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Abstract The behavior at criticality of spatial SIR epidemic models in dimensions
two and three is investigated. In these models, finite populations of size N are sit-
uated at the sites of the integer lattice, and infectious contacts are limited to indi-
viduals at the same or at neighboring sites. Susceptible individuals, once infected,
remain contagious for one unit of time and then recover, after which they are immune
to further infection. It is shown that the measure-valued processes associated with
these epidemics, suitably scaled, converge, in the large-N limit, either to a standard
Dawson–Watanabe process (super-Brownian motion) or to a Dawson–Watanabe pro-
cess with location-dependent killing, depending on the size of the the initially infected
set. A key element of the argument is a proof of Adler’s 1993 conjecture that the local
time processes associated with branching random walks converge to the local time
density process associated with the limiting super-Brownian motion.
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1 Introduction

1.1 Spatial susceptible/infected/recovered epidemics

Simple spatial models of epidemics are known to exhibit critical thresholds in one
dimension. Roughly, when the density of the initially infected set exceeds a certain
level, the epidemic evolves in a markedly different fashion than its branching enve-
lope. See [16] for a precise statement, and [2,20], and [7] for analogous results in the
simpler setting of mean-field models. The main purpose of this article is to show that
spatial susceptible/infected/recovered epidemics (SIR) in dimensions two and three
also exhibit critical thresholds.

The epidemic models studied here take place in populations of size N located at
the sites of the integer lattice Z

d in d dimensions. Each of the N individuals at a site
x ∈ Z

d may at any time be either susceptible, infected, or recovered. Infected individu-
als remain infected for one unit of time, and then recover, after which they are immune
to further infection. The rules of infections are as follows: at each time t = 0, 1, 2, . . . ,
for each pair (ix, sy) of an infected individual located at x and a susceptible individual
at y, ix infects sy with probability pN (x, y).We shall only consider the case where the
transmission probabilities pN (x, y) are spatially homogeneous, nearest-neighbor, and
symmetric, and scale with the village size N in such a way that the expected number
of infections by a contagious individual in an otherwise healthy population is 1 (so
that the epidemic is critical), that is,

Assumption 1 pN (x; y) = 1/[(2d + 1)N ] if |y − x| ≤ 1; and = 0 otherwise.

(Strictly speaking, the expected number of infections is (N − 1)/N since an infected
particle cannot infect itself—we thank a referee for pointing this out. One can also
define pN (x; y) = 1/[(2d + 1)N − 1] to make the expectation exactly 1; this would
not change our main result in Theorem 2.)

Our main result, Theorem 2, asserts that under suitable hypotheses on the initial con-
figurations of infected individuals, the critical spatial SIR-d epidemic can be rescaled
so as to converge to a Dawson–Watanabe measure-valued diffusion in both d = 2 and
d = 3. Depending on the size of the initially infected set, the limiting Dawson–Watan-
abe process has either a positive killing rate or no killing at all. The analogous result
for d = 1 was proved in [16], using the fact that one-dimensional super-Brownian
motion (the Dawson–Watanabe process with no killing) has sample paths in the space
of absolutely continuous measures. In higher dimensions this is no longer true, so a
different strategy is needed.

1.2 Branching envelope of a spatial epidemic

The spatial SIR epidemic in d dimensions is naturally coupled with a nearest neigh-
bor branching random walk on the integer lattice Z

d ; this branching random walk is
often referred to as the branching envelope of the epidemic. Particles of this branching
random walk represent infection attempts in the coupled epidemic, some of which
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Spatial epidemics in dimensions 2 and 3 529

may fail to be realized in the epidemic because the targets of the attempts are either
recovered or are targets of other simultaneous infection attempts. The branching enve-
lope evolves as follows: any particle located at site x at time t lives for one unit of
time and then reproduces, placing random numbers ξy of offspring at the sites y such
that |y−x| ≤ 1. The random variables ξy are i.i.d., with Binomial(N , 1/[(2d +1)N ])
distributions. Denote this reproduction rule by RN , and denote by R∞ the corre-
sponding offspring law in which the Binomial distribution is replaced by the Poisson
distribution with mean 1/(2d + 1). Since offspring are placed independently at each
of the (2d + 1) nearest neighbors, the expected total number of offspring of a particle
is 1, i.e., the branching random walk is critical. Moreover, under either reproduction
rule RN or R∞, the displacement of each offspring from its parent is governed by
the law of the simple nearest neighbor random walk1 on Z

d (with holding probability
1/(2d + 1)). In particular, given that a particle at site x has k offspring, each of these
offspring independently chooses a neighboring site y according to the law

P1(x, y) = 1/(2d + 1) for |y − x| ≤ 1. (1)

Note that the covariance matrix of the increment has determinant σ 2d , where σ 2 is the
variance parameter of the jump distribution, defined by

σ 2 :=
(

2

2d + 1

)
. (2)

The spatial SIR-d epidemic can be constructed together with its branching envelope
on a common probability space in such a way that the branching envelope dominates
the epidemic, that is, for each time n and each site x the number of infected individuals
at site x at time n is no larger than the number of particles in the branching envelope.
Similar dominance arguments were also used in, e.g. [3] and [8] where contact pro-
cesses were viewed as coalescing branching random walks. The construction, in brief,
is as follows (see [16]). Particles of the branching random walk will be colored either
red or blue according to whether or not they represent infections that actually take
place, with red particles representing actual infections. Initially, all particles are red.
At each time t = 0, 1, 2, . . ., particles produce offspring at the same or neighboring
sites according to the law RN described above. Offspring of blue particles are always
blue, but offspring of red particles may be either red or blue, with the choices made
according to the following procedure. All offspring of red particles at a location y
choose numbers j ∈ [N ] := {1, 2, . . . , N } at random, independently of all other
particles. If a particle chooses a number j that was previously chosen by a particle
of an earlier generation at the same site y, then it is assigned color blue. If k > 1
offspring of red particles choose the same number j at the same time, and if j was
not chosen in an earlier generation, then 1 of the particles is assigned color red, while
the remaining k − 1 are assigned color blue. Under this rule, the subpopulation of red
particles evolves as an SIR-d epidemic.

1 Throughout the paper, the term simple random walk will mean simple random walk with holding
probability 1/(2d + 1).
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530 S. P. Lalley, X. Zheng

It is apparent that when the numbers of infected and recovered individuals at a site
and its nearest neighbors are small compared to N , then blue particles will be pro-
duced only infrequently, and so the epidemic process will closely track its branching
envelope. Only when the sizes of the recovered and infected sets reach certain critical
thresholds will blue particles start to be produced in large numbers, at which point the
epidemic will begin to diverge significantly from the branching envelope. Our main
result, Theorem 2, implies that the critical threshold for the number of initially infected
individuals is on the order N 2/(6−d).

The SIR-d epidemic is related to its branching envelope in a second—and for our
purposes more important—way. The law of the epidemic, as a probability measure
on the space of possible population trajectories, is absolutely continuous relative to
the law of its branching envelope. The likelihood ratio can be expressed as a prod-
uct over time and space, with each site/neighbor/generation contributing a factor (see
Sect. 3.3). Each such factor involves the total occupation time RN

n (x) of the site, that
is, the sum of the number of particles at site x over all times prior to n. Thus, the
asymptotic behavior of the occupation time statistics for branching random walks will
play a central role in the analysis of the large-N behavior of the SIR-d epidemic.

1.3 Watanabe’s Theorem

A fundamental theorem of [26] asserts that, under suitable rescaling (the Feller–Watan-
abe scaling) the measure-valued processes naturally associated with critical branching
random walks converge to a limit, the standard Dawson–Watanabe process, also known
as super-Brownian motion. Let MF (R

d) denote the space of finite measures on R
d

with the topology of weak convergence, D([0,∞); MF (R
d)) be the Skorokhod space

of càdlàg MF (R
d)-valued paths.

Definition 1 A standard Dawson–Watanabe process (also called super-Brownian
motion) (Xt : t ≥ 0) ∈ D([0,∞); MF (R

d)) with diffusion coefficient σ 2 is an a.s.-
continuous MF (R

d)-valued process, and can be characterized by the following mar-
tingale problem: for each test function φ ∈ C∞

c (R
d),

Mt (φ) := 〈Xt , φ〉 − 〈X0, φ〉 −
t∫

0

〈Xs,
σ 2

2
�φ〉 ds (3)

is a martingale with quadratic variation process

[M(φ)]t =
t∫

0

〈Xs, φ
2〉 ds, (4)

where C∞
c (R

d) is the space of smooth functions on R
d with compact support.
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Spatial epidemics in dimensions 2 and 3 531

Definition 2 The Feller–Watanabe scaling operator Fk scales mass by 1/k and space
by 1/

√
k, that is, for any finite Borel measure μ(dx) on R

d and any test function
ψ ∈ C∞

c (R
d),

〈ψ,Fkμ〉 = k−1
∫
ψ(

√
kx)μ(dx). (5)

Watanabe’s Theorem For each k = 1, 2, . . . , let Xk
t be a nearest neighbor branching

random walk with Poisson (1) offspring distribution and initial particle configuration
Xk

0 . (In particular, Xk
t (x) denotes the number of particles at site x ∈ Z

d in generation
[t], and Xk

t is the corresponding counting measure.) If the initial mass distributions
converge, after rescaling, as k → ∞, that is, if

Fk Xk
0 ⇒ μ = X0 (6)

for some finite Borel measure μ on R
d , then the rescaled measure-valued processes

(Fk Xk)kt converge in law as k → ∞ :

(Fk Xk)kt ⇒ Xt ,

where ⇒ represents the weak convergence relative to the Skorokhod topology on
D([0,∞); MF (R

d)). The limit is the standard Dawson–Watanabe process Xt (super-
Brownian motion) with diffusion coefficient σ 2.

See [9] for an in-depth study of the Dawson–Watanabe process and a detailed proof
of Watanabe’s Theorem. Because the process Xt has continuous sample paths in the
space of finite Borel measures, it follows routinely from Watanabe’s theorem that the
occupation measures for branching random walks converge to those of super-Brown-
ian motion.

Lemma 1 The following joint convergence holds:
⎛
⎝(Fk Xk)kt ,

⎛
⎝

t∫
0

(Fk Xk)ks ds

⎞
⎠
⎞
⎠⇒

⎛
⎝Xt ,

t∫
0

Xs ds

⎞
⎠ , (7)

where ⇒ represents weak convergence relative to the Skorokhod topology on
D([0,∞); MF (R

d))2.

Proof The Dawson–Watanabe process Xt has continuous sample paths in D([0,∞);
MF (R

d)), see, e.g., Proposition 2.15 in [9]. The functional (Xt ) �→ (
∫ t

0 Xs ds) is con-
tinuous relative to the Skorokhod topology on the subspace of continuous measure-
valued processes, so the result follows from Watanabe’s theorem and the continuous
mapping principle. �
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1.4 Local times of critical branching random walks

In dimension d = 1 the super-Brownian motion has sample paths in the space of
absolutely continuous measures, that is, for each t > 0 the random measure Xt is
absolutely continuous relative to Lebesgue measure ([15,22]). Moreover, the Radon–
Nikodym derivative X (t,x) is jointly continuous in t,x (for t > 0). It is shown in [16]
that if a sequence of branching random walks satisfy the assumptions in Watanabe’s
Theorem, then the density processes associated with those branching random walks,
under some smoothness assumptions on the initial configurations and after suitable
scaling, converge to the density process of the limiting super-Brownian motion.

In dimensions d ≥ 2 the measure Xt is a.s. singular [5]. Therefore, one cannot
expect the convergence of density processes as in [16]. We shall prove, however, that
the occupation measures of critical branching random walks have discrete densities
that converge weakly—see Theorem 1. The limit process is the local time density
process associated with the occupation measure

Lt :=
t∫

0

Xs ds

of the super-Brownian motion. In dimensions d = 2, 3, the random measure Lt is, for
each t > 0, absolutely continuous, despite the fact that Xt is singular—see [24], [13]
and [11]. Moreover, under suitable hypotheses on the initial condition X0, the density
process Lt (x) is jointly continuous for t > 0 and x ∈ R

d : This is the content of
Sugitani’s theorem. For the reader’s convenience, we state Sugitani’s Theorem pre-
cisely here. For t > 0 and x ∈ R

d , set

qt (x) =
t∫

0

φs(x) ds, where φt (x) = e−|x|2/2t

(2π t)d/2

is the usual heat kernel.

Sugitani’s Theorem Assume that d = 2 or 3, and that the initial configuration
μ := X0 of the super-Brownian motion Xt is such that the convolution

(qt ∗ μ)(x) is jointly continuous in t ≥ 0 and x ∈ R
d . (8)

Then for each t ≥ 0, the occupation measure Lt is absolutely continuous, and there
is a jointly continuous version Lt (x) of the density process.

We call (Lt (x))t≥0, x∈Rd the local time density process associated with the super-
Brownian motion. In view of Watanabe’s and Sugitani’s theorems, it is natural to
conjecture (see Remark 1) that the local time density processes of branching ran-
dom walks, suitably scaled, converge to the local time density process of the super-
Brownian motion. Theorem 1 asserts that this conjecture is true. Let Xk be a sequence
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of branching random walks on Z
d . Write

Xk
i (x) : = # particles at x at time i, and

Rk
n(x) : =

∑
0≤i<n

Xk
i (x).

(9)

(We use the notation Rk
n instead of Lk

n because in the corresponding spatial epidemic
model, the quantity Rk

n(x) represents the number of recovered individuals at site x
and time n.) Denote by

P
n = (Pn(x, y))x,y∈Zd = (Pn(y − x))x,y∈Zd (10)

the transition probability kernel of the simple random walk on Z
d , that is, Pn =P ∗ P

n−1

is the nth convolution power of the one-step transition probability kernel given by (1).
Let P0(x) = δ0(x), and let Gn(x, y) be the associated Green’s function:

Gn(x) :=
∑

0≤i<n

Pi (x)

For any finite measure μ on Z
d with finite support, set

(μGn)(x) := (μ ∗ Gn)(x) =
∑

y

μ(y)Gn(x − y),

and denote by (μGt )(y) the continuous extension to [0,∞) × R
d by linear

interpolation.

Theorem 1 Assume that d = 2 or d = 3. For each k = 1, 2, . . . , let Xk
t be a branch-

ing random walk whose offspring distribution is Poisson with mean 1. Assume that the
initial configurations μk := Xk

0 satisfy hypothesis (6) of Watanabe’s theorem, where
the limit measure μ has compact support and satisfies the hypothesis (8) of Sugitani’s
theorem. Assume further that

μk Gkt (
√

kx)

k2−d/2 �⇒ [(qσ 2t ∗ μ)/σ 2](x), (11)

where ⇒ indicates weak convergence in the topology of D([0,∞),Cb(R
d)). Then as

k → ∞,

Rk
kt (

√
kx)

k2−d/2 �⇒ Lt (x), (12)

where Lt (x) is the local time density process associated with the super-Brownian
motion with diffusion coefficient σ 2 started in the initial configuration X0 = μ.

Theorem 1 will be proved in Sect. 2.
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Remark 1 The analogous result for critical branching Brownian motions was conjec-
tured by Adler in [1], who proved the marginal convergence for any fixed t and x.

Remark 2 The assumption that the offspring distribution is Poisson with mean 1 can be
relaxed. All that is really needed is that the offspring distribution has an exponentially
decaying tail. See Remark 8 for more explanations.

Remark 3 The hypothesis (6) does not by itself imply (11), even if the limit measure
μ satisfies the hypothesis (8) of Sugitani’s theorem. Sufficient conditions for (11) are
given in Proposition 1. In particular, in dimension 2, if (6) holds and the maximal
number of particles on a single site is bounded in k, then (11) is satisfied.

Remark 4 Let Xt be super-Brownian motion in dimension d = 2. For each t > 0
the random measure Xt is singular, so by Fubini’s theorem, for almost every point
x ∈ R

2 the set of times t > 0 such that x is a point of density of Xt has Lebesgue
measure 0. Under hypothesis (11) we can make an analogous quantitative statement
for branching random walk. For any fixed x ∈ Z

2 and all t > 0,

E
[kt]∑

m=1

I{Xk
m (x)>0} = O(k/ log k). (13)

Proof By Proposition 35 in [18], there exists δ > 0 such that for all k and m sufficiently
large,

E
[

Xk
m(x)|Xk

m(x) > 0
]

≥ δ log m.

But hypothesis (11) implies that

E Rk
kt (x) = (μk Gkt )(x) = O(k),

and

E Rk
kt (x) =

∑
m<kt

E Xk
m(x) =

∑
m<kt

E
[

Xk
m(x)|Xk

m(x) > 0
]

· P
[

Xk
m(x) > 0

]
.

�

1.5 Scaling limit of spatial SIR epidemic

Before stating our result, we first recall the definition of Dawson–Watanabe processes
with variable-rate killing. The Dawson–Watanabe process Xt with killing rate θ =
θ(x, t, ω) [assumed to be progressively measurable and jointly continuous in (t,x)]
and diffusion coefficient σ 2 can be characterized by a martingale problem ([6], Section
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6.2). For any test function ψ ∈ C∞
c (R

d),

〈Xt , ψ〉 − 〈X0, ψ〉 − σ 2

2

t∫
0

〈Xs,�ψ〉 ds +
t∫

0

〈Xs, θ(·, s)ψ〉 ds

is a martingale with the same quadratic variation as in (4). The Dawson–Watanabe
process with killing rate 0 (which we sometimes refer to as the standard Dawson–
Watanabe process) is super-Brownian motion. Existence and distributional uniqueness
of Dawson–Watanabe processes in general is asserted in [6] and proved, in various
cases, in [4] and [10]. It is also proved in these articles that the law of a Dawson–
Watanabe process with killing on any finite time interval [0, t] is absolutely con-
tinuous with respect to that of a standard Dawson–Watanabe process with the same
diffusion coefficient, and that the likelihood ratio (Radon–Nikodym derivative) is [6]

exp

⎧⎨
⎩−

t∫
0

θ(s,x) d M(s,x)− 1

2

t∫
0

〈Xs, θ(s, ·)2〉 ds

⎫⎬
⎭ , (14)

where d M(s,x) is the orthogonal martingale measure attached to the standard
Dawson–Watanabe process (see [25]). Absolute continuity implies that sample path
properties are inherited. In particular, when d = 2, 3, if Xt is a Dawson–Watanabe
process with killing, then a.s. its occupation time process Lt is absolutely continuous,
with local time density Lt (x) jointly continuous in x and t .

It is shown in [16] that for the SIR-1 epidemic in Z with village size N , the parti-
cle density processes, suitably rescaled, converge as N → ∞ to the density process
of a standard Dawson–Watanabe process or a Dawson–Watanabe process with loca-
tion-dependent killing, depending on whether the total number of initial infections
is below a critical threshold or not. In dimensions d ≥ 2, one cannot expect such a
result to hold, because the Dawson–Watanabe process is a.s. singular with respect to
the Lebesgue measure and therefore has no associated density process. However, as
measure-valued processes, the SIR-d (d = 2, 3) epidemics, under suitable scaling, do
converge, as the next theorem asserts. For the SIR-d model with village size N , define

X N
i (x) : = # infected particles at x at time i; and (15)

RN
n (x) : = # recovered particles at x at time n =

∑
i<n

X N
i (x).

Theorem 2 Assume that d = 2 or 3, and suppose that for some α ≤ 2/(6 − d) the
initial configurations μN := X N

0 are such that

FNαμN ⇒ μ with compact support, and (16)

((μN G Nα t )(
√

Nαx))/Nα(2−d/2) ⇒ [(qσ 2t ∗ μ)/σ 2](x) ∈ C(R1+d), (17)
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where the second convergence is in D([0,∞); Cb(R
d)). Then

(FNα X N )Nα t �⇒ Xt , (18)

where the limit process Xt is a Dawson–Watanabe process with initial configuration
X0 = μ, diffusion coefficient σ 2, and killing rate θ . The killing rate depends on the
value of α as follows:
(i) if α < 2/(6 − d), then θ ≡ 0; and

(ii) if α = 2/(6 − d), then θ = Lt (x),

where Lt (x) is the local time density of the process Xt . The convergence ⇒ in (18) is
weak convergence relative to the Skorokhod topology on D([0,∞); MF (R

d)).

Theorem 2 will be proved in Sect. 3.

Remark 5 Theorem 2 asserts that there is a critical threshold for the SIR-d epidemic
in dimensions d = 2, 3. Below the threshold (when the sizes of the initially infected
populations are � Nα∗ , where α∗ = 2/(6 − d) is the critical exponent) the effect
of finite population size is not felt, and the epidemic looks much like its branching
envelope. At the critical threshold, the finite-population effects begin to show, and the
epidemic now looks like a branching random walk with location-dependent killing.

Remark 6 If one replaces pN (x; y) in Assumption 1 with (1+β/Nα∗)/([2d +1]N )×
1|x−y|≤1 for some fixed constant β, then one can generalize the arguments in this paper
to show that the convergence still holds and the limit is a Dawson–Watanabe process
with initial configuration X0 = μ, diffusion coefficient σ 2, and killing rate θ − β.
This process will be studied in [17] in which we show that there exist critical values
βc = βc(d) > 0 such that if β > βc then the process survives with positive probability
while if β < βc then it dies out a.s.

Remark 7 The critical behavior of the SIR-d epidemics in dimensions d ≥ 4 will be
studied in [21] in which we connect SIR-d epidemics with bond percolations on [N ]Zd

and give sharp asymptotics for the critical probabilities.

1.6 Notational conventions

Since the proof of Theorem 2 is based on likelihood ratio calculations, we shall, at the
risk of minor confusion, use the same letters X and R, with subscripts and/or super-
scripts, to denote particle counts and occupation counts for both branching random
walks and the SIR-d epidemic processes (see Eqs. 14 and 15) and for their continu-
ous limits. Throughout the paper, we use the notation f � g to mean that the ratio
f/g remains bounded away from 0 and ∞. For any a, b ∈ R, a ∧ b := min(a, b)
and a ∨ b := max(a, b). Also, C,C1, etc. denote generic constants whose values
may change from line to line. The notation δx(y) is reserved for the Kronecker delta
function. The notation Yn = oP ( f (n)) means that Yn/ f (n) → 0 in probability; and
Yn = OP ( f (n)) means that the sequence |Yn|/ f (n) is tight. Finally, we use a “local
scoping rule” for notation. Any notation introduced in a proof is local to the proof,
unless otherwise indicated.
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2 Local time for branching random walk in d = 2, 3

2.1 Estimates on transition probabilities

Recall that P
n = (Pn(x − y)) is the n-step transition probability kernel for the sim-

ple random walk on Z
d [with holding parameter 1/(2d + 1)]. For critical branching

random walk, Pn(x, y) is the expected number of particles at site y at time n given
that the branching random walk is initiated by a single particle at site x. For this
reason, sharp estimates on these transition probabilities will be of crucial importance
in the proof of Theorem 1. We collect several useful estimates here. As the proofs are
somewhat technical, we relegate them to the Appendix (Sect. 4). Write

n(x, y) = φn(x)+ φn(y) where

φn(x) = 1

(2πn)d/2
exp

(
−|x|2

2n

)

is the Gauss kernel in R
d . The first two results relate transition probabilities to the

Gauss kernel.

Lemma 2 For all sufficiently small β > 0 there exists constant C = C(β) > 0 such
that for all integers m, n ≥ 1 and all x ∈ Z

d ,

Pn(x) ≤ Cφn(βx) and (19)∑
y

Pm(y)φn(β(x − y)) ≤ Cφm+n(βx/2). (20)

Furthermore, for each A > 0 and each T > 0 there exists C = C(β, A, T ) > 0 such
that for all k sufficiently large and all |x| ≤ A

√
k,

∑
n≤kT

φn(βx) ≤ C
∑

n≤kT

Pn(x). (21)

Lemma 3 For all sufficiently small β > 0 there exists constant C = C(β) > 0 such
that for all integers n ≥ 1 and all x, y ∈ Z

d ,

|Pn(x)− Pn(y)| ≤ C

( |x − y|√
n

∧ 1

)
·n(βx, βy). (22)

In particular, for all γ ≤ 1,

|Pn(x)− Pn(y)| ≤ C

( |x − y|√
n

)γ
·n(βx, βy). (23)

Our arguments will also require the following estimates on the discretized
Green kernel.
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Lemma 4 For each γ ∈ (0, 2 − d/2), β > 0, n ∈ N, and x, y ∈ Z
d , define

Fn(x, y;β) = Fn;γ (x, y;β) =
∑
l<n

1

lγ /2
l(βx, βy). (24)

Then there exists C = C(γ, β) < ∞ such that for all n ∈ N and all x, y ∈ Z
d , the

following inequalities hold:

(Fn(x, y;β))2 ≤ Cn2−(d+γ )/2 Fn(x, y;β), (25)

and

∑
i<n

∑
z

Pi (z) · (Fn−i (x − z, y − z;β))2 ≤ Cn2−(d+2γ )/2
∑
l<n

l(βx/2, βy/2)

≤ Cn2−(d+γ )/2 Fn(x, y;β/2). (26)

(Note that in the last term the β parameter is changed to β/2.)

Lemma 5 For each β > 0, m, n ≥ 1, and x ∈ Z
d , define

Jm,n(x;β) =
∑

m≤l<m+n

φl(βx). (27)

Then there exists C = C(β) > 0 such that for all m, n ≥ 1, and all x ∈ Z
d , the

following inequalities hold:

(
Jm,n(x;β))2 ≤ Cn2−d/2 Jm,n(x;β), (28)∑

i<n

∑
z

Pi (z) · (Jm,n−i (x − z;β))2 ≤ Cn2−d/2 Jm,n(x;β/2), (29)

and

∑
i<m

∑
z

Pi (z) · (Jm−i,n(x − z;β))2 ≤ Cn2−d/2 Jm,n(x;β/2). (30)

2.2 Proof of Theorem 1

For notational ease, we omit the superscript k in the arguments below: thus, we write
Xn(x) instead of Xk

n(x), and Rn(x) instead of Rk
n(x). To prove the theorem it suffices

to prove that (i) the sequence of random processes (Rkt (
√

kx)/k2−d/2) is tight in the
space D([0,∞); Cb(R

d)); and (ii) that the only possible weak limit is the local time
density process Lt (x). The second of these is easy, given Lemma 1. This implies that
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for any test function ψ ∈ Cc(R
d),

1

k2

∑
x

Rkt (
√

kx)ψ(x) = 1

k

∑
i≤kt

∑
x

Xi (
√

kx)ψ(x)/k ⇒
t∫

0

Xs(ψ) ds,

where (Xt ) is the super-Brownian motion started in configuration X0 = μ with diffu-
sion coefficient σ 2. Hence, any weak limit of the sequence (Rkt (

√
kx)/k2−d/2) must

be a density of the occupation measure for super-Brownian motion. By Sugitani’s
Theorem (see Sect. 1.4),

t∫
0

Xs(ψ) ds =
∫
x

Lt (x)ψ(x) dx.

It follows that Lt (x) is the only possible weak limit.
Thus, to prove Theorem 1 it suffices to prove that the sequence (Rkt (

√
kx)/k2−d/2)

is tight in the space D([0,∞); Cb(R
d)). In view of hypothesis (8), it is enough to prove

the tightness of the re-centered sequence

Yk(t,x) :=
(

Rkt (
√

kx)− (μk Gkt )(
√

kx)
)
/ k2−d/2. (31)

This we will accomplish by verifying a form of the Kolmogorov–Centsov criterion
(see, e.g., Theorem 2.8 and Problem 2.9 in [14]). According to this criterion, to prove
tightness it suffices to prove that for each compact subset K of [0,∞)×R

d there exist
constants C<∞, α>0, and δ>d +1 such that for all k and all pairs (s, a), (t, b) ∈ K ,

E |Yk(t, a)− Yk(t, b)|α ≤ C |a − b|δ and (32)

E |Yk(t, a)− Yk(s, a)|α ≤ C |t − s|δ. (33)

The trick is to not work with moments directly, but instead, following the strategy of
[24], to work with cumulants.

Lemma 6 [Lemma 3.1 in [24]] Let X be a random variable with moment generating
function E exp(θX) = exp(

∑∞
n=1 θ

nan). If for some integer m there exist r, b > 0
such that

|an| ≤ brn, for all n ≤ 2m,

then there exists a constant C depending only on b and m (and independent of X )
such that

E X2m ≤ Cr2m .
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Note that R1(x) ≡ μ(x), and they cancel out in the right hand side of (31), hence
we need to only work with

∑
1≤i<n Xi (x), which, for notational ease, will still be

denoted by Rn , that is, throughout this proof we redefine

Rn(x) :=
∑

1≤i<n

Xi (x), for all x ∈ Z
d ,

and, accordingly, Gn(x) :=∑1≤i<n Pi (x). This modification eliminates some annoy-
ing computations involving P0 = φ0 = δ0.

A. Cumulants. By the additivity and spatial homogeneity of the branching random
walk, for any ψ ∈ Cc(Z

d) and for each n ≥ 1 there exists a function νn = ν
ψ
n ∈

Cc(Z
d) such that for any (nonrandom) initial configuration μ,

Eμ exp(〈Rn, ψ〉) = exp(〈μ, νn〉).

Note that ν1 = 0 (since R1(x) = ∑
1≤i<1 Xi (x) ≡ 0). The assignment ψ �→ ν

ψ
n is

monotone in ψ , but not in general linear. Setting μ = δx and conditioning on the first
generation, we obtain

exp(νn+1(x)) =
∑

j

Q j

(
1

2d + 1

∑
e

exp(ψ(x + e)+ νn(x + e))

)j

,

where {Q j } is the offspring distribution (in the case of interest, the Poisson distribution
with mean 1) and the inner sum is over the 2d + 1 nearest neighbors e of the origin in
Z

d (recall that the origin is included in this collection, since particles of the branching
random walk can stay at the same sites as their parents). Observe that if the offspring
distribution is Poisson(1), then

νn+1(x) = 1

2d + 1

∑
e

exp(ψ(x + e)+ νn(x + e))− 1. (34)

Define the cumulants κh,n(x) = κ
ψ
h,n(x) in the usual way:

Eμ exp(θ〈Rn, ψ〉) = exp

⎛
⎝
〈
μ,
∑
h≥1

θhκh,n

〉⎞
⎠ , for all θ ∈ R.

By the arguments of the preceding paragraph, κh,1 = 0 for all h ≥ 1, and by (34),

∑
h≥1

θhκh,n+1(x) = 1

2d + 1

∑
e

⎛
⎝exp

⎧⎨
⎩
∑
h≥1

θhκh,n(x + e)+ θψ(x + e)

⎫⎬
⎭− 1

⎞
⎠ .
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Consequently,

κh,n+1(x) = 1

2d + 1

∑
e

h∑
m=1

1

m!
∑

Pm (h)

m∏
i=1

{κhi ,n(x + e)+ δ1(hi ) · ψ(x + e)}, (35)

where Pm(h) denotes the set of m-tuples (h1, h2, . . . , hm) of positive integers whose
sum is h, and δ1(·) is the Kronecker delta function. When h ≥ 2, the m = 1 summand
in (35) equals 1/(2d + 1) ·∑e κh,n(x + e) = (P1 ∗ κh,n)(x), hence,

κh,n+1(x) = (P1 ∗ κh,n)(x)+ (P1 ∗�n)(x),

where

�n(x) = �n(x; h) :=
h∑

m=2

1

m!
∑

Pm (h)

m∏
i=1

{κhi ,n(x)+ δ1(hi )ψ(x)}. (36)

Since κh,1 = 0, by iteration we get that for all h ≥ 2,

κh,n(x) =
∑

1≤l<n

(Pl ∗�n−l)(x). (37)

B. Case ψ = δa − δb: Consider now the special case ψ = ψa,b := δa − δb where
a, b ∈ Z

d and δx is the Kronecker delta function. Fix 0 < γ < 2 − d/2 small, and let

η = η(γ ) = 2 − (d + γ )/2 > 0.

Recall that in (24) we defined Fn(x, y;β) for β > 0, n ∈ N and x, y ∈ Z
d as

Fn(x, y;β) = Fn;γ (x, y;β) =
∑

1≤l<n

1

lγ /2
l(βx, βy).

Claim For all sufficiently small β > 0, for each h ≥ 1 there exists Ch = C(h, β, γ )
< ∞ such that for all n ∈ N and all x ∈ Z

d ,

|κh,n(x)| ≤ Ch |a − b|hγ nη(h−1)Fn(a − x, b − x; 2−(h−1)β); (38)

moreover, for all h ≥ 2, all n ∈ N and all x ∈ Z
d ,

|κh,n(x)| ≤ Ch |a − b|hγ nη(h−1)−γ /2 ∑
1≤l<n

l(2
−(h−1)β(a − x), 2−(h−1)β(b − x)).

(39)
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In fact, when h = 1,

|κ1,n(x)| = |Eδx〈Rn, ψ〉| = |Gn(a − x)− Gn(b − x)|
≤ C |a − b|γ

∑
l<n

1

lγ /2
l(β(a − x), β(b − x))

= C |a − b|γ Fn(a − x, b − x;β),

where in the middle inequality we used assertion (23) of Lemma 3. Furthermore, since
ψ(x) �= 0 if and only if x = a or b, in which case |ψ(x)| = 1 and
infn C |a − b|γ Fn(a − x, b − x;β) > 0, we get that for all n and all x,

|κ1,n(x)+ ψ(x)| ≤ C |a − b|γ Fn(a − x, b − x;β). (40)

Now suppose that the claim holds for 1, . . . , h − 1, and we want to prove the claim
for h. First note that in the definition (36) of �n(x), only κhi for hi < h are involved,
hence by induction, (40), relation (25), and the monotonicity of F in β, we get that
for all n and x,

�n(x) ≤ C |a − b|hγ nη(h−2)
(

Fn(a − x, b − x; 2−(h−2)β)
)2
.

The claims then follows from (37) and (26).
C. Case ψ = δa : When ψ = δa for some a ∈ Z

d , by (19),

κ1,n(x) = Eδx〈Rn, δa〉 = Gn(a − x) ≤ C
∑

1≤l<n

φl(β(a − x)) = C J1,n−1(a − x;β),

where J is defined in (27). By a similar (in fact, slightly easier) argument as above
and using relations (28) and (29) in Lemma 5, we get that for all h ≥ 1, there exist
Ch = C(h, β, d) < ∞ such that for all n ∈ N and all x ∈ Z

d ,

κh,n(x) ≤ Chn(2−d/2)(h−1) J1,n−1(a − x; 2−(h−1)β). (41)

D. Proof of (32). Suppose the initial configurations μk satisfy the hypotheses of The-
orem 1. For any a, b ∈ R

d , we want to estimate Eμ
k |Yk(t, a)−Yk(t, b)|h . By Lemma

6, this can be done by setting ψ = 1√
ka − 1√

kb and estimating |〈μk, κh,kt 〉|. By (39),
for all h ≥ 2,

|〈μk, κh,kt 〉| ≤ Ch |√k(a − b)|hγ · (kt)η(h−1)−γ /2·

·
〈
μk,

∑
l<kt

l(2
−(h−1)β(

√
ka − ·), 2−(h−1)β(

√
kb − ·))

〉
.

By assumption (6), we can find an A > 0 such that Supp(μk) ⊆ B(0, A
√

k) for all k,
where B(0, r) represents the ball of radius r around the origin. By relation (21), for
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any T > 0, there exists C = C(β, h, T ) such that for all t ≤ T ,

max
x

〈
μk,

∑
l<kt

φl(2
−(h−1)β(x − ·))

〉
= max

|x|≤A
√

k

∑
y

μk(y)
∑
l<kt

φl(2
−(h−1)β(x − y))

≤ C
∑

y

μk(y)
∑
l<kt

Pl(x − y)

≤ Ck2−d/2, (42)

where the last inequality is due to the relative compactness of (μk Gkt )(
√

k·)/k2−d/2

assumed in (11). Hence when h ≥ 2,

|〈μk, κh,kt 〉| ≤ Chkhγ /2+η(h−1)−γ /2+2−d/2 · tη(h−1)−γ /2 · |a − b|hγ .

Plugging in η = 2 − (d + γ )/2 gives us

|〈μk, κh,kt 〉| ≤ Chk(2−d/2)h · t (2−(d+γ ))(h−1)−γ /2 · |a − b|hγ , for all h ≥ 2.

Noting that Eμ
k
(Yk(t, a)− Yk(t, b)) = 0, by Lemma 6 we get that there exists C ′

h =
C ′(T, h) > 0 such that for all t ≤ T ,

Eμ
k |Yk(t, a)− Yk(t, b)|2h ≤ C ′

h |a − b|2hγ .

By choosing h large such that 2hγ > d + 1 we obtain (32).
E. Proof of (33). By the additivity and spatial homogeneity of the branching random
walk, for any ψ ∈ Cc(Z

d) and for all m, n ∈ N there exists a function ν(m,n) =
ν
ψ

(m,n) ∈ Cc(Z
d) such that for any (nonrandom) initial configuration μ,

Eμ exp(〈Rm+n − Rm, ψ〉) = exp(〈μ, ν(m,n)〉).

Letting μ = δx and conditioning on the first generation, we get

exp(ν(m+1,n)(x)) = Eδx exp(〈Rm+1+n − Rm+1, φ〉)

=
∑

j

Q j

(
1

2d + 1

∑
e

exp
(
ν(m,n)(x + e)

))j

,

where Q = {Q j } j≥0 denotes the offspring distribution. In case where the offspring
distribution is Poisson(1), the equation above implies

ν(m+1,n)(x) = 1

2d + 1

∑
e

exp
(
ν(m,n)(x + e)

)− 1. (43)
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Define the cumulants κh,(m,n) by

Eμ exp(θ〈Rm+n − Rm, ψ〉) = exp

⎛
⎝〈μ,

∑
h≥1

θhκh,(m,n)〉
⎞
⎠ , for all θ ∈ R.

Then by (43),

∑
h

θhκh,(m+1,n)(x) = 1

2d + 1

∑
e

exp

[∑
h

θhκh,(m,n)(x + e)

]
− 1.

Therefore

κh,(m+1,n)(x) = 1

2d + 1

∑
e

h∑
i=1

1

i !
∑
Pi (h)

i∏
j=1

κhi ,(m,n)(x + e), (44)

where Pi (h) denotes the set of i-tuples (h1, h2, . . . , hi ) of positive integers whose
sum is h. The i = 1 summand in (44) equals 1/(2d + 1) · ∑e κh,(m,n)(x + e) =
(P1 ∗ κh,(m,n))(x), hence when h ≥ 2,

κh,(m+1,n)(x) = (P1 ∗ κh,(m,n)
)
(x)+

(
P1 ∗ �̃m,n

)
(x),

where

�̃m,n(x) = �̃m,n(x; h) :=
h∑

i=2

1

i !
∑
Pi (h)

i∏
j=1

κhi ,(m,n)(x). (45)

By iteration we then get that for all h ≥ 2,

κh,(m,n)(x) =
∑
i<m

(Pi ∗ �̃m−i,n)(x)+ (Pm ∗ κh,(0,n))(x), (46)

where κh,(0,n) is just κh,n studied in Part A.
For ψ = 1a for a ∈ Z

d , by (19),

κ1,(m,n)(x) = Eδx〈Rm+n − Rm, ψ〉 =
∑

m≤l<m+n

Pl(a − x) ≤ C Jm,n(a − x;β),

where J is defined in (27). Similarly as in proving the claim in Part B, using relations
(28) and (30) in Lemma 5 and induction to bound the first term in the right hand side of
(46), and using (41) and (20) to bound the second term, we get that for all sufficiently
small β > 0 and for all h, there exist Ch = C(h, β) > 0 such that

|κh,(m,n)(x)| ≤ Chn(2−d/2)(h−1) Jm,n(a − x, 2−hβ).
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We are ready to verify (33). Setting ψ = 1√
ka and using (42), we get that for any

T > 0, there exists C = C(Ch, T ) such that for all t + s ≤ T ,

|〈μk, κh,(kt,ks)〉|≤Ck(2−d/2)(h−1)s(2−d/2)(h−1) · k2−d/2 =Ckh(2−d/2) · s(2−d/2)(h−1).

By Lemma 6 we then get that there exists C ′′
h = C ′′(T, h) > 0 such that for all

t + s ≤ T ,

Eμ
k |Yk(t + s, a)− Yk(t, a)|2h ≤ C ′′

h · s(2−d/2)(2h−1).

So by choosing h large such that (2 − d/2)(2h − 1) > d + 1 we obtain (33). �
Remark 8 For general offspring distributions Q = {Q j }, let f (x) = log(

∑
j Q jx

j )

where x ≥ 0. If the offspring distribution Q has an exponentially decaying tail, then
f (x) can be expanded around x = 1 as f (x) =∑∞

�=1 f (�)(1)(x − 1)�/�!. Thus (34)
turns into

νn+1(x) =
∞∑
�=1

f (�)(1)

(
1

2d + 1

∑
e

exp (ψ(x + e)+ νn(x + e))− 1

)�/
�!,

and

∑
h

θhκh,n+1(x) =
∞∑
�=1

f (�)(1)

×
(

1

2d + 1

∑
e

exp

(
θψ(x + e)+

∑
h

θhκh,n(x + e)

)
− 1

)�/
�!.

This enables us to express κh,n+1(x) in terms of ψ(x + e) and κh,n(x + e) simi-
larly as in (35) and in (37) (note f (1)(1) = 1 because Q has mean 1), and prove the
Kolmogorov–Centsov criterion for the spatial variable. Similarly one can verify the
Kolmogorov–Centsov criterion for the time variable.

2.3 Sufficient conditions for Assumption (11)

Now we state some conditions that imply (11) and are easier to check.

Proposition 1 Let d = 2 or 3. Suppose that the initial configurations μk are such
that Fkμ

k ⇒ μ, and satisfy

lim
t→0

sup
k

max
x
(μk Gkt )(x)/k2−d/2 = 0. (47)

Then (11) holds. In particular, if any of the following assumptions is satisfied, then
(11) holds.
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(i) In dimension 2, the maximal number of particles on a single site is bounded in
k, i.e., supk maxy μ

k(y) < ∞.

(ii) In dimension 3, there exist C1,C2 > 0 such that

C2 := sup
k

max
x

∑
y∈B(x, C1k1/6)

μk(y) < ∞, (48)

where B(x, r) denotes the ball of radius r around x for any x and r ≥ 0; that
is, the number of particles in any ball of radius C1k1/6 is bounded in k.

(iii) In dimension 2, μk is such that μk(y) is a decreasing function in |y|, and there
exists α ∈ (0, 2) such that

μk(y) ≤ C

(√
k/(|y|2 + 1)

)α
, for all y, k. (49)

Remark 9 This proposition is a natural analogue of Proposition 1 in [24].

To prove Proposition 1, we will need the following two lemmas.

Lemma 7 For any function ψ ∈ Cc(R
d) and each integer k ≥ 1, define

�k
t (x) =

∑
y∈Zd

ψ(y/
√

k)Gkt (
√

kx − y)/k, for x ∈ Z
d/

√
k and t ∈ Z/k,

and extend by linear interpolation elsewhere. Then

lim
k→∞�

k
t (x) = [(qσ 2t ∗ ψ)/σ 2](x), (50)

and the convergence is locally uniform in t and x.

Proof Pointwise convergence (50) follows from the local central limit theorem. To
prove that the convergence is locally uniform, it suffices to show that the sequence of
functions

(
�k

t (x)
)

is relatively compact in C(R1+d). For this, we use the Ascoli–Arz-
ela criterion. First, we show that the functions �k

t (x) are uniformly bounded on any
compact set in R

1+d . Denote by M the maximum of |ψ(x)|. Then

∣∣∣�k
t (x)

∣∣∣ ≤ ∑
y∈Zd

∣∣∣ψ(y/√k)
∣∣∣ · Gkt (

√
kx − y)/k

≤ M
∑
y∈Zd

Gkt (
√

kx − y)/k

≤ Mt. (51)

Next, we show that the
(
�k

t (x)
)

are equi-continuous. Fix ε > 0, and set δ = ε/M .
By (51), |�k

t | ≤ ε for all t ≤ δ; thus,

∣∣∣�k
t (x)−�k

s (y)
∣∣∣ ≤ 2ε, for all x, y ∈ R

d and s, t ≤ δ.

123



Spatial epidemics in dimensions 2 and 3 547

On the other hand, by (22), for all t ≥ δ and x �= y ∈ R
2,

|�k
t (x)−�k

t (y)| ≤ 2ε + C

√
k|x − y|

k

∑
kδ≤n≤kt

1√
n

∑
z

|ψ(z/√k)|

·n(β(
√

kx − z), β(
√

ky − z))

≤ 2ε + C

√
k|x − y|

k

∑
kδ≤n≤kt

1√
n1+d

· √
k

d

≤ 2ε + Cδ−(d−1)/2 · |x − y|.

(In the second inequality we used the fact that
∑

z |ψ(z/√k)| ≤ C
√

k
d
; this holds

because ψ is bounded and has compact support.) Finally, for all x and all δ ≤ s < t ,

|�k
t (x)−�k

s (x)| ≤ M
∑

ks≤n≤kt

∑
z

Pn(
√

kx − z)/k ≤ M(t − s).

�
Lemma 8 Suppose that f and g are two nonnegative functions on Z

d , and f has
compact support. Suppose further that both f (x) and g(x) are decreasing functions
in |x|, then

∑
y

f (y)g(x − y) ≤
∑

y

f (y)g(y), for all x. (52)

Proof Since f (x) has compact support, we can enumerate its positive values, say
a1 ≥ · · · ≥ an > 0. We can also enumerate the values of g, say b1 ≥ · · · bn ≥ · · · .
Moreover, since f and g are both decreasing functions in |x|, the enumerations can
be made in such a way that for each i ∈ {1, . . . , n}, ai and bi are the values of f and g
at a same site, respectively. To show (52), it then suffices to show that

sup
i1,...,in

n∑
k=1

akbik =
n∑

k=1

akbk .

But this is easily seen to be true. �
We now prove Proposition 1.

Proof of Proposition 1 For anyψ ∈ Cc(R
d), by Lemma 7,�k

t (x) converge to [(qσ 2t ∗
ψ)/σ 2](x) in the local uniform topology. Therefore,

∑
x

(μk Gkt )(
√

kx)/k2 · ψ(x) = 1

k

∑
y

μk(
√

ky) ·�k
t (y)

→ 〈μ, [(qσ 2t ∗ ψ)/σ 2]〉 = 〈[(qσ 2t ∗ μ)/σ 2], ψ〉,
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where the second convergence holds because μk(
√

k·)/k ⇒ μ ∈ MF (R
d). On

the other hand, if we can show that (μk Gkt )(
√

kx)/k2−d/2 is relatively compact in
C(R1+d), then for any possible limit F(t,x),

∑
x

(μk Gkt )(
√

kx)/k2 · ψ(x) =
∑
x

(μk Gkt )(
√

kx)/k2−d/2 · ψ(x) · 1/
√

k
d

→
∫
x

F(t,x)ψ(x)dx.

Hence, 〈[(qσ 2t ∗μ)/σ 2], ψ〉 = ∫x F(t,x)ψ(x)dx, which implies that (i) the measure
[(qσ 2t∗μ)/σ 2]has density, and (ii) (μk Gkt )(

√
kx)/k2−d/2 converge to [(qσ 2t∗μ)/σ 2]

(x) in C(R1+d).
Now we show that (47) implies that (μk Gkt )(

√
kx)/k2−d/2 is relatively compact

in C(R1+d), by verifying the Ascoli–Arzela criterion. We first show that they are uni-
formly bounded on any compact set in R

1+d . In fact, by (47), there exists δ > 0 such
that

sup
k

max
x
(μk Gkδ)(

√
kx)/k2−d/2 ≤ 1;

moreover, for all t ≥ δ and all x,

(μk Gkt )(
√

kx)/k2−d/2 ≤ 1 +
∑

kδ≤n≤kt

∑
z

μk(z)Pn(
√

kx − z)/k2−d/2

≤ 1 +
∑

kδ≤n≤kt

C/nd/2 · k/k2−d/2

≤ C = C(t),

where in the second inequality we used the facts that there exists C > 0 such that for
all n and all x ∈ Z

d , Pn(x) ≤ C/nd/2 (cf. [23], Proposition 6 on p. 72), and that the
total number of particles

∑
z μ

k(z) = O(k).
Next we show (μk Gkt )(

√
kx)/k2−d/2 are equi-continuous. In fact, for any ε > 0,

by (47), there exists δ > 0 such that

sup
k

max
x
(μk Gkδ)(

√
kx)/k2−d/2 ≤ ε;

therefore, for all s, t ≤ δ and all x, y,

sup
k

|(μk Gks)(
√

kx)/k2−d/2 − (μk Gkt )(
√

ky)/k2−d/2| ≤ 2ε;
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moreover, for all t ≥ δ and all x �= y, by (22),

∣∣∣(μk Gkt )(
√

kx)/k2−d/2 − (μk Gkt )(
√

ky)/k2−d/2
∣∣∣

≤ 2ε + 1

k2−d/2

∑
kδ≤n≤kt

∑
z

μk(z)
∣∣∣Pn(

√
kx − z)− Pn(

√
ky − z)

∣∣∣

≤ 2ε + C
√

k|x − y|
k2−d/2

∑
kδ≤n≤kt

∑
z

μk(z)
1√
n
n(β(

√
kx − z), β(

√
ky − z))

≤ 2ε + C
√

k|x − y|
k2−d/2

∑
kδ≤n≤kt

1√
n1+d

· k

≤ 2ε + Cδ−(d−1)/2|x − y|;

and for all x and all δ ≤ s < t ,

∣∣∣(μk Gkt )(
√

kx)/k2−d/2 − (μk Gks)(
√

kx)/k2−d/2
∣∣∣

= 1

k2−d/2

∑
ks≤n≤kt

∑
z

μk(z)Pn(
√

kx − z)

≤ C

k2−d/2

∑
ks≤n≤kt

k/nd/2

≤
{

C log(t/s) ≤ C(t − s)/δ, if d = 2;
C(1/

√
s − 1/

√
t) ≤ C(t − s)/δ3/2, if d = 3.

We have therefore proved that (47) implies the relative compactness of (μk Gkt )

(
√

kx)/k2−d/2. Next we show that any of the conditions in (i–iii) implies (47). Note that
all three conditions imply that supk maxx μ

k(x)/k2−d/2 → 0, hence we need to only
work with ((μk Gkt )(x)− μk(x))/k2−d/2 =∑1≤n<kt

∑
y μ

k(y)Pn(x − y)/k2−d/2.

(i) For all x ∈ R
2 and all t ≥ 0,

(μk Gkt )(x)/k = 1

k

∑
n<kt

∑
z

μk(z)Pn(x − z) ≤ C

k

∑
n<kt

1 ≤ Ct,

therefore (47) holds.
(ii) In order to verify (47), by (19), it suffices to show that

lim
t→0

sup
k

max
x

∑
1≤n<kt

∑
y

μk(y)φn(β(x − y))/
√

k = 0. (53)
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Claim There exists C3 > 0 such that for all k, n and all pairs x, y ∈ Z
d with |x−y| ≥

C1k1/6,

√
kφn(β(x − y)) ≤ C3

∑
z∈B(y,C1k1/6)

φn(β(x − z)).

In fact, the above inequality is equivalent to

√
k ≤ C3

∑
|z−y|≤C1k1/6

exp

(
β2(|x − y|2 − |x − z|2)

n

)
, for all |x − y| ≥ C1k1/6.

But this holds trivially since when x /∈ B(y,C1k1/6), there is a positive proportion of
integer points z in the ball B(y,C1k1/6) such that |x−y| ≥ |x− z|, and the proportion
does not depend on k,x and y.Now let us estimate

∑
n≤kt

∑
y μ

k(y)φn(β(x−y))/
√

k.
For any fixed k and x, this sum can be written as the sum of the following two terms:

I :=
∑
n<kt

∑
|y−x|≤C1k1/6

μk(y)φn(β(x − y))/
√

k,

and

I I :=
∑
n<kt

∑
|y−x|>C1k1/6

μk(y)φn(β(x − y))/
√

k.

As to term I , we have

I ≤
∑
n<kt

∑
|y−x|≤C1k1/6

μk(y) · C/n3/2/
√

k ≤
∑
n≤kt

C2 · C/n3/2/
√

k ≤ C/
√

k,

where in the second inequality we used (48). And by the claim and (48),

I I ≤
∑
n<kt

∑
|y−x|>C1k1/6

μk(y)/
√

k · C3

∑
z∈B(y,C1k1/6)

φn(β(x − z))/
√

k

≤ C
∑
n<kt

∑
z

φn(β(x − z)) ·
∑

y∈B(z,C1k1/6)

μk(y)/k

≤
∑
n≤kt

C/k ≤ Ct.

Therefore (53) holds.

(iii) In order to verify (47), by (19), it suffices to show that

lim
t→0

sup
k

max
x

∑
1≤n<kt

∑
y

μk(y)φn(β(x − y))/k = 0. (54)
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By assumption, μk(y) is a decreasing function of |y|; so is φn(βy). Therefore, by
Lemma 8, the last term is bounded by

∑
n≤kt

∑
y μ

k(y)φn(βy)/k, which, by assump-
tion (49), can be further bounded by

C
∑

1≤n<kt

1

n · k

∑
y

(√
k

|y|2 + 1

)α
e

−β2 |y|2/k
2n/k ≤ C

∑
n<kt

1

n

∫

x∈R2

|x|−αe
−β2 |x|2

2n/k dx

≤ C
∑
n<kt

1

n
(n/k)−α/2+1

∫

x∈R2

|x|−αe−β2|x|2/2dx

≤ C
1

k
·
∑
n<kt

(n

k

)−α/2

≤ C

t∫
0

s−α/2 ds = O(t1−α/2),

where the third inequality and the last equation hold because α < 2 by assumption. �

Remark 10 In dimension 2, if the assumption in (iii) is satisfied, then the radius of the
support of μk will be of order

√
k. This is because we need

∑
y μ

k(y) = O(k), hence
for some C > 0,

∑
y∈Supp(μk )

(√
k/(|y|2 + 1)

)α
≥ Ck, i.e.,

∑
y∈Supp(μk )

(
1/
√

|y|2 + 1
)α ≥ Ck1−α/2.

But for any r,

∑
|y|≤r

(
1/
√

|y|2 + 1
)α = O

⎛
⎜⎝
∫

|y|≤r

(
1/
√

|y|2 + 1
)α

dy

⎞
⎟⎠

= O

⎛
⎝

r∫
0

(
1/
√

s2 + 1
)α · s ds

⎞
⎠

= O(r2−α).

In order that O(r2−α) ≥ Ck1−α/2, we need r = O(k1/2).

Remark 11 In dimension 3, if μk is such that μk(y) is a decreasing function in |y|,
and there exists α ∈ (0, 2) such that

μk(y) ≤ C

(√
k/(|y|2 + 1)

)α
/
√

k, for all y, k, (55)
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then using a similar proof as in (iii) we can show that (47) holds. But in fact, (55) can
never be satisfied. The reason is that for any site y with at least one particle,

1 ≤ C

(√
k/(|y|2 + 1)

)α
/
√

k, i.e., |y| ≤ Ck1/2−1/(2α) = o(k1/4).

On the other hand, we need
∑

y μ
k(y) = O(k), therefore for some C > 0,

∑
|y|=o(k1/4)

(√
k/(|y|2 + 1)

)α/√
k ≥ Ck,

or

∑
|y|=o(k1/4)

(
1/
√

|y|2 + 1
)α ≥ Ck(3−α)/2. (56)

However,

∑
|y|=o(k1/4)

(
1/
√

|y|2 + 1
)α = O

⎛
⎜⎝

∫

|y|=o(k1/4)

(
1/
√

|y|2 + 1
)α

dy

⎞
⎟⎠

= O

⎛
⎜⎝

o(k1/4)∫
0

(
1/
√

r2 + 1
)α · r2 dr

⎞
⎟⎠

= o(k(3−α)/4) = o(k(3−α)/2),

contradiction with (56).

3 Proof of Theorem 2: spatial epidemics in dimensions d = 2, 3

3.1 Strategy

The strategy is the same as that used by [16] in the one-dimensional case. Since the law
of the SIR-d epidemic with village size N is absolutely continuous relative to that of
its branching envelope, and since the branching envelopes converge weakly, after ren-
ormalization, to super-Brownian motion, it suffices to prove that the likelihood ratios
converge weakly to the likelihood ratio (14) of the appropriate Dawson–Watanabe
process relative to super-Brownian motion. The one- and higher-dimensional cases
differ only in the behavior of the occupation statistics that enter into the likelihood
ratios.
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3.2 Modified SIR-d epidemic

As in the one-dimensional case, it is technically easier to work with the likelihood
ratio for a modification of the SIR-d epidemic. Recall that (a) when an infected indi-
vidual attempts to infect a recovered individual in an SIR epidemic, the attempt fails;
and (b) when two (or more) infected individuals simultaneously attempt to infect the
same susceptible individual, all but one of the attempts fail. Call an occurrence of type
(a) an errant attempt, and an occurrence of type (b) a collision. In the modified SIR
epidemic, collisions are not allowed, and there can be at most one errant attempt at
any site/time. A formal specification of the modified SIR epidemic uses a variation of
the standard coupling described in Sect. 1.2, as follows:
Modified Standard Coupling: particles are colored red or blue; red particles rep-
resent infected individuals in the modified SIR epidemic. Each particle produces a
random number of offspring, according to the Poisson(1) distribution, which then ran-
domly move to neighboring sites. Once situated, these offspring are assigned colors
according to the following rules:

(A) Offspring of blue particles are blue; offspring of red particles may be either red
or blue.

(B) At any site/time (x, t) there is at most one blue offspring of a red parent.
(C) Given that at site x and time t there are y offspring of red parents, the conditional

probability κN (y) = κN ,t,x(y) that one of them is blue is

κN (y) = {yR/N } ∧ 1, where (57)

R = RN
t (x) =

∑
s<t

Y N
s (x) (58)

and Y N
t (x) is the number of red particles at site x in generation t . (Thus, R =

RN
t (x) is the number of recovered individuals at site x at time t .) The red particle

process is the modified SIR epidemic.

Proposition 2 For each N ≥ 1, versions of the SIR epidemic and the modified SIR
epidemic can be constructed on a common probability space in such a way that (i) the
initial configurations μN of infected individuals are identical, and satisfy the hypoth-
esis (16) of Theorem 2; and (ii) the discrepancy Dt (x) between the two processes at
site x and time t (that is, the absolute difference in number of infected individuals)
satisfies

max
t

∑
x

Dt (x) = oP (N
α). (59)

This implies that after the Feller–Watanabe scaling (FNα X N )Nα t = X N
Nα t (

√
Nα·)/

Nα , the SIR-d epidemic and the modified SIR-d epidemic are indistinguishable. Con-
sequently, to prove Theorem 2 it suffices to prove the corresponding result for the
modified epidemic.

Proposition 2 is an easy consequence of Lemma 9.
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Lemma 9 For each pair (n,x) ∈ N × Z
d , let �N

n (x) and AN
n (x) be the number of

collisions and the number of errant infection attempts, respectively, at site x and time
n in the SIR-d epidemic with village size N. Assume that the hypotheses (16–17) of
Theorem 2 are satisfied, for some α ≤ 2/(6 − d). Then

∑
n

∑
x

{
�N

n (x)+
(

AN
n (x)− 1

)
+

}
= oP (N

α). (60)

The proof of this lemma makes use of the following result.

Lemma 10 [Proposition 28 in [18]] Denote by Un(x) the number of particles at x at
time n of a critical branching random walk started by one particle at the origin, then

EUn(x)
2 = Pn(x)+ σ 2

n−1∑
i=0

∑
z

Pi (z)P
2
n−i (x − z), (61)

where σ 2 is the variance of the offspring distribution.

Proof of Lemma 9 Since the life length of the process is Op(Nα), it suffices to show
that for any t > 0,

∑
n≤Nα t

∑
x

{
�N

n (x)+ (AN
n (x)− 1)+

}
= op(N

α).

Consider first the number �N
n (x) of collisions at site x and time n. For any

susceptible individual η, a collision occurs at η if and only if there is some pair
ξ, ζ of infected individuals at neighboring sites that simultaneously attempt to infect
η. Therefore given the evolution up to time n, the conditional expectation of �N

n+1(x)

is bounded by C(
∑

e X N
n (x + e))2/N . We want to show that

∑
n≤Nα t

∑
x

(X N
n (x))

2/N = oP (N
α). (62)

By the dominance of the branching envelope over SIR epidemic, if we denote by Un(x)
the number of particles at x at time n of a branching random walk with Poisson(1)
offspring distribution started by one particle at the origin, and xi (i = 1, 2, . . .) the
positions of the initial particles of our epidemic model, then

E(X N
n (x))

2 ≤
∑

i

EUn(x − xi )
2 + 2

∑
i �= j

Pn(x − xi )Pn(x − x j ),

which, in dimension 3, by Lemma 10, can be bounded by C
∑

i Pn(x − xi ) +
2
∑

i �= j Pn(x − xi )Pn(x − x j ). Therefore

∑
n≤Nα t

∑
x

E(X N
n (x))

2 ≤ C
∑

n≤Nα t

(C Nα + C N 2α/
√

n
3
) = O(N 2α), (63)
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which is o(N × Nα) since α ≤ 2/3. In dimension 2, again by Lemma 10, EUn(x)
2 ≤

C(1 + log n)Pn(x), therefore

∑
n≤Nα t

∑
x

E(X N
n (x))

2 ≤ C
∑

n≤Nα t

(C(1 + log n)Nα + C N 2α/n)

= O(N 2α log N ), (64)

which is also o(N × Nα) since α ≤ 1/2.
Now consider the number AN

n (x) of errant infection attempts at site x and time n.
In order that there be more than one errant attempt, either (i) two or more infected
individuals must simultaneously try to infect a recovered individual, or (ii) infected
individuals must attempt to infect more than one recovered individual. The number
of occurrences of type (i) during the course of the epidemic is op(Nα), by the same
argument that proved (62). Thus, it suffices to bound the number of errant attempts of
type (ii). This is bounded by the number B N

n (x) of pairs �, �′ of recovered individuals
at site x and time n that are subject to simultaneous infection attempts. Clearly,

B N
n (x) ≤

∑
ξ,�

∑
ζ,�′

Zξ,�Zζ,�′

where the sums are over all pairs ((ξ, �), (ζ, �′)) in which �, �′ are recovered
individuals at site x and time n and ξ, ζ are infected individuals at neighboring sites,
and Zξ,� and Zζ,�′ are independent Bernoulli (1/((2d + 1)N )). Hence,

E(B N
n+1(x) | Gn) ≤ C

(∑
e

X N
n (x + e)

)2

(RN
n (x)/N )2.

By Theorem 1 and the dominance of the branching envelope over SIR epidemic, for
all ε > 0, there exists C > 0 such that with probability ≥ 1 − ε,

max
x

RN
Nα t (x) ≤ C Nα(2−d/2).

Note further that

∑
n≤Nα t

∑
x

E

(∑
e

X N
n (x + e)

)2

≤ C
∑

n≤Nα t

∑
x

E(X N
n (x))

2,

which, by (64) and (63), is bounded by C N 2α log N in dimension 2 and C N 2α in
dimension 3. Therefore, by enlarging C if necessary we have that with probability
≥ 1 − 2ε, the following holds:
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∑
n≤Nα t

∑
x

(∑
e

X N
n (x + e)

)2 (
RN

n (x)/N
)2 ≤C N 2α log N · N 2α(2−d/2)/N 2 =o(Nα).

�

3.3 Convergence of likelihood ratios

In view of Proposition 2, to prove Theorem 2 it suffices to prove the corresponding
result for the modified SIR epidemic defined in the previous section. For this, we shall
analyze likelihood ratios. Denote by QN the law of the modified SIR epidemic, and
by P N the law of the branching envelope. Recall (cf. the modified standard coupling)
that in the modified SIR process there can be at most one errant infection attempt,
and no collisions, at any site/time x, t . Given the evolution of the process up to time
t − 1, infection attempts at site x and time t are made according to the same law as
are offspring in the branching envelope; the conditional probability that one of the
attempts is errant is κN (y) (see Eq. 57). Consequently, the likelihood ratio d QN/d P N

at the sample evolution X N := {X N
t (x)}x,t is

d QN

d P N
=
∏
t≥1

∏
x∈Zd

p(y|λ)(1 − κN (y))+ p(y + 1|λ)κN (y + 1)

p(y|λ) , (65)

where

y = X N
t (x),

λ = λN
t (x) =

∑
e

X N
t−1(x + e)/(2d + 1), and

p(k | λ) = λke−λ/k!.

By the same calculation as that for Eq. 53 in [16], this can be rewritten as

d QN

d P N
=(1 + εN ) exp

{
−
∑

t

∑
x

�N
t (x)�

N
t (x)− 1

2

∑
t

∑
x

�N
t (x)

2�N
t (x)

2

}
,

(66)

where

�N
t (x) := (X N

t (x)− λN
t (x))/Nα,

�N
t (x) := RN

t (x)/N 1−α; and

εN = oP (1) under P N .

That the error term εN is oP (1) follows by an argument nearly identical to the proof
of Lemma 9.

123



Spatial epidemics in dimensions 2 and 3 557

Observe that under P N , the increments (in t) of the first sum in the exponential
constitute a martingale difference sequence. Furthermore, the quantities �N

t (x) in
Eq. 66 are the atoms of the orthogonal martingale measures M N associated with the
branching random walks X N . See [16] for the analogous representation in the one-
dimensional case, and [25] for background on stochastic integration against orthogonal
martingale measures. The martingale measures M N can be defined by their actions on
test functions ψ ∈ C∞

c (R
d). Write 〈μ,ψ〉 for the integral of ψ against a finite Borel

measure μ on R
d , and Fk for the Feller–Watanabe rescaling operator (5); then

M N
t (ψ) = 〈FNα X N

Nα t , ψ〉 − 〈FNα X N
0 , ψ〉 −

t∫
0

〈FNα X N
Nαs, ANαψ〉 ds,

where Ak is the difference operator

Akψ(x) =
(∑

e

ψ(x + e/
√

k)− (2d + 1)ψ(x)

)
/
[
(2d + 1)k−1

]
.

The first sum in the exponential of equation (66) can be expressed as a stochastic
integral against the orthogonal martingale measure M N :

∑
t≥1

∑
x∈Zd

�N
t (x)�

N
t (x) =

∫ ∫
θN (t,x)M N (dt, dx), (67)

where

θN (t,x) = RN
Nα t (

√
Nαx)/N 1−α.

Proposition 3 Let X be the Dawson–Watanabe process with initial configuration μ
and diffusion coefficient σ 2, and let M(dt, dx) and Lt (x) be the associated orthog-
onal martingale measure and local time density process. Then under P N , given the
hypotheses of Theorem 2, as N → ∞,

(FNα X N , θN ,M N ) �⇒ (X, 0,M) if α < 2/(6 − d) and

(FNα X N , θN ,M N ) �⇒ (X, L ,M) if α = 2/(6 − d).

Proof Given the weak convergence of the second marginal θN , the joint convergence
of the triple follows by the same argument as in Proposition 4 of [16]. The asymptotic
behavior of the processes θN follows from Theorem 1. �
Corollary 1 If α < 2/(6 − d) then under P N , as N → ∞,

d QN

d P N
−→ 1 in probability (68)

provided that the hypotheses of Theorem 2 on the initial configurations are satisfied.
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Proof Proposition 3 implies that the sums (67) converge to zero in probability as
N → ∞. That the second sum in the likelihood ratio (66) also converges to zero in
probability follows by a simple mean calculation (see 72). �
Proof of Theorem 2 Corollary 1 implies that the modified SIR epidemics have the
same scaling limit as their branching envelopes whenα < 2/(6−d). Thus, to complete
the proof of Theorem 2, it suffices to prove the assertion (18) when α = 2/(6−d). For
this, it suffices to show that the two sums in the exponential of equation (66) converge
to the corresponding integrals in the exponential of equation (14). The convergence
of the first sum follows from Proposition 3 and the representation (67), and can be
proved by the same argument as in the proof of Corollary 4 of [16]. Basically, by the
Skorhod embedding we can assume that (FNα X N , θN ,M N ) converges to (X, L ,M)
a.s.. In particular, since Lt (x) ∈ C(R1+d) and has compact support a.s., we have that
for any t > 0 and ε > 0, there exists N0 such that for all N ≥ N0,

P

(
max

s≤t, x
|θN (s,x)− Ls(x)| ≥ ε

)
≤ ε. (69)

By the convergence of M N ,
∫ ∫

Ls(x)M N (ds dx) ⇒ ∫ ∫
Ls(x)M(ds dx). Further-

more, the local martingale

∫ ∫
s≤t

(θN (s,x)− Ls(x))M
N (ds dx) :=

∫ ∫
s≤t

DN (s,x)M N (ds dx) = (DN · M N )t

has quadratic variation

[DN · M N ]t =
∑∑

1[0,t](s)DN (s,x)2λN
s (x)/N 2α

≤ C max
s≤t, x

DN (s,x)2 ·
∑∑

X N
s (x)/N 2α.

But by Feller’s Theorem, the total rescaled mass
∑∑

X N
s (x)/N 2α of the branching

process converges to the total mass of the limiting super-Brownian motion, hence by
(69), with high probability, [DN · M N ]t will be small. That the approximation error
(DN · M N )t will be small with high probability uniformly in N follows by standard
martingale arguments. To sum up, we get

∑
n

∑
x

�N
n (x)�

N
n (x) =

∫ ∫
θN (t,x)M N (dt dx) ⇒

∫ ∫
Lt (x)M(dt dx). (70)

The convergence of the second sum

AN :=
∑

n

∑
x

�N
n (x)

2�N
n (x)

2 ⇒
∫

〈Xt , (Lt )
2〉 dt (71)

follows by an argument similar to the proof of equation (60) in [16]. The idea is that if
one substitutes the conditional expectation λN

n (x)/N 2α = E(�N
n (x)

2 | Gn−1) for the
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quantity �N
n (x)

2 in the sum (71) then the modified sum converges; in particular, by
Theorem 1 and Watanabe’s theorem,

B N :=
∑

n

∑
x

λN
n (x)/N 2α × [RN

n (x)/N 1−α]2

= 1

Nα

∑
n

∑
x

[∑
e

X N
n−1(x + e)/(2d + 1)

]
/Nα ×

[
RN

n (x)/Nα(2−d/2)
]2

�⇒
∫

〈Xt , (Lt )
2〉 dt, (72)

where the second equation holds because α = 2/(6−d). Therefore, it suffices to show
that replacing�N

n (x)
2 by its conditional expectation has an asymptotically negligible

effect on the sum, that is,

AN − B N = oP (1).

By a simple variance calculation (see [16] for the one-dimensional case), this reduces
to proving that

∑
n

∑
x

(
λN

n (x)
)2
/N 4α ×

[
RN

n (x)/Nα(2−d/2)
]4 = oP (1). (73)

In fact, by Theorem 1, for all ε > 0, there exists C > 0 such that with probability
≥ 1 − ε,

max
x

RN
Nα t (x) ≤ C Nα(2−d/2).

Note further that
∑

n≤Nα t
∑

x E
[∑

e X N
n (x + e)

]2 ≤ C
∑

n≤Nα t
∑

x E(X N
n (x))

2,

which, by (64) and (63), is bounded by C N 2α log N in dimension 2 and C N 2α in
dimension 3. Therefore, by enlarging C if necessary we have that with probability
≥ 1 − 2ε, the following holds:

∑
n≤Nα t

∑
x

(λN
n (x))

2/N 4α × [RN
n (x)/Nα(2−d/2)]4 ≤ C N 2α log N/N 4α = o(1).
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4 Appendix: Proofs of Lemmas 2–5

4.1 Proofs of Lemmas 2–3

The strategy is to consider the regions |x| ≤ (2Ln log n)1/2 and |x| ≥ (Ln log n)1/2

separately. We begin with the unbounded region. Recall that Hoeffding’s inequality
(Theorem 2 in [12]) asserts that if Y1, . . . ,Yn are independent random variables taking
values in bounded intervals [ai , bi ] respectively, then for the sum An = X1 +· · ·+ Xn ,
for any t > 0,

P(|An − E An| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai )2

)
.

In our case, since the increments of Sn are no larger than 1 in modulus,

Pn(x) ≤ P(|Sn| ≥ |x|) ≤ d
d∑

i=1

P(|Si
n| ≥ |x|/√d) ≤ 2d exp(−|x|2/(2dn)),

where Si
n is the i th coordinate of Sn . When L is sufficiently large, for any 0 < β <

1/(2
√

d) we have that

exp(−|x|2/(2dn)) ≤ exp(−β2|x|2/(2n))/n(d+1)/2, for all |x| ≥ √Ln log n.

Thus,

Pn(x) ≤ C exp(−β2|x|2/(2n))/n(d+1)/2 = Cφn(βx)/
√

n,

for all |x| ≥ √Ln log n, (74)

and

|Pn(x)− Pn(y)| ≤ Cn(βx, βy)/
√

n

≤ C

( |x − y|√
n

∧ 1

)
n(βx, βy), for all |x|, |y| ≥ √Ln log n.

(75)

This proves inequalities (19) and (22) forx andy outside the ball of radius (Ln log n)1/2.
To deal with the region |x| ≤ (2Ln log n)1/2 we shall use the following crude

estimate, valid for all points x ∈ Z
d (Theorem 2.3.5 in [19]):

|Pn(x)− σ−dφn(x/σ)| ≤ C/(
√

n
d · n).

For β = β(L) > 0 sufficiently small,

φn(βx) ≥ 1/(
√

n
d · √

n), for all |x| ≤ √2Ln log n;
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consequently,

|Pn(x)− σ−dφn(x/σ)| ≤ Cφn(βx)/
√

n, for all |x| ≤ √2Ln log n. (76)

This obviously implies (19) for x in the region |x| ≤ (2Ln log n)1/2, and hence,
together with the argument of the preceding paragraph, completes the proof of (19).

Similar arguments can be used to establish inequality (22) for points x and y in
the ball of radius (2Ln log n)1/2 centered at the origin. First, it is easily seen that for
sufficiently small β > 0,

|φn(x)− φn(y)| ≤ C
(
(|x − y|/√n) ∧ 1

)
n(βx, βy), for all x, y ∈ R

d .

Hence, by (76), (22) holds for for x and y in the ball of radius (2Ln log n)1/2. There-
fore, to complete the proof of (22) it suffices to consider the case where |x| ≤
(Ln log n)1/2 and |y| ≥ (2Ln log n)1/2. In this case, choose a point z in the annu-
lus |z| ∈ ((Ln log n)1/2, (2Ln log n)1/2) such that |x− z| + |z − y| ≤ 2|x− y|. Using
the fact that (22) holds for each of the pairs x, z and z, y, we have

|Pn(x)− Pn(z)| ≤ C
(
(|x − z|/√n) ∧ 1

)
n(βx, βz)

≤ 2C
(
(|x − z|/√n) ∧ 1

)
n(βx, βy)

and

|Pn(z)− Pn(y)| ≤ C
(|z − y|/√n ∧ 1

)
n(βz, βy)

≤ C
(
(|z − y|/√n) ∧ 1

)
n(βx, βy).

Consequently,

|Pn(x)− Pn(y)| ≤ C
(
(|x − y|/√n) ∧ 1

) ·n(βx, βy).

This completes the proof of (22). Inequality (23) obviously follows from (22).
Proof of (21) when d = 3 The following argument works for all d ≥ 3. First,∑

n≤kT φn(βx) is bounded by
∑∞

n=1 φn(βx). This is a decreasing function in |x|;
moreover, by Lemma 4.3.2 in [19], it equals C1/|x|d−2 + O(1/|x|d+2) as |x| → ∞
for some C1 > 0. Second, for all k sufficiently large and all |x| ≤ A

√
k,

∑
n≤kT

Pn(x) ≥
∑

kT/2≤n≤kT

Pn(x) ≥
∑

kT/2≤n≤kT

n−d/2C ≥ Ck1−d/2;

note further that

∑
n>kT

Pn(x) ≤ C
∑

n>kT

n−d/2 ≤ Ck1−d/2;
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therefore there exists δ > 0 such that all k sufficiently large and all |x| ≤ A
√

k,

∑
n≤kT

Pn(x) ≥ δ

∞∑
n=1

Pn(x).

For the nearest neighbor random walk, by Theorem 4.3.1 in [19],
∑∞

n=1 Pn(x) equals
C2/|x|d−2 + O(1/|x|d) as |x| → ∞ for some C2 > 0. Relation (21) follows.
Proof of (21) when d = 2 In this case, one can deduce from the proof of Theorem
4.4.4 in [19] that there exist Ci > 0 such that for all |x| ≤ A

√
k,

∑
n≤kT

φn(βx) � C1 + C2 log(kT/|x|2),

and

∑
n≤kT

Pn(x) � C3 + C4 log(kT/|x|2).

(21) follows.
To complete the proof of Lemma 2, it remains to prove inequality (20).

Proof of (20) By (19), it suffices to show that there exists C > 0 such that for all
x ∈ Z

d and all i, j ∈ N,

∑
y

φi (βy)φ j (β(x − y)) ≤ Cφi+ j (βx/2). (77)

For all y ∈ Z
d , Let Qy be the cube centered at y with side length 1, and define

φ̃i (y) =
∫

z∈Q(y)

(2π i/β2)−d/2 exp(−β2|z|2/(2i))dz.

Then there exists C > 0 such that for all i and all x,

φi (βx) ≤ Cφ̃i (x).

Therefore to show (77), it suffices to show that there exists C > 0 such that for all
x ∈ Z

d and all i, j ∈ N,

∑
y

φ̃i (y)φ̃ j (x − y) ≤ Cφi+ j (βx/2). (78)

Note that (φ̃i (·)) is the probability mass function of the random variable [�i ], where
�i ∼ N (0, i/β2 · Id), and for any z ∈ R

d\ ∪y ∂Q(y), [z] is the unique y such that
z ∈ Q(y) (�i takes values on ∪y∂Q(y) with probability 0, so [�i ] is well defined
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a.s.). Hence
∑

y φ̃i (y)φ̃ j (· − y) is the probability mass function of [�i ] + [� j ] with
�i and � j being independent. Since [�i ] + [� j ] differs from �i +� j by distance
at most 2,

∑
y

φ̃i (y)φ̃ j (x − y) ≤
∫

|z−x|≤2

(2π(i + j)/β2)−d/2 exp(−β2|z|2/(2(i + j))) dz.

It is easy to see that the last term can be bounded by Cφi+ j (βx/2) for some C inde-
pendent of i, j and x. �

4.2 Proof of Lemma 4

By the monotonicity of φn(x) in |x|, for all integers m, l ≥ 1 and all x, y ∈ R
d we

have

φm(x)φl(y) ≤ φm(x)φl(x)+ φm(y)φl(y)

≤ C(ml)−d/4(φml/(m+l)(x)+ φml/(m+l)(y)).

Now note that for any t > 0 and any x,

φt (x) = (2π t)−d/2 exp(−|x|2/(2t)) ≤ 2d/2 · φ2t (x),

and when t ≥ 1,

φt (x) ≤ φ�t�(x) · (�t�/t)d/2 ≤ 2d/2φ�t�(x),

where �t� stands for the smallest integer bigger than or equal to t . Further note that
when m, l ≥ 1, ml/(m + l) ≥ 1/2. Using the three inequalities above we then get

φm(x)φl(y) ≤ C(ml)−d/4 (φ�2ml/(m+l)�(x)+ φ�2ml/(m+l)�(y)
)
. (79)

and

m(x, y)l(x, y) = φm(x)φl(x)+ φm(x)φl(y)+ φm(y)φl(x)+ φm(y)φl(y)

≤ C(ml)−d/4�2ml/(m+l)�(x, y).

Therefore

(Fn(x, y;β))2 =
∑
m<n

∑
l<n

(ml)−γ /2m(βx, βy) ·l(βx, βy)

≤ C
∑
m<n

∑
l<n

(ml)−d/4−γ /2�2ml/(m+l)�(βx, βy). (80)
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Observe that when m, l ∈ [1, n), ml/(m + l) ∈ [1/2, n/2), hence the last term is
bounded by

C

(∑
m<n

m−d/4−γ /2
)2∑

l<n

l(βx, βy) ≤Cn2−(d+γ )/2∑
l<n

l−γ /2l(βx, βy)

=Cn2−(d+γ )/2 Fn(x, y;β),
i.e., (25) holds.

We now prove (26). By (80),

∑
i<n

∑
z

Pi (z) · (Fn−i (x − z, y − z;β))2

≤ C
∑
i<n

∑
z

Pi (z)
∑

m<n−i

∑
l<n−i

(ml)−d/4−γ /2�2ml/(m+l)�(β(x − z), β(y − z))

≤ C
∑
m<n

∑
l<n

(ml)−d/4−γ /2 ∑
i<(n−m)∧(n−l)

∑
z

Pi (z)�2ml/(m+l)�(β(x−z), β(y−z)).

Using relation (20) and noting that �2ml/(m + l)� ≤ m ∨ l, we can further bound the
last term by

C

(∑
m<n

m−d/4−γ /2
)2∑

i<n

i (βx/2, βy/2) ≤Cn2−(d+2γ )/2
∑
i<n

i (βx/2, βy/2)

≤Cn2−(d+γ )/2 Fn(x, y;β/2).
�

4.3 Proof of Lemma 5

For all x ∈ Z
d and all integers m, n ≥ 1, by (79),

(
Jm,n(x;β))2 =

∑
m≤l1,l2<m+n

φl1(βx)φl2(βx)

≤C
∑

m≤l1,l2<m+n

(l1l2)
−d/4φ�2l1l2/(l1+l2)�(βx).

(81)

Note that when l1, l2 ∈ [m,m + n), �2l1l2/(l1 + l2)� ∈ [m,m + n), hence the last
term is bounded by

C

⎛
⎝ ∑

m≤l1<m+n

l−d/4
1

⎞
⎠

2 ∑
m≤l<m+n

φl(βx) ≤ Cn2−d/2 Jm,n(x;β),

i.e., (28) holds.
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As to (29), by (81),

∑
i<n

∑
z

Pi (z)
(
Jm,n−i (x − z;β))2

≤ C
∑
i<n

∑
z

Pi (z)
∑

m≤l1,l2<m+n−i

(l1l2)
−d/4φ�2l1l2/(l1+l2)�(β(x − z))

≤ C
∑

m≤l1,l2<m+n

(l1l2)
−d/4

∑
i<(m+n−l1)∧(m+n−l2)

∑
z

Pi (z)φ�2l1l2/(l1+l2)�(β(x − z)).

Using relation (20) and noting that �2l1l2/(l1 + l2)� ∈ [l1 ∧ l2, l1 ∨ l2), we can further
bound the last term by

C

⎛
⎝ ∑

m≤l1<m+n

l−d/4
1

⎞
⎠

2

·
∑

m≤i<m+n

φi (βx/2) ≤ Cn2−d/2 Jm,n(x;β/2).

Relation (30) can be proved similarly: by (81),

∑
i<m

∑
z

Pi (z)
(
Jm−i,n(x − z;β))2

≤ C
∑
i<m

∑
z

Pi (z)
∑

m−i≤l1,l2<m−i+n

(l1l2)
−d/4φ�2l1l2/(l1+l2)�(β(x − z)).

By (20), the last term is bounded by

C

⎛
⎝∑

l1<n

l−d/4
1

⎞
⎠

2

·
∑

m≤i<m+n

φi (βx/2) ≤ Cn2−d/2 Jm,n(x;β/2).

�
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