Probab. Theory Relat. Fields (2010) 147:529-563
DOI 10.1007/s00440-009-0214-x

Survival of contact processes on the hierarchical group

Siva R. Athreya - Jan M. Swart

Received: 27 August 2008 / Revised: 2 March 2009 / Published online: 16 April 2009
© Springer-Verlag 2009

Abstract We consider contact processes on the hierarchical group, where sites infect
other sites at a rate depending on their hierarchical distance, and sites become healthy
with a constant recovery rate. If the infection rates decay too fast as a function of the
hierarchical distance, then we show that the critical recovery rate is zero. On the other
hand, we derive sufficient conditions on the speed of decay of the infection rates for
the process to exhibit a nontrivial phase transition between extinction and survival. For
our sufficient conditions, we use a coupling argument that compares contact processes
on the hierarchical group with freedom two with contact processes on a renormalized
lattice. An interesting novelty in this renormalization argument is the use of a result
due to Rogers and Pitman on Markov functionals.
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1 Introduction
1.1 Main result

Let A be a finite or countably infinite set, called lattice, let (a(i, j))i, jea, i#; be non-
negative constants, and § > 0. Then the contact process on A with infection rates
a(i, j) and recovery rate § is the {0, 1} -valued Markov process X = (X;);>0 with
the following description. If X,(i) = 0 (resp. X;(i) = 1), then we say that the site
i € A is healthy (resp. infected) at time t > (0. An infected site i infects a healthy site
J with rate a(i, j) > 0, and infected sites become healthy with rate § > 0. It can be
shown (see [14, Prop. 1.3.2]) that X is well-defined provided the infection rates are
summable, in the sense that

lal :=sup D ali. j) < oo. (1.1)

JENjen, i)

Usually, it is convenient to assume also that |a'| < oo, where |a'| is defined as in
(1.1), but for the reversed infection rates a’ (i, Jj)i=a(j,i).

A contact process may be used to model the spread of an infection in a spatially
ordered population; see [17] as a general reference. A basic feature of the contact pro-
cess is that it exhibits a phase transition between survival and extinction. Let 0 € A
be some fixed site, called origin. We say that a contact process on a lattice A with
given infection rates (a(i, j)); jen, i=; and recovery rate 6 > 0 survives if there is a
positive probability that the process started with only the origin infected never recovers
completely, i.e., if

PY[X, £0Vt > 0] > 0, (1.2)
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where 8; € {0, 1}* is defined as 6i(j) :==1ifi = j and §;(j) := 0 otherwise, and
0 € {0, 1}* denotes the configuration with only healthy sites. (In typical cases, e.g.,
when the infection rates are irreducible in an appropriate sense or if the process has
some translation-invariant structure, this definition will not depend on the choice of
the origin 0.)

For given infection rates, we let

8¢ := sup {8 > 0 : the contact process with infection rates

(a(i, j))i,jen, i=; and recovery rate & survives} (1.3)

denote the critical recovery rate. A simple monotone coupling argument shows that
X survives for § < é. and dies out for § > &.

By comparison with a subcritical branching process, it is not hard to show that
8¢ < |a'|, where |aT| is defined below (1.1). For a large class of lattices, it is known
that moreover §. > 0. For example, this is the case for nearest-neighbor processes on
infinite graphs, where a (i, j) equals some fixed constant A > 0if i and j are connected
by an edge and is zero otherwise, or if A is a finitely generated, infinite group, and
the infection rates are irreducible and invariant under the left action of the group [20,
Lemma 4.18]. On groups that are not finitely generated, the question whether §. > 0
becomes more subtle. Inspired by a question that came up in [21], the main aim of the
present paper is to give sufficient conditions for 6. > O (resp. 8. = 0) when A is the
hierarchical group.

By definition, the hierarchical group with freedom N is the set

Qy = {i = (o, i1,...) ik €{0,..., N — 1}, iy # O for finitely many k}, (1.4)
equipped with componentwise addition modulo N. We set
li| :=inf{k > 0:i, =0Vm > k}, (1.5)

and call |i — j| the hierarchical distance between two elements i, j € Q. We will
be interested in contact processes on 2 whose infection rates a(i, j) are a function
of the hierarchical distance between i and j only. Such infection rates may always be
written as

a(i, j) == a— N7 G, j e Qy, i # j), (1.6)

where (o )r>1 are nonnegative constants. The scaling with N —li=jl in (1.6) is chosen
for calculational convenience. It is easy to check that in order for the infection rates
a(i, j) to summable in the sense of (1.1), we must assume that Z,fil o < 0Q.

Here is our main result:

Theorem 1 ((Non-) triviality of the critical recovery rate) Let N > 2, let (ox)k>1 be
nonnegative constants such that Z,fil o < 00, and let 8. be the critical death rate
of the contact process on 2y with infection rates as in (1.6).
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(a) Assume that

o0
liminf N ¥ log(8) = —oo, where P =D an (k=1. (L7
k—o00 "’

Then 6. = 0.

(b) Incase N is a power of 2, assume that

o0
Z N¥log(ax) > —oc0 for some m > 0. (1.8)

k=m

Otherwise, assume that (1.8) holds with N replaced by some real N' < N. Then
Sc > 0.

The special role played by powers of 2 in part (b) is entirely due to our methods of
proof and has no real significance. In fact, we will carry out most of our calculations
for the case N = 2 and then generalize to the statement in part (b) by a comparison
argument. Note that if the «x have the double exponential form

g =" (k=>1), (1.9)

then our results show that . > O for1 < 6 < N and 6. = 0 for& > N. Thereis a
gap between the conditions (1.7) and (1.8). We guess that (1.8) is not necessary for
8¢ > 0, since this condition is violated when infinitely many of the «;’s are zero, while
it seems unlikely that the latter should imply §. = 0. We do not know if condition
(1.7) is sharp.

1.2 Discussion and outline
1.2.1 Motivation

Population dynamical models (but not contact processes) on the hierarchical group
have been studied before in, e.g., [3,4,19]. The contact process on the hierarchical
group which is the subject of the present paper may be used to model the spread of an
infection in a spatially clustered population. Taking humans as an example, we may
think of a site (ig, i1, ...) as an address, where ig is the house number, i; the street,
i> the town, i3 the state and so on. In this example, sites at hierarchical distance less or
equal than 1, 2, or 3 from a given site are addresses that are in the same street, town, or
state, respectively. In case the a are rapidly decaying, our model describes a situation
where infections between large ‘blocks’ of sites, such as towns or states, are rare, hence
the infection has to overcome certain ‘bottlenecks’ in order to spread and survive in the
long run. In this context, we note that another model exhibiting such bottlenecks is the
one-dimensional contact process in a random environment with fixed, i.i.d. infection
rates between neighboring sites, see, e.g., [15]. Another motivation to study contact
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processes on the hierarchical group is that they may potentially be used to estimate
contact processes on other lattices from below, including long-range processes on Z
(compare [9]).

Apart from possible applications in population biology, we believe our results are
interesting from a more theoretical point of view because of the way we prove Theo-
rem 1 (b). Finding upper bounds on the critical recovery rate of a contact process is
generally easier than finding lower bounds. In line with this, the proof of Theorem 1 (a)
is rather simple, but part (b) is much more involved. In fact, as we explain below, there
are only a few known techniques for proving survival of contact processes in ‘low’
dimensions, and none seems to work well in our setting. The technique we finally
invented is in its essence a renormalization argument. As such, it is interesting in the
more general program of finding rigorous renormalization techniques for interacting
particle systems.

1.2.2 Renormalization

It has been recognized long ago that the hierarchical group is especially suitable for
renormalization arguments. There exists an extensive literature on the Ising model
on hierarchical lattices (see, e.g., [1,9,11]). Moreover, the self-avoiding random walk
on a hierarchical group with ‘effective’ dimension four is treated in [2], while line-
arly interacting diffusions and near-critical percolation on the hierarchical group have
been considered in [4,5], respectively. In these last two papers, in order to get rigorous
results, the authors take a ‘local mean field limit’, meaning that they send the freedom
N of the hierarchical group to infinity and rescale to get nontrivial limits.

The intuitive idea behind our proof of Theorem 1 (b) is easily explained. For given
i = (ip, i1,...) € Qn, set

Bi = 1{(j,io,i1,..) €Qn:jef0,....,N—1}. (1.10)

Then (B;)icqy is a collection of blocks B; C 2y, each B; containing N sites at
distance 1 from each other. We would like to consider B; as a single site in a ‘renor-
malized’ lattice, such that B; can be either infected or healthy. Indeed, if N is large
and o) > §, then it can be shown that there exists a ‘metastable’ state on B; in which
roughly a (1 — &/«)-fraction of the sites is infected, and that transitions from this
metastable state to the all-healthy state are fast and happen rarely. Thus, as long as 6/«
is sufficiently small, we expect our ‘renormalized’ blocks B; to behave effectively as
a single site, with an effective ‘renormalized’ recovery rate § that is much smaller than
the original §. Iterating this procedure, we expect the system to be more and more
stable as we move up the spatial scale, until, in the limit, we never get extinct.

It may well be that this intuition can be made rigorous in a precise way for a
suitably chosen model in the local mean field limit N — oo, in the spirit of
[4,5]. Our motivation, however, was to prove results for fixed N. The problem with
renormalization-style arguments for fixed N is that in this case, one is forced to give
exact bounds on how stable the ‘metastable’ state on B; is, and how fast transitions
between this state and the all-healthy state are. Moreover, these bounds must be trans-
lated into similar bounds on a renormalized lattice, in a way that can be iterated.
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If one tries to do this in a straightforward manner this soon becomes very messy and
technical.

The solution we found for this problem is a technique the second author learned
about from a talk by Tom Kurtz on the look-down construction for Fleming—Viot
processes [6,7] and that originates from Rogers and Pitman [18]. Basically, this is a
technique for adding structure to a Markov process X, such that if in the enriched pro-
cess (X, Y), one forgets the added structure Y, one obtains back the original process X.
An interesting feature of this technique is that in the enriched process (X, Y), the pro-
cess X is in general not an autonomous Markov process, i.e., the dynamics of X
depend on Y. In practice, we will set up a coupling between a contact process X on
the hierarchical group €2, with freedom 2, and an ‘added-on’ process Y that lives on
a renormalized lattice and that is almost a contact process itself. In particular, ¥ can
be stochastically estimated from below by a contact process Y, which is sufficient for
our purposes. For a more detailed discussion of our methods, we refer the reader to
Sects. 3.1-3.3.

1.2.3 Survival

Since the direct aim of our renormalization argument is to prove survival, we conclude
this section with a discussion of how survival is proved for contact processes on other
lattices. Since most of the literature deals with nearest-neighbor processes on graphs,
for which there is just a single infection rate, it has become customary to fix the recov-
ery rate to 1, consider the infection rate as a variable, and prove upper bounds on the
critical infection rate. By a trivial rescaling of time, we may instead fix the infection
rate and vary the recovery rate, hence any upper bound on the critical infection rate
in the traditional setting can be translated into a lower bound on the critical recovery
rate in our setting.

If A is an infinite (connected, undirected) graph, then it is always possible to embed
acopy of Z in A, hence the problem can be reduced to proving survival of the nearest-
neighbor contact process on Z. (It is often possible to do better than just embedding
copy of Z in A, see [14, Thm VI.4.1]).

For the nearest-neighbor contact process on Z, we are aware of two independent
proofs that §; > 0. If the recovery rate § is sufficiently small, then it is not hard
to set up a comparison between the contact process on Z and oriented percolation on
7 x Z+, with a percolation parameter p close to one. The problem can then be reduced
to showing that p. < 1 for oriented percolation on Z x Z., which is known to follow
from a Peierls argument (see [8, Chapter 5]).

An independent approach for proving survival of the nearest-neighbor contact pro-
cess on Z, which gives a better bound on the critical value, is the method of Holley
and Liggett [12] (see also [14, Section IV.1]). Their basic observation is that if there
exists a translation invariant probability law on {0, 1}% such that the process X started
in this initial law satisfies

DPEi e Ast X, (i) =1]|_, =0 (1.11)
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for all finite A C A, then by duality P[X((0) = 1] gives a lower bound on the sur-
vival probability of the process started with a single infected site. Holley and Liggett
then explicitly construct a renewal measure that solves (1.11). Their method has been
refined in [16], leading to the best rigorous lower bound on §. available to date.

For lattices different from Z, there exist other, independent methods for obtaining
lower bounds on 8.. On Z?, one may use comparison with a stochastic Ising model.
On Z? with d > 3, one may use comparison with certain linear systems; this method
gives the sharpest known bounds in high dimensions. (For both these techniques, see
[14, Section VI.4].) For processes on trees, there is a very simple lower bound on &
resulting from a supermartingale argument (see [17, Thm 1.4.1]).

In general, one can say that proving survival for contact processes is easier in higher
dimensions. In this context, returning to the hierarchical group, we mention the fol-
lowing fact. Let § = (&;);>0 be a random walk on 2 that jumps from a point i to j
with rates a(i, j) as in (1.6), with

ap = NKC/D (> 1), (1.12)
where d > 0 is some real constant. Then it can be shown that
P&, = 0] ~ 1742 p(logt) as 1 — oo, (1.13)

where ¢ is a positive, periodic, continuous real function and f(#) ~ g(¢) means that
f(t)/g() — 1.Thus, if d is an integer, then such a random walk is similar to a usual
short-range random walk on Z¢. (Indeed, this is more or less to how Brydges, Evans
and Imbrie construct a hierarchical group with ‘effective’ dimension four in [2], while
the scaling in [4] is chosen so as to mimic the critical dimension for linear systems,
which is two.) Note that in particular, & is recurrent if and only if d < 2.

These observations are relevant when we consider comparison with linear systems
as a method to prove survival of contact processes on the hierarchical group. Indeed,
since this technique depends on the transience of the underlying random walk, for
processes with rates o as in (1.12), it seems this technique can only work if d > 2.
Note that our Theorem 1 (b) shows that §. > O for any d > 0, and in fact for processes
with much faster decaying rates.

If we forget about other ‘high-dimensional’ techniques, this leaves us with two
known techniques for establishing lower bounds on the critical recovery rate that
might be successful on the hierarchical group: comparison with oriented percolation
plus a Peierls argument, or the method of Holley and Liggett.

It is not hard to set up a comparison between a contact process on 2y and some
form of oriented percolation on Qy x Z, (with a whole set of percolation parameters
P depending on the hierarchical distance), but this only moves the problem to proving
that the latter percolates if the py are sufficiently large. Since long-range infections
are essential for survival, it is not obvious, and seems rather difficult, to define suitable
contours which could then be counted and estimated in a Peierls argument.

While we did not spend much time investigating oriented percolation on Qy x Z,
we did spend a considerable amount of effort trying to adapt the method of Holley
and Liggett. As explained in [16], the renewal measure of Holley and Liggett may be
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interpreted as a certain type of Gibbs measure with the property thatin (1.11), equality
holds if A is an interval. The difficult part of the proof is then to show that this equality
for intervals extends to an inequality for general subsets A C A. For the hierarchical
group 2y, it is not hard to dream up a good analog of Liggett’s Gibbs measures and
to show that (1.11) may be satisfied with equality for certain special sets. (In fact, we
used blocks of sites within a given hierarchical distance of each other.) We were not
able, however, to carry out the difficult step in the argument, which is to extend the
equality in (1.11) for special A (the blocks) to an inequality for general A C Qy.
It may be that this method can be carried out successfully; our failure to do so is no
proof that it cannot be done.

1.2.4 Outline

After proving Theorem 1 (a) in Sect. 2, we present and prove our coupling of contact
processes on 2> in Sect. 3. A more detailed discussion of our coupling can be found
in Sects. 3.1-3.3 while Sects. 3.4-3.8 contain proofs. The proof of Theorem 1 (b) is

given in Sect. 4. Appendix A contains a simple, but rather tedious argument needed
in Sect. 3.6.

2 Extinction
2.1 Some general notation

Fix N > 2 and let Q = Qu denote the hierarchical group with freedom N. We
introduce contact processes whose state spaces are finite analogs of Q2. Forn > 1, set

Q" :={i =o,...,in-1) i €{0,...,N —1}} 2.1
and
Q%= {®)}, (2.2)
where (¥) denotes the empty sequence. We equip 2" with componentwise addition
modulo N. For m,n > 0, we define the concatenation i o j € Q""" of elements
ieQ"and j e Q" by
[0 := 0y bmelsJOr---»Jn—1)- (2.3)
Given 0 < m < n, by definition, the m-block in " with index j € Q"™ is the set
Bn(j):={ioj:ieQ"} (jeQ"™, 0<m<n). 2.4)
We define the set of spin configurations on " by

Sy =10, %" = {x = (x())ieqn : x()) € {0, 1}} (n > 0). 2.5)
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Note that Q0 is a set containing one element and therefore Sy = {0, 1}. ForO <m < n,
i€ Q"™ and x € §,, we define x; € S, by

xi(j)=x(joi) (eQ"™, jeQ" xe8, 0<m=<n). (2.6)

Note that x; describes what the spin configuration x looks like on the m-block with
index i.

Fori € Q", we define |i| as in (1.5) with |i| := n if i,_; # 0. For given § > 0 and
nonnegative constants «p, . . ., &,, we define infection rates a(i, j) on Q" as in (1.6),
and we call the contact process with these infection rates and with recovery rate § the
6, a1, ..., ay)-contact process.

2.2 Extinction

Proof of Theorem 1 (a) For n > 0, let X™ be the 6, a1, ..., a,)-contact process,
and set

I(n) := EY[inf{r > 0: X" =0}] (n > 0), 2.7)

where E% denotes expectation with respect to the law of the process started in o
(compare (1.2) and note that 0 now denotes the origin 0 = (0, ..., 0) € Q"). We will
estimate /(n) by a very crude argument. By a simple rescaling of time, we may assume
that the constant |a| in (1.1) satisfies |a| = 1. By an obvious coupling, it follows that
X may be stochastically bounded from above by a process X in S, = {0, 1}**"
where sites jump independently of each other from O to 1 with rate 1 and from 1 to
0 with rate 8. Obviously, the process X ™ has a unique equilibrium law, which is of
product form, and if X éﬁ) denotes a random variable distributed according to this law,
then

. s \V
P[Xé?zg]:(m) : 2.8)

On the other hand, since the Markov process X ™ stays on average a time (N")~! in
the state O every time it gets there, one has

~ N 1
PIX =0] = - = — (2.9)
In)y+ N 1+ N"i(n)

where
I(n) := E¥[inf{r > 0: X™ =0}] (n > 0). (2.10)
Solving I(n) from (2.8) and (2.9) and comparing with /(n), we find that

1 <Im =N (A +8HY = 1) sNa+sHY @i
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Now consider our original contact process on the (infinite) hierarchical group Qy.
We may stochastically estimate this process from above by a process where infections
over a hierarchical distance > n yield infections of a new type, in such a way that
infections of different types do not interact with each other (in particular, sites may be
infected with infections of more than one type). Thus, in our new process, each type
evolvesasa (8, oy, ..., oy )-contact process in some n-block, and in addition, for each
k > n, each site that is infected with this type establishes with rate ax N % (N* — N¥—1)
another type at a uniformly chosen site in some uniformly chosen n-block at hierar-
chical distance k. Since at any point in time there are at most N" infected sites of a
given type, and each type exists for an expected time of length /(n), it follows that the
expected number of new types created by a type during its lifetime is bounded from
above by

N"Im)(1=N"" D" . (2.12)
k=n+1

In view of (2.11) and the definition of §,, we may estimate this quantity from above
by

1=N"HU+8HY Byt (2.13)
If, for some n > 1, this quantity is less than 1, then types create new types according
to a subcritical branching process, hence a.s. at most finitely many types are created
at all time, hence our contact process dies out. Taking logarithms and dividing by N",

we see that for all § > O there exists an n > 1 such that the quantity in (2.13) is less
than one, provided that

lim inf N™" log ((1 ~ N Ha+ 5—1)N”ﬂn+1) <0, V6>0. (2.14)

n—oo

This is equivalent to

log(1 +8~") + liminf N log(Bus1) <0, V8 >0, (2.15)
n— oo

which is in turn equivalent to (1.7). O

3 Coupling of contact processes
3.1 A coupling

Throughout this section, we fix N = 2 and consider finite (§, o1, ..., «,)-contact
processes on " as defined in Sect. 2.1. We will prove the following result.

Proposition 2 (Coupling of contact process) Letn > 1, § > 0, and oy, ..., 0 > 0.
Let X = (X;);>0 be the (8, a1, ..., a,)-contact process started in any initial law.
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Set §' = 2£8 and o) = %cka (k=1,....,n—1), where ¢ = f(a1/8) and f
denotes the function

fr)yi=y —Jyr=1% with y:=103+1r) ¢ =0. 3.1

Then X can be coupled to a process ()7, Y) such t~hat (X, )E,),Zo is a Markov process,
(Y=o isa (8, af, ..., a,_,)-contact process, Yo = Yo, Y; > Y; forallt > 0, and

P[Y, =y | (Xo)ozs=] = P(X;,y) as. (=0, y € Sy—1), (3.2)

where P is the probability kernel from S, to S,_1 defined by (recall (2.6))

P(x,y) =[] pxi,y(@) x €S yeSi), (33)
ieQn—1
with
p(00,0) p(00, 1) 10
p(10,0) p(10,1) | 7 [ & 1-¢ [ '
p(11,0) p(11,1) 01

The coupling in Proposition 2 achieves the intuitive aim explained in Sect. 1.2,
namely, to view blocks, consisting of two sites at distance one from each other, as
single sites in a ‘renormalized’ lattice, which can either be infected or healthy. Indeed,
(3.2) says that the conditional law of ¥; given X, has the following description. First,
we group the sites of X; into blocks, each consisting of two sites at distance one
from each other. Then, independently for each block, if the configuration in such a
block is 00 (resp. 11), then we let the corresponding single site in ¥; be healthy (resp.
infected), while if the configuration is 01 or 10, then we let the corresponding site in
Y, be healthy with probability £ and infected with probability 1 — &. This stochastic
rule is demonstrated in Fig. 1. The transition there has probability £(1 — &) and sites
in Q3 and Q2 are depicted as leaves of a binary tree.

It is interesting that a stochastic rule for deciding whether a block is healthy or
infected seems to work better than a deterministic rule. We will choose the function

7T A

0o 0 1 0 0o 1 1 1

Fig. 1 Coupling of X; (left) and Y, (right). The conditional probability of the transition depicted here is
§(1—-6)
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p(-, 1) in (3.4) in such a way that this is the leading eigenfunction of a one-level
(8, ap)-contact process. Thus, our methods combine some elements of spectral anal-
ysis with probabilistic coupling tools.

The next lemma (which is proved in Sect. 3.5) lists some elementary properties of
the function f defined in (3.1).

Lemma 3 (The function f) The function f defined in (3.1) is decreasing on [0, 00)
and satisfies f(0) = % and

fry=2r""4+0¢7?) as r— oco. (3.5)

3.2 Markov processes with added structure

In Proposition 2, the coupling between the processes X and Y is of a special kind.
There exist general results that tell us how to construct processes with conditional
probabilities as in (3.2), such that in addition (X;);>0, on its own, is a Markov pro-
cess. In the present section, we formulate one such result, which will then be used to
construct the coupling in Proposition 2.

Let S, S’ be finite sets and set § := S x . Let (X, ¥) = (X,, Y:)r>0 be a Markov
process with state space S and generator G. For each y € §' (resp. x € §), we define
an operator Gy, : RS — RS (resp. G/, : RS — RY) by

Gyf(x):=Gf(x,y) where f(x,y):=f(x) (xe€S, yeS, feR5),

. _ , (3.6
G\ f(y):=Gf(x,y) where f(x,y):=f(y) (xS, yeS, feR%).

We say that X evolves according to the generator Gy while Y =y (resp. Y evolves
according to the generator G’, while X = x). In particular, if G, does not depend on
v,ie,if Gy =G (y € S’) for some operator G : RS — RS, then we say that X is
an autonomous Markov process with generator G. This is equivalent to the statement
that for every initial law of the joint process (X, Y), the process X, on its own, is
the Markov process with generator G. The next proposition (which will be proved
in Sect. 3.4) demonstrates that even when X is not autonomous, it may happen that
there exists an operator G such that for certain special initial laws of the joint process
(X, Y), the process X, on its own, is the Markov process with generator G. It seems
that Rogers and Pitman [18] were the first who noticed this phenomenon. We will
prove the proposition below by elaborating on their result.

Proposition 4 (Markov process with added structure) Let X be a continuous-time
Markov process with finite state space S and generator G. Let S’ be a finite set, let P

be a probability kernel from S to S', and let (G')xes be a collection of generators of
S’-valued Markov processes. Define an operator G : RS — RS*S by

Gf(x,y):=G.f(y) (xeS, yeS, feRY), (3.7)
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and define P : RS — RS and P : RS*S" — RS by

Pf(x):= D Px,Nf(y) and Pf(x):= > P, yf(x,y). (38

yes’ yes’
Assume that
GPf=PGf (feRY). (3.9)

Then X can be coupled to an S'-valued process Y such that (X,Y) = (X;, Y;)i>0
is a Markov process with state space S x S', the process Y evolves according to the
generator G', while X = x, and

P[Y, =y | (Xoozs=t] = P(X;,y) as. (1=0, yeS. (3.10)

Remark 1 If X and Y are coupled as in Proposition 4, then it is typically not the case
that X is an autonomous Markov process. Nevertheless, the joint Markov process
(X, Y) has the property that if the initial law satisfies

P[Yo=y|Xo]=P(Xo.y) as. (t=0, yeS), (3.11)

then X, on its own, is the Markov process with generator G, and (3.10) holds.

Remark 2 If X and Y are coupled as in Proposition 4, then it may happen that Y is an
autonomous Markov process. In this case, we will say that Y is an averaged Markov
process associated with X. In the general case, we will say that Y is an added-on
process.

3.3 Discussion

We mention a few open problems concerning our coupling.

1. Can one modify Proposition 2 such that ¥ = Y, i.e., (in terminology invented in
the previous section), for a given (§, o1, . . ., &, )-contact process X, can we find a
(8, ey, ..., a),_,)-contact process ¥ such that Y is an averaged Markov process
of X? This would probably involve a kernel P and constants 8", «}, ..., «,_, that
are more difficult to describe and less explicit than the ones in Proposition 2 but
would have great theoretical value, since the resulting map (6, oy, ..., 00y)
(8',aj,...,a,_,) would represent a rigorous renormalization transformation.

2. Isitpossible to construct a similar coupling as in Proposition 2, but with Y, <Y?
This could potentially be used to relax condition (1.7).

3. Can one use Proposition 2 to construct a probability law on {0, 1}*2 that satisfies
condition (1.11) of Holley and Liggett? This would not add much in the line of
proving survival (which is already achieved) but might add to our understanding
of the method of Holley and Liggett, which is rather poor. In particular, in [16] it is
shown that this method may be used to calculate a sequence of approximations of
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the critical recovery rate, but beyond the second member of that sequence, there
is no proof that these approximations are lower bounds on §. (though they are
conjectured to be so).

4. Is it possible to make the methods of the present paper work on Z instead of €2,?
At first sight, it seems that the hierarchical structure of €25 is essential to Propo-
sition 2. However, when we think of the latter as ‘forgetting the fast modes of the
spectrum’, something may be possible. Any link between Proposition 2 and the
method of Holley and Liggett might also provide a clue.

3.4 Added-on processes

Proof of Proposition 4 We adopt the convention that sums over x, x’, x” always run
over S and sums over y, y’, y” always run over S’. Write

Gf(x) =D r(x,x) (f(x) = f(x).

X/

G f() =D re. ) (fO) = fO).

y

(3.12)

where r(x, x) (resp. . (y, y")) denotes the rate at which the Markov process with
generator G (resp. G',) jumps from a state x to a state x’ (resp. from y to y’).

Set §:= S x §'. We let (X, Y) = (X;, Y;)r>0 be the Markov process in S started
in an initial law satisfying (3.11), with generator G defined by

Gfix,y) =D 1, x) (f(,y) = f(x, )

+ > o) (fY) = fx )

Vi P(x,y)>0

+ D oD ey ) (FE ) = f(xy) (B13)

¥y P(x,y)=0
((x,y) €S8, fe RS), where

r(x,x"YP(x',y) r(x,x")P(x',y)
P(x,y) >or(x, xYP(",y)’

These formulas are not defined if P(x, y) = Oresp. > . r(x, x")P(x", y) =0, s0in
the first case we define 7, (x, x’), in some arbitrary way, while in the second case we
choose for g,/ (x, -) some arbitrary probability distribution on §. In any case, it will
be true that

ty(x, x') == and gy (x,x’) = (3.14)

(Z r(x,x"YP(x", y))qy(x, x)=r@, xXYPK',y), (3.15)

x//

since the right-hand side of this equation is zero if 3", r(x, x")P(x”, y) = 0.
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Formula (3.13) says that the process (X, Y) jumps from a state (x, y) to a state
(x’, y) with rate ty(x, x"). In addition, while X is in the state x, the process Y jumps
from the state y to the state y’ with rate r/.(y, ¥’). During such a jump, if P(x, y’) =0,
then the process X does nothing but if P(x, y’) = 0, then the process X jumps at
the same time to a state x” chosen according to the probability kernel g,/ (x, x”). In
particular, these rules say that the process Y evolves according to the generator G/,
while X = x.

It is known that (3.10) holds for the process (X, Y) started in any initial law satis-
fying (3.11), provided that

GPf=PGf (feR5). (3.16)

The sufficiency of (3.16) follows, for example, from [13, Corollary 3.5], which is a
rather technical statement about martingale problems. A much less technical version
of this result can be found in [18].

We may rewrite G in the form

Gflx,y) =D t,(x,x) (F(x', ) = fx,y)

+ D () = )+ D sy
y/

VP (x,y)=0

x> gy, x) (F(y) = fx,))) (xe€S, yeR). (.17

We calculate, remembering the definition of #, (x, x"), and letting G (x, x) denote the
matrix associated with the operator G,

GPf(x) =D r(x,x) (Z PO ) f(y) = D P, ) f(x, y))
y y

x/

=D D> e, N [PE, ) (F& ) = fx, )

y X
+ (P&, y) = P(x, ) f(x, )]

= > P, ) D 1, x) (&) = f(x,)

y

+ D D XHYPEL ) (&) = fx, )

y: P(x,y)=0 x’

+Z(ZG(x,x’)P(x’,y))f(x,y), (3.18)

y X

and
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PGf(x) =D P(x,y) D ty(x.x) (f(X'.y) = fx,))
y x!
+ D P Y (F ) = £(x )
'
+D Py DL ) D ay e x) (F&LY) = f(x, )
y x/

Vi P(x,y)=0

=D P, y) D 1, x) (f(,y) = fx, )
y x/

+ > DD PE NG | @ ) (FE ) = fx )

y: P(x,y)=0 x’ v

+O Do PE G ) | £, (3.19)
y y

where to get the second equality we have reordered our terms and relabeled indices.
The first terms on the right-hand sides of (3.18) and (3.19) are equal while the third
terms agree by (3.9). Since by (3.9), for each x, y such that P(x, y) = 0, one has

D PEYIGL ) =D PE,Y)G(, y) =D G, XY P, y)
Y Y

x//

= Zr(x, xYP(",y), (3.20)

X

we see by (3.15) that also the second terms on the right-hand sides of (3.18) and (3.19)
agree, hence (3.16) holds. O

Remark For fixed y € §', set Sy :={x € S: P(x,y) > 0} and consider the operator
G defined by (compare (3.13)(3.14))

Gyf(x):= Z o, X)) (f) = ) (xeSy, feRY). (321

x'eSy
Then G y is a ‘compensated A-transform’ of the operator G, with the function £ (x) :=
P(x,y). Here, if G is the generator of a Markov process on S and /% is a nonnegative
function on S, then
G"f=n"'Gf) —h " (Gh)f (3.22)
defines a generator of a Markov process on the space Sy := {x : h(x) > 0}. This sort

of transformation has been called a compensated h-transform in [10]. In particular, if
h is harmonic, i.e., Gh = 0, then G is the usual s-transform of G.
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3.5 Definition of the added-on process

In this section, we prove Proposition 2. Our proof depends on some calculations that
will be done in the next three sections. We wish to construct an §”~!-valued added-
on process Y on X, such that ¥ can be stochastically estimated from below by a
(8',af, ..., a,_,)-contact process. We introduce the notation

x(i, j) = (x@(@),x(j)) (x €Sy, i,jeQ). (3.23)

With this notation, the generator of X can be written as

Gf(x) =8> li=1 (f(x —8) — f(x))

ieQn
n

+ @27 DT =0 (FE+8) — f().  (324)
k=1 i jeqn

li—Jjl=k

For any x € §1 = {0, 1}2, we write

00 if x = (0, 0),
X := 101 ifx = (0, 1) or (1, 0), (3.25)
11 ifx = (1, 1),

For each x € S,, we define a generator G’, of an S,_;-valued Markov process by
(recall (2.6))

n—1
G fM =8 D lyo=n(fG—=8)— N+ D a2
ieQn-! k=1
x> a7 T5) LyGo=0.0) + 0 (3. %5) Ly p=00y]
i,jeqn!
li—jl=k
X(fy+68)—f), (3.26)
where 8’ is defined as in Proposition 2 and a, b are the functions
a(00,00) a(00,01) a(00,11) * 1—& 2(1-§)
a(01,00) a(01,01) a(01,11) | = | = % 1 (3.27)
a(11,00) a(11,01) a(ll,11) x % *
and
b(00,00) b(00,01) b(00, 11) 0 1-& x
b(01,00) b(01,01) bO1,11) | =0 % x| . (3.28)
b(11,00) b(11,01) b(11,11) x % %
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Here £ is defined as in Proposition 2 and the symbol * indicates that the definition of
a and b in these points is irrelevant. Indeed, in the next three sections, we will prove
the following fact.

Lemma 5 (Added-on process) Let G be the generator of the (8, oy, . .., ay)-contact
process on Sy, let P be the probability kernel from S, to S,,—1 defined in Proposition 2,
and let (G,)xes, be the generators defined in (3.26), where the functions a and b are
defined as in (3.27)—(3.28). Then, no matter how we define a and b in points indicated
with the symbol x, one has

GPf=PGf (feR%), (3.29)
where G, P, and P are defined as in (3.7)—(3.8).

Based on Lemma 5, we can now prove Proposition 2.

Proof of Proposition 2 By Proposition 4 and Lemma 5, we can couple X to an S,,_1-
valued process Y such that (X, )7,),20 is a Markov process, Y evolves according to
the generator G, while X = x, and (3.2) holds.

By Lemma 3,0 < & < % It follows that the functions a and b in (3.27)—(3.28)

satisfy a > % and b > 0. From this and (3.26), it is easy to see that (X, 17) can be
coupled to a (8', &}, ..., &), _;)-contact process Y, such that Yo =Ypand Y, > Y, for
allt > 0. O

For completeness, we give here the:

Proof of Lemma 3 Set&é(y) i=y —,/y? — % Then it is straightforward to check that
§() = 3. Moreover, 2:6() = 1—y(> =7 =1-(U -3y <0

on [%, 00), s0 ¥ +— &(y) is decreasing on [%, 0). Set ¢ = y’l. Then é(e’l) =

g1 (1 — /1= %82). We observe that

_ %52)_1/2 —0.

£=0 (3.30)

d 1 1.2\—1/2
g=0=%§8(1—§8) /‘

e=0

hence £(e 1) = ¢! (‘—1@2 + 0(53)) = }18 + 0(c?), ie.,
Ey) =17y +0(0™) as y - oo (3.31)
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To translate this to the statements in Lemma 3, it suffices to note that the function
r— y(r) = J—‘(Z + %r) is increasing on [0, 0o), satisfies y(0) = %, and y(r) =
g+ 0 asr — oo. o

3.6 Reduction to a one- and two-level system

In this section, we prove Lemma 5. Our proof is based on two lemmas which will be
proved in the next two sections.

Proof of Lemma 5 We start by rewriting the generator in (3.24) as follows:

GF) =8 D D lxron=1) (f (x = 8iroi) — f(x))

ieQn-1i’eQ!

Fa27! Z Z Lix(i'oi)=0, x(i"oi)=1} (f (x + 8ire;) — f(x))
ieQn1 i’,i"eQ!
li'—i"|1=1

n
+ zak 27k Z z Lix(iroiy=0, x(jroj)=1) (f (x + 8iroi) — f (X))
k=2 i,jEQ"_l l'/‘j/EQI
i j=k—1

= > Rf(x>+2ak+1z Cnifw, (332)
ieQn—l i jeqn kl
li—jl=

where

Rif(x):=8 D lpaqron=1) (f (x = 8iei) = f(x))

i'ef0,1)
_1
+o2 Z Lix(i7oi)=0, x(i7oiy=1} (f (x +8ir0i) — f(x)), (3.33)
i".i"e(0,1)
i/#i//
Ljf(x) :=2"" Z Lix(i70i)=0, x(j'ojy=1} (f (X + 8irei) — f(x)).
i",j'el0,1)

Likewise, we may write the operator in (3.26) as

Gfm= > Rf(y>+2ak+12 DD SO (3.34)
ieQn— 1 lJEQ" 1
li—jl=k

where
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R f(y) :=8"lyw=1y (f &y — &) — F (),
15 £ ) = [a (%6, %5) Lyor=0. y(h=1) + b (%1, %) Lpor=0. yh=0y]  (3.35)
(f+38)— f).
In view of (3.32) and (3.34), in order to prove (3.29), it suffices to show that
(i) RiPf=PR.f
(i) L;jPf =Pl f
where 7ij : RS 1 — RS»*Sn-1 s defined as Tijf(x, y) = I’fjf(y). Note that since
le does not depend on x, there is no need to define Ei.

] (f eRY i je@ ™ i# ), (3.36)

The operators R;, le , Iij, and 7,:,' act only on certain coordinates. In view of this,
our problem reduces to a lower-dimensional one, and (3.36) follows from Lemmas 6
and 7 stated below. It is not difficult, but notationally cumbersome, to give a formal
derivation of (3.36) from Lemmas 6 and 7. For completeness, we give this derivation
in Appendix A. O

Recall that §; = {0, 1) and S = {0, 1}%° = {0, 1}. Let§ > 0,a; > 0, and let &'
be defined as in Proposition 2. Let P be the probability kernel from S to Sy defined in
(3.3)=(3.4) and let P : RS0 — RS be defined as in (3.8). Let R be the generator of the
(8, ap)-contact process X on S and let R’ be the generator of the §’-contact process
Y on Sp. The latter is just the Markov process with state space {0, 1} that jumps from
1 to 0 with rate §’. The next lemma implies that Y is an averaged Markov process
associated with X, i.e., X and Y can be coupled such that (3.10) holds.

Lemma 6 (One-level system) One has
RPf = PR f (f € R%). (3.37)
Formula (3.37) implies (3.36) (i). We next formulate a lemma that implies (3.36) (ii).
Lets > 0, a1 > 0, let P be the probability kernel from $; to Sy defined in (3.3)—

(3.4), and let a, b be the functions in (3.27)—(3.28). We define a generator I of a
Markov process in S» and generators (1)) res, of Markov processes in S} by

If(x) =3 Z Lix.0)=0, x(j, =1} (f (x +8¢,0) — f (X)),
i,j€{0,1} (3.38)

L () = [a(Zo, 1) 1{y0,1)=0,1} +b &0, XD Ly, 1)=0,00} ] (f & + 80)— F ().

Our next lemma says that the (I]),cs, define an added-on Markov process associated
with the process with generator /.

Lemma 7 (Two-level system) One has
IPf=PIf (feR%), (3.39)
where P, P are defined as in (3.8) and Tf(x, V) =ILf(y) (x €S2, y€S)).
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3.7 The one-level system

Proof of Lemma 6 We may write (3.37) in the matrix form

Z Z R(x,x"YP(x', y) f(y)

x'eSy yeSo

=D D> PR NFG) xes, feRY),  (340)

y'eSo y€So

which is equivalent to

DR,y =D ple, IR, y) (x€Si, ye Sy, (34D

x'eS| y'€So

where p is the function in (3.4). Here

D RE,xX)p&, ) =Rp(-, ) (x€{0, 1, ye{0,1).  (3.42)

x'eS

Thus, (3.41) says that Rp(-, 0) and Rp(-, 1) can be written as a linear combination
of the functions p(-,0) and p(-, 1). It follows that F := span{p(-,0), p(-, 1)} is
an invariant subspace of the operator R. Since p(-,0) + p(-,1) = 1, the space F
contains the constant function 1. We will show that F is in fact the span of 1 and one
nontrivial eigenfunction of R.

We start by noting that by symmetry, the space H := {f € RS : £(0,1) = f(1,0)}
is invariant under R. Since (0, 0) is a trap of the (§, «1)-contact process, the space
Ho :={f € H: f(0,0) = 0} is also invariant under R; in fact, H is the span of Hy
and the trivial eigenfunction 1. In view of this, we look for eigenfunctions of R in Hy.
We observe that for f € H,

(Rf(O, l)) _ (3(0— FO, 1) + Jar (1, 1) = f(O, 1)))
Rf(1, 1) 28 (f(0. 1) = f(1. 1))

(@43 Jer Y (£O, D)
o ( 28 —28 fa, nj)- (3.43)
To find the eigenvalues, we must solve
S+ ta) -2 la
det 2% . (3.44)
28 —25 — A

which gives
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(8 + Sor + 1) (28 + 1) = 8oy
& A+ GBS+ ta)r+287=0

2 2
36+ 4 36+ 4
o (re 2220 (2550 oy
2 2
(3.45)
2
38 + ta 38 + ta
=4 A:—(—22 1):l: (—22 1) — 2682

& A:—ZS(y:I:,/yz—%),

where y = %(3 + %%) (compare (3.1)). In particular, the leading eigenvalue is
A = —28& = —§&', where & and 8’ are defined as in Proposition 2. To find the corre-

sponding eigenfunction, we need to solve

26(£0.1) = fA, D)y =afd, D
& 25f(0, ) =Q5+0)fF(1,1) =281 —§)f(1,1) (3.46)
< fO,D=0=8§f11),

which yields the eigenfunction

f(0,0) 0
reo =128 [=rcon (3.47)
S, 1

Our calculations so far show that F := span{l, p(-, 1)} = span{p(-,0), p(-, D)} is
an invariant subspace of the operator R. It follows that there exist constants

(R'(Y', ¥)y,y'ef0,1) such that

Rp(-,y)= > p(-,Y)R'G, ). (3.48)

V'€{0,1}
In fact

(Rp(-.0) Rp(-, 1)=(8'p(-. 1) —«S’p(-,1))=(”("°)"("1”(0 0 )

8 =8
(3.49)
hence

R(0,0) R(0, 1)) _ (0 0
(R/(l, 0) R'(1, 1)) = (5/ _5/)’ (3.50)
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which we recognize as the generator of a Markov process on {0, 1} that jumps from
1 to 0 with rate §'. O

3.8 The two-level system

Proof of Lemma 7 We may write (3.39) in the matrix form

z Z I(x, x"YP(X', ) f(y)

x'€Sy ye§i

=D D PG N0 €S, feRY), (35D

y'eS) yesi

which is equivalent to

DI HPE, ) = DL PG, Y) (xeS, yeS). (352

x'eSh yes

Here

D 1@ PG y) = TP )@) (x €S y € S). (3.53)

x'€SH

Note that S, = {0, 1}¥" = {0, 1}{%1" has 22" elements, so |S;| = 22 = 4 and
|S>| = 2* = 16, hence (I P(-, ¥)(*))xes;,yes, is a matrix with 4 - 16 = 64 entries.
Luckily, using symmetry, we can reduce the size of our problem quite a bit. We start
by calculating

P(x,y) = Py(xo, x1) = p(xo, y(0)) p(x1, y(1)) (3.54)

for xp, x1, y € {(0, 0), (0, 1), (1, 1)}. For brevity, we write 00 = (0, 0), 01 = (0, 0),
and 11 = (1, 1). We have

Pyp (00, 00) Ppyo(00,01) Pyo(00, 11) 1 &€ 0

Pyo(01,00) Pyo(01,01) Pyo(01,11) | = | & %‘2 01, (3.55)
Pyo(11,00) Pyo(11,01) Pyo(11,11) 00 O

Py1(00,00) Py;(00,01) Py;(00,11) 1—-¢& 1

0
Po1(01,00) Por(01,01) Por (0L, 11) ) =10 &1 =& & ). (3.56)
Por(11,00) Por(11,01) Por(11,11) 0o 0 0

and
P11(00,00) P;1(00,01) P11(00,11) 0 0

0
P11(01,00) Py;(01,01) P0L 1D | =[0 (1—8)2 1—-&). 3.57)
Pi(11,00) Pyi(11,01) Pyi(11,11) 0 1-¢ 1
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Recall the definition of x from (3.25). If (X(t)),_zo = Q(o(t), X1(t))s>0 is a Markov
process in S = 1 x S with generator 7, then (X¢(?), X1(¢));>0 is a Markov process
that jumps with the following rates:

(00, 00) (00,01) (00, 11)
[t ]

(01,00) (01,01) (O1,11) (3.58)
[} ]

(11,00) (11,01) (11,11).

From this, we see that the functions I P(-, y)(x) = I Py(x) are given by

1 Py (00, 00) 1 Pyp(00,01) IPy(00, 11) 0 —-&(1-& 0
I Py(01,00) 1Py(01,01) IPyO1,11) } =10 —%gz 0], @359
IPyy(11,00) IPyy(11,01) IPyy(11,11) 0 0 0
1Py;(00,00) IPy(00,01) IPy;(00,11) 0 —(1—-8)2 —2(1—¢)
1Py;(01,00) IPy(01,01) IPy(01,11) | =1{ 0 —%5(1 —£&) —& ,
1Py (11,00) 1Py (11,01) IPy(11,11) 0 0 0

(3.60)

and

I1P;1(00,00) IP;1(00,01) IP;1(00,11) 0 (1—872 2(1—-9)
I1P;1(01,00) IP;1(01,01) IP;1(0O1,1D) =10 %5(1—5) &
IP;1(11,00) IP;i(11,01) IP;(11,11) 0 0 0

(3.61)

We wish to express the functions (/P (-, y))yes, in the functions (P(-,¥))yes,-
Unlike in the previous section, the span of the functions (P (-, y))yes, is not invariant
under the operator /, so we cannot express the functions (I P(-, y))yes, as a linear
combination of the functions (P (-, y))yes,. However, we can find expressions of the
form (compare (3.52))

IP(-,y)(x) = Z P, Y)I,(y',y) (x €82, yeS), (3.62)
Y'ES

where the coefficients 1 (y’, y) do not depend too strongly on x. Solutions to this
problem are not unique. The claim of Lemma 7 is that we can choose

1(00,00) 1/(00,01) I.(00,10) I/(00,11)
I.(01,00) 1/(01,01) I/(01,10) I.(01,11)
1(10,00) 1/(10,01) I.(10,10) 1.(10,11)
I/(11,00) 1/(11,01) I.(11,10) I/(11,11)

—b (X0, x1) 0 b(xo,x1) 0
B 0 —a(Xp, Xx1) 0 a(xo, X1)
= 0 0 0 0 , (3.63)
0 0 0 0
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where a, b are the functions in (3.27)—(3.28). Thus, we need to check that

(1) IP(-,00)(x)=—b(xp,x1)P(x,00),
(i) IP(-,01)(x) =—a(xp, x1)P(x,01),
@ii) IP(-, 10)(x) =b(xp, x1) P(x, 00),
@iv) IP(-, 1) (x)=a(xp,x1)P(x,01).

(3.64)

Since Zye s IP(-,y) =11 =0, it suffices to check only three of these equations,
say (i), (ii), and (iv). We observe from (3.60)—(3.61) that / P(-,01) = —IP(-, 11).
In view of this, it suffices to check only (i) and (ii). By (3.27)—(3.28), (3.55)—(3.56),
and (3.59)—(3.60), we need to check that

0 —61—-§) 0 0 1—& % 1 £ 0
0 —382 0)=—-[0 § =x)el& & 0 (3.65)
0 0 0 * * * 0 0 O
and
0 —(1-82% —2(1-¥§) x 1—& 2(1—§) 0 1-¢ 1
0 —Je(1-& £ =—(* 3 1 o0 &1-5) £,
0 0 0 * * * 0 0 0
(3.66)

where e denotes the componentwise product of functions and the symbol * indicates
that the value of the functions a and b in these points is irrelevant. We see by inspection
that (3.65) and (3.66) are satisfied. O

4 Survival
4.1 Survival bounds

Until further notice, we continue to study the contact process on the hierarchical group
Qn with N = 2 and its finite analogs defined in Sect. 3.1. Our proof of Theorem 1 (b)
is based on the following basic estimate.

Proposition 8 (Survival bound for finite systems) Let § > 0 and let (ax)r>1 be non-

negative constants. Let X ™) be the 6, a1, ..., ay)-contact process started in X(()") =
80. Then
n—1
POIX 0] > (H<1 - S(k»)e—‘“”)’ (t = 0), @.1)
k=0

where §(0) := 6, ar(0) := ay (k > 1), and we define inductively, for n > 0,
8(n+1) :=2Em)d(n),
ae(n+1) = jogs1(n) (k> 1),
where §(n) := f(a1(n)/8(n)) with f asin (3.1).

4.2)
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Proof By Lemma 3, one has 0 < &£(n) < % foralln > 0.For0 < & < % and k > 1,
let Py ¢ denote the probability kernel from Sy to Si_1 defined in (3.3)—(3.4). Let X )
be the (3, «y, ..., ary)-contact process. Applying Proposition 2 inductively, we can
couple X™ to processes

X0=0 xt=b L xO x©

such that X =) , X(1=m) take values in S,_,, one has X(" m) X(" m) X(" m)
Xt(" ™ for all ¢ >0,

1
PI:X(n m—1) =y | X(" m) _ — :I = n_m,%—(m)(x,y), (43)

and the process X n=m) is a (§(m), a1 (m), . .., an (m))-contact process. A little think-
ing convinces us that this coupling can be done in a Markovian way, i.e., in such a
way that (X#="=D x#=m=Dy g conditionally independent of

X(n), ()”((n—l), X(n—l))7 o (f((n—m—ﬁ—l), X(n—m+1))

given (X ™ X (=) By this Markovian property and the definition of Pre(x,y),
if we start X™ in the initial state X(()”) = dp, then

m—1

PLxg ™ =80l = [] (1 — &k, (4.4)
k=0

and X(()nfm) = 0 with the remaining probability. Since P[X" ™"V = 0| x"™ =

0] = 1 for each m, we have
PIX" # 01 = PIX"™™ £0] (0 <m <n). @5)

In particular, since X(© is a Markov process in Sy = {0, 1} that jumps from 1 to 0
with rate §(n), we observe that

PIX" # 01 = PIX,” # 0] = e X = 6o

n—1
P T - (=0, (4.6)
k=0
which proves (4.1). O

As an immediate corollary to Proposition 8, we obtain:

Proposition 9 (Survival bound for infinite systems) Let § > 0 and let (ax)i>1 be
nonnegative constants satisfying Z,fil ar < o0o. Let (§(k))k=0 be defined as in
Proposition 8. Let X be the contact process on 2y with infection rates as in (1.6)
and recovery rate 8. Then the process started in Xy = ¢ satisfies
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POIX, #0Ve = 0] = [ [(1 —&k)). 4.7
k=0

Proof Tt is easy to see that the process X" in Proposition 8 and X can be coupled

such that X™ < X, for all ¢ > 0. Therefore (4.7) follows from (4.1), provided we
show that §(k) — 0 as k — oo. In fact, it suffices to prove this under the assumption
that H,fio(l — &(k)) > 0, for otherwise (4.7) is trivial. Indeed, H,fio(l —&(k)) >0
implies that £ (k) — 0 as k — oo, which by the fact that

n—1
sy =8 []@sw) (4.8)

k=0

implies that § (k) — 0 as k — oo. O

4.2 The critical recovery rate

In view of Proposition 9, we wish to find sufficient conditions for H/?io (1—=£&(k)) > 0.
The next lemma casts the inductive formula (4.2) in a more tractable form.

Lemma 10 (Inductive formula) Ler §(n), ar(n), and &(n) be defined as in
Proposition 9 and assume that the constants (ax)r>1 are positive. Set e(k) := §(k)/
a1(k)(k = 0). Then &(k) = f(1/e(k)) and
etk+1) = %g(e(k)) (k= 0), (4.9)
where
g(e):=4def(l/e) (e > 0), (4.10)
and f is the function defined in (3.1).

Proof Ttis clear from (4.2) that £(n) = f(1/e(n)) and
ar(n) =2"ayy, (k>1, n>0). 4.1D)

Using (4.2) once more, it follows that

25(n)é(n) _ ai(n) 8(n)

1) = = 4 S
e(n+1) Tor(n) — aatn) ar(n) flai(n)/8(n))
= 2 o) (1 o) (4.12)
Ap+2

]

The next lemma collects some elementary facts about the function g from Lemma 10.
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Lemma 11 (The function g) The function g defined in (4.10) is increasing on (0, 00)
and satisfies

g(e) =82+ 0() as ¢ — 0. (4.13)

Proof This follows from the fact that, by Lemma 3, the function ¢ — f(1/¢) is
increasing and satisfies

f(1/e) =2e+ 0(s?) as & — 0. (4.14)

]

The next proposition answers the question when the infinite product in (4.7) is positive
for § small enough.

Proposition 12 (Nontrivial survival bound) Let (ax)r>0 be nonnegative constants.
For given § > 0, set T1(5) := HZO:O(I — &(k)), where the (§(k))k>0 are defined as in
Proposition 8. Then T1(8) is nonincreasing in 6. Moreover, I1(8) > 0 for § sufficiently
small if and only if

o
Z 27k log(ag) > —o0 for some m > 0. (4.15)

k=m

Proof We start by showing that I1(§) is nonincreasing in §. By continuity, it suffices
to prove this under the additional assumption that the «;’s are all positive. In this case,
we observe from Lemma 10 and the monotonicity of g that the (k)’s are nondecreas-
ing in §. Since £(k) = f(1/e(k)) and f is decreasing, it follows that the £(k)’s are
nondecreasing in §, hence I1(§) is nonincreasing in §.

We next show that I1(§) > 0 for § > O sufficiently small if and only if (4.15) holds.
Ifap =0forsomek > 1,thené(k — 1) = f(0) = %, hence if infinitely many of the
ay’s are zero then I1(§) = O for all § > 0, while (4.15) is obviously violated. If finitely
many of the ay’s are zero, then we may start our inductive formulas after the first m
iterations, where we observe that §(m) can be made arbitrarily small by choosing §
small enough. Thus, without loss of generality, we may assume that the o ’s are all
positive, and under this assumption we need to show that IT1(8) > O for § sufficiently
small if and only if

o0
> 27 log(ax) > —oc. (4.16)
k=0

It is well-known that [];2 (1 — &£(k)) > 0 if and only if > 77, &(k) < oco. Using
(4.14) and the fact that £(k) = f(1/e(k)), it is easy to see that this is equivalent to
> i elk) < oo.

Now assume that (4.16) holds, and, in view of (4.13), define (¢(k))x>0 by

- 8 ~ o ~ 2
£(0):= = and E(k+1):= 9% F(k)? (k > 0). 4.17)
o) y2
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Then
£(0) = O%,
B(1) =92 (0%)2
82) =95 (9%)2 (%)4 (4.18)
095 02) (02) (4)' - 2o

omozga%a‘f '
More generally, it is not hard to see that
1 n
5(98)°
n—k *
[077EN| szl (ak)z

By Lemma 13 below, we can choose § sufficiently small such that >_>° ; &(n) < co. By
(4.13), there exists a ¢ > 0 such that g(¢) < 9¢2 for all ¢ < ¢. By making § smaller if
necessary, we can arrange that € (n) < ¢ for all n, hence 22‘;0 e(n) < Z;’;O g(n) < oo.

On the other hand, assume that Z;’;O eg(n) < oo for some § > 0 while (4.16) does
not hold. Define (&(k))>0 as in (4.17) but with the factor 9 replaced by 7. By (4.13),
there exists a ¢ > 0 such that 7¢2 < g(e) for all ¢ < c. Making § smaller if necessary,
we can arrange that e(n) < ¢ for all n, hence e(n) > £(n) for all n. Since £(n) — oo
by Lemma 13 below, this leads to a contradiction. O

g(n) =

(4.19)

Lemma 13 (Summability) For n > 0, set

n*

—k
gt [Ti=p (@)?

If (4.16) holds, then "o 4 F,(n) < oo for 1 sufficiently small. On the other hand, if
(4.16) does not hold, then lim,,_, », I;)(n) = oo for all n > 0.

Fy(n) := (n > 0). (4.20)

Proof We start by observing that
dmstVn>m: Fy(n) <1

n
& dmst.Vn>m: (2” log(n) — log(aty1) — »_ 2" log(cxk)) <0
k=1

. 4.21
& dmstVa>m: (log(n) — 27" log(atp+1) — ZZ_k log(ak)) <0 ( )
k=1

o0
& log(n) — D 27 log(ey) <0,
k=1

which is satisfied for n sufficiently small if (4.16) holds. In this case, we may choose
1 > O such that K := sup,,~ F;;(n) < oo and observe that for any n <n
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o0 o0 7\ 2"
S Em<K> (”—) < 0. (4.22)
n=0 n

n=0

On the other hand, if (4.16) does not hold, then a calculation as in (4.21) shows that for
all n > O there exists an m such that for all n > m one has F;,(n) > 1, and therefore,
forany 0 < n <17/,

/

2n
lim inf F,y (n) > lim inf (”—) Fy(n) = co. (4.23)
n—oo )7

n— oo

4.3 Comparison argument

Proof of Theorem 1 (b) For N = 2, Theorem 1 (b) follows from Propositions 9 and
12. To generalize this to arbitrary N > 2, we will use a comparison argument.

Let N > 2 and let X be a contact process on 2y with infection rates as in (1.6)
satisfying

o0
Z(N/)_k log(atx) > —oo for some kg > 1, (4.24)
k=kg

where N’ = N incase N is a power of twoand 1 < N’ < N otherwise. For notational
convenience, we set y; 1= (ka_k (k > 1), i.e., we let (yx)r>1 denote the constants
such that the infection rates of X are given by (compare (1.6))

a(i, j) =yi-j G Jj€Qn,i#]j). (4.25)
Then, by (4.24),
o0 o0 o0
> (V) Flog(y) = D (N) *loglew) — D~ (N) Fklog(N) > —o0. (4.26)
k=ko k=ko k=ko
We claim that we can choose n, m > 1 such that
(N)" <2" < N™. (4.27)

If N/ = N is a power of two, then this is obviously satisfied with m = 1 for some
n > 1. Otherwise, we observe that (4.27) is equivalent to

log(N) _ n _ log(N)

2 ) (4.28)
log?2 m log?2

which is satisfied for some m, n > 1 since N < N.
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By an obvious monotone coupling, we can estimate X from below by a contact
process X’ on Qy with infection rates of the form a’(i, j) = y‘;._ i where

yl/:yZ/: :y];l zmm{)/l»’)/m},
Vil = VYmaa = = Vo = Mi{Vus1, .., Vom}, (4.29)
etcetera.

Next, we consider a contact process X” on £, with infection rates of the form
a’(i, j) = 7’|/i/fj|’ where

yl//zyz//zzyr:/zyn/w
Vil = Vas2 =0 = Vau = Vi (4.30)
etcetera.

We claim that if X” survives for a certain value of the recovery rate, then so does X'.
To see this, note that we can in a natural way identify X’ with a contact process on
Quym with infectionrates a(i, j) = Vr;zl i—jl Likewise, we can in a natural way identify
X" with a contact process on . Since 2" < N™, we may regard £y« as a subset of
Qum. Therefore, by suppressing infections that go outside €2,» we may estimate X’
from below by X”.

Forl > 0, choose i; € {Im + 1, ...,Im + m} such that

Yip = Min{Vim+1, - Vimm}- 4.31)

Then, for/ > 0Oandr =1, ..., n, one has Vl/r/wrr = ¥,,, hence by (4.27) and (4.26),

o0 o n o0 n
> 2 Mlog(yHl =D D 27U log (v, )l = D0 D 27U Hog(v)|
k=nly+1 I=ly r=1 1=y r=1

<> 27" log(ri)| < D (V)" [og(yi)l < (N'Y™ D (N[ log(yi)]

1=l I=ly I1=ly

<N D0 (N log(yil < o0 (4.32)
i=mly+1

for some o > 0. If we write the infection rates of X" in the form a”(i, j) =
a";_le’“ ~J1 then by (4.32) and the calculation in (4.26) one has Z,fikOZ’k log(a))>
— oo for some ko > 0, hence applying what we have already proved for N = 2 we
conclude that X” has a positive critical recovery rate and the same must be true

for X. |

@ Springer



560 S. R. Athreya, J. M. Swart

Appendix A: Coordinate reduction

In this appendix we prove that Lemmas 6 and 7 imply formulas (3.36) (i) and (ii),
respectively. The main problem is to invent good notation. Recall that S, = {0, 1}*".
For any x € S, and A C ", we let

x|, o= (x(@))iea (A.1)

denote the restriction of x to A. If A, A’ are disjoint sets, x € {0, 1}A andx’ € {0, l}A/,
then we define x & x’ € {0, 1}2Y2 by

o [xG) ifiea,
(x&x)(l)'_[x’(i) ifi e A (A-2)

For eachi € Q"~!, we define B; C Q" by (recall (2.4))
B(i):=Bi(i)={i'0i:i € Ql}. (A.3)
Let R, R’ be as in Lemma 6. Then we can write

Rf(x)= > R(x.x)f(x),

x’'eS|

Rfy) =D RO,

y'eSo

(A4)

where R(x, x’) and R'(y, y’) are the matrices of R and R’, respectively. We observe
that

Rif(x)= > R&lsw,2)f(xlansa &2),

z€{0,1}B®

RfM= D> ROO.2f Gl &),

ze{0, 1}

(AS)

where we identify {0, 1)@ = {0, 1}%' = §; and {0, 1}/ = {0, 1}% = S,. More-
over,

Pfx)= > [T p&jyG | £ (A.6)

yG{O,l}Qn_] jEQn—]
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Using the identification x| () = x;, we calculate

RiPf(x)= > Rxi.2)Pf(xlanai &2)
2€{0,1}B®

= > R@.2) Y, [T r&lansm &2)j. yG) | £O)

ze{O,l}B(i) y€{0,1}9n71 jEQn—l

= > 2 R@.apey | [ praiyo)]rm

ye(0,1)2" ! ze{0, 150 je@rI\{)

= > D penaRGy | [] p&iyG) | F»

ye{0,1y2" ! ze{o, 1310 jer=\{i}

= 2 2. PUiy@ORGG).2)

ye{0,1y2" ! ze{0,1}1)

< JT P&y | fOlarg &2

je@I\{i)

- 3 [T rGiyGn | D ROG.2fGlag &2)

yefo, 121 \jen-! 2€{0,1}10)
= PR f. (A.T)

Here we have used Lemma 6 in the fourth equality. In the fifth equality, we have
reordered our sums by relabeling y (i) and z.

The formal proof of formula (3.36) (ii) is similar, but even more cumbersome.
Letting / and / ; be as in Lemma 7, we can write, in matrix notation,

If) = D 10X fh =D D T, x152,2) f(z,2),
x'€SH z€S1 7/ €8]
(A.8)
L) =D Lo:ifoh= D D Ly, y(1):2.2) fz.2).

y'eSs) z€{0,1} 77€{0,1}

Then
Lifx) = . D Il X1 2 ) f lansausi) &2 &),
2€{0,1}B® /¢{0,1}B) (A.9)

Lifos )= D D Liysler, 0@ yG)i 22 f Glan1i.jy & 2& 2,

ze{0, 1} z/€{0, 147}
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and

Pro= > | [I pewy@)] @ . (A.10)

ye{O’I}Qn—l keQn—l

Using the fact that x| g(;y = x;, we calculate

LijPf(x) = Z Z I(xi, xj; 2,2 )Pf(x|lomBG)uB()) &2 &2)
7€{0,1}B0) 7/€{0,1}B()

= > > Iixjiz7)

z€{0,1}B0) 77¢{0,1}B()

X Z H p((xlon BiHUB() &2 &2k, y(k) | f ()

yefo.y@' ™! \ke!

- Z Z Z I(xj,xj;2,2)pzi, y(@)p(zj, y(j))

ye{0, 112771 2€{0,1}B® /{0, 1))

<[] »pey@)]fom

keQr—1\{i,j}

= > > D pwapb, I 2y, ()

ye{0,1}2" 1 ze{0, 111 /{0, 13U} (A1)

<[] pey@ ] rom
keQn—1\{i,j}

= D D> DL pla y@)py, YOI 0@, y()i 2.2

yelo, 12" ze(0. 1)1} 2/€{0, 13U

< T pey®) | FGlgmg) &z &)
keQn=1\{i,j}

= > [T pew. y@)
yE{O,l}Qnil keQn—1

XD > L 0, ¥(): 2 D f Gy &2 & D)

ze{0, 1111} z7€{0, 131/}
=PI;f(x).

Here we have used Lemma 7 in the fourth equality, and in the fifth equality, we have
reordered our sums by relabeling y (i), y(j), z, and z’.
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