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Abstract The goal of this paper is to study optimal transportation problems and
gradient flows of probability measures on the Wiener space, based on and extending
fundamental results of Feyel–Üstünel. Carrying out the program of Ambrosio–
Gigli–Savaré, we present a complete characterization of the derivative processes for
certain class of absolutely continuous curves. We prove existence of the gradient flow
curves for the relative entropy w.r.t. the Wiener measure and identify these gradient
flow curves with solutions of the Ornstein–Uhlenbeck evolution equation.
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0 Introduction

Let (X, H, µ) be an abstract Wiener space. Consider on X the dH distance defined as

dH (x, y) =
{|x − y|H x − y ∈ H,

+∞ otherwise.
(0.1)

It is well-known that (x, y) �→ dH (x, y) is lower semi-continuous over X × X . Denote
by P(X) the space of probability measures on X . For ν1, ν2 ∈ P(X), we define the
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536 S. Fang et al.

following Wasserstein distance W2:

W2(ν1, ν2) = inf

⎧⎨
⎩
∫

X×X

|x − y|2H π(dx, dy); π ∈ C(ν1, ν2)

⎫⎬
⎭

1/2

, (0.2)

where C(ν1, ν2) denotes the totality of probability measures on X × X , having ν1
and ν2 as marginal laws. The distance W2(ν1, ν2) could take the value +∞. Note that
it would be more appropriate to attribute the distance W2 to Kantorovich and
Rubinstein, but we keep the name “Wasserstein” (referring to Vasershtein’s contri-
bution [25]) since this terminology is now quite standard.

During recent years, due to the success of constructing Monge optimal transport
maps on the Wiener space [13], there are intensive researches on the transformations of
measures on the Wiener space (see [7,8,15]). The purpose of this paper is to study the
geometrical aspect of the Wasserstein space (P(X),W2). Our work is based essentially
on the following ones:

(1) the lecture note [3] given by L. Ambrosio and G. Savaré, in which the authors
introduced rigorously the tangent spaces of the Wasserstein space (P2(Rd),W2),
where P2(Rd) denotes the space of probability measures with finite second moment,
and the structure of gradient flows is systematically studied.

(2) the fundamental work [13] by D. Feyel and A. S. Üstünel about the Monge–
Kantorovich optimal transportation problem on the Wiener space.

To emphasize the difference between these two situations, we outline the following
two points:

(1) the compactness of the closed ball {x ∈ Rd; |x |Rd ≤ R} allows to prove the
tightness of a family of probability measures in P2(Rd); while on the Wiener space
(X, H, µ), neither {x ∈ X; ||x ||X ≤ R} (non compact) nor {x ∈ X; |x |H ≤ R} (of
measure µ zero) does work.

(2) for a sequence of probability measures (µn) on Rd , converging weakly to µ,
there exists a sequence of random variables (Zn) of law µn and Z of law µ such that

|Zn − Z |Rd → 0 a.s.,

then (see [9, chapter 5]) under the uniform integrability of second moment, the weak
convergence µn to µ implies the convergence

W2(µn, µ) → 0 as n → +∞;

while on the Wiener space, the convergence with respect to the norm of X does not
imply the convergence with respect to the dH distance, the counterpart does not hold
in this latter situation.

Now we describe the content of this work. In a geometric context, the connection
between the convexity of the entropy functional (relative to the Riemannian volume
or to a reference) and the lower bound of the Ricci curvature has been developed
in [19,23]. In Sect. 1, we will clarify this connection in the framework of Wie-
ner space, see Theorem 1.5. Tangent spaces to Wasserstein spaces have been firstly
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Wasserstein space over the Wiener space 537

considered at a formal level in [21] and rigorously implemented in [2]. In Sect. 2,
we will introduce the derivative processes associated to absolutely continuous curves,
so that the distance W2 is expressed as a Riemannian distance, a new interpreta-
tion for the Benamou–Brenier’s formula, see Theorem 2.6. The gradient flow asso-
ciated to a general convex functional is defined usually through sub-gradients. For
the entropy functional, in Sect. 3, we compute explicitly the directional derivative
and prove that the gradient of the entropy functional exists at the minimizers in
Jordan–Kinderlehrer–Otto’s approximation scheme [17]. We will prove that solutions
to the Ornstein–Uhlenbeck evolution is the gradient flow associated to the entropy
functional, see Theorem 3.10.

1 1-Convexity of the entropy functional

Let (X, H, µ) be an abstract Wiener space, that is, X is a separable Banach space, H
is a separable Hilbert space which is densely and continuously embedded in X such
that

∫
X

e
√−1�(x) dµ(x) = e−|i∗(�)|2H /2 for � ∈ X∗(dual of X),

where i : H → X is the injection map and i∗ : X∗ → H the dual map. For simplicity,
we consider

X∗ ⊂ H ⊂ X.

In what follows, we denote by ||·|| the norm of X and Ent( f ) = ∫X f log f dµ for any
positive measurable function on X such that

∫
X f dµ = 1. Let W2 be the Wasserstein

distance on the space P(X) defined in (0.2). Then for any couple of measures (ν1, ν2)

in P(X) of finite distance W2(ν1, ν2) < +∞, there exists πo ∈ C(ν1, ν2) such that

W 2
2 (ν1, ν2) =

∫
X×X

|x − y|2H πo(dx, dy). (1.1)

Such a πo is called the optimal coupling plan between ν1 and ν2. The following result
due to Feyel and Üstunel is our starting point.

Theorem FU [13, Th. 6.1] Let ν1 = ρ1µ, ν2 = ρ2µ such that W2(ν1, ν2) < +∞.
Then there exists a unique optimal coupling planπo ∈ C(ν1, ν2); moreover there exists
a unique Borel map ξ : X → H such that for any bounded Borel function ϕ on X × X

∫
X×X

ϕ(x, y)πo(dx, dy) =
∫
X

ϕ(x, x + ξ(x)) dν1(x)

and the transformation T : x �→ x + ξ(x) is invertible.
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It is obvious that T pushes ν1 forward to ν2 and

W 2
2 (ν1, ν2) =

∫
X

|ξ(x)|2H dν1(x). (1.2)

Recall that Talagrand’s inequality W 2
2 (µ, ρµ) ≤ 2Ent(ρ) which was first proven for

Gaussian measures on Rn [24] also holds true on the Wiener space [13,16] (see [6,22]
for related topics). It immediately implies W2(ν1, ν2) < +∞ whenever Ent(ρ1) and
Ent(ρ2) are finite. Therefore W2 induces a true distance on the space

P∗(X) = {ν = ρµ; Ent(ρ) < +∞} . (1.3)

For ν = ρµ ∈ P∗(X), it is convenient sometimes to use the notation Ent(ν) instead
of Ent(ρ).

Since the distance dH is stronger than the norm on X , a sequence of probability
measures (νn)n≥1 on X converges to ν with respect to W2, converges also with respect
to the Wasserstein distance defined using the norm of X ; therefore νn converges weakly
to ν (see for example [26]). In what follows, we give a direct proof using Theorem FU.

Proposition 1.1 Let (νn)n≥1 be a sequence in P∗(X) such that W2(νn, ν) → 0 as
n → +∞ for ν ∈ P∗(X). Then νn converges weakly to ν.

Proof By Theorem FU, there exist ξn : X → H such that I + ξn pushes ν forward to
νn and W 2

2 (νn, ν) = ∫X |ξn|2H dν. Set σn = W 2
2 (νn, ν). Let ϕ : X → R be a bounded

continuous function. We have
∣∣∣∣∣∣
∫
X

ϕdν −
∫
X

ϕdνn

∣∣∣∣∣∣ ≤
∫
X

|ϕ(x)− ϕ(x + ξn(x))| dν(x)

≤
∫

{|ξn |H ≥εn}
|ϕ(x)− ϕ(x + ξn(x))| dν(x)

+
∫

{|ξn |H ≤εn}
|ϕ(x)− ϕ(x + ξn(x))| dν(x), (1.4)

where εn are chosen so that limn→+∞ σn
ε2

n
= 0. The first term on the right hand of (1.4)

is dominated by

2||ϕ||∞ 1

ε2
n

∫
X

|ξn|2H dν(x) = 2||ϕ||∞ σn

ε2
n

→ 0 as n → +∞;

for the second term, it is sufficient to notice that 1{|ξn(x)|H ≤εn}|ϕ(x) − ϕ(x + ξn(x))|
tends to 0 as n → +∞ for ν-almost everywhere x ∈ X . Therefore letting n → +∞
in (1.4) gives the result. 
�
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Theorem 1.2 Let R > 0. Then the subset

K R = {ν ∈ P∗(X); Ent(ν) ≤ R}

is compact in P∗(X) with respect to the weak topology.

Proof By the superlinear growth of s → s log s, K R is weakly compact in L1(X, µ).
Combining with the lower semicontinuity of ν �→ Ent(ν) (see for example [2,17],
[23, p. 102]), the result follows. 
�
Corollary 1.3 Let ν0 ∈ P∗(X) be given. Then the subset

CR = {ν ∈ P∗(X); W 2
2 (ν0, ν)+ Ent(ν) ≤ R}

is compact.

Proof It is sufficient to notice that ν �→ W 2
2 (ν0, ν)+Ent(ν) is lower semi-continuous

for the weak topology. 
�
Let ν0 and ν1 in P∗(X). Let ξ and πo be given in Theorem FU. We set, for 0 ≤ t ≤ 1,

νt = (I + tξ)∗ν0 (1.5)

and πt ∈ C(ν0, νt ) defined by

∫
X×X

ϕ(x, y)πt (dx, dy) =
∫
X

ϕ(x, x + tξ(x)) dν0(x). (1.6)

Proposition 1.4 We have for 0 ≤ s < t ≤ 1,

W2(νs, νt ) = (t − s)W2(ν0, ν1). (1.7)

Proof See [2,14]. 
�
The above result says that t → νt defined in (1.5) is a geodesic with constant speed.
Taking s = 0 in (1.7), we see that πt defined in (1.6) is the unique optimal cou-
pling plan in C(ν0, νt ), supported by the graph of Tt := I + tξ . The following result
strengthen Theorem 7.3 in [13].

Theorem 1.5 Let νt be defined in (1.5). Then νt ∈ P∗(X) and for 0 ≤ t ≤ 1,

Ent(νt ) ≤ (1 − t)Ent(νo)+ tEnt(ν1)− t (1 − t)

2
W 2

2 (νo, ν1). (1.8)

Proof Firstly remark that if ρ0 and ρ1 are cylindrical, then (1.8) is reduced to a finite
dimensional case: it holds true (see [2,3]). Secondly for the general case, we consider
a sequence of increasing subspaces Vn ⊂ X∗ such that ∪n Vn is dense in H (with
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respect to the norm of H ). Let Pn : X → Vn be the projection and denote by EVn the
conditional expectation with respect to the sub σ -field on X , generated by Pn . Note
that (Pn)∗µ is the standard Gaussian measure γn on Vn . Set

ρn
0 = EVn (ρ0), ρ

n
1 = EVn (ρ1).

Then ρn
0 , ρ

n
1 converge in L1(X, µ), respectively to ρ0 and ρ1; therefore the mea-

sures ρn
0µ (resp. ρn

1µ) converges weakly to ρ0µ (resp. ρ1µ) as n → +∞. Let πn ∈
C(ρn

0µ, ρ
n
1µ) be the optimal coupling plan. Up to a subsequence,πn converges weakly

to π̂ ∈ C(ρ0µ, ρ1µ). Then we have

W 2
2 (ρ0µ, ρ1µ) ≤

∫
X×X

|x − y|2H π̂(dx, dy)

≤ lim inf
n→+∞

∫
X×X

|x − y|2Hπn(dx, dy) = lim inf
n→+∞ W 2

2 (ρ
n
0µ, ρ

n
1µ). (1.9)

Now we will prove that π̂ realizes the minimum:

W 2
2 (ν0, ν1) =

∫
X×X

|x − y|2H π̂(dx, dy). (1.10)

To this end, introduce the functions ρ̃n
i : Vn → R such that ρn

i = ρ̃n
i ◦ Pn for i = 0, 1.

Define π̂n ∈ C(ρ̃n
0γn, ρ̃

n
1γn) by

∫
Vn×Vn

ψ(z1, z2)π̂n(dz1, dz2) =
∫

X×X

ψ(Pn(x), Pn(y))π(dx, dy),

where π ∈ C(ν0, ν1) is the optimal coupling plan. We have

W 2
2 (ρ

n
0µ, ρ

n
1µ) = W 2

2 (ρ̃
n
0γn, ρ̃

n
1γn) ≤

∫
Vn×Vn

|z1 − z2|2π̂n(dz1, dz2)

=
∫

X×X

|Pn(x − y)|2π(dx, dy)

≤
∫

X×X

|x − y|2Hπ(dx, dy) = W 2
2 (ν0, ν1).

Combining with (1.9), we get the equality (1.10). By uniqueness of optimal coupling
plan, we conclude that π̂ = π . Now define

∫
X

ϕ dνn
t =

∫
X×X

ϕ((1 − t)x + ty)πn(dx, dy). (1.11)
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Then for any bounded continuous function ϕ : X → R,

lim
n→+∞

∫
X

ϕ dνn
t =

∫
X×X

ϕ((1 − t)x + ty)π(dx, dy). (1.12)

This means that the sequence (νn
t ) converges weakly to νt defined in (1.5), as n →

+∞. By the first case, we can apply (1.8) to νn
t to get

Ent(νn
t ) ≤ (1 − t)Ent(νn

0 )+ tEnt(νn
1 )− t (1 − t)

2
W 2

2 (ν
n
0 , ν

n
1 ).

For any ε > 0, by (1.9), there exists n0 > 0 such that

W 2
2 (ρ0µ, ρ1µ)− ε ≤ W 2

2 (ρ
n
0µ, ρ

n
1µ), n ≥ n0.

By Jensen inequality Ent(νn
0 ) ≤ Ent(ν0) and Ent(νn

1 ) ≤ Ent(ν1). Then for n ≥ n0,

Ent(νn
t ) ≤ (1 − t)Ent(ν0)+ tEnt(ν1)− t (1 − t)

2

(
W 2

2 (ν0, ν1)− ε
)
. (1.13)

By Theorem 1.2, νt ∈ P∗(X) and Ent(νt ) is dominated by the right hand of (1.13).
Letting ε → 0 gives (1.8). 
�
Remark The inequality (1.8) says that the entropy functional is 1-convex along geode-
sics. The assertion of Theorem 1.5 was already stated in [23, p. 125]. Moreover, a sketch
of a proof was indicated, based on approximation of X by finite dimensional subspaces
equipped with Gaussian measures. However, due the the degeneracy of the metric on
X , the proof requires a more careful argumentation since e.g. W2(µ, γn) = +∞.

2 Benamou–Brenier’s formula

An absolutely continuous curve {c(t); t ∈ [0, 1]} on a Riemannian manifold M admits
tangent vectors c′(t) ∈ Tc(t)M for almost everywhere t ∈]0, 1[. In order to understand
the tangent spaces of the Wasserstein space (P∗(X),W2), it is convenient to consider
absolutely continuous curves (νt ) in P∗(X).
Definition 2.1 We say that a curve (νt )t∈[0,1] is in the class AC2 if there exists m ∈
L2([0, 1]) such that

W2(νt1 , νt2) ≤
t2∫

t1

m(s)ds, t1 ≤ t2. (2.1)

For such a curve, for a.e. t ∈ [0, 1],

lim sup
ε→0

W2(νt+ε, νt )

|ε| ≤ m(t). (2.2)
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For any curve (νt )t∈[0,1] in AC2, the limit

|ν′|(t) := lim
ε→0

W2(νt+ε, νt )

|ε|

exists for a.e. t ∈ [0, 1], which is called the metric derivative of (νt )t∈[0,1](see [2,
Theorem 1.1.2]). The function t �→ |ν′|(t) belongs to L2([0, 1]) and (2.1) holds w.r.t.
|ν′|(t). It is minimal in the sense that for each function m satisfying (2.1), it holds

|ν′|(t) ≤ m(t), a.e. t ∈ [0, 1].

Note that the curve defined in (1.5) is in the class AC2 due to (1.7). In order to construct
another examples, we will recall some elements in Malliavin Calculus (see [20] for
more details).

A function F : X → R is said to be cylindrical if it is written in the form

F(x) = f (e1(x), . . . , eK (x)), f ∈ C∞
c (R

K ), (2.3)

where {ei ∈ X∗; i ≥ 1} is a given orthonormal basis of H . We will denote by Cylin(X)
the totality of such cylindrical functions. Note that Cylin(X) is not a vector space. A
cylindrical vector field Z on X is a map X → H in the form

Z =
K∑

j=1

Fj h j , with Fj ∈ Cylin(X), h j ∈ X∗. (2.4)

For a function F ∈ Cylin(X) in the form (2.3), we define

∇F(x) =
K∑

i=1

(∂i f )(e1(x), . . . , eK (x))ei ,

which is a cylindrical vector field on X , where ∂i f denotes the derivative with respect
to the ith component. Similarly, for Z given above, we define ∇Z =∑K

j=1 ∇Fj ⊗h j .

Now we denote by Dp
1 (X) the Sobolev space which is the closure of Cylin(X) under

the norm ||F ||p
1,p = ∫X (|F |p + |∇F |p

H ) dµ; and Dp
1 (X; H) the closure of cylindrical

vector fields under the norm ||Z ||p
1,p = ∫X (|Z |p

H +|∇F |p
H⊗H ) dµ. In the similar way,

we define the Sobolev spaces Dp
r (X) where r ∈ N is the order of the derivative. Then

for p > 1 and Z ∈ Dp
1 (X; H), the divergence δ(Z) ∈ L p(X) exists such that

∫
X

F δ(Z) dµ =
∫
X

〈∇F, Z〉H dµ, F ∈ Cylin(X).

123



Wasserstein space over the Wiener space 543

For a vector field Z given by (2.4), the divergence δ(Z) admits the expression

δ(Z) =
K∑

j=1

(
Fj h j (x)− 〈∇Fj (x), h j

〉
H

)
. (2.5)

Note that δ(Z) is a continuous function of x . Now pick Z ∈ ∩p>1,r≥1Dp
r (X; H) and

assume that

∫
X

eε0|Z |2H dµ < +∞ for a small ε0 > 0 and

∫
X

eλ0|δ(Z)| dµ < +∞ for some λ0 > 0. (2.6)

Then there exists a flow of measurable maps Ut : X → X such that for a.e. x ∈ X ,

Ut (x) = x +
t∫

0

Z(Us(x)) ds, t > 0,

and Ut+s = Ut ◦ Us , (Ut )∗µ = Ktµ with (see also [11] for a detailed proof):

Kt = exp

⎛
⎝

t∫
0

δZ(U−s(x)) ds

⎞
⎠ , sup

0≤t≤T
||Kt ||2L2

≤
∫
X

e4T |δ(Z)|dµ for T < λ0/4. (2.7)

We refer to the two recent works [1,12], which insure that the above statement holds
true.

Proposition 2.2 Let ν0 = ρ0µ ∈ P∗(X). Define νt = (Ut )∗ν0. Then under the
condition (2.6), the curve (νt )t∈[0,1] is in the class AC2.

Proof By definition,
∫

X ϕ dνt = ∫X ϕ(Ut )ρ0 dµ = ∫X ϕρ0(U−t )Kt dµ holds for any
bounded Borel function ϕ. If we denote νt = ρtµ, then ρt = ρ0(U−t )Kt , and

Ent(ρt ) = Ent(ρ0)+
∫
X

(log Kt (Ut )) ρ0dµ. (2.8)
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Using (2.7), | log Kt (Ut )| ≤ ∫ t
0 |δZ(Ut−s)| ds and by Young inequality uv ≤ eu +

v log v for u, v ≥ 0, we have for any η > 0

| log Kt (Ut )| ρ0 ≤
t∫

0

eη|δZ |(Ut−s) ds + ρ0

η
log

ρ0

η
.

Then (2.8) yields

Ent(ρt ) ≤ Ent(ρ0)+
t∫

0

∫
X

eη|δZ |(Ut−s)dµ ds + Ent

(
ρ0

η

)
.

Now we will prove that for η small enough

sup
0≤t≤1

∫
X

eη|δZ |(Ut )dµ < +∞. (2.9)

First of all, for T0 ≤ λ0/4 and t ∈ [0, T0], we have,

∫
X

eη|δZ |(Ut )dµ =
∫
X

eη|δZ |Kt dµ ≤
⎛
⎝∫

X

e2η|δZ |dµ

⎞
⎠

1/2

||Kt ||L2

≤
⎛
⎝∫

X

e2η|δZ |dµ

⎞
⎠

1/2⎛
⎝∫

X

eλ0|δ(Z)|dµ

⎞
⎠

1/2

,

where we used (2.7) for estimating ||Kt ||L2 . Let A = (∫X eλ0|δ(Z)|dµ
)1/2

. Now using
the property of flow,

∫
X

eη|δZ |(UT0+t )dµ =
∫
X

eη|δZ |(UT0 )Kt dµ

≤
⎛
⎝∫

X

e2η|δ(Z)|(UT0 )dµ

⎞
⎠

1/2

· A ≤
⎛
⎝∫

X

e22η|δ(Z)|dµ

⎞
⎠

1/22

· A3/2.

Let N be the integer such that Nλ0 ≥ 1, then by induction, we have for each t ∈ [0, 1]

∫
X

eη|δZ |(Ut )dµ ≤
⎛
⎝∫

X

e2N η|δ(Z)|dµ

⎞
⎠

1/2N

· A2.

So we get (2.9), which implies that Ent(ρt ) < +∞.
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Now let t1 < t2. Define a probability measure π on X × X by

∫
X×X

ϕ(x, y)π(dx, dy) =
∫
X

ϕ(Ut1 ,Ut2) dν0.

Then π ∈ C(νt1 , νt2) and

W 2
2 (νt1 , νt2) ≤

∫
X

|Ut1 − Ut2 |2H dν0.

But for a.e x ∈ X , |Ut1 − Ut2 |H ≤ ∫ t2
t1

|Z(Us)|H ds; therefore

W2(νt1 , νt2) ≤
∥∥∥∥∥∥

t2∫
t1

|Z(Us)|H ds

∥∥∥∥∥∥
L2(ν0)

≤
t2∫

t1

||Z(Us)||L2(ν0)
ds. (2.10)

Let m(s) = ||Z(Us)||L2(ν0)
. We have for any ε > 0

m(s)2 =
∫
X

|Z(Us)|2Hρ0 dµ ≤
∫
X

eε |Z(Us )|2H dµ+ Ent(ρ0/ε).

The same procedure as above yields
∫ 1

0 m(s)2ds < +∞. 
�
Theorem 2.3 Let (νt )t∈[0,1] be a curve in AC2. Then there exists a Borel vector field

(t, x) �→ Zt (x) ∈ H such that
∫ 1

0 ||Zt ||2L2(νt )
dt < +∞ and the continuity equation

∂νt

∂t
+ ∇ · (Ztνt ) = 0 in ]0, 1[×X (2.11)

holds in the sense (see [18]) that

1∫
0

∫
X

(
α′(t)F(x)+ 〈Zt (x),∇F(x)〉H α(t)

)
dνt (x)dt = 0 (2.12)

for all α ∈ C∞
c (]0, 1[) and F ∈ Cylin(X).

Proof Denote � = {(x, y) ∈ X × X; x − y ∈ H}. For s ∈]0, 1[ and η > 0 small
enough, we consider the optimal coupling plan πη ∈ C(νs, νs+η). Then the support of
πη is included in �. For (x, y) ∈ �, we have

F(y)− F(x) =
1∫

0

〈(∇F)(ty + (1 − t)x), y − x〉H dt.

123



546 S. Fang et al.

Set H(x, y) = ∫ 1
0 (∇F)(ty + (1 − t)x) dt . By expression (2.4), we see that (x, y) �→

H(x, y) is a bounded continuous function from X × X to H . Then

∫
X

Fdνs+η −
∫
X

Fdνs =
∫
�

〈H(x, y), y − x〉H πη(dx, dy).

The Cauchy–Schwarz inequality yields, for η > 0,

1

η

∣∣∣∣∣∣
∫
X

Fdνs+η −
∫
X

Fdνs

∣∣∣∣∣∣ ≤
W2(νs, νs+η)

η

⎛
⎝∫
�

|H(x, y)|2Hπη(dx, dy)

⎞
⎠

1/2

. (2.13)

Take a sequence ηn such that limn→+∞ 1
ηn

∣∣∫
X Fdνs+ηn − ∫X Fdνs

∣∣ = limη→0
1
η∣∣∫

X Fdνs+η − ∫X Fdνs
∣∣.

As νs+ηn converges to νs with respect to W2, it converges weakly; therefore the
family {πηn ; n ≥ 1} is tight. Up to a subsequence, πηn converges to π̂ ∈ C(νs, νs). We
have

∫
X×X

|x − y|2H π̂(dx, dy) ≤ lim
n→+∞

∫
X×X

|x − y|2Hπηn (dx, dy)

= lim
n→+∞ W 2

2 (νs, νs+ηn ) = 0,

so π̂ is supported by the diagonal D = {(x, y) ∈ �; x = y }. Hence

lim
n→+∞

∫
�

|H(x, y)|2Hπηn (dx, dy) =
∫
D

|H(x, x)|2H π̂(dx, dy) =
∫
X

|∇F |2H dνs .

According to (2.2) and (2.13), for a.e s ∈]0, 1[,

limη↓0
1

η

∣∣∣∣∣∣
∫
X

Fdνs+η −
∫
X

Fdνs

∣∣∣∣∣∣ ≤ m(s) ||∇F ||L2(νs )
. (2.14)

Now take δ > 0 such that supp(α)+] − δ, δ[⊂]0, 1[. Then for 0 < η < δ,

1∫
0

∫
X

α(s)F(x) dνs+η(x) ds =
1∫

0

∫
X

α(s − η)F(x) dνs(x)ds,
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and

1∫
0

1

η

⎡
⎣∫

X

α(s)F(x) dνs(x)−
∫
X

α(s)F(x) dνs+η(x)

⎤
⎦ ds

=
1∫

0

∫
X

1

η
[α(s)− α(s − η)] F(x) dνs(x)ds. (2.15)

It is obvious that as η → 0, the right hand side of (2.15) tends to
∫ 1

0

∫
X α

′(s)F(x)
dνs(x)ds. By (2.1), 1

η
W2(νs, νs+η) ≤ 1

η

∫ s+η
s |ν′|(u)du and the fact that s �→ supη>0(

1
η

∫ s+η
s |ν′|(u)du

)
is integrable over [0, 1]. Now we can use (2.14) to get that

∣∣∣∣∣∣
1∫

0

∫
X

α′(s)F(x) dνs(x)ds

∣∣∣∣∣∣ ≤
1∫

0

m(s) ||α(s)∇F ||L2(νs )
ds

≤
⎛
⎝

1∫
0

|ν′|2(s)ds

⎞
⎠

1/2⎛
⎝

1∫
0

∫
X

|α(s)∇F(x)|2H dν(x)ds

⎞
⎠

1/2

. (2.16)

Let Pν be the probability measure on [0, 1] × X defined by

∫
[0,1]×X

ϕ(s, x)d Pν(s, x) =
1∫

0

∫
X

ϕ(s, x)dνs(x)ds.

Introduce the vector space

V =
{

K∑
i=1

αi (s)∇Fi (x); αi ∈ C∞
c (]0, 1[, Fi ∈ Cylin(X), K ∈ N

}
.

Let V be the closure of V in L2(Pν). Define for ψ =∑K
i=1 αi (s)∇Fi (x) ∈ V ,

L(ψ) = −
K∑

i=1

1∫
0

∫
X

α′
i (s)Fi (x) dνs(x)ds. (2.17)

By linearity of the two sides of (2.15), the inequality (2.16) holds for ψ , that is

|L(ψ)| ≤

√√√√√
1∫

0

|ν′|2(s)ds · ||ψ ||L2(Pν ). (2.18)
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It follows that L is well defined and is a bounded linear operator on V . Therefore there
exists Z ∈ V such that

L(ψ) =
1∫

0

∫
X

〈Z , ψ〉H dνsds, ψ ∈ V .

Now take ψ = α∇F and according (2.17), we get (2.12). Moreover,

‖Z‖2
L2(Pν )

=
1∫

0

∫
X

|Z(t, x)|2H dνs(x)ds ≤
1∫

0

|ν′|2(s) ds. (2.19)


�
Following [2,3], we define, for any ν ∈ P∗(X),

E =
{

K∑
i=1

∇Fi ; Fi ∈ Cylin(X)

}
, Tν = closure of E in L2(X, H, ν). (2.20)

Proposition 2.4 Let Z be constructed as in Theorem 2.3. Then for a.e. t ∈]0, 1[,
Z(t, ·) ∈ Tνt . The solution to (2.11) satisfying this property is unique. Moreover, it
holds that

W 2
2 (ν0, ν1) ≤

1∫
0

∫
X

|Z(s, x)|2H dνs(x)ds, and ‖Z‖2
L2(Pν )

=
1∫

0

|ν′|2(s) ds. (2.21)

Proof Let ψn ∈ V such that ||Z − ψn||L2(Pν ) → 0. Or

lim
n→+∞

1∫
0

⎛
⎝∫

X

|Z(t, x)− ψn(t, x)|2H dνt (x)

⎞
⎠ dt = 0.

Then up to a subsequence, for a.e. to ∈]0, 1[,

lim
n→+∞

∫
X

|Z(to, x)− ψn(to, x)|2H dνto(x) = 0.

This means that Z(to, ·) ∈ Tνto
. Now let Ẑ be another solution to (2.12) such that

Ẑ(t, ·) ∈ Tνt for a.e t ∈]0, 1[. Then we have

1∫
0

α(t)

⎛
⎝∫

X

〈
Z(t, x)− Ẑ(t, x),∇F(x)

〉
H

dνt (x)

⎞
⎠ dt = 0.
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It follows that
∫

X

〈
Z(t, x)− Ẑ(t, x),∇F(x)

〉
H

dνt (x) = 0 holds for t in a full mea-

sure subset �F ⊂]0, 1[. For each K ≥ 1, let DK ⊂ C∞
c (R

K ) be a dense countable
subset. Set

D =
{

m∑
i=1

fi ◦ PKi ; fi ∈ DKi ,m ∈ N

}
, (*)

where PK : X → VK = span{e1, . . . , eK }. For each ∇F ∈ E , there exists a finite
number of K1, . . . , Kq such that F = ∑q

i=1 fi ◦ PKi with fi ∈ C∞
c (R

Ki ). We have
∇F =∑q

i=1(∇RKi fi ) ◦ PKi . Therefore there exists Fn ∈ D such that

sup
x∈X

|∇Fn(x)− ∇F(x)|H → 0.

Define�Z = ∩F∈D�F . Then for t ∈�Z ,
∫

X

〈
Z(t, x)− Ẑ(t, x),∇F(x)

〉
H

dνt (x) = 0

holds for all ∇F ∈ E . Therefore Z(t, ·) = Ẑ(t, ·) νt -a.e. For proving (2.21), we con-
sider a sequence of increasing subspaces Vn ⊂ X∗ such that ∪n Vn is dense in H . Define
ν
(n)
t = (Pn)∗νt . Since W2(ν

(n)
t , ν

(n)
s ) ≤ W2(νt , νs), t → ν

(n)
t is also an absolutely

continuous curve in AC2. Therefore, according to the result on finite dimensional
spaces (see [2,3]), there exists Z (n)t such that

∫ 1
0

∫
Vn

|Z (n)t |2dν(n)t dt < +∞ and the
continuity equation

dν(n)t

dt
+ ∇ · (Z (n)t ν

(n)
t ) = 0

holds in the distribution sense:

1∫
0

∫
Vn

(α′(t) f +
〈
Z (n)t ,∇ f

〉
α(t)) dν(n)t dt = 0,

or

1∫
0

∫
X

(α′(t) f ◦ Pn +
〈
Z (n)t ◦ Pn,∇ f ◦ Pn

〉
H
α(t)) dνt dt = 0.

In the continuity equation (2.12), take F = f ◦ Pn with f ∈ C∞
c (Vn), we get

1∫
0

∫
X

(
α′(t) f ◦ Pn + 〈Zt ,∇ f ◦ Pn〉H α(t)

)
dνt dt = 0.
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From the above two equations, we deduce that for a.e t ∈]0, 1[, Pn Zt − Z (n)t ◦ Pn

is orthogonal in L2(νt ) to the space {∇ f ◦ Pn; f ∈ Cc(Vn)}L2(νt ), which contains
Z (n)t ◦ Pn . It follows that

||Z (n)t ||
L2(ν

(n)
t )

≤ ||Pn Zt ||L2(νt )
≤ ||Zt ||L2(νt )

.

In the finite dimensional case, it holds that (see [2, Theorem 8.3.1])

W2(ν
(n)
t , ν(n)s ) ≤

t∫
s

||Z (n)u ||
L2(ν

(n)
u )

du. (*)

For reader’s convenience, we will give a sketch of the proof of (*) as in [2]. To this
end, we omit (n).
(i) If Zt is a good vector field on Rd , more precisely, assume that

1∫
0

(
sup
x∈B

|Zt (x)| + Lip(Zt , B)

)
dt < +∞ for all ball B ⊂ Rd ,

and
∫ 1

0

∫
Rd |Zt |dνt dt < +∞,where Lip(Zt , B) is the Lipschitz constant of x → Zt (x)

on the ball B, such that

dνt

dt
+ ∇ · (Ztνt ) = 0 on (0, 1)× Rd ,

then for ν0-a.s x ∈ Rd , the differential equation

Xt (x) = x +
t∫

0

Zs(Xs(x)) ds

admits a unique solution Xt (x) for t ∈ [0, 1] and νt = (Xt )∗ν0. In this case, for the
coupling measure π ∈ C(νt1 , νt2), defined by π = (Xt1 , Xt2)∗ν0, we have

W2(νt1 , νt2) ≤
⎛
⎜⎝
∫

Rd

|Xt1 − Xt2 |2 dν0

⎞
⎟⎠

1/2

≤
t2∫

t1

||Zs ||L2(νs )
ds.

(ii) For the general case, we regularize νt and Zt by convolution product with the
Gauss kernel ρε(x) = (2πε)−d/2e−|x |2/2 by setting

νεt = νt ∗ ρε, Z εt = (Ztνt ) ∗ ρε/νεt .
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Applying (i) gives

W2(ν
ε
t1 , ν

ε
t2) ≤

t2∫
t1

⎛
⎜⎝
∫

Rd

|Z εs |2dνεs

⎞
⎟⎠

1/2

ds.

But by Jensen inequality

|Z εs (x)|2 ≤
∫

Rd

|Zs(y)|2 ρε(x − y)dνs(y)

νεs (x)
,

which implies that
∫

Rd |Z εs |2dνεs ≤ ∫Rd |Zs |2dνs . Using the lower semi-continuity of
(µ, ν) → W2(µ, ν), we get the desired result by letting ε ↓ 0 in

W2(ν
ε
t1 , ν

ε
t2) ≤

t2∫
t1

||Zs ||L2(νs )
ds.

Now we return to our situation. By (*), we have W2(ν
(n)
t , ν

(n)
s ) ≤ ∫ t

s ||Zu ||L2(νu)
du.

Noting that W2(νt , νs) = lim
n→+∞ W2(ν

(n)
t , ν(n)s ) and letting n → +∞, we get

W2(νt , νs) ≤
t∫

s

||Zu ||L2(νu)
du.

Hence,

|ν′|(s) = lim
t→s

W2(νt , νs)

|t − s| ≤ ‖Zs‖L2(νs )
,

1∫
0

|ν′|2(s) ds ≤
1∫

0

∫
X

|Z(s, x)|2H dνs(x)ds.

Combining this with (2.19), we get the last inequality in (2.21) and the argument is
complete now. 
�
Definition 2.5 Let {νt ; t ∈ [0, 1]} be a family of probability measures in P∗(X).
We will say that t → Zt ∈ Tνt is the derivative process of t �→ νt in the sense of
Otto–Ambrosio–Savaré if

∫ 1
0

∫
X |Zt (x)|2H dνt (x)dt < +∞ and the continuity equation

(2.12) holds. We denote Zt by
doνt

dt
.

Using
doνt

dt
, the result obtained in [3, p. 30] (for previous versions, see [5,21]) can

be expressed exactly as a Riemannian distance. Namely, in our setting,
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Theorem 2.6 Let ν0, ν1 ∈ P∗(X) be given. Then

W 2
2 (ν0, ν1) = inf

⎧⎨
⎩

1∫
0

∥∥∥∥doνt

dt

∥∥∥∥
2

Tνt

dt; νt ∈ AC2 connecting ν0, ν1

⎫⎬
⎭ . (2.22)

Proof Let νt be defined in (1.5). By (1.7), W2(νs, νt ) = (t − s)W2(ν0, ν1). Then
taking m(s) = W2(ν0, ν1) in (2.18), we get

|L(ψ)| ≤ ||ψ ||L2(Pν ) · W2(ν0, ν1).

Let Z = doνt

dt
be given in Theorem 2.3. Then

∣∣∣∣∣∣
∫
0

∫
X

〈Z , ψ〉H dνsds

∣∣∣∣∣∣ ≤ W2(ν0, ν1) · ||ψ ||L2(Pν ), ψ ∈ V .

It follows that ||Z ||L2(Pν ) ≤ W2(ν0, ν1). The equality is realized for
doνt

dt
, according

to (2.21). 
�
Corollary 2.7 Let ν0, ν1 ∈ P∗(X) and ξ be given in Theorem FU. Define Tt =
I + tξ, νt = (Tt )∗ν0 and Wt = ξ(T −1

t ). Then for a.e. t ∈]0, 1[, Wt ∈ Tνt .

Proof By 1-convex inequality (1.8), νt ∈ P∗(X), so T −1
t exists for each t ∈ [0, 1].

Let F ∈ Cylin(X). We have

d

dt

∫
X

F dνt = d

dt

∫
X

F(x + tξ(x))dν0(x) =
∫
X

〈∇F(Tt ), ξ 〉H dν0

=
∫
X

〈∇F,Wt 〉H dνt .

On the other hand, let Z(t, x) = doνt

dt
. The equation (2.12) implies that for a.e

t ∈]0, 1[,

d

dt

∫
X

F dνt =
∫
X

〈∇F, Zt 〉H dνt .

In the same way as in the proof of Proposition 2.4, there exists a full measure subset
� ⊂]0, 1[ such that for t ∈ �,

∫
X

〈∇F,Wt − Zt 〉H dνt = 0, F ∈ Cylin(X).
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It follows that there exists ηt ∈ L2(X, H, νt ) orthogonal to all ∇F such that Wt =
Zt + ηt . Then

∫
X

|ξ |2H dν0 =
∫
X

|Wt |2H dνt =
∫
X

|Zt |2H dνt +
∫
X

|ηt |2H dνt .

From this equality, we see that t → ∫
X |ηt |2H dνt is measurable; integrating the two

sides over [0, 1], we get

W 2
2 (ν0, ν1) =

1∫
0

∫
X

|Zt |2H dνt dt +
1∫

0

∫
X

|ηt |2H dνt dt.

But by (2.22), we deduce that
∫ 1

0

∫
X |ηt |2H dνt dt = 0. Therefore for a.e. t ∈]0, 1[,

ηt = 0 for νt -a.e. It follows that Wt = Zt ∈ Tνt . 
�

3 Gradient flow associated to the entropy functional

Let ∇F ∈ E . Let (Ut )t∈R be the quasi-invariant flow associated to ∇F .

Proposition 3.1 Let ν0 ∈ P∗(X) be given and denote νt = (Ut )∗ν0. Then

d

dt
|t=0Ent(νt ) =

∫
X

L F dν0, (3.1)

where L F = δ(∇F).

Proof By expression (2.5), L F admits the expression

L F = −
N∑

i, j=1

(∂ j∂i f )
〈
e j , ei

〉
H +

N∑
i=1

(∂i f )ei (x).

Note that x → L F(x) is a continuous function and for a small ε0 > 0,

∫
X

e2ε0|L F |2 dµ < +∞.

Set ut = 1
t

∫ t
0 (L F)(Ut−s)ds. By Jensen inequality,
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∫
X

eε0|ut |2 dµ ≤
∫
X

⎛
⎝1

t

t∫
0

eε0|(L F)|2(Ut−s ) ds

⎞
⎠ dµ

= 1

t

t∫
0

⎛
⎝∫

X

eε0|L F |2 · Kt−sdµ

⎞
⎠ ds

≤
⎛
⎝∫

X

e2ε0|L F |2 dµ

⎞
⎠

1/2⎛
⎝∫

X

e4|L F |dµ

⎞
⎠

1/2

,

where we used (2.7) for estimating ||Kt ||L2(µ). By Young inequality,

∫
X

|ut |2ρ0dµ ≤
∫
X

eε0|ut |2 dµ+ Ent(ρ0/ε0).

Therefore sup0<t≤1
(∫

X |ut |2ρ0dµ
)
< +∞. Now remarking that

1

t
log Kt (Ut ) = ut → L F as t → 0,

and using (2.8), we get (3.1). 
�

Definition 3.2 Let Z = ∇F ∈ E , we denote (∂Z Ent)(ν0) = d

dt
|t=0Ent(νt ).

Corollary 3.3 Let ρ0 ≥ε > 0 be given in the form (2.3) but with f ∈ C1
b . Then there

exists a unique v ∈ Tν0 such that

(∂Z Ent)(ν0) = 〈v, Z〉Tν0
, for all Z = ∇F ∈ E . (3.2)

Proof Rewrite (3.1) in the form

(∂Z Ent)(ν0) =
∫
X

δ(∇F)ρ0 dµ =
∫
X

〈∇F,∇ρ0〉H dµ =
∫
X

〈∇F, v〉H dν0,

with v = ∇ log ρ0. Take a sequence of Fn ∈ Cylin(X) such that Fn → log ρ0 in
D2

1(X). Then

∫
X

|∇Fn − ∇ log ρ0|2H ρ0dµ ≤ ||ρ0||∞
∫
X

|∇Fn − ∇ log ρ0|2H dµ → 0,

as n → +∞. It follows that ∇ log ρ0 ∈ Tν0 . 
�
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Definition 3.4 We will say that the gradient ∇Ent exists at ν0 ∈ P∗(X), if there exists
v ∈ Tν0 such that for all Z = ∇F ∈ E ,

〈v, Z〉Tν0
= (∂Z Ent)(ν0) (3.3)

and we denote v by (∇Ent)(ν0).

The Corollary 3.3 says that the gradient (∇Ent)(ν0) exists for a good measure ν0.
The following result plays an important role for our understanding of the gradient flow
associated to the entropy functional.

Proposition 3.5 Fix ν0 ∈ P∗(X). Then for any η > 0, there exists a unique ν̂ ∈
P∗(X) such that

1

2
W 2

2 (ν0, ν̂)+ ηEnt(ν̂) = inf

{
1

2
W 2

2 (ν0, ν)+ ηEnt(ν); ν ∈ P∗(X)
}
. (3.4)

Moreover the gradient (∇Ent)(ν̂) at ν̂ exists.

Proof By Corollary 1.2 and the fact that ν → 1
2 W 2

2 (ν0, ν) + ηEnt(ν) is semi-lower
continuous with respect to the weak convergence, such a ν̂ does exist. The uniqueness
comes from the strict convexity of the entropy functional.

Now let Z = ∇F ∈ E and (Ut )t∈R be the associated quasi-invariant flow of X . Let
π ∈ C(ν0, ν̂) be the optimal coupling plan. We define πt ∈ C(ν0, (Ut )∗ν̂) by

∫
X×X

ψ(x, y)πt (dx, dy) =
∫

X×X

ψ(x,Ut (y))π(dx, dy).

Then we have

W 2
2 (ν0, (Ut )∗ν̂)− W 2

2 (ν0, ν̂) ≤
∫

X×X

{
|x − Ut (y)|2H − |x − y|2H

}
π(dx, dy).

It follows that

lim
t↓0

1

2t

[
W 2

2 (ν0, (Ut )∗ν̂)− W 2
2 (ν0, ν̂)

]
≤ −

∫
X×X

〈Z(y), x − y〉H π(dx, dy).

(3.5)

By construction of ν̂, for t > 0,

η

t

[
Ent((Ut )∗ν̂)− Ent(ν̂)

]+ 1

2t

[
W 2

2 (ν0, (Ut )∗ν̂)− W 2
2 (ν0, ν̂)

]
≥ 0. (3.6)
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By Proposition 3.1, as t ↓ 0, the first term in (3.6) tends to (∂Z Ent)(ν̂). Combining
with (3.5), we get

η(∂Z Ent)(ν̂)−
∫

X×X

〈Z(y), x − y〉H π(dx, dy) ≥ 0.

Changing Z into −Z , we get another inequality, so that

η(∂Z Ent)(ν̂) =
∫

X×X

〈Z(y), x − y〉H π(dx, dy). (3.7)

Now by Theorem FU, there exists ξ : X → H such that T1 = I +ξ pushes ν0 forward
to ν̂ and W 2

2 (ν0, ν̂) = ∫X |ξ |2H dν0. Rewriting (3.7), we get

(∂Z Ent)(ν̂) = 1

η

∫
X

〈Z(T1),−ξ 〉H dν0 = −
∫
X

〈
Z , ξ(T −1

1 )/η
〉

H
d ν̂. (3.8)

Note that
∫

X |ξ(T −1
1 )|2H d ν̂ = ∫X |ξ |2H dν0 < +∞; So the gradient (∇Ent)(ν̂) ∈ Tν̂

exists, which is the orthogonal projection of −ξ(T −1
1 )/η on Tν̂ . 
�

Denote by Dom(∇Ent) the set of ν ∈ P∗(X) such that (∇Ent)(ν) ∈ Tν exists. In
what follows, we will develop De Giorgi’s “minimizing movement” approximation
scheme, avoiding the use of the space P2(Rd) done in [3].

We denote by ν(1) the element ν̂ obtained in Proposition 3.5. By induction, define
step by step ν(n) which realizes the minimum of

ν �→ 1

2
W 2

2 (ν
(n−1), ν)+ ηEnt(ν).

So we get a sequence of probability measures {ν(n); n ≥ 0} with ν(0) = ν0. Let N be
an integer such that Nη ≤ 1. Define

νη(t, dx) =
N+1∑
k=1

ν(k)(dx)1](k−1)η,kη](t). (3.9)

By Proposition 3.5, for t > 0, νη(t, ·) ∈ Dom(∇Ent).

Proposition 3.6 The family of measures {νη(t, dx)dt; η > 0} over [0, 1]× X is tight.

Proof By construction of {ν(k); k ≥ 1}, we have

1

2
W 2

2 (ν
(k−1), ν(k))+ ηEnt(ν(k)) ≤ ηEnt(ν(k−1)).
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For any 1 ≤ q ≤ N , summing the above inequality from k = 1 to q gives

1

2

q∑
k=1

W 2
2 (ν

(k−1), ν(k))+ ηEnt(ν(q)) ≤ ηEnt(ν(0)). (3.10)

But for each 1 ≤ q≤N , W 2
2 (ν

(0), ν(q)) ≤ N
∑N

k=1 W 2
2 (ν

(k−1), ν(k))≤ 2NηEnt(ν(0)).
It follows that

W 2
2 (ν

(0), ν(q))+ Ent(ν(q)) ≤ (2N + 1)ηEnt(ν(0)) ≤ 3Ent(ν(0)).

By Corollary 1.2, for any ε > 0, there exists a compact K ⊂ X such that ν(q)(K c) ≤ ε.
Then

∫
[0,1]×K c

νη(t, dx)dt ≤
N+1∑
q=1

ην(q)(K c) ≤ Nηε ≤ ε,

the result follows. 
�
By Prokhorov theorem, there is a sequence η ↓ 0 such that νη(t, dx)dt converges

weakly to ν(dt, dx). Set ν(k)(dx) = ρ(k)(x)dµ(x). Then

νη(t, dx)dt =
(

N+1∑
k=1

ρ(k)1](k−1)η,kη](t)
)

dµ(x)dt = ρη(x, t)dµ(x)dt.

We have
∫

[0,1]×X

ρη(x, t) log ρη(x, t)dµ(x)dt

=
N+1∑
k=1

kη∧1∫
(k−1)η

⎛
⎝∫

X

ρ(k) log ρ(k)dµ

⎞
⎠ dt ≤

N+1∑
k=1

ηEnt(ν(k)),

which is less than, again by (3.10),
∑N

k=0 ηEnt(ν(0)) ≤ Ent(ν(0)) < +∞. Therefore
ν(dx, dt) admits a density with respect to dµdt : ν(dx, dt) = ρ(x, t) dµ(x)dt , with

∫
[0,1]×X

ρ(x, t) log ρ(x, t) dµ(x)dt ≤ Ent(ν(0)). (3.11)

It follows that for a.e. t0 ∈ [0, 1], Ent(ρ(t0, ·)) < +∞. Now we denote:

νt (dx) = ρ(x, t)dµ(x). (3.12)

Then for a.e. t ∈ [0, 1], νt ∈ P∗(X).
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Theorem 3.7 The curve {νt ; t ∈ [0, 1]} solves the following Fokker–Planck equation:

−
∫

[0,1]×X

α′(t)Fdνt dt +
∫

[0,1]×X

α(t) L F dνt dt = α(0)
∫
X

Fdν0, (3.13)

for all α ∈ C∞
c ([0, 1[), F ∈ Cylin(X).

Proof The proof is similar to [17], but for the reader’s convenience and the difference
with finite dimensional spaces that we emphasized in the introduction, we will give a
full proof. We have

∫
[0,1]×X

α′(t)F(x)νη(t, dx)dt

=
N+1∑
k=1

(α(kη)− α((k − 1)η))
∫
X

F(x)ρ(k)(x)dµ(x)

=
N∑

k=1

α(kη)

⎡
⎣∫

X

F(x)(ρ(k)(x)− ρ(k+1)(x)) dµ(x)

⎤
⎦− α(0)

∫
X

Fdν(1).

On the other hand,

∫
[0,1]×X

α(t)L F(x)νη(t, dx)dt

=
N+1∑
k=1

⎛
⎜⎝

kη∫
(k−1)η

α(t)dt

⎞
⎟⎠
∫
X

L F(x)ρ(k)dµ(x)

=
N∑

k=0

⎛
⎜⎝ 1

η

(k+1)η∫
kη

α(t)dt

⎞
⎟⎠ · η

∫
X

L F(x)ρ(k+1)dµ(x).

Let π(k) ∈ C(ν(k), ν(k+1)) be the optimal coupling plan and set

Ik =
∫
X

F(x)(ρ(k)(x)− ρ(k+1)(x))dµ(x)−
∫

X×X

〈x − y, (∇F)(y)〉H π
(k)(dx, dy).

Then

Ik =
∫
X

(
F(x)− F(y)− 〈x − y, (∇F)(y)〉H .

)
π(k)(dx, dy).
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But

∣∣F(x)− F(y)− 〈x − y, (∇F)(y)〉H

∣∣ ≤ C |x − y|2H ,

where C is a constant governing 1
2 |∇2 F |H⊗H . It follows that |Ik |≤C W 2

2 (ν
(k), ν(k−1)).

By (3.7) and (3.1),

∫
X×X

〈∇F(y), x − y〉H π
(k)(dx, dy) = η (∂Z Ent)(ν(k+1)) = η

∫
X

L Fdν(k+1).

Therefore, noting βk = α(kη)− 1
η

∫ (k+1)η
kη α(t)dt ,

∫
[0,1]×X

α′(t)F(x)νη(t, dx)dt −
∫

[0,1]×X

α(t)L F(x)νη(t, dx)dt

=
n∑

k=1

α(kη)Ik +
N∑

k=1

βk

∫
X×X

〈∇F(x), x − y〉H π
(k)(dx, dy)

−α(0)
∫
X

Fdν(1) −
⎛
⎝

η∫
0

α(t)dt

⎞
⎠ ·
∫
X

L Fdν(1). (3.14)

The first term on the right hand of (3.14) is dominated, according to (3.10), by

C ||α||∞
N∑

k=1

W 2
2 (ν

(k), ν(k+1)) ≤ ηC ||α||∞Ent(ν0) → 0 as η → 0;

The second term is dominated by

||∇F ||L∞||α′||∞ η

n∑
k=1

∫
X×X

|x − y|Hπ
(k)(dx, dy)

≤ ||∇F ||L∞||α′||∞ η
√

N

(
N∑

k=1

W 2
2 (ν

(k), ν(k+1))

)1/2

≤ √
η||∇F ||L∞||α′||∞

√
Ent(ν0) → 0 as η → 0

Note that W 2
2 (ν0, ν

(1)) ≤ ηEnt(ν0) → 0 as η → 0. By Proposition 3.6, as η → 0, the
first term on the left hand of (3.14) tends to

∫
[0,1]×X α

′(t)F(x)dνt dt . Since L F is not
bounded, for the convergence of the second term, we have to use the cut-off function.
By the expression of L F , L F = G1 + G2, where G1 is a bounded continuous func-
tion and |G2(x)| ≤ C ||x ||K with ||x ||2K =∑K

i=1 e2
i (x). Let χR ∈ Cb(R) be a cut-off

function such that 0 ≤ χR ≤ 1 and χR = 1 over [0, R] and χR = 0 over [2R,+∞[.
We have
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∫
[0,1]×X

α(t)G2

(
1 − χR

K∑
i=1

e2
i (x)

)
νη(t, dx)dt

=
N+1∑
k=1

⎛
⎜⎝

kη∫
(k−1)η

α(t)dt

⎞
⎟⎠ ·
∫
X

G2(x)

(
1 − χR

K∑
i=1

e2
i (x)

)
ρ(k)dµ.

≤ C ||α||∞η
N+1∑
k=1

∫

{||x ||2K ≥R}
||x ||Kρ

(k)dµ.

But
∫

{||x ||2K ≥R}
||x ||Kρ

(k)dµ ≤ 1√
R

∫
X

||x ||2Kρ(k)dµ

≤ C ||α||∞ 1√
R

⎛
⎝∫

X

eε0||x ||2K dµ+ 1

ε0
Ent(ν(k))+ 1

ε0
log

1

ε0

⎞
⎠ .

Note that Ent(ν(k)) ≤ Ent(ν(0)). Then the term
∫
[0,1]×X α(t)G2

(
1−χR(

∑K
i=1 e2

i (x)
)

νη(t, dx)dt can be arbitrarily small (independent of η > 0) as R is big enough. So
the second term on the left hand of (3.14) tends to

∫
[0,1]×X α(t) L F dνt dt , as η → 0.

The proof is completed. 
�
Remark The Fokker–Planck equations and related topics on a Hilbert space were
studied recently in [4].

We will prove the existence of the derivative process
doνt

dt
in the sense of

Otto–Ambrosio–Savaré of (νt )t∈[0,1] (see Definition 2.5). Define

Zη(x, t) =
N+1∑
k=1

Z (k)1](k−1)η,kη](t), Z (k) = (∇Ent)(ν(k)). (3.15)

Denote by T (k) = I + ξk which pushes ν(k−1) forward ν(k). We have, according to
(3.8)

1∫
0

∫
X

|Zη(x, t)|2Hνη(t, dx)dt ≤
N+1∑
k=1

η

∫
X

|Z (k)|2H dν(k)

≤ η

N+1∑
k=1

∫
X

1

η2 |ξk((T
(k))−1)|2H dν(k) = 1

η

N+1∑
k=1

W 2
2 (ν

(k−1), ν(k)) ≤ 2Ent(ν(0)).

(3.16)
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Lemma 3.8 There exists a sequence η ↓ 0 and Z ∈ L2(X, H, Pν) such that

lim
η→0

1∫
0

∫
X

α(t)
〈∇F(x), Zη(x, t)

〉
H νη(t, dx)dt

=
1∫

0

∫
X

α(t) 〈∇F(x), Z(x, t)〉H νt (dx)dt, (3.17)

for any α ∈ C∞
c ([0, 1[), F ∈ Cylin(X).

Proof Define a probability measure on [0, 1] × X × X by

∫

[0,1]×X2

ψ(t, x, y)d�η(t, x, y) =
∫

[0,1]×X

ψ(t, x, Zη(t, x))νη(t, dx)dt. (3.18)

Let π1,2 be the projection (t, x, y) → (t, x) and π3 the projection (t, x, y) → y.
Then

(π1,2)∗�η = Pνη , (π3)∗�η = (Zη)∗(Pνη ).

Note that (π3)∗�η is a measure on X , supported by H . Recall that BH (R) = {x ∈
X; |x |H ≤ R} is a compact subset of X . We have

[
(π3)∗�η

]
(BH (R)

c) =
∫

[0,1]×X

1BH (R)c(Zη(t, x))νη(t, dx)dt

≤ 1

R2

∫
[0,1]×X

|Zη(t, x)|2Hνη(t, dx)dt ≤ 2

R2 Ent(ν0),

this last inequality was deduced from (3.16). It follows that {(π3)∗�η, η > 0} is tight.
Combining with Proposition 3.6, the family {�η, η > 0} is tight. Up to a sequence,
we get the weak convergence of

(π3)∗�η → w(dx), �η → �.

We have

(π1,2)∗� = ρ(t, x)dµdt, (π3)∗� = w(dx).

By semi-lower continuity of x → |x |H , we have

∫
X

|x |2Hw(dx) ≤ limη→0

∫
[0,1]×X

|Zη(t, x)|2Hνη(t, dx)dt ≤ 2Ent(ν0). (3.19)
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Therefore the measure w is supported by H . Let �(dy|π1,2 = (t, x)) be the con-
ditional probability given π1,2 = (t, x). By (3.19),

∫
[0,1]×X

⎛
⎝∫

X

|y|2H�(dy|π1,2 = (t, x))

⎞
⎠ ρ(t, x)dµ(x)dt < +∞.

Then for a.e. (t, x) ∈ [0, 1] × X , y → y is Bochner integrable with respect to
�(dy|π1,2 = (t, x)). Define

Z(t, x) =
∫
X

y �(dy|π1,2 = (t, x)). (3.20)

We have

∫
[0,1]×X

|Z(t, x)|2Hρ(t, x)dµ(x)dt

≤
∫

[0,1]×X

(∫
|y|2H�(dy|π1,2 = (t, x))

)
ρ(t, x)dµ(x)dt

=
∫

[0,1]×X2

|y|2H d�(t, x, y) =
∫
X

|y|2Hw(dy) < +∞. (3.21)

Now for α ∈ C∞
c ([0, 1[) and F ∈ Cylin(X). By expression (2.4),

(t, x, y) → α(t) 〈∇F(x), y〉H = α(t)
K∑

i=1

(∂i f ) ei (y)

is continuous from [0, 1] × X × X to R. Let R > 0, consider

ψR(t, x, y) = α(t) 〈∇F(x), y〉H · χR

(
K∑

i=1

ei (y)
2

)
,

where χR ∈ Cb(R) is the cut-off function considered in the proof of Theorem 3.7.
Then (t, x, y) → ψR(t, x, y) is a bounded continuous function; therefore

∫
ψR(t, x, y)d�(t, x, y) = lim

η→0

∫
ψR(t, x, y)d�η(t, x, y).
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Since

∫
|α(t) 〈∇F(x), y〉H |

[
1 − χR

(
K∑

i=1

ei (y)
2

)]
d�η(t, x, y)

≤ ||α||∞||∇F ||∞
∫

|Zη|H

[
1 − χR

(
K∑

i=1

〈
ei , Zη(t, x)

〉2)]
νη(t, dx)dt

≤ ||α||∞||∇F ||∞
∫

∑K
i=1〈ei ,Zη(t,x)〉2≥R

|Zη|Hνη(t, dx)dt

≤ ||α||∞||∇F ||∞√
R

∫
|Zη(t, x)|2Hνη(t, dx)dt ≤ 2||α||∞||∇F ||∞√

R
Ent(ν0),

which is arbitrarily small as R is big enough. Hence

∫
α(t) 〈∇F(x), y〉H d�(t, x, y) = lim

η→0

∫
α(t) 〈∇F(x), y〉H d�η(t, x, y),

or (3.17) holds. 
�
Proposition 3.9 {νt ; t ∈ [0, 1]} and Z(t, x) are linked by the following continuity
equation

∫
[0,1]×X

α(t) 〈∇F(x), Z(t, x)〉H dνt (x)dt +
∫

[0,1]×X

α′(t)F(x)dνt (x)dt = 0,

(3.22)

for all F ∈ Cylin(X) and α ∈ C∞
c (]0, 1[).

Proof Let I 1
η = ∫[0,1]×X α(t)

〈∇F(x), Zη(t, x)
〉
H νη(t, dx)dt . Then I 1

η admits the
expression

I 1
η =

N+1∑
k=1

⎛
⎜⎝1

η

kη∫
(k−1)η

α(t)dt

⎞
⎟⎠ ·
∫
X

〈∇F(x + ξk), ξk〉H dν(k−1).

Changing the index and using the optimal coupling plan π(k) ∈ C(ν(k), ν(k+1)),
we get

I 1
η =

N∑
k=0

⎛
⎜⎝1

η

(k+1)η∫
kη

α(t)dt

⎞
⎟⎠
∫

X×X

〈∇F(y), y − x〉H π
(k)(dx, dy).
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On the other hand, let I 2
η = ∫[0,1]×X α

′
(t)F(x)νη(t, dx)dt . Then I 2

η admits the
expression

I 2
η = −

N∑
k=1

α(kη)
∫

X×X

(F(y)− F(x))π(k)(dx, dy).

The same quantities appeared already in the proof of Theorem 3.7, we see that
limη→0(I 1

η+ I 2
η ) = 0. But by Lemma 3.8, I 1

η tends to
∫
[0,1]×X α(t) 〈∇F(x), Z(t, x)〉H

dνt (x)dt , while the term I 2
η tends to

∫
[0,1]×X α

′(t)F(x)dνt (x)dt . So we get (3.22).

�

Theorem 3.10 Let (νt )t∈[0,1] be the solution to the Fokker–Planck equation (3.13).
Then for a.e. t ∈ [0, 1], νt ∈ Dom(∇Ent) and

doνt

dt
= −(∇Ent)(νt ). (3.23)

Proof By (3.13) and (3.22), we have

∫
[0,1]×X

α(t) 〈∇F(x), Z(t, x)〉H dνt (x)dt = −
∫

[0,1]×X

α(t)L F(x)dνt (x)dt.

(3.24)

Let V be the vector space generated by {α∇F; α ∈ C∞
c (]0, 1[), F ∈ Cylin(X)}

and V̄ the closure of V in L2([0, 1] × X, H ; Pν). Let Ẑ be the orthogonal projection
of Z onto V̄ . Then for a.e. t ∈]0, 1[, Ẑt ∈ Tνt . By (3.24), there exists a full subset
�F ⊂]0, 1[ such that for t ∈ �F ,

∫
X

〈
∇F(x), Ẑ(t, x)

〉
H

dνt (x) = −
∫
X

L F(x)dνt (x).

Again by density arguments, there exists a full measure subset � ⊂]0, 1[ such that
for t ∈ � the above equality holds for all ∇F ∈ E . Now by (3.1), the right hand side
is equal to −(∂∇F Ent)(νt ). Therefore ∇Ent exists at νt and

(∇Ent)(νt ) = −Ẑt ,

this last term was denoted as
doνt

dt
; therefore we get (3.23). 
�
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