd,hτI

(
hτI (I\KτI )

) =
∫

I\KτI

∣∣h′
τI

(x)
∣∣d dμ(x)

≤
∫

I\KτI

dμ(x)

≤ μ (I ).

The first inequality follows by
∣∣h′

τI
(x)

∣∣ ≤ 1 for all x ∈ R+\KτI . ��
Remark Proposition 6.8 proves one half of Theorem 1.2(iv), namely that if the curve
hits the open interval then μ assigns mass to it. On the event {τI = ∞} where the curve
misses I , by Corollary 5.8 the non-decreasing part of the Doob–Meyer decomposition
for Xt (I ) is identically zero. Hence, by definition, μ assigns no mass to I on this
event.

Proposition 6.9 With probability one μ is free of atoms.

Proof Let

E := {ω ∈ 	 : μ ({x}) (ω) > 0 for some x ∈ R+}
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and suppose that P (E) > 0. Let I j = [2 j , 2 j+1] for j ∈ Z. Then for each ω ∈ E
there is a j ∈ Z such that the process μ

(
I j ∩ Kt

)
jumps at the time Tx that x joins

the SLE hull. But this contradicts that for any fixed interval I the process μ (I ∩ Kt )

is almost surely continuous in t . ��

6.3 The boundary measure on smooth domains

In this section we define the boundary measure on an arbitrary simply connected
domain D with smooth boundary. Since SLE can be defined on D by conformally
mapping all the curves from H into D, we expect that we can transform the bound-
ary measure from R to ∂ D in a similar way. The natural transformation to use is the
d-dimensional covariant transformation; the last proposition shows why.

Definition 6.10 Let D be a simply connected domain (other than C itself) and w1, w2∈
∂ D be two distinct boundary points. Let φ : H → D be any conformal map taking
H onto D such that φ(0) = w1, φ(∞) = w2, and assume that ∂ D is smooth enough
that φ′ extends continuously to all of R+. Let ∂ D+ be the boundary arc from w1 to w2
that is the image of R+ (i.e. such that the interior of D is to the left of ∂ D+). Given
a Brownian motion {Bt ;Ft }, let μ be the corresponding random measure of Theo-
rem 5.14. Then we define the boundary measure (on ∂ D+) for the triple (D, w1, w2)

to be μd,φ , i.e. the d-dimensional covariant transform of μ by φ.

Remark Note we are defining a boundary measure for (D, w1, w2) as a random mea-
sure on the same probability space (	,F , P) simply by mapping a random measure
for (H, 0,∞). In this sense we should think of μd,φ as the random measure associated
to the curves (and hull)

γ φ(t) = φ(γ (t)), K φ
t = φ(Kt ).

Clearly γ φ is a curve in D going from w1 to w2, and by conformal invariance it has
the law (under P) of SLE in D from w1 to w2. We do it this way so that we are implic-
itly working with the same Brownian motions and filtrations, which we have already
assumed to have enough nice properties to apply the Doob–Meyer decomposition.

Remark The above definition is somewhat ambiguous in that for a given triple
(D, w1, w2) there is no unique choice of the map φ. Indeed, if φ satisfies the conditions
of Definition 6.10 then so does φ̃(z) = φ(r z) for any r > 0. However the scaling
rule of Proposition 6.6 implies that μd,φ and μd,φ̃ have the same law. To see this it is

enough to consider D = H, φ(z) = z, and φ̃(z) = r z. Then μd,φ = μ and

μd,φ̃(r I ) =
∫

I

rd dμ(x) = rdμ (I ) ≡ μ (r I ) ,

with the last equality in law following from the scaling rule. Since this holds for all
intervals I ⊂ R+ we get μd,φ̃ ≡ μd,φ .

123



366 T. Alberts, S. Sheffield

Remark Since we are assuming that φ′ extends continuously to all of R+, the
d-dimensional covariant transform μd,φ is well defined on all of ∂ D+. Definition 1.1
also handles the case that φ′ extends continuously only to some intervals of R+, but
for the sake of exposition we have decided not to use that in this section.

We conclude with a characterization of μd,φ that is the analog of Theorem 5.14. To

do this we need to find the local martingale Mφ
t that corresponds to D. The ideas is

that for a point w ∈ ∂ D+, the local martingale Mφ
t (w) should describe the conditional

probability that w is hit by the curve, given γ φ[0, t]. Let S ⊂ ∂ D+ be a boundary
segment containing w. Note we may write S = φ(I ) for some interval I ⊂ R+ and
w = φ(x) for some x ∈ I . Then

lim
S↓{w}

P
(
γ φ ∩ S �= ∅ ∣∣γ φ[0, t])

|S|β = lim
I↓{x}

P (γ ∩ I �= ∅ |γ [0, t] )
|I |β

|I |β
|S|β

= Mt (x)
∣∣φ′(x)

∣∣−β
.

The first equality is by conformal invariance and the second is by Eq. (12). Hence for
w ∈ S define

Mφ
t (w) :=

∣∣∣φ′(φ−1(w))

∣∣∣
−β

Mt (φ
−1(w)).

Since Mφ
t (w) is just a rescaling of Mt (φ

−1(w)) by a fixed constant, it follows that
Mφ

t inherits most of the properties of Mt from Sect. 3. In particular it is a positive
local martingale.

Proposition 6.11 μd,φ is the unique random measure on ∂ D+ such that μd,φ(·∩ K φ
t )

is predictable and

1
{
w ∈ K φ

t

}
dμd,φ(w) + Mφ

t (w) dl(w)

is a martingale with respect to P and Ft . Here dl(w) = ∣∣φ′(φ−1(w))
∣∣ dx is the length

element on S.

Proof By definition we have Mφ
t (w) dl(w)= ∣∣φ′(x)

∣∣−β
Mt (x)

∣∣φ′(x)
∣∣ dx = ∣∣φ′(x)

∣∣d

Mt (x) dx , where w = φ(x). By Corollary 5.15,
∣∣φ′(x)

∣∣d dμ(x) is the unique random
measure whose restriction to Kt is predictables and that yields a martingale when
added to

∣∣φ′(x)
∣∣d Mt (x) dx . But

∣∣φ′(x)
∣∣d dμ(x) is precisely dμd,φ(w), by definition

of the d-dimensional covariant transform. ��

7 Approximations of the measure

The construction of the measure in Sect. 5 was very much inspired by [15], in which
Schramm and Zhou find a lower bound on the Hausdorff dimension of γ ∩ R+. They
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used the local martingales Mt (x) to construct random measures με on the sets Cε , and
then use a standard technique to take a γ -dependent subsequential limit of these με

measures, on an event of positive probability, to obtain a measure on C . In Sect. 7.1
we briefly describe the construction that Schramm and Zhou use. In Sect. 7.2 we will
show how Theorem 4.5 can be used to construct a better limiting measure for the με ,
although it turns out to be the same as the one we constructed in Sect. 5. In Sect. 7.3
we use the με measures to show that the boundary measure μ is actually a Frostman
measure on γ ∩ R+, and Sect. 7.4 contains a brief discussion on the (conjectured)
relationship between the boundary measure and the Minkowski measure.

7.1 The Schramm–Zhou measures

Schramm and Zhou begin by defining the random measures με on R+ by

dμε(x) := ε−β1
{

x ∈ Cε
}

dx .

Given δ > 0 and an interval I ⊂ R+, they use the bound of Corollary 3.5 to prove
that there exists a constant Rδ,I < ∞ such that

sup
ε>0

E
[Ed−δ

(
με, I

)] ≤ Rδ,I ,

where Eα(ν, I ) is the α-energy of a measure ν (restricted to I ) defined by

Eα (ν, I ) :=
∫

I

∫

I

dν(x)dν(y)

|x − y|α .

From this, they prove the existence of a λ > 0 and an event E with P (E) > λ and the
following additional property: for every ω ∈ E , there is a subsequence ε j (ω) tending
to zero such that με j (ω)(·)(ω) converges weakly to a measure μo(·)(ω) supported on
C(ω), and that μo(·)(ω) further satisfies

μo(I )(ω) > λ, Ed−δ

(
μo(·)(ω), I

)
< 1/λ.

The limiting measure μo(·)(ω) for ω ∈ E is enough to get a lower bound on the
Hausdorff dimension of C(ω), but is hardly a satisfactory candidate as a natural mea-
sure on γ ∩R+. Indeed, it only exists on an event of positive probability, and even then
only as a subsequential limit that depends on the ω in question. Using Theorem 4.5 we
prove the much stronger result that the sequence of random measures με j converges
weakly, with probability one, to the random measure μ along some fixed subsequence
ε j that tends to zero. This is the subject of the next section.
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7.2 Convergence of the Schramm–Zhou measures

Likeμ, theμε measures appear naturally as the non-decreasing part of the Doob–Meyer
decomposition of a supermartingale. Fix an interval I ⊂ R+, and for a fixed ε > 0
consider the process

ε−β
∣∣I ∩ Cε

t

∣∣ .

As t → ∞ this clearly increases to με(I ). Using that Mε
t (x) = ε−β if x ∈ Cε

t , we
may also write

ε−β
∣∣I ∩ Cε

t

∣∣ =
∫

I

Mε
t (x)1

{
x ∈ Cε

t

}
dx .

Observe that this term shows up in the decomposition

∫

I

Mε
t (x)1

{
x �∈ Cε

t

}
dx =

∫

I

Mε
t (x) dx −

∫

I

Mε
t (x)1

{
x ∈ Cε

t

}
dx . (20)

Equation (20) is clearly the Doob–Meyer decomposition of the supermartingale

X ε
t (I ) :=

∫

I

Mε
t (x)1

{
x �∈ Cε

t

}
,

with ε−β
∣
∣I ∩ Cε

t

∣
∣ being the non-decreasing part. In (20), it is not immediately clear

that either one of the two terms on the right-hand side actually converges as ε ↓ 0, but
the X ε

t (I ) term does. Indeed, for a fixed t note that

Mε
t (x)1

{
x �∈ Cε

t

} = Mt (x)1
{

x �∈ Cε
t

} ≤ Mt (x)

for all ε > 0. Since the sets Cε
t decrease with ε to Ct , we have that Mt (x)1

{
x �∈ Cε

t

}

increases pointwise to Mt (x)1 {x �∈ Ct } as ε ↓ 0. But

Mt (x) − Mt (x)1 {x �∈ Ct } = Mt (x)1 {x ∈ Ct } ,

and
∫

I

Mt (x)1 {x ∈ Ct } dx = 0,

since dimH Ct ≤ dimH C < 1. Therefore

∫

I

Mt (x) dx =
∫

I

Mt (x)1 {x �∈ Ct } dx .
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Consequently, by monotone convergence,

lim
ε↓0

X ε
t (I )= lim

ε↓0

∫

I

Mt (x)1
{

x �∈ Cε
t

}
dx =

∫

I

Mt (x)1 {x �∈ Ct } dx =
∫

I

Mt (x) dx

= Xt (I ).

Hence X ε
t (I ) almost surely increases pointwise to Xt (I ) as ε ↓ 0. In Sect. 5 we showed

that Xt (I ) is of class D and regular, so by Theorem 4.5 we have that the increasing
part of X ε

t (I ) converges in L1 to the increasing part of Xt (I ) as ε ↓ 0. This gives the
following

Proposition 7.1 Fix an interval I ⊂ R+. Then for all stopping times T ,

lim
ε↓0

E
[∣∣ε−β

∣∣I ∩ Cε
T

∣∣− AT (I )
∣∣] = 0.

From this we immediately deduce the following:

Proposition 7.2 There exists a fixed sequence ε j ↓ 0 such that με j converges weakly
to the random measure μ, with probability one.

Proof It suffices to show that με j (I ) converges almost surely to μ(I ) for every I ∈ Q.
For any interval I ⊂ R+ we clearly have

ε−β
∣∣I ∩ Cε

TI

∣∣ = με(I ).

Hence it follows from Proposition 7.1 that με(I ) converges in L1 to μ(I ), and hence
for each fixed interval I there is a subsequence δ j (depending on I ) such that μδ j (I )
converges to μ(I ) almost surely. Since Q is countable, it follows from the standard
diagonal trick that there is a common, fixed subsequence ε j tending to zero along
which με j (I ) converges almost surely to μ(I ) for every interval I ∈ Q. ��

7.3 The measure as a Frostman measure

Using the convergence of the last section, we prove in this section thatμ is almost surely
a Frostman measure on the set C . Recall this means that μ(C) > 0, μ(R+\C) = 0,
and Ed−δ(μ, I ) < ∞ for every δ > 0 and interval I ⊂ R+; see [5] for more details.
This result is not surprising since, as mentioned in Sect. 7.1, a Frostman measure was
already constructed in [15] as the limit of the με measures (on some event of positive
probability). We are able to prove the following:

Proposition 7.3 Let I = (x1, x2] with 0 < x1 < x2 < ∞. Then for every δ > 0
there exists a constant Rδ > 0 also depending on I and κ such that the expected
(d − δ)-energy of μ restricted to I is finite, i.e.

E

⎡

⎣
∫

I

∫

I

dμ(x)dμ(y)

|x − y|d−δ

⎤

⎦ ≤ Rδ.

Consequently, μ is a Frostman measure on C.
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Proof Using Proposition 3.5, we may bound the expected (d − δ)-energy by

E
[Ed−δ

(
με, I

)] = E

⎡

⎣
∫

I

∫

I

ε−2β1 {x, y ∈ Cε}
|x − y|d−δ

dxdy

⎤

⎦

≤ c
∫

I

∫

I

dx dy

(x ∧ y)β |x − y|1−δ

≤ cx−β
1

∫

I

∫

I

dx dy

|x − y|1−δ

= cx−β
1

|I |1+δ

δ(δ + 1)
.

Note that the bound is independent of ε. Since, by Proposition 7.2, με j converges
weakly to μ, it follows that

E
[Ed−δ (μ, I )

] ≤ lim inf
ε j ↓0

E
[Ed−δ

(
με j , I

)] ≤ Rδ < ∞.

That μ(C) > 0 and μ(R+\C) = 0 is an easy consequence of Proposition 7.1. ��

7.4 The conformal Minkowski measure

As we mentioned in the introduction, it remains an open problem as to whether or not
our measure is related to the Minkowski measure of γ ∩ R+, or perhaps is some sort
of Hausdorff content. Using the measures με we can show that our measure is some
sort of Conformal Minkowski measure. The usual definition for the d-dimensional
Minkowski measure of an interval I would be the limit

lim
ε↓0

ε−β |{x ∈ I : dist(x, γ ) < ε}| .

It is not easy to prove that this limit exists. It is difficult to obtain statistics on the
Euclidean distance from a fixed point to an SLE curve, and even if it were possible it
still might not be the right quantity to consider since Euclidean distance is not invariant
under conformal maps. However, Lemma 3.6 shows that Mt (x)−β acts as a natural
distance from x to the curve, and that x ∈ Cε is (almost) equivalent to dist(x, γ ) ≤ 4ε.
This motivates the consideration of

lim
ε↓0

ε−β
∣∣I ∩ Cε

∣∣ , (21)

which we call the Conformal Minkowski measure of I . Theorem 4.5 and Sect. 7.2
show that the limit exists, and in fact converges to μ(I ) in L1. Based on this, we
could alternatively call μ the Conformal Minkowski measure. In fact we conjecture,
although have been unable to prove, that μ(I ) is exactly the Minkowski measure of
I , up to a fixed multiplicative constant that is the same for all I .
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