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Abstract We consider discrete time dynamical systems and show the link between
Hitting Time Statistics (the distribution of the first time points land in asymptotically
small sets) and Extreme Value Theory (distribution properties of the partial maximum
of stochastic processes). This relation allows to study Hitting Time Statistics with tools
from Extreme Value Theory, and vice versa. We apply these results to non-uniformly
hyperbolic systems and prove that a multimodal map with an absolutely continuous
invariant measure must satisfy the classical extreme value laws (with no extra con-
dition on the speed of mixing, for example). We also give applications of our theory
to higher dimensional examples, for which we also obtain classical extreme value
laws and exponential hitting time statistics (for balls). We extend these ideas to the
subsequent returns to asymptotically small sets, linking the Poisson statistics of both
processes.

J. M. Freitas is partially supported by POCI/MAT/61237/2004 and M. Todd is supported by FCT grant
SFRH/BPD/26521/2006. All three authors are supported by FCT through CMUP.

A. C. M. Freitas
Faculdade de Economia, Centro de Matemática, Universidade do Porto,
Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
e-mail: amoreira@fep.up.pt

J. M. Freitas (B) · M. Todd
Centro de Matemática da Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal
e-mail: jmfreita@fc.up.pt
URL: http://www.fc.up.pt/pessoas/jmfreita

M. Todd
e-mail: mtodd@fc.up.pt
URL: http://www.fc.up.pt/pessoas/mtodd

123



676 A. C. M. Freitas et al.

Keywords Return time statistics · Extreme value theory · Non-uniform
hyperbolicity · Interval maps

Mathematics Subject Classification (2000) 37A50 · 37C40 · 60G10 · 60G70 ·
37B20 · 37D25 · 37E05

1 Introduction

In this paper we demonstrate and exploit the link between Extreme Value Laws (EVL)
and the laws for the Hitting Time Statistics (HTS) for discrete time non-uniformly
hyperbolic dynamical systems with an absolutely continuous invariant measure.

The setting is a discrete time dynamical system (X ,B, µ, f ), where X is a d-dimen-
sional Riemannian manifold, B is the Borel σ -algebra, f : X → X is a measurable
map and µ an f -invariant probability measure (for all A ∈ B we have µ( f −1(A)) =
µ(A)). We consider a Riemannian metric on X that we denote by ‘dist’ and for any
ζ ∈ X and δ > 0, we define Bδ(ζ ) = {x ∈ X : dist(x, ζ ) < δ}. Also let Leb denote
Lebesgue measure on X and for every A ∈ B we will write |A| := Leb(A). The
measure µ will be an absolutely continuous invariant probability measure (acip) with
density denoted by ρ = dµ

dLeb . We will denote R
+ := (0,∞) and R

+
0 := [0,∞).

1.1 Extreme value laws

In this context, by EVL we mean the study of the asymptotic distribution of the partial
maximum of observable random variables evaluated along the orbits of the system.
To be more precise, take an observable ϕ : X → R ∪ {±∞} achieving a global maxi-
mum at ζ ∈ X (we allow ϕ(ζ ) = +∞) and consider the stationary stochastic process
X0, X1, . . . given by

Xn = ϕ ◦ f n, for each n ∈ N. (1.1)

Define the partial maximum

Mn := max{X0, . . . , Xn−1}. (1.2)

If µ is ergodic then Birkhoff’s law of large numbers says that Mn → ϕ(ζ ) almost
surely. Similarly to central limit laws for partial sums, we are interested in knowing if
there are normalising sequences {an}n∈N ⊂ R

+ and {bn}n∈N ⊂ R such that

µ ({x : an(Mn − bn) ≤ y}) = µ ({x : Mn ≤ un}) → H(y), (1.3)

for some non-degenerate distribution function (d.f.) H , as n → ∞. Here

un := un(y) = y

an
+ bn (1.4)

is such that
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Hitting times and extreme values 677

nµ(X0 > un) → τ, as n → ∞, (1.5)

for some τ = τ(y) ≥ 0 and in fact H(y) = H̃(τ (y)). (For more details of the exis-
tence of such sequences un , see Lemma 2.1.) When this happens we say that we have
an EVL for Mn . Note that, clearly, we must have un → ϕ(ζ ), as n → ∞. We refer to
an event {X j > un} as an exceedance, at time j , of level un .

Classical Extreme Value Theory asserts that there are only three types of non-degen-
erate asymptotic distributions for the maximum of an independent and identically dis-
tributed (i.i.d.) sample under linear normalisation. They will be referred to as classical
EVLs and we denote them by:

Type 1: EV1(y) = e−e−y
for y ∈ R; this is also known as the Gumbel extreme value

distribution (e.v.d.).
Type 2: EV2(y) = e−y−α

, for y > 0, EV2(y) = 0, otherwise, where α > 0 is a
parameter; this family of d.f.s is known as the Fréchet e.v.d.

Type 3: EV3(y) = e−(−y)α , for y ≤ 0, EV3(y) = 1, otherwise, where α > 0 is a
parameter; this family of d.f.s is known as the Weibull e.v.d.

The same limit laws apply to stationary stochastic processes, under certain conditions
on the dependence structure, which allow the reduction to the independent case. With
this in mind, to a given stochastic process X0, X1, . . . we associate an i.i.d. sequence
Y0,Y1, . . .whose d.f. is the same as that of X0, and whose partial maximum we define
as

M̂n := max{Y0, . . . ,Yn−1}. (1.6)

We want to compare the asymptotic distribution of Mn with that of M̂n , when properly
normalised. We recall that because Y0,Y1, . . . are i.i.d., by [31, Theorem 1.5.1], the
convergence in (1.5) is equivalent to

µ(M̂n ≤ un) = (µ(X0 ≤ un))
n → e−τ , as n → ∞. (1.7)

Depending on the type of limit law that applies, we have that τ = τ(y) is of one
of the following three types: τ1(y) = e−y for y ∈ R, τ2(y) = y−α for y > 0, and
τ3(y) = (−y)α for y ≤ 0.

In the dependent context, the general strategy is to prove that if X0, X1, . . . satisfies
some conditions, then the same limit law for M̂n applies to Mn with the same normal-
ising sequences {an}n∈N and {bn}n∈N. Following [31] we refer to these conditions as
D(un) and D′(un), where un is the sequence of thresholds appearing in (1.3). Both
conditions impose some sort of independence but while D(un) acts on the long range,
D′(un) is a short range requirement.

The original condition D(un) from [31], which we will denote by D1(un), is
a type of uniform mixing requirement specially adapted to Extreme Value Theory.
Let Fi1,...,in (x1, . . . , xn) denote the joint d.f. of Xi1 , . . . , Xin , and set Fi1,...,in (u) =
Fi1,...,in (u, . . . , u).
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Condition (D1(un)) We say that D1(un) holds for the sequence X0, X1, . . . if for any
integers i1 < · · · < i p and j1 < · · · < jk for which j1 − i p > m, and any large n ∈ N,

∣
∣Fi1,...,i p, j1,..., jk (un)− Fi1,...,i p (un)Fj1,..., jk (un)

∣
∣ ≤ γ (n,m),

where γ (n,mn) −−−→
n→∞ 0, for some sequence mn = o(n).

Since usually the information concerning mixing rates of the systems is known
through decay of correlations, in [21] we proposed a weaker version, which we will
denote by D2(un), which still allows us to relate the distributions of M̂n and Mn . The
advantage is that it follows immediately from sufficiently fast decay of correlations for
observables which are of bounded variation or Hölder continuous (see [21, Section 2]
and Lemma 6.1).

Condition (D2(un)) We say that D2(un) holds for the sequence X0, X1, . . . if for any
integers 	, t and n

|µ ({X0 > un} ∩ {max{Xt , . . . , Xt+	−1} ≤ un})− µ({X0 > un})
×µ({M	 ≤ un})| ≤ γ (n, t),

where γ (n, t) is nonincreasing in t for each n and nγ (n, tn) → 0 as n → ∞ for some
sequence tn = o(n).

By (1.5), the sequence un is such that the average number of exceedances in the
time interval {0, . . . , �n/k�} is approximately τ/k, which goes to zero as k → ∞.
However, the exceedances may have a tendency to be concentrated in the time period
following the first exceedance at time 0. To avoid this we introduce:

Condition (D′(un)) We say that D′(un) holds for the sequence X0, X1, . . . if

lim
k→∞ lim sup

n→∞
n

�n/k�
∑

j=1

µ({X0 > un} ∩ {X j > un}) = 0. (1.8)

This guarantees that the exceedances should appear scattered through the time
period {0, . . . , n − 1}.

The main result in [21, Theorem 1] states that if D2(un) and D′(un) hold for the
process X0, X1, . . . and for a sequence of levels satisfying (1.5), then the following
limits exist, and

lim
n→∞µ(M̂n ≤ un) = lim

n→∞µ(Mn ≤ un). (1.9)

The above statement remains true if we replace D2(un) by D1(un) (see
[31, Theorem 3.5.2]).

We assume that the observable ϕ : X → R ∪ {+∞} is of the form

ϕ(x) = g(dist(x, ζ )), (1.10)
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Hitting times and extreme values 679

where ζ is a chosen point in the phase space X and the function g : [0,+∞) →
R ∪ {+∞} is such that 0 is a global maximum (g(0) may be +∞); g is a strictly
decreasing bijection g : V → W in a neighbourhood V of 0; and has one of the
following three types of behaviour:

Type 1: there exists some strictly positive function p : W → R such that for all
y ∈ R

lim
s→g1(0)

g−1
1 (s + yp(s))

g−1
1 (s)

= e−y; (1.11)

Type 2: g2(0) = +∞ and there exists β > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β; (1.12)

Type 3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ . (1.13)

Examples of each one of the three types are as follows: g1(x) = − log x (in this
case (1.11) is easily verified with p ≡ 1), g2(x) = x−1/α for some α > 0 (condition
(1.12) is verified with β = α) and g3(x) = D − x1/α for some D ∈ R and α > 0
(condition (1.13) is verified with γ = α).

Remark 1 Let the d.f. F be given by F(u) = µ(X0 ≤ u) and set uF = sup{y :
F(y) < 1}. Observe that if at time j ∈ N we have an exceedance of the level u
(sufficiently large), i.e., X j (x) > u, then we have an entrance of the orbit of x into the
ball Bg−1(u)(ζ ) of radius g−1(u) around ζ , at time j . This means that the behaviour
of the tail of F , i.e., the behaviour of 1 − F(u) as u → uF is determined by g−1,
if we assume that Lebesgue’s Differentiation Theorem holds for ζ , since in that case
1 − F(u) ∼ ρ(ζ )|Bg−1(u)(ζ )|, where ρ(ζ ) = dµ

dLeb (ζ ). From classical Extreme Value
Theory we know that the behaviour of the tail determines the limit law for partial max-
imums of i.i.d. sequences and vice-versa. The above conditions are just the translation
in terms of the shape of g−1, of the sufficient and necessary conditions on the tail of
F of [31, Theorem 1.6.2], in order to exist a non-degenerate limit distribution for M̂n .
In fact, if some EVi applies to M̂n , for some i ∈ {1, 2, 3}, then g must be of type gi .

As can be seen from the definitions of D2(un) and D′(un), proving EVLs for abso-
lutely continuous invariant measures for uniformly expanding dynamical systems is
straightforward. The study of EVLs for non-uniformly hyperbolic dynamical systems
were previously addressed in the papers [14,20].

In [14], Collet considered non-uniformly hyperbolic C2 maps of the interval which
admit an acip µ, with exponential decay of correlations and obtained a Gumbel EVL
for observables of type g1 (actually he took g1(x) = − log x), achieving a global
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maximum at µ-a.e. ζ in the phase space. We remark that neither the critical points nor
its orbits were included in this full µ-measure set of points ζ .

In [20] the quadratic maps fa(x) = 1 − ax2 on I = [−1, 1] were considered, with
a ∈ BC , where BC is the Benedicks-Carleson parameter set introduced in [6]. For
each map fa with a ∈ BC , a Weibull EVL was obtained for observables of type g3
achieving a maximum either at the critical point or at the critical value.

1.2 Hitting time statistics

We next turn to Hitting Time Statistics for the dynamical system (X ,B, f, µ). For a
set A ⊂ X we let rA(y) denote the first hitting time to A of the point y. That is, the
first time j ≥ 1 so that f j (y) ∈ A. We will be interested in the fluctuations of this
function as the set A shrinks. Firstly we consider the Return Time Statistics (RTS) of
this system. Let µA denote the conditional measure on A, i.e., µA := µ|A

µ(A) . By Kac’s

Lemma, the expected value of rA with respect to µ is
∫

A rA dµA = 1/µ(A). So in
studying the fluctuations of rA on A, the relevant normalising factor is 1/µ(A). Given
a sequence of sets {Un}n∈N so that µ(Un) → 0, the system has Return Time Statistics
G(t) for {Un}n∈N if for all t ≥ 0 the following limit exists and equals G(t):

lim
n→∞µUn

(

rUn ≥ t

µ(Un)

)

. (1.14)

We say that (X , f, µ) has Return Time Statistics G(t) to balls at ζ if for any sequence
{δn}n∈N ⊂ R

+ such that δn → 0 as n → ∞ we have RTS G(t) for Un = Bδn (ζ ).
If we study rA defined on the whole of X , i.e., not simply restricted to A, we are

studying the Hitting Time Statistics. Note that we will use the same normalising factor
1/µ(A) in this case. Analogously to the above, given a sequence of sets {Un}n∈N so
that µ(Un) → 0, the system has Hitting Time Statistics G(t) for {Un}n∈N if for all
t ≥ 0 the following limit is defined and equals G(t):

lim
n→∞µ

(

rUn ≥ t

µ(Un)

)

. (1.15)

HTS to balls at a point ζ is defined analogously to RTS to balls. In [23], it was
shown that the limit for the HTS defined in (1.15) exists if and only if the limit for the
analogous RTS defined in (1.14) exists. Moreover, they show that the HTS distribution
exists and is exponential (i.e., G(t) = e−t ) if and only if the RTS distribution exists
and is exponential.

For many mixing systems it is known that the HTS are exponential around almost
every point. For example, this was shown for Axiom A diffeomorphisms in [25], tran-
sitive Markov chains in [33] and uniformly expanding maps of the interval in [13].
Note that in these papers the authors were also interested in the (Poisson) statistics of
subsequent returns to some shrinking sets. For various results on some systems with
some strong hyperbolicity properties see also e.g. [1,2,10].

Note that for systems with good mixing properties, but at some special (peri-
odic) points, [25] obtained similar distributions for the HTS/RTS with an exponential
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Hitting times and extreme values 681

parameter 0<θ <1 (i.e., G(t)=e−θ t ); while for the sequence of successive returns to
neighbourhoods of these points a ‘compound Poisson distribution’ was proved in [24].

For non-uniformly hyperbolic systems less is known. A major breakthrough in the
study of HTS/RTS for non-uniformly hyperbolic maps was made in [26], where they
gave a set of conditions which, when satisfied, imply exponential RTS to cylinders
and/or balls. Their principal application was to maps of the interval with an indifferent
fixed point. They also provided similar conditions to imply (Poisson) laws for the
subsequent visits of points to shrinking sets. (See Sect. 5).

Another important paper in this direction was [7], in which they showed that the
RTS for a map are the same as the RTS for the first return map. (The first return map to
a set U ⊂ X is the map F = f rU .) Since it is often the case that the first return maps
for non-uniformly hyperbolic dynamical systems are much better behaved (possibly
hyperbolic) than the original system, this provided an extremely useful tool in this
theory. For example, they proved that if f : I → I is a unimodal map for which
the critical point is nowhere dense, and for which an acip µ exists, then the relevant
first return systems (U, F, µU ) have a ‘Rychlik’ property. They then showed that such
systems, studied in [34], must have exponential RTS, and hence the original system
(I, f, µ) also has exponential RTS (to balls around µ-a.e. point).

The presence of a recurrent critical point means that the first return map itself will
not satisfy this Rychlik property. To overcome this problem in [9] special induced
maps, (U, F), were used, where for x ∈ U we have F(x) = f ind(x)(x) for some
inducing time ind(x) ∈ N that is not necessarily the first return time of x to U . The
fact that these particular maps can be seen as first return maps in the canonical Markov
extension, the ‘Hofbauer tower’, meant that they were still able to exploit the main
result of [7] to get exponential RTS aroundµ-a.e. point for unimodal maps f : I → I
with an acip µ as long as f satisfies a polynomial growth condition along the critical
orbit. In [8] this result was improved to include any multimodal map with an acip,
irrespective of the growth along the critical orbits, and of the speed of mixing.

We would like to remark that in the case of partially hyperbolic dynamical sys-
tems, [17] proved exponential RTS, using techniques similar to [33]. In fact the theory
there also covers the (Poisson) statistics of subsequent returns to shrinking sets of
balls. These statistics were also considered for toral automorphisms, using a different
method, in [15].

We note that for dynamical systems (X ,B, f, µ) where µ is an equilibrium state,
the RTS/HTS to the dynamically defined cylinders are often well understood, see
for example [2]. However, for non-uniformly hyperbolic dynamical systems it is not
always possible to go from these strong results to the corresponding results for balls.
We would like to emphasise that in this paper we focus on the HTS to balls, rather
than cylinders.

1.3 Main results

Our first main result, which obtains EVLs from HTS, is the following.

Theorem 1 Let (X ,B, µ, f ) be a dynamical system whereµ is an acip, and consider
ζ ∈ X for which Lebesgue’s Differentiation Theorem holds.
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• If we have HTS to balls centred on ζ ∈ X , then we have an EVL for Mn which
applies to the observables (1.10) achieving a maximum at ζ .

• If we have exponential HTS (G(t) = e−t ) to balls at ζ ∈ X , then we have an EVL
for Mn which coincides with that of M̂n (meaning that (1.9) holds). In particular,
this EVL must be one of the 3 classical types. Moreover, if g is of type gi , for some
i ∈ {1, 2, 3}, then we have an EVL for Mn of type EVi .

We next define a class of multimodal interval maps f : I → I . We denote the
finite set of critical points by Crit. We say that c ∈ Crit is non-flat if there exists a
diffeomorphism ψc : R → R with ψc(0) = 0 and 1 < 	c < ∞ such that for x close
to c, f (x) = f (c)± |ψc(x − c)|	c . The value of 	c is known as the critical order of
c. Let

NFk :=
{

f : I→I : f is Ck, each c ∈ Crit is non-flat and inf
f n(p)=p

|D f n(p)| > 1

}

.

The following is a simple corollary of Theorem 1 and [8, Theorem 3]. It generalises
the result of Collet in [14] from unimodal maps with exponential growth on the critical
point to multimodal maps where we only need to know that there is an acip.

Corollary 1 Suppose that f ∈ NF2 and f has an acip µ. Then (I, f, µ) has an
EVL for Mn which coincides with that of M̂n, and this holds for µ-a.e. ζ ∈ X fixed
at the choice of the observable in (1.10). Moreover, the EVL is of type EVi when the
observables are of type gi , for each i ∈ {1, 2, 3}.

Now, we state a result in the other direction, i.e., we show how to get HTS from
EVLs.

Theorem 2 Let (X ,B, µ, f ) be a dynamical system where µ is an acip and consider
ζ ∈ X for which Lebesgue’s Differentiation Theorem holds.

• If we have an EVL for Mn which applies to the observables (1.10) achieving a
maximum at ζ ∈ X then we have HTS to balls at ζ .

• If we have an EVL for Mn which coincides with that of M̂n, then we have expo-
nential HTS (G(t) = e−t ) to balls at ζ .

The following is immediate by the above and [21, Theorem 1] (see (1.9)).

Corollary 2 Let (X ,B, µ, f ) be a dynamical system whereµ is an acip and consider
ζ ∈ X for which Lebesgue’s Differentiation Theorem holds. If D2(un) (or D1(un))
and D′(un) hold for a stochastic process X0, X1, . . . defined by (1.1) and (1.10), where
un is a sequence of levels satisfying (1.5), then we have exponential HTS to balls at
ζ .

The following is an immediate corollary of Theorem 2 and the main theorem of
[20].

Corollary 3 For every Benedicks-Carleson quadratic map fa (with a ∈ BC) we have
exponential HTS to balls around the critical point or the critical value.
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The next result is a byproduct of Theorems 1, 2 and the fact that under D1(un) the
only possible limit laws for partial maximums are the classical EVi for i ∈ {1, 2, 3}.
Since this is not as immediate as the other corollaries, we include a short proof in
Sect. 2.

Corollary 4 Let (X ,B, µ, f ) be a dynamical systemµ is an acip and consider ζ ∈ X
for which Lebesgue’s Differentiation Theorem holds. If D1(un) holds for a stochas-
tic process X0, X1, . . . defined by (1.1) and (1.10), where un is a sequence of levels
satisfying (1.5), then the only possible HTS to balls around ζ are of exponential type,
meaning that, there is θ > 0 such that G(t) = e−θ t .

Note that for this corollary to be non-trivial, we must assume that there exists a
distribution for HTS. This may not always be the case. For example, in [11,12] it
was shown that for certain circle diffeomorphisms there are sequences of intervals
{Un}n∈N, {Vn}n∈N which both shrink to the same point ζ , but yield different HTS
laws. Note that in these cases D1(un) also fails.

Remark 2 In this paper we are concerned with observables of the form ϕ(x) =
g(dist(x, ζ )) where ζ is some typical point for our measure µ and g is a particu-
lar kind of function which is adapted to give different types of EVL. In our proof
of the link between HTS and EVL for such observables it is useful to be able to
express µ(Bε(ζ )) in terms of εd where d is the dimension of the space. For measures
µ other than acips, this is highly problematic. In many cases, for a measure µ, the
limit limε→0

logµ(Bε (ζ ))
log ε exists for µ-a.e. ζ (in fact this constant can be referred to as

the dimension of the measure [32]). However, removing the logs in this expression,
we would typically expect the liminf and limsup to be 0 and infinity respectively even
for well behaved systems. This occurs for example for the doubling map f : x �→ 2x
mod 1 when µ is the (α, 1 − α)-Bernoulli measure and α �= 1/2. This follows from
the fact that the measure of sets can be computed via certain Birkhoff averages, using
the Gibbs property, and the fact that these averages should typically fluctuate, which
can be seen from the Law of the Iterated Logarithm in this case, see [16]. We therefore
expect serious intrinsic problems in proving results for general measures for this kind
of observable with measures which are not acips. On the other hand, if, given a system
(X, f, µ), we are prepared to change our observable to one which reflects properties
of µ, i.e. replacing g(dist(x, ζ )) with g(ψ(x, ζ )) for some ψ , then it is possible to
prove analogous results to those presented here. This is the subject of forthcoming
work.

As we have already mentioned, Corollary 1 generalises the result of Collet in [14],
which was for C2 non-uniformly hyperbolic maps of the interval (admitting a Young
tower). However, a close look to Collet’s arguments allows us to conclude that his
result still prevails in higher dimensions. In fact, one can show that if we consider
non-uniformly expanding maps (in any finite dimensional compact manifold), admit-
ting a so-called Young tower with exponential return times to the base, then for any
sequence of r.v. X0, X1, . . . defined as in (1.1) and for a sequence of levels un such that
nµ(X0 > un) → τ > 0, conditions D2(un) and D′(un) hold. This means that by the
above theorems, we can prove both EVLs and HTS for these maps. Due to numerous
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definitions required for that setting, we leave both the theorems and the proofs on this
subject to Sect. 6.

Theorems 1 and 2 give us new tools to investigate the recurrence of dynamical sys-
tems, principally by allowing us to use the wealth of theory for HTS which has been
developed in recent years to prove EVLs. We note that in Corollary 1, the dynamical
systems involved need not have any fast rate of decay of correlations at all. Indeed,
a priori the relevant system may only have summable decay of correlations. As in
Sect. 6 where we consider higher dimensional maps admitting Young towers, there
are situations where it is actually easier to check conditions like D2(un) and D′(un)

in order to get laws for HTS. In fact, to our knowledge, exponential HTS to balls have
never been proved before for higher dimensional non-uniformly expanding systems:
in such cases, inducing schemes with the nice properties of one-dimensional dynamics
are much harder to find. Also the dynamical systems we present in this paper should
provide models which can be used in investigating Extreme Value Theory both analyt-
ically and numerically. Namely, the simple fact that we get EVLs from deterministic
models may be an extra advantage for numerical simulation since there is no need
to generate random numbers. This means that this theory may reveal very useful for
testing GEV (Generalised Extreme Value distribution) fitting for data corresponding
to phenomena for which there is an underlying deterministic model.

The next question that arises is: what about subsequent visits to Un or subsequent
exceedances of the level un? Namely, we are interested in the point processes asso-
ciated to the instants of occurrence of returns to Un and exceedances of the level
un . If we have either exponential HTS or a classical EVL then time between hits or
exceedances is exponentially distributed. This means that we should expect a Pois-
son limit for the point processes. We show in Sect. 3 that the relation between HTS
and EVL does indeed extend to the laws for the subsequent visits/exceedances (we
postpone the precise definitions and results to Sects. 3–5). More precisely, we show
that the point process of hitting times has a Poisson limit if and only if the point
process of exceedances has a Poisson limit. We next discuss how to obtain a Poisson
law in these two different contexts. In Sect. 4 we give conditions which guarantee a
Poisson limit for the point process of exceedance times. This part of the paper can
be seen as a generalisation of [21]. Moreover, we show that these conditions can
be verified in the settings from [14,20], leading to Poisson statistics for both point
processes for the systems considered. In Sect. 5 we show that in many cases for
multimodal maps it can be shown that the HTS behave asymptotically as a Poisson
distribution.

In a parallel work [27], EVLs have also been proved for dynamical systems with
acips. For example they proved EVLs for flows, and also considered observables ϕ
with multiple maxima. We point out that in the setting of multimodal maps and observ-
ables ϕ of the form ϕ(x) = g(d(x, ζ ))where ζ is some typical point of an acip µ, our
Corollary 1 improves on their results since we do not require any knowledge of the
decay of correlations.

Throughout this paper the notation An ∼ Bn means that limn→∞ An
Bn

= 1. Also, if
{δn}n∈N ⊂ R

+ has δn → 0 as n → ∞, then for each ζ ∈ X , let κ ∈ (0,∞) be such
that |Bδn (ζ )| ∼ κ · δd

n . Let x ∈ R. We denote the integer part of x by �x� and define
�x� := x if x = �x�, and �x� := �x� + 1 otherwise.
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2 Proofs of our results on HTS and EVL

In this section we prove Theorems 1, 2 and Corollary 4.

Proof of Theorem 1 Let ρ(ζ ) = dµ
dLeb (ζ ) ∈ R

+
0 and set

un = g1
(

(κρ(ζ )n)−1/d
)+ p

(

g1
(

(κρ(ζ )n)−1/d)) y
d , for y ∈ R, for type g1;

un = g2
(

(κρ(ζ )n)−1/d) y, for y > 0, for type g2;
un = D − (D − g3

(

(κρ(ζ )n)−1/d)) (−y), for y < 0, for type g3.

We remark that the choices of the normalising sequences {an}n∈N and {bn}n∈N, which
determine the sequence of levels {un}n∈N as in (1.4), are made accordingly to the
behaviour of the tail of d.f. F , given by F(u) = µ(X0 ≤ u). [31, Corollary 1.6.3]
gives a canonical choice in terms of the tail of F . In fact, up to linear scaling the nor-
malising sequences are unique by Khintchine’s Theorem (see [31, Theorem 1.2.3]).
Since, as we have explained in Remark 1, the shape of g−1 determines the tail of the
d.f. F, the definitions of the levels un above are just a reflection of this fact.

For all n we have

{x : Mn(x) ≤ un} =
n−1
⋂

j=0

{x : X j (x) ≤ un} =
n−1
⋂

j=0

{x : g(dist( f j (x), ζ )) ≤ un}

=
n−1
⋂

j=0

{x : dist( f j (x), ζ ) ≥ g−1(un)} = {x : rBg−1(un )
(ζ )(x) ≥ n} (2.1)

Now, observe that (1.11)–(1.13) imply

g−1
1 (un) = g−1

1

[

g1

(

(κρ(ζ )n)−1/d
)

+ p
(

g1

(

(κρ(ζ )n)−1/d
)) y

d

]

∼ g−1
1

[

g1

(

(κρ(ζ )n)−1/d
)]

e−y/d =
(

e−y

κρ(ζ )n

)1/d

;

g−1
2 (un) = g−1

2

[

g2

(

(κρ(ζ )n)−1/d
)

y
]

∼ g−1
2

[

g2

(

(κρ(ζ )n)−1/d
)]

y−β

=
(

y−βd

κρ(ζ )n

)1/d

;

g−1
3 (un) = g−1

3

[

D −
(

D − g3

(

(κρ(ζ )n)−1/d
))

(−y)
]

∼ g−1
3

[

D −
(

D − g3

(

(κρ(ζ )n)−1/d
))]

(−y)γ =
(
(−y)γ d

κρ(ζ )n

)1/d

.

Thus, we may write

g−1(un) ∼
(
τ(y)

κρ(ζ )n

)1/d

,
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686 A. C. M. Freitas et al.

meaning that

g−1
i (un) ∼

(
τi (y)

κρ(ζ )n

)1/d

, ∀i ∈ {1, 2, 3}

where τ1(y) = e−y for y ∈ R, τ2(y) = y−βd for y > 0, and τ3(y) = (−y)γ d for
y < 0.

Since Lebesgue’s Differentiation Theorem holds for ζ ∈ X , we have µ(Bδ(ζ ))|Bδ(ζ )| →
ρ(ζ ) as δ → 0. Consequently, since it is obvious that g−1(un) → 0 as n → ∞, then

µ
(

Bg−1(un)
(ζ )
) ∼ ρ(ζ )|Bg−1(un)

(ζ )| ∼ ρ(ζ )κ(g−1(un))
d = ρ(ζ )κ

τ(y)

κρ(ζ )n
= τ(y)

n
.

Thus, we have

n ∼ τ(y)

µ
(

Bg−1(un)
(ζ )
) . (2.2)

Now, we claim that using (2.1) and (2.2), we have

lim
n→∞µ({x : Mn(x) ≤ un})= lim

n→∞µ
({

x : rBg−1(un )
(ζ )(x) ≥ τ(y)

µ
(

Bg−1(un)
(ζ )
)

})

(2.3)

= G(τ (y)), (2.4)

which gives the first part of the theorem.
To see that (2.3) holds, observe that by (2.1) and (2.2) we have

∣
∣
∣
∣
∣
µ({Mn ≤ un})− µ

({

rBg−1(un )
(ζ ) ≥ τ(y)

µ
(

Bg−1(un)
(ζ )
)

})∣
∣
∣
∣
∣

=
∣
∣
∣µ
({

rBg−1(un )
(ζ ) ≥ n

})

− µ
({

rBg−1(un )
(ζ ) ≥ (1 + εn)n

})∣
∣
∣ ,

where {εn}n∈N is such that εn → 0 as n → ∞. Since we have
{

rBg−1(un )
(ζ ) ≥ m

}∖{

rBg−1(un )
(ζ ) ≥ m + k

}

⊂
m+k−1
⋃

j=m

f − j (Bg−1(un)
(ζ )
)

, ∀m, k ∈ N, (2.5)

it follows by stationarity that
∣
∣
∣µ
({

rBg−1(un )
(ζ ) ≥ n

})

− µ
({

rBg−1(un )
(ζ ) ≥ (1 + εn)n

})∣
∣
∣

≤ |εn|nµ (Bg−1(un)
(ζ )
) ∼ |εn|τ → 0,

as n → ∞, completing the proof of (2.3).
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Next we will use the exponential HTS hypothesis, that is G(t) = e−t , to show the
second part of the theorem.

Under the exponential HTS assumption, by (2.4) it follows immediately that
limn→∞ µ({x : Mn(x) ≤ un}) = e−τ(y). Recall that in the corresponding i.i.d setting,
i.e. when we are considering {x : M̂n(x) ≤ un} rather than {x : Mn(x) ≤ un}, (1.5) is
equivalent to (1.7). Therefore we also have limn→∞ µ({x : M̂n(x) ≤ un}) = e−τ(y),
since nµ(X0 > un) = nµ (Bg−1(un)

(ζ )) → τ(y), as n → ∞. As explained in the
introduction, this means that in the i.i.d. setting G(τ ) must be of the three classical
types. It remains to show that if the observable is of type gi then limn→∞ µ({x :
Mn(x) ≤ un}) = e−τ(y) means that the EVL that applies to Mn (rather than M̂n) is
also of type EVi , for each i ∈ {1, 2, 3}.

Type g1: In this case we have e−τ1(y) = e−e−y
, for all y ∈ R, that corresponds to

the Gumbel e.v.d. and so we have an EVL for Mn of type EV1.
Type g2: We obtain e−τ2(y) = e−y−βd

for y > 0. To conclude that in this case we
have the Fréchet e.v.d. with parameter βd, we only have to check that for y ≤ 0,
µ({x : Mn(x) ≤ un}) = 0. Since g2((κρ(ζ )n)−1/d) > 0 (for all large n) and

µ({x : Mn(x) ≤ un}) = µ
({

x : Mn(x) ≤ g2

(

(κρ(ζ )n)−1/d
)

y
})

→ e−y−βd

as n → ∞. Letting y ↓ 0, it follows that µ({x : Mn(x) ≤ 0}) → 0, and, for y < 0,

µ({x : Mn(x) ≤ un}) = µ
({

x : Mn(x) ≤ g2

(

(κρ(ζ )n)−1/d
)

y
})

≤ µ({x : Mn(x) ≤ 0}) → 0.

So, we have, in this case, an EVL for Mn of type EV2.
Type g3: For y < 0, we have e−τ3(y) = e−(−y)γ d

. To conclude that in this case
we have the Weibull e.v.d. with parameter γ d, we only need to check that for y ≥ 0,
µ({x : Mn(x) ≤ un}) = 1. In fact, for y ≥ 0, since D − g3((κρ(ζ )n)−1/d) > 0, we
have

µ({x : Mn(x) ≤ un}) = µ
({

x : Mn(x) ≤
(

D − g3

(

(κρ(ζ )n)−1/d
))

y + D
})

≥ µ({x : Mn(x) ≤ D}) = 1.

So we have, in this case, an EVL for Mn of type EV3. ��
For the proof of Theorem 2, we will require the following lemma. This is essentially

contained in [31, Theorem 1.6.2], but we give a proof for completeness.

Lemma 2.1 Suppose that (X,B, f, µ) is a dynamical system where µ is an acip.
Furthermore, let ϕ(x) = g(dist(x, ζ )) for some ζ ∈ X where g is one of the three
types described above. Then, for each y ∈ R, there exists a sequence {un(y)}n∈N as
in (1.4) such that

nµ({x : ϕ(x) > un(y)}) −−−→
n→∞ τ(y) ≥ 0.

Moreover, for every t > 0 there exists y ∈ R such that τ(y) = t .
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Proof We will prove the lemma in the case when g is of type g2, which means that
we will only need to consider y > 0. For the other two types of g, the argument is the
same, but with minor adjustments, see [31, Theorem 1.6.2].

First we show that we can always find a sequence {γn}n∈N such that

nµ(X0 > γn) −−−→
n→∞ 1.

Take γn := inf{y : µ(X0 ≤ y) ≥ 1−1/n}, and let us show that it has the desired prop-
erty. Note that nµ(X0 > γn) ≤ 1, which means that lim supn→∞ nµ(X0 > γn) ≤ 1.
Using (1.12), for any z < 1, we have

lim inf
n→∞

µ(X0 > γn)

µ(X0 > γnz)
= lim inf

n→∞
ρ(ζ )κ

(

g−1
2 (γn)

)d

ρ(ζ )κ
(

g−1
2 (zγn)

)d

= lim inf
n→∞

(

g−1
2 (γn)

)d

(

z−βg−1
2 (γn)

)d
= zβd .

Since, by definition of γn , for any z < 1, nµ(X0 > γnz) ≥ 1, letting z → 1, it follows
immediately that lim infn→∞ nµ(X0 > γn) ≥ 1.

Now let un(y) = γn y, which means that, for all n ∈ N, we are taking an = γ−1
n

and bn = 0 in (1.4). Then, using (1.12), it follows that for all y > 0

nµ(X0 > γn y) = nµ
(

{x : dist(x, ζ ) < g−1
2 (γn y)}

)

∼ nρ(ζ )κ
(

g−1
2 (γn y)

)d

∼ nρ(ζ )κ(y−βg−1
2 (γn))

d ∼ y−βdnρ(ζ )κ
(

g−1
2 (γn)

)d

∼ y−βdnµ(X0 > γn) −−−→
n→∞ y−βd .

So taking y = t−1/(βd) > 0 would suit our purposes. ��
Proof of Theorem 2 We first assume that for every y ∈ R and some sequence un =
un(y) as in (1.4) such that nµ({x : ϕ(x) > un(y)}) −−−→

n→∞ τ(y), we have

lim
n→∞µ ({x : Mn(x) ≤ un(y)}) = H(τ (y)).

Observe that, by Khintchine’s Theorem (see [31, Theorem 1.2.3]), up to linear scaling
the normalising sequences are unique, which means that we may assume that they are
the ones given by Lemma 2.1. Hence given t > 0, Lemma 2.1 implies that there exists
y ∈ R such that

nµ ({x : ϕ(x) > un(y)}) −−−→
n→∞ t.
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Given {δn}n∈N ⊂ R
+ with δn −−−→

n→∞ 0, we define

	n := �t/(κρ(ζ )δd
n )�.

We will prove

g−1 (u	n

) ∼ δn . (2.6)

If n is sufficiently large, then

{x : ϕ(x) > un} = {x : g(dist(x, ζ )) > un}
= {x : dist(x, ζ ) < g−1(un)} = Bg−1(un)

(ζ ).

Hence, by assumption on the sequence un , we have nµ(Bg−1(un)
(ζ )) −−−→

n→∞ τ(y) = t .

As Lebesgue’s Differentiation Theorem holds for ζ ∈ X , we have µ(Bδ(ζ ))|Bδ(ζ )| → ρ(ζ )

as δ → 0. Consequently, since it is obvious that g−1(un) → 0 as n → ∞, then
n|Bg−1(un)

(ζ )| −−−→
n→∞ t/ρ(ζ ). Thus, we may write g−1(un) ∼ ( t

κnρ(ζ ) )
1/d and substi-

tuting n by 	n we are immediately led to (2.6) by definition of 	n .
Next, using Lebesgue’s Differentiation Theorem, again, we get µ(Bδn (ζ ))∼

ρ(ζ )κδd
n which easily implies that by definition of 	n ,

t

µ
(

Bδn (ζ )
) ∼ 	n . (2.7)

Now we note that, as in (2.1)

{x : M	n (x) ≤ u	n } =
	n−1
⋂

j=0

{x : X j (x) ≤ u	n } =
	n−1
⋂

j=0

{x : g(dist( f j (x), ζ )) ≤ u	n }

=
	n−1
⋂

j=0

{x : dist( f j (x), ζ ) ≥ g−1(u	n )} = {x : rBg−1(u	n )
(ζ )(x) ≥ 	n}. (2.8)

At this point, we claim that

lim
n→∞µ

({

x : rBδn (ζ )(x) ≥ t

µ(Bδn (ζ ))

})

= lim
n→∞µ

({x : M	n (x) ≤ u	n }
)

. (2.9)

Then, the first part of the theorem follows, once we observe that, by hypothesis, we
have

µ
({x : M	n (x) ≤ u	n }

) −−−→
n→∞ H(τ (y)) = H(t).

For the second part of the theorem, first notice that for the i.i.d. setting, i.e. when we
are considering {x : M̂n(x) ≤ un} rather than {x : Mn(x) ≤ un}, (1.5) is equivalent
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to (1.7). Therefore, µ({x : M̂n(x) ≤ un}) → e−τ(y) as n → ∞. Hence if the EVL of
Mn coincides with that of M̂n , then we also have H(τ (y)) = e−τ(y).

It remains to show that (2.9) holds. First, observe that

µ

({

rBδn (ζ ) ≥ t

µ(Bδn (ζ ))

})

= µ
({M	n ≤ u	n }

)+ (µ ({rBδn (ζ ) ≥ 	n
})− µ

({M	n ≤ u	n }
))

+
(

µ

({

rBδn (ζ ) ≥ t

µ(Bδn (ζ ))

})

− µ
({

rBδn (ζ ) ≥ 	n
})
)

.

For the third term on the right, note that by (2.7) we have

∣
∣
∣
∣
µ
({

rBδn (ζ ) ≥ 	n
})− µ

({

rBδn (ζ ) ≥ t

µ(Bδn (ζ ))

})∣
∣
∣
∣

= ∣∣µ ({rBδn (ζ ) ≥ 	n
})− µ

({

rBδn (ζ ) ≥ (1 + εn)	n
})∣
∣ ,

for some sequence {εn}n ∈ N such that εn → 0, as n → ∞. By (2.5), (2.7) and
stationarity it follows that

∣
∣µ
({

rBδn (ζ ) ≥ 	n
})− µ

({

rBδn (ζ ) ≥ (1 + εn)	n
})∣
∣ ≤ |εn|	nµ

(

Bδn (ζ )
) ∼ |εn|t → 0,

as n → ∞.
For the remaining term, using (2.6)–(2.8), we have

∣
∣µ
({

rBδn (ζ ) ≥ 	n
})− µ

({M	n ≤ u	n }
)∣
∣

=
∣
∣
∣µ
({

rBδn (ζ ) ≥ 	n
})− µ

(

{rBg−1(u	n )
(ζ ) ≥ 	n}

)∣
∣
∣

≤
	n∑

i=1

µ
(

f −i
(

Bδn (ζ )� Bg−1(u	n )
(ζ )
))

= 	nµ
(

Bδn (ζ )� Bg−1(u	n )
(ζ )
)

∼ t

µ
(

Bδn (ζ )
)

∣
∣
∣µ
(

Bδn (ζ )
)− µ

(

Bg−1(u	n )
(ζ )
)∣
∣
∣

= t

∣
∣
∣
∣
∣
∣

1 −
µ
(

Bg−1(u	n )
(ζ )
)

µ
(

Bδn (ζ )
)

∣
∣
∣
∣
∣
∣

→ 0

as n → ∞, which ends the proof of (2.9). ��
Proof of Corollary 4 Let us assume the existence of HTS to balls around ζ (not nec-
essarily exponential). Then the first part of Theorem 1 assures the existence of an
EVL as in (1.3) for Mn defined in (1.2). This fact and the hypothesis that D1(un)

holds allows us to use [31, Theorem 3.7.1] to conclude that there is θ > 0 such that
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limn→∞ µ(Mn ≤ un) = e−θτ . Finally, we use the first part of Theorem 2 to conclude
that we have HTS to balls centred on ζ of exponential type. ��

3 Relation between hitting times and exceedance point processes

We have already seen how to relate HTS and EVL. We next show that if we enrich
the process and the statistics by considering either multiple returns or multiple excee-
dances we can take the parallelism even further.

Given a sequence {δn}n∈N ⊂ R
+ such that δn −−−→

n→∞ 0, for each j ∈ N, we define

the j th waiting (or inter-hitting) time as

w
j
Bδn (ζ )

(x) = rBδn (ζ )

(

f
w1

Bδn (ζ )
(x)+···+w j−1

Bδn (ζ )
(x)
(x)

)

, (3.1)

and the j th hitting time as

r j
Bδn (ζ )

(x) =
j
∑

i=1

wi
Bδn (ζ )

(x).

We define the Hitting Times Point Process (HTPP) by counting the number of hitting
times during the time interval [0, t). However, since µ(Bδn (ζ )) → 0, as n → ∞,
then by Kac’s Theorem, the expected waiting time between hits is diverging to ∞ as
n increases. This fact suggests a time re-scaling using the factor v∗

n := 1/µ(Bδn (ζ )),
which is precisely the expected inter-hitting time. Hence, for any x ∈ X and every
t ≥ 0 define

N∗
n (t) = N∗

n ([0, t), x) := sup
{

j : r j
Bδn (ζ )

(x) ≤ v∗
n t
}

=
�v∗

n t�
∑

j=0

1Bδn (ζ ) ◦ f j (3.2)

When x ∈ Bδn (ζ ) and we consider the conditional measure µBδn (ζ ) instead of µ, then
we refer to N∗

n (t) as the Return Times Point Process (RTPP).
If we have exponential HTS, (G(t) = e−t in (1.14)), then the distribution of the

waiting time before hitting Bδn (ζ ) is asymptotically exponential. Also, if we assume
that our systems are mixing, because in that case we can think that the process gets
renewed when we come back to Bδn (ζ ), then one may look at the hitting times as
the sum of almost independent r.v.s that are almost exponentially distributed. Hence,
one would expect that the hitting times, when properly re-scaled, should form a point
process with a Poisson type behaviour at the limit.

As discussed in Sect. 1.2, for hyperbolic systems, it is indeed the case that we do get
a Poisson Process as the limit of HTPP. The theory in [7,8,26] implies that if f ∈ NF2

has an acip then we have a Poisson limit for the HTPP. We postpone a sketch of this
fact to Sect. 5, in order to keep our focus on the relation between HTS and EVL here.
However, we would like to remark that a key difference between proofs for the first
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hitting time and for showing that we have a Poisson Point Process, if we are using the
theory started in [26], is that a further mixing condition is required.

Now, we turn to an EVL point of view. In this context, one is concerned with
the occurrence of exceedances of the level un for the stationary stochastic process
X0, X1, . . . In particular, we are interested in counting the number of exceedances,
among a random sample X0, . . . , Xn−1 of size n. As in the previous sections, we
consider the stationary stochastic process defined by (1.1) and a sequence of levels
{un}n∈N such that nµ(X0 > un) → τ > 0, as n → ∞. We define the exceedance
point process (EPP) by counting the number of exceedances during the time interval
[0, t). We re-scale time using the factor vn := 1/µ(X > un) given by Kac’s Theorem,
again. Then for any x ∈ X and every t ≥ 0, set

Nn(t) = Nn([0, t), x) :=
�vnt�
∑

j=0

1X j>un . (3.3)

The limit laws for these point processes can be used to assess the impact and dam-
age caused by rare events since they describe their time occurrences, their individual
impacts and accumulated effects. Assuming that the process is mixing, we almost
have a situation of many Bernoulli trials where the expected number of successes is
almost constant (nµ(X > un) → τ > 0). Thus, we expect a Poisson law as a limit.
In fact, one should expect that the exceedance instants, when properly normalised,
should form a point process with a Poisson Process as a limit, also. This is the con-
tent of [31, Theorem 5.2.1] which states that under D1(un) and D′(un), the EPP Nn ,
when properly normalised, converges in distribution to a Poisson Process. (See [31,
Chapter 5], [28] and references therein for more information on the subject).

Similarly to Theorems 1 and 2, we show that if there exists a limiting continuous
time stochastic process for the HTPP, when properly normalised, then the same holds

for the EPP and vice-versa. In the sequel
d−→ denotes convergence in distribution.

Theorem 3 Let (X ,B, µ, f ) be a dynamical system where µ is an acip and consider
ζ ∈ X for which Lebesgue’s Differentiation Theorem holds. Suppose that for any

sequence δn −−−→
n→∞ 0 we have that the HTPP defined in (3.2) is such that N∗

n
d−−−→

n→∞ N,

where N is a continuous time stochastic process. Then, for the EPP defined in (3.3)

we also have Nn
d−−−→

n→∞ N.

Proof The result follows immediately once we set δn = g−1(un) and observe that for
every j, n ∈ N and x ∈ X we have {x : X j > un} = {x : f j (x) ∈ Bg−1(un)

(ζ )},
which implies that Nn(t) = N∗

n (t), for all t ≥ 0. ��
Corollary 5 Suppose that f ∈ NF2 and f has an acip µ. Then, denoting by Nn the

associated EPP as in (3.3), we have Nn
d−→ N, as n → ∞, where N denotes a Poisson

Process with intensity 1.

The fact that the maps in this corollary satisfy the conditions of Theorem 3 follows
from the sketch in Sect. 5. So the result is otherwise immediate.
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Theorem 4 Let (X ,B, µ, f ) be a dynamical system where µ is an acip and
consider ζ ∈ X for which Lebesgue’s Differentiation Theorem holds. Suppose that for
a sequence of levels {un}n∈N such that nµ(X0 > un) → τ > 0, as n → ∞, the EPP

defined in (3.3) is such that Nn
d−−−→

n→∞ N, where N is a continuous time stochastic

process. Then, for the HTPP defined in (3.3) we also have N∗
n

d−−−→
n→∞ N.

Proof Given a sequence {δn}n∈N ⊂ R
+ with δn −−−→

n→∞ 0 we define, as in the proof

of Theorem 2, the sequence 	n such that δn ∼ g−1(u	n ). Set kn := max{v∗
n , v	n } and

observe that |N∗
n (t) − N	n (t)| ≤ ∑kn

j=0 1Bδn (ζ )�Bg−1(u	n )
(ζ ) ◦ f j . Using stationarity

we get

µ
(|N∗

n (t)− N	n (t)| > 0
) ≤ knµ

(

Bδn (ζ )�Bg−1(u	n )
(ζ )
)

= kn

∣
∣
∣µ
(

Bδn (ζ )
)− µ

(

Bg−1(u	n )
(ζ )
)∣
∣
∣ −−−→

n→∞ 0,

by definition of 	n . The result now follows immediately by Slutsky’s Theorem (see
[18, Theorem 6.3.15]). ��

4 Poisson statistics via EVL

As we have already mentioned, [31, Theorem 5.2.1] states that for a stationary sto-
chastic process satisfying D1(un) and D′(un), the EPP Nn defined in (3.3) converges
in distribution to a Poisson Process.

The main result in [21] states that in order to prove an EVL for stationary stochas-
tic processes arising from a dynamical system, it suffices to show conditions D2(un)

and D′(un). This proved to be an advantage over [31, Theorem 3.5.2] since the mix-
ing information of systems is usually known through decay of correlations that can
be easily used to prove D2(un), as opposed to condition D1(un) appearing in [31,
Theorem 3.5.2].

Our goal here is to prove that we still get the Poisson limit if we relax D1(un) so that
it suffices to have sufficiently fast decay of correlations of the dynamical systems that
generate the stochastic processes. However, for that purpose, one needs to strengthen
D2(un) in order to cope with multiple events. (Something similar was necessary in
the corresponding theory in [26]). For that reason we introduce condition D3(un)

below, that still follows from sufficiently fast decay of correlations, as D2(un) did,
and together with D′(un) allows us to obtain the Poisson limit for the EPP.

Let S denote the semi-ring of subsets of R
+
0 whose elements are intervals of the

type [a, b), for a, b ∈ R
+
0 . Let R denote the ring generated by S. Recall that for every

A ∈ R there are k ∈ N and k intervals I1, . . . , Ik ∈ S such that A = ∪k
i=1 I j . In order

to fix notation, let a j , b j ∈ R
+
0 be such that I j = [a j , b j ) ∈ S. For I = [a, b) ∈ S

and α ∈ R, we denote α I := [αa, αb) and I + α := [a + α, b + α). Similarly, for
A ∈ R define αA := α I1 ∪ · · · ∪ α Ik and A + α := (I1 + α) ∪ · · · ∪ (Ik + α).
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For every A ∈ R we define

M(A) := max{Xi : i ∈ A ∩ Z}.

In the particular case where A = [0, n) we simply write, as before, Mn = M[0, n).
At this point, we propose:

Condition (D3(un)) Let A ∈ R and t ∈ N.
We say that D3(un) holds for the sequence X0, X1, . . . if

µ ({X0 > un} ∩ {M(A + t) ≤ un})− µ({X0 > un})µ({M(A) ≤ un}) ≤ γ (n, t),

where γ (n, t) is nonincreasing in t for each n and nγ (n, tn) → 0 as n → ∞ for some
sequence tn = o(n), which means that tn/n → 0 as n → ∞.

Recalling the definition of the EPP Nn(t) = Nn[0, t) given in (3.3), we set

Nn[a, b) := N (b)− N (a) =
�vnb�
∑

j=�vna�
1{X j>un}.

We now state the main result of this section that gives the Poisson statistics for the
EPP under D3(un) and D′(un).

Theorem 5 Let X1, X2, . . . be a stationary stochastic process for which conditions
D3(un) and D′(un) hold for a sequence of levels un such that nµ(X0 > un) → τ > 0,

as n → ∞. Then the EPP Nn defined in (3.3) is such that Nn
d−→ N, as n → ∞,

where N denotes a Poisson Process with intensity 1.

As a consequence of this theorem, Theorem 4 and the results in [20] we get:

Corollary 6 For any Benedicks-Carleson quadratic map fa (with a ∈ BC), consider
a stochastic process X0, X1, . . . defined by (1.1) and (1.10), with ζ being either the
critical point or the critical value. Then, denoting by Nn the associated EPP as in

(3.3), we have Nn
d−→ N, as n → ∞, where N denotes a Poisson Process with inten-

sity 1. Moreover, if we consider N∗
n , the HTPP as in (3.2), for balls around either the

critical point or the critical value, then the same limit also applies to N∗
n .

With minor adjustments to [14], we can use Theorem 5 to show that, similarly to
Corollary 5, interval maps with exponential decay of correlations have Poisson sta-
tistics for the EPP. However, we will not state this result here, since we prove a more
general result (which works in higher dimensions) in Sect. 6.

4.1 Proofs of the results

In this section we prove Theorem 5 and Corollary 6. The key is Proposition 1 whose
proof we prepare with the following two Lemmas. These are very similar to ones in
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[14, Section 3] and [21, Section 3], so we omit the details of the proofs. However, note
that in contrast to the lemmas in the papers mentioned above, we need them to take
care of events that depend on nonconsecutive random variables.

Lemma 4.1 For any 	 ∈ N and u ∈ R we have

	−1
∑

j=0

µ(X j > u) ≥ µ(M	 > u)

≥
	−1
∑

j=0

µ(X j > u)−
	−1
∑

j=0

	−1
∑

i=0,i �= j

µ({X j > u} ∩ {Xi > u})

Proof This is a straightforward consequence of the formula for the probability of a
multiple union of events. See for example the first Theorem of Chapter 4 in [19].

Lemma 4.2 Assume that r, s, 	, t are nonnegative integers. Suppose that A, B ∈ R
are such that A ⊂ B. Set 	 := #{ j ∈ N : j ∈ B \ A}. Assume that min{x : x ∈ A} ≥
r + t and let A0 = [0, r + t). Then, we have

0 ≤ µ(M(A) ≤ u)− µ(M(B) ≤ u) ≤ 	 · µ(X > u) (4.1)

and

∣
∣
∣
∣
∣
µ(M(A0 ∪ A) ≤ u)− µ(M(A) ≤ u)+

r−1
∑

i=0

µ ({X > u} ∩ {M(A − i) ≤ u})
∣
∣
∣
∣
∣

≤ 2r
r−1
∑

i=1

µ({X > u} ∩ {Xi > u})+ tµ(X > u). (4.2)

The proof of this lemma can easily be done by following the proof of
[21, Lemma 3.2] with minor adjustments.

Proposition 1 Let A ∈ R be such that that A = ⋃p
j=1 I j where I j = [a j , b j ) ∈ S,

j = 1, . . . , p and a1 < b1 < a2 < · · · < bp−1 < ap < bp. Let {un}n∈N be such that
nµ(X0 > un) → τ > 0, as n → ∞, for some τ ≥ 0. Assume that conditions D3(un)

and D′(un) hold. Then,

µ (M(n A) ≤ un) −−−−→
n→+∞

p
∏

j=1

µ(M(nI j ) ≤ un) =
p
∏

j=1

e−τ(b j −a j ).

Proof Let h := inf j∈{1,...,p}{b j − a j } and H := �sup{x : x ∈ A}�. Take k > 2/h
and n sufficiently large. Note this guarantees that if we partition n[0, H ] ∩ Z into
blocks of length rn := �n/k�, J1 = [Hn − rn, Hn), J2 = [Hn − 2rn, Hn − rn),…,
JHk = [Hn − Hkrn, n − (Hk − 1)rn), JHk+1 = [0, Hn − Hkrn), then there is more
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0 Hn
nI1 nI2 nIpnIp-1nIp- +1

nA

J
p- +1iJ

p- +1i p- +1+S

Ji* 'Ji

Bi

Ji

Fig. 1 Notation

than one of these blocks contained in nIi . Let S	 = S	(k) be the number of blocks J j

contained in nI	, that is,

S	 := #{ j ∈ {1, . . . , Hk} : J j ⊂ nI	}.

As we have already observed S	 > 1 ∀	 ∈ {1, . . . , p}. For each 	 ∈ {1, . . . , p}, we
define

A	 :=
	
⋃

i=1

Ip−i+1.

Set i	 := min{ j ∈ {1, . . . , k} : J j ⊂ nI	}. Then Ji	 , Ji	+1, . . . , Ji	+s	 ⊂ nI	. Now,
fix 	 and for each i ∈ {i p−	+1, . . . , i p−	+1 + Sp−	+1} let

Bi :=
i
⋃

j=i p−	+1

J j , J ∗
i := [Hn − irn, Hn − (i − 1)rn − tn) and J ′

i := Ji − J ∗
i .

Note that |J ∗
i | = rn − tn and |J ′

i | = tn . See Fig. 1 for more of an idea of the notation
here.

We have,

∣
∣
∣µ(M(Bi ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))µ(M(Bi−1 ∪ n A	−1) ≤ un)

∣
∣
∣

=
∣
∣
∣µ(M(Bi ∪ n A	−1) ≤ un)− µ(M(Bi−1 ∪ n A	−1) ≤ un)

+ rnµ(X > un)µ(M(Bi−1 ∪ n A	−1) ≤ un)

∣
∣
∣

≤
∣
∣
∣µ(M(Bi ∪ n A	−1) ≤ un)− µ(M(Bi−1 ∪ n A	−1) ≤ un)
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+
rn−tn−1
∑

j=0

µ({X j+Hn−irn > un} ∩ {M(Bi ∪ n A	−1) ≤ un)}
∣
∣
∣

+
∣
∣
∣(rn − tn)µ(X > un)µ(M(Bi−1 ∪ n A	−1) ≤ un)

−
rn−tn−1
∑

j=0

µ({X j+Hn−irn > un} ∩ {M(Bi ∪ n A	−1) ≤ un)}
∣
∣
∣

+ tnµ(X > un).

By Lemma 4.2, we obtain

∣
∣
∣µ(M(Bi ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))µ (M(Bi−1 ∪ n A	−1) ≤ un)

∣
∣
∣

≤ 2(rn − tn)
rn−tn−1
∑

j=1

µ({X > un} ∩ {X j > un})+ tnµ(X > un)

+
rn−tn−1
∑

j=0

∣
∣
∣µ(X > un)µ(M(Bi−1 ∪ n A	−1) ≤ un)

−µ({X > un} ∩ {M((Bi−1 ∪ n A	−1)− d j ) ≤ un})
∣
∣
∣+ tnµ(X > un),

where d j = ( j + Hn − irn). Now using condition D3(un), we obtain

∣
∣
∣µ(M(Bi ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))µ(M(Bi−1 ∪ n A	−1) ≤ un)

∣
∣
∣

≤ 2(rn − tn)
rn−tn−1
∑

j=1

µ({X>un}∩{X j>un})+2tnµ(X > un)+(rn − tn)γ (n, tn).

Set

ϒk,n := 2(rn − tn)
rn−tn−1
∑

j=1

µ({X > un} ∩ {X j > un})+ 2tnµ(X > un)

+ (rn − tn)γ (n, tn).

Recalling (1.5), we may assume that n and k are sufficiently large so that n
kµ(X >

un) < 2 and |1 − rnµ(X > un)| < 1 which implies

∣
∣µ(M(BSp−	+1 ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))

µ(M(BSp−	+1−1 ∪ n A	−1) ≤ un)
∣
∣ ≤ ϒk,n,
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and

∣
∣
∣µ(M(BSp−	+1∪n A	−1)≤un)−(1 − rnµ(X > un))

2µ(M(BSp−	+1−2∪n A	−1)≤un)

∣
∣
∣

≤ ∣∣µ(M(BSp−	+1 ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))µ(M(BSp−	+1−1

∪ n A	−1) ≤ un)
∣
∣+ |1 − rnµ(X > un)|

∣
∣µ(M(BSp−	+1−1 ∪ n A	−1) ≤ un)

− (1 − rnµ(X > un))µ(M(BSp−	+1−2 ∪ n A	−1)
∣
∣

≤ 2ϒk,n .

Inductively, we obtain

∣
∣
∣µ(M(BSp−l+1 ∪ n A	−1) ≤ un)− (1 − rnµ(X > un))

Sp−	+1µ(M(n A	−1) ≤ un)

∣
∣
∣

≤ Sp−	+1ϒk,n .

Using Lemma 4.2,

∣
∣
∣µ(M(n A	) ≤ un)− (1 − rnµ(X > un))

Sp−	+1µ(M(n A	−1) ≤ un)

∣
∣
∣

≤ ∣∣µ(M(n A	) ≤ un)− µ(M(BSp−l+1 ∪ n A	−1) ≤ un)
∣
∣

+
∣
∣
∣µ(M(BSp−l+1∪n A	−1)≤un)−(1 − rnµ(X > un))

Sp−	+1µ(M(n A	−1)≤un)

∣
∣
∣

≤
∣
∣
∣µ(M(nIp−	+1 ∪ n A	−1) ≤ un)− µ(M(∪Sp−	+1

i=i	
Ji ∪ n A	−1) ≤ un)

∣
∣
∣

+Sp−l+1ϒk,n

≤ 2rnµ(X > un)+ Sp−l+1ϒk,n .

In the next step we have

∣
∣
∣µ(M(n A	) ≤ un)− (1 − rnµ(X > un))

Sp−	+1+Sp−	+2µ(M(n A	−2) ≤ un)

∣
∣
∣

≤
∣
∣
∣µ(M(n A	) ≤ un)− (1 − rnµ(X > un))

Sp−	+1µ(M(n A	−1) ≤ un)

∣
∣
∣

+ |1 − rnµ(X > un)|Sp−	+1

∣
∣
∣µ(M(n A	−1) ≤ un)

−(1 − rnµ(X > un))
Sp−	+2µ(M(n A	−2) ≤ un)

∣
∣
∣

≤ 4rnµ(X > un)+ (Sp−	+1 + Sp−	+2)ϒk,n .

Therefore, by induction, we obtain

∣
∣
∣µ(M(n Ap) ≤ un)− (1 − rnµ(X > un))

∑p
j=1 S j

∣
∣
∣

≤ 2prnµ(X > un)+
p
∑

j=1

S jϒk,n .
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Now, it is easy to see that S j ∼ k|I j |, for each j ∈ {1, . . . , p}. Consequently,

lim
k→+∞ lim

n→+∞ (1 − rnµ(X > un))
∑p

j=1 S j

= lim
k→+∞ lim

n→+∞
(

1 −
⌊n

k

⌋

µ(X > un)
)
∑p

j=1 S j

= lim
k→+∞

(

1 − τ

k

)
∑p

j=1 S j = lim
k→+∞

[(

1 − τ

k

)k
∑p

j=1 |I j |]
∑p

j=1 S j

k
∑p

j=1 |I j | = e−τ∑p
j=1 |I j |

=
p
∏

j=1

e−τ(b j −a j ).

To conclude the proof it suffices to show that

lim
k→+∞ lim

n→+∞(2prnµ(X > un)+ k Hϒk,n) = 0.

We start by noting that, since nµ(X > un) → τ ≥ 0,

lim
k→+∞ lim

n→+∞ 2prnµ(X > un) = lim
k→+∞

2pτ

k
= 0.

Next we need to check that

lim
k→+∞ lim

n→+∞ kϒk,n = 0,

which means,

lim
k→+∞ lim

n→+∞ 2k(rn − tn)
rn−tn−1
∑

j=1

µ({X > un} ∩ {X j > un})+ 2ktnµ(X > un)

+ k(rn − tn)γ (n, tn) = 0.

Assume that t = tn where tn = o(n) is given by Condition D3(un). Now, observe
that, by (1.5), for every k ∈ N, we have limn→∞ ktnµ(X > un) = 0. Finally, use
D3(un) and D′(un) to prove that the two remaining terms also go to 0. ��
Proof of Theorem 5 Since the Poisson Process has no fixed atoms, that is, points t
such that µ(N ({t}) > 0) > 0, the convergence is equivalent to convergence of finite
dimensional distributions. But, because N is a simple point process, without multiple
events, we may use a criterion proposed by Kallenberg [29, Theorem 4.7] to show the
stated convergence. Namely we need to verify that

(1) E(Nn(I )) −−−→
n→∞ E(N (I )), for all I ∈ S;

(2) µ(Nn(A) = 0) −−−→
n→∞ µ(N (A) = 0), for all A ∈ R,

where E(·) denotes the expectation with respect to µ.
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First we show that condition (1) holds. Let a, b ∈ R
+ be such that I = [a, b), then,

recalling that vn = 1/µ(X0 > un), we have

E(Nn(I )) = E

⎛

⎝

�vnb�
∑

j=�vna�+1

1{X j>un}

⎞

⎠ =
�vnb�
∑

j=�vna�+1

E
(

1{X j>un}
)

= (�vnb� − (�vna� + 1)) µ(X0 > un)

∼ (b − a)vnµ(X0 > un) −−−→
n→∞ (b − a) = E(N (I )).

To prove condition (2), let s ∈ N and A = ∪s
i=1 Ii where I1, . . . , Is ∈ S are disjoint.

Also let a j , b j ∈ R
+ be such that I j = [a j , b j ). By Proposition 1, we have

µ(Nn(A) = 0) = µ
(∩s

i=1{M(vn I j ) ≤ un})

∼ µ
(∩s

i=1{M((n/τ)I j ) ≤ un}) −−−→
n→∞

s
∏

j=1

e−(b j −a j ).

The result follows at once since µ(N (A) = 0) = ∏s
i=1 µ(N (I j ) = 0) = ∏s

j=1

e−(b j −a j ). ��
Proof of Corollary 6 In [20,21], conditions D2(un) and D′(un) were proved for sto-
chastic processes X0, X1, . . . as in (1.1) and (1.10) with ζ being either the critical point
or the critical value and observables of type g3 (g3(x) = x for ζ = 1 and g3 = 1−ax2

for ζ = 0).
Observe that independently of the type of g, the sequence un is computed so that an

exceedance of the level un corresponds to a visit to the ball Bδn (ζ ), where δn is such
thatµ(Bδn ) ∼ τ/n. This means that condition D′(un) can be written in terms of returns
to Bδn (ζ ) which implies that it holds for every sequence X0, X1, . . . independently of
the shape of g.

Condition D3(un) follows from decay of correlations. In fact, from [30,35] one has
that for all φ,ψ : M → R with bounded variation, there is C, α > 0 independent of
φ,ψ and n such that

∣
∣
∣
∣

∫

φ · (ψ ◦ f t )dµ−
∫

φdµ
∫

ψdµ

∣
∣
∣
∣
≤ CVar(φ)‖ψ‖∞e−αt , ∀t ∈ N0, (4.3)

where Var(φ) denotes the total variation of φ. For each A ∈ R, take φ = 1{X0>un}
and ψ = 1{M(A)≤un}, then (4.3) implies that Condition D3(un) holds with γ (n, t) =
γ (t) := 2Ce−αt and for the sequence tn = √

n, for example. ��

5 Poisson statistics for first return times

The purpose of this section is to discuss what is known about the Poisson statistics of
first return times to balls. The main focus is on showing that a map f ∈ NF2 with an
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acip must have the RTPP asymptotically converging to a Poisson Process. However,
for more generality we will introduce the ideas assuming that our phase space X is a
Riemannian manifold. We note that a similar result to the main theorem [23] implies
that the limit laws for the HTPP and RTPP are the same. So since the results we will
cite below are usually given in terms of RTS, we will use this.

Similarly to the proof of Theorem 5, in order to show that the RTPP has a Poisson
limit, it suffices to prove that for k ∈ N and a rectangle Rk ⊂ R

k ,

∣
∣
∣
∣
∣
∣
∣

µUn

(

(wUn , w
2
Un
, . . . , wk

Un
) ∈ 1

µ(Un)
Rk

)

−
∫

Rk

�k
i=1eti dtk

∣
∣
∣
∣
∣
∣
∣

→ 0 as n → ∞.

The main result of [7] is that the RTS for an inducing scheme is the same for the
inducing scheme as for the original system. However, they remark in that paper that
their methods extend to give the same Poisson statistics for the inducing scheme and
the original system. In [8], the theory in [7] was extended to show that for multi-
modal maps of the interval the RTS of suitable inducing schemes converge to the RTS
of the original system. The corresponding result for Poisson statistics follows simi-
larly. For multimodal maps f : I → I , with an acip µ, those inducing schemes are
Rychlik maps. Therefore to prove that the original (I, f, µ) has the RTPP converging
to a Poisson process, we must show that the induced, Rychlik, maps also have this
property. As we sketch below, this can be proved using [26, Theorem 2.6].

For a system (X, F, µ), we say that a partition Q is uniform mixing if there exists
γQ(n) → 0 as n → ∞, such that

γQ(n) := sup
k,l

sup
A∈σQk

B∈F−(n+k)σQl

|µ(A ∩ B)− µ(A)µ(B)| .

Here Qk := ∨k−1
j=0 F− jQ and σQk is the sigma algebra generated by Qk . For our

purposes Q will be {U,U c} where U is a ball around ζ .
By [26, Theorem 2.6], if we assume the system is uniform mixing for {U,U c}, then

for a rectangle Rk ⊂ R
k ,

∣
∣
∣
∣
∣
∣
∣

µU

(

(wU , w
2
U , . . . , w

k
U ) ∈ 1

µ(U )
Rk

)

−
∫

Rk

�k
i=1eti dtk

∣
∣
∣
∣
∣
∣
∣

≤ Err(k,U ). (5.1)

Moreover, the term Err(k,U ) goes to 0 as U shrinks to a point ζ . In fact, we have
Err(k,U ) = k(3d(U ) + R(k,U )) where R(k,U ) → 0 as µ(U ) → 0 and the rate
that R(k,U ) goes to zero depends on how γQ shrinks with U . As was shown in [7],
for Rychlik maps the quantity d(U ) tends 0 as U → {ζ }. Therefore it only remains
to show that the Rychlik maps defined in [8] are uniform mixing for {U,U c}.

Since we assumed that (X, F, µ) is Rychlik [34, Theorem 5] implies that the nat-
ural partition P1, consisting of maximal intervals on which f is a homeomorphism,
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is Bernoulli, with exponential speed. Since (X, F, µ) is uniformly expanding, this
implies that {U,U c} is also Bernoulli, with exponential speed. As noted in [26, Remark
2.5], this implies that {U,U c} is uniform mixing, as required.

The proof that the successive returns form a point process converging to a Pois-
son Process follows from (5.1) and the Kallenberg argument used in the proof of
Theorem 5.

6 EVL and HTS in higher dimensions

In this section, we extend Collet’s theory of maps with exponential decay of correla-
tions from one dimension to higher dimensions. We conclude with an example.

Let X be as usual a d-dimensional compact Riemannian manifold and f : X → X
a C2 endomorphism. We say that f admits a Young tower if there exists a ball� ⊂ X ,
a countable partition P (mod 0) of � into topological balls �i with smooth bound-
aries, and a return time function R : � → N piecewise constant on elements of P
satisfying the following properties:

(Y1) Markov: for each �i ∈ P and R = R(�i ), f R : �i → � is a C2 diffeomor-
phism (and in particular a bijection). Thus the induced map

F : � → � given by F(x) = f R(x)(x)

is defined almost everywhere and satisfies the classical Markov property. We
consider also the separation time s(x, y) given by the maximum integer such
that Fi (x) and Fi (y) belong to the same element of the partition P for all
i ≤ s(x, y), which we assume to be defined and finite for almost every pair of
points x, y ∈ �.

(Y2) Uniform backward contraction: There exist C > 0 and 0 < β < 1 such that
for x, y ∈ � and any 0 ≤ n ≤ s(x, y) we have

dist( f n(x), f n(y)) ≤ Cβs(x,y)−n .

(Y3) Bounded distortion: For any x, y ∈ � and any 0 ≤ k ≤ n < s(x, y) we have

log
n
∏

i=k

det D f ( f i (x))

det D f ( f i (x))
≤ Cβs(x,y)−n

(Y4) Integrable return times:

∫

R dLeb < ∞

In this section we only consider maps admitting a Young tower with exponential
return time tail which means that we will replace condition (Y4) by the following
stronger one
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(Y′
4) Exponential tail decay: There are C, α > 0 such that

Leb({R > n}) = Ce−αn .

These systems have been studied, in a more general context, by Young [36,37],
where several examples can also be found. Among the properties proved by L.S.
Young we mention the existence of an F-invariant measure µ0 that is equivalent
to Lebesgue measure on � (meaning that its density is bounded above and below
by a constant). After saturating one gets an absolutely continuous (w.r.t. Lebesgue),
f -invariant probability given by

µ(A) = R̄−1
∞
∑

	=0

µ0

(

f −	(A) ∩ {R > 	}
)

, (6.1)

where R̄ = ∫

�
Rdµ0. One of the main achievements in [36,37] is the fact that the

decay of the tail of return times determines the speed of decay of correlations for
Hölder continuous (or Lipschitz) observables. Namely, if φ : X → R is Hölder
continuous of exponent 0 < ι ≤ 1, with Hölder constant

Kι(φ) := sup
x �=y

|φ(x)− φ(y)|
(dist(x, y))ι

,

ψ : X → R is in L∞(Leb) and the tower has exponential tail, then there are C > 0
and α′ > 0 such that

∣
∣
∣
∣

∫

φ · (ψ ◦ f t )dµ−
∫

φdµ
∫

ψdµ

∣
∣
∣
∣
≤ C Kι(φ)‖ψ‖∞e−αt , ∀t ∈ N0. (6.2)

Theorem 6 Let X be a d-dimensional compact Riemannian manifold and assume
that f : X → X is a C2 endomorphism admitting a Young tower with exponential
tail. Consider a stochastic process X0, X1, . . . defined by (1.1) and (1.10), for some
choice of ζ ∈ X . Then, for Leb-almost every ζ ∈ X chosen, conditions D3(un) (or
D2(un)) and D′(un) hold, where un is a sequence of levels satisfying (1.5).

Together with the results in Sects. 1.3, 3 and 4 we get the following corollary.

Corollary 7 Let X be a d-dimensional compact Riemannian manifold and assume
that f : X → X is a C2 endomorphism admitting a Young tower with exponential
tail. Consider a stochastic process X0, X1, . . . defined by (1.1) and (1.10) for some
ζ ∈ X . Then, for Leb-almost every choice of ζ ∈ X , the following assertions hold:

(1) We have an EVL for Mn, defined in (1.2), which coincides with that one of M̂n

defined in (1.6). In particular, it must be of one of the three classical types. More-
over, for every i ∈ {1, 2, 3}, if g is of type gi then we have an EVL for Mn of
type EVi .

(2) We have exponential HTS to balls at ζ ∈ X .
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(3) The EPP Nn defined in (3.3) is such that Nn
d−→ N, as n → ∞, where N denotes

a Poisson Process with intensity 1.
(4) The same applies to the HTPP N∗

n defined in (3.2).

6.1 Proof of Theorem 6

To show this result, one needs only to realise that Collet’s proof of [14, Theorem 1]
may be mimicked in our multi-dimensional setting with minor adjustments. Thus,
instead of repeating all the arguments, we will prove that D3(un) and D′(un) hold just
by redoing the parts that need to be adapted to this more general higher dimensional
setting.

Let {Ev}v∈N be the sequence of sets defined by

Ev =
{

y : ∃ j ∈ {1, . . . , (log v)5}, |y − f j (y)| ≤ v−1
}

.

This is the set of points which recur ‘too quickly’. We not only need to control the set of
points which recur too quickly, but also the set of points for which a neighbour recurs
too quickly. For positive numbers ω and ρ to be fixed below, we define a sequence of
measurable sets {Fv}v∈N by

Fv =
{

x : µ(Bv−ω(x) ∩ Evω) ≥ κ v−(d+ρ)ω} .

The following proposition gathers most of the information we need to prove Theorem 6.
The proof of its statements can be done by adapting slightly the proofs of Lemma 2.2,
Proposition 2.3, Corollary 2.4 and Lemma 2.5 from [14]. Note that strictly speaking,
items (b) and (c) are not used explicitly for the proof of Theorem 6, but we include
them here for comparison with [14], as well as [27].

Proposition 2 Under (Y′
4),

(a) there are two positive constants C and θ such that for any Lebesgue measurable
set A, we have

µ(A) ≤ CLeb(A)θ .

(b) there exist positive constants C, α′ and η < 1 such that for any integer v and
any ε > 0 we have

µ(Ev(ε)) ≤ C
(

v2εη + e−α′v
)

.

(c) there exist positive constants C ′ and β ′ < 1 such that for any integer v

µ(Ev) ≤ C ′ v−β ′
.

(d) there exist positive numbers ρ and ω such that Leb(∩i≥1 ∪v≥i Fv) = 0.
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As we have seen in the proof of Corollary 6, it is very easy to show that D3(un) holds
when we have decay of correlations for observables of bounded variation. However,
in this setting, decay of correlations is only available for Hölder continuous functions
against L∞ ones, instead (see (6.2)). This means that we cannot use the test function
φ = 1{X0>un}, as we did before. However, proceeding as in [14, Lemma 3.3], if we
use a suitable Hölder approximation one can easily get:

Lemma 6.1 Assume that there exists a rate function � : N → R, such that for every
Hölder continuous (or Lipschitz) observable φ and all L∞ observable ψ we have:

∣
∣
∣
∣

∫

φ · (ψ ◦ f t )dµ−
∫

φdµ
∫

ψdµ

∣
∣
∣
∣
≤ Kι(φ)‖ψ‖∞�(t), ∀t ∈ N0.

Then, for every ζ ∈ X , 0 < s < 1, η > 0 and all measurable set W we have

∣
∣µ(Bs(ζ ) ∩ f −t (W ))− µ(Bs(ζ ))µ(W )

∣
∣ ≤ s−(1+η)�(t)+ O(sθ(d+η)),

where θ is the number given in Proposition 2 (a).

Proof of Theorem 6 First let us show that D3(un) holds. Since in this setting we have
exponential decay of correlations for Hölder continuous functions (see (6.2)) and
{X0 > un} = Bg−1(un)

(ζ ) then by Lemma 6.1 we may take

γ (n, t) = O
(

(g−1(un))
−1−ηe−αt + (g−1(un))

θ(d+η)) .

Hence, recalling that g−1(un) ∼ ( τ
κρ(ζ )n )

1/d , if we consider tn = √
n, for exam-

ple, and choose η from Lemma 6.1 so that θ(d + η)/d > 2 (where θ is given by
Proposition 2 (a)), then we easily get that nγ (n, tn) −−−→

n→∞ 0 which gives D3(un).

Now, it only remains to show that D′(un) also holds. Recall the stochastic process
X0, X1, . . . given by (1.1) for observables defined by (1.10), achieving a global max-
imum at ζ ∈ X . At this point, we describe the full Lebesgue measure set of points
ζ ∈ X for which Theorem 6 holds. We take ζ for which Lebesgue’s differentiation
theorem holds (with respect to the measure µ) and ζ ∈ ∪i≥1 ∩ j≥i X \ Fj , which by
Proposition 2 (d) is also a full Lebesgue measure set. For each such ζ , let v0(ζ ) ∈ N

be such that ζ /∈ Fj for all j ≥ v0(ζ ).
We consider a turning instant t = t (n) = �(log n)2�, and split the sum in D′(un)

into the period before t and after t .
For the later we use exponential decay of correlations (6.2) and Lemma 6.1 to get,

for some C > 0,

S2(t, n, k) : = n
�n/k�
∑

j=t

µ({X0 > un} ∩ {X j > un})

≤ n
⌊n

k

⌋

µ(X0 > un)
2 + n

⌊n

k

⌋

(g−1(un))
θ(d+η)

+ n
⌊n

k

⌋

(g−1(un))
−1−ηCe−αt .
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Recalling that µ(X0 > un) ∼ τn−1 and g−1(un) ∼ ( τ
κρ(ζ )n )

1/d , we have

S2(t, n, k) = O

(
1

k
+ n2

k
n−θ(d+η)/d + n2

k
n(1+η)/de−α′ log2(n)

)

.

So, if we chose η so that θ(d + η)/d > 2 then limk→∞ lim supn→∞ S2(t, n, k) = 0.
We are left with the first period from 1 to t and the respective sum

S1(t, n) := n
t
∑

j=1

µ({X0 > un} ∩ {X j > un}).

We set v = v(n) = �(3g−1(un))
−1/ω�, where ω is given in Proposition 2 (d). Observe

that

{X0 > un} = Bg−1(un)
(ζ ) ⊂ Bv−ω(ζ )

and, if y ∈ {X0 > un} ∩ {X j > un}, then

dist( f j (y), y) ≤ dist( f j (y), ζ )+ dist(ζ, y) ≤ 2g−1(un) < v−ω,

which implies that

{X0 > un} ∩ {X j > un} ⊂ Bv−ω(ζ ) ∩ Evω . (6.3)

We take n so large that v = v(n) ≥ v0(ζ ). Hence ζ /∈ Fv . Using (6.3), the definition
of Fv and the fact g−1(un) ∼ ( τ

κρ(ζ )n )
1/d , we have

µ({X0 > un} ∩ {X j > un}) = O(v−ω(d+ρ)) = O(n−(d+ρ)/d).

Hence, lim supn→∞ S1(t, n) ≤ lim supn→∞ O(n log2(n)n−(d+ρ)/d) = 0. ��

6.2 An example

Here we present a C1 open class of local diffeomorphisms with no critical points that
are non-uniformly expanding in the sense of [3,4]. Namely, let f : M → M be a C1

local diffeomorphism, we say that f is non-uniformly expanding if there exists a con-
stant λ > 0 such that for Lebesgue almost all points x ∈ M the following non-uniform
expansivity condition is satisfied:

lim inf
n→∞

1

n

n−1
∑

i=0

log ‖D f −1
f i (x)

‖−1 ≥ λ > 0. (6.4)
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Condition (6.4) implies that the expansion time function

E(x) = min

{

N : 1

n

n−1
∑

i=0

log ‖D f −1
f i (x)

‖−1 ≥ λ/2 ∀n ≥ N

}

is defined and finite almost everywhere in M . We think of this as the waiting time before
the exponential derivative growth kicks in. We are now able to define the Hyperbolic
tail set, at time n ∈ N,

�n = {x ∈ I : E(x) > n} , (6.5)

which can be seen as the set of points that at time n have not reached a satisfactory
exponential growth of the derivative. Applying [5] and [22] together shows that these
maps admit a Young tower whose return time tail is related to the volume decay rate
of the hyperbolic tail set.

The class we consider here is obtained by deformation of a uniformly expanding
map by isotopy inside some small region. In general, these maps are not expanding:
deformation can be made in such way that the new map has periodic saddles. We
follow the construction in [3,4].

Let M be any compact Riemannian d-dimensional manifold supporting some uni-
formly expanding map f0: there exists σ0 > 1 such that ‖D f0(x)v‖ > σ0‖v‖ for
every x ∈ M and every v ∈ Tx M . Let V ⊂ M be small compact domain, so that f0|V
is one-to-one. Let f1 be a C1 map coinciding with f0 in M\V for which the following
holds:

(1) f1 is volume expanding everywhere: there is σ1 > 1 such that

| det D f1(x)| > σ1, for every x ∈ M;

(2) f1 is not too contracting on V : there is small δ > 0 such that

‖D f1(x)
−1‖ < 1 + δ, for every x ∈ V .

We consider the class of maps f in a small C1-neighbourhood F of f1.
In [3, Section 6] it was shown that these maps satisfy condition (6.4) and there exist

C, γ > 0 such that Leb(�n) ≤ Ce−γ n for all n ∈ N. Now, using the results in [22] this
implies that every map f ∈ F admits a Young tower for which conditions (Y1)–(Y′

4)
are satisfied. This means that we can apply Theorem 6 and obtain that all assertions
of Corollary 7 hold for this class of maps F .

To make this example a bit more concrete, we give the following construction in
the 2-torus. Consider the doubling map in S1, or in other words, let g : S1 → S1

be such that g(x) = 2x if x ∈ [0, 1/2] and g(x) = 2x − 1 if x ∈ (1/2, 1]. Take
f0 : S1 × S1 → S1 × S1 to be the uniformly expanding map given by f0(x, y) =
(g(x), g(y)).

Let k : [0.05, 0.1] → R be such that k(0.05) = 0.045, k′(0.05) = 0.9, k(0.1) =
0.2, k′(0.1) = 2, k′(x) ≥ 0.9, for all x ∈ [0.05, 0.1] and k′(x∗) > 1, where x∗ is the
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Fig. 2 Plots of functions k and h

only solution of k(x) = x . See the plot on the left of Fig. 2. Now, let 	 : [0, 1/2] →
[0, 1] be given by

	(x) =

⎧

⎪⎨

⎪⎩

0.9x if x ∈ [0, 0.05)

k(x) if x ∈ [0.05, 0.1)

2x if x ∈ [0.1, 1/2],

and define h : S1 → S1 by h(x) = 	(x) if x ∈ [0, 1/2] and h(x) = 1 − 	(1 − x) if
x ∈ (1/2, 1]. See plot on the right of Fig. 2.

Consider a C1 family of maps ψ : S1 × [0, 1] → S1 such that ψ0(x) = ψ(x, 0) =
g(x), ψ1(x) = ψ(x, 1) = h(x), for all x ∈ S1 and ∂ψ(x,t)

∂x |(x,t) ≥ 0.9, for all x ∈ S1,
t ∈ [0, 1]. Finally, consider f1 : S1 × S1 → S1 × S1 given by

f1(x, y) = (ψ(x, (1 − 10y)1[0,0.1] + (1 − 10(1 − y))1[0.9,1]
)

, g(y)
)

.

Taking V = [−0.1, 0.1] × [−0.1, 0.1] ⊂ S1 × S1, we have f0 is one-to-one in V ,
f1 = f0 outside V , f1 is not uniformly expanding since 0 is a saddle and conditions
(1), (2) are also easily checked.
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non-uniformly expanding system given in Sect. 6.2. We thank the referee for useful comments.
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