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Abstract We study the limit behavior of power sums and norms of i.i.d. positive
samples from the max domain of attraction of an extreme value distribution. To this
end, we combine limit theorems for sums and for maxima and use a link between
extreme value theory and the Lévy measures of certain infinitely divisible laws, which
are limit distributions of power sums. In connection with the von Mises representation
of the Gumbel max domain of attraction, this new approach allows us to extend the
limit results for power sums found in Ben Arous et al. (Probab Theory Relat Fields
132:579–612, 2005) and Bogachev (J Theor Probab 19:849–873, 2006). Furthermore,
our findings shed a new light on the results of Schlather (Ann Probab 29:862–881,
2001) and treat the Gumbel case which is missing there.

Keywords Central limit theorem · Extreme value theory · Infinitely divisible
distributions · l p-norms · Power sums · Stable distributions · von Mises representation
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1 Introduction

The use of l p-norms is a well-known way of measuring vectors in R
n . In the following,

we study l p-norms of random samples, where X1, X2, . . . are i.i.d. positive random
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516 A. Janßen

variables. Let the l p-norm ‖ · ‖p of a positive sample X1n = (X1, X2, . . . , Xn) be
defined as

‖X1n‖p =
(

n∑
i=1

X p
i

)1/p

, p > 0,

and ‖X1n‖∞ = max{X1, . . . , Xn}. For p = 1 or p = ∞ and n → ∞ the limit
behavior of these norms is well explored in terms of limit results for sums and for
maxima of i.i.d. samples. Here, however, we allow p to grow with n, thus looking at
l p(n)-norms of samples as n → ∞. Our analysis of l p(n)-norms of samples is based
on the closely related behavior of power sums of the form

(‖X1n‖p(n)

)p(n) =
n∑

i=1

X p(n)
i .

For both norms and power sums, the limit behavior is determined by the distribution
of X1 and the behaviour of p(n) as n → ∞. Typically, an important role will be
played by the largest summand, especially for heavy-tailed distributions of X1 and
fast-growing sequences p(n). We show that nontrivial limit laws emerge if p(n) is
chosen in accordance with the tail behavior of X1.

For samples X1n of positive i.i.d. random variables and properly chosen sequences
p(n)→∞ the limit behavior of the appropriately normalized power sums

∑n
i=1 X p(n)

i − b̂(n)

â(n)

has been studied recently in [1] and [2]. Both articles are based on a Tauberian approach
and assume a certain asymptotic tail behavior of X1. Surprisingly, the emerging fam-
ilies of limit distributions are identical for the different tail behaviors studied there.
We will demonstrate that this generality is no coincidence, that is, we will show that
the limit behavior of power sums and norms of samples is basically governed by max
domains of attraction. Now, since the distributions studied in [1] and [2] belong to the
Gumbel max domain of attraction, they yield the same family of limit laws.

While it is illustrated in [1] that the analysis of power sums has applications, for
example, in branching processes and the Random Energy Model (see [3]), the limit
distributions of norms are of theoretical interest, since they build a smooth transition
between limit laws for sums and for maxima.

For samples X1n of i.i.d. positive random variables from the max domain of attrac-
tion of the Weibull or Fréchet distribution the limit laws for the suitably normalized
l p(n)-norms

‖X1n‖p(n) − b̃c(n)

ãc(n)
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Limit laws for power sums and norms of i.i.d. samples 517

have been derived in [11]. Schlather’s method, which is based on the asymptotic tail
behavior of the distribution of X1, works well for the cases studied there but fails
for the Gumbel domain of attraction as it contains distributions with a wide range of
different tail behavior.

Linking between extreme value theory and limit theorems for sums, we follow a
different approach. This connection is applicable to each of the three max domains of
attraction in the same way as demonstrated in Sect. 2. For the Gumbel case, by use
of the von Mises representation of its max domain of attraction, we obtain conver-
gence to the family of distributions found in [1] and [2], which is stated in Sect. 3,
and proved in Sect. 4. However, in some cases this convergence is restricted to certain
subsequences. Section 5 provides such an example as well as some further results for
the Gumbel case. Section 6 is dedicated to the Weibull and the Fréchet case.

2 Fundamentals

Our approach is based on extreme value theory. Consequently, all distributions that
are considered here are assumed to be in the max domain of attraction of an extreme
value distribution.

Let X1, X2, . . . be i.i.d. with distribution function F . Then F is said to be in the
max domain of attraction of an extreme value distribution with distribution function
G if there exist norming constants a(n) and b(n) such that

lim
n→∞ P

(
max{X1, . . . , Xn} − b(n)

a(n)
≤ x

)
= G(x) (2.1)

for all x ∈ R. Then G belongs to one of the three possible extreme value distributions
(see, e.g., [10]), namely

– the Weibull distribution with parameter α > 0

Ψα(x) = exp(−(−x)α), x ≤ 0,

– the Fréchet distribution with parameter α > 0

Φα(x) = exp(−x−α), x ≥ 0,

– the Gumbel distribution

Λ(x) = exp(−e−x ), x ∈ R.

We write F ∈ D∞(G) if F is in the max domain of attraction of G.
Both limit theorems for maxima and for sums can be formulated in such a way that

part of the necessary and sufficient conditions depends on the behavior of the tails of
the distribution functions. This connection between sums and maxima, which, to our
knowledge, has been established first in [9], p. 315, will form the base of our analysis.
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518 A. Janßen

One can show (see, e.g., [5], Proposition 3.3.2) that Eq. 2.1 is equivalent to

lim
n→∞ nF(a(n)x + b(n)) = − log(G(x)), x ∈ R, (2.2)

where F(·) denotes the tail distribution function 1− F(·) of X1.
On the other hand, for sums

Sn = ξn,1 + · · · + ξn,kn − b(n)

of independent and infinitesimal random variables ξn,l with distribution functions Fn ,
n ∈ N, 1 ≤ l ≤ kn, a criterion for convergence as formulated in [7], pp. 116–117,
includes an expression similar to (2.2). Here, it is necessary that there exist nonde-
creasing functions

M(·) with M(−∞) = 0 and N (·) with N (+∞) = 0,

defined on [−∞, 0) and (0,+∞], respectively, such that at every continuity point of
M(u) and N (u) it holds that

lim
n→∞ kn Fn(u) = M(u), u < 0, (2.3)

lim
n→∞ kn Fn(u) = −N (u), u > 0. (2.4)

The similarity between (2.2) and (2.4) is fundamental to our analysis. In the next
section, it will be used for the Gumbel max domain of attraction and we will derive
limit laws for power sums. As a second step, we then use the following lemma by
Bogachev [2] to derive the limit distributions for the corresponding norms.

Lemma 2.1 ([2], Lemma 9.1) Let {S(t), t ≥ 0} be a family of positive random vari-
ables, such that for some (non-negative) functions B(t), A(t) and a non-degenerate
random variable Y ,

S∗(t) := S(t)− B(t)

A(t)
⇒ Y (t →∞),

where⇒ stands for convergence in distribution. Set R(t) := S(t)1/t and B∗(t) :=
B(t)/A(t).

(a) If B∗(t)→∞ as t →∞, then

t B∗(t)
(

R(t)

B(t)1/t
− 1

)
⇒ Y (t →∞).

(b) If B∗(t) ≡ 0 then

t

(
R(t)

A(t)1/t
− 1

)
⇒ log Y (t →∞).
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Limit laws for power sums and norms of i.i.d. samples 519

3 Main results for the Gumbel case

Throughout this section let X1, X2, . . . be a sequence of i.i.d. positive random
variables with distribution function F ∈ D∞(Λ). Then, according to (2.2), there
exist norming constants a(n) and b(n), such that

lim
n→∞ nF(a(n)x + b(n)) = − log(Λ(x)) = exp(−x). (3.1)

If the summands ξn,k := (Xk−b(n))/a(n) were infinitesimal, Eq. (3.1) would ensure
that the convergence criterion (2.4) is met for the sums

∑n
i=1 ξn,i . However, since

sup
1≤k≤n

P

(∣∣∣∣ Xk − b(n)

a(n)

∣∣∣∣ ≥ ε

)
≥ sup

1≤k≤n
P

(
Xk − b(n)

a(n)
≤ −ε

)

≥ P

(
max1≤k≤n Xk − b(n)

a(n)
≤ −ε

)
→ Λ(−ε) > 0, n→∞, (3.2)

we know that this is not the case. To apply the connection between (2.2) and (2.4),
we use a power transformation of the summands. It follows from the domain of the
Gumbel distribution, which is (−∞,∞), that

b(n)/a(n)→∞ (3.3)

as n→∞. Let us replace x in (3.1) by

gn(x) := b(n)

a(n)
(xa(n)/cb(n) − 1)

with c > 0. Because of (3.3) this function converges pointwise to c−1 log x as n→∞.
Therefore,

nF
(
b(n)xa(n)/cb(n)

) = nF(a(n)gn(x)+ b(n))

= nF
(
a(n)

(
c−1 log x + o(1)

)+ b(n)
)

∼ − log
(
Λ
(
c−1 log x

)) = x−1/c, n→∞, (3.4)

where the asymptotic relation follows from the local uniformity of weak convergence
to a continuous limit (see [5], p. 149). Note that formula (3.4) equals condition (2.4)
for sums of the form

n∑
i=1

(
Xi

b(n)

)cb(n)/a(n)

, (3.5)

which consist of infinitesimal summands. Consequently, we will analyze limit theo-
rems for power sums of the form (3.5). An analogous procedure can be applied to the
Weibull case, while the power transformation is not needed in the Fréchet case.
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520 A. Janßen

For further investigation of the Gumbel case, the so-called von Mises representation
of a distribution function F ∈ D∞(Λ) will be used.

Lemma 3.1 ([10], Proposition 1.4) A distribution function F with upper endpoint
x∞ ≤ ∞ belongs to the Gumbel max domain of attraction if and only if for x ∈
(−∞, x∞) there exists a representation

F(x) = c(x) exp

⎛
⎝−

x∫
z0

1(z0,x∞)(u)

f (u)
du

⎞
⎠ (3.6)

for some z0 < x∞ with limx→x∞ c(x) = c > 0 and an absolutely continuous strictly
positive function f on [z0, x∞) with limx→x∞ f ′(x) = 0.

We are now able to formulate our main result.

Theorem 3.2 Let X1, X2, . . . be positive i.i.d. random variables with distribution
function F ∈ D∞(Λ). Choose norming constants for the sequence of maxima

b(n) = F←(1− 1/n) and a(n) = f (b(n))

with F←(x) = inf{t ∈ R : F(t) ≥ x}, f from the von Mises representation (3.6) and
define p(n) := b(n)/a(n). There exists a family Fc of distribution functions of the
form given below and a subsequence nk → ∞ such that for every c > 0 there exist
norming constants âc(nk), b̂c(nk), k ∈ N, so that

Fc(x) = lim
k→∞ P

(∑nk
i=1 Xcp(nk )

i − b̂c(nk)

âc(nk)
≤ x

)
.

The norming constants âc(nk) and b̂c(nk) can be chosen according to Table 1.

Table 1 Norming constants

c âc(n) b̂c(n)

0 < c ≤ 1

2

√
n Var(Xcp(n)

1 1{X1≤b(n)}) nE(Xcp(n)
1 1{Xcp(n)

1 ≤âc(n)})
1

2
< c < 1 b(n)cp(n) nE(Xcp(n)

1 1{X1≤b(n)})

+ b(n)cp(n)

1−c

c = 1 b(n)cp(n) nE(Xcp(n)
1 1{X1≤b(n)})

c > 1 b(n)cp(n) 0

123



Limit laws for power sums and norms of i.i.d. samples 521

If 0 < c ≤ 1
2 , the Fc equal the standard normal distribution function N0,1.

If 1
2 < c < ∞, the Fc are given by Fc(x) = G1/c(x), where G1/c is an α-stable

distribution function with α = 1/c, skewness β = 1 and characteristic function

φ1/c(u) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−	(1− 1/c)|u|1/c exp

(
− iπ

2c
sgn u

))
, c = 1

exp

(
iu(1− γ )− π

2
|u|
(

1+ i sgn u
2

π
log u

))
, c = 1.

(3.7)

Here, γ is the Euler constant, and 	(·) is the gamma function.

The limit laws for l p(n)-norms, which are missing in [11], are readily obtained with
the help of Lemma 2.1.

Corollary 3.3 Let X1n and p(n) be as in Theorem 3.2. There exists a family F̃c of
distribution functions of the form given below and a subsequence nk →∞ such that
for every c > 0 there exist norming constants ãc(nk), b̃c(nk), k ∈ N, so that

F̃c(x) = lim
k→∞ P

(
‖X1nk‖cp(nk ) − b̃c(nk)

ãc(nk)
≤ x

)
.

If 0 < c ≤ 1
2 , the F̃c equal the standard normal distribution function N0,1.

If 1
2 < c ≤ 1, the F̃c are given by F̃c(x) = G1/c(x).

If 1 < c <∞, the F̃c are given by F̃c(x) = G1/c(exp(x)).
Furthermore,

F̃c(cx)→ Λ(x), c→∞. (3.8)

Proof The existence of norming constants and the form of the limit distributions fol-
low from Lemma 2.1. We use part (a) of the lemma if c ≤ 1 and part (b) if c > 1.
Relation (3.8) has been shown in [2], Theorem 10.2. ��

4 Proof of Theorem 3.2

4.1 Main idea

We use the abovementioned theorem for limit laws of sums (see [7], pp. 116–117). It
has already been shown that the summands in (3.5) are infinitesimal. Let Fc

n denote
the distribution function of (X1/b(n))cp(n). Since Fc

n (u) = 0 for all u < 0, from (2.3)
we readily obtain M(·) ≡ 0. For u > 0 it follows from (2.4) and (3.4) that for any
subsequence nk →∞,

N (u) = − lim
k→∞ nk Fc

nk
(u) = −u−1/c, u > 0. (4.1)
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522 A. Janßen

We are now left to prove (see [7], p. 116) that, along a certain subsequence nk ,

lim
ε→0

lim inf
k→∞ nk

⎛
⎜⎝

ε∫
0

x2d Fc
nk
−
⎛
⎝ ε∫

0

x d Fc
nk

(x)

⎞
⎠

2
⎞
⎟⎠

= lim
ε→0

lim sup
k→∞

nk

⎛
⎜⎝

ε∫
0

x2d Fc
nk
−
⎛
⎝ ε∫

0

x d Fc
nk

(x)

⎞
⎠

2
⎞
⎟⎠ =: σ 2 ∈ [0,∞). (4.2)

Note that

0 ≤
ε∫

0

x2d Fc
nk

(x)−
⎛
⎝ ε∫

0

xd Fc
nk

(x)

⎞
⎠

2

≤
ε∫

0

x2d Fc
nk

(x),

and we will in fact show that, for an appropriate subsequence nk ,

lim
k→∞ nk

ε∫
0

x pd Fc
nk

(x) = 1

cp − 1
ε p−1/c, p > 1/c, (4.3)

which will readily imply that σ 2 = 0. The limit (4.3) would follow immediately if
one could interchange limit and integration. We will choose a proper subsequence in
order to justify this interchange by dominated convergence.

4.2 Choice of a proper subsequence

Let f be given by (3.6). Choose a sequence bk → x∞ such that for the function
g(x) := f (x)/x the inequality g(y) ≥ g(bk) holds for all y ∈ (z0, bk) and all k ∈ N.
For instance, since g is continuous and converges to zero (see [10], Lemma 1.2), set
bk := min{x ∈ [z0, x∞)|g(x) ≤ 1/k}. Setting nk := �1/F(bk)�, where �x� denotes
the integer part of x , it follows that

nk F( f (bk)x + bk) ∼ F( f (bk)x + bk)

F(bk)

= c( f (bk)x + bk)

c(bk)
exp

⎛
⎜⎝−

f (bk )x+bk∫
bk

1(z0,x∞)(u)

f (u)
du

⎞
⎟⎠

∼ exp(−x), k →∞, (4.4)

with the same argumentation as in the proof of Lemma 3.1 (see [10], p. 42). There-
fore, both sequences ( f (bk), bk) and (a(nk), b(nk)) can be used as norming constants
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for the maxima along the subsequence nk . By the Convergence to Types Theorem, it
follows that

lim
k→∞

a(nk)

f (bk)
= lim

k→∞
f (b(nk))

f (bk)
= 1 and lim

k→∞
bk − b(nk)

f (bk)
= 0. (4.5)

In the following let nk be chosen as described above.

4.3 Application of dominated convergence

Partial integration in (4.3) yields

nk

ε∫
0

x pd Fc
nk

(x) = −nk

ε∫
0

x pd Fc
nk

(x)

= −nkε
p Fc

nk
(ε)+ nk p

ε∫
0

x p−1 Fc
nk

(x)dx, (4.6)

where the first term in (4.6) converges to −ε p−1/c for every subsequence nk → ∞
by (3.4). In what follows let βc

k := f (b(nk))
cb(nk)

. Now,

nk Fc
nk

(x) = nk F(b(nk)xβc
k )

∼ F(b(nk)xβc
k )

F(b(nk))

= c(b(nk)xβc
k )

c(b(nk))
exp

⎛
⎜⎜⎝

b(nk)∫
b(nk)xβc

k

1(z0,x∞)(u)

f (u)
du

⎞
⎟⎟⎠

= c(b(nk)xβc
k )

c(b(nk))
exp

⎛
⎜⎝1

c

0∫
log x

f (b(nk)) exp
(
βc

k u
)

f
(
b(nk) exp

(
βc

k u
))

× 1(z0,x∞)

(
b(nk) exp

(
βc

k u
))

du

⎞
⎟⎠ .

With the previously defined g we get

nk Fc
nk

(x) ∼ c(b(nk)xβc
k )

c(b(nk))
exp

⎛
⎜⎝1

c

0∫
log x

g(b(nk))

g(b(nk) exp(βc
k u))

1(z0,x∞)

(
b(nk) exp

(
βc

k u
))

du

⎞
⎟⎠.

(4.7)
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524 A. Janßen

For ε ∈ (0, c) there exists a k(ε) ∈ N such that |c(b(nk)) − c| < ε for all k > k(ε).
Since F lies between 0 and 1 and the exponential part of F in (3.6) is monotonically
decreasing, it follows that

c(y) ≤ exp

⎛
⎜⎝

b(nk(ε))∫
z0

1(z0,x∞)(u)

f (u)
du

⎞
⎟⎠

for y < b(nk(ε)). Therefore, we can find a constant C > 0 such that

c(b(nk)xβc
k )

c(b(nk))
≤ C

for all x < 1 if k is large enough. For such x and k we get

nk Fc
nk

(x) ≤ C exp

⎛
⎜⎝1

c

0∫
log x

g(bk)(1+ ε)

g(b(nk) exp(βc
k u))

1(z0,x∞)

(
b(nk) exp

(
βc

k u
))

du

⎞
⎟⎠

≤ C exp

(
−1+ ε

c
log x

)

because of (4.5), the choice of nk and since b(nk) ≤ bk .
Taking the limit in (4.6), we can interchange limit and integral by Lebesgue’s The-

orem to obtain

lim
k→∞ nk

ε∫
0

x pd Fc
nk

(x) = −ε p−1/c + p

ε∫
0

x p−1x−1/cdx

= −ε p−1/c + cp

cp − 1
ε p−1/c = 1

cp − 1
ε p−1/c.

4.4 Limit distributions and norming constants for c > 1
2

For c > 1
2 both (2.4) and (4.2) are met and the limit law has characteristic function

φ(·), where

log(φ(t)) = iµt − σ 2

2
t2 +

∫
|u|>0

(
eiut − 1− iut

1+ u2

)
d N (u) (4.8)

(see [7], p. 117), with

N (u) = −u−1/c, σ 2 = 0, (4.9)
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and location parameter µ yet to be determined. Hence, the limit law is α-stable (see
[7], p. 164) with α = 1/c and skewness parameter β = 1. The value of µ depends on
the choice of additive norming constants. We choose

Bc(n) =

⎧⎪⎨
⎪⎩

0 for c > 1

nE(Xcp(n)
1 1{X1≤b(n)}) for c = 1

nE(Xcp(n)
1 1{X1≤b(n)})+ b(n)cp(n)

1−c for 1/2 < c < 1.

Then, for τ > 0, it follows that (see [7], p. 84, 117)

µ = lim
k→∞

[
nk E

((
X1

b(nk)

)cp(nk )

1{( X1
b(nk )

)cp(nk )≤τ
}
)
− Bc(nk)

b(nk)cp(nk)

]

−
τ∫

0

x3

1+ x2 d N (x)+
∞∫

τ

x

1+ x2 d N (x).

Using (4.9) and considering various cases for the constant c we obtain

– For c > 1:

µ = lim
k→∞ nk

τ∫
0

x d Fc
nk

(x)− 0− 1

c

τ∫
0

x2−1/c

1+ x2 dx + 1

c

∞∫
τ

x−1/c

1+ x2 dx

= 1

c

τ∫
0

(
x−1/c − x2−1/c

1+ x2

)
dx + 1

c

∞∫
τ

x−1/c

1+ x2 dx

= 1

c

∞∫
0

x−1/c

1+ x2 =
π

2c cos
(

π
2c

)

by (4.3) and [8], # 3.241(2).
– For c = 1:

µ = lim
k→∞ nk

⎛
⎝ τ∫

0

x d Fc
nk

(x)−
1∫

0

x d Fc
nk

(x)

⎞
⎠

−1

c

τ∫
0

x

1+ x2 dx + 1

c

∞∫
τ

x−1

1+ x2 dx

= 1

c

τ∫
1

x−1 dx − 1

c

τ∫
1/τ

x

1+ x2 dx = 1

c
log τ − 1

c
log τ = 0,
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since limit and integration are interchangeable on the interval (1, τ ), and because
of [8], # 2.145(2).

– For 1/2 < c < 1:

µ = lim
k→∞ nk

⎛
⎝ τ∫

0

x d Fc
nk

(x)−
1∫

0

x d Fc
nk

(x)

⎞
⎠− 1

1− c

−1

c

τ∫
0

x2−1/c

1+ x2 dx + 1

c

∞∫
τ

x−1/c

1+ x2 dx

= −1

c

∞∫
τ

(
x−1/c − x−1/c

1+ x2

)
dx − 1

c

τ∫
0

x2−1/c

1+ x2 dx

= −1

c

∞∫
0

x2−1/c

1+ x2 dx = π

2c cos
(

π
2c

)
again by (4.3) and [8], # 3.241(2).

It is shown in [1], Theorem 6.2, that the characteristic functions (4.8) may be written
in the form (3.7) with constants as stated in Theorem 3.2.

4.5 Limit distributions and norming constants for c ≤ 1
2

The case c ≤ 1
2 is studied seperately, as we have to change the multiplicative nor-

ming constants to keep the sum of the truncated variances bounded. According to [7],
pp. 130–131, for a given subsequence nk , it suffices to find a sequence Cnk → ∞
such that

lim
k→∞ nk

∫
|x |>Cnk

d Fc
nk
= 0 (4.10)

and

lim
k→∞

nk

C2
nk

⎛
⎜⎝ ∫
|x |<Cnk

x2d Fc
nk

(x)−
⎛
⎜⎝ ∫
|x |<Cnk

xd Fc
nk

(x)

⎞
⎟⎠

2⎞
⎟⎠ = ∞. (4.11)

To satisfy condition (4.11), we subtract the median mn from each variable (3.5) as done
in [6]. It follows from (3.4) that mn tends to zero. From local uniform convergence
we obtain

nk Fc,m
nk (x) ∼ x−1/c, x > 0, (4.12)
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where Fc,m
nk denotes the distribution function of the median-subtracted variables.

Hence, (4.10) is valid for every sequence Cnk that tends to infinity. To verify (4.11) we
make use of the median-normalization. Feller shows (see [6], p. 527) that it suffices
to find a sequence Cnk such that

lim
k→∞

nk

C2
nk

⎛
⎜⎝ ∫
|x |<Cnk

x2d Fc,m
nk

(x)

⎞
⎟⎠ = ∞.

But it follows from (4.12) and Fatou’s Lemma that

lim
k→∞ nk

∫
|x |<ε

x2d Fc,m
nk

(x) = ∞

for any ε > 0. Hence, an appropriate sequence Cnk can be constructed. We can choose
norming constants as given in the theorem.

5 Further results for the Gumbel case

The following corollary shows that in some cases the restriction to certain subse-
quences is not necessary.

Corollary 5.1 Let X1, X2, . . . be i.i.d. with distribution function F ∈ D∞(Λ) with
representation (3.6) and let g(x) := f (x)/x be ultimately monotone. Let p(n) be
defined as in Theorem 3.2. Then, for every c > 0, there exist norming constants
âc(n), b̂c(n) such that

lim
n→∞ P

(∑n
i=1 Xcp(n)

i − b̂c(n)

âc(n)
≤ x

)
= Fc(x),

with Fc defined as in Theorem 3.2. The norming constants may be chosen according
to Table 1.

Proof If g is ultimately monotone, the constant z0 can be shifted in such a way that
g is monotonically decreasing on (z0, x∞). The proof of Theorem 3.2 then shows the
convergence for the whole sequence. ��

The following example illustrates that the restriction in Theorem 3.2 is not purely
technical.

Example 5.2 Let X1, X2, . . . be i.i.d. with tail distribution function

F(x) = exp

⎛
⎝−

x∫
0

u

1.5+ sin(u)
du

⎞
⎠ .
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Then F ∈ D∞(Λ), but there exist c > 0 and a sequence nk → ∞ such that no
norming constants exist that ensure convergence of the power sums

∑nk
i=1 Xcp(nk )

i to
the limit distribution function Fc of Theorem 3.2.

Proof Set f (x) = x−1(1.5 + sin(x)). Since f ′(x) → 0 as x → x∞ = ∞, it
follows from Lemma 3.1 that F has a von Mises representation (3.6), and there-
fore F ∈ D∞(Λ). Now, let us choose a subsequence that does not allow for the
interchange of limit and integral on the left hand side of (4.3). Here, the idea is to
find a sequence nk such that the integrand in (4.7) is large for small values of x .
By reasoning similar to the proof of Theorem 3.2, it is possible to choose a sub-
sequence nk such that b(nk) = (k + 0.5)π are suitable norming constants for the
maxima. With g(x) = f (x)/x = x−2(1.5 + sin(x)), along this sequence we have
g(b(nk)) = 2.5((k + 0.5)π)−2. It follows for the second term on the right hand side
of (4.6) that

2nk

ε∫
0

x Fc
nk

(x) dx ∼ 2

ε∫
0

exp

⎛
⎜⎜⎝log x +

b(nk)∫
b(nk )xβc

k

1

f (u)
du

⎞
⎟⎟⎠ dx

= 2

log ε∫
−∞

exp

⎛
⎜⎝2y +

b(nk)∫
b(nk ) exp(βc

k y)

1

f (u)
du

⎞
⎟⎠ dy. (5.1)

Next, we will show that −(2 + ε)y is a lower bound for the inner integral in (5.1) in
certain regions of the integration range. To this end, we analyze the behavior of the
inner integral for y in a neighborhood of

yk := log

(
k − 0.5

k + 0.5

)
(k + 0.5)2π2

2.5
= − (k + 0.5)π2

2.5
+ o(1).

Choose δ > 0 and y ∈ (yk − δ, yk + δ) with δ(y) := y − yk . It follows that

−1

y

b(nk)∫
b(nk) exp((yk+δ(y))βc

k )

1

f (u)
du

=
(k+0.5)π∫

(k−0.5)π exp(δ(y)g(b(nk))/c)

u

1.5+ sin(u)
du

2.5

(k + 0.5)π2 (1+ o(1))

=
(k+0.5)π∫

(k−0.5)π+o(1)

1

1.5+ sin(u)
du

(
2.5

π
+ o(1)

)
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=
0.5π∫

−0.5π+o(1)

1

1.5+ sin(u)
du

(
2.5

π
+ o(1)

)

= 2√
1.25

(
arctan

(
1.5 tan(π/4)+ 1√

1.25

)
− arctan

(
1.5 tan(−π/4)+ 1√

1.25

))

×
(

2.5

π
+ o(1)

)
≈ 2.236+ o(1),

by use of [8], #2.551(3).
Hence, for every ε > 0 and δ > 0 there exists a k(δ, ε) ∈ N such that

b(nk)∫
b(nk) exp

(
y

a(nk )

cb(nk )

)
1

f (u)
du ≥ −(2.2− ε)y

for all y ∈ (yk − δ, yk + δ) with k > k(δ, ε). The integrand in (5.1) is therefore
bounded from below by exp(−(0.2− ε)y) in a region of length 2δ that tends to −∞
as k →∞. This prevents the convergence of the integral on the right hand side of (4.3)
as k →∞. Now, since we have shown that the lim sup in (4.2) is infinite, we can argue
similarly to the case c ≤ 1/2 in the proof of Theorem 3.2. Namely, the distributions
of the power sums converge to a normal distribution along this subsequence. By the
Convergence to Types Theorem this prevents convergence to Fc for c > 1/2. ��

Note the analogy of this example to distributions that have a rather light tail but are
not in D∞(Λ) because of their discreteness (e.g., a binomial distribution). Similar to
discrete laws, the tail distribution function given in the example above has a somewhat
stairlike appearance since f is an oscillating function.

The next theorem shows that the limit distributions that are not covered by Theorem
3.2 are quite similar to the ones studied so far.

Theorem 5.3 Let X1n and p(n) be defined as in Theorem 3.2. Assume that there exist
c > 0, a subsequence nk →∞, and norming constants âc(nk) and b̂c(nk) such that
a limit distribution function

F̂c(x) = lim
k→∞ P

(∑nk
i=1 Xcp(nk )

i − b̂c(nk)

âc(nk)
≤ x

)

exists and is not of the same type as the Fc in Theorem 3.2, i.e., there exists no linear
transformation l(·) such that F̂c(x) = Fc(l(x)) for all x ∈ R. Then, c > 1/2 and
F̂c is of the same type as N0,1 or G1/c � N0,σ 2 , where � denotes the convolution of
distribution functions.

Proof Every limit law has to be infinitely divisible and is uniquely determined by
its Lévy measure and σ 2. The Lévy measure is defined by M(·) and N (·) in (2.3)
and (2.4). If we choose multiplicative norming constants as in (3.5), cf. the proof of
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Theorem 3.2, we have M(·) ≡ 0, and N (·) of the form (4.1). With asymptotically
different norming constants we obtain M(·) ≡ N (·) ≡ 0. Apart from the arbitrary
location and scale parameters the limiting law is determined by whether it has a normal
component (i.e. σ 2 > 0 in (4.8)) or not. To determine this component, consider the
lim sup in (4.2). If it is infinite, then, similarly to the case c ≤ 1/2 in the proof of
Theorem 3.2, we obtain convergence to a normal distribution along a certain subsub-
sequence; if it equals zero, we obtain convergence to an α-stable distribution; if it is
finite and positive, by choosing the corresponding subsubsequence we obtain conver-
gence to an α-stable distribution convoluted with a normal distribution. Hence, the
subsequence converges to a distribution of the stated form. ��

6 The Weibull and Fréchet cases

The limit laws of norms for the Weibull and the Fréchet max domain of attraction are
studied in [11]. With the technique stated above we find limit distributions for power
sums and are able to simplify some of the proofs in [11].

Let X1, X2, . . . be i.i.d. positive random variables with distribution function F ∈
D∞(Ψα) and upper endpoint x∞ <∞. Without loss of generality, x∞ = 1. Now, pos-
sible norming constants for the sequence of maxima are given by a(n) = 1− F←(1−
1/n) and b(n) ≡ 1 (see [5], Theorem 3.3.12). Similar to (3.2) we can conclude that
the summands ξn,k := (Xk−a(n))/b(n) are not infinitesimal. Since b(n)/a(n)→∞
as n →∞, a power transformation allows us to analyze sums of the form (3.5). We
obtain M(·) ≡ 0 and

N (u) = − lim
n→∞ nFc

n (u) = log(Ψα(log(u1/c))) = −
(
− log u

c

)α

, u ∈ (0, 1),

for the Lévy measure of the limit law of the power sums (3.5). To show that condition
(4.2) is met we make use of a special representation of F :

F(x) = c(x) exp

⎛
⎝−

x∫
0

δ(t)

1− t
dt

⎞
⎠ (6.1)

for x ∈ (0, 1) with δ : R+ → R
+, δ(t)→ α and c(t)→ c > 0 as t → 1 (see [10],

Corollary 1.14).
Equation (4.2) is again used to derive σ 2. Interchanging limit and integral in

lim
n→∞ np

ε∫
0

x p−1 Fc
n (x) dx, p > 0,
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is allowed because of dominated convergence: Choose the functions c and δ in (6.1)
such that |δ(t)−α| < ε for all t ∈ (0, 1) and some ε with 0 < ε < α. Now, we obtain

nFc
n (x) ∼ c(x1/cp(n))

c(F←(1− 1/n))
exp

⎛
⎜⎝−

x1/cp(n)∫
F←(1−1/n)

δ(t)

1− t
dt

⎞
⎟⎠

≤ C max

⎡
⎢⎣exp

⎛
⎜⎝−(α − ε)

x1/cp(n)∫
F←(1−1/n)

1

1− t
dt

⎞
⎟⎠,

× exp

⎛
⎜⎝−(α + ε)

x1/cp(n)∫
F←(1−1/n)

1

1− t
dt

⎞
⎟⎠
⎤
⎥⎦

= C max
{

exp
(
(α − ε) log

(
p(n)(1− x1/cp(n))

))
,

× exp
(
(α + ε) log

(
p(n)(1− x1/cp(n))

))}
≤ C max

{
(− log(x1/c))α−ε, (− log(x1/c))α+ε

}
.

It follows from (4.2) that σ 2 = 0.

Theorem 6.1 Let X1, X2, . . . be positive i.i.d. random variables with distribution
function F ∈ D∞(Ψα), α > 0, and upper endpoint 0 < x∞ <∞. Let

b(n) ≡ x∞, a(n) = x∞ − F←(1− 1/n) and p(n) = b(n)/a(n).

Then, there exists a family Fc of distribution functions of the form given below such
that for every c > 0 there exist norming constants âc(n), b̂c(n), n ∈ N, so that

Fc(x) = lim
n→∞ P

(∑n
i=1 Xcp(n)

i − b̂c(n)

âc(n)
≤ x

)
.

The limit distribution functions are of the type Fc(x) = Hc(x), where Hc has charac-
teristic function of the form (4.8) with σ 2 = 0 and N (u) = −c−α (− log u)α 1(0,1)(u).

Corollary 6.2 ([11], Theorem 2.2) Let X1n and p(n) be as in Theorem 6.1. Then, for
every c > 0, there exist norming constants ãc(n), b̃c(n), n ∈ N, such that

H̃c(exp(x)) = lim
n→∞ P

(
‖X1n‖cp(n) − b̃c(n)

ãc(n)
≤ x

)
.

Let us conclude by considering the Fréchet max domain of attraction. In contrast
to the cases studied above, a purely multiplicative normalization is sufficient for the
sequences of maxima, i.e. a(n) = F←(1 − 1/n) and b(n) ≡ 0 (see [5], Theorem
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3.3.7). Since a(n) → ∞ as n → ∞, the variables ξn,k = (Xk − b(n))/a(n) are
infinitesimal, here.

Let X1 be a random variable with distribution function F ∈ D∞(Φα). Then, the
random variable Xc

1, c > 0, belongs to the sum domain of attraction of an α-stable
distribution (see, e.g., [5], Theorem 2.2.8). Hence, there exist norming constants âc(n)

and b̂c(n) and a limit distribution function Fc such that

Fc(x) = lim
n→∞ P

(∑n
i=1 Xc

i − b̂c(n)

âc(n)
≤ x

)

for all x ∈ R. If c < α/2, the Fc equal the normal distribution function N0,1, whereas
for c ≥ α/2 they equal anα-stable distribution function Gα/c. This connection between
limit laws for sums and for maxima of random variables with regularly varying tails
is in fact well known and has been studied in [4]. Schlather’s result for the limit laws
of norms is stated below for completeness.

Corollary 6.3 ([11], Theorem 2.3) Let X1n = (X1, X2, . . . , Xn) where X1, X2, . . .

are positive i.i.d. random variables with distribution function F ∈ D∞(Φα), α > 0.
There exists a family F̃c of distribution functions of the form given below such that for
every c > 0 there exist norming constants ãc(n), b̃c(n), n ∈ N, so that

F̃c(x) = lim
n→∞ P

(
‖X1n‖c − b̃c(n)

ãc(n)
≤ x

)
.

If 0 < c ≤ α
2 , the F̃c equal the standard normal distribution function N0,1.

If α
2 < c ≤ α, the F̃c are given by F̃c(x) = Gα/c(cx).

If α < c <∞, the F̃c are given by F̃c(x) = Gα/c(xc).

Note the similarity between the family of laws that we obtained for the Gumbel case
and the family for the Fréchet case with α = 1. For c ≤ 1 the limit distribution func-
tions F̃c are equal for the two cases whereas for c > 1 the limit random variables in
the Gumbel case are logarithms of the limit random variables in the Fréchet case. For
c→∞ this reflects the relation Λ = Φ1 ◦ exp.
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