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Abstract This paper examines how close the chordal SLEκ curve gets to the real
line asymptotically far away from its starting point. In particular, when κ ∈ (0, 4),
it is shown that if β > βκ := 1/(8/κ − 2), then the intersection of the SLEκ curve
with the graph of the function y = x/(log x)β , x > e, is a.s. bounded, while it
is a.s. unbounded if β = βκ . The critical SLE4 curve a.s. intersects the graph of
y = x−(log log x)α , x > ee, in an unbounded set if α ≤ 1, but not if α > 1. Under a very
mild regularity assumption on the function y(x), we give a necessary and sufficient
integrability condition for the intersection of the SLEκ path with the graph of y to
be unbounded. When the intersection is bounded a.s. , we provide an estimate for the
probability that the SLEκ path hits the graph of y. We also prove that the Hausdorff
dimension of the intersection set of the SLEκ curve and the real axis is 2 − 8/κ when
4 < κ < 8.
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436 O. Schramm, W. Zhou

1 Introduction

The stochastic Loewner evolution paths (SLE) are random curves in the plane that are
obtained by running Loewner’s differential equation with a scaled Brownian motion
as the driving parameter. They have been shown to describe several critical statisti-
cal physics systems, and have been useful in the analysis of these systems. This has
been proved for critical site-percolation on the triangular lattice [5,14], loop erased
random walks and uniform spanning tree Peano paths [9], the level lines of the discrete
Gaussian free field [12], the interfaces of the random cluster model associated with the
Ising model [15], as well as a few other systems. For further background, the reader
is advised to consult the surveys [6–8,16].

In order to understand the corresponding disordered systems well, it is then natural
to investigate the properties of SLE. In [10], the basic topological and geometric prop-
erties of SLE were investigated. In [2] the Hausdorff dimension of the SLE6 curve
and its outer boundary were determined. Several years later it was proved [3] that the
Hausdorff dimension of the SLE curves is min(1 + κ/8, 2).

There are several different versions of SLE. If Bt is a one-dimensional Brownian
motion starting at 0, the chordal SLEκ in the upper half plane H from 0 to ∞ with
parameter κ is the solution of the differential equation

∂t gt (z) = 2

gt (z) − Wt
, g0(z) = z, (1.1)

where z ∈ H and Wt = √
κ Bt . It can be shown [9,10] that a.s. g−1

t extends continu-
ously to H for every t ≥ 0 and γ (t) := g−1

t (Wt ) is a continuous path. This is the SLE
path, and the domain of definition of gt is the unbounded connected component Ht of
H \ γ [0, t]. We shall denote by Kt the closure of the complement of Ht in H.

It is known [10] that when κ ≥ 8 a.s. γ ∩ R = R and when κ ∈ [0, 4] a.s.
γ ∩ R = {0}. In this paper, we will study the boundary behavior of SLE curves. More
precisely, given the graph of a function h : [r,∞) → (0,∞) we will discuss whether
the intersection set of the SLEκ curve γ and the graph of h(x) is bounded or not.
Clearly, this intersection is a.s. unbounded when κ > 4, since γ swallows every point
of H a.s. when 4 < κ < 8 and γ = H when κ ≥ 8. The only non-trivial case is
κ ∈ (0, 4].

For a function h : [r,∞) → (−∞,∞), let �h denote its graph; that is,

�h := {x + i h(x) : x ≥ r} .

Set

sκ := 8/κ − 1 ,

and

�h
κ(x) :=

{
h(x)sκ−1 κ < 4 ,

1/ log
(

x
h(x)

∨ 2
)

κ = 4 .
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Boundary proximity of SLE 437

Our main theorem is the following.

Theorem 1.1 Let κ ∈ (0, 4], and let γ be the chordal SLEκ path. Fix r > 1, and
suppose that h : [r,∞) → (0,∞) is continuous and satisfies

sup
{
�h

κ(x)/�h
κ (y) : r ≤ x ≤ y ≤ 2 x

}
< ∞ . (1.2)

If

∞∫
r

�h
κ(x)

xsκ
dx < ∞ , (1.3)

then γ ∩ �h is bounded a.s. Conversely, if the integral in (1.3) is infinite, then γ ∩ �h

is unbounded a.s.

To illustrate the theorem, we note that if κ < 4 and h(x) = x (log x)−β , then γ ∩�h

is bounded a.s. if β > (8/κ − 2)−1 and unbounded a.s. if β = (8/κ − 2)−1.
The case κ = 4 is critical for SLE to hit the boundary, and it is therefore not entirely

surprising that its behavior is different. In that case, if h(x) = x−(log log x)α , then γ ∩�h

is a.s. unbounded when α = 1, but bounded a.s. if α > 1.
Now suppose instead that h is continuous in [0, 1] and h(0) = 0. One can ask if 0 is

in the closure of the intersection of {x + i h(x) : x ∈ (0, 1]} and γ . Using reversibility
of SLE [17], this translates to the type of question addressed by Theorem 1.1. Alter-
natively, the proof of Theorem 1.1 can be easily adapted to also handle this question.

Another natural question related to Theorem 1.1 is to estimate the probability that
γ hits �h . Actually, it is not too hard to modify the proof of Theorem 1.1 to show that
when κ ≤ 4

P
(
γ ∩ �h 	= ∅

)
� 1 ∧

∞∫
r

�h
κ(x)

xsκ
dx , (1.4)

where � denotes equivalence up to a multiplicative constant that depends only on κ and
the left hand side in (1.2). Likewise, the proof of Theorem 1.1 easily gives the following
estimate for the probability that γ hits the set Aε = {x + i y : 1 ≤ x ≤ 2, 0 ≤ y ≤ ε}:

P(γ ∩ Aε 	= ∅) �
{

εsκ−1 κ < 4 ,

| log ε|−1 κ = 4 ,
(1.5)

where ε ∈ (0, 1/2) and the constants implied by � depend only on κ . Somewhat
related results in the setting of discrete models appear in [11, Theorem 10.7] and
in [4].

We also make use of the machinery developed for the proof of Theorem 1.1 to
obtain the Hausdorff dimension of γ ∩ R when κ ∈ (4, 8).
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438 O. Schramm, W. Zhou

Theorem 1.2 If 4 < κ < 8, then with probability one,

dimH (γ ∩ R) = 2 − 8/κ .

A proof of this result based on Beffara’s argument should be possible, but our proof
is different and simpler. In fact, one may hope that the argument we present would
generalize to give a simpler proof of Beffara’s theorem, but so far we were not able
to achieve this. An alternative and independent proof of Theorem 1.2 can be found
in [1].

The paper is organized as follows. In Sect. 2, we consider for each x > 0 a local
martingale Mx

t and relate its behavior to the geometry of the path near x . We also
derive an estimate for the probability that both Mx

t and M y
t become large, as a func-

tion of the positions of the points x, y. In Sect. 3, we prove Theorem 1.1 using the first
and second moment methods. The Hausdorff dimension proof is given in Sect. 4.

2 The local martingale and its properties

2.1 Basic properties

We assume throughout this paper that κ ∈ (0, 8). Let x > 0 and set

tx := sup {t ≥ 0 : x /∈ Kt } .

Then we have from [10] that tx = ∞ a.s. if κ ≤ 4 and tx < ∞ a.s. if κ > 4. Define
for t ∈ (0, tx ),

Mx
t :=

(
g′

t (x)

gt (x) − Wt

)sκ

.

Also, for ε > 0 set

τx = τ ε
x := inf

{
t ∈ (0, tx ) : Mx

t ≥ ε−sκ
}

and

Cε := {x > 0 : τx < tx } . (2.6)

As usual, we use the convention that inf ∅ = ∞.
Write Ft := σ(Bs, 0 ≤ s ≤ t). Then {Mx

t ,Ft , t ∈ (0, tx )} is a local martingale by
Theorem 6 and Remark 7 in [13] (this is, of course, easily verified using Itô’s formula).
The reason for our interest in Mx

t is the following lemma.

Lemma 2.1 If x ∈ Cε , then the distance from γ to x is at most 4 ε.

Proof Suppose that x > 0, t > 0, and x /∈ Kt . Set K̄t := {z̄ : z ∈ Kt }, and let G
denote the extension of gt to C\(Kt ∪ K̄t ), which is obtained by Schwarz reflection.
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Boundary proximity of SLE 439

Let dt = dx
t denote the distance from x to γ [0, t]. Then Wt is not in G (B(x, dt )), and

therefore the Koebe 1/4 theorem gives

G ′(x) dt/4 ≤ G(x) − Wt .

This translates to

Mx
t ≤ (4/dt )

sκ , (2.7)

and the lemma immediately follows. ��
Next, we prove that in some situations the inequality (2.7) may be reversed.

Lemma 2.2 Let x > 0, t > 0, x0 := Re γ (t) and y0 := Im γ (t). Suppose that
x /∈ Kt , x − x0 ≥ y0, and γ [0, t) does not intersect the line segment [x0, γ (t)]. Then

Mx
t ≥ (c dt )

−sκ ,

where 0 < c < ∞ is a universal constant.

Proof Let G be as in the proof of Lemma 2.1. Set r := G(x)−G(x0). Then the inverse
of G is defined in the ball B (G(x), r). Therefore, the Koebe 1/4 theorem gives

r

4
G ′(x)−1 ≤ dt .

It therefore suffices to prove a positive lower bound on

r

G(x) − Wt
= G(x) − G(x0)

G(x) − Wt
. (2.8)

Every path in Ht going from [x,∞) to the union of [0, x0] and the right hand side of
γ [0, t] must intersect the line segment [x0, γ (t)]. Since we may consider the Euclidean
metric on the square of sidelength 2 y0 centered at γ (t), normalized to have area 1, the
extremal length of this collection of paths is bounded away from zero. By conformal
invariance of extremal distance, it follows that the extremal distance from [G(x),∞)

to [Wt , G(x0)] in H is likewise bounded away from zero. This implies the required
lower bound on (2.8), and completes the proof. ��

For a given point x > 0, we are interested in the probability that x ∈ Cε .

Proposition 2.3 Let 0 < κ < 8, x > 0 and ε > 0. Then

P(x ∈ Cε) = (ε/x)sκ ∧ 1 . (2.9)

The proof is dependent on the properties of the local martingale Mx
t as t ↗ tx .

Write Tx = tx ∧ τx . If 0 < κ ≤ 4, then tx = ∞ a.s. and Tx = τx . We use I (A) for
the indicator function of an event A.
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440 O. Schramm, W. Zhou

Proof Since Mx
t∧Tx

is a bounded local martingale on t ∈ (0, Tx ), it is a martingale and
the limit Mx

Tx
:= limt↗Tx Mx

t exists. On the event 0 < τx < ∞, we have MTx = ε−sκ .
Hence, the optional sampling theorem gives

Mx
0 = E(Mx

Tx
) = P(x ∈ Cε) ε−sκ + E

(
Mx

Tx
I (τx = ∞)

)
.

Therefore, the proof is complete once we prove that

P
(
Mx

Tx
	= 0, τx = ∞) = 0. (2.10)

Consider first the case κ ∈ (4, 8). In this case a.s. tx < ∞ and x1 := γ (tx ) ∈
(x,∞). Suppose that this is indeed the case. Let r > 0 be much smaller than the dis-
tance from x to x1, and let s be the first time t at which |γ (t) − x1| = r . Let G denote
the Schwarz reflection of gs with respect to the real line, let a = as := sup(Ks ∩ R)

and a′ = a′
s := inf{G(x ′) : x ′ > a}. Then a′ is not in G (B(x, ds)). Therefore, the

Koebe 1/4 theorem implies

G ′(x) ds/4 ≤ G(x) − a′.

That is,

g′
s(x)

gs(x) − a′ ≤ 4/ds .

Since dtx > 0 a.s., it therefore suffices to prove that

lim
r↘0

gs(x) − Ws

gs(x) − a′ = ∞. (2.11)

Consider the extremal distance in Hs from (a, x) to the union of (−∞, 0) and
the left hand side of γ [0, s]. This extremal distance is clearly at least as large as the
extremal distance from the circle of radius |x − x1| about x1 to the circle of radius r
about x1, which is at least a constant times log (|x − x1|/r). By conformal invariance
of extremal distance, it follows that the extremal distance in H from [a′, gs(x)] to
(−∞, Ws] goes to infinity as r ↘ 0, which proves (2.11) and completes the proof in
the case κ ∈ (4, 8).

The argument in the case κ ∈ (0, 4] is similar. We choose R > 0 large, and let s
be the first time at which |γ (s)| = R. The extremal distance in Hs from (0, x] to the
union of the left hand side of γ [0, s] with (−∞, 0) is then at least a constant times
log(R/x), which implies (2.11) in the same way. ��

Observe that the proposition implies that given x > 0 there is a.s. some ε > 0 such
that x /∈ Cε . Therefore, (2.10) gives

Mx
tx := lim

t↗tx
Mx

t = 0 a.s. (2.12)
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2.2 Correlation estimate

Let 0 < x < y, εx , εy > 0, τx := τ
εx
x , τy := τ

εy
y , Tx := tx ∧ τx and Ty := ty ∧ τy .

Define

Zt := gt (x) − Wt

gt (y) − Wt
, T := Tx ∧ Ty .

A simple but tedious calculation via Itô’s formula implies that u(Zt ) Mx
t M y

t is a local
martingale while t ∈ (0, T ), where

u(z) := (1 − z)−sκ
2 F1(1 − 8/κ, 4/κ, 8/κ; 1 − z) .

Euler’s integral representation of hypergeometric functions shows that

2 F1(1 − 8/κ, 4/κ, 8/κ; z) = �(8/κ)

�(4/κ)2

1∫
0

t4/κ−1(1 − t)4/κ−1(1 − zt)8/κ−1 dt,

where � is the gamma function. This implies that u(z) > 0 when z ∈ (0, 1). Since
8/κ − 4/κ − (1 − 8/κ) > 0, we have

2 F1(1 − 8/κ, 4/κ, 8/κ; 1) = �(8/κ)�(12/κ − 1)

�(16/κ − 1)�(4/κ)
.

Hence q1 := inf z∈(0,1) u(z) and q2 := supz∈(0,1)(1 − z)sκ u(z) are both finite and
positive. It follows from (2.10) that

P(x ∈ Cεx , y ∈ Cεy ) = P
(

Mx
Tx

= ε−sκ
x , M y

Ty
= ε−sκ

y

)
= (εx εy)

sκ E
(

Mx
Tx

M y
Ty

)
.

Recall that T = Tx ∧ Ty . If T = Tx < ∞, then we have that Mx
t∧Tx

is constant in the

range t ∈ [Tx , Ty), while M y
t∧Ty

is a martingale. The symmetric statement also holds
when we exchange x and y. It should be clear that this implies

E
(

Mx
Tx

M y
Ty

)
= E

(
Mx

T M y
T

)
, (2.13)

but for the sake of completeness, we prove this. First, since I (T = Tx ) Mx
Tx

is
FT -measurable, we have

E
(

I (T = Tx ) Mx
Tx

M y
Ty

∣∣ FT

)
= I (T = Tx ) Mx

Tx
E

(
M y

Ty

∣∣ FT

)
= I (T = Tx ) Mx

T M y
T .
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442 O. Schramm, W. Zhou

Second, on the complement of the event T = Tx , we have T = Ty . Hence, I (T 	=
Tx ) M y

Ty
is also FT -measurable, and we get in the same way

E
(

I (T 	= Tx ) Mx
Tx

M y
Ty

∣∣ FT

)
= I (T 	= Tx ) Mx

T M y
T .

Summing the above and taking expectations, we obtain (2.13).
Since u(Zt∧T ) Mx

t∧T M y
t∧T is a non-negative local martingale, it is also a super-

martingale. This justifies the second inequality in the following estimate:

P(x ∈ Cεx , y ∈ Cεy ) = (εx εy)
sκ E(Mx

T M y
T )

≤ (εx εy)
sκ E

(
u(ZT ) Mx

T M y
T

)
/q1

≤ (εx εy)
sκ u(Z0) Mx

0 M y
0 /q1

= (εx εy)
sκ u(x/y)

q1 xsκ ysκ
≤ q2

q1
(εx εy)

sκ x−sκ (y − x)−sκ .

Hence, we obtain the following proposition.

Proposition 2.4 Let 0 < x < y, 0 < κ < 8, εx , εy > 0. Then

P
(
x ∈ Cεx , y ∈ Cεy

) ≤ cκ (εx εy)
sκ x−sκ (y − x)−sκ , (2.14)

where cκ is a constant depending only on κ . ��

3 Proximity estimates

3.1 Bounded intersection

In this subsection, we assume (1.3), as well as the other assumptions in Theorem 1.1,
and prove that γ ∩ �h is bounded a.s.

Let ρ : [r,∞) → (0,∞) be a function such that

lim
x→∞ ρ(x)/�h

κ(x) = ∞ , (3.15)

but ρ satisfies (1.2) and (1.3) in place of �h
κ(x), namely,

∞∫
r

ρ(x)

xsκ
dx < ∞ , (3.16)

and

sup {ρ(x)/ρ(y) : r ≤ x ≤ y ≤ 2 x} < ∞ . (3.17)
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In the following, we let � mean equivalence up to positive multiplicative constants
that may depend on h, ρ and κ . Likewise, a � b means that there is some a′ ≤ b such
that a′

� a.
Define

Zt :=
∞∫

r

ρ(x) Mx
t dx .

Since Mx
0 = x−sκ , it follows from (3.16) that Z0 < ∞. As Mx

t is a supermartingale
for each x > 0, it follows that Zt is a supermartingale.

By (1.2), for every x ≥ r such that h(x) ≥ x/2, the contribution to the integral
in (1.3) from the interval [x, 2 x] is bounded from zero. Since the integral in (1.3) is
finite, we conclude that there is a finite R0 > r such that h(x) < x/2 for x ≥ R0. Fix
an R > R0, and let A be the set A := {x + i y : x ≥ R, y ≤ h(x)}. Let TA := inf{t ≥
0 : γt ∈ A}, and on the event TA < ∞ set x0 := Re γ (TA), y0 := Im γ (TA). From
our choice of R, we have y0 ≤ x0/2. By Lemma 2.2, Mx

TA
� (x − x0)

−sκ holds for
every x > x0 + y0. Therefore, on the event TA < ∞,

ZTA �
∞∫

x0+y0

ρ(x) (x − x0)
−sκ dx

(3.17)
� ρ(x0)

2x0∫
x0+y0

(x − x0)
−sκ dx

� ρ(x0)

�h
κ(x0)

.

Since Zt is a supermartingale, the optional sampling theorem gives

Z0 ≥ E
(
ZTA I (TA < ∞)

)
� P(TA < ∞) inf

x≥R

ρ(x)

�h
κ(x)

.

By (3.15), we conclude that limR→∞ P(TA < ∞) = 0. Thus, γ ∩�h is bounded a.s.,
as required. ��

3.2 Unbounded intersection

In this subsection, we assume that the integral in (1.3) is infinite, and prove that
γ ∩�h is unbounded a.s., thus completing the proof of Theorem 1.1. In the following,
� denotes equivalence up to multiplicative constants that may depend on κ and h, and
similarly for �.

Suppose that we prove that the intersection of γ with �h+ := {x + i y : y ≤ h(x),

x ≥ r} is a.s. unbounded. Symmetry then implies that the intersection of γ with �h− :=
{−x + i y : y ≤ h(x), x ≥ r} is a.s. unbounded as well. For every R ≥ √

r2 + h(r)2,
the set �h\B(0, R) separates �h+\B(0, R) from �h−\B(0, R) in H\B(0, R). Since γ

is a.s. transient, it follows that γ ∩ �h must be a.s. unbounded, as required.
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Now observe that h̃(x) := h(x) ∧ (x/2) satisfies the same assumptions as we have
for h. The above then implies that it suffices to prove the claim for h̃. Thus, we assume
with no loss of generality that h(x) ≤ x/2 holds for every x ≥ r .

Define ρ(x) := �h
κ(x). Let a > r and let b > a satisfy

b∫
a

ρ(x)

xsκ
dx = 1 . (3.18)

Define X := {x ≥ r : x ∈ Ch(x)}. We will show that sup X = ∞ a.s. Set

Qa :=
b∫

a

ρ(x)

h(x)sκ
I (x ∈ X) dx .

Then by (3.18) and Proposition 2.3, we have

E(Qa) = 1 .

We will now prove that E(Q2
a) is bounded by some constant independent of a.

First, observe that

E(Q2
a) =

b∫
a

b∫
a

ρ(x)ρ(y)

h(x)sκ h(y)sκ
P(x, y ∈ X) dx dy .

Let F(x, y) denote the integrand. Set S := [a, b]2. Let S1 be the set of pairs (x, y) ∈ S
such that y ∈ [x − h(x), x], let S2 be the set of pairs (x, y) ∈ S such that y ∈
[x/2, x − h(x)], and let S3 be the set of pairs (x, y) ∈ S such that y ≤ x/2. Then
since S1, S2 and S3 tile the set {(x, y) ∈ S : y ≤ x}, we have

E(Q2
a) = 2

∫
S1∪S2∪S3

F dx dy .

To estimate F on S1, we use the bound

P(x, y ∈ X) ≤ P(x ∈ X) ∧ P(y ∈ X)
(2.9)= h(x)sκ

xsκ
∧ h(y)sκ

ysκ
.

Since x/2 ≤ y ≤ x on S1, this is bounded by h(y)sκ y−sκ � h(y)sκ x−sκ . Hence,
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Boundary proximity of SLE 445

∫
S1

F(x, y) �
b∫

a

x∫
x−h(x)

ρ(x)ρ(y)

h(x)sκ xsκ
dy dx

(1.2)
�

b∫
a

x∫
x−h(x)

ρ(x)2

h(x)sκ xsκ
dy dx

=
b∫

a

ρ(x)2 h(x)1−sκ

xsκ
dx

By the definition of �κ , we have ρ(x) h(x)1−sκ � 1. Thus, (3.18) implies that∫
S1

F � 1.
For S2, we use the estimate (2.14), the fact that y � x when y ∈ [x/2, x − h(x)]

and (1.2), to get

∫
S2

F �
b∫

a

x−h(x)∫
x/2

ρ(x)

xsκ

ρ(y)

(x − y)sκ
dy dx

�
b∫

a

ρ(x)2

xsκ

x−h(x)∫
x/2

1

(x − y)sκ
dy dx

�
b∫

a

ρ(x)2

xsκ
�h

κ(x)−1 dx =
b∫

a

ρ(x)

xsκ
dx = 1 .

On the set S3, the estimate (2.14) gives

P(x, y ∈ X) � h(x)sκ h(y)sκ

xsκ ysκ
.

Hence,

∫
S3

F �
b∫

a

b∫
a

ρ(x)ρ(y)

xsκ ysκ
dx dy =

⎛
⎝ b∫

a

ρ(x)

xsκ
dx

⎞
⎠

2

(2.9)= 1 .

Thus, we conclude that E(Q2
a) � 1 = E(Qa)2. The Paley–Zygmund inequality

therefore gives

P (Qa ≥ E Qa/2) � 1 . (3.19)

Note that Qa > 0 implies sup X ≥ a. But since a can be arbitrarily large and the
constant implied in (3.19) does not depend on a, it follows from (3.19) that P(sup X =
∞) � 1.

Now fix some t ∈ (0,∞). We will show that a.s.

P(sup X = ∞ | Ft ) � 1 .
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446 O. Schramm, W. Zhou

Define Xt := {x ≥ r : τ
h(x)
x ≤ t}. Suppose that sup Xt < ∞. Let x > y > r ∨sup Xt .

Then we have by the Markov property of SLE and (2.9) that

P(x ∈ X | Ft ) =
(

g′
t (x) h(x)

gt (x) − Wt

)sκ

. (3.20)

The same reasoning, but this time with (2.14), shows that

P(x, y ∈ X | Ft ) �
(

g′
t (x)g′

t (y)h(x)h(y)

(gt (y) − Wt )(gt (x) − gt (y)

)sκ

. (3.21)

Since gt has a power series expansion near ∞ of the form

gt (z) = z + a1

z
+ a2

z2 + · · · ,

we have in particular that limx→∞ gt (x) − x = 0 and limx→∞ g′
t (x) = 1. Therefore,

on the event sup Xt < ∞ there is some random a′ > a ∨ sup Xt , which is Ft -measur-
able, such that for all x ≥ a′ we have g′

t (x) ∈ [1/2, 2] and (gt (x)− Wt )/x ∈ [1/2, 2].
Therefore, for x > y > a′ we have that the estimates in (3.20) and (3.21) are within
a constant multiplicative factor (which depends only on κ) from their values at t = 0.
Consequently, our proof above with a replaced by a′ and with probabilities and expec-
tations replaced by conditional probabilities and conditional expectations given Ft

implies that on the event sup Xt < ∞,

P(sup X > a′ | Ft ) � 1. (3.22)

But since X ⊃ Xt , this holds even if sup Xt = ∞. Because (3.22) a.s. holds for every
t > 0, we get P(sup X > a) = 1, and since a was arbitrary, we get sup X = ∞ a.s.
Lemma 2.1 implies therefore that the set of x ≥ r such that inf t dx

t ≤ 4 h(x) is a.s.
unbounded.

Condition (1.2) implies that for some finite constant A > 1 and x, y satisfying
r ≤ x ≤ y ≤ 2 x , we have

A h(y) ≥ h(x) if κ < 4 ,

and

h(y)

y
≥

(
h(x)

x

)A

if κ = 4 .

Define

H(x) :=
{

(4A)−1h(2x/3) κ < 4 ,

4−1(2x/3)1−Ah(2x/3)A κ = 4 .
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Since the function H(x) satisfies the same assumptions we have for h(x), we conclude
that a.s.

sup
{

x ≥ 3 r/2 : inf
t

dx
t ≤ 4H(x)

}
= ∞ .

As the balls B (x, 4H(x)) lie below the graph of y = h(x) when x > 2 r , it follows
that γ ∩ {x + i y : y ≤ h(x), x ≥ r} is a.s. unbounded. As we have seen, this implies
that γ ∩ �h is a.s. unbounded. The proof is thus complete. ��

4 Hausdorff dimension

In this part, we will prove Theorem 1.2. The usual strategy of deriving Theorem 1.2
is to estimate the two probabilities

P(x ∈ γε), P(x ∈ γε, y ∈ γε),

where γε := {x ∈ R : dist(x, γ ) ≤ ε}, and then prove some 0–1 law to show that the
Hausdorff dimension is an a.s. constant.

In this paper, instead of γε , we consider Cε . Let

C :=
⋂
ε>0

Cε .

Then Lemma 2.1 gives

C ⊂ γ ∩ R . (4.23)

Proposition 4.1 Assume that κ ∈ (4, 8). Then for any δ > 0,

P (dimH C ≥ 1 − sκ − δ) > 0 .

Proof The proof follows the standard Frostman measure argument. We introduce
random measures µε defined on the Borel σ -field of the interval [1, 2] by

µε([1, x]) := ε−sκ

x∫
1

I (x1 ∈ Cε) dx1

for 0 < ε < 1 and x ∈ [1, 2]. The (1 − sκ − δ)-energy of µε is

E(µε) =
2∫

1

2∫
1

1

|y − x |1−sκ−δ
dµε(x) dµε(y).
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Its expectation is

E (E(µε)) = 2 ε−2sκ

2∫
1

2∫
x

P(x ∈ Cε, y ∈ Cε)

|y − x |1−sκ−δ
dy dx

≤ 2 ε−2sκ

2∫
1

x+ε∫
x

P(x ∈ Cε)

|y − x |1−sκ−δ
dy dx

+ 2 ε−2sκ

2−ε∫
1

2∫
x+ε

P(x ∈ Cε, y ∈ Cε)

|y − x |1−sκ−δ
dy dx

=: E1 + E2 . (4.24)

For E1, Proposition 2.3 gives that

E1 ≤ 2 ε−sκ

2∫
1

x+ε∫
x

(y − x)sκ−1 dy dx = 2 sκ
−1. (4.25)

For E2, Proposition 2.4 gives that

E2 ≤ 2 cκ

2−ε∫
1

2∫
x+ε

(y − x)−1+δ dy dx ≤ 2 cκ δ−1. (4.26)

Combining (4.24), (4.25) and (4.26), we obtain that

E (E(µε)) ≤ 2 sκ
−1 + 2 cκ δ−1.

Noting that

E |µε | = ε−sκ

2∫
1

(ε/x)sκ dx = (1 − sκ)−1(21−sκ − 1) > 0, (4.27)

and E
(|µε |2

) ≤ E (E(µε)), the Paley–Zygmund inequality implies that there is a
λ > 0, which does not depend on ε, such that with probability at least λ, |µε | > λ

and E(µε) < 1/λ. With probability at least λ this will hold for a sequence of positive
ε tending to 0. On this event, we can take a subsequential limit µ supported on C
and satisfying |µ| > λ and E(µ) < 1/λ. Frostman’s lemma therefore implies that
P (dimH (C ∩ [1, 2]) > 1 − sκ − δ) > λ, which concludes the proof. ��

The following proposition tells us that dimH (γ ∩ R) ≤ 1 − sκ a.s.
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Proposition 4.2 Let x ∈ [1, 2), and κ ∈ (4, 8). Then for ε ∈ (0, 1),

P(γ ∩ [x, x + ε] 	= ∅) �
( ε

x

)sκ
,

where the constants implied by � depend only on κ .

Proof Lemma 6.6 of [10] gives

P(γ ∩ [x, x + ε] 	= ∅)

= 1 − 4(κ−4)/κ
√

π 2 F1(1 − 4/κ, 2 − 8/κ, 2 − 4/κ; 1/q)q(4−κ)/κ

�(2 − 4/κ)�(4/κ − 1/2)
,

(4.28)

where q := (x +ε)/x . Using �(2θ) �(1/2) = 22θ−1 �(θ) �(θ+1/2), Euler’s integral
representation of 2 F1 and a change of variable, we have

(4.28) = 1 − �(4/κ)

�(1 − 4/κ)�(8/κ − 1)

x
x+ε∫
0

t−4/κ(1 − t)8/κ−2 dt

= �(4/κ)

�(1 − 4/κ)�(8/κ − 1)

1∫
x

x+ε

t−4/κ(1 − t)8/κ−2 dt

�
( ε

x

)sκ
.

��
Lemma 4.3 There is a constant d = dκ such that dimH (γ ∩ R) = d a.s.

Proof For all n ∈ Z let Dn := dimH (γ [0, 2n] ∩ R). Then Dn+1 ≥ Dn . In addition,
Dn and Dn+1 have the same distribution, by scale invariance. Therefore, Dm = Dn

a.s. for all m, n ∈ Z. Hence, dimH (γ ∩ R) = supn∈Z Dn is F2n -measurable for all
n ∈ Z, which implies that dimH (γ ∩R) is F0+-measurable. By Blumenthal’s 0-1 law,
the σ -field F0+ is trivial. ��
Proof of Theorem 1.2 First note that dimH (γ∩R) = dimH (γ∩R+) = dimH (γ∩R−)

a.s. by the symmetry property of SLE curves. Proposition 4.2 implies
dimH

(
γ ∩ R

+) ≤ 1 − sκ a.s. On the other hand, (4.23) and Proposition 4.1 give

P (dimH (γ ∩ R) ≥ 1 − sκ − δ) > 0

for every δ > 0. Therefore dimH (γ ∩ R) = 1 − sκ a.s. by Lemma 4.3. ��
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