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Abstract Large deviations principles for a family of scalar 1 + 1 dimensional
conservative stochastic PDEs (viscous conservation laws) are investigated, in the limit
of jointly vanishing noise and viscosity. A first large deviations principle is obtained
in a space of Young measures. The associated rate functional vanishes on a wide set,
the so-called set of measure-valued solutions to the limiting conservation law. A sec-
ond order large deviations principle is therefore investigated, however, this can be
only partially proved. The second order rate functional provides a generalization for
non-convex fluxes of the functional introduced by Jensen and Varadhan in a stochastic
particles system setting.
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1 Introduction

Macroscopic description of physical systems with a large number of degrees of free-
dom can be often provided by the means of partial differential equations. Rigorous
microscopic derivations of such PDEs have been proved in different settings, and
we will refer in particular to stochastic interacting particles systems [13,20], where
stochastic microscopic dynamics of particles are considered. One is usually interested
in the asymptotic properties of the empirical measures associated with some relevant
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physical quantities of the system, such as the particles density. Provided that time and
space variables are suitably rescaled, it has been proved for several models that, as
the number of particles diverges to infinity, the empirical measure associated with the
particles density converges to a “macroscopic density” u ≡ u(t, x). Moreover such
a density u solves a limiting “hydrodynamical equation”, which in the conservative
case has usually the following structure

∂t u + ∇ · ( f (u)− D(u)∇u) = 0 (1)

Here ∇ and ∇· stands for the space gradient and divergence operators, D ≥ 0 is a
diffusion coefficient, while the flux f takes into account the transport phenomena that
may occur in the system. Roughly speaking, D is strictly positive for symmetric (or
zero mean) and weakly asymmetric systems, in which case (1) is usually obtained
in the so-called diffusive scaling of the time and space variables. The case D ≡ 0 is
instead associated with asymmetric systems, and is usually obtained in the so-called
Euler scaling.

Once the hydrodynamics of the density is understood, a deeper insight into the
system behavior is provided by the investigation of large deviations for the probability
law of the empirical measure associated with the density. Establishing large deviations
for these models can in fact provide a better understanding of the concepts of entropy
and fluctuations in the context of non-equilibrium statistical mechanics. However,
while several large deviations results have been obtained for symmetric (or weakly
asymmetric) systems under diffusive scaling [13], very little is known for asymmetric
systems, with the remarkable exception of the seminal works [12,15,21]. According
to [13, Chap. 8], large deviations for asymmetric processes are “one of the main open
questions in the theory of hydrodynamical limits”.

1.1 Stochastic conservation laws

In this paper we will focus on a slightly different approach. We consider a continuous
“mesoscopic density” uε ≡ uε(t, x) ∈ R depending on a small parameter ε (which
should be regarded as the inverse of the number of particles). We assume that uε satis-
fies a continuity equation, with a stochastic current taking into account the transport,
diffusion and fluctuation phenomena that may occur in the system. More precisely,
for ε, γ > 0 we consider the stochastic PDE in the unknown u

∂t u + ∇ ·
(

f (u)− ε

2
D(u)∇u − εγ

√
a2(u) αε

)
= 0 (2)

where a2 is a fluctuation coefficient, and αε is a stochastic noise, white in time and
with a correlation in space regulated by a convolution kernel jε. We assume that jε

converges to the identity as ε → 0, namely that the range of spatial correlations van-
ishes at the macroscopic scale. We are then interested in the asymptotic properties
(convergence and large deviations) of the solution uε to (2), as ε → 0, namely as
diffusion and noise vanish simultaneously. We remark that, while equations of the
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Large deviations for conservation laws 609

form (2) may describe quite general physical systems, the limit ε → 0 is indeed moti-
vated by the heuristic behavior of the density of asymmetric particles systems under
Euler scaling. In fact, while one expects the stochastic noise and its spatial correla-
tion to vanish at a macroscopic scale for quite general systems, the limit of jointly
vanishing viscosity and noise is somehow specific for the Euler scaling. This specific
feature may be one of the (several) reasons making the large deviations of asymmetric
systems more challenging.

From the point of view of stochastic PDEs, the limit ε → 0 also introduces new
difficulties. In fact, large deviations for diffusion processes have been widely investi-
gated [7,10] in the vanishing noise case, and general methods are available to identify
the rate functionals associated with large deviations. On the other hand, at our knowl-
edge no results are available—even for finite dimensional diffusions—if vanishing
noise and deterministic drift with nontrivial limiting behavior are considered (here
the deterministic drift has a so-called singular limit, see (4)). As shown below, in
this more general case one needs to investigate a (deterministic) variational problem
associated with the stochastic equation. The variational problem associated to (2) has
been addressed in [3] in a slightly different setting, and we will use most of the results
therein obtained.

With respect to the models usually considered in particles systems, (2) allows us
to get rid of several technicalities related to the discrete nature of particles; we may
thus provide a unified treatment of several models (that is, f , D and a are arbitrary).
However, as discussed below, the results obtained (namely the speed and rates of large
deviations) are in substantial agreement with [12,21] if the case f (u) = a2(u) =
u(1 − u) and D(u) = 1 is considered.

1.2 Outline of the results

Informally setting ε = 0 in (2), we obtain the deterministic PDE

∂t u + ∇ · f (u) = 0 (3)

usually referred to as a conservation law. As well known [5, Chap. 4], if f is nonlinear,
the Cauchy problem associated to (3) does not admit global smooth solutions, even
if the initial datum is smooth. In general there exist infinitely many weak solutions
to (3), and an additional entropic condition is needed to recover uniqueness and to
identify the relevant physical weak solution to (3). While (3) is invariant under the
transformation (t, x) �→ (−t,−x), the entropic condition selects a direction of the
time, by requiring that entropy is dissipated. A classical result in PDE theory states
that the solution to

∂t u + ∇ ·
(

f (u)− ε

2
D(u)∇u

)
= 0 (4)

converges to the entropic solution to (3) as ε → 0, provided the initial data also
converge. At the heuristic level, the entropic condition keeps memory of the diffusive
term in (4) which indeed breaks the symmetry (t, x) �→ (−t,−x). We will briefly
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recall the definition of entropic Kruzkov solutions to (3) in Sect. 2, and refer to [5] for
an introduction to conservation laws.

There is only a few literature for existence and uniqueness of solutions to fully non-
linear stochastic parabolic equations, see e.g. [16,17] dealing with finite-dimensional
noise. Under general hypotheses, in the appendix we provide existence and unique-
ness (for ε small enough and γ > 1/2) for the Cauchy problem associated to (2), by
the means of a piecewise semilinear approximation of such equation. In Sect. 3.1 we
gather some a priori bounds for the solution uε to (2), and show that, as ε → 0, uε

converges in probability to the entropic Kruzkov solution to (3) in a strong topology.
We next analyze large deviations principles for the law of uε as ε → 0. In order to

avoid technical difficulties associated with the unboundedness of uε, and in order to
keep our setting as close as possible to the one considered in [12,21], we assume that
the fluctuation coefficient a2(u) vanishes for u �∈ (0, 1). As we will also assume the
initial datum to take values in [0, 1], this condition guarantees that uε takes values in
[0, 1], see Theorem 3. We only consider the (1 + 1) dimensional case, with the (t, x)
variables running in [0, T ] × T, where T > 0 and T is the one dimensional torus.
While these restrictions are merely technical, we remark that only the case of scalar
u is considered, as the vectorial case (systems of conservation laws) is certainly far
more difficult.

In Sect. 3.2 we establish a large deviations principle with speed ε−2γ , roughly
equivalent to the classical Freidlin–Wentzell speed for finite dimensional diffusions
[10]. The bottom line is that, when events with probability of order eε

−2γ
are con-

sidered, the noise term in (2) can bitterly deviate from its “typical behavior” thus
completely overcoming the regularizing effect of the vanishing parabolic term. Any
entropy-dissipation phenomena is lost at this speed, and the noise may drive severe
oscillations of the density uε as ε → 0. The large deviations are then naturally inves-
tigated in a Young measures setting. We prove that on a Young measure µ ≡ µt,x (dλ)
(satisfying a suitable initial condition) the large deviations rate functional is given by
(see Sect. 2.4 for a more precise definition of I)

I(µ) := 1

2

T∫

0

dt ‖∂tµ(ı)+ ∇ · µ( f )‖2
H−1(µ(a2),dx)

Here ı : R → R is the identity map, for F a continuous function,µ(F)(t, x) stands for∫
µt,x (dλ)F(λ), and with a little abuse of notation, we denoted by ‖ϕ‖H−1(µt,·(a2),dx)

the dual norm to
[∫

dx µt,x (a2) ϕ2
x

]1/2
.

Note that I(µ) = 0 iff µ is a measure-valued solution to (3) (see Sect. 2.4). The
Cauchy problem (3) admits in general infinitely many measure-valued solutions, but
we stated above that uε converges in probability to the (unique) entropic solution to
(3). One thus expects that nontrivial large deviations principle may hold with a speed
slower than ε−2γ . In Sect. 3.3, we investigate large deviations principle with speed
ε−2γ+1. At this scale, deviations of the noise term in (3) are of the same order of the
parabolic term. The law of uε is then exponentially tight (with speed ε−2γ+1) in a
suitable space of functions. To informally define the candidate rate functional for the
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Large deviations for conservation laws 611

large deviations with this speed, we briefly introduce some preliminary notions, which
will be precisely explained in Sect. 2.5.

We say that a weak solution u to (3) is an entropy-measure solution iff there exists
a measurable map �u from [0, 1] to the set of Radon measures on (0, T ) × T, such
that for each η ∈ C2([0, 1]) and ϕ ∈ C∞

c ((0, T )× T)

−
∫

dt dx [η(u)ϕt + q(u)∇ϕ] =
∫

dv �u(v; dt, dx)η′′(v)ϕ(t, x)

where q(v) := ∫ vdw η′(w) f ′(w), see Proposition 3 for a characterization of entropy-
measure solutions to (3). The candidate rate functional for the second order large
deviations is the functional H defined as follows. If u is not an entropy-measure solu-
tion to (3) then H(u) = +∞. Otherwise H(u) = ∫

dv �+
u (v; dt, dx)D(v) a−2(v),

where �+
u denotes the positive part of �u . Note that H depends on the diffusion coef-

ficient D and the fluctuation coefficient a2 only through their ratio, thus fitting in the
Einsten paradigm for macroscopic diffusive systems. We also remark that, while the
functional I is convex, H is not (for instance, convex combinations of entropy-mea-
sure solutions to (3), in general are not weak solutions).

While we prove a large deviations upper bound with speed ε−2γ+1 and rate H , we
obtain the lower bound only on a suitable set S of weak solutions to (3), see Defi-
nition 2. To complete the proof of this second order large deviations, an additional
density argument is needed. This seems to be a challenging problem, and as noted
by Varadhan in [21] “…one does not see at the moment how to produce a ‘general’
non-entropic solution, partly because one does not know what it is.”

It is easy to see that, on the set of weak solutions to (3) with bounded variations
and on the set S, the rate functional H J V introduced in [12,21] coincides with the rate
functional H evaluated for f (v) = v(1 − v), D ≡ 1 and a2(v) = v(1 − v), which
are the expected transport, diffusion and fluctuation coefficients for the totally asym-
metric simple exclusion process there investigated. In particular, H comes as a natural
generalization of the functional introduced in [12,21], whenever the flux f is neither
convex nor concave. Unfortunately, since chain rule formulas are not available out of
the BV setting, one cannot check that H = H J V on the whole set of entropy-measure
solutions to (3). Note however that the inequality H ≥ H J V holds. Furthermore, under
smoothness and genuine nonlinearity assumption on f , H(u) = 0 iff u is the unique
entropic solution to (3), so that higher order large deviations principles are trivial.

1.3 Outline of the proof

The convergence in probability of uε to the entropic solution of (3) is obtained by a
sharp stability analysis of the stochastic perturbation (2) of (4).

The large deviations upper bound with speed ε−2γ is provided by lifting the stan-
dard Varadhan’s minimax method to the Young measures setting, while exponential
tightness in this space is easily proved. The corresponding lower bound is first proved
for Young measures that are Dirac masses at almost every point (t, x) ∈ [0, T ] × T,
and then extended to the whole set of Young measures by adapting the relaxation
argument in [3].
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The large deviations with speed ε−2γ+1 are much different than the usual small
noise asymptotic limit for Itô processes. Note indeed that, as ε → 0, the parabolic
term in (3) has a nontrivial behavior. In such a case there is no general method to
study large deviations, even in a finite dimensional setting. We provide a link of the
large deviations problem with a 
-convergence result obtained in [3]. Indeed we use
the equicoercivity of a suitable family of functionals to show exponential tightness,
and we use the so-called 
-limsup result to build up the optimal exponential martin-
gales for the lower bound. In particular, since the 
-limsup inequality in [3] is not
fully established, we only have partial results for the lower bound. The upper bound
is established by a nonlinear version of the Varadhan’s minimax method.

2 Main results

2.1 Notation

In this paper, T > 0 is a positive real number and we let
(
�,F, {Ft }0≤t≤T , P

)
be

a standard filtered probability space. For B a real Banach space and M : [0, T ] ×
� → B a given adapted process, we write equivalently M(t) ≡ M(t, ω). For each
φ ∈ B∗ we denote by 〈M, φ〉 ≡ 〈M, φ〉(t, ω) the real–valued process obtained by
the dual action of M on B. Given two real–valued P-square integrable martingales
M, N , we denote by [M, N ] ≡ [M, N ] (t, ω) the cross quadratic variation process of
M and N . In the following martingale will always stand for continuous martingale.
For a Polish space X , we also let P(X) denote the set of Borel probability measures
on X . For ν a measure on some measurable space and F ∈ L1(dν), we denote by
ν(F) the integral of F with respect to ν. However, for a probability P we used the
notation E

P to denote the expected value.
We denote by T the one-dimensional torus, by 〈·, ·〉 the inner product in L2(T), and

by 〈〈·, ·〉〉 the inner product in L2([0, T ]×T). For E a closed set in [0, T ]×T, Ck(E)
denotes the collection of k-times differentiable functions on E , with continuous deriv-
atives up to the boundary. We also let H1(T) be the Hilbert space of square integrable
functions on T with square integrable derivative, and let H−1(T) be its dual space.
Throughout this paper ∂t denotes derivative with respect to the time variable t , ∇ and
∇· derivatives with respect to the space variable x (while we consider a one dimen-
sional space setting, we consider gradient and divergence as distinct operators). For
a function ϑ explicitly depending on the x variable, ∂x denotes the partial derivative
with respect to x . Namely, given a function u : T → [0, 1] and ϑ : [0, 1] × T → R,
we understand ∇[ϑ(u(x), x)] = (∂uϑ)(u(x), x)∇u(x) + (∂xϑ)(u(x), x). In the fol-
lowing we will usually omit the dependence on the ω variable, as well as on the
t and/or x variables when no misunderstanding is possible.

2.2 Stochastic conservation laws

We refer to [7] for a general theory of stochastic differential equations in infinite dimen-
sions. Let W be an L2(T)–valued cylindrical Brownian motion on (�,F, {Ft }0≤t≤T , P).
Namely, W is a Gaussian, L2(T)–valued P-martingale with quadratic variation:
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Large deviations for conservation laws 613

[〈W, φ〉, 〈W, ψ〉] (t, ω) = 〈φ,ψ〉 t (5)

for each φ,ψ ∈ L2(T).
For ε > 0, we consider the following stochastic Cauchy problem in the unknown

u:

du =
[
−∇ · f (u)+ ε

2
∇ · (D(u)∇u)

]
dt + εγ ∇ · [a(u)(jε ∗ dW )

]

u(0, x) = uε0(x) (6)

Here γ > 0 is a real parameter, and ∇ · [a(u)(jε ∗ dW )] stands for the martingale
differential acting on ψ ∈ H1(T) as

〈∇ · [a(u)(jε ∗ dW )
]
, ψ〉 = −〈dW, j ε ∗ [a(u)∇ψ]〉

The following hypotheses will be always assumed below, but in the appendix.

(H1) f : [0, 1] → R is a Lipschitz function.
(H2) D : [0, 1] → R is a uniformly positive Lipschitz function.
(H3) a ∈ C2([0, 1]) is such that a(0) = a(1) = 0, and a(v) �= 0 for v ∈ (0, 1).
(H4) {jε}ε>0 ⊂ H1(T) is a sequence of positive mollifiers with

∫
dx jε(x) = 1,

weakly converging to the Dirac mass centered at 0.
(H5) For ε > 0, uε0 : �× T → [0, 1] is a measurable map with respect to the prod-

uct F0× Borel σ -algebra. Moreover there exists a Borel measurable function
u0 : T → [0, 1] such that, for each δ > 0

lim
ε

P
(‖uε0 − u0‖L1(T) > δ

) = 0

The next proposition is an immediate consequence of Proposition 5 in the appendix,
where we also recall the precise definitions of strong and martingale solutions to (6)
and we briefly discuss why the condition on γ and jε (see Proposition 1 below) are
needed.

Proposition 1 Assume limε ε
2γ−1‖jε‖2

L2(T)
= 0. Then there is an ε0 > 0 depending

only on D and a, such that, for each ε < ε0, there exists a unique adapted process
uε : � → C([0, T ]; H−1(T))∩ L2([0, T ]; H1(T)) solving (6) in the strong stochas-
tic sense. Moreover uε admits a version in C([0, T ]; L1(T)), and for every t ∈ [0, T ]
uε(ω; t, x) ∈ [0, 1] for d P dx a.e. (ω, x).

Note that the total mass of uε is conserved a.s. by the stochastic flow (6), namely
for each t ∈ [0, T ] we have

∫
dx uε(t, x) = ∫

dx uε0(x) P a.s. We are interested in the
asymptotic limit of the probability law of the solution uε to (6) as ε → 0.
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2.3 Deterministic conservation laws

Let U denote the compact Polish space of measurable functions u : T → [0, 1],
equipped with the metric it inherits as a (closed) subset of H−1(T), namely

dU (u, v) := sup
{
〈u − v, ϕ〉, ϕ ∈ H1(T) : ‖ϕ‖2

L2(T)
+ ‖∇ϕ‖2

L2(T)
≤ 1

}

Fix T > 0 and consider the formal limiting equation for (6)

∂t u + ∇ · f (u) = 0
(7)

u(0, x) = u0(x)

In general there exist no smooth solutions to (7). A function u ∈ C ([0, T ]; U ) is a
weak solution to (7) iff for each ϕ ∈ C∞([0, T ] × T) it satisfies

〈u(T ), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈u, ∂tϕ〉〉 − 〈〈 f (u),∇ϕ〉〉 = 0

As well known [5, Chap. 6], existence and uniqueness of a weak Kruzkov solu-
tion to (7) is guaranteed under an additional entropic condition, which is recalled
in Sect. 2.5 below. Then uε converges in probability to such a solution both in the
strong L p([0, T ] × T) and C ([0, T ]; U ) topologies.

Proposition 2 Assume limε ε
2(γ−1)

[‖jε‖2
L2(T)

+ ε‖∇jε‖2
L2(T)

] = 0. Let ū be the
unique Kruzkov solution to (7). Then for each p < +∞ and δ > 0

lim
ε

P

(
‖uε − ū‖p

L p([0,T ]×T)
+ sup

t∈[0,T ]
dU (u

ε(t), ū(t)) > δ

)
= 0

Proposition 2 establishes a convergence result for the probability law of the process
uε solution to (6), as ε → 0. We are then interested in large deviations principles for
this probability law. We recall the definition of the large deviations bounds [8].

Definition 1 Let X be a Polish space and {Pε} ⊂ P(X ) a family of Borel probabil-
ity measures on X . For {αε} a sequence of positive reals such that limε αε = 0 and
I : X → [0,+∞] a lower semicontinuous functional, we say that {Pε} satisfies

– A large deviations upper bound with speed α−1
ε and rate I , iff for each closed set

C ⊂ X

lim
ε
αε log P

ε(C) ≤ − inf
u∈C

I (u) (8)

– A large deviations lower bound with speed α−1
ε and rate I , iff for each open set

O ⊂ X

lim
ε
αε log P

ε(O) ≥ − inf
u∈O

I (u) (9)
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Large deviations for conservation laws 615

{Pε} is said to satisfy a large deviations principle if both the upper and lower bounds
hold with same rate and speed.

In the next sections, we introduce some preliminary notions and state a first large devi-
ations principle with speed ε−2γ . We next introduce some additional preliminaries and
state a second large deviations partial result, associated with the speed ε−2γ+1.

2.4 First order large deviations

We first introduce a suitable space M of Young measures and recall the notion of
measure-valued solution to (7). Consider the setN of measurable mapsµ from [0, T ]×
T to the set P([0, 1]) of Borel probability measures on [0, 1]. The set N can be iden-
tified with the set of positive finite Borel measures µ on [0, T ] × T × [0, 1] such that
µ(dt, dx, [0, 1]) = dt dx , by the bijection µ(dt, dx, dλ) = dt dx µt,x (dλ). For
ı : [0, 1] → [0, 1] the identity map, we set

M := {
µ ∈ N : the map [0, T ] � t �→ µt,·(ı) is in C ([0, T ]; U )

}

in which, for a bounded measurable function F : [0, 1] → R, the notation µt,x (F)
stands for

∫
[0,1]µt,x (dλ)F(λ). We endow M with the metric

dM(µ, ν) := d∗w(µ, ν)+ sup
t∈[0,T ]

dU
(
µt,·(ı), νt,·(ı)

)

where d∗w is a distance generating the relative topology on N regarded as a subset of
the finite Borel measures on [0, T ] × T × [0, 1] equipped with the ∗-weak topology.
(M, dM) is a Polish space.

An element µ ∈ M is a measure-valued solution to (7) iff for each ϕ ∈ C∞
([0, T ]×T) it satisfies

〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉 − 〈〈µ( f ),∇ϕ〉〉 = 0

If u ∈ C ([0, T ]; U ) is a weak solution to (7), then the map (t, x) �→ δu(t,x)(dλ) ∈
P([0, 1]) is a measure-valued solution. However, in general there exist measure-
valued solutions which do not have this form, namely they are not a Dirac mass at a.e.
(t, x) (e.g. finite convex combinations of Dirac masses centered on weak solutions are
measure-valued solutions).

Consider the process µε : � → M defined by µεt,x := δuε(t,x). We let
Pε := P ◦ (µε)−1 ∈ P(M) be the law of µε on M. In Sect. 3.2 we prove

Theorem 1 Assume limε ε
2(γ−1)

[‖jε‖2
L2

+ ε‖∇jε‖2
L2

] = 0.
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(i) Then the sequence {Pε} ⊂ P(M) satisfies a large deviations upper bound on
M with speed ε−2γ and rate functional I : M → [0,+∞] defined as

I(µ) := sup
ϕ∈C∞([0,T ]×T)

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

−〈〈µ( f ),∇ϕ〉〉 − 1

2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}
(10)

(ii) Assume furthermore that ζ ≤ u0 ≤ 1 − ζ for some ζ > 0. Then {Pε} ⊂ P(M)

satisfies a large deviations lower bound on M with speed ε−2γ and rate func-
tional I.

We denote by P
ε := P ◦ (uε)−1 ∈ P(C([0, T ]; U )) the law of uε on the Polish

space (C([0, T ]; U ). By contraction principle [8, Theorem 4.2.1] we get

Corollary 1 Under the same hypotheses of Theorem 1, the sequence {Pε} ⊂
P(C([0, T ]; U )) satisfies a large deviations principle on C([0, T ]; U ) with speed
ε−2γ and rate functional I : C([0, T ]; U ) → [0,+∞] defined as

I (u) := inf

{∫
dt dx R f,a2 (u(t, x),�(t, x)),

� ∈ L2([0, T ] × T) : ∇� = −∂t u weakly

}

where R f,a2 : [0, 1] × R → [0,+∞] is defined by

R f,a2(w, c) := inf{(ν( f )− c)2 /ν(a2), ν ∈ P([0, 1]) : ν(ı) = w}

in which we understand (c − c)2/0 = 0.

Note that, if I(µ) < +∞, thenµ0,x (ı) = u0(x) and analogously I (u) < +∞ implies
u(0, x) = u0(x). On the other hand, I(µ) = 0 iff µ is a measure-valued solution to
(7). I(µ) quantifies indeed how µ deviates from being a measure-valued solution to
(7) in a suitable Hilbert norm, see the proof of Theorem 1 item (i) in Sect. 3.2. On the
other hand, if f is nonlinear, in general we have I (u) < I(δu), so that I vanishes on
a set wider than the set of weak solutions to (7).

In general there exist infinitely many measure-valued solutions to (7), but Proposi-
tion 2 implies that {Pε} converges in probability in M to the unique Kruzkov solution
ū to (7) (more precisely, to the Young measure µ̄ defined by µ̄t,x = δū(t,x)). We thus
expect that additional nontrivial large deviations principles may hold with a speed
slower than ε−2γ .
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Large deviations for conservation laws 617

2.5 Entropy-measure solutions to conservation laws

Let X be the same set C([0, T ]; U ) endowed with the metric

dX (u, v) := ‖u − v‖L1([0,T ]×T) + sup
t∈[0,T ]

dU (u(t), v(t))

Convergence in X is of course strictly stronger than convergence in C([0, T ]; U ),
since convergence in L p([0, T ] × T) for p ∈ [1,+∞) is also required. Note that X
can be identified with the subset of M

{µ ∈ M : µ = δu, for some u ∈ C ([0, T ]; U )}

and dX is indeed a distance generating the relative topology induced by dM on X . In
particular, once exponential tightness is established on X , it is immediate to lift large
deviations principles for the law of uε on X , to the corresponding law of δuε on M.

A function η ∈ C2([0, 1]) is called an entropy and its conjugated entropy flux
q ∈ C([0, 1]) is defined up to a constant by q(u) := ∫ udv η′(v) f ′(v). For u a weak
solution to (7), for (η, q) an entropy–entropy flux pair, the η-entropy production is the
distribution ℘η,u acting on C∞

c ([0, T )× T) as

℘η,u(ϕ) := −〈η(u0), ϕ(0)〉 − 〈〈η(u), ∂tϕ〉〉 − 〈〈q(u),∇ϕ〉〉 (11)

Let C2,∞
c ([0, 1]× [0, T )× T) be the set of compactly supported maps ϑ : [0, 1]×

[0, T )×T � (v, t, x) → ϑ(v, t, x) ∈ R, that are twice differentiable in the v variable,
with derivatives continuous up to the boundary of [0, 1] × [0, T ) × T, and that are
infinitely differentiable in the (t, x) variables. For ϑ ∈ C2,∞

c ([0, 1] × [0, T )× T) we
denote by ϑ ′ and ϑ ′′ its partial derivatives with respect to the v variable. We say that
a function ϑ ∈ C2,∞

c ([0, 1] × [0, T ) × T) is an entropy sampler, and its conjugated
entropy flux sampler Q : [0, 1] × [0, T )× T is defined up to an additive function of
(t, x) by Q(u, t, x) := ∫ udv ϑ ′(v, t, x) f ′(v). Finally, given a weak solution u to (7),
the ϑ-sampled entropy production Pϑ,u is the real number

Pϑ,u := −
∫

dx ϑ(u0(x), 0, x)

−
∫

dt dx [(∂tϑ) (u(t, x), t, x)+ (∂x Q) (u(t, x), t, x)] (12)

If ϑ(v, t, x) = η(v)ϕ(t, x) for some entropy η and some ϕ ∈ C∞
c ([0, T )× T), then

Pϑ,u = ℘η,u(ϕ).
We next introduce a suitable class of solutions to (7) for later use. We denote by

M ([0, T )× T) the set of Radon measures on [0, T ) × T that we consider equipped
with the vague topology. In the following, for ℘ ∈ M ([0, T )× T) we denote by ℘±
the positive and negative part of ℘. For u a weak solution to (7) and η an entropy,

123



618 M. Mariani

recalling (11) we set

‖℘η,u‖TV := sup
{
℘η,u(ϕ), ϕ ∈ C∞

c ([0, T )× T) , |ϕ| ≤ 1
}

‖℘+
η,u‖TV := sup

{
℘η,u(ϕ), ϕ ∈ C∞

c ([0, T )× T) , 0 ≤ ϕ ≤ 1
}

The following result follows by adapting [3, Prop. 2.3] and [6, Prop. 3.1] to the
setting of this paper.

Proposition 3 Let u ∈ X be a weak solution to (7). The following statements are
equivalent:

(i) For each entropy η, the η-entropy production ℘η,u can be extended to a Radon
measure on [0, T )× T, namely ‖℘η,u‖TV < +∞ for each entropy η.

(ii) There exists a bounded measurable map �u : [0, 1] � v → �u(v; dt, dx) ∈
M ([0, T )× T) such that for any entropy sampler ϑ

Pϑ,u =
∫

dv �u(v; dt, dx) ϑ ′′(v, t, x)

A weak solution u ∈ X that satisfies the equivalent conditions in Proposition 3 is called
an entropy-measure solution to (7). We denote by E ⊂ X the set of entropy-measure
solutions to (7).

A weak solution u ∈ X to (7) is called an entropic solution iff for each convex
entropy η the inequality ℘η,u ≤ 0 holds in distribution sense, namely ‖℘+

η,u‖TV = 0.
Entropic solutions are entropy-measure solutions such that �u(v; dt, dx) is a negative
Radon measure for eachv ∈ [0, 1]. It is well known, see e.g. [5, Theorem 6.2.1], that for
each u0 ∈ U there exists a unique entropic weak solution ū ∈ X ∩ C ([0, T ]; L1(T))

to (7). Such a solution is called the Kruzkov solution with initial datum u0.
Up to minor adaptations, the following class of solutions have been also introduced

in [3], where some examples of such solutions are also given.

Definition 2 An entropy-measure solution u ∈ E is entropy-splittable iff there exist
two closed sets E+, E− ⊂ [0, T ] × T such that

(i) For a.e. v ∈ [0, 1], the support of �+
u (v; dt, dx) is contained in E+, and the

support of �−
u (v; dt, dx) is contained in E−.

(ii) The set {t ∈ [0, T ] : ({t} × T) ∩ E+ ∩ E− �= ∅} is nowhere dense in [0, T ].
(iii) There exists δ > 0 such that δ ≤ u ≤ 1 − δ.

The set of entropy-splittable solutions to (7) is denoted by S.

Note that S ⊂ E ⊂ X , and if u0 is bounded away from 0, 1, then S is nonempty (for
instance the Kruzkov solution to (3) is in S). Indeed in general S �⊂ BV ([0, T ] × T).

2.6 Second order large deviations

With a little abuse of notation, we still denote with P
ε := P ◦ (uε)−1 ∈ P(X ) the law

of uε on the Polish space (X , dX ). Since
∫

dx jε(x) = 1 (see hypothesis (H4)), we
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have that jε − 1 is the derivative of some smooth function J on T, defined up to an
additive constant. We define ‖jε − 1I‖W−1,1(T) as the infimum of ‖J‖L1(T) as J runs
on the set of functions J such that ∇ · J = jε − 1. We have the following

Theorem 2 Assume that there is no interval in [0, 1] where f is affine, and that
limε ε

2(γ−1)[‖jε‖2
L2(T)

+ ε‖∇jε‖2
L2(T)

] = 0.

(i) Then the sequence {Pε} ⊂ P(X) satisfies a large deviations upper bound on
(X , dX ) with speed ε−2γ+1 and rate functional H : X → [0,+∞] defined as

H(u) :=
⎧⎨
⎩

∫
dv �+

u (v; dt, dx)
D(v)

a2(v)
if u ∈ E

+∞ otherwise

(ii) Assume furthermore limε ε
−3/2‖jε−1I‖W−1,1(T) = 0 and f ∈ C2([0, 1]). Then

the sequence {Pε} ⊂ P(X) satisfies a large deviations lower bound on (X , dX )
with speed ε−2γ+1 and rate functional H : X → [0,+∞] defined as

H(u) := sup
O�uO open

inf
v∈O∩S

H(v)

Since H is lower semicontinuous on X , we have H ≥ H on X and H = H on S,
namely a large deviations principle holds on S. In order to obtain a full large deviations
principle, one needs to show H(u) ≥ H(u) for u �∈ S. This amounts to show that S is
H -dense in X , namely that for u ∈ X such that H(u) < +∞ there exists a sequence
{un} ⊂ S converging to u in X such that H(un) → H(u). In particular it can be shown
that H(u) = H(u) for u piecewise smooth. The main difficulties here arise from the
lacking of a chain rule formula connecting the measures �u to the structure of u itself.
If u has bounded variation, Vol’pert chain rule [2] allows an explicit representation
for �u and thus H(u), see Remark 2.7 in [3]. On the other hand, there exists u ∈ X
with infinite variation such that H(u) < +∞, see Example 2.8 in [3]. While chain
rule formulas out of the BV setting are subject to current research investigation, see
e.g. [1,6], only partial results are available.

Under the same hypotheses of Theorem 2, one can show that entropy-measure solu-
tions to (7) are in C([0, T ]; L1(T)), see Lemma 5.1 in [3]. By Kruzkov uniqueness
theorem [5, Theorem 6.2.1], we gather that H(u) = 0 iff u is the Kruzkov solution
to (7) with initial datum u0. In particular, by item (i) in Theorem 2, large deviations
principles with speeds slower than ε−2γ+1 are trivial.

Note that in Propositions 1, 2, Theorems 1 and 2 various hypotheses on jε are
required, the most restrictive in Theorem 2. It is easy to see that, if γ > 1, there exist
convolution kernels jε satisfying them all.
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3 Proofs

3.1 Convergence and bounds

In the following we will need to consider several different perturbations of (6). In the
next lemma we write down explicitly an Itô formula for (6). The corresponding Itô
formula for the perturbed equations can be obtained analogously, as the martingale
term in these equations is always the same.

Lemma 1 (Itô formula) Let (ϑ; Q) be an entropy sampler–entropy sampler flux pair
for the Eq. (7) (recall in particular ϑ(u, T, x) = 0). Then

−
∫

dx ϑ(u0(x), 0, x)−
∫

dt dx
[
(∂tϑ)

(
uε(t, x), t, x

)+ (∂x Q)
(
uε(t, x), t, x

)]

= −ε
2
〈〈ϑ ′′(uε)∇uε, D(uε)∇uε〉〉 − ε

2
〈〈∂xϑ

′(uε), D(uε)∇uε〉〉

+ ε2γ

2
‖∇jε‖2

L2(T)
〈〈ϑ ′′(uε)a(uε), a(uε)〉〉

+ ε2γ

2
‖jε‖2

L2(T)
〈〈ϑ ′′(uε)∇uε, [a′(uε)]2∇uε〉〉 + N ε;ϑ(T ) (13)

where N ε;ϑ is the martingale

N ε;ϑ(t) := −εγ
t∫

0

〈
jε ∗ [a(uε)ϑ ′′(uε)∇uε + a(uε)∂xϑ

′(uε)
]
, dW

〉
(14)

Moreover the quadratic variation of N ε,ϑ enjoys the bound

[
N ε;ϑ , N ε;ϑ ](t) ≤ ε2γ

∥∥a(uε)
[
ϑ ′′(uε)∇uε + ∂xϑ

′(uε)
]∥∥2

L2([0,t]×T)
(15)

Proof Equation (13) follows, up to minor manipulations, from Itô formula
[7, Theorem 4.17] for the map

[0, T ] × U � (t, u) �→
∫

dx ϑ(u(x), t, x) ∈ R

By (5) and (14), the quadratic variation of N ε;ϑ is given by

[
N ε;ϑ , N ε;ϑ ](t) = ε2γ

∥∥jε ∗ {a(uε) [ϑ ′′(uε)∇uε + ∂xϑ
′(uε)

]}∥∥2
L2([0,t]×T)

so that the inequality stated in the lemma follows by Young inequality for convolutions
and hypothesis (H4). ��
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Lemma 2 Let ζ, T > 0, let X be a real, continuous, local, square integrable super-
martingale starting from 0, and let τ ≤ T be a stopping time. Let F : R → R

+ be
such that:

F(x)

F(ζ )
≤ 2

x

ζ
− 1, for all x > ζ (16)

Then:

P

(
sup

0≤t≤τ
X (t) ≥ ζ, [X, X ] (τ ) ≤ F(sup

t≤τ
X (t))

)
≤ exp

[
− ζ 2

2F(ζ )

]
(17)

Note that the hypotheses (16) on F are satisfied by any nonincreasing function,
and by functions with affine or subaffine behavior. Lemma 2 provides an elementary
generalization of the well known Bernstein inequality [19, page 153], which deals
with the case of constant F .

Proof Hypotheses on F imply that the map Gζ : x → ζ
F(ζ ) x − 1

2
ζ 2

F(ζ )2
F(x) satisfies

Gζ (x) ≥ Gζ (ζ ) = ζ 2

2F(ζ ) for all x ≥ ζ . Therefore:

P

(
sup
t≤τ

X (t) ≥ ζ, [X, X ](τ ) ≤ F(sup
t≤τ

X (t))

)

≤ P

(
e

ζ
F(ζ ) supt≤τ X (t)− 1

2
ζ2

F(ζ )2
F(supt≤τ X (t)) ≥ e

1
2
ζ2

F(ζ ) , [X, X ] (τ ) ≤ F(sup
t≤τ

X (t))

)

≤ P

(
sup
t≤T

e
ζ

F(ζ ) X (t)− 1
2

ζ2

F(ζ )2
[X,X ](t) ≥ e

1
2
ζ2

F(ζ )

)
≤ e− ζ2

2F(ζ ) .

where in the last line we applied the maximal inequality for positive supermartingales

[19, page 58], to the supermartingale e
ζ

F(ζ ) X (t)− 1
2

ζ2

F(ζ )2
[X,X ](t)

. ��

The next lemma provides a key a priori bound.

Lemma 3 For ε > 0, let Eε ∈ L2([0, T ]; H1(T)) and let Q
ε ∈ P(C([0, T ]; U )) be

any martingale solution to the Cauchy problem

du = [− ∇ · f (u)+ ε

2
∇ · (D(u)∇u)− ∇ · (a(u)Eε)] dt

+ εγ ∇ · [a(u)(jε ∗ dW )
]

(18)

u(0, x) = uε0(x)

Assume ‖∇Eε‖L2([0,T ]×T) ≤ C0 for some constant C0 independent of ε, and
limε ε

2γ−1(‖jε‖2
L2(T)

+ ε‖∇jε‖2
L2(T)

) = 0. Then there exist C, ε0 > 0 such that
for any ε < ε0:

ε‖∇u‖2
L2([0,T ]×T) ≤ C + N ε(T, u) for Q

ε a.e. u (19)

where N ε is a Q
ε-martingale starting from 0 and satisfying
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Q
ε

(
sup
t≤T

N ε(t) > ζ

)
≤ exp

{
− ζ 2

ε2γ−1C(1 + ζ )

}
(20)

Proof Itô formula for the map U � u �→ ∫
dx u2(x) ∈ R can be obtained as in

Lemma 1, so that

‖u(T )‖L2(T) − ‖u0‖L2(T) + ε〈〈∇u, D(u)∇u〉〉
= −〈〈A(u),∇Eε〉〉 + ε2γ ‖∇jε‖2

L2(T)
‖a(u)‖2

L2([0,T ]×T)

+ ε2γ ‖jε‖2
L2(T)

‖a′(u)∇u‖2
L2([0,T ]×T) + N ε(T, u)

where A ∈ C1([0, 1]) is any antiderivative of a(·) and N ε is a Q
ε-martingale, which—

reasoning as in the proof of (15)—satisfies

[
N ε, N ε

]
(T, u) ≤ 4 ε2γ ‖a(u)∇u‖2

L2([0,T ]×T) (21)

By (H2), (H3) and the hypotheses of this lemma, there exist C1, ε0 > 0 such that, for
each ε ≤ ε0 and v ∈ [0, 1]

ε2γ ‖jε‖2
L2(T)

[a′(v)]2 ≤ ε

2
D(v)

|〈〈A(u),∇Eε〉〉| + ε2γ ‖∇jε‖2
L2(T)

‖a(u)‖2
L2([0,T ]×T) ≤ C1

Therefore, since |u0| ≤ 1

ε

2
〈〈∇u, D(u)∇u〉〉 ≤ 1 + C1 + N ε(T, u) (22)

and thus (19) since D is uniformly positive. By (21) and (22), there exists a constant
C2 > 0 such that

[
N ε, N ε

]
(T, u) ≤ ε2γC2〈〈∇u, D(u)∇u〉〉 ≤ 2 C2 ε

2γ−1 [1 + C1 + N ε(T )
]

(23)

This inequality allows the application of Lemma 2 for the martingale N ε with

F(ζ ) = 2 C2 ε
2γ−1(1 + C1 + ζ )

which clearly satisfies the condition (16). The bound (20) then follows straightfor-
wardly. ��

The following lemma provides a stability result for (6). It will be repeatedly used to
evaluate the effects of the Girsanov terms appearing in (6) when absolutely continuous
perturbations of P

ε are considered.

Lemma 4 For each ε > 0, let vε : X → X ∩ L2([0, T ]; H1(T)) and Gε : X ×X →
L2([0, T ] × T) be adapted maps (with respect to the standard filtrations of X and
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X × X respectively). Let Q
ε ∈ P(X ) be any martingale solution to the stochastic

Cauchy problem in the unknown u

du =
[

− ∇ · f (u)+ ε

2
∇ · (D(u)∇u)+ ∂tv

ε(u)+ ∇ · f (vε(u))

− ε

2
∇ · (D(vε(u))∇vε(u))+Gε(u, vε(u))

]
dt+εγ ∇ · [a(u)(jε ∗ dW )

]

u(0, x) = uε0(x) (24)

Suppose

(i) limε ε
2(γ−1)[‖jε‖2

L2
+ ε‖∇jε‖2

L2
] = 0.

(ii) There exist adapted processes Gε
1, Gε

2, Gε
3 : χ × χ → L2([0, T ] × T) such

that Gε(u, v)(t, x) = Gε
1(u, v)(t, x)+ ∇ · Gε

2(u, v)(t, x)+ ∇ · Gε
3(u, v)(t, x),

and

|Gε
3(u, v

ε(u))(t, x)| ≤ Gε
4(u)(t, x)|u − vε(u)| for Q

ε a.e. u

for some adapted process Gε
4 : X → L2([0, T ] × T).

(iii) Let G1, G2 be as in (ii). Then for each δ > 0

lim
ε

Q
ε
(
‖vε(u)(0)− uε0‖L1(T) + ‖Gε

1(u, v
ε(u))‖L1([0,T ]×T)

+ε−1‖Gε
2(u, v

ε(u))‖L2([0,T ]×T) > δ
)

= 0

(iv) Let G4 be as in (ii). Then

lim
�→+∞ lim

ε
Q
ε
(‖Gε

4(u, v
ε(u))‖L2([0,T ]×T) + ε‖∇u‖L2([0,T ]×T) > �

) = 0

Then for each δ > 0

lim
ε

Q
ε
(‖u − vε(u)‖L∞([0,T ];L1(T)) > δ

) = 0 (25)

Proof We denote by zε(t, x) ≡ zε(u)(t, x) := u(t, x) − vε(u)(t, x) ∈ [−1, 1]. Let
l ∈ C2([−1, 1]). For each ε, t > 0 let us define (in the following we omit the depen-
dence of vε and zε on the u variable)
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N ε;l(t, u) :=
∫

dx [l(zε(t))− l(zε(0))] −
t∫

0

ds

[
〈l ′′(zε)∇zε, f (u)− f (vε)〉

− ε

2
〈l ′′(zε)∇zε, D(vε)∇zε〉 − ε

2
〈l ′′(zε)∇zε, [D(u)− D(vε)]∇uε〉

+ 〈l ′(zε),Gε
1(u, v

ε)〉 − 〈l ′′(zε)∇zε,Gε
2(u, v

ε)〉
− 〈l ′′(zε)∇zε,Gε

3(u, v
ε)〉 + ε2γ

2
‖∇jε‖2

L2(T)
〈l ′′(zε)a(u), a(u)〉

+ ε2γ

2
‖jε‖2

L2(T)
〈l ′′(zε)∇u, [a′(u)]2∇u〉

]

By Itô formula, N ε;l is a Q
ε-martingale starting at 0, and applying Young inequality

for convolutions (analogously to (15))

[
N ε,l , N ε,l](t, u) ≤ ε2γ ‖a(u)l ′′(zε)∇zε‖2

L2([0,t]×T) (26)

We now choose l convex and define

Rε,l(t) ≡ Rε,l(u)(t) :=
[∫

dx 〈l ′′(zε(t))∇zε(t),∇zε(t)〉
]1/2

Since D and f are Lipschitz, and D is uniformly positive, by (26) and Cauchy-
Schwartz inequality we gather

∫
dx l(zε(t))− l(zε(0)) ≤ −c ε [Rε;l(t)]2‖√l ′′(zε)zε‖L∞([0,T ]×T)R

ε;l(t)

+ C1ε‖∇u‖L2([0,T ]×T) ‖
√

l ′′(zε)zε‖L∞([0,T ]×T)R
ε;l(t)

+ ‖l ′(zε)‖L∞([0,T ]×T) ‖Gε
1(u, v

ε)‖L1([0,T ]×T)

+ ‖Gε
2(u, v

ε)‖L2([0,T ]×T)‖
√

l ′′(zε)‖L∞([0,T ]×T)R
ε;l(t)

+ ‖Gε
4(u)‖L2([0,T ]×R) ‖

√
l ′′(zε)zε‖L∞([0,T ]×T)R

ε;l(t)
+ C1ε

2γ ‖∇jε‖2
L2(T)

‖l ′′(zε)‖L∞([0,T ]×T)

+ C1ε
2γ ‖jε‖2

L2(T)
‖l ′′(zε)‖L∞([0,T ]×T)‖∇u‖2

L2([0,T ]×T) + N ε;l(t) (27)

for some constants c, C1 > 0 independent of ε and l. For arbitrary ζ > 0 to be chosen
below, we now consider l(Z) = √

Z2 + ε2ζ 2 so that

|Z | ≤ l(Z) ≤ |Z | + εζ max
Z∈[−1,1] |l

′(Z)| ≤ 1

max
Z∈[−1,1] |l

′′(Z)| ≤ ε−1ζ−1 max
Z∈[−1,1] |l

′′(Z) Z2| ≤ √
2εζ
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Using these bounds in the right hand side of (27), we get for some C2 > 0

∫
dx |zε(t)| ≤

∫
dx |zε(0)| + C2‖Gε

1‖L1([0,T ]×T)

+ C2

[
1 + ε2‖∇u‖2

L2([0,T ]×T) + ‖Gε
4(u)‖2

L2([0,T ]×T)

]
ζ

+ C2ζ
−1
[
ε−2‖Gε

2‖2
L2([0,T ]×T) + ε2γ−1‖∇jε‖2

L2(T)

+ ε2(γ−1)‖jε‖2
L2(T)

‖∇u‖2
L2([0,T ]×T)

]
− c ε

2
[Rε;l(t)]2+N ε;l(t) (28)

where we have also used the straightforward inequalityαR− cε
2 R2 ≤ α

2cε for a suitable
α ∈ R.

Recalling (26), for some C3 > 0 independent of ε, ζ

[
N ε;l , N ε;l](t, u) ≤ C3 ε

2γ ζ−1[Rε;l(t)]2

so that, by maximal inequality for positive supermartingales [19, page 58], for each
δ > 0 the term in the last line of (28) satisfies

Q
ε

(
sup
s≤t

N ε;l(s)− c ε

2
[Rε;l(s)]2 > δ

)

≤ Q
ε

(
sup
s≤t

exp

(
2 c

C3
ε1−2γ ζ N (s)− 2 c2

C2
3

ε2(1−2γ )ζ 2 [N , N ](s)
)

> exp

(
2 c

C3
ε1−2γ ζ δ

))
≤ exp

(
−2 c

C3
ε−2γ+1ζ δ

)
(29)

Furthermore for � > 0

Q
ε

(
sup

t

∫
dx |zε(t)| > δ

)
≤ Q

ε

(
sup

t

∫
dx |zε(t)| > δ,

‖Gε
4(u, v

ε(u))‖L2([0,T ]×T) + ε‖∇u‖L2([0,T ]×T) ≤ �

)
+ o�,ε

where lim� limε o�,ε = 0 by hypotheses (iv). Therefore, using hypotheses (i) and (iii)
and the estimate (29) in (28), the result easily follows as we let ε → 0, then ζ → 0
and finally � → +∞. ��

The following result will be used to provide exponential tightness in stronger topol-
ogies in the next sections.

Lemma 5 There exists a sequence {K�} of compact subsets of C([0, T ]; U ) such that

lim
�

lim
ε
ε2γ log P

ε(K c
� ) = −∞
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Proof We refer to the criterion in [9, Corollary 4.17] to establish the exponential
tightness of {Pε}. Let d ∈ C1([0, 1]) be any antiderivative of D. Integrating twice by
parts the diffusive term in the weak formulation of (6) (see (A-2) and (A-3)), for each
ϕ ∈ C∞(T) the map Eε;ϕ : [0, T ] × C([0, T ]; U ) → R defined by

Eε;ϕ(t; u) := exp

⎡
⎣ε−2γ 〈u(t), ϕ〉 − ε−2γ 〈u(0), ϕ〉 − ε−2γ

t∫

0

ds 〈 f (u)

+ ε

2
d(u),�ϕ〉 − 1

2
〈j ∗ (a(u)∇ϕ), j ∗ (a(u)∇ϕ)〉

⎤
⎦

is a martingale. For a fixed ϕ ∈ C∞(T), the following bound on the integral term in
the definition of Eε;ϕ is easily established

sup
v∈U

∣∣∣∣
〈

f (v)+ ε

2
d(v),�ϕ

〉
− 1

2
〈j ∗ (a(v)∇ϕ), j ∗ (a(v)∇ϕ)〉

∣∣∣∣ < +∞

Furthermore the family of maps lϕ : U � v → 〈v, ϕ〉 ∈ R is closed under addition,
separates points in U and satisfies c lϕ = lcϕ for c ∈ R. All the hypotheses of the
criterion in [9, Corollary 4.17] are therefore satisfied. ��
Proof of Proposition 2 Apply Lemma 4 with Q

ε ≡ P
ε := P ◦ (uε)−1, and vε as the

solution to the (deterministic) Cauchy problem

∂tv = −∇ · f (v)+ ε

2
∇ · (D(v)∇v)

v(0, x) = u0(x)

P
ε and vε fulfill the hypotheses Lemma 4, since Gε ≡ 0 and Lemma 3 holds (with

Eε ≡ 0). As well known [5, Chap. 6.3], vε → ū in L p([0, T ] × T). Therefore the
statement of the proposition follows by the same Lemma 4 and the fact that P

ε is
(exponentially) tight in C ([0, T ]; U ), as proved in Lemma 5. ��

3.2 Large deviations with speed ε−2γ

In this section we prove Theorem 1.

Lemma 6 There exists a sequence {K�} of compact subsets of M such that

lim
�

lim
ε
ε2γ log Pε(Kc

�) = −∞ (30)

Proof Let the sequence {K�} of compact subsets of C ([0, T ]; U ) be as in Lemma 5.
For � > 0 consider the set

K̃� := {µ ∈ M : µt,x = δu(t,x) for some u ∈ K�}
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Then Pε(K̃�) = P
ε(K�) and by Lemma 5

lim
�

lim
ε
ε2γ log Pε(K̃c

�) = −∞

On the other hand K̃� is precompact in (M, dM) for any �, and thus the Lemma is
proved by taking K� to be the closure of K̃�. ��

Proof of Theorem 1: upper bound Let d ∈ C2([0, 1]) be any antiderivative of D. For
ε > 0 and ϕ ∈ C∞([0, T ] × T), define the map N ε;ϕ : [0, T ] × M → R by

N ε;ϕ(t, µ) := 〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉

−
t∫

0

ds
[
〈µ(ı), ∂tϕ〉 − 〈µ( f ),∇ϕ〉 + ε

2
〈µ(d),�ϕ〉

]

Pε is concentrated on the set

{µ ∈ M : µ = δu for some u ∈ C ([0, T ]; U )}

so that N ε;ϕ is a Pε-martingale. Indeed an integration by parts shows that N ε;ϕ(t, δu)

is the martingale term appearing in the very definition of martingale solution to (6),
see the appendix. Reasoning as in (15), we have

[
N ε;ϕ,N ε;ϕ] (t, µ) ≤ ε2γ

t∫

0

ds 〈µ(a2)∇ϕ,∇ϕ〉

Therefore, the map Qε;ϕ : [0, T ] × M → R defined by

Qε;ϕ(t, µ) := exp

⎧⎨
⎩N ε;ϕ(t, µ)− ε2γ

2

t∫

0

ds 〈µ(a2)∇ϕ,∇ϕ〉
⎫⎬
⎭

is a continuous Pε-supermartingale, with Qε;ϕ(0, µ) = 1 and Qε;ϕ(T, µ) > 0, Pε a.s.
For an arbitrary Borel set A ⊂ M we then have

Pε(A) = E
Pε
(

1IA(·)Qε;ϕ(T, ·)[Qε;ϕ(T, ·)]−1
)

≤ sup
µ∈A

[Qε;ϕ(T, µ)]−1
E

Pε
(

1IA(·)Qε;ϕ(T, ·)
)

≤ sup
µ∈A

[Qε;ϕ(T, µ)]−1
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Since this inequality holds for each ϕ, we can evaluate it replacing ϕ with ε−2γ ϕ, thus
obtaining

ε2γ log Pε(A) ≤ − inf
µ∈A

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

−〈〈µ( f ),∇ϕ〉〉 − ε

2
〈〈µ(d),�ϕ〉〉 − 1

2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}

≤ − inf
µ∈A

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

−〈〈µ( f ),∇ϕ〉〉 − 1

2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}
+ εCd,ϕ

for some constant Cd,ϕ depending only on d and ϕ. Taking the limsup for ε → 0, the
last term vanishes. Optimizing on ϕ:

lim
ε
ε2γ log Pε(A) ≤ − sup

ϕ∈C∞([0,T ]×T)

inf
µ∈A

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉

− 〈〈µ(ı), ∂tϕ〉〉 − 〈〈µ( f ),∇ϕ〉〉 − 1

2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}

By a standard application [13, Appendix 2, Lemma 3.2] of the minimax lemma, we
gather that upper bound with rate I, see (10), holds on each compact subset K ⊂ M.
By Lemma 6, it holds on each closed subset of M. ��

We recall a well known method to prove large deviations lower bounds, see e.g.
[12, Chap. 4]. For P, Q two Borel probability measures on a Polish space, we denote
by Ent(Q|P) the relative entropy of Q with respect to P.

Lemma 7 Let X be a Polish space, I : X → [0,+∞] a positive functional, {αε} a
sequence of positive reals such that limε αε = 0, and let {Pε} ⊂ P(X ). Suppose that
for each x ∈ X there is a sequence {Qε,x } ⊂ P(X ) such that Q

ε,x → δx weakly in
P(X ), and limε αεEntε(Qε,x |Pε) ≤ I (x). Then {Pε} satisfies a large deviations lower
bound with speed α−1

ε and rate I .

Proof of Theorem 1: lower bound We will prove the lower bound following the strat-
egy suggested by Lemma 7. More precisely, consider the set

M0 :=
{
µ ∈ M : ∃ζ > 0 : µ = δu for some u ∈ C2 ([0, T ] × T; [ζ, 1 − ζ ])

}

Here we prove that for each µ ∈ M0 there exists a sequence of probability measures
{Qε} ⊂ P(M) such that Qε → δµ and lim ε2γEnt(Qε|Pε) ≤ I(µ). By Lemma 7 this
will yield a large deviations lower bound with rate Ĩ : M → [0,+∞] defined as

Ĩ(µ) :=
{

I(µ) if µ ∈ M0

+∞ otherwise
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By a standard diagonal argument, the lower bound then also holds with the lower
semicontinuous envelope of Ĩ as rate functional. In [3, Theorem 4.1] it is shown, in
a slightly different setting, that the lower semicontinuous envelope of Ĩ is indeed I.
By the assumption ζ ≤ u0 ≤ 1 − ζ (which is equivalent to the requirement that
a2(u0) is uniformly positive), it is not difficult to adapt the arguments in the proof of
Theorem 4.1 in [3, Theorem 4.1], to obtain the analogous result in this case. We are
thus left with the proof of the lower bound on M0.

Let µ ∈ M0 be such that I(µ) < ∞. Then µ = δv for some smooth v ∈
C ([0, T ]; U ) with v(0, x) = u0(x) and a(v)2 ≥ r for some r > 0. By the definition
of I and the smoothness of v

I(µ) = sup
ϕ∈C∞([0,T ]×T)

{
−〈〈∂tv + ∇ · f (v), ϕ〉〉 − 1

2
〈〈a(v)2∇ϕ,∇ϕ〉〉

}

≥ sup
ϕ∈C∞([0,T ]×T)

{
−〈〈∂tv + ∇ · f (v), ϕ〉〉 − r

2
〈〈∇ϕ,∇ϕ〉〉

}

Since the supremums in this formula are finite, Riesz representation lemma implies
the existence of a �v ∈ L2

([0, T ]; H1(T)
)

such that

∂tv + ∇ · f (v) = −∇ · [a(v)2∇�v] (31)

holds weakly and

I(µ) = 1

2
〈〈a(v)2∇�v,∇�v〉〉 (32)

We next define the P-martingale Mε;v on � as

Mε;v(t) := −ε−γ
t∫

0

〈
jε ∗ [a(v)∇�v], dW

]〉

so that, by Young inequality for convolutions and (32), we have P a.s.

[
Mε;v,Mε;v](T ) ≤ ε−2γ ‖a(v)∇�v‖2

L2([0,T ]×T) = 2ε−2γ I(µ) (33)

Since the quadratic variation of Mε;v is bounded, its stochastic exponential

Eε;v(t, ω) := exp

(
Mε;v(t, ω)− 1

2
[Mε;v,Mε;v](t, ω)

)

is a uniformly integrable P-martingale. For ε > 0 we define the probability measure
Qε;v on � by

Qε;v(dω) := Eε;v(T, ω)P(dω)
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Recalling that uε was the process solving (6), we next define Qε;v := Qε;v ◦(δuε )
−1 ∈

P(M). Then

ε2γEnt(Qε;v|Pε;v) ≤ ε2γEnt(Qε;v|P) = ε2γ
∫

Qε;v(dω) log Eε;v(T, ω)

= ε2γ
∫

Qε;v(dω)
(

Mε;v(T, ω)− [Mε;v,Mε;v](T, ω)
)

+ ε2γ

2

∫
Qε;v(dω)[Mε;v,Mε;v](T, ω) ≤ I (µ) (34)

where in the last line we used Girsanov theorem, stating that Mε;v − [Mε;v,Mε;v] is
a Qε,v-martingale and it has therefore vanishing expectation, and (33).

By (34), Lemma 6 and entropy inequality, the sequence {Qε;v} is tight in P(M),
and in view of (34) it remains to show that any limit point of {Qε;v} is concentrated
on {δv}. Let Q

ε;v := Qε;v ◦ (uε)−1 ∈ P (C ([0, T ]; U )); we will show

lim
ε

E
Q
ε

(
sup

t
‖u(t)− v(t)‖L1(T)

)
= 0 (35)

which is easily seen to imply the required convergence of {Qε}. Since Q
ε;v is absolutely

continuous with respect to P
ε, it is concentrated on C([0, T ]; U )∩ L2([0, T ]; H1(T))

and by Girsanov theorem it is a solution to the martingale problem associated with the
stochastic partial differential equation in the unknown u

du =
[
−∇ · f (u)+ ε

2
∇ · [D(u)∇u − a(u)

(
(jε ∗ jε) ∗ (a(v)∇�v))]

]
dt

+ εγ ∇ · [a(u)(jε ∗ dW )
]

(36)

u(0, x) = uε0(x)

where we used the same notation of (6). Note that�v is twice continuously differentia-
ble, since a(v)2 is strictly positive and (31) can be regarded as an elliptical equation for
�v with smooth data. Therefore by Lemma 3 applied with Eε = jε ∗ jε ∗ [a(v)∇�v]
we have that E

Q
ε;v
(ε‖∇u‖2

L2([0,T ]×T)
) is bounded uniformly in ε. By (31) and (36), we

can then apply Lemma 4 with: vε(u)(t, x) = v(t, x), Gε
1(u, v)(t, x) = ε

2∇·[D(v)∇v],
Gε

2(u, v) = 0 and Gε
3(u, v)(t, x) = [a(v) − a(u)][a(v)�v − jε ∗ jε ∗ [a(v)�v]].

Since v and�v are smooth, the hypotheses of Lemma 4 hold and we thus obtain (35).
��

Proof of Corollary 1 The corollary is an immediate consequence of the contraction
principle [8, Theorem 4.4.1] applied to the continuous map M � µ �→ µ(ı) ∈
C([0, T ]; U ). Ifµ ∈ M is such that I(µ) < ∞, then there exists� ∈ L2([0, T ]×T)

such that ∂tµ(ı) = −∇� holds weakly, and thus we have for u ∈ C([0, T ]; U ) and
any � in the above class
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inf
µ∈M,µ(ı)=u

I (µ)= inf
µ∈M,µ(ı)=u

sup
ϕ∈C∞([0,T ]×T)

{
〈〈�−µ( f ),∇ϕ〉〉− 1

2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}

=
∫

dt inf
c∈R

∫
dx inf

µ∈M, µ(ı)=u

[
µt,x ( f )−�(t, x)− c

]2
µt,x (a2)

Since the function � satisfying ∂tµ(ı) = −∇� are defined up to a measurable addi-
tive function of t , the optimization over c can be replaced by an optimization over �,
namely

inf
µ∈M, µ(ı)=u

I (µ) = inf
�∈L2([0,T ]×T),∇�=−∂t u

inf
µ∈M, µ(ı)=u

∫
dt dx

[
µt,x ( f )−�(t, x)

]2
µt,x (a2)

which coincides with I (u). ��

3.3 Large deviations with speed ε−2γ+1

The next statement follows easily from entropy inequality (see also the introduction
of [18] for further details).

Lemma 8 Let X be a Polish space and {Pε} ⊂ P(X ). The following are equivalent:

(i) {Pε} is exponentially tight with speed ε−2γ+1.
(ii) If a sequence {Qε} ⊂ P(X ) is such that limε ε

2γ−1Ent(Qε|Pε) < +∞, then
{Qε} is tight.

Let Q ∈ P(X ). For � : [0, T ] × X → C∞([0, T ] × T) a predictable process, let

‖�‖2
Dε(Q) :=

∫
Q(du)

∥∥jε ∗ [a(u)∇�(u)]∥∥2
L2([0,T ]×T)

∈ [0,+∞]

We let Dε(Q) be the Hilbert space obtained by identifying and completing the set of
predictable processes� : [0, T ]×X → C∞([0, T ]× T) such that ‖ · ‖Dε(Q) < +∞
with respect to this seminorm.

Lemma 9 Let ε > 0 and Q ∈ P(X ) be such that Ent(Q|Pε) < +∞. Then there
exists � ∈ Dε(Q) such that Q is a martingale solution to the Cauchy problem in the
unknown u

du =
(
−∇ · f (u)+ ε

2
∇ · (D(u)∇u)− εγ∇ · [a(u)jε ∗ jε ∗ [a(u)∇�(u)]]

)
dt

+ εγ ∇ · [a(u)(jε ∗ dW )
]

(37)

u(0, x) = uε0(x)

and Ent(Q|Pε) ≥ 1
2‖�‖2

Dε(Q)
.
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Proof Since Q is absolutely continuous with respect to P
ε, there exists a continuous

local P
ε-martingale N on X such that

Q(du) = exp

(
N (T, u)− 1

2
[N , N ] (T, u)

)
P
ε(du)

and Ent(Q|Pε) = E
Q(N (T ) − 1

2 [N , N ](T )) = 1
2 E

Q([N , N ](T )) by Girsanov
theorem.

It is easy to see that, as ϕ runs in C∞([0, T ] × T), the family of maps (defined P

a.s.)

[0, T ] × χ � (t, u) �→ 〈M(t, u), ϕ〉 := 〈u(t), ϕ(t)〉 − 〈u(0), ϕ(0)〉

−
t∫

0

ds

〈
u, ∂tϕ〉 − 〈 f (u)− 1

2
D(u)∇u,∇ϕ

〉
∈ R

generates the standard filtration of X . Therefore the martingale N is adapted to
{〈M, ϕ〉}, and reasoning as in [19, Lemma 4.2], there exists a predictable process
� on X and a martingale Ñ such that

N (t) =
t∫

0

〈�, d M〉 + Ñ (t)

and

[
Ñ , 〈M, ϕ〉](T, u) = 0 for all ϕ ∈ C∞(T), for P a.e. u. (38)

In particular

E
Q ([N , N ](T )) = E

Q

⎛
⎝
⎡
⎣

·∫

0

〈�, d M〉,
·∫

0

〈�, d M〉
⎤
⎦ (T )

⎞
⎠+ E

Q

([
Ñ , Ñ

]
(T )

)

≥ E
Q

(∥∥jε ∗ [a(u)∇�(u)]∥∥2
L2([0,T ]×T)

)

Therefore Ent(Q|Pε) ≥ 1
2‖�‖Dε(Q) and (37) follows by Girsanov theorem and (38).

It is immediate to see that both the bound on the relative entropy Ent(Q|Pε) and the
Girsanov term in (37) are compatible with the identification induced by the seminorm
‖ · ‖Dε(Q), and thus one can identify � with an element in Dε(Q). ��
Lemma 10 Under the same hypotheses of Theorem 2 item (i), there exists a sequence
{K�} of compact subsets of X such that

lim
�

lim
ε
ε2γ−1 log P

ε(K�) = −∞
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Proof In view of Lemma 8, we will prove that if Q
ε ⊂ P(X ) is a sequence with

ε2γ−1Ent(Qε|Pε) ≤ C for some C ≥ 0 independent of ε, then Q
ε is tight. By

Lemma 9, there exists a sequence �ε ∈ Dε(Qε) such that

ε−1

2
‖�ε‖2

Dε(Qε) ≤ ε2γ−1Ent(Qε|Pε) ≤ C (39)

and Q
ε is a martingale solution to the Cauchy problem in the unknown u

du =
(
−∇ · f (u)+ ε

2
∇ · (D(u)∇u)− ∇ · [a(u)jε ∗ jε ∗ [a(u)∇�ε(u)]]

)
dt

+ εγ ∇ · [a(u)(jε ∗ dW )
]

(40)

u(0, x) = uε0(x)

For ε > 0, we next define (Pε a.s.) the predictable map vε : X → X as the solution
to the parabolic Cauchy problem

∂tv = −∇ · f (v)+ ε

2
∇ · (D(v)∇v)− ∇ · [a(v)jε ∗ jε ∗ [a(u)∇�ε(u)]]

v(0, x) = u0(x) (41)

It is easily seen that, for P
ε a.e. u, (41) admits a unique solution vε(u) ∈ X ∩

L2([0, T ]; H1(T)), and that the definition of vε is compatible with the equivalence
relation for �ε in the definition of Dε(Qε). By (41) and Young inequality for convo-
lutions we also have

Iε(v
ε(u)) = 1

2

∥∥jε ∗ jε ∗ [a(u)∇�ε(u)]∥∥2
L2([0,T ]×T)

≤ 1

2

∥∥jε ∗ [a(u)∇�ε(u)]∥∥2
L2([0,T ]×T)

(42)

where Iε : X ∩ L2([0, T ]; H1(T)) → [0,+∞] is defined as

Iε(v) := sup
ϕ∈C∞([0,T ]×R)

[
〈v(T ), ϕ(T )〉 − 〈u0, ϕ(0)〉

− 〈〈v, ∂tϕ〉〉 + 〈〈 f (v)− 1

2
D(v)∇v,∇ϕ〉〉 − 1

2
〈〈a(v)2∇ϕ,∇ϕ〉〉s

]

Therefore taking the E
Q
ε

expectation in (42), multiplying by ε−1 and using (39)

EQ
ε
(
ε−1 Iε(v

ε(u))
)

≤ ε−1

2
‖�ε‖2

Dε(Qε) ≤ C (43)
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Minor adaptations of the proof of [3, Theorem 2.5] imply that for each � > 0 there
exist ε0(�) > 0 and a compact K� ⊂ X such that

∪ε≤ε0(�)

{
v ∈ X ∩ L2

(
[0, T ]; H1(T)

)
: ε−1 Iε(v) ≤ �

}
⊂ K� (44)

(43) and (44) imply that the sequence {Qε ◦ (vε)−1} ⊂ P(X ) is tight in X , since by
Chebyshev inequality

(
Q
ε ◦ (vε)−1

)
(K c

� ) ≤ C�−1

By Lemma 3 (applied to P
ε with Eε ≡ 0) and entropy inequality, we have

lim
�→+∞ lim

ε
Q
ε
(
ε‖∇u‖2

L2([0,T ]×T) ≥ �
)

= 0

Therefore, in view of (40) and (41) we can apply Lemma 4 to Q
ε with G1(u, v) = 0,

G2(u, v) = 0, G3(u, v) = [a(v)−a(u)] [jε ∗ jε ∗ [a(u)∇�ε(u)]. Indeed, since (39)
holds, the hypotheses of Lemma 4 are easily satisfied. We then gather for each δ > 0

lim
ε

Q
ε

(
sup

t
‖u − vε(u)‖L1(T) ≥ δ

)
= 0

which implies, together with the tightness of {Qε ◦(vε)−1} proved above, the tightness
of {Qε}. ��

Proof of Theorem 2: upper bound Let W ⊂ X be the set of weak solutions to (7). Let
K ⊂ X be compact, and set K := {µ ∈ M : µ = δu, for some u ∈ K }. K is compact
in M, since X is equipped with the topology induced by the map X � u �→ δu ∈ M.
If K ∩W = ∅, then infµ∈K I(µ) > 0 as I vanishes only on measure-valued solutions
to (7). In particular by Theorem 1 item (i)

lim
ε
ε2γ−1 log P

ε(K ) = lim
ε
ε2γ−1 log Pε(K) = −∞

Then, since W is closed in X and Lemma 10 holds, we need to prove the large devi-
ations upper bound for {Pε} only for compact sets K ⊂ W ⊂ X .
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Let (ϑ, Q) be an entropy sampler–entropy sampler flux pair. Recall the definition
of the martingale N ε;ϑ in Lemma 1, and consider its stochastic exponential

Eε;ϑ(t, u) := exp

(
N ε,ϑ (t, u)− 1

2

[
N ε,ϑ , N ε,ϑ

]
(t, u)

)

= exp

⎧⎨
⎩
∫

dx ϑ(u(t), t, x)−
∫

dx ϑ(u0, 0, x)

−
t∫

0

ds
∫

dx [(∂sϑ) (u(s, x), s, x)+ (∂x Q) (u(s, x), s, x)]

+
t∫

0

ds

[
ε

2
〈ϑ ′′(u)∇u, D(u)∇u〉 + ε

2
〈∂xϑ

′(u), D(u)∇u〉

− ε2γ

2
‖∇jε‖2

L2(T)
〈ϑ ′′(u)a(u), a(u)〉

− ε2γ

2
‖jε‖2

L2(T)
〈ϑ ′′(u)∇u, [a′(u)]2∇u〉

]

− ε2γ

2

t∫

0

ds
〈
a(u)2

[
ϑ ′′(u)∇u + ∂xϑ

′(u)
]
, ϑ ′′(u)∇u + ∂xϑ

′(u)
〉
⎫
⎬
⎭

Eε;ϑ is a continuous strictly positive P
ε-supermartingale starting at 1. For � > 0 let

B� := {u ∈ X ∩ L2
([0, T ]; H1(T)

) : ‖∇u‖2
L2([0,T ]×T) ≤ �}

Recall that W is the set of weak solutions to (3). Given a Borel subset A ⊂ W we
have, for C , ε0 as in Lemma 3 (applied with Eε ≡ 0) and � > C , ε ≤ ε0

P
ε(A) ≤ E

Pε
(

E
ε; ϑ

ε2γ−1 (T, u)[E
ε; ϑ

ε2γ−1 (T, u)]−11IA∩B�/ε (u)

)
+ P

ε(B�/ε)

≤ sup
u∈A∩B�/ε

[E
ε; ϑ

ε2γ−1 (T, v)]−1 + exp

(
− (�− C)2

Cε2γ−1(�+ 1)

)
(45)

where in the last line we used the supermartingale property of Eε;ϑ and Lemma 3.
Since

ε2γ−1 log E
ε; ϑ

ε2γ−1 (T, u) = −
∫

dx ϑ(u0(x), 0, x)

−
∫

ds dx [(∂sϑ) (u(s, x), s, x)+(∂x Q) (u(s, x), s, x)]

+ ε

2
〈〈ϑ ′′(u)∇u, D(u)∇u〉〉 + ε

2
〈〈∂xϑ

′(u), D(u)∇u〉〉
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− ε2γ

2
‖∇jε‖2

L2(T)
〈〈ϑ ′′(u)a(u), a(u)〉〉

− ε2γ

2
‖jε‖2

L2(T)
〈〈ϑ ′′(u)∇u, [a′(u)]2∇u〉〉

− ε

2
〈〈a(u)2ϑ ′′(u)∇u, ϑ ′′(u)∇u〉〉

− ε

2
〈〈a(u)2∂xϑ

′(u), ∂xϑ
′(u)〉〉

− ε〈〈a(u)2ϑ ′′(u)∇u, ∂xϑ
′(u)〉〉

by Cauchy-Schwartz inequality, for each u ∈ B�/ε

ε2γ−1 log E
ε; ϑ

ε2γ−1 (T, u) ≥ −
∫

dx ϑ(u0(x), 0, x)

−
∫

ds dx [(∂sϑ) (u(s, x), s, x)+ (∂x Q) (u(s, x), s, x)]

+ε
2
〈〈ϑ ′′(u)∇u,

(
D(u)− a(u)2ϑ ′′(u)

)
∇u〉〉 − Cϑ

√
ε�

−Cϑε
2γ ‖∇jε‖2

L2(T)
− Cϑε

2γ−1�‖jε‖2
L2(T)

− Cϑε − √
ε�Cϑ (46)

for a suitable constant Cϑ > 0 depending only on ϑ , D and a. The key point now is
that, if the entropy sampler ϑ satisfies

a(u)2ϑ ′′(u, t, x) ≤ D(u) ∀ u ∈ [0, 1], t ∈ [0, T ], x ∈ T (47)

then the term 〈〈ϑ ′′(u)∇u, (D(u)− a(u)2ϑ ′′(u))∇u〉〉 in (46) is positive. Namely, the
largest term in the quadratic variation of N ε;ϑ is controlled by the positive parabolic
term associated with the deterministic diffusion. Therefore taking the limit ε → 0 in
(46), by the hypotheses assumed on jε, for each entropy sampler ϑ satisfying (47)
and each u ∈ B�/ε

lim
ε
ε2γ−1 log E

ε; ϑ

ε2γ−1 (T, u) ≥ −
∫

dx ϑ(u0(x), 0, x)

−
∫

ds dx [(∂sϑ) (u(s, x), s, x)+ (∂x Q) (u(s, x), s, x)] (48)

We now take the logarithm of (45) and multiply it by ε2γ−1. Taking the limits ε → 0,
then � → +∞, and using (48), we have for each ϑ satisfying (47)

lim
ε
ε2γ−1 log P

ε(A) ≤ − inf
u∈A

{
−
∫

dx ϑ(u0(x), 0, x)

−
∫

ds dx [(∂sϑ) (u(s, x), s, x)+ (∂x Q) (u(s, x), s, x)]

}
≤ − inf

u∈A
sup
ϑ

Pϑ,u

where we have applied the definition (12) of Pϑ,u . Note that the map X � u �→ Pϑ,u ∈
R is lower semicontinuous. Applying the minimax lemma, we gather for a compact
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set K ⊂ W

lim
ε
ε2γ−1

P
ε(K ) ≤ − inf

u∈K
sup
ϑ

Pϑ,u

where the supremum is taken over the entropy samplers ϑ satisfying (47). It is easy
to see that a weak solution u to (7) such that supϑ Pϑ,u < +∞ is indeed an entropy-
measure solution u ∈ E , and supϑ Pϑ,u = H(u). ��
Proof of Theorem 2: lower bound We will use the entropy method suggested by
Lemma 7, as we did in the proof of Theorem 1 item (ii). Recall the Definition 2
of S. Given v ∈ S, we need to show that there exists a sequence {Qε;v} ⊂ P(X ) such
that lim ε2γ−1Ent(Qε;v|Pε) ≤ H(u) and Q

ε → δv in P(X ). The lower bound with
rate H then follows by a standard diagonal argument.

With minor adaptations from Theorem 2.5 in [3], we have that the following state-
ment holds.

Lemma 11 For each sequence βε → 0 and each v ∈ S, there exist a sequence
{wε} ⊂ X ∩ L2

([0, T ]; H1(T)
)

and a sequence {�ε} ⊂ L2
([0, T ]; H2(T)

)
such

that:

(a) wε → v in X , and wε(0, x) = u0(x).
(b) ε‖∇wε‖2

L2([0,T ]×T)
≤ C for some C > 0 independent of ε.

(c) limε
ε−1

2 〈〈a(wε)2∇�ε,∇�ε〉〉 = H(v).
(d) βε ‖∇[a(wε)∇�ε]‖2

L2([0,T ]×T) ≤ C ε−1, for some C > 0 independent of ε.
(e) The equation

∂tw
ε + ∇ · f (wε)− ε

2
∇ · (D(wε)∇wε) = −∇ ·

(
a(wε)2 ∇�ε

)

holds weakly.

We let βε := ε−3/2‖jε−1I‖W−1,1(T), and let {wε}, {�ε} be chosen correspondingly.
Note that with this choice of βε and by the assumption on ‖jε − 1I‖W−1,1(T)

lim
ε
ε−2

t∫

0

ds ‖jε ∗ jε ∗ [a(wε)∇�ε] − a(wε)∇�ε‖2
L2(T)

= 0 (49)

We define the martingale Mε;v on � as

Mε;v(t) := ε−γ
t∫

0

〈jε ∗ [a(wε)∇�ε], dW 〉

Then by Young inequality for convolutions:

1

2

[
Mε;v,Mε;v] (T ) ≤ ε−2γ

2
〈〈a(wε)2∇�ε,∇�ε〉〉 (50)
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In particular the stochastic exponential of N ε;v is a martingale on�, and we can define
the probability measure Qε;v ∈ P(�) as

Qε;v(dω) := exp

(
N ε;v(T, ω)− 1

2

[
N ε;v, N ε;v] (T, ω)

)
P(dω)

and Q
ε;v := Qε;v ◦ (uε)−1 ∈ P(X ), where uε : � → X is the solution to (6).

Reasoning as in (34), and using (50) and property (c) in Lemma 11

lim
ε
ε2γ−1Ent(Qε;v|Pε;v) ≤ lim

ε
ε2γ−1Ent(Qε;v|P)

= lim
ε

ε2γ−1

2

∫
Qε;v(dω)[Mε;v,Mε;v](T, ω)

≤ lim
ε

ε−1

2
〈〈a(wε)2∇�ε,∇�ε〉〉 = H(v) (51)

We next need to prove that Q
ε;v converges to δv in P(X ) as ε→0. By Girsanov the-

orem Q
ε;v is a martingale solution to the stochastic Cauchy problem in the unknown u

du =
[
−∇ · f (u)+ ε

2
∇ · (D(u)∇u)− ∇ · a(u)(j ∗ j ∗ (a(wε)∇�ε)

]
dt

+εγ ∇ · [a(u)(jε ∗ dW )
]

(52)

u(0, x) = uε0(x)

In view of property (a) in Lemma 11, it is enough to check that Lemma 4 holds with
vε(u)(t, x) = wε(t, x). Indeed, still by property (a) in Lemma 11 and the assumptions
of this theorem, conditions (i) and (ii) in Lemma 4 are immediate. By property (e) in
Lemma 11 and (52), Q

ε;v is a martingale solution to (24) with Gε
1 ≡ 0,

Gε
2(u, w) = a(w)

[
jε ∗ jε ∗ [a(wε)∇�ε] − a(wε)∇�ε]

Gε
3(u, w) = [a(w)− a(u)][j ∗ j ∗ (a(wε)∇�ε]

Therefore, in view of (49), condition (iii) in Lemma 4 is easily seen to hold.
Condition (iv) is also immediate from the definition of G3 and the bound on
Q
ε;v(ε‖∇u‖L2([0,T ]×T) > �) provided by the application of Lemma 3 for P

ε (thus
with Eε ≡ 0), the entropy bound (51), and the usual entropy inequality. ��
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Appendix A: Existence and uniqueness results for fully nonlinear parabolic
SPDEs with conservative noise

In this appendix, we are concerned with existence and uniqueness results for the
Cauchy problem in the unknown u ≡ u(t, x), t ∈ [0, T ], x ∈ T

du =
[
−∇ · f (u)+ 1

2
∇ · (D(u)∇u)

]
dt + ∇ · [a(u)(j ∗ dW )]

(A-1)
u(0, x) = u0(x)

Although we assume the space-variable x to run on a one-dimensional torus T, it is
not difficult to extend the results given below to the case x ∈ T

d or x ∈ R
d for d ≥ 1.

Let W be an L2(T)–valued cylindrical Brownian motion on a given standard filtered
probability space (�,F, {Ft }0≤t≤T , P). Hereafter we set

Q(v) := a′(v)2‖j‖2
L2(T)

We will assume the following hypotheses:

(A1) f and D are uniformly Lipschitz on R.
(A2) a ∈ C2(R) is uniformly bounded.
(A3) j ∈ H1(T) and, with no loss of generality,

∫
dx |j (x)| = 1.

(A4) There exists c > 0 such that D ≥ Q + c.
(A5) u0 : � → L2(T) is F0-Borel measurable and satisfies E

P(‖u0‖2
L2(T)

) < +∞.

We introduce the Polish space Y := C([0, T ]; H−1(T)) ∩ L2([0, T ]; H1(T)) ∩
L∞([0, T ]; L2(T)). A probability measure P on Y is a martingale solution to (A-1) iff
the law of u(0) under P is the same of the law of u0, and for each ϕ ∈ C∞([0, T ]×T)

〈M(t, u), ϕ〉 := 〈u(t), ϕ(t)〉 − 〈u(0), ϕ(0)〉 −
t∫

0

ds 〈u, ∂sϕ〉 + 〈 f (u)

− 1

2
D(u)∇u,∇ϕ〉 (A-2)

is a continuous square-integrable martingale with respect to P(du) with quadratic
variation

[〈M, ϕ〉, 〈M, ψ〉] (t, u) =
t∫

0

ds 〈j ∗ (a(u)∇ϕ), j ∗ (a(u)∇ψ)〉 (A-3)
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We say that a progressively measurable process u : � → Y is a strong solution to
(A-1) iff u(0) = u0 P-a.s. and for each ϕ ∈ C∞ ([0, T ] × T)

〈M, ϕ〉 = −
t∫

0

〈j ∗ (a(u)∇ϕ) , dW 〉 (A-4)

In this appendix we prove

Theorem 3 Assume (A1)–(A5). Then there exists a unique strong solution u to (A-1)
in Y . Such a solution u admits a version in C ([0, T ]; L2(T)). Furthermore, if u0 takes
values in [0, 1] and a is supported by [0, 1], then u takes values in [0, 1] a.s.

By compactness estimates we will prove that there exists a solution to the martingale
problem related to (A-1). Then we will provide pointwise uniqueness for (A-1) using a
stability result similar to the one used in the proof of Lemma 4. By Yamada-Watanabe
theorem we get the existence and uniqueness stated in Theorem 3. We remark that
assumption (A4) is a key hypotheses in the proof of Theorem 3, as it implies that the
noise term is smaller than the second order parabolic term, thus allowing some a priori
bounds. In general, one may expect nonexistence of the solution to (A-1) if such a
condition fails, see [7, Example 7.21].

Lemma 12 Let 0 ≤ t ′ < t ′′ ≤ T , let u′, v : � → L2(T) be Ft ′-measurable maps
such that E

P (‖|u′| + |v| + |∇v|‖2
L2(T)

) < +∞. Then the stochastic Cauchy problem
in the unknown w

dw =
[
−∇ · f (w)+ 1

2
∇ · (D(v)∇w)

]
dt + ∇ · [a(v)(j ∗ dW )]

(A-5)
w(t ′, x) = u′(x)

admits a unique strong solution u in L2([t ′, t ′′]; H1(T)) ∩ C([t ′, t ′′], H−1(T)) with
probability 1. For each t ∈ [t ′, t ′′], such a solution u satisfies

〈u(t), u(t)〉 +
t∫

t ′
ds〈D(v)∇u,∇u〉

= N (t, t ′)+ 〈u′, u′〉 +
t∫

t ′
ds

[
〈Q(v)∇v,∇v〉 + ‖∇j‖2

L2(T)

∫
dx a(v)2

]
(A-6)

where N (t, t ′) := −2
∫ t

t ′ 〈j ∗ (a(v)∇u), dW 〉. Furthermore

E
P

(
sup

t∈[t ′,t ′′]
‖u(t)‖2

L2(T)

)
< +∞
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Proof Existence and uniqueness of the semilinear equation (A-5) are standard, see
e.g. [7, Chap. 7.7.3]. Applying Itô formula to the function L2(T) � w �→ 〈w,w〉 ∈ R

we get (A-6). Note that by Burkholder-Davis-Gundy inequality [19, Theorem 4.4.1],
Young and Cauchy-Schwarz inequalities, for suitable constants C,C ′ > 0

E
P

(
sup

t∈[t ′,t ′′]
|N (t, t ′)|

)
≤ C E

P
([

N (·, t ′), N (·, t ′)
]
(t ′′)1/2

)

= 2 C E
P (‖j ∗ (a(v)∇u) ‖L2([t ′,t ′′]×T)

)

≤ 2 C E
P (‖ (a(v)∇u) ‖L2([t ′,t ′′]×T)

)

≤ C ′

⎡
⎢⎣E

P

⎛
⎜⎝

t ′′∫

t ′
ds 〈D(v)∇u,∇u〉

⎞
⎟⎠

⎤
⎥⎦

1/2

so that the bound on E
P (supt∈[t ′,t ′′] ‖u(t)‖2

L2(T)
) is easily obtained by taking the su-

premum over t and the E
P expected values in (A-6). ��

We next introduce a sequence {un} of adapted processes in Y . We will gather exis-
tence of a weak solution to (A-1) by tightness of the laws {Pn} of such a sequence.

For n ∈ N and i = 0, . . . , 2n let tn
i := i2−nT , and let {ın} be a sequence of smooth

mollifiers on T such that limn 2−n‖ın‖2
L1(T)

= 0. We define a process un on Y and the

auxiliary random functions {vn
i }2n

i=0 on T as follows. For i = 0 we set

un(0) := u0

vn
0 := ın ∗ u0

and for i = 1, . . . , 2n −1 and t ∈ [tn
i , tn

i+1], we let un(t) be the solution to the problem
(A-5) with u′ = u(tn

i ) and v = vn
i , where for i ≥ 1 we set

vn
i := 2n

T

tn
i∫

tn
i−1

ds un(s) (A-7)

By Lemma 12, these definitions are well-posed, and un is in Y with probability 1.
We also define a sequence {vn} of cadlag processes in the Skorohod space D([0, T );
L2(T)), by requiring

vn(t) = vn
i for t ∈ [tn

i , tn
i+1) (A-8)

Lemma 13 There exists a constant C > 0 independent of n such that

E
P

(
sup

t∈[0,T ]
‖un(t)‖2

L2(T)
+ ‖∇un‖2

L2([0,T ]×T)

)
≤ C (A-9)

123



642 M. Mariani

and for each ϕ ∈ H1(T) such that ‖∇ϕ‖2
L2(T)

≤ 1, for each δ > 0 and r ∈ (0, 1)

P

(
sup

s,t∈[0,T ] :|s−t |≤δ
∣∣〈un(t)− un(s), ϕ〉∣∣ > r

)
≤ C δ r−2 (A-10)

Furthermore for each r > 0

lim
n→∞ P

(‖un − vn‖L2([0,T ]×T) > r
) = 0 (A-11)

Proof Writing Itô formula (A-6) for un in the intervals [tn
i , tn

i+1] and summing over
i , we get for each t ∈ [0, T ]

〈un(t), un(t)〉 +
t∫

0

ds 〈D(vn)∇un,∇un〉

= 〈u0, u0〉 +
t∫

0

ds

[
〈Q(vn)∇vn,∇vn〉 + ‖∇j‖2

L2(T)

∫
dx a(vn)2

]
+ N n(t)

where, by the same means of Lemma 12 and Doob’s inequality, the martingale

N n(t) := 2

t∫

0

〈j ∗ (a(vn)∇un) , dW 〉

enjoys the bound

E
P

(
sup

s∈[0,T ]
|N n(t)|2

)
≤ C1 E

P
(
‖∇un‖2

L2([0,T ]×T)

)

for some C1 > 0 depending only on D and a. Note that, by the definition of vn
i (A-7),

hypotheses (A4) and (A5) and Young inequality for convolutions

t∫

0

ds 〈Q(vn)∇vn,∇vn〉

≤ C2

tn
1∫

0

ds ‖ın ∗ u0‖2
L2(T)

+
t∫

0

ds 〈Q(vn)∇un,∇un〉

≤ 2−nT C2 ‖ın‖2
L1(T)

‖u0‖2
L2(T)

+
t∫

0

ds 〈(D(vn)− c)∇un,∇un〉
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for some constant C2 depending only on a. Patching all together

E
P

(
sup

t∈[0,T ]
‖un(t)‖2

L2([0,T ]×T) + c〈〈D(vn)∇un,∇un〉〉
)

≤
(

1 + 2−nT C2‖ın‖2
L1(T)

)
E

P
(
‖u0‖2

L2(T)

)

+C1 E
P
(
〈〈D(vn)∇un,∇un〉〉1/2

)
+ ‖∇j‖2

L2(T)
E

P
(
‖a(vn)‖2

L2([0,t]×T)

)

Since 2−n‖ın‖L1(T) was assumed bounded, and since the last term in the right hand
side is bounded uniformly in n, it is not difficult to gather (A-9).

Since u satisfies (A-5) in each interval [tn
i , tn

i+1]
∣∣〈un(t)− un(s), ϕ〉∣∣ ≤ C3

(
1 + ‖∇un‖L2([0,T ]×T)

) ‖∇ϕ‖L2(T)|t − s|1/2

+
∣∣∣∣∣∣

t∫

s

〈j ∗ (a(v)∇ϕ), dW 〉
∣∣∣∣∣∣

for a suitable constant C3 depending only on f and D. (A-10) then follows from the
first part of the lemma.

Since vn(t) = ın ∗ u0 for t ∈ [0, tn
1 ), the bound (A-9) implies

lim
n→∞ P

(
‖un − vn‖L2([0,tn

1 ]×T) > r
)

= 0

for each r > 0. Therefore, still by (A-9), in order to prove (A-11), it is enough to show
that for each r, � > 0

lim
n→∞ P

(
‖un − vn‖L2([tn

1 ,T ]×T) > r, ‖∇un‖2
L2([0,T ]×T) ≤ �

)
= 0

Let κ ∈ C∞(T) be such that
∫

dx κ(x) = 1, and that

‖κ − id‖−1,1 := sup

{∫
dx

∣∣∣∣
∫

dy κ(x − y)ϕ(y)− ϕ(x)

∣∣∣∣ ,

ϕ ∈ C∞(T) : sup
x

|∇ϕ(x)| ≤ 1

}
≤ r

2�
(A-12)

It is immediate to see that such a κ exists. Then

‖un − vn‖L2([tn
1 ,T ]×T) ≤ ‖un − κ ∗ un‖L2([tn

1 ,T ]×T)

+‖vn − κ ∗ vn‖L2([tn
1 ,T ]×T) + ‖κ ∗ un − κ ∗ vn‖L2([tn

1 ,T ]×T)

≤ ‖κ − id‖−1,1

[
‖∇un‖L2([tn

1 ,T ]×T) + ‖∇vn‖L2([tn
1 ,T ]×T)

]

+ ‖κ ∗ (un − vn)‖L2([tn
1 ,T ]×T)
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where in the last inequality we used the Young inequality. By the definition (A-7) and
(A-8) of vn , ‖∇vn‖2

L2([tn
1 ,T ]×T)

≤ ‖∇un‖2
L2([0,T ]×T)

. Moreover

T∫

tn
1

dt ‖κ ∗ (un − vn)‖2
L2(T)

=
2n−1∑
i=1

tn
i+1∫

tn
i

dt

∥∥∥∥∥∥∥
κ ∗ un(t)− 2n

T

tn
i∫

tn
i−1

ds κ ∗ un(s)

∥∥∥∥∥∥∥

2

L2(T)

≤ T sup
|t−s|≤2−n+1T

‖κ ∗ (un(t)− un(s))‖2
L2(T)

Therefore by (A-12)

‖un − vn‖2
L2([tn

1 ,T ]×T) ≤ r

2�
‖∇un‖2

L2([tn
1 ,T ]×T)

+T sup
|t−s|≤2−n+1T

‖κ ∗ (un(t)− un(s))‖2
L2(T)

(A-13)

so that

lim
n→∞ P

(
‖un − vn‖L2([tn

1 ,T ]×T) > r, ‖∇un‖2
L2([0,T ]×T) ≤ �

)

≤ lim
n→∞ P

(√
T sup

|t−s|≤2−n+1T
‖κ ∗ (un(t)− un(s))‖L2(T) ≥ r/2

)

which vanishes in view of (A-10). ��
We define P

n to be the law of un , namely P
n = P ◦ (un)−1. In order to establish

tightness of the sequence {Pn}, the P
n will be regarded as probability measures on

C
([0, T ], H−1(T)

) ⊃ Y , although they are concentrated on Y .

Corollary 2 {Pn} is tight, and thus compact, on C
([0, T ], H−1(T)

)
equipped with

the uniform topology. Furthermore each limit point P of {Pn} is concentrated on Y
and satisfies

E
P

(
sup

t
‖u(t)‖2

L2(T)
+ ‖∇u‖2

L2([0,T ]×T)

)
< +∞ (A-14)

Proof By the compact Sobolev embedding of L2(T) in H−1(T), the estimate (A-9)
implies that compact containment condition is satisfied, namely there exists a sequence
{K�} of compact subsets of H−1(T) such that

lim
�

lim
n

P
(∃t ∈ [0, T ] : un(t) �∈ K�

) = 0

Moreover the estimate (A-10) implies that for each ϕ ∈ H1(T) the laws of the pro-
cesses t �→ 〈un(t), ϕ〉 are tight in C ([0, T ]; R) as n runs on N, see [4, page 83]. By
[11, Theorem 3.1], we get tightness of {Pn} on C

([0, T ], H−1(T)
)
.

(A-14) follows immediately by (A-9). ��
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The following statement is derived following closely the proof of Proposition 3.5
in [3].

Lemma 14 Let K ⊂ C ([0, T ]; U ). Suppose that each u ∈ K has a Schwartz distri-
butional derivative in the x-variable ∇u ∈ L2([0, T ] × T), and suppose that exists
ζ > 0 such that ‖∇u‖L2([0,T ]×T) ≤ ζ . Then K is strongly compact in X .

Proposition 4 Each limit point P of {Pn} is a weak solution to (A-1).

Proof Let P be a limit point of {Pn} along a subsequence nk . The law of u(0)
under P coincides with the law of u0. For u ∈ Y , v ∈ D ([0, T ); L2(T)) and
ϕ ∈ C∞ ([0, T ] × T) let

〈M(t; u, v), ϕ〉 := 〈u(t), ϕ(t)〉 − 〈u(0), ϕ(0)〉

−
t∫

0

ds

〈
u, ∂tϕ〉 − 〈 f (v)− 1

2
D(v)∇u,∇ϕ

〉

By (A-11), (A-9), and Lemma 14, the law of 〈M(·; un, vn), ϕ〉 converges, along the
subsequence nk , to the law of 〈M(·; u, u), ϕ〉 = 〈M(·, u), ϕ〉 under P.

For each n andϕ, 〈M(·; un, un), ϕ〉 is a martingale with respect to P
n , with quadratic

variation

[〈M(·; un, un), ϕ〉, 〈M(·; un, un), ϕ〉] (t) = ∥∥j ∗ (a(vn)∇ϕ)∥∥2
L2([0,t]×T)

Still by (A-11), (A-9), and Lemma 14, we have that 〈M(·, u), ϕ〉 is a martingale
under P, with quadratic variation given by (A-3). ��
Proposition 5 There exists at most one strong solution to (A-1) in Y . Each strong
solution to (A-1) admits a version in C ([0, T ]; L2(T)).

Proof Let u, v be to strong solutions to equation (A-1). By Ito formula, for l ∈ C2(R)

with bounded derivatives

∫
dx l(u − v)(t)− l(0)+ 1

2

t∫

0

ds 〈D(u)l ′′(u − v)∇(u − v),∇(u − v)〉

= X (t)+
t∫

0

ds〈l ′′(u − v)∇(u − v), f (u)− f (v)〉

−1

2

t∫

0

ds 〈l ′′(u − v)∇(u − v), [D(u)− D(v)]∇v〉

+1

2

t∫

0

ds 〈l ′′(u − v), ‖∇j‖2
L2(T)

(a(u)− a(v))2

+‖j‖2
L2(T)

(
a′(u)∇u − a′(v)∇v)2〉 (A-15)
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and the quadratic variation of the martingale X (t) enjoys the bound

[X, X ](t) ≤
t∫

0

ds ‖l ′′(u − v)∇(u − v) (a(u)− a(v)) ‖2
L2(T)

We next introduce the real number

R :=
⎡
⎣E

P

⎛
⎝

t∫

0

ds 〈l ′′(u − v)∇(u − v),∇(u − v)〉
⎞
⎠
⎤
⎦

1/2

Taking the supremum over t and the E
P expected value in (A-15), using repeteadly

Hölder inequality and the Burkholder-Davis-Gundy inequality [19, Theorem 4.4.1],
assumptions (A2) and (A5) and the bound (A-14), we get for a suitable constant C > 0

E
P

(
sup
t≤T

∫
dx l(u − v)(t)

)
+ cR2

≤ 2 l(0)+ C
[
E

P
(
‖l ′′(u − v)|u − v|2‖L∞([0,T ]×T)

)]1/2
R

+ CE
P

⎛
⎝

t∫

0

ds 〈l ′′(u − v)|u − v|, |u − v|〉
⎞
⎠

For any δ > 0, we can choose l so that |z| ≤ l(z) ≤ |z| + δ, l(z) = |z| for |z| ≥ δ,
and |l ′′(z)| ≤ 3δ−1. Therefore

E
P
(

sup
t

‖u − v‖L1(T)

)
≤ E

P
(

sup
t

∫
dx l(u − v)(t)

)
≤ 2δ − cR2 + C

√
δR + Cδ

≤
(

C2

4c
+ C + 2

)
δ

Since the last inequality holds for any δ > 0, we have u = v.
The C([0, T ]; L2(T)) regularity for a version u can be easily derived from Itô

formula for the map (t, u) �→ ∫
dx u(t, x)2. ��

Proof of Theorem 3 Existence and uniqueness of a strong solution to (A-1) is a con-
sequence of Propositions 4, 5 and Yamada–Watanabe theorem [14, Chap. 5, Corol-
lary 3.23]. The fact that u takes values in [0, 1] is provided in the same fashion of
Lemma 3. Let {ln} be a sequence of infinitely differentiable convex functions on R with
bounded derivatives. We can choose {ln} such that for v ∈ [0, 1] l ′′n (v) ≤ D(v) a−2(v)

and ln(v) ≤ Cn(1 + v2) (for some Cn > 0), while ln(v) ↑ +∞ for n → +∞
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pointwise for v �∈ [0, 1]. By Itô formula

∫
dx [ln(u(t))− ln(u0)] + 1

2

t∫

0

ds
〈
l ′′n (u)D(u)∇u, l ′′n (u)∇u

〉

= 1

2

t∫

0

ds
〈
l ′′n (u)∇u, Q(u)∇u

〉+ ‖∇j‖2
L2(T)

t∫

0

ds
∫

dx l ′′n (u) a(u)2 + Nn(t)

where Nn(t) is a martingale, and by Young inequality for convolutions its quadratic
variation is bounded by [Nn, Nn](t) ≤ ‖a(u)l ′′n (u)∇u‖2

L2([0,T ]×T)
. Following closely

the proof of Lemma 3, we gather for some constant C independent of n

E
P

(
sup
t≤T

∫
dx ln(u(t))

)
≤ E

P
(∫

dx ln(u0)

)
+ C

As we let n → ∞, the left hand side stays bounded, and since ln → +∞ pointwise
off [0, 1], we have dx d P-a.s. that u(t, x) ∈ [0, 1], for each t ∈ [0, T ]. ��
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