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Abstract In this paper, we describe the asymptotic behavior, in the exponential
time scale, of solutions to quasi-linear parabolic equations with a small parameter
at the second order term and the long time behavior of corresponding diffusion pro-
cesses. In particular, we discuss the exit problem and metastability for the processes
corresponding to quasi-linear initial-boundary value problems.
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1 Introduction

Consider a dynamical system

Ẋx
t = b(Xx

t ), Xx
0 = x ∈ R

d , (1)

together with its stochastic perturbations

d Xx,ε
t = b(Xx,ε

t )dt + εσ (Xx,ε
t )dWt , Xx,ε

0 = x ∈ R
d . (2)
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274 M. Freidlin, L. Koralov

Here ε > 0 is a small parameter, Wt is a Wiener process in R
d , and the coefficients σ

and b are assumed to be Lipschitz continuous. The diffusion matrix a(x) = (ai j (x)) =
σ(x)σ ∗(x) is assumed to be nondegenerate for all x.

Let D be a bounded domain in R
d with infinitely smooth boundary ∂D. In this

paper, with the exception of the last section, we assume that there is a point x0 ∈ D
such that for each x∈ D the trajectory of the dynamical system (1) starting at x is
attracted to x0. We assume that (b(x), n(x)) < 0 for x ∈ ∂D, where n(x) is the exte-
rior normal to the boundary of D. Let τ ε = min{t : Xx,ε

t ∈ ∂D} be the first time when
Xx,ε

t reaches the boundary of D.
If ε is small, then on any finite time interval the trajectories of the process Xx,ε

t
defined by (2) are close to the corresponding nonperturbed trajectory with probability
close to one. Therefore, with high probability Xx,ε

t enters a small neighborhood of the
equilibrium point x0 before leaving D. The process eventually exits D as a result of
large deviations of Xx,ε

t from Xx
t ([6], see also [8]). The large deviations are governed

by the normalized action functional

S0,T (ϕ)=1

2

T∫

0

d∑
i, j=1

ai j (ϕt )(ϕ̇
i
t −bi (ϕt ))(ϕ̇

j
t −b j (ϕt ))dt, T ≥0, ϕ∈C([0, T ], D),

and the quasi-potential

V (x0,x) = inf
T,ϕ

{S0,T (ϕ) : ϕ ∈ C([0, T ], D), ϕ(0) = x0, ϕ(T ) = x}, x ∈ D.

Here ai j be the elements of the inverse matrix, that is ai j = (a−1)i j , and S0,T (ϕ) =
+∞ if ϕ is not absolutely continuous. It is proved in [6] that ε2 ln τ ε converges in
probability, as ε ↓ 0, to V0 = minx∈∂D V (x0,x). Moreover, if the minimum V0 of
V (x0,x) on ∂D is achieved at a unique point x∗ (which is true in the generic case),
then Xx,ε

τ ε converges to x∗ in probability as ε ↓ 0.
These statements imply various results for PDE’s with a small parameter at the

second order derivatives. In particular, consider the following initial-boundary value
problem:

∂wε(t,x)

∂t
= ε2

2

d∑
i, j=1

ai j (x)
∂2wε(t,x)

∂xi∂x j
+ b(x) · ∇xw

ε(t,x), x ∈ D, t > 0, (3)

wε(0,x) = g(x), x ∈ D, wε(t,x) = g(x), t ≥ 0, x ∈ ∂D, (4)

where g, for the sake of brevity, is assumed to be continuous on D. The case when
u(t,x)|x∈∂D = ψ(x)withψ �= g can be considered in a similar way. Assume that the
minimum V0 of V (x0,x) on ∂D is achieved at a unique point x∗. Let t : R

+ → R be
a function such that t (ε) 	 exp(λ/ε2) as ε ↓ 0 with λ > 0, that is ln(t (ε)) ∼ λ/ε2 as
ε ↓ 0. Then
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Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s 275

lim
ε↓0

wε(t (ε),x) = g(x0), if λ < V0,

lim
ε↓0

wε(t (ε),x) = g(x∗), if λ > V0,

for x ∈ D.
Note that the solution to (3) and (4) can be expressed in terms of the transition semi-

group associated with the family of processes Xx,ε
t , x ∈ D. Namely, let T εt g(x) =

Eg(Xx,ε
t∧τ ε ), g ∈ C(D). Then the function wε(t,x) = T εt g(x) is the solution to (3)

and (4). The semigroup T εt can be viewed as a small perturbation of the semigroup of
shifts Ttg(x) = g(Xx

t ) associated with the dynamical system (1).
More general perturbations of Tt may lead to nonlinear semigroups. Namely, con-

sider the following problem:

∂uε(t,x)

∂t
= Lεuε := ε2

2

d∑
i, j=1

ai j (x, uε)
∂2uε(t,x)

∂xi∂x j

+ b(x) · ∇xuε(t,x), x ∈ D, t > 0, (5)

uε(0,x) = g(x), x ∈ D; uε(t,x) = g(x), t ≥ 0, x ∈ ∂D. (6)

When the coefficients are sufficiently smooth and the matrix a is positive-definite, the
solution uε exists and is unique in the appropriate function space (see Sect. 2.1). We
can now define the semigroup T εt on C(D) via T εt g(x) = uε(t,x), where uε is the
solution of (5) and (6) with initial-boundary data g.

For t > 0 and x ∈ D, we can define Xt,x,ε
s , s ∈ [0, t], as the process which starts

at x and solves

d Xt,x,ε
s = b(Xt,x,ε

s )ds + εσ (Xt,x,ε
s , uε(t − s, Xt,x,ε

s ))dWs, s ≤ τ ε ∧ t, (7)

τ ε = min{s : Xt,x,ε
s ∈ ∂D}, Xt,x,ε

s = Xt,x,ε
τ ε , τ ε ≤ s ≤ t,

where σi j , 1 ≤ i, j ≤ d, are Lipschitz continuous and such that σσ ∗ = a. The process
Xt,x,ε

s will be called the nonlinear stochastic perturbation of (1). More precisely, Xt,x,ε
s

corresponds to the nonlinear semigroup defined by (5). As in the linear case, we have
the following relation between uε and the process Xt,x,ε

s :

uε(t,x) = Eg(Xt,x,ε
t∧τ ε ).

One of the important questions in the study of parabolic linear and nonlinear equa-
tions is the one concerning the behavior of solutions (or, in probabilistic terms, behavior
of the corresponding diffusion process) as t → ∞. In our case, when the small param-
eter ε2 is present in front of the second order term, the limit of uε(t,x) as ε → 0,
t → ∞, depends on the manner in which (ε, t) approaches (0,∞). In the linear case
this problem has been studied in [4] (see also [6,8]).

In Sect. 3, we study the asymptotic behavior of solutions to (5) and (6) when ε ↓ 0
and t = t (ε) 	 exp(λ/ε2). As a first step, we shall introduce a family of linear prob-
lems which can be obtained from (5) and (6) by replacing the second variable in the
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276 M. Freidlin, L. Koralov

coefficients ai j in the right hand side of (5) by a constant c. The asymptotics of uε

can be then expressed in terms of the functions V0(c) and g(x∗(c)), where V0(c) is
the minimum of the quasi-potential of the linear problem and x∗(c) is the point where
this minimum is achieved.

In Sect. 4, we study the exit problem for the process Xt,x,ε
s . We shall see that

new effects appear when nonlinear stochastic perturbations are considered. In partic-
ular, even in the generic case, the distribution of the exit location Xt,x,ε

t∧τ ε need not be
concentrated in one point.

Some related problems concern the notion of metastability for nonlinear pertur-
bations of dynamical systems with several equilibrium points. Let us consider the
dynamical system (1) in R

d and its perturbations (2). As before, σ and b are assumed
to be Lipschitz continuous. Now we shall assume that the system has a finite num-
ber of asymptotically stable equilibrium points x1, . . . ,xk such that for almost every
x ∈ R

d , with respect to the Lebesgue measure, the trajectory of (1) starting at x is
attracted to one of the points x1, . . . ,xk . We shall also assume that the vector field
b satisfies (b(x),x) ≤ A − B|x|2 for some positive constants A and B. The case of
more general asymptotically stable attractors (for instance, limit cycles) can be con-
sidered similarly, however for the sake of brevity we restrict ourselves to the case of
equilibriums.

The general theory of metastability was developed in [4] in the framework of large
deviations (see also [5,6,8]). It was shown, in particular, that for a generic vector field
b satisfying the assumptions above, for almost every x ∈ R

d and λ > 0, with prob-
ability which tends to one when ε ↓ 0, the trajectory Xx,ε

t of (2) spends most of the
time in the time interval [0, exp(λ/ε2)] near a point xλ ∈ {x1, . . . ,xk}. This point is
called the metastable state for the trajectory starting at x in the time scale exp(λ/ε2).
The metastable state can be determined by examining the values of the quasi-potential.
Namely, let

Vi j = V (xi ,x j )

= inf
T,ϕ

{S0,T (ϕ) : ϕ ∈ C([0, T ],Rd), ϕ(0) = xi , ϕ(T ) = x j }, 1 ≤ i, j ≤ m.

These numbers determine a hierarchy of cycles along which the system switches from
one metastable state to another with the growth of λ [4].

We can also study metastability for nonlinear perturbations of dynamical systems.
It turns out that now the transition between the equilibrium points does not occur
“immediately in the exponential time scale”. This implies that now metastable states
should be replaced by metastable distributions between the equilibriums. The descrip-
tion of metastable distributions is based on the study of the asymptotic behavior of
solutions to (5) and (6) when ε ↓ 0 and t = t (ε) 	 exp(λ/ε2). Note that metasta-
ble distributions also arise in [1,3], but for reasons which are different from what is
discussed in this paper. Such a modification to the notion of metastability leads to a
modified notion of stochastic resonance.

We briefly address the problems of metastability in Sect. 5, where we also consider
other generalizations and some examples. The issue of metastability in the case of an
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Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s 277

arbitrary number of equilibrium points and cycles will be addressed in a forthcoming
paper.

In this paper, we considered nonlinear perturbations of a system with an asymptot-
ically stable equilibrium. In this case, the exit from a domain containing this equilib-
rium occurs due to large deviations, and the exit time and exit distribution essentially
depend on the perturbation. A related singular perturbation problem arises in the case
when the equilibrium is stable but not asymptotically stable: for instance when the
unperturbed system is Hamiltonian. Nonlinear stochastic perturbations in this case
lead to a nonlinear version of the averaging principle. Say, in the case of one degree of
freedom, the limiting slow motion is a diffusion process corresponding to a nonlinear
operator on the graph (compare with [6, Chapter 8]) related to the Hamiltonian. We
will consider these problems in one of the forthcoming papers.

2 Preliminaries and notations

2.1 Quasi-linear equation

Let D ⊂ R
d be a bounded domain with infinitely smooth boundary ∂D. We shall

say that f :D → R belongs to C2(D) if f and all of its partial derivatives up to
the second order are bounded and continuous in D. We shall say that a function
f : (0,∞)× D → R belongs to C1,2((0,∞)× D) if f , its partial derivative in t , and
all of its partial derivatives up to the second order in x are bounded and continuous
in (0,∞) × D. Note that a function f ∈ C2(D) can be extended to a continuous
function on D and f ∈ C1,2((0,∞) × D) can be extended to a continuous function
on [0,∞)× D.

Let ai j = a ji ∈ C2(D × R), 1 ≤ i, j ≤ d, and bi ∈ C2(D), 1 ≤ i ≤ d. We
also assume that there is a positive constant k such that k|ξ |2 ≤ ∑d

i, j=1 ai j (x, u)ξiξ j ,

x ∈ D, u ∈ R, ξ ∈ R
d . Let g be an infinitely smooth function defined in a neighbor-

hood of D.
If ε > 0 and the coefficients a and b and the function g satisfy the assumptions

listed above, then the Eq. (5) and (6) has a unique solution in the class of functions
C1,2((0,∞) × D) ∩ C([0,∞) × D) (see Theorem 5, Chapter 6.2 of [7]). If g were
to be only continuous on D, the existence and uniqueness of solutions to (5) and (6)
would hold in the class of functions which are locally C1,2-smooth inside (0,∞)× D
and continuous up to the boundary. However, to simplify notations in later sections,
we impose the smoothness condition on g.

2.2 Action functional

Let α be a symmetric d × d matrix whose elements αi j are bounded and Lipschitz
continuous on R

d and satisfy k|ξ |2 ≤ ∑d
i, j=1 αi j (x)ξiξ j , x ∈ R

d , ξ ∈ R
d . Let αi j

be the elements of the inverse matrix, that is αi j = (α−1)i j , and σ be a square matrix
such that α = σσ ∗. We choose σ in such a way that σi j are also bounded and Lipschitz
continuous.
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278 M. Freidlin, L. Koralov

Let Sα0,T be the normalized action functional for the family of processes Xx,ε
t

satisfying

d Xx,ε
t = b(Xx,ε

t )dt + εσ (Xx,ε
t )dWt ,

where b is a bounded Lipschitz continuous vector field on R
d . Thus

Sα0,T (ϕ) = 1

2

T∫

0

d∑
i, j=1

αi j (ϕt )(ϕ̇
i
t − bi (ϕt ))(ϕ̇

j
t − b j (ϕt ))dt

for absolutely continuous ϕ defined on [0, T ], ϕ0 = x, and Sα0,T (ϕ) = ∞ if ϕ is not
absolutely continuous or if ϕ0 �= x (see [6]). Let V α(x, y) be the quasi-potential for
the family Xx,ε

t in D, that is

V α(x, y) = inf
T,ϕ

{Sα0,T (ϕ) : ϕ ∈ C([0, T ], D), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ D.

3 Asymptotics of the solution

3.1 Formulation of the result

Recall that (b(x), n(x)) < 0 for x ∈ ∂D, where n(x) is the exterior normal to the
boundary of D. We shall assume that there is an equilibrium point x0 ∈ D for the vec-
tor field b, and that all the trajectories of the dynamical system ẋ(t) = b(x(t)) starting
in D are attracted to x0. We also assume that there is r > 0 such that (b(x),x−x0) ≤
−c|x − x0|2 for some positive constant c and all x in the r -neighborhood of x0.

Let δ > 0, Dδ = {x : x ∈ D, dist(x, ∂D) > δ}, and uε be the solution of (5) and
(6). We shall be interested in the asymptotic behavior of uε(exp(λ/ε2),x), where λ is
fixed, x ∈ Dδ , and ε ↓ 0.

Let

gmin = min
x∈D

g(x), gmax = max
x∈D

g(x), g1 = min
x∈∂D

g(x), g2 = max
x∈∂D

g(x).

Thus [g1, g2] ⊆ [gmin, gmax]. Let M : [gmin, gmax] → R be defined by

M(c) = min
x∈∂D

V a(·,c)(x0,x), (8)

where a(x, c) is extended to an arbitrary bounded Lipschitz continuous function sat-
isfying k|ξ |2 ≤ ∑d

i, j=1 ai j (x, c)ξiξ j , ξ ∈ R
d ,x ∈ R

d \ D.
We next make some assumptions about the quasi-potential. It is not difficult to see

that these assumptions are satisfied by a quasi-potential corresponding to generic a
and b.

We shall assume that for all but finitely many points c ∈ [gmin, gmax] the minimum
in (8) is attained at a single point which will be denoted by x∗(c). We assume that in
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Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s 279

the remaining points c1, . . . , ck the minimum is attained at two points of the boundary.
In this case the function x∗ : [gmin, gmax] → ∂D is piece-wise continuous and has
left and right limits at the points of discontinuity, as follows from the formula for the
quasi-potential. Let x∗

1(c
i ) = limc↑ci x∗(c) if ci �= gmin and x∗

2(c
i ) = limc↓ci x∗(c) if

ci �= gmax, 1 ≤ i ≤ k. If ci = gmin, we define x∗
1(c

i ) as the point distinct from x∗
2(c

i )

where the minimum of the quasi-potential is attained, and similarly we define x∗
2(c

i ) if
ci = gmax as the point distinct from x∗

1(c
i ) where the minimum of the quasi-potential

is attained.
We assume that x∗

1(c
i ) �= x∗

2(c
i ), 1 ≤ i ≤ k (thus limc↑ci x∗(c) �= limc↓ci x∗(c)

if ci is an interior point of [gmin, gmax]). Define G1(ci ) = g(x∗
1(c

i )) and G2(ci ) =
g(x∗

2(c
i )). We can now define the piece-wise continuous function G : [gmin, gmax] →

[g1, g2] via

G(c) = g(x∗(c)), c ∈ [gmin, gmax] \ {c1, . . . , ck}, G(ci ) = G1(c
i ), 1 ≤ i ≤ k.

Let c0 = g(x0) and define c1 as follows:

If G(c0) ≥ c0, then c1 = inf{c : c ≥ c0,G(c) ≤ c}.
If G(c0) ≤ c0, then c1 = sup{c : c ≤ c0,G(c) ≥ c}.

Note that c1 ∈ [g1, g2] since G([gmin, gmax]) ⊆ [g1, g2]. We shall require that the graph
of G pass from the left of the diagonal to the right of the diagonal at c1. More precisely,
we shall assume that if c1> gmin, then for every δ0> 0 there exists δ ∈ (0, δ0] such
that

G(c1 − δ) > c1 − δ,

and if c1 < gmax, then for every δ0 > 0 there exists δ ∈ (0, δ0] such that

G(c1 + δ) < c1 + δ.

We also require that c0 not coincide with any of the points of discontinuity ci for which
G1(ci ) ≤ ci ≤ G2(ci ).

Let λ ∈ (0,∞) and define function c(λ) as follows:

For 0 < λ < M(c0), let c(λ) = c0.
For λ ≥ M(c0) and c1 = c0, let c(λ) = c0.
For λ ≥ M(c0) and c1 > c0, let c(λ) = min{c1,min{c : c ∈ [c0, c1],M(c) = λ}}.
For λ ≥ M(c0) and c1 < c0, let c(λ) = max{c1,max{c : c ∈ [c1, c0],M(c) = λ}}.
Here we use the convention that the minimum of an empty set is +∞ and the max-

imum of an empty set is −∞. (See Fig. 1, where the thick line represents the graph
of the function c(λ) and λ′ is a point of discontinuity for the function c(λ)).

We also define λmax = supc∈[c0,c1] M(c) if c1 ≥ c0 and λmax = supc∈[c1,c0] M(c)
if c1 ≤ c0.
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280 M. Freidlin, L. Koralov

Fig. 1 The thick line represents the graph of c(λ)

Theorem 3.1 Let the above assumptions concerning the differential operator Lε and
the function G be satisfied. Suppose that the function c(λ) is continuous at a point
λ ∈ (0,∞). Then for every δ > 0 the following limit

lim
ε↓0

uε(exp(λ/ε2),x) = c(λ)

is uniform in x ∈ Dδ , where uε is the solution to (5) and (6).

Remark From Theorem 3.1 and the definition of the function c(λ) it follows that

lim
ε↓0

uε(exp(λ/ε2),x) = c1

uniformly in x ∈ Dδ if λ > λmax. Moreover, from the proof of Theorem 3.1 provided
below it easily follows that the limit is uniform in (x, λ) ∈ Dδ × [λ,∞) for each
λ > λmax. Therefore, for each δ > 0 and λ > λmax there is ε0 > 0 such that

|uε(t,x)− c1| ≤ δ

whenever ε ∈ (0, ε0), x ∈ Dδ and t ≥ exp(λ/ε2).
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It is important to note that with the boundary values of g fixed, the limit c1 may
still depend on the initial function through its value c0 at the equilibrium point. In the
generic case, when the interval [gmin, gmax] can be represented as a finite union of
intervals I1 ∪ . . . ∪ Im , such that on the interior of each of the intervals the function
G(c) − c is either strictly positive or strictly negative, the values of c0 belonging to
the interior of the same interval will correspond to the same value of c1.

The proof of Theorem 3.1 will use some properties of diffusion processes stated in
the following section. Theorem 3.1 implies various results concerning the exit prob-
lem and metastability for the process Xt,x,ε

s defined above. These questions will be
considered in Sects. 4 and 5.

3.2 Properties of the diffusion processes

In this section, we shall consider diffusion processes which are somewhat more gen-
eral than those introduced in Sect. 2.2. Namely, we shall allow the diffusion matrix to
be time dependent. The results stated in this section easily follow from the arguments
of [6, Chapter 4].

Let α be a symmetric d × d matrix whose elements αi j are Lipschitz continuous
on R

+ × R
d and satisfy

k|ξ |2 ≤
d∑

i, j=1

αi j (t,x)ξiξ j ≤ K |ξ |2, (t,x) ∈ R
+ × R

d , ξ ∈ R
d , (9)

where k and K are positive constants. Let σ be a square matrix such that α = σσ ∗.
We choose σ in such a way that σi j are also bounded and Lipschitz continuous.

Let Xx,ε
t satisfy Xx,ε

0 = x and

d Xx,ε
t = b(Xx,ε

t )dt + εσ (t, Xx,ε
t )dWt , (10)

where b is a bounded Lipschitz continuous vector field on R
d . Clearly, the law of this

process depends on σ only through α = σσ ∗.
For x ∈ D, let τ ε be the first time when the process reaches the boundary of D.

Thus Xx,ε
τ ε is the location of the first exit of the process Xx,ε

t from the domain D. If α
is close to a function which does not depend on time, then the asymptotics, as ε ↓ 0,
of Xx,ε

τ ε and τ ε can be described in terms of the quasi-potential.
More precisely, let σ be a bounded Lipschitz continuous matrix valued function on

R
d such that

k|ξ |2 ≤
d∑

i, j=1

αi j (x)ξiξ j ≤ K |ξ |2, x ∈ R
d , ξ ∈ R

d ,

where α = σσ ∗. Let A be the set of points in ∂D at which minx∈∂D V α(x0,x) is
attained. This minimum will be denoted by v.
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Lemma 3.2 Suppose α is as above, and positive constants k and K are fixed. For
every δ > 0 there is positive � and a function ρ : R

+ → R
+ with limε↓0 ρ(ε) = 0,

such that for every α that is Lipschitz continuous, satisfies (9) and

sup
(t,x)∈R+×D�

|αi j (t,x)− αi j (x)| ≤ �, (11)

and every x ∈ Dδ we have:

(A) P(τ ε ≤ exp((v + δ)/ε2)) ≥ 1 − ρ(ε),
(B) P(τ ε ≥ exp((v − δ)/ε2)) ≥ 1 − ρ(ε),

(C) P(dist(Xx,ε
τ ε ,A) ≤ δ) ≥ 1 − ρ(ε).

The next lemma only requires the boundedness of the quadratic form α from above
and below.

Lemma 3.3 Suppose that positive constants k and K are fixed. There exists v0 > 0
such that for every 0 < δ < v0 there is a function ρ : R

+ → R
+ with limε↓0 ρ(ε) = 0,

such that for every α that is Lipschitz continuous and satisfies (9) and every x ∈ Dδ

we have:

(A) P(τ ε ≥ exp(v0/ε
2)) ≥ 1 − ρ(ε),

(B) P(|Xx,ε
t − x0| ≤ δ for all t ∈ [exp(δ/ε2), exp(v0/ε

2)]) ≥ 1 − ρ(ε),

(C) P(|Xx0,ε
t − x0| ≤ δ for all t ∈ [0, exp(v0/ε

2)]) ≥ 1 − ρ(ε).

An easy corollary of this lemma is that at an exponential time the process either
can be found in a small neighborhood of x0 or has earlier crossed the boundary of the
domain.

Corollary 3.4 Suppose that positive constants k and K are fixed. For every δ > 0
there is a function ρ : R

+ → R
+ with limε↓0 ρ(ε) = 0, such that for every α that is

Lipschitz continuous and satisfies (9), every x ∈ D and t ≥ exp(δ/ε2) we have:

P(|Xx,ε
t − x0| ≤ δ or τ ε ≤ t) ≥ 1 − ρ(ε).

Proof Let δ1 > 0 be sufficiently small so that there is a domain D̃ with smooth bound-
ary such that D̃δ1 = D. If the process does not reach ∂D by the time t − exp(δ/ε2),
then we can apply Part (B) of Lemma 3.3 to the domain D̃ and the process starting at
Xx,ε

t−exp(δ/ε2)
, and the result follows from the Markov property. ��

3.3 Preliminary lemmas

The next step in the proof of Theorem 3.1 is to establish that uε(exp(t/ε2),x) is nearly
constant on Dδ if t > 0 is fixed and ε is sufficiently small. This is accomplished in
Lemma 3.7 below.

Lemma 3.5 For every positive t0 and R there are positive C and ε0 such that

|uε(t,x)− uε(t,x0)| ≤ Cε (12)

whenever |x − x0| ≤ Rε, ε ≤ ε0 and t ≥ t0.
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Proof Let vε(t, y) = uε(t,x0 +εy), t ∈ (0,∞), |y| ≤ 2R. Let Q = (0,∞)× B2R(0)
and Q0 = (t0,∞)× BR(0), where Br (0) is the ball of radius r centered at the origin.
Then vε satisfies the following partial differential equation:

∂vε(t, y)

∂t
= 1

2

d∑
i, j=1

ãi j (t, y)
∂2vε(t, y)

∂yi∂y j
+ b(x0 + εy)

ε
· ∇yv

ε(t, y), (t, y) ∈ Q.

Here ãi j (t, y) = ai j (x0 + εy, uε(t,x0 + εy)) are uniformly bounded in ε and sat-
isfy k|ξ |2 ≤ ∑d

i, j=1 ãi j (t, y)ξiξ j , t ∈ (0,∞), y ∈ B2R(0), ξ ∈ R
d . Moreover,

supy∈B2R(0) |b(x0 + εy)/ε| is bounded uniformly in ε and |∇yãi j (t, y)| can be esti-
mated from above by a constant times 1 +|∇yv

ε(t, y)| for (t, y) ∈ Q, uniformly in ε.
Since the distance between Q0 and the boundary of Q is positive and |vε| is uniformly
bounded in Q by max(|g1|, |g2|), we can apply the a priori estimate (see Theorem 4,
Chapter 5.2 of [7] or Theorem 6, Chapter 6.2 of [7]) to bound sup(t,x)∈Q0

|∇yv
ε| by a

constant C independent of ε. This immediately implies (12). ��
We shall need the following simple lemma about diffusion processes with the drift

directed towards the origin.

Lemma 3.6 Let b̃ be a C2 smooth vector field on R
d such that (̃b(x),x) ≤ −k1(x,x)

for some positive k1 and all x ∈ R
d . Let σ̃ (t,x) be a Lipschitz continuous function

such that |̃σi j (t,x)| ≤ k2, 1 ≤ i, j ≤ d, for all t ≥ 0 and x ∈ R
d . Let Y x

t be the
process starting at x that satisfies

dY x
t = b̃(Y x

t )dt + εσ̃ (t,Y x
t )dWt .

Then for every r, δ > 0 there are R, s0 and ε0, which depend on b̃ and σ̃ only through
k1, k2, such that

P(Y x
s0| ln ε| ∈ BRε(0)) ≥ 1 − δ (13)

holds for x ∈ Br (0) and 0 < ε ≤ ε0.

Proof Let h : R → [0, 1] be a smooth even function with negative derivative on
(1/2, 1), such that h(x) = 1 for 0 ≤ x ≤ 1/2 and h(x) = 0 for x ≥ 1. Let

f (t,x) = h(|x| exp(−k1t)/Rε).

If R and s0 are sufficiently large and ε0 is sufficiently small, then f (s0| ln ε|,x) >
1 − δ/2 for x ∈ Br (0), 0 < ε ≤ ε0. By the Ito formula,

P(Y x
s0| ln ε| ∈ BRε(0)) ≥ E f (0,Y x

s0| ln ε|)

= E f (s0| ln ε|,x)+ E

s0| ln ε|∫

0

(
L f − ∂ f

∂t

)
(s0| ln ε| − s,Y x

s )ds,
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where L is the generator of the process Y x
t . In order to estimate the integral in the right

hand side, we note that

(
L f − ∂ f

∂t

)
(t,x) ≥ −C max

x∈[0,1](h
′′(x)) exp(−2k1t)/R2,

where the constant C depends on k1 and k2. By taking R sufficiently large, we can
bound the expectation of the integral from below by −δ/2, thus proving (13). ��
Lemma 3.7 For every positive λ0 and δ there is positive ε0 such that

|uε(exp(λ/ε2),x)− uε(exp(λ/ε2),x0)| ≤ δ (14)

whenever x ∈ Dδ , ε ≤ ε0 and λ ≥ λ0.

Proof Choose r > 0 small enough so that (b(x),x − x0) ≤ −c|x − x0|2 for some
positive constant c and all x ∈ B2r (x0). First, let us prove a slightly weaker version
of the lemma, namely that under the same assumptions (14) holds for all x ∈ Br (x0),
ε ≤ ε0 and λ ≥ λ0.

Let Xλ,x,εs , s ∈ [0, exp(λ/ε2)], be the process that starts at x and satisfies

d Xλ,x,εs = b(Xλ,x,εs )ds + εσ
(

Xλ,x,εs , uε
(

exp(λ/ε2)− s, Xλ,x,εs

))
dWs,

s ≤ τ ε ∧ exp(λ/ε2), (15)

τ ε = min
{
s : Xλ,x,εs ∈ ∂D

}
, Xλ,x,εs = Xλ,x,ετ ε , τ ε ≤ s ≤ exp(λ/ε2),

where σi j ∈ C2(D×R), 1 ≤ i, j ≤ d, are Lipschitz continuous and such that σσ ∗ = a.
(If the minimum in the definition of τ ε is taken over an empty set, then it is considered
to be equal to +∞.)

In order to avoid confusion, let us note that we switched the notation, using Xλ,x,εs
with superscript λ for the process on the interval [0, exp(λ/ε2)] with exp(λ/ε2) inside
the coefficient in the right hand side of (15). The notation Xt,x,ε

s with superscript t
still applies to the process defined in (7).

Given s0 > 0, we can define

τ ε1 = min(s0| ln ε|, inf(s : |Xλ,x,εs − x0| = 2r)).

From Lemma 3.3 applied to the domain B2r (x0) and Lemma 3.6 it follows that for
every δ′ > 0 there are positive s0, ε0 and R such that

P(Xλ,x,ε
τ ε1

∈ BRε(x0)) ≥ 1 − δ′ (16)

for all λ ≥ λ0, x ∈ Br (x0) and ε ≤ ε0. Using the Feynman-Kac formula, we can
write uε(exp(λ/ε2),x) as follows:

uε(exp(λ/ε2),x) = Euε(exp(λ/ε2)− τ ε1 , Xλ,x,ε
τ ε1

).
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Therefore,

|uε(exp(λ/ε2),x)− uε(exp(λ/ε2),x0)|
≤ 2 sup

x∈Br (x0)

P(Xλ,x,ε
τ ε1

/∈ BRε(x0)) sup
t≥0,x∈D

|uε(t,x)|

+ sup
y1,y2∈BRε(x0)

|uε(exp(λ/ε2)− s0| ln ε|, y1)− uε(exp(λ/ε2)− s0| ln ε|, y2)|.

The first term in the right hand side can be made smaller than δ/2 by (16), while the
second term can be made smaller than δ/2 by Lemma 3.5. Thus (14) is true if we
require that x ∈ Br (x0).

Next, let us prove the original statement. For v0 > 0, define

τ ε2 = min(exp(v0/ε
2), τ ε).

From Lemma 3.3 it follows that there is 0 < v0 < λ0 such that

lim
ε↓0

P(Xλ,x,ε
τ ε2

∈ Br (x0)) = 1, (17)

where the limit is uniform in λ ≥ λ0, x ∈ Dδ . Using the Feynman-Kac formula, we
can write uε(exp(λ/ε2),x) as follows:

uε(exp(λ/ε2),x) = Euε(exp(λ/ε2)− τ ε2 , Xλ,x,ε
τ ε2

).

Therefore,

|uε(exp(λ/ε2),x)−uε(exp(λ/ε2),x0)|
≤ 2 sup

x∈Dδ

P(Xλ,x,ε
τ ε2

/∈ Br (x0)) sup
t≥0,x∈D

|uε(t,x)|

+ sup
y1,y2∈Br (x0)

|uε(exp(λ/ε2)− exp(v0/ε
2), y1)−uε(exp(λ/ε2)− exp(v0/ε

2), y2)|.

The first term in the right hand side tends to zero by (17), while the second term tends
to zero since we proved that the lemma is true if we require that x ∈ Br (x0). ��

3.4 Proof of the theorem on the Asymptotics of the solution

In this section, we prove Theorem 3.1. First, we examine the behavior of uε for times
which are small in the logarithmic scale.

Lemma 3.8 There is a positive v0 such that for every 0 < δ < v0 there is ε0 > 0
such that

|uε(exp(λ/ε2),x)− g(x0)| ≤ δ

whenever x ∈ Dδ , 0 < ε ≤ ε0 and δ ≤ λ ≤ v0.
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Proof This lemma immediately follows from Lemma 3.3. ��
The next three lemmas, central to the proof of Theorem 3.1, rule out certain types

of behavior for the function uε.

Lemma 3.9 Suppose that a1 ≤ µn < λn ≤ a2 for some constants a1, a2 > 0, εn ↓ 0
as n → ∞, and

uεn (exp(µn/ε
2
n),x0) = β1, uεn (exp(λn/ε

2
n),x0) = β2

with β1 �= β2. Then there is δ > 0 such that

exp(λn/ε
2
n)− exp(µn/ε

2
n) ≥ exp(δ/ε2

n) (18)

for all large enough n.

Proof Consider the process Xλn ,x0,εn
s given by (15) with τ εn being the first time when

this process reaches the boundary of D. Define

τ εn = min(τ εn , exp(λn/ε
2
n)− exp(µn/ε

2
n)).

Then

uεn (exp(λn/ε
2
n),x0) = Euεn (exp(λn/ε

2
n)− τ εn , Xλn ,x0,εn

τ εn
).

The left hand side in this formula is equal to β2. If (18) does not hold, then by Part (C)
of Lemmas 3.3 and 3.7 the right hand side can be made arbitrarily close to β1 along a
subsequence. ��
Lemma 3.10 Suppose that a1 ≤ µn <λn ≤ a2 for some constants a1, a2 > 0, εn ↓ 0
as n → ∞, and

uεn (exp(µn/ε
2
n),x0) = β1, uεn (exp(λn/ε

2
n),x0) = β2, (19)

If gmin < β1 < β2 < gmax, then neither of the following is possible:

(A) There is δ > 0 such that λn < M(β2)− δ,
(B) There is δ > 0 such that G(c) < β2 − δ for c ∈ [β2 − δ, β2 + δ].
If gmin < β2 < β1 < gmax, then neither of the following is possible:

(A′) There is δ > 0 such that λn < M(β2)− δ,
(B′) There is δ > 0 such that G(c) > β2 + δ for c ∈ [β2 − δ, β2 + δ].
Proof (A) Let us assume that λn < M(β2)− δ. We can find λ′

n ∈ [µn, λn] such that
uεn (exp(λ′

n/ε
2
n),x0) = β2 and u(t,x0) ≤ β2 for t ∈ [exp(µn/ε

2
n), exp(λ′

n/ε
2
n)].

Let αi j (x) = ai j (x, β2). Let τ ε be the first time when the process defined in (10)
reaches the boundary of D. By part (B) of Lemma 3.2, we can choose � > 0 such that
whenever α is Lipschitz continuous and satisfies (9) and (11), we have

P(τ εn ≥ exp(λ′
n/ε

2
n)) ≥ P(τ εn ≥ exp((M(β2)− δ)/ε2

n)) ≥ 1 − ρ(εn), (20)
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for x ∈ Dδ , where ρ does not depend on α and satisfies limε↓0 ρ(ε) = 0. Choose
β ′ > 0 such that

|ai j (x, β2)− ai j (x, β)| < �

whenever β ∈ [β2 − 2β ′, β2 + 2β ′], x ∈ D� . Choose a sequence µ′
n ∈ [µn, λ

′
n] such

that uεn (µ′
n/ε

2
n,x0) = β2 − β ′ and uεn (t,x0) ∈ [β2 − β ′, β2] for t ∈ [exp(µ′

n/ε
2
n),

exp(λ′
n/ε

2
n)]. By Lemma 3.7, we have

|ai j (x, β2)− ai j (x, uεn (t,x))| < � (21)

for x ∈ D� , t ∈ [exp(µ′
n/ε

2
n), exp(λ′

n/ε
2
n)], if εn is sufficiently small. Consider the

process X
λ′

n ,x0,εn
s given by (15), with τ εn now being the first time when this process

reaches the boundary of D, and

τ εn = min(τ εn , exp(λ′
n/ε

2
n)− exp(µ′

n/ε
2
n)). (22)

Then

uεn (exp(λ′
n/ε

2
n),x0) = Euεn (exp(λ′

n/ε
2
n)− τ εn , X

λ′
n ,x0,εn
τ εn

). (23)

The left hand side in this formula is equal to β2, while the right hand side can be
made arbitrarily close to β2 − β ′ by considering sufficiently small εn due to (20),
Corollary 3.4 (which applies due to Lemma 3.9) and Lemma 3.7. This leads to a
contradiction.

(B) Assume that G(c) < β2 −δ for c ∈ [β2 −δ, β2 +δ]. Let A be the set (consisting
of either one or two points) where the minimum of V a(·,β2)(x0,x) is attained. From
the definition of G it follows that g(A) ⊂ (−∞, β2 − δ). By part (C) of Lemma 3.2,
we can choose � > 0 such that whenever α is Lipschitz continuous and satisfies (9)
and (11), we have

P(g(Xσ,x,ετ ε ) ≤ β2 − δ/2) ≥ 1 − ρ(ε) (24)

for x ∈ Dδ and all sufficiently small ε.
As in case (A), we can find β ′ > 0 and µn ≤ µ′

n < λ′
n ≤ λn such that

uεn (exp(µ′
n/ε

2
n),x0) = β2 − β ′, uεn (exp(λ′

n/ε
2
n),x0) = β2,

and (21) holds for x ∈ D� , t ∈ [exp(µ′
n/ε

2
n), exp(λ′

n/ε
2
n)], if εn is sufficiently small.

We can again employ formula (23) in which the left hand side is equal to β2. The right
hand side can be written as

Euεn
(

exp(λ′
n/ε

2
n)− τ εn , X

λ′
n ,x0,εn

τ εn

)
= E

(
χ{τ εn<τεn }uεn

(
exp

(
µ′

n/ε
2
n

)
, X

λ′
n ,x0,εn

τ εn

))

+ E
(
χ{τ εn =τ εn }g

(
X
λ′

n ,x0,εn
τ εn

))
.
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The first term in the right hand side here can be made arbitrarily close to P(τ εn <

τεn )(β2 − β ′) by Corollary 3.4 and Lemma 3.7. The second term on the right hand
side can be estimated from above for large n by P(τ εn = τ εn )(β2 − δ/4) due to (24).
This leads to a contradiction.

The proof of (A′) and (B′) is completely similar to the proof of (A) and (B). ��
Lemma 3.11 Suppose that λ > 0. If c1 > c0, then

lim inf
ε↓0

(uε(exp(λ/ε2),x0)− c(λ)) ≥ 0. (25)

If c1 < c0, then

lim sup
ε↓0

(uε(exp(λ/ε2),x0)− c(λ)) ≤ 0.

Proof We shall only consider the first statement since the second one is completely
similar. Note that

lim inf
ε↓0

uε(exp(λ/ε2),x0) ≥ c0. (26)

Indeed, otherwise by Lemma 3.8 there are β2 < β1 < c0 and sequences v0 ≤ µn <

λn ≤ λ and εn ↓ 0 such that (19) holds. Note that the graph of G goes above the
diagonal in a neighborhood of c0, while β1 and β2 can be taken arbitrarily close to c0.
Therefore, Part (B′) of Lemma 3.10 leads to a contradiction.

Thus, if (25) does not hold, then is there are δ > 0 and a sequence εn ↓ 0 such that

c0 − δ < uεn (exp(λ/ε2
n),x0) < c(λ)− δ.

We choose δ sufficiently small so that the graph of G goes above the diagonal on the
interval [c0 − 2δ, c(λ)− δ/2]. Take δ′ > 0 which will be specified later.

For each c ∈ [c0 − δ, c(λ)− δ], by part (A) of Lemma 3.2, we can choose �(c) > 0
such that whenever α is Lipschitz continuous and satisfies (9) and (11) with αi j (x) =
ai j (x, c) we have

P(τ ε ≤ exp((M(c)+ δ′)/ε2)) ≥ 1 − ρ(ε). (27)

P(g(Xx0,ε
τ ε ) ≥ inf

c∈[c−δ′,c+δ′]
G(c)− δ′) ≥ 1 − ρ(ε) (28)

For each c ∈ [c0 − δ, c(λ)− δ], find l(c) < δ′ such that |ai j (x, c)− ai j (x, c)| < �(c)
whenever c ∈ [c − l(c), c + l(c)], x ∈ D�(c).

Choose a finite subcovering of the interval [c0 − δ, c(λ) − δ] by the intervals
(cm − l(cm)/2, cm + l(cm)/2) and take l = minm(l(cm)). Let c0 − δ = β0 < β1 <

· · · < βk = c(λ)− δ be such that βi − βi−1 ≤ l/10, 1 ≤ i ≤ k.
We claim that if i ≥ 1, 0 < λ′ < λ and uεn (exp(λ/ε2

n),x0) ∈ [βi−1, βi ] along
a subsequence, then uεn (exp(λ′/ε2

n),x0) ≤ βi−1 for large enough n along the same
subsequence. If this were not the case, then we would have
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uεn (exp(λ/ε2
n),x0) ∈ [βi−1, βi ] and uεn (exp(λ′/ε2

n),x0) ≥ βi−1

along a further subsequence. Note that the function uεn (t,x0) must take values in the
interval [βi−1 − l/10, βi + l/10] for t ∈ [exp(λ′/ε2

n), exp(λ/ε2
n)], otherwise Part (B′)

of Lemma 3.10 leads to a contradiction.
By the construction above and Lemma 3.7, there is m such that |cm − βi | < δ′ and

|ai j (x, cm)− ai j (x, uεn (t,x))| < �(cm)

for x ∈ D�(cm), t ∈ [exp(λ′/ε2
n), exp(λ/ε2

n)], if εn is sufficiently small.
Consider the process Xλ,x0,εn

s given by (15), with τ εn being the first time when this
process reaches the boundary of D, and

τ εn = min(τ εn , exp(λ/ε2
n)− exp(λ′

n/ε
2
n)).

Then

uεn (exp(λ/ε2
n),x0) = Euεn (exp(λ/ε2

n)− τ εn , Xλ,x0,εn
τ εn

).

The left hand side does not exceed βi . If (exp(λ/ε2
n)− exp(λ′/ε2

n)) ≥ exp((M(cm)+
δ′)/ε2

n) (which is true if δ′ is sufficiently small and n is sufficiently large), then from (27)
and (28) it follows that the right hand side can be made larger than infc∈[cm−δ′,cm+δ′]
G(c)− 2δ′. This leads to a contradiction if δ′ is small enough since G is a piece-wise
continuous function which stays above the diagonal on [c0 − 2δ, c(λ)− δ/2].

We have thus established that uεn (exp(λ′/ε2
n),x0) ≤ βi−1. We can then extract

a further subsequence such that uεn (exp(λ′/ε2
n),x0) belongs to one of the intervals

[β j−1, β j ] with j < i . We can then take λ′′<λ′ and repeat the argument above to
show that uεn (exp(λ′′/ε2

n),x0) ≤ β j−1. After at most k such steps, we obtain λ̃ < λ

such that uεn (exp(̃λ/ε2
n),x0) ≤ β0 along a subsequence, and λ̃ can be chosen to be

arbitrarily close to λ. This, however, is a contradiction with (26). ��
Proof of Theorem 3.1 By Lemma 3.7, it is sufficient to prove that

lim
ε↓0

uε(exp(λ/ε2),x0) = c(λ). (29)

Case 1 0 < λ < M(c0). Assume that

lim sup
ε↓0

uε(exp(λ/ε2),x0) > c0. (30)

Take c0<β1<β2< lim supε↓0 uε(exp(λ/ε2),x0) such that M(β2) > λ. By
Lemma 3.8, there are sequences εn ↓ 0 and v0 ≤ µn < λn ≤ λ such that (19)
holds. Thus Part (A) of Lemma 3.10 leads to a contradiction with (30). The inequality

lim inf
ε↓0

uε(exp(λ/ε2),x0) < c0
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can be ruled out in the same way by referring to Part (A′) of Lemma 3.10.

Case 2 λ ≥ M(c0), c1 = c0. Assume that

lim sup
ε↓0

uε(exp(λ/ε2),x0) > c0. (31)

Then, since G is piece-wise continuous and passes from the left of the diagonal to the
right of the diagonal at c1, we can find δ > 0 and β1,β2 such that

c0 < β1 < β2 < lim sup
ε↓0

uε(exp(λ/ε2),x0)

and G(c) < β2 − δ for c ∈ [β2 − δ, β2 + δ]. By Lemma 3.8, there are sequences
εn ↓ 0 and v0 ≤ µn < λn ≤ λ such that (19) holds. Thus Part (B) of Lemma 3.10
leads to a contradiction with (31). The inequality

lim inf
ε↓0

uε(exp(λ/ε2),x0) < c0

can be ruled out in the same way by referring to Part (B′) of Lemma 3.10.

Case 3 λ ≥ M(c0), c1 > c0. First assume that

lim sup
ε↓0

uε(exp(λ/ε2),x0) > c(λ). (32)

We can repeat the arguments of Case 2 to show that (32) implies that c(λ) < c1. Then,
since λ is a point of continuity of c(λ), we can find β1, β2 such that

c(λ) < β1 < β2 < lim sup
ε↓0

uε(exp(λ/ε2),x0)

and M(β2) > λ. By Lemma 3.8, there are sequences εn ↓ 0 and v0 ≤ µn < λn ≤ λ

such that (19) holds. Thus Part (A) of Lemma 3.10 leads to a contradiction with (32).
Finally, from Lemma 3.11 it follows that

lim inf
ε↓0

uε(exp(λ/ε2),x0) ≥ c(λ).

Case 4 λ ≥ M(c0), c1 < c0. This is completely similar to Case 3. ��
Remark If instead of the constant λ in the argument of the function uε in Theorem 3.1,
we have a positive function λ(ε) such that limε↓0 λ(ε) = λ > 0, then

lim
ε↓0

uε(exp(λ(ε)/ε2),x) = c(λ).

The proof of this statement requires only simple modifications to the proof of
Theorem 3.1.

123



Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s 291

4 Exit from the domain

Let the differential operator Lε and the function G satisfy the assumptions of Sect. 3.1.
Let x ∈ D and λ > 0. Recall that Xλ,x,εs , s ∈ [0, exp(λ/ε2)], is the process defined
in (15), with τ ε being the first time when this process reaches the boundary of D.
We put τ ε = ∞ on the event that the process does not reach the boundary by the
time exp(λ/ε2). Let τ ε = min(τ ε, exp(λ/ε2)). Thus, if τ ε < ∞, then Xλ,x,ε

τ ε
is the

location where the process first exits the domain. Let ρε be the measure on D induced
by Xλ,x,ε

τ ε
:

ρε(A) = P(Xλ,x,ε
τ ε

∈ A), A ∈ B(D). (33)

Let µε be the restriction of ρε to ∂D:

µε(A) = P(Xλ,x,ε
τ ε

∈ A), A ∈ B(∂D). (34)

Note that µε is not a probability measure, since P(Xλ,x,ε
τ ε

∈ ∂D) < 1. In this section,
we shall examine the asymptotics of ρε and µε when ε ↓ 0.

We shall distinguish several cases corresponding to different values of λ. First
consider the case when 0 < λ < M(c0).

Lemma 4.1 If x ∈ D and 0 < λ < M(c0), then limε↓0 P(τ ε ≤ exp(λ/ε2)) = 0.

Proof From Lemma 3.3 it follows that for δ > 0 there is 0 < v0 < λ such that

lim
ε↓0

P(Xv0,x,ε
s ∈ D for all 0 ≤ s ≤ exp(v0/ε

2)) = 1 (35)

uniformly in x ∈ Dδ . We claim that for each � > 0,

lim
ε↓0

uε(t,x) = c0 uniformly in (t,x) ∈ [exp(v0/ε
2), exp(λ/ε2)] × D� . (36)

Indeed, otherwise by Lemma 3.7 we could find sequences εn ↓ 0 andλn ∈ (v0, λ) such
that either lim supn→∞ uεn (exp(λn/ε

2
n),x0) > c0 or lim infn→∞ uεn (exp(λn/ε

2
n),x0)

< c0. Suppose that the former is the case and that c1 = c0 (the argument in the cases
when c1> c0 and c1< c0 is similar). Then, from the conditions imposed on the func-
tion G in Sect. 3.1 it follows that there are c0 < β1 < β2 < lim supn→∞ uεn (exp
(λn/ε

2
n),x0) such that the graph of G goes below the diagonal in a neighborhood of the

interval [β1, β2]. Moreover, there are v0<µ
′
n <λ

′
n <λn such that uεn (exp(µ′

n/ε
2
n),

x0) = β1 and uεn (exp(λ′
n/ε

2
n),x0) = β2. This contradicts Part (B) of Lemma 3.10,

thus establishing (36).
From (36) and Part (A) of Lemma 3.2 it follows that P(τ ε≤exp(λ/ε2)−exp(v0/ε

2))

tends to zero as ε ↓ 0. From Corollary 3.4 it then follows that P(Xλ,x,ε
exp(λ/ε2)−exp(v0/ε2)

∈
Dδ) tends to one as ε ↓ 0. By the Markov property of the process and due to (35), this
implies the statement of the lemma. ��
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Next, let us examine the case when λ > λmax. (Recall that λmax = supc∈[c0,c1] M(c)
if c1 ≥ c0 and λmax = supc∈[c1,c0] M(c) if c1 ≤ c0).

Lemma 4.2 Suppose that x ∈ D and λ > λmax. If the minimum of the quasi-potential
minx∈∂D V a(·,c1)(x0,x) is achieved at a single point x∗(c1), thenµε weakly converges
to a probability measure µ concentrated at x∗(c1). If the minimum is achieved at two
points x∗

1(c1) and x∗
2(c1) and G1(c1) �= G2(c1), then µε weakly converges to a prob-

ability measure µ concentrated at those two points. In this case µ(x∗
1(c1))G1(c1) +

µ(x∗
2(c1))G2(c1) = c1.

Proof Let λmax < λ′ < λ. Similarly to the proof of Lemma 4.1, and using the fact
that uε(exp(λ/ε2),x0) converges to c1 for each λ > λmax, we can show that

lim
ε↓0

uε(t,x) = c1 uniformly in (t,x) ∈ [exp(λ′/ε2), exp(λ/ε2)] × D�, (37)

for each � > 0. Let A = {x∗(c1)} if the minimum minx∈∂D V a(·,c1)(x0,x) is achieved
at a single point, and A = {x∗

1(c1),x
∗
2(c1)} if the minimum is achieved at two points.

Recall that τ ε is the first time when the process Xλ,x,εs reaches the boundary of D.
From (37) and Lemma 3.2 it follows that

lim
ε↓0

P(τ ε < exp(λ/ε2)− exp(λ′/ε2)) = 1 (38)

and for every δ > 0 we have

lim
ε↓0

P(dist(Xλ,x,ε
τ ε∧exp(λ/ε2)−exp(λ′/ε2)

,A) ≤ δ) = 1. (39)

This immediately implies the desired result for the case of a single minimum point.
Let U δ(y) ⊆ ∂D denote the δ neighborhood of a point y on the boundary. In the

case when the minimum is achieved at two points, we note that

uε(exp(λ/ε2),x)

= Euε
(

exp(λ/ε2)− τ ε ∧ (exp(λ/ε2)− exp(λ′/ε2)), Xλ,x,ε
τ ε∧(exp(λ/ε2)−exp(λ′/ε2))

)
,

where the left hand side tends to c1, while the right hand side is equal to

µε(U δ(x∗
1(c1)))g(x

∗
1(c1))+ µε(U δ(x∗

2(c1)))g(x
∗
2(c1))+ α(ε), (40)

where limε↓0 α(ε) = 0, as follows from (38) and (39). It also follows from (38) and
(39) that limε↓0 µ

ε(∂D \ (U δ(x∗
1(c1))∪U δ(x∗

2(c1)))) = 0, which, together with (40),
implies the desired result. ��

Finally, we consider the case when c1 �= c0 and the function c(λ) is continuous at
a point λ ∈ (M(c0), λmax). The cases c1 < c0 and c1 > c0 are completely similar
to each other, so we shall only deal with the latter one. Let us introduce the needed
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notations. Fix v0 ∈ (0, c0). By Theorem 3.1, limε↓0 uε(exp(v0/ε
2),x0) = c0 and

limε↓0 uε(exp(λ/ε2),x0) = c(λ) > c0. For each c ∈ [c0, c(λ)] we define

λε(c) = min(inf{λ′ ≥ v0 : uε(exp(λ′/ε2),x0) ≥ c}, λ).

Let αε(c), c ∈ [c0, c(λ)], be the probability that the process Xλ,x,εs reaches the bound-
ary of D by the time exp(λ/ε2)− exp(λε(c)/ε2), that is

αε(c) = P(τ ε ≤ exp(λ/ε2)− exp(λε(c)/ε2)).

Sinceαε is left-continuous, it defines a measure νε on B([c0, c(λ)]) via νε([c, c(λ)]) =
αε(c). It will be important to identify the limit of αε as ε ↓ 0. We define the function
α : [c0, c(λ)] → [0, 1] by:

α(c) = 1 − exp

⎛
⎝

c(λ)∫

c

dz

z − G(z)

⎞
⎠ .

Since G is piece-wise continuous and its graph is above the diagonal in a neighbor-
hood of [c0, c(λ)], the function α is a unique continuous function which satisfies the
differential equation

α′(c) = α(c)− 1

G(c)− c
(41)

in the points of continuity of G and the terminal condition α(c(λ)) = 0. Notice that
α(c) ∈ [0, 1) for c ∈ [c0, c(λ)]. The function α defines a measure ν on B([c0, c(λ)])
via ν([c, c(λ)]) = α(c).

Lemma 4.3 If c1 > c0, c(λ) is continuous at a point λ ∈ (M(c0), λmax), then

lim
ε↓0

αε(c) = α(c)

for c ∈ [c0, c(λ)].
Proof Assume first that the minimum of the quasi-potential is achieved at a unique
point x∗(c) for each c in a neighborhood of [c0, c(λ)], and therefore G is a con-
tinuous function there. Take δ, δ′ > 0 which will be specified later and δ′′ > 0
such that x,x0 ∈ Dδ′′ . Let β0, β1, . . . , βk be such that β0 = c0, βk = c(λ) and
0 < βi − βi−1 < δ, 1 ≤ i ≤ k.

Consider the processes Y i,x,ε
s = Xλ

ε(βi ),x,ε
s , 1 ≤ i ≤ k − 1, and Y k,x,ε

s = Xλ,x,εs .
Let τ i,ε be the first time when the process Y i,x,ε

s reaches the boundary of D. Let Bi,x,ε,
1 ≤ i ≤ k−1, be the event that τ i,ε ≤ exp(λε(βi )/ε

2)−exp(λε(βi−1)/ε
2), and Bk,x,ε

be the event that τ k,ε ≤ exp(λ/ε2)− exp(λε(βk−1)/ε
2).
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Using Lemma 3.2, it is not difficult to show that for each δ′ > 0 there is δ > 0 such
that

lim
ε↓0

P(Bi,x,ε ∩ {dist(Y i,x,ε
τ i,ε ,x

∗(βi )) ≥ δ′}) = 0 (42)

uniformly in x ∈ Dδ′′ . Since G is continuous, we can also make sure that δ is small
enough so that

lim
ε↓0

P(Bi,x,ε ∩ {|g(Y i,x,ε
τ i,ε )− G(βi )| ≥ δ′}) = 0 (43)

uniformly in x ∈ Dδ′′ . We can write uε(exp(λ/ε2),x) in two different ways

uε
(

exp(λ/ε2),x
)

=Euε
(
exp(λ/ε2)−τ ε∧(exp(λ/ε2)−exp(λε(βi )/ε

2)), Xλ,x,ε
τ ε∧(exp(λ/ε2)− exp(λε(βi )/ε

2))

)

and

uε(exp(λ/ε2),x) = Euε
(

exp(λ/ε2)− τ ε ∧ (exp(λ/ε2)− exp(λε(βi−1)/ε
2)),

Xλ,x,ε
τ ε∧(exp(λ/ε2)−exp(λε(βi−1)/ε

2))

)
.

Upon subtracting the right hand sides of these two equalities, using the Markov prop-
erty, Corollary 3.4, Lemma 3.7 and (43), we obtain

βi (1 − αε(βi )) = (αε(βi−1)− αε(βi ))(G(βi )+ h1(i, ε))

+ βi−1(1 − αε(βi−1))+ h2(i, ε), (44)

where h1(i, ε) ≤ δ′ and limε↓0 h2(i, ε) = 0. This implies the desired result once we
recall that δ′ and δ can be taken arbitrarily small, since (44) shows that αε is a type of
Euler’s method approximation to the solution of (41).

The condition of continuity of G can be easily removed once we recall that G may
have at most finitely many points of discontinuity. ��
Remark Using similar arguments it is not difficult to show that

lim
ε↓0

P(exp(λ/ε2)− exp(λε(c0)/ε
2) < τε < ∞) = 0.

Moreover, using (42) and (44) it is possible to show that in order to find the limit of
µε, one can take ν, which is the limit of νε, and then take its push-forward by the
function x∗ (since ν is an absolutely continuous measure, it is not essential that x∗
may be undefined in a finite number of points). The push-forward of ν will be denoted
by µ. Thus µ(A) = ν(c ∈ [c0, c(λ)] : x∗(c) ∈ A), A ∈ B(∂D).
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Combining this with Lemmas 4.1 and 4.2 and Corollary 3.4, we can formulate the
following theorem.

Theorem 4.4 Let ρε and µε be defined by (33) and (34), respectively. If x ∈ D and
0 < λ < M(c0), then ρε → δx0 , where δx0 is the probability measure concentrated
at x0 and µε → µ, where µ is the trivial measure, that is µ(∂D) = 0.

If λ > λmax and the minimum of the quasi-potential minx∈∂D V a(·,c1)(x0,x) is
achieved at a single point x∗(c1), then ρε and µε weakly converge to a probability
measure µ concentrated at x∗(c1). If the minimum is achieved at two points x∗

1(c1)

and x∗
2(c1) and G1(c1) �= G2(c1), then ρε and µε weakly converge to a probability

measureµ concentrated at those two points. Moreover, in this caseµ(x∗
1(c1))G1(c1)+

µ(x∗
2(c1))G2(c1) = c1.

If c1 > c0 and the function c(λ) is continuous at a point λ ∈ (M(c0), λmax),
then take the measure ν on B([c0, c(λ)]) defined via ν([c, c(λ)]) = α(c), where α
is the solution of (41). The measures µε weakly converge to the measure µ which is
the push-forward of ν by the function x∗. The measures ρε weakly converge to the
measure cδx0 + µ, where c = 1 − µ(∂D).

Remark This theorem still holds if instead of λ in the definition of µε we have a
positive function λ(ε) such that limε↓0 λ(ε) = λ > 0.

Corollary 4.5 If c1 > c0 and the function c(λ) is continuous at λ ∈ (M(c0), λmax),
then for every δ > 0 and x ∈ Dδ we have

lim
ε↓0

uε(exp(λ/ε2),x) =
c(λ)∫

c0

g(x∗(c))dν(c)+ g(x0)(1 − ν([c0, c(λ)]),

where ν is the measure on B([c0, c(λ)]) defined via ν([c, c(λ)]) = α(c).

Proof The corollary immediately follows from Theorems 3.1 and 4.4 and the proba-
bilistic representation of the solution to the initial-boundary value problem. ��

5 Generalizations and examples

5.1 The case of a nonlinear first order term

We could allow the coefficient at the first order term to depend on uε in (5) and (6):

∂uε(t,x)

∂t
= Lεuε := ε2

2

d∑
i, j=1

ai j (x, uε)
∂2uε(t,x)

∂xi∂x j
+ (b(x, uε)

+ εb1(x, uε)) · ∇xuε(t,x), x ∈ D, t > 0, (45)

uε(0,x) = g(x), x ∈ D, uε(t,x) = g(x), t ≥ 0, x ∈ ∂D. (46)

All the assumptions made in Sects. 2.1 and 3.1 remain in force, other than the fol-
lowing: instead of assuming that b is a vector valued function on D, we assume that
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b, b1 ∈ C2(D ×R), and there is a positive constant k′ such that (b(x, u), n(x)) < −k′
for x ∈ ∂D, u ∈ R, where n(x) is the exterior normal to the boundary of D. More-
over, we assume that for each u the vector field b(·, u) has a unique equilibrium point
x0 which does not depend on u and that all the trajectories of the dynamical system
x′(t) = b(x(t), u) starting in D are attracted to x0. We now assume that there is a
smooth function v defined on D, such that v(x0) = 0, v(x) > 0 for x �= x0, and
(b(x, u),∇v(x)) ≤ −c|x − x0|2 for some positive constant c, all u and all x.

The definition of the function M(c) from Sect. 3.1 needs to be modified to allow
for the dependence of the drift term on a parameter. Namely, now

M(c) = min
x∈∂D

V a(·,c),b(·,c)(x0,x),

where V a(·,c),b(·,c) is the quasi-potential for the process whose generator is equal to

ε2

2

d∑
i, j=1

ai j (x, c)
∂2uε(t,x)

∂xi∂x j
+ b(x, c) · ∇xuε(t,x).

With this definition of M(c), Theorems 3.1 and 4.4 remain valid, and the proofs do
not require serious modifications.

5.2 Metastable distributions in the case of two equilibrium points

In this section, we again consider the solutions uε to (5) and (6). Let all the assumptions
about the domain D and the operator Lε made in Sects. 2.1 and 5.1 remain in force,
except the following: instead of assuming the existence of a singe equilibrium point,
we assume that there are two asymptotically stable equilibrium points x1,x2 ∈ D
such that for almost every x ∈ D, with respect to the Lebesgue measure, the trajectory
of (1) starting at x is attracted to either x1 or x2. Let D1 ⊂ D be the set of points in
D which are attracted to x1 and D2 ⊂ D the set of points attracted to x2.

As before, we need to study the quasi-potential in order to determine the asymptotic
behavior of uε. While in the case of a single equilibrium, the function uε was nearly
constant in Dδ at times of order exp(λ/ε2) (Lemma 3.7), now uε(exp(λ/ε2),x) will
be close to uε(exp(λ/ε2),x1) for x ∈ Dδ

1 and close to uε(exp(λ/ε2),x2) for x ∈ Dδ
2.

This explains why instead of freezing the second variable in the coefficients ai j in the
right hand side of (5), the way it was done is Sect. 2.1, now we put the variable equal
to c1 in D1 and c2 in D2. More precisely, for c1, c2 ∈ [gmin, gmax], let

fc1,c2(x) = c1χD1(x)+ c2χD2(x)+ (c1 + c2)χD\(D1∪D2)(x)/2, x ∈ D,

where χU is the indicator function of a set U ⊆ R
d . For a measurable positive-definite

matrix-valued function α on D, we define

V α(x, y) = inf
T,ϕ

{Sα0,T (ϕ) : ϕ ∈ C([0, T ], D), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ D,
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where the normalized action functional S was defined in Sect. 2.2. Instead of function
M used in Sect. 2.1, we now have functions Mx1,x2 , Mx2,x1 , Mx1,∂D and Mx2,∂D .
These are defined by

Mx1,x2(c1) = V a(·, fc1,c2 (·))(x1,x2), (47)

Mx2,x1(c2) = V a(·, fc1,c2 (·))(x2,x1), (48)

Mx1,∂D(c1, c2) = min
x∈∂D

V a(·, fc1,c2 (·))(x1,x),

Mx2,∂D(c1, c2) = min
x∈∂D

V a(·, fc1,c2 (·))(x2,x).

It is not difficult to check that the right hand side of (47) does not depend on c2 and the
right hand side of (48) does not depend on c1. For the process governed by Eq. (5), with
ai j (·, fc1,c2(·)) instead of the nonlinear coefficients ai j (x, uε), the transition from x1
to a small neighborhood of x2 occurs in time of order exp(Mx1,x2(c1)/ε

2) (provided
that the process does not exit the domain D earlier). Similarly, the transition from x2 to
a neighborhood of x1 occurs in time of order exp(Mx2,x1(c2)/ε

2), while the transition
from x1 and x2 to the boundary occurs in time of order exp(Mx1,∂D(c1, c2)/ε

2) and
exp(Mx2,∂D(c1, c2)/ε

2), respectively.
In this section, we would like to study the equation at a time scale which is suffi-

ciently large for the process to make excursions between the neighborhoods of x1 and
x2 and back, yet not too large so that the process starting at x1 or x2 does not exit the
domain. Therefore we assume that

max

(
sup

c1∈[gmin,gmax]
Mx1,x2(c1), sup

c2∈[gmin,gmax]
Mx2,x1(c2)

)
< M∂ ,

where

M∂ = min

(
inf

c1,c2∈[gmin,gmax] Mx1,∂D(c1, c2), inf
c1,c2∈[gmin,gmax] Mx2,∂D(c1, c2)

)
.

For example, if a and b are defined in the entire space R
d , a is bounded and b satisfies

(b(x),x) ≤ A− B(x,x) for some positive constants A and B, then this condition will
be satisfied for any domain D which contains a sufficiently large ball centered at the
origin.

Let c1 = g(x1) and c2 = g(x2). Without loss of generality we may assume that
c1 ≤ c2. In order to formulate the results on the asymptotics of uε , we need to introduce
functions c1(λ) and c2(λ) which are similar to the function c(λ) from in Sect. 3.1.

Let 0 < λ < M∂ , and define c1(λ) as follows:

For 0 < λ < Mx1,x2(c1), let c1(λ) = c1.
For λ ≥ Mx1,x2(c1), let c1(λ) = min{c2,min{c : c ∈ [c1, c2],Mx1,x2(c) = λ}}.
Similarly, we define c2(λ) as follows:

For 0 < λ < Mx2,x1(c2), let c2(λ) = c2.
For λ ≥ Mx2,x1(c2), let c2(λ) = max{c1,max{c : c ∈ [c1, c2],Mx2,x1(c) = λ}}.
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Let λ∗ = inf{λ : c1(λ) ≥ c2(λ)}. Assume that at least one of the functions c1 and
c2 is continuous at λ∗. Let c∗ = c1(λ∗) if c1 is continuous at λ∗ and c∗ = c2(λ∗)
otherwise. Let c1(λ) = min(c1(λ), c∗) and c2(λ) = max(c2(λ), c∗).

We can now formulate the following analog of Theorem 3.1

Theorem 5.1 Let the above assumptions be satisfied. Suppose that the function c1(λ)

is continuous at a point λ ∈ (0,M∂ ). Then for every δ > 0 the following limit

lim
ε↓0

uε(exp(λ/ε2),x) = c1(λ)

is uniform in x ∈ Dδ
1. Suppose that the function c2(λ) is continuous at a point λ ∈

(0,M∂ ). Then for every δ > 0 the following limit

lim
ε↓0

uε(exp(λ/ε2),x) = c2(λ)

is uniform in x ∈ Dδ
2.

Remark If λ > λ∗, then c1(λ) = c2(λ) = c∗. It is not difficult to see that the limit

lim
ε↓0

uε(exp(λ/ε2),x) = c∗

is uniform in (x, λ) ∈ Dδ × [λ,∞) for each λ > λ∗. Therefore, for each δ > 0 and
λ > λ∗ there is ε0 > 0 such that

|uε(t,x)− c∗| ≤ δ

whenever ε ∈ (0, ε0), x ∈ Dδ and t ≥ exp(λ/ε2).

Recall that Xλ,x,εs , s ∈ [0, exp(λ/ε2)], is the process defined in (15), τ ε is the first
time when this process reaches the boundary of D and τ ε = min(τ ε, exp(λ/ε2)).
Since we assume that λ < M∂ , the probability that τ ε < exp(λ/ε2) now tends to zero
as ε ↓ 0. The distribution of the random variable Xλ,x,ε

τ ε
will be concentrated near the

points x1 and x2.

Theorem 5.2 Suppose that c1 �= c2. If the function c1(λ) is continuous at a point
λ ∈ (0,M∂ ) and x ∈ D1, then the distribution of the random variable Xλ,x,ε

τ ε
con-

verges to the measure µλ1 = a1δx1 + a2δx2 , where the coefficients a1 and a2 can be
found from the equations c1(λ) = a1c1 + a2c2, a1 + a2 = 1.

If the function c2(λ) is continuous at a point λ ∈ (0,M∂ ) and x ∈ D2, then the dis-
tribution of the random variable Xλ,x,ε

τ ε
converges to the measureµλ2 = a1δx1 +a2δx2 ,

where the coefficients a1 and a2 can be found from the equations c2(λ) = a1c1 +a2c2,
a1 + a2 = 1.

If λ ∈ (λ∗,M∂ ) and x ∈ D, then the distribution of the random variable Xλ,x,ε
τ ε

converges to the measure µ∗ = a1δx1 + a2δx2 , where the coefficients a1 and a2 can
be found from the equations c∗ = a1c1 + a2c2, a1 + a2 = 1.
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The proofs of Theorems 5.1 and 5.2 rely on the same techniques as those used in
the proofs of Theorems 3.1 and 4.4, and therefore will not be presented here. If a
is bounded and b satisfies (b(x),x) ≤ A − B(x,x) for some positive constants A
and B, then similar results can be formulated for the Cauchy problem in R

d and the
corresponding nonlinear perturbations of the dynamical system in R

d . In this case we
do not need the condition λ < M∂ , but can instead consider all λ ∈ (0,∞).

5.3 Examples

In this section, we give two examples when we can easily calculate the function M(c)
defined in Sect. 3.1.

In the first example, we assume that the domain D is one dimensional: D = (A, B).
We assume that a(x, u) ∈ C2([A, B] × R) is positive, b(x, u) ∈ C2([A, B] × R),
∂b(x, u)/∂x < k < 0 and there is a point x0 ∈ (A, B) such that b(x0, u) = 0 for all
u. In this case the operator

Lεu = ε2

2
a(x, u)u′′ + b(x, u)u′

satisfies the assumptions of Sect. 5.1. The quasi-potential, which will now be denoted
by V c, is given by

V c(x0,x) = −2

x∫

x0

b(y, c)

a(y, c)
dy,

as is easily seen from the definition of the action functional (see Sect. 2.2). Therefore,

M(c) = min(V c(x0, A), V c(x0, B)) = min

⎛
⎝−2

A∫

x0

b(y, c)

a(y, c)
dy,−2

B∫

x0

b(y, c)

a(y, c)
dy

⎞
⎠.

The function G(c) may take at most two values: g(A) and g(B). In particular, the
value g(A) is taken on the set {c : V c(x0, A) < V c(x0, B)}, while the value g(B) is
taken on the set {c : V c(x0, A) > V c(x0, B)}.

Figure 2 shows an example of the graphs of functions M(c) and G(c) in the case
when g(A) = infx∈[A,B] g(x) < supx∈[A,B] g(x) = g(B). From Theorem 4.4 and the
discussion in Sect. 5.1 it follows that for λ > λmax, the distribution of the random
variable Xλ,x,ε

τ ε
converges to the probability measure µ concentrated at the end points

of the segment. This measure can be found from the relations

µ(A)g(A)+ µ(B)g(B) = c1, µ(A)+ µ(B) = 1.
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Fig. 2 The graphs of M and G

In the second example we assume that D ⊂ R
d contains the origin x0 = 0. Let the

operator Lε be as follows

Lεu = ε2

2

d∑
i, j=1

ai j (u)
∂2u(t,x)

∂xi∂x j
+ (A(u)x) · ∇u,

where a is a positive-definite matrix which depends smoothly on u, and A is a matrix
with negative eigenvalues which depends smoothly on u. As has been demonstrated
in [2], the quasi-potential, which we shall denote by V c, is given by the quadratic form

V c(x0,x) = 1

2
(B−1(c)x,x),

where the matrix B is given by

B(c) =
∞∫

0

exp(A(c)t)a(c) exp(A∗(c)t)dt.

Therefore, M(c) = minx∈∂D(B−1(c)x,x)/2.

123



Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE’s 301

Acknowledgments While working on this article, M. Freidlin was supported by NSF grant DMS-0803287
and L. Koralov was supported by NSF grant DMS-0706974.

References

1. Athreya, A., Freidlin, M.I.: Metastability and stochastic resonance in Nearly-Hamiltonian systems.
Stoch. Dyn. 8(1), 1–21 (2008)

2. Chen, Z., Freidlin, M.I.: Smoluchowski-Kramers approximation and exit problems. Stoch. Dyn. 5,
569–585 (2005)

3. Freidlin, M.I.: Metastability and stochastic resonance of multiscale systems. Contemp. Math. 469, 215–
225 (2008)

4. Freidlin, M.I.: Sublimiting distributions and stabilization of solutions of parabolic equations with a
small parameter. Sov. Math. Dokl. 235(5), 1042–1045 (1977)

5. Freidlin, M.I.: Quasi-deterministic approximation, metastability and stochastic resonance. Phys.
D 137, 333–352 (2000)

6. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Heidelberg
(1998)

7. Krylov, N.V.: Nonlinear Elliptic and Parabolic Equations of the Second Order (Mathematics and its
Applications). Springer, Heidelberg (1987)

8. Oliveiri, E., Vares, M.E.: Large Deviations and Metastability. Cambridge University Press,
London (2005)

123


	Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic PDE's with a small parameter
	Abstract
	1 Introduction
	2 Preliminaries and notations
	2.1 Quasi-linear equation
	2.2 Action functional

	3 Asymptotics of the solution
	3.1 Formulation of the result
	3.2 Properties of the diffusion processes
	3.3 Preliminary lemmas
	3.4 Proof of the theorem on the Asymptotics of the solution

	4 Exit from the domain
	5 Generalizations and examples
	5.1 The case of a nonlinear first order term
	5.2 Metastable distributions in the case of two equilibrium points
	5.3 Examples

	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


