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Abstract In this paper, we study the precise behavior of the transition density func-
tions of censored (resurrected) α-stable-like processes in C1,1 open sets in R

d , where
d ≥ 1 and α ∈ (1, 2). We first show that the semigroup of the censored α-stable-
like process in any bounded Lipschitz open set is intrinsically ultracontractive. We
then establish sharp two-sided estimates for the transition density functions of a large
class of censored α-stable-like processes in C1,1 open sets. We further obtain sharp
two-sided estimates for the Green functions of these censored α-stable-like processes
in bounded C1,1 open sets.
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362 Z.-Q. Chen et al.

1 Introduction

There are close relationships between second order elliptic differential operators and
diffusion processes. For a large class of second order elliptic differential operators L
on R

d that satisfy the maximum principle, there is a diffusion process X on R
d associ-

ated with it so that L is the infinitesimal generator of X . A prototype is the celebrated
interplay between Laplacian 1

2� on R
d and Brownian motion on R

d . The fundamen-
tal solution of ∂t u = Lu (also called the heat kernel of L) is the transition density
function p(t, x, y) of X . Thus obtaining sharp two-sided estimates for p(t, x, y) is a
fundamental problem in both analysis and probability theory. In fact, two-sided heat
kernel estimates for diffusions in R

d have a long history and many beautiful results
have been established. See [10,12] and the references therein. But, due to the compli-
cation near the boundary, two-sided estimates for the transition density functions of
killed diffusions in a domain D (equivalently, the Dirichlet heat kernels) have been
established only recently. See [11–13] for upper bound estimates and [21] for the lower
bound estimates of the Dirichlet heat kernels in bounded C1,1 domains.

Markov processes with discontinuous sample paths constitute an important family
of stochastic processes in probability theory and they have been widely used in various
applications. One of the most important and most widely used family of discontinuous
Markov processes is the family of (rotationally) symmetric α-stable process on R

d ,
0 < α < 2. A (rotationally) symmetric α-stable process Y = {Yt ,Px } on R

d is a Lévy
process such that

Ex

[
eiξ ·(Yt −Y0)

]
= e−t |ξ |α for every x ∈ R

d and ξ ∈ R
d .

The infinitesimal generator of a symmetric α-stable process Y in R
d is the fractional

Laplacian �α/2 := −(−�)α/2, which is a prototype of nonlocal operators. The frac-
tional Laplacian can be written in the form

�α/2u(x) = lim
ε↓0

∫

{y∈Rd : |y−x |>ε}
(u(y)− u(x))

A(d, α)
|x − y|d+α dy for u ∈ C∞

c (R
d),

where

A(d, α) := α �( d+α
2 )

21−α πd/2�(1 − α
2 )
. (1.1)

In a recent paper [5], we succeeded in establishing sharp two-sided estimates for the
heat kernel of the fractional Laplacian �α/2 with zero exterior condition on Dc (or
equivalently, the transition density function of the killed α-stable process) in any C1,1

open set.
Another important family of discontinuous Markov processes is the family of cen-

sored α-stable-like processes studied in [3] (see Sect. 2 for the precise definition). For
any open subset D of R

d , a censored α-stable-like process X in D is a strong Markov
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process whose infinitesimal generator is given by

LαDu(x) := lim
ε↓0

∫

{y∈D: |y−x |>ε}
(u(y)− u(x))

C(x, y)

|x − y|d+α dy for u ∈ C2
c (D),

where C(x, y) is a measurable symmetric function on D × D that is bounded between
two positive constants. When C(x, y) = A(d, α), X is called the censored α-stable
process in D.

The objective of this paper is to investigate the precise behavior of the transition
density functions pD(t, x, y) of censored α-stable-like processes. We first discuss the
intrinsic ultracontractivity of the semigroups of censored stable-like processes. Intrin-
sic ultracontractivity was introduced by Davies and Simon in [13]. It is concerned with
the “boundary” behavior of the transition density function of the semigroup when the
semigroup has discrete spectrum. The intrinsic ultracontractivity gives sharp two-sided
estimates of the transition density function for each fixed t > 0. The intrinsic ultracon-
tractivity of semigroups of killed jump processes was first considered in [8], where it
was shown that the semigroup of the killed symmetric α-stable process on a bounded
C1,1 domain is intrinsically ultracontractive. In [19] it was shown that the semigroup
of the killed symmetric α-stable process on any bounded open set is intrinsically
ultracontractive. In this paper, we show that, when D is an open d-set in R

d with
finite Lebesgue measure and ∂D has positive r -dimensional Hausdorff measure for
some r > d − α, the semigroup of a censored stable-like process in D is intrinsically
ultracontractive. In particular, forα ∈ (1, 2), the semigroup of a censoredα-stable-like
process in any bounded Lipschitz open set is intrinsically ultracontractive.

The main goal of this paper is to establish sharp two-sided estimates for the transi-
tion density functions pD(t, x, y) (as functions of (t, x, y)) of a large class of censored
α-stable-like processes in every C1,1 open set D ⊂ R

d for d ≥ 1 and α ∈ (1, 2).
A precise definition of C1,1 open set in R

d will be given in Sect. 3. The transition
density function pD(t, x, y) is also the heat kernel of the operator LαD with zero bound-
ary condition on the boundary D, i.e., for any bounded continuous function f on D,
u(t, x) := ∫

D p(t, x, y) f (y)dy is the solution to LαDu = ∂t u, u(0, x) = f (x) on D
and u = 0 on ∂D. Note that in contrast to the killed symmetric α-stable processes,
a censored α-stable-like process X in a C1,1 open set D with d ≥ 1 and α ∈ (1, 2)
approaches the boundary ∂D in a continuous way [3, Theorem 1.1] so its infinitesimal
generator has zero Dirichlet boundary condition as opposed to zero exterior condi-
tion. This indicates that censored processes are natural and important for boundary
problems in analysis [16,17].

Now we state the main result of this paper. We assume the censored stable-like
processes under consideration enjoy the dilation invariant boundary Harnack princi-
ple (BHP) (see Sect. 3 for the precise statement). This assumption is automatically
satisfied for any censored stable process in a C1,1 open set, and it is also satisfied for
censored stable-like processes in C1,1 open sets when C(x, y) satisfies certain reg-
ularity conditions; see Sect. 3 for details. It is an open problem to find the minimal
condition on C(x, y) so that (BHP) holds for the corresponding censored stable-like
process in every C1,1 open sets.
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364 Z.-Q. Chen et al.

Theorem 1.1 Suppose that d ≥ 1, α ∈ (1, 2) and D is a C1,1 open subset of R
d .

Let δD(x) be the Euclidean distance between x and Dc. Suppose that the censored
stable-like process X satisfies (BHP) (see Sect. 3 for a precise definition and sufficient
conditions for it to be true).

(i) For every T > 0, on (0, T ] × D × D

pD(t, x, y) � t−d/α
(

1 ∧ t1/α

|x − y|
)d+α (

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

.

(ii) Suppose in addition that D is bounded. For every T > 0, there exist positive
constants c1 < c2 such that for all (t, x, y) ∈ [T,∞)× D × D,

c1e−λ1tδD(x)
α−1δD(y)

α−1 ≤ pD(t, x, y) ≤ c2e−λ1tδD(x)
α−1δD(y)

α−1,

where −λ1 < 0 is the largest eigenvalue of LαD.

Here and in the sequel, for two non-negative functions f and g, the notation f � g
means that there are positive constants c1 and c2 so that c1g(x) ≤ f (x) ≤ c2g(x) in
the common domain of definition for f and g. For a, b ∈ R, a ∧ b := min{a, b} and
a ∨ b := max{a, b}.

By integrating the above two-sided heat kernel estimates in Theorem 1.1 with
respect to t , one can easily obtain the following sharp two-sided estimate on the Green
function G D(x, y) = ∫∞

0 pD(t, x, y)dt of a censored stable-like process in a bounded
C1,1 open set D.

Corollary 1.2 Suppose that d ≥ 1, α ∈ (1, 2) and D is a bounded C1,1 open set in
R

d . Assume that the censored stable-like process X satisfies (BHP). Then on D × D,
we have

G D(x, y) �

⎧⎪⎨
⎪⎩

1
|x−y|d−α

(
1 ∧ δD(x)δD(y)

|x−y|2
)α−1

when d ≥ 2,

(δD(x)δD(y))(α−1)/2 ∧
(
δD(x)δD(y)

|x−y|
)α−1

when d = 1.

Sharp two-sided estimates of the Green function are very important in understand-
ing deep potential theoretic properties of Markov processes. Such two-sided estimates
for the Green functions of symmetric stable processes were obtained in [9,19]. In [4],
sharp two-sided estimates for the Green functions of censored stable processes (i.e.
when C(x, y) is a constant) in bounded C1,1 connected open sets in R

d were obtained
for d ≥ 2 and α ∈ (1, 2). Corollary 1.2 is a significant generalization of the Green
function estimates in [4] in that (1) C(x, y) needs not be constant, (2) the C1,1-open
set D here does not need to be connected, and (3) d = 1 is allowed. We emphasize
here that the Green function estimates for censored stable processes obtained in [4]
will not be used in this paper.

Theorem 1.1(i) will be established through Theorems 3.5 and 4.9, which give the
upper bound and lower bound estimates, respectively. Theorem 1.1(ii) is an easy con-
sequence of Theorem 1.1(i) and the intrinsic ultracontractivity of X in a bounded C1,1
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open set D, which will be established in Sect. 2. The proofs of Theorem 1.1(ii) and
Corollary 1.2 will be given in Sect. 5.

The approach of this paper is adapted from that of [5], which deals with two-sided
sharp heat kernel estimates for symmetricα-stable processes killed upon exiting a C1,1

open set. In [5], the following domain monotonicity for the killed symmetric stable
processes is used in a crucial way. Let Z be a symmetric α-stable process and Z D be
the subprocess of Z killed upon leaving an open set D. If U is an open subset of D,
then ZU is a subprocess of Z D killed upon leaving U . However censored stable-like
processes do not have this kind of domain monotonicity. This lack of domain mono-
tonicity produces new difficulties, which can be seen, for example, from the proofs of
the estimate given in Lemma 4.5 of this paper and its exact analog in [5, Lemma 3.6]
for symmetric α-stable processes. The proof of [5, Lemma 3.6], which is a key step in
deriving the sharp lower bound estimate for the killed symmetric α-stable process in
a bounded C1,1-open set D, is established by comparing with a suitably chosen inte-
rior ball. But such an approach breaks down even for the censored α-stable process.
We use a new probabilistic approach together with a crucial application of (BHP) to
establish the estimate in Lemma 4.5. The intrinsic ultracontractivity of the censored
α-stable-like process is also used in our proof.

Another tool that we use in this paper is the reflected stable-like process X on
D, whose subprocess killed upon leaving D is the censored stable-like process X .
The reflected α-stable-like processes have been studied in [3] and [6]. In particular,
two-sided heat kernel estimates have been obtained in [6] for reflected stable-like
processes on open d-sets (including globally Lipschitz open sets) in R

d—see (2.4)
below. When D is a globally Lipschitz open set, it is proved in [3] that the censored
α-stable-like process in D coincides with the corresponding reflected α-stable-like
process if (and only if) α ∈ (0, 1]. That is why we focus on the case of α ∈ (1, 2) in
this paper.

The approach of this paper is mainly probabilistic. It is based on the following four
key ingredients:

(i) Lévy system of X that describes how the process jumps—see (2.3) below;
(ii) the two-sided heat kernel estimates (2.4) for the reflected α-stable process X

on D obtained in [6] and a scaling property of X—see (3.2) below;
(iii) the boundary Harnack principle of X in C1,1 open sets (see Sect. 3) and the

parabolic Harnack principle of X obtained in [6];
(iv) inequality (2.9) and the intrinsic ultracontractivity of X in bounded open sets—

established in Theorem 2.2 below.

Even though the intrinsic ultracontractivity gives sharp two-sided estimates of the
transition density function p(t, x, y) for each fixed t > 0, the estimates are far from
sharp as a function of (t, x, y). But the inequality (2.9), which implies the intrinsic
ultracontractivity, plays an important role in our approach.

Throughout this paper, unless otherwise specified, we assume d ≥ 1. The Euclid-
ean distance between x and y will be denoted as |x − y|. For any open set D, δD(x) :=
dist(x, Dc). We will use dx to denote the Lebesgue measure in R

d . Throughout this
paper, we use c1, c2, . . . to denote generic constants, whose exact values are not impor-
tant and can change from one appearance to another. The labeling of the constants
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c1, c2, . . . starts anew in the statement of each result. The values of the constants
M1,M2, . . . will remain the same throughout this paper and the dependence of the
constant c on the dimension d and the constants M1,M2, . . . will not be mentioned
explicitly. We will use “:=” to denote a definition, which is read as “is defined to
be”. We will use ∂ to denote a cemetery point and for every function f , we extend its
definition to ∂ by setting f (∂) = 0. For a Borel set A ⊂ R

d , we also use |A| to denote
the Lebesgue measure of A.

2 Censored stable-like process and intrinsic ultracontractivity

Censored α-stable-like processes in open subsets of R
d were studied by Bogdan et al.

[3] (see also [18]). Fix an open set D in R
d with d ≥ 1. Define a bilinear form E on

C∞
c (D) by

E(u, v) := 1

2

∫

D

∫

D

(u(x)−u(y))(v(x)−v(y)) C(x, y)

|x−y|d+α dx dy, u, v ∈ C∞
c (D),

(2.1)

where C(x, y) is a measurable symmetric function on D × D satisfying

M1 ≤ C(x, y) ≤ M2 (2.2)

for some positive constants M1 and M2. Using Fatou’s lemma, it is easy to check
that the bilinear form (E,C∞

c (D)) is closable in L2(D, dx). Let F be the closure of
C∞

c (D) under the Hilbert inner product E1 := E + (·, ·)L2(D,dx). As noted in [3],
(E,F) is Markovian and hence a regular symmetric Dirichlet form on L2(D, dx), and
therefore there is an associated symmetric Hunt process X = {Xt , t ≥ 0,Px , x ∈ D}
taking values in D (cf. Theorem 3.1.1 of [14]). The process X is called a censored
α-stable-like process in D.

We fix an arbitrary symmetric measurable extension of C(·, ·) onto R
d × R

d sat-
isfying (2.2) and we still denote it by C(·, ·). It is well known (see, for instance, [6])
that the bilinear form (Q,FR

d
) defined by

Q(u, v) = 1

2

∫

Rd

∫

Rd

(u(x)− u(y))(v(x)− v(y))
C(x, y)

|x − y|d+α dx dy,

FR
d =

⎧
⎪⎨
⎪⎩

u ∈ L2(Rd) :
∫

Rd

∫

Rd

(u(x)− u(y))2

|x − y|d+α dx dy < ∞

⎫
⎪⎬
⎪⎭
,

is a regular symmetric Dirichlet form on L2(Rd, dx) and hence there is an associated
symmetric Hunt process Y = {Yt , Px } on R

d . The process Y is called an α-stable-like
process in R

d , which is studied in [6]. Among other things, it is shown in [6] that Y
is conservative and has a Hölder continuous transition density function. The latter in
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particular implies that Y can be modified to start from every point x ∈ R
d and the

modified process is a Feller process on R
d . Note that if C(x, y) is equal to the constant

A(d, α), Y is the symmetric α-stable process on R
d .

For any open subset D of R
d , we use Y D to denote the subprocess of Y killed upon

exiting from D. The following result gives two other ways of constructing a censored
α-stable-like process.

Theorem 2.1 [3, Theorem 2.1 and Remark 2.4] The following processes have the
same distribution:

(i) the symmetric Hunt process X associated with the regular symmetric Dirichlet
form (E,F) on L2(D, dx);

(ii) the strong Markov process X obtained from the killed symmetric α-stable-like
process Y D in D through the Ikeda–Nagasawa–Watanabe piecing together
procedure;

(iii) the process X obtained from Y D through the Feynman–Kac transform

e
∫ t

0 κD(Y D
s )ds with

κD(x) :=
∫

Dc

C(x, y)

|x − y|d+α dy.

The Ikeda–Nagasawa–Watanabe piecing together procedure mentioned in (ii) goes
as follows. Let Xt (ω) = Y D

t (ω) for t < τD(ω). If Y D
τD−(ω) /∈ D, set Xt (ω) = ∂ for

t ≥ τD(ω). If Y D
τD−(ω) ∈ D, let XτD (ω) = Y D

τD−(ω) and glue an independent copy of
Y D starting from Y D

τD−(ω) to XτD (ω). Iterating this procedure countably many times,
we obtain a process on D which is a version of the strong Markov process X ; the
procedure works for every starting point in D. Because of this procedure, a censored
stable-like process is also called a resurrected stable-like process.

By (2.1), the jump function J (x, y) of the censored α-stable-like process X is given
by

J (x, y) = C(x, y)

|x − y|d+α for x, y ∈ D.

It determines a Lévy system for X , which describes the jumps of the process X : for
any non-negative measurable function f on R+ × D × D, t ≥ 0, x ∈ D and stopping
time T (with respect to the filtration of X ),

Ex

⎡
⎣∑

s≤T

f (s, Xs−, Xs)

⎤
⎦ = Ex

⎡
⎣

T∫

0

⎛
⎝
∫

D

f (s, Xs, y)J (Xs, y)dy

⎞
⎠ ds

⎤
⎦ , (2.3)

(see, for example [7, Appendix A]).
Recall that an open set D ⊂ R

d is said to be a d-set if there exist two positive
constants c1, c2 so that for every x ∈ D and 0 < r ≤ 1,

c1rd ≤ |D ∩ B(x, r)| ≤ c2rd .
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Clearly any globally Lipschitz open set in R
d is a d-set. See [3] for examples of

non-smooth open d-sets in R
d .

For any open d-set D in R
d , define

F ref :=
⎧⎨
⎩u ∈ L2(D) :

∫

D

∫

D

(u(x)− u(y))2

|x − y|d+α dx dy < ∞
⎫⎬
⎭

and

E ref(u, v) := 1

2

∫

D

∫

D

(u(x)− u(y))(v(x)− v(y))
C(x, y)

|x − y|d+α dx dy, u, v ∈ F ref .

It is shown in [3, Remark 2.1] that the bilinear form (E ref ,F ref) is a regular symmet-
ric Dirichlet form on L2(D, dx). The process X on D associated with (E ref ,F ref) is
called a reflected α-stable-like process on D. It is shown in [6, Theorem 1.1] that X
has a Hölder continuous transition density function p̄(t, x, y) on (0,∞) × D × D
and for every T0 > 0, there are positive constants c1, c2 so that for t ∈ (0, T0] and
x, y ∈ D,

c1 t−d/α
(

1 ∧ t1/α

|x − y|
)d+α

≤ p̄(t, x, y) ≤ c2 t−d/α
(

1 ∧ t1/α

|x − y|
)d+α

. (2.4)

The Hölder continuity of p(t, x, y) in particular implies that X can be refined to start
from every point x in D and the refined process is a Feller process on D. When D is an
open d-set in R

d , the censored α-stable-like process X can be realized as a subprocess
of X killed upon leaving D, see [3, Remark 2.1].

In the remainder of this paper, we will fix an open d-set in R
d and a symmetric

measurable function C(·, ·) on D × D satisfying (2.2) and a symmetric measurable
extension of it onto R

d × R
d . Unless explicitly mentioned otherwise, whenever we

speak of a censored α-stable-like process X we mean the symmetric Hunt process
associated with the Dirichlet form (E,F) above on L2(D, dx), and whenever we
speak of an α-stable-like process Y on R

d (resp. a reflected α-stable-like process X on
D) we mean the symmetric Hunt process associated with the Dirichlet form (Q,F)
above on L2(Rd , dx) (resp. (E ref ,F ref) above on L2(D, dx)).

We will use {Pt , t ≥ 0} to denote the transition semigroup of X . Since X is the
subprocess of X killed upon exiting D, X has a transition density function pD(t, x, y)
with respect to the Lebesgue measure on D, which is also called the heat kernel of X .
It follows from (2.4) that for every T0 > 0, there is a constant c > 0 so that

pD(t, x, y) ≤ c

(
t−d/α ∧ t

|x − y|d+α

)
on (0, T0] × D × D. (2.5)

For any open set U ⊂ D, we define τU := inf {t > 0 : Xt /∈ U } and we will use
XU to denote the subprocess of X killed upon exiting U . Let {PU

t : t ≥ 0} be the

123



Two-sided heat kernel estimates for censored stable-like processes 369

transition semigroup of XU and pU
D(t, x, y) be the transition density function of XU .

We will use GU
D to denote the Green function of XU :

GU
D(x, y) :=

∞∫

0

pU
D(t, x, y)dt.

When U = D, G D
D(x, y) will simply be denoted by G D(x, y) and called the Green

function of X .
We now show that for any bounded open subset U of D that has the property

Px (τU < ∞) = 1 for every x ∈ U, (2.6)

the semigroup {PU
t , t > 0} is intrinsically ultracontractive. Note that condition (2.6)

is satisfied if

(i) D\U has positive Lebesgue measure in view of (2.4) and the strong Markov
property of X ; or

(ii) U = D is a bounded Lipschitz open set and α ∈ (1, 2) in view of [3, Theorem
1.1].

The intrinsic ultracontractivity for the case U = D when D is a bounded C1,1 open
set will be used to derive Theorem 1.1(ii) and the intrinsic ultracontractivity for the
case U �= D will be used to derive Theorem 1.1(i).

By (2.5), we know that for any bounded open subsetU of D, the semigroup {PU
t , t >

0} is a semigroup of Hilbert–Schmidt operators and hence is compact. Let −λU
1 < 0

be the largest eigenvalue of the generator of XU and let φU
1 (x) be the positive eigen-

function of PU
1 corresponding to e−λU

1 with ‖φU
1 ‖L2(U ) = 1. When D is bounded

and U = D, λU
1 and φU

1 will be denoted as λ1 and φ1, respectively. The semigroup
{PU

t , t > 0} is said to be intrinsically ultracontractive if for any t > 0 there exists a
positive constant Ct > 1 such that

pU
D(t, x, y) ≤ Ct φ

U
1 (x)φ

U
1 (y) for x, y ∈ U. (2.7)

It follows from [13, Theorem 3.2] that if {PU
t , t > 0} is intrinsically ultracontractive

then for any t > 0 there exists a positive constant ct > 1 such that

pU
D(t, x, y) ≥ c−1

t φU
1 (x)φ

U
1 (y) for x, y ∈ U. (2.8)

The proof of the following result is adapted from an argument given in [20].

Theorem 2.2 Suppose that D is an open d-set in R
d and U is a bounded open sub-

set of D satisfying condition (2.6). Then the semigroup {PU
t , t > 0} is intrinsically

ultracontractive. Moreover, for every B(x0, 2r) ⊂ U there exists a constant c =
c(α, r, diam(U )) > 0 which is independent of D and depends on the function C(·, ·)
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only via the constants M1,M2 in (2.2) such that

Ex

⎡
⎣
τU∫

0

1B(x0,r)(X
U
t )dt

⎤
⎦ ≥ c Ex [τU ] for every x ∈ U. (2.9)

Proof Fix a ball B(x0, 2r) ⊂ U and put

B0 := B(x0, r/4), C1 := B(x0, r/2) and B2 := B(x0, r).

Let {θt , t > 0} be the time-shift operators of X and we define stopping times Sn and
Tn recursively by

S1(ω) := 0,

Tn(ω) := Sn(ω)+ τU\C1 ◦ θSn (ω) for Sn(ω) < τU

and Sn+1(ω) := Tn(ω)+ τB2 ◦ θTn (ω) for Tn(ω) < τU .

Clearly Sn ≤ τU . Let S := limn→∞ Sn ≤ τU . On {S < τU }, we must have Sn <

Tn < Sn+1 for every n ≥ 0. Using (2.6) and the quasi-left continuity of XU , we have
Px (S < τU ) = 0. Therefore, for every x ∈ U ,

Px

(
lim

n→∞ Sn = lim
n→∞ Tn = τU

)
= 1. (2.10)

We claim that there exists a constant c1 = c1(α, r) > 0 depending on the function
C(·, ·) only via the constants M1 and M2 in (2.2) such that

Ex [τB2 ] ≥ c1 for every x ∈ C1. (2.11)

In fact, for any x ∈ C1, we have

Ex [τB2 ] ≥ Ex [τB(x,r/2)] ≥ Ex [τY
B(x,r/2)] ≥ c1,

where in the second inequality above, we used Theorem 2.1 and in the third inequal-
ity above, we used [6, Proposition 4.1]. Here Y denotes the symmetric α-stable-like
process in R

d (corresponding to a fixed symmetric measurable extension of C(·, ·) sat-
isfying (2.2)) and τY

B(x,r/2) the exit time from the ball B(x, r/2) by Y . Now it follows
from the strong Markov property that

Ex
[
Sn+1 − Tn

] = Ex

[
EXU

Tn
[τB2 ]; Tn < τU

]
≥ c1Px (X

U
Tn

∈ B0)

= c1Ex

[
PXU

Sn
(XU

τU\C1
∈ B0)

]
.
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Note that for any x ∈ U\B2, by the Lévy system of X in (2.3), we have

Px

(
XU
τU\C1

∈ B0

)
=

∫

U\C1

GU\C1
D (x, y)

∫

B0

( C(y, z)

|y − z|d+α dz

)
dy

≥ M1

∫

U\C1

GU\C1
D (x, y)

∫

B0

(
dz

(diam(U ))d+α

)
dy

= c2Ex [τU\C1 ]

for some constant c2 = c2(α, r, diam(U )) > 0. It follows then

Ex
[
Sn+1 − Tn

] ≥ c1c2Ex

[
EXU

Sn
[τU\C1 ]

]
= c1c2Ex [Tn − Sn]. (2.12)

Since XU
t ∈ B2 for Tn < t < Sn+1, we have

Ex

⎡
⎣
τU∫

0

1B2(X
U
t )dt

⎤
⎦ = Ex

⎡
⎢⎣

∞∑
n=1

⎛
⎜⎝

Tn∫

Sn

1B2(X
U
t )dt +

Sn+1∫

Tn

1B2(X
U
t )dt

⎞
⎟⎠

⎤
⎥⎦

≥ Ex

⎡
⎢⎣

∞∑
n=1

⎛
⎜⎝

Sn+1∫

Tn

1B2(X
U
t )dt

⎞
⎟⎠

⎤
⎥⎦

= Ex

[ ∞∑
n=1

(Sn+1 − Tn)

]
.

Using (2.12) and noting that XU
t /∈ U\B2 for t ∈ [Tn, Sn+1), we get

Ex

⎡
⎣
τU∫

0

1B2(X
U
t )dt

⎤
⎦ ≥ c1c2Ex

[ ∞∑
n=1

(Tn − Sn)

]

≥ c1c2Ex

⎡
⎢⎣

∞∑
n=1

⎛
⎜⎝

Tn∫

Sn

1U\B2(X
U
t )dt +

Sn+1∫

Tn

1U\B2(X
U
t )dt

⎞
⎟⎠

⎤
⎥⎦

= c1c2Ex

⎡
⎣
τU∫

0

1U\B2(X
U
t )dt

⎤
⎦ .

Thus

Ex

⎡
⎣
τU∫

0

1B2(X
U
t )dt

⎤
⎦ ≥ c1 c2

1 + c1 c2
Ex [τU ] .
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Since φU
1 = eλ

U
1 PU

1 φ
U
1 , it follows that φU

1 is strictly positive and continuous in U
[19]. The above inequality implies that

Ex [τU ] ≤ c3

∫

B2

GU
D(x, z)φU

1 (z)dz ≤ c3

∫

U

GU
D(x, z)φU

1 (z)dz = c3

λU
1

φU
1 (x).

(2.13)

By the semigroup property and (2.5),

pU
D(t, x, y) =

∫

U

pU
D(t/3, x, z)

∫

U

pU
D(t/3, z, w)pU

D(t/3, w, y)dwdz

≤ c4t−d/α
∫

U

pU
D(t/3, x, z)dz

∫

U

pU
D(t/3, w, y)dw

= c4t−d/α
Px (τU > t/3)Py(τU > t/3)

≤
(

9c4/t2
)

t−d/α
Ex [τU ] Ey[τU ]. (2.14)

This together with (2.13) establishes the intrinsic ultracontractivity of XU . ��
Remark 2.3 (i) When U = D, sufficient conditions for (2.6) to hold can be found

in [3, Theorem 2.4 and Theorem 2.7]. In particular, we know from there that
if D is an open d-set in R

d with finite Lebesgue measure and ∂D has positive
r -dimensional Hausdorff measure, then condition (2.6) holds when α > d − r .
In this case, by Theorem 2.2, the semigroup of the censored α-stable-like pro-
cess in D is intrinsically ultracontractive. Clearly the latter assertion holds for
any bounded Lipschitz domain D ⊂ R

d and α ∈ (1, 2).
(ii) By considering D = R

d , we get the intrinsic ultracontractivity of the killed
symmetric α-stable-like process Y U for every bounded open subset U , first
proved in [20].

3 Upper bound estimate

In this section, we establish sharp upper bound heat kernel estimates for X in a C1,1

open subset D ⊂ R
d .

Recall that an open set D in R
d (when d ≥ 2) is said to be a C1,1 open set if there

exist a localization radius R0 > 0 and a constant �0 > 0 such that for every z ∈ ∂D,
there exist a C1,1-function φ = φz : R

d−1 → R satisfying φ(0) = ∇φ(0) = 0,
‖∇φ‖∞ ≤ �0, |∇φ(x)−∇φ(z)| ≤ �0|x − z|, and an orthonormal coordinate system
C Sz : y = (y1, . . . , yd−1, yd) := (ỹ, yd) with its origin at z such that

B(z, r0) ∩ D = {y ∈ C Sz : |y| < r0, yd > φ(ỹ)} .

By a C1,1 open set in R we mean an open set which can be written as the union of
disjoint intervals so that the minimum of the lengths of all these intervals is positive
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Two-sided heat kernel estimates for censored stable-like processes 373

and the minimum of the distances between these intervals is positive. It is well known
that any C1,1 open set D satisfies the uniform interior and exterior ball conditions:
there exists r0 < R0, that depends only on (R0,�0), such that (1) for any x ∈ D
with δD(x) ≤ r0, there is a unique zx ∈ ∂D such that |x − zx | = δD(x) and (2) for
any z ∈ ∂D and r ∈ (0, r0] there exist two balls Bz

1 and Bz
2 of radius r such that

Bz
1 ⊂ D, Bz

2 ⊂ R
d\D and ∂Bz

1 ∩ ∂Bz
2 = {z}. For simplicity, in this paper we call

the pair (r0,�0) the characteristics of the C1,1 open set D. Note that for a C1,1 open
set D with characteristics (r0,�0), for every T > 0 and every λ ∈ (0, T ], λ−1 D is a
C1,1 open set with (uniform) characteristics (r0/T, T�0). This trivial but important
fact will be used several times in this paper.

When D is a bounded Lipschitz open set in R
d , by [3, Theorem 1.1] the censored

α-stable-like process X in D is recurrent if and only if α ≤ 1. In this case as well as
the case D = R

d , X is the same as the reflected α-stable-like process X , and so the
sharp two-sided estimates (2.4) holds for the transition density function of X .

In the remainder of this section, we assume α ∈ (1, 2). In this case, every
censored α-stable-like process in a C1,1 open proper subset of R

d is transient by
[3, Theorem 2.7 and Remark 2.4]. The following scaling property will be used several
times in the rest of this paper: If {Xt , t ≥ 0} is a censored α-stable-like process in D
with the jump function

J (x, y) = C(x, y)

|x − y|d+α , x, y ∈ D,

then {X (λ)t , t ≥ 0} := {λ−1 Xλα t , t ≥ 0} is a censored α-stable-like process in λ−1 D
with jump function

J (λ)(x, y) := C(λx, λy)

|x − y|d+α for x, y ∈ λ−1 D. (3.1)

For any λ > 0, we define

pλ−1 D(t, x, y) := λd pD(λ
αt, λx, λy) for t > 0 and x, y ∈ λ−1 D. (3.2)

Clearly pλ−1 D(t, x, y) is the transition density function of the censored α-stable-like
process {X (λ)t , t ≥ 0} with the jump function J (λ)(x, y). We shall denote the lifetime
of X (λ) by ζ (λ).

A key ingredient in proving our main result is a scale invariant boundary Harnack
principle. We formulate this as an assumption and then we will discuss when it is
satisfied. Recall that a nonnegative function u defined on D is said to be harmonic in
U ⊂ D with respect to X if u(x) = Ex [u(XτB )] for every x ∈ B and every open set
B whose closure is a compact subset of U .

The next result is proved in [3, Theorem 1.2].

Theorem 3.1 Let D be a C1,1 open set in R
d with characteristics (r0,�0) and X the

censored α-stable process in D. Then there exists a positive constant c = c(α,�0)
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such that for r ∈ (0, r0], Q ∈ ∂D and any nonnegative function u in D which is har-
monic in D ∩ B(Q, r) with respect to X and vanishes continuously on ∂D ∩ B(Q, r),
we have

u(x)

u(y)
≤ c

δD(x)α−1

δD(y)α−1 for every x, y ∈ D ∩ B(Q, r/2).

If X is the censoredα-stable process in C1,1 open set D with characteristics (r0,�0),
then for every T > 0 and every λ ∈ (0, T ], {X (λ)t , t ≥ 0} := {λ−1 Xλα t , t ≥ 0} is
a censored α-stable process in λ−1 D, which is a C1,1 open set with characteristics
(r0/T, T�0). Thus Theorem 3.1 is applicable with the comparison constant invariant
under the domain dilation λ−1 D for every λ ≤ T . To prove Theorem 1.1 for the cen-
sored α-stable-like process X , we need the following version of the boundary Harnack
principle with the comparison constant invariant under the domain dilation λ−1 D for
λ ≤ T .

(BHP) : For any C1,1 open set D in R
d with characteristics (r0,�0) and every

T > 0, there exists a positive constant c = c(α,�0, T, C) independent of λ
such that for λ ∈ (0, T ], r ∈ (0, r0/λ], Q ∈ ∂(λ−1 D) and any nonnegative
function u in λ−1 D that is harmonic in (λ−1 D) ∩ B(Q, r) with respect to
X (λ)t and vanishes continuously on ∂(λ−1 D) ∩ B(Q, r), we have

u(x)

u(y)
≤ c

δD(x)α−1

δD(y)α−1 for every x, y ∈ (λ−1 D) ∩ B(Q, r/2).

As we discussed above, censoredα-stable processes have the above property. Under
some assumptions on C(x, y), censored stable-like processes also have this property.
We now present some sufficient condition for (BHP) to hold.

Assume that the (symmetric) function C(x, y) satisfies the following conditions:
there exist positive bounded functions ψ1, ψ2 ∈ C1(D × D) and positive constants c
and δ < r0 such that for every x, y ∈ {z ∈ D : δD(z) < δ}

∣∣∣∣C(x, y)− ψ1(x, y)− ψ2(x, y)
|x − y|d+α

|x − y|d+α

∣∣∣∣ ≤ c|x − y| (3.3)

and

|C(x, y)− C(x, x)| ≤ c|x − y| for every x, y ∈ {z ∈ D : δD(z) > δ}. (3.4)

Here y := 2zy − y is the reflection of y with respect to ∂D; more precisely, zy ∈ ∂D
is the unique point such that δD(y) = |y − zy |. Put

M3 := c + sup
x,y∈D,|x−y|<r0

(|∇yψ1(x, y)| + |∇yψ2(x, y)|) (3.5)

with c being the constant in (3.3) and (3.4). It is proved in [15] that under the assump-
tions (3.3) and (3.4), the boundary Harnack principle holds for the censored stable-like
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process X in a C1,1 open set D with the characteristics (r0,�0) and the comparison
constant depends only on α,�0,M1,M2,M3 and d.

In particular, if C(x, y) is in C1(D × D)with bounded derivatives, the assumptions
(3.3) and (3.4) hold with ψ1(x, y) = C(x, y) and ψ2(x, y) ≡ 0. The reason for the
general form of (3.3) is to cover cases where the derivatives of C are not bounded. For

example, let D = R
d+ be the upper half space and C(x, y) = A(d, α)

(
1 + |x−y|d+α

|x−y|d+α
)

.

Then the conditions (3.3) and (3.4) are satisfied.
Recall the fact that for a C1,1 open set D with characteristics (r0,�0), for every

T > 0 and every λ∈(0, T ], λ−1 D is a C1,1 open set with characteristics (r0/T, T�0).
Thus it is easy to see that under the assumptions (3.3) and (3.4) on C(x, y), such a
censored α-stable-like process enjoys (BHP) with a comparison constant c indepen-
dent of λ ∈ (0, T ]. Recall that that the dependence of the constant c on C will not be
shown in notation.

The next lemma and its proof are similar to [2, Lemma 6] and its proof.

Lemma 3.2 Suppose that D is a C1,1 open set in R
d with characteristics (r0,�0)

and X is the censored α-stable-like process in D ⊂ R
d where d ≥ 1 and α ∈ (0, 2).

For every r ≤ r0, z ∈ ∂D and U := D ∩ B(z, r)

Px (τU < ζ and XτU ∈ ∂U ) = 0 for every x ∈ U.

Proof Let Y be the symmetric stable-like process in R
d with the jump function

JY (x, y) = C(x, y)|x − y|−d−α for x, y ∈ R
d .

For any open set V ⊂ R
d , let τY

V := inf{t > 0 : Yt /∈ V }. By Theorem 2.1(iii), we
have for every x ∈ D,

Px (τU < ζ and XτU ∈ ∂U )=Ex

⎡
⎢⎣exp

⎛
⎜⎝

τY
U∫

0

κD(Ys)ds

⎞
⎟⎠ ; τY

U <τ
Y
D and YτY

U
∈ ∂U

⎤
⎥⎦ .

Thus it suffices to show that Px (YτY
U

∈ ∂U ) = 0 for every x ∈ U.
For each x ∈ U , let Bx := B(x, δU (x)/3). By the Lévy system for Y , we have

Px

(
YτY

Bx
∈ U c

)
=
∫

Bx

GY
Bx
(x, y)

⎛
⎝
∫

U c

C(y, z)

|y − z|d+α dz

⎞
⎠ dy,
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where GY
Bx

is the Green function of Y Bx . By the changes of variables a = y/δD(x)
and b = z/δD(x),

Px

(
YτY

Bx
∈ U c

)
=

∫

B(δU (x)−1x,1/3)

GY
Bx
(x, δU (x)a)

×
⎛
⎜⎝

∫

(δU (x)−1U )c

δU (x)
d−α C(δU (x)a, δU (x)b)

|a − b|d+α db

⎞
⎟⎠ da. (3.6)

Let Ŷt := δU (x)−1YδU (x)α t , which is the symmetric stable-like process with the jump
function Ĵ (a, b) := C(δU (x)a, δU (x)b)|a − b|−d−α . Since

ĜŶ
B(δU (x)−1x,1/3)(w, a) := δU (x)

d−α GY
Bx
(δU (x)w, δU (x)a)

is the Green function of the subprocess of Ŷ killed upon exiting B(δU (x)−1x, 1/3),
we have by (3.6)

Px

(
YτY

Bx
∈ U c

)
=

∫

B(δU (x)−1x,1/3)

ĜŶ
B(δU (x)−1x,1/3)(δU (x)

−1x, a)

×
⎛
⎜⎝

∫

(δU (x)−1U )c

C(δU (x)a, δU (x)b)

|a − b|d+α db

⎞
⎟⎠ da

≥ M1

∫

B(δU (x)−1x,1/3)

ĜŶ
B(δU (x)−1x,1/3)(δU (x)

−1x, a)

×
⎛
⎜⎝

∫

(δU (x)−1U )c

1

|a − b|d+α db

⎞
⎟⎠ da. (3.7)

Let zx ∈ ∂U be such that δU (x) = |x − zx |. Since D is C1,1, there exists η > 0 such
that, under an appropriate coordinate system, we have zx + Ĉ ⊂ (δU (x)−1U )c where

Ĉ :=
{

y = (y1, . . . , yd) ∈ R
d : 0 < yd < η and

√
y2

1 + · · · + y2
d−1 < ηyd

}
.

Thus there is a constant c1 > 0 such that

∫

(δU (x)−1U )c

1

|a − b|d+α db ≥ c1 > 0 for every a ∈ B(δU (x)
−1x, 1/3).
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So we deduce from (3.7)

inf
x∈U

Px

(
YτY

Bx
∈ U c

)
≥ M1c1 inf

w∈Rd
Ew

[
τ Ŷ

B(w,1/3)

]
≥ c2 > 0. (3.8)

In the second inequality above, we used [6, Proposition 4.1]. On the other hand, by
the Lévy system for Y ,

Px

(
YτY

Bx
∈ ∂U

)
= 0 for every x ∈ U.

So

Px

(
YτY

U
∈ ∂U

)
= Ex

[
PY

τY
Bx

(YτY
U

∈ ∂U ); YτY
Bx

∈ U

]
.

Inductively, we have

Px

(
YτY

U
∈ ∂U

)
= lim

k→∞ pk(x),

where

p0(x) := Px

(
YτY

U
∈ ∂U

)
and pk(x) := Ex

[
pk−1(YτY

Bx
); YτY

Bx
∈ U

]
for k ≥ 1.

By (3.8),

sup
x∈U

pk+1(x) ≤ (1 − c2) sup
x∈U

pk(x) ≤ (1 − c2)
k+1 → 0.

Therefore

Px

(
YτY

U
∈ ∂U

)
= 0 for every x ∈ U.

��
The goal of the rest of this section is to prove the upper bound in Theorem 1.1(i).

[6, Theorem 1.1] and the fact that, for every λ ∈ (0, T ], λ−1 D is a C1,1 open set with
characteristics (r0/T, T�0) imply that, for every T, T1 > 0, there exists a constant
c = c(α, r0, T, T1) > 0 such that for every λ ∈ (0, T ],

pλ−1 D(t, x, y) ≤ c

(
t−d/α ∧ t

|x − y|d+α

)
on (0, T1] × (λ−1 D)× (λ−1 D).

(3.9)

For the rest of this paper, we put r1 = r0/10.

123



378 Z.-Q. Chen et al.

Lemma 3.3 Suppose that α ∈ (1, 2) and that D is a C1,1 open set in R
d with char-

acteristics (r0,�0). For every T > 0, there is a constant c = c(r0, α,�0, T, r) > 0
such that for all λ ∈ (0, T ], t ∈ (0, T ] and all x, y ∈ λ−1 D with δλ−1 D(x) < r1/(4T )
and |x − y| ≥ 10r1/T ,

pλ−1 D(t, x, y) ≤ c
δλ−1 D(x)

α−1

|x − y|d+α .

Proof Fix T > 0,λ ∈ (0, T ] and t ∈ (0, T ]. Let x, y ∈ λ−1 D be such that δλ−1 D(x) <
r1/(4T ) and |x − y| ≥ 10r1/T , and choose zx ∈ ∂(λ−1 D) such that δλ−1 D(x) =
|x − zx |. Define U := (λ−1 D) ∩ B(zx , r1/(2T )) and let pU

λ−1 D
(t, x, y) denote the

transition density function of the subprocess Xλ,U of X (λ) killed upon exiting U . By
the strong Markov property,

pλ−1 D(t, x, y) = Ex

[
pλ−1 D

(
t − τ

(λ)
U , X (λ)

τ
(λ)
U

, y

)
: τ (λ)U < t < ζ(λ)

]
(3.10)

where τ (λ)U := inf{t > 0 : X (λ)t /∈ U }. Define V1 := {w ∈ λ−1 D : r1/(2T ) <
|w − zx | ≤ 3|x − y|/4} and V2 := {w ∈ λ−1 D : |w − zx | > 3|x − y|/4}. It follows
from (2.3), (3.10) and Lemma 3.2 that

pλ−1 D(t, x, y)

=
t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D

(s, x, z)

⎛
⎜⎝

∫

{w∈λ−1 D:|w−zx |>r1/(2T )}
J (λ)(z, w)pλ−1 D(t−s, w, y)dw

⎞
⎟⎠dz

⎞
⎟⎠ds

=
t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D

(s, x, z)

⎛
⎜⎝
∫

V1

J (λ)(z, w)pλ−1 D(t − s, w, y)dw

⎞
⎟⎠ dz

⎞
⎟⎠ ds

+
t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D

(s, x, z)

⎛
⎜⎝
∫

V2

J (λ)(z, w)pλ−1 D(t − s, w, y)dw

⎞
⎟⎠ dz

⎞
⎟⎠ ds.

= I + I I. (3.11)

Note that for w ∈ V1,

|w − y| ≥ |y − x | − |w − zx | − |x − zx | ≥ |x − y|
4

− r1

4T
≥ 3|x − y|

20
.

(3.12)
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By (3.9) and (3.12), there exist positive constants c = c(α, r0, T ) and c1 = c1(α, r0, T )
such that

I ≤
t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D(s, x, z)

⎛
⎜⎝
∫

V1

J (λ)(z, w)
c T

|w − y|d+α dw

⎞
⎟⎠ dz

⎞
⎟⎠ ds

≤ c1 T

|x − y|d+α

t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D(s, x, z)

⎛
⎜⎝
∫

V1

J (λ)(z, w)dw

⎞
⎟⎠ dz

⎞
⎟⎠ ds

= c1 T

|x − y|d+α Px

(
X (λ)
τ
(λ)
U

∈ V1 and τ (λ)U < t

)

≤ c1 T

|x − y|d+α Px

(
X (λ)
τ
(λ)
U

∈ V1

)
.

Let n(zx ) be the unit inward normal of λ−1 D at the point zx . Put x0 = zx + r1
4T n(zx ).

Note that x0 ∈ (λ−1 D) ∩ B(zx , r1/(4T )) ⊂ U and δλ−1 D(x0) = r1/(4T ). It follows
from (BHP) that there exists a constant c2 = c2(r0, α, T,�0) > 0 such that

Px

(
X (λ)
τ
(λ)
U

∈ V1

)
≤ c2 Px0

(
X (λ)
τ
(λ)
U

∈ V1

)
δλ−1 D(x)

α−1

δλ−1 D(x0)α−1 ≤ c2 δλ−1 D(x)
α−1.

Thus we have

I ≤ c3 (T ∨ 1)
δλ−1 D(x)

α−1

|x − y|d+α (3.13)

for some c3 = c3(r0, α, T,�0) > 0. On the other hand, for z ∈ U and w ∈ V2,

|z − w| ≥ |w − zx | − |z − zx | ≥ 3|x − y|
4

− r1

2T
≥ 7|x − y|

20
.

Thus by the symmetry of pλ−1 D(t − s, w, y) in (w, y) and (2.9) of Xλ,U , we have

I I ≤
t∫

0

⎛
⎜⎝
∫

U

pU
λ−1 D(s, x, z)

⎛
⎜⎝
∫

V2

c4

|x − y|d+α pλ−1 D(t − s, y, w)dw

⎞
⎟⎠ dz

⎞
⎟⎠ ds

≤ c4

|x − y|d+α

∞∫

0

⎛
⎝
∫

U

pU
λ−1 D(s, x, z)dz

⎞
⎠ ds

≤ c5

|x − y|d+α Ex

⎡
⎢⎢⎣
τ
(λ)
U∫

0

1B(x0,r1/(16T ))(X
(λ)
s )ds

⎤
⎥⎥⎦
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for some positive constants c4 and c5 = c5(r0, α). Take x1 = zx + r1
16T n(zx ). By

(BHP), the last expectation above is bounded by

c6Ex1

⎡
⎢⎢⎣
τ
(λ)
U∫

0

1B(x0,r1/(16T ))(X
(λ)
s )ds

⎤
⎥⎥⎦
δλ−1 D(x)

α−1

δλ−1 D(x1)α−1

for some c6 = c6(r0, α, T,�0) > 0.
To bound the expectation in the last display, let (E (λ),F (λ)) be the Dirichlet form

of X (λ) and (E (λ),F (λ)
U ) be the Dirichlet form of the subprocess Xλ,U . The transi-

tion semigroup of the subprocess Xλ,U will be denoted as {Pλ,Ut , t ≥ 0}. The killing
density of this subprocess is given by

κU (x) :=
∫

(λ−1 D)\U

C(λx, λy)

|x − y|d+α dy, x ∈ U.

By the C1,1 assumption on D, there is a constant c7 = c7(d, α, r0, T ) > 0 independent
of λ > 0 and x such that κU ≥ 2c7 > 0 on U . Then for every u ∈ F (λ)

U ,

E (λ)−c7
(u, u) ≥ 1

2
E (λ)(u, u) ≥ c8

⎛
⎝

∫

U×U

(u(x)− u(y))2

|x − y|d+α dxdy +
∫

U

u(x)2dx

⎞
⎠

for some c8 = c8(d, α, r0, T ) > 0 independent of λ, where

E (λ)−c7
(u, u) := E (λ)(u, u)− c7

∫

U

u(x)2dx .

It is known (see, for instance, [6, Section 3] or [7]) that there is a constant c9 > 0
independent of λ such that for every u ∈ F (λ)

U with ‖u‖L1(U ) = 1,

‖u‖2+2α/2
L2(U )

≤ c9

⎛
⎝

∫

U×U

(u(x)− u(y))2

|x − y|d+α dxdy +
∫

U

u(x)2dx

⎞
⎠ .

So we have for every u ∈ F (λ)
U with ‖u‖L1(U ) = 1,

‖u‖2+2α/2
L2(U )

≤ c10 E (λ)−c7
(u, u).

Observe that (E (λ)−c7
,F (λ)

U ) is the quadratic form for the semigroup {ec7t Pλ,Ut , t ≥ 0}.
Thus by [12, Theorem 2.4.6], there exists a positive constant independent of λ,
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such that

ec7t pU
λ−1 D(t, x, y) ≤ c11t−d/α for every t > 0.

Therefore

Ex1

⎡
⎢⎢⎣
τ
(λ)
U∫

0

1B(x0,r1/(16T ))(X
(λ)
s )ds

⎤
⎥⎥⎦ ≤ 1 +

∞∫

1

c11e−c7t dt |B(0, r1/(16T ))| < ∞.

The proof of the lemma is now complete. ��

Lemma 3.4 Let D be a C1,1 open set in R
d with characteristics (r0,�0). For every

T > 0, there is a constant c = c(r0,�0, T, α) > 0 such that for every λ ∈ (0, T ] and
x, y ∈ λ−1 D,

pλ−1 D(1, x, y) ≤ c
(

1 ∧ |x − y|−d−α) δλ−1 D(x)
α−1.

Proof Note that for every λ ∈ (0, T ], λ−1 D is a C1,1 open set with characteris-
tics (r0/T, T�0). Take x, y ∈ λ−1 D. In view of (3.9), it suffices to prove the
theorem for x ∈ λ−1 D with δλ−1 D(x) < r1/(4T ). When δλ−1 D(x) < r1/(4T ) and
|x − y| ≥ 10r1/T , by Lemma 3.3, there is a constant c1 = c1(r0, T, α,�0) > 0 such
that

pλ−1 D(t, x, y) ≤ c1
δλ−1 D(x)

α−1

|x − y|d+α for every t ∈ (0, 1]. (3.14)

So it remains to show that when δλ−1 D(x) < r1/(4T ) and |x − y| < 10r1/T ,

pλ−1 D(1, x, y) ≤ c2 δλ−1 D(x)
α−1 (3.15)

for some positive constant c2 = c2(r0, T, α,�0) > 0. Define U := (λ−1 D) ∩
B(x, 8r1/T ). Note that x, y ∈ U and δU (x) = δλ−1 D(x). Let pU

λ−1 D
(t, z, w) be

the transition density function of the subprocess Xλ,U of X (λ) killed upon leaving U
and let pλ−1 D(t, x, y) be the transition density function of X (λ). By the strong Markov
property of X (λ) and the symmetry of pλ−1 D(1, x, y) in x and y, we have

pλ−1 D(1, x, y)= pU
λ−1 D(1, x, y)+Ey

[
pλ−1 D(1−τ (λ)U , X (λ)

τ
(λ)
U

, x); τ (λ)U < 1 < ζ(λ)
]

where τ (λ)U := inf{t > 0 : X (λ)t /∈ U }. Let zx ∈ ∂(λ−1 D) be such that |x − zx | =
δλ−1 D(x) and let n(zx ) be unit inward normal vector of λ−1 D at zx . Put x0 = zx +
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(r1/T )n(zx ). By the semigroup property, (3.9) and (2.9),

pU
λ−1 D(1, x, y) =

∫

U

pU
λ−1 D(1/2, x, z)pU

λ−1 D(1/2, z, y)dz

≤ ‖pλ−1 D(1/2, ·, ·)‖∞ Px

(
τ
(λ)
U > 1/2

)

≤ c3 Ex

[
τ
(λ)
U

]

≤ c4Ex

⎡
⎢⎢⎣
τ
(λ)
U∫

0

1B(x0,r1/(4T ))(X
(λ)
s )ds

⎤
⎥⎥⎦

for some positive constants ci = ci (α, r0, T ), i = 3, 4. Put x1 = zx + r1
4T n(zx ). By

(BHP) and the last part of the proof of Lemma 3.3, the above is bounded by

c5Ex1

⎡
⎢⎢⎣
τ
(λ)
U∫

0

1B(x0,r1/(4T ))(X
(λ)
s )ds

⎤
⎥⎥⎦
δD(x)α−1

δD(x1)α−1 ≤ c6δD(x)
α−1

for some positive constants ci = ci (α, r0,�0, T ) with i = 5, 6.
On the other hand, X (λ)

τ
(λ)
U

∈ (λ−1 D) \ U on {τ (λ)U < 1 < ζ(λ)} and so

∣∣∣∣X (λ)τ (λ)U

− x

∣∣∣∣ ≥ 7r1/T on
{
τ
(λ)
U < 1 < ζ(λ)

}
.

Consequently by (3.14) for pλ−1 D(1 − τ
(λ)
U , X (λ)

τ
(λ)
U

, x),

Ey

[
pλ−1 D(1 − τU , X (λ)τU , x); τ (λ)U < 1 < ζ(λ)

]

≤ Ey

[
c1

δλ−1 D(x)
α−1

|X (λ)τU − x |d+α ; τ (λ)U < 1 < ζ(λ)

]

≤ c7 δλ−1 D(x)
α−1

Py

(
τ
(λ)
U < 1 < ζ(λ)

)
≤ c7 δλ−1 D(x)

α−1

for some positive constant c7 = c7(α, r0,�0, T ). This completes the proof for (3.15)
and hence the theorem. ��

Theorem 3.5 Let D be a C1,1 open set with characteristics (r0,�0). For every T > 0,
there exists a positive constant c = c(T, r0, α,�0) such that for t ∈ (0, T ] and
x, y ∈ D,
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pD(t, x, y) ≤ c

(
1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1 (
t−d/α ∧ t

|x − y|d+α

)
.

(3.16)

Proof Fix T > 0. By Lemma 3.4 there exists a positive constant c1 = c1(T, r0, α,�0)

such that for every λ ∈ (0, T 1/α],

pλ−1 D(1, x, y) ≤ c1

(
1 ∧ |x − y|−d−α) δλ−1 D(x)

α−1. (3.17)

Thus by (3.2) and (3.17), for every t ≤ T ,

pD(t, x, y) = t−d/α pt−1/αD

(
1, t−1/αx, t−1/α y

)

≤ c1 t−d/α
(

1 ∧ |t−1/α(x − y)|−d−α) δt−1/αD

(
t−1/αx

)α−1

= c1

(
t−d/α ∧ t

|x − y|d+α

)
δD(x)α−1

t1−1/α

≤ c2 pRd (t, x, y)

(
δD(x)

t1/α

)α−1

(3.18)

for some positive constant c2 = c2(T, r0, α,�0). Here pRd (t, x, y) is the transition
density function of the symmetric α-stable process in R

d and it is known [1,6] that

pRd (t, x, y) �
(

t−d/α ∧ t

|x − y|d+α

)
on R+ × R

d × R
d . (3.19)

By symmetry, the inequality (3.18) for pD(t, x, y) holds with role of x and y inter-
changed. Using the Chapman–Kolmogorov’s equation and (3.18), for t ≤ T ,

pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

≤ c3

(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1 ∫

D

pRd (t/2, x, z)pRd (t/2, z, y)dz

≤ c3

(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

pRd (t, x, y) (3.20)

for some positive constant c2 = c2(T, r0, α,�0). Combining (3.19) and (3.20), we
prove the upper bound (3.16) by noting that

(1 ∧ a)(1 ∧ b) = min{1, a, b, ab} for a, b > 0.

��
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4 Lower bound estimate

The goal of this section is to prove the lower bound for the heat kernel of X . We start
with the following result for a general open d-set in R

d .

Lemma 4.1 Suppose that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in R
d and X

the censored α-stable-like process in D. For any positive constants c and a, there exists
c1 = c1(c, a, α, d) > 0 such that for every z ∈ D and λ > 0 with B(z, 2cλ1/α) ⊂ D,

inf
y ∈ D

|y − z| ≤ cλ1/α

Py
(
τB(z,2cλ1/α) > aλ

) ≥ c1 > 0.

Proof Let Y = {Yt , t ≥ 0} be the symmetric α-stable-like process in R
d (correspond-

ing to a fixed symmetric measurable extension of C(·, ·) satisfying (2.2)). For any open
set U ⊂ R

d , let τY
U := inf{t > 0 : Yt /∈ U }. Then by Theorem 2.1(iii)

inf
y ∈ D

|y − z| ≤ cλ1/α

Py
(
τB(z,2cλ1/α) > aλ

) ≥ inf
y ∈ D
|y − z| ≤ cλ1/α

Py

(
τY

B(z,2cλ1/α)
> aλ

)

≥ inf
y∈Rd

Py

(
τY

B(y,cλ1/α)
> aλ

)
.

By [6, Proposition 4.1], there exists ε > 0 such that

inf
y∈Rd

Py

(
τY

B(y,cλ1/α/2) > ελ
)

≥ 1

2
.

Let pY
U (t, x, y) be the transition density function of Y U . Suppose a > ε. Then by

the parabolic Harnack principle in [6, Proposition 4.3]

c1 pY
B(y,cλ1/α)

(ελ, y, w) ≤ pY
B(y,cλ1/α)

(aλ, y, w) for w ∈ B(y, cλ1/α/2)

where the constant c1 > 0 is independent of y and λ. Thus

Py

(
τY

B(y,cλ1/α)
> aλ

)
=

∫

B(y,cλ1/α)

pY
B(y,cλ1/α)

(aλ, y, w)dw

≥
∫

B(y,cλ1/α/2)

pY
B(y,cλ1/α)

(aλ, y, w)dw

≥ c1

∫

B(y,ελ1/α/2)

pY
B(y,ελ1/α/2)(ελ, y, w)dw

≥ c1/2.

This proves the lemma. ��
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Proposition 4.2 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in R
d , X

the censored α-stable-like process in D and pD(t, x, y) the transition density function
of X. Suppose (t, x, y) ∈ (0,∞)× D × D with δD(x) ≥ t1/α ≥ 2|x − y|. Then there
exists a positive constant c = c(α, r0) such that

pD(t, x, y) ≥ ct−d/α. (4.1)

Proof This proof is the same as that for [5, Proposition 3.3]. We reproduce it here for
reader’s convenience. Let t > 0 and x, y ∈ D with δD(x) ≥ t1/α ≥ 2|x − y|. By the
parabolic Harnack principle in [6, Proposition 4.3],

pD(t/2, x, w) ≤ c1 pD(t, x, y) for w ∈ B(x, 2t1/α/3),

where the constant c1 > 0 is independent of x , y and t . This together with Lemma 4.1
yields that

pD(t, x, y) ≥ 1

c1 |B(x, t1/α/2)|
∫

B(x,t1/α/2)

pD(t/2, x, w)dw

≥ c2t−d/α
∫

B(x,t1/α/2)

pB(x,t1/α/2)(t/2, x, w)dw

= c2t−d/α
Px

(
τB(x,t1/α/2) > t/2

)

≥ c3 t−d/α,

where ci = ci (r0, α) > 0 for i = 2, 3. ��
Lemma 4.3 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in R

d , X the
censored α-stable-like process in D. Suppose that (t, x, y) ∈ (0,∞) × D × D with
δD(x)∧δD(y) ≥ t1/α and |x − y| ≥ 2−1t1/α . There exists a constant c = c(α, d) > 0,
independent of t > 0 and x and y, such that

Px

(
Xt ∈ B

(
y, 2−1t1/α

))
≥ c

td/α+1

|x − y|d+α .

Proof The proof is a simple modification of that of Proposition 4.11 in [7]. For reader’s
convenience, we spell out the details here.

By Lemma 4.1, starting at z ∈ B(y, 4−1t1/α), with probability at least c1 =
c1(α) > 0 the process X does not move more than 6−1t1/α by time t . Thus, it is
sufficient to show for some constant c2 = c2(α, d) > 0,

Px

(
X hits the ball B(y, 4−1t1/α) by time t

)
≥ c2

td/α+1

|x − y|d+α (4.2)

for all |x − y| ≥ 2−1t1/α and t > 0. Now with Bx := B(x, 6−1t1/α), By :=
B(y, 6−1t1/α) and τx := τBx , it follows from Lemma 4.1, there exists c3 =c3(α, d)>0
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such that

Ex [t ∧ τx ] ≥ t

2
Px (τx ≥ t/2) ≥ c3t, for t > 0. (4.3)

Thus by using the Lévy system of X in (2.3),

Px

(
X hits the ball B(y, 4−1t1/α) by time t

)

≥ Px

(
Xt∧τx ∈ B(y, 4−1t1/α) and t ∧ τx is a jumping time

)

≥ Ex

⎡
⎢⎣

t∧τx∫

0

∫

By

M1

|Xs − u|d+α du ds

⎤
⎥⎦

≥ c4Ex [t ∧ τx ]
∫

By

1

|x − y|d+α du

≥ c5 t |By | |x − y|−d−α

≥ c6
td/α+1

|x − y|d+α ,

for some positive constants ci = ci (α, d), i = 4, 5, 6. Here in the fourth inequality,
we used (4.3). The lemma is now proved. ��
Proposition 4.4 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in R

d , X
the censored α-stable-like process in D and pD(t, x, y) the transition density function
of X. Suppose that (t, x, y) ∈ (0,∞)× D × D with δD(x) ∧ δD(y) ≥ (t/2)1/α and
|x − y| ≥ 2−1(t/2)1/α . Then there exists a constant c = c(α, r0,�0) > 0 such that

pD(t, x, y) ≥ c
t

|x − y|d+α . (4.4)

Proof By the semigroup property, Proposition 4.2 and Lemma 4.3, there exist positive
constants c1 = c1(α, r0,�0) and c2 = c3(α, r0,�0) such that

pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫

B(y, 2−1(t/2)1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1t−d/α
Px

(
Xt/2 ∈ B(y, 2−1(t/2)1/α)

)

≥ c2
t

|x − y|d+α .

��
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In the remainder of this section, we assume that D is a C1,1 open subset in R
d with

characteristics (r0,�0) and X is the censored α-stable-like process in D with d ≥ 1
and α ∈ (1, 2). Let

T0 :=
( r0

16

)α
. (4.5)

We will first establish the lower bound for the heat kernel of X for t ≤ T0.
The next lemma is a key step in deriving the precise boundary decay rate for the

transition density function pD(t, x, y).

Lemma 4.5 Suppose that (t, x) ∈ (0, T0] × D with δD(x) ≤ 3t1/α < r0/4 and
κ ∈ (0, 1). Let zx ∈ ∂D be such that |zx − x | = δD(x) and let B be a ball of radius
3t1/α such that B ⊂ D and ∂B ∩ ∂D = {zx }. Suppose B(x0, 2κt1/α) ⊂ B \ {x}. Then
for any a > 0, there exists a constant c1 = c1(κ, α, r0,�0, a) > 0 such that

Px

(
Xat ∈ B(x0, κt1/α)

)
≥ c1

(
δD(x)

t1/α

)α−1

. (4.6)

Proof Let 0 < κ1 ≤ κ and assume first that 2−4κ1t1/α < δD(x) ≤ 3t1/α . Note
that δD(x) ∧ δD(x0) > 2−4κ1t1/α . By the convexity of the ball B, every point on
the line segment lx0,x joining x0 to x is at least of distance 2−4κ1t1/α away from
the boundary of D. For a > 0, denote by k the smallest integer that is larger than
max

{
(36α/a)1/(α−1), 6 · 27/κ1, a(27/(7κ1))

α
}
. Let x0, x1, . . . , xk = x be (k + 1)

equally spaced points on lx0,x , and set r := |x1−x0|. Since 2κt1/α ≤ |x −x0| ≤ 6t1/α ,
by our choice of k, we have

2κt1/α/k ≤ r ≤ 6t1/α/k ≤ 2−7κ1t1/α and 6r ≤ (at/k)1/α ≤ 7 · 2−7κ1t1/α.

Since the above inequalities imply that for every i = 0, . . . , k − 1, z ∈ B(xi , r) and
w ∈ B(xi+1, r)

2|z − w| ≤ 6r ≤ (at/k)1/α ≤ 7 · 2−7κ1t1/α ≤ δD(z) ∧ δD(w),

by Proposition 4.2 and the semigroup property,

Px

(
Xat ∈ B(x0, κt1/α)

)
≥

∫

B(x0,r)

pD(at, x, y)dy

≥
∫

B(xk−1,r)

∫

B(xk−2,r)

· · ·
∫

B(x0,r)

pD(at/k, x, yk−1)pD(at/k, yk−1, yk−2)

· · · pD(at/k, y1, y) dydy1 · · · dyk−1

≥ ck
1

(
(at/k)−d/αrd

)k ≥ c2 > 0. (4.7)
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By taking κ1 = κ , this shows that (4.6) holds for every a > 0 and for every x ∈ D with
2−4κt1/α < δD(x) ≤ 3t1/α . So it suffices to consider the case that δD(x) ≤ 2−4κt1/α .
We now show that there is some a0 > 1 so that (4.6) holds for every a ≥ a0 and
δD(x) ≤ 2−4κt1/α . For simplicity, we assume without loss of generality that x0 = 0
and let B̂ := B(x0, κt1/α). By the scaling property for censored α-stable-like pro-
cesses (see (3.2) and the line following it),

Px (Xat ∈ B̂) = Pt−1/αx

(
Za ∈ t−1/α B̂

)
= Pt−1/αx (Za ∈ B(0, κ)), (4.8)

where Z is the censoredα-stable-like process in t−1/αD with jumping function J (t
−1/α)

of (3.1), and, by a slight abuse of notation, the law of Z starting from a point z ∈ t−1/αD
is also denoted as Pz . Let B0 := B(t−1/αzx , κ/2) ∩ (t−1/αD). Observe that since
B(0, 2κ) ⊂ t−1/α(B\{x}) ⊂ t−1/α(D\{x}),

κ/2 ≤ |y − z| ≤ 6 for y ∈ B0 and z ∈ B(0, κ). (4.9)

By the strong Markov property of Z at the first exit time τB0 from B0 and Lemma 4.1,

Pt−1/αx (Za ∈ B(0, κ))

≥ Pt−1/αx

(
τ Z

B0
< a, ZτB0

∈ B(0, κ/2) and |Zt − ZτB0
| < κ/2

for t ∈
[
τ Z

B0
, τ Z

B0
+ a

])

≥ c3 Pt−1/αx

(
τ Z

B0
< a and ZτB0

∈ B(0, κ/2)
)
. (4.10)

Here, τ Z
B0

denotes the first exit time from B0 by Z .

Let z1 := t−1/αzx ∈ ∂(t−1/αD) and set y1 := z1 + 2−2κ n(z1), where n(z1)

denotes the unit inward normal vector at z1 for t−1/αD. Note that t−1/αD is a C1,1-
open set with characteristics (T −1/α

0 r0, T 1/α
0 �0). So by (BHP), the Lévy system of Z

and (4.9),

Pt−1/αx

(
ZτB0

∈ B(0, κ/2)
)

≥ c4
δt−1/αD(t

−1/αx)α−1

δt−1/αD(y1)α−1 Py1

(
ZτB0

∈ B(0, κ/2)
)

≥ c4

(
4

κ

)α−1 (
δD(x)

t1/α

)α−1

×
∞∫

0

⎛
⎜⎝
∫

B0

pZ
B0
(t, y1, y)

⎛
⎜⎝

∫

B(0,κ/2)

C(t−1/α y, t−1/αz)

|y − z|d+α dz

⎞
⎟⎠ dy

⎞
⎟⎠ dt

≥ c5

(
δD(x)

t1/α

)α−1

Ey1

[
τ Z

B0

]
.
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It follows from Theorem 2.1(iii), and [6, Proposition 4.1],

Ey1

[
τ Z

B0

]
≥ Ey1

[
τY

B0

]
≥ Ey1

[
τY

B(y1,κ/4)

]
≥ c5

where Y is the α-stable-like process in t−1/αD with jumping function J (t
−1/α) of (3.1),

and so

Pt−1/αx

(
ZτB0

∈ B(0, κ/2)
)

≥ c5c6

(
δD(x)

t1/α

)α−1

. (4.11)

The above constants ck , k = 4, . . . , 6 do not depend on a. On the other hand, by
Theorem 2.2 and (BHP)

Pt−1/αx

(
τ Z

B0
≥ a

)
≤ a−1

Et−1/αx

[
τ Z

B0

]

≤ a−1c7 Et−1/αx

⎡
⎣
τB0∫

0

1B(y1,κ/8)(Zs)ds

⎤
⎦

≤ a−1c8

(
δD(x)

t1/α

)α−1

Ey2

⎡
⎣
τB0∫

0

1B(y1,κ/8)(Zs)ds

⎤
⎦ ,

where y2 := z1 + 2−4κ n(z1). Now by the same argument as in last part of the proof
of Lemma 3.3, we have

Pt−1/αx

(
τ Z

B0
≥ a

)
≤ a−1c9

(
δD(x)

t1/α

)α−1

, (4.12)

where constant c9 does not depend on a. Define a0 = 2c9/(c5c6). We have by (4.8)
and (4.10)–(4.12) that for a ≥ a0,

Px
(
Xat ∈ B̂

) ≥ c2

(
Pt−1/αx

(
ZτB0

∈ B(0, κ/2)
)

− Pt−1/αx

(
τ Z

B0
≥ a

))

≥ c2 (c5c6/2)

(
δD(x)

t1/α

)α−1

. (4.13)

(4.7) and (4.13) show that (4.6) holds for every a ≥ a0 and for every x ∈ D with
δD(x) ≤ 3t1/α .

Now we deal with the case 0 < a < a0 and δD(x) ≤ 2−4κt1/α . If δD(x) ≤
3(at/a0)

1/α , we have from (4.6) for the case of a = a0 that

Px

(
Xat ∈ B(x0, κt1/α)

)
≥ Px

(
Xa0(at/a0) ∈ B

(
x0, κ(at/a0)

1/α
))

≥ c10

(
δD(x)

(at/a0)1/α

)α−1

= c11

(
δD(x)

t1/α

)α−1

.
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If 3(at/a0)
1/α < δD(x) ≤ 2−4κt1/α (in this case κ > 3 · 24(a/a0)

1/α), we get (4.6)
from (4.7) by taking κ1 = (a/a0)

1/α . The proof of the lemma is now complete. ��
The next three propositions and their proofs are similar to [5, Propositions 3.7–3.9]

and their proofs, we give the details for readers’ convenience.

Proposition 4.6 Suppose that (t, x, y) ∈ (0, T0] × D × D with |x − y| ≤ t1/α and
δD(x) ≤ 2t1/α . Then there exists a constant c = (α, r0,�0) > 0 such that

pD(t, x, y) ≥ ct−d/α
(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

. (4.14)

Proof For z ∈ ∂D, let n(z) be the unit inward normal vector of ∂D at the point z. By
the assumptions,

δD(y) ≤ |x − y| + δD(x) ≤ 3t1/α < r0/5.

So there are unique points zx , zy ∈ ∂D such that δD(x) = |x − zx | and δD(y) =
|y − zy |. Let

x0 = zx + 4t1/αn(zx ) and y0 = zy + 4t1/αn(zy).

Observe that

δD(x0) = δD(y0) = 4t1/α and |x − x0|, |y − y0| ∈ [t1/α, 4t1/α).

Define B := B(x0, 4−1t1/α) and B̃ := B(y0, 4−1t1/α). Observe that x /∈ B(x0, 2−1t1/α)

and y /∈ B(y0, 2−1t1/α). By the semigroup property,

pD(t, x, y) =
∫

D

pD(t/3, x, z)

⎛
⎝
∫

D

pD(t/3, z, w)pD(t/3, w, y)dw

⎞
⎠ dz

≥
∫

B

pD(t/3, x, z)

⎛
⎜⎝
∫

B̃

pD(t/3, z, w)pD(t/3, w, y)dw

⎞
⎟⎠ dz

≥
(

inf
(z,w)∈B×B̃

pD(t/3, z, w)

)⎛
⎝
∫

B

pD(t/3, x, z)dz

⎞
⎠

×
⎛
⎜⎝
∫

B̃

pD(t/3, w, y)dw

⎞
⎟⎠ .

Since for z ∈ B and w ∈ B̃,

δD(z) ≥ δD(x0)− |x0 − z| ≥ t1/α, δD(w) ≥ δD(y0)− |y0 − w| ≥ t1/α
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and

|z − w| ≤ |z − x0| + |x0 − x | + |x − y| + |y − y0| + |y0 − w| < 10t1/α,

by combining Propositions 4.2 and 4.4, we have that there exists c1 = c1(α, r0,�0) >

0 such that

inf
(z,w)∈B×B̃

pD(t/3, z, w) ≥ c1t−d/α.

Since δD(x) ≤ 2t1/α < r0/8 and δD(y) ≤ 3t1/α , we deduce from Lemma 4.5

pD(t, x, y) ≥ c2t−d/α
(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

for some positive constant c2 = c2(α, r0,�0). ��

Proposition 4.7 Suppose that (t, x, y) ∈ (0, T0] × D × D with δD(x) ≤ t1/α and
(t/2)1/α ≤ δD(y)and |x−y| ≥ t1/α . Then there exists a constant c = c(α, r0,�0) > 0
such that

pD(t, x, y) ≥ c
t

|x − y|d+α

(
δD(x)

t1/α

)α−1

. (4.15)

Proof Recall that for z ∈ ∂D, n(z) is the unit inward normal vector of ∂D at point z.
Since δD(x) ≤ t1/α ≤ r0/16, there is a unique zx ∈ ∂D such that δD(x) = |x − zx |.
Let z0 = zx +2t1/αn(zx ). Now choose x0 in B(z0, 2t1/α) and κ = κ(α) ∈ (0, 1) such
that

B
(

x0, 2κt1/α
)

⊂ B
(

z0, (2 − 2−2/α)t1/α
)

∩ B
(

x, (1 − 2−1−2/α)t1/α
)
.

Such a ball B(x0, 2κt1/α) always exists because

2 <
(

2 − 2−1
)

+
(

1 − 2−2
)
<
(

2 − 2−2/α
)

+
(

1 − 2−1−2/α
)
.

Note that x /∈ B(x0, 2κt1/α) and

δD(z) ≥ (t/4)1/α and |y − z| ≥ 2−1(t/4)1/α for every z ∈ B(x0, κt1/α).

On the other hand, for every z ∈ B(x0, κt1/α),

|z − y| ≤ |z − x | + |x − y| ≤
(

1 − 2−1−2/α
)

t1/α + |x − y| < 2|x − y|.
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Thus by the semigroup property and Proposition 4.4, there exist positive constants
ci = ci (α, r0,�0), i = 1, 2, such that

pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫

B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1

∫

B(x0,κt1/α)

pD(t/2, x, z)
t

|z − y|d+α dz

≥ c2
t

|x − y|d+α

∫

B(x0,κt1/α)

pD(t/2, x, z)dz

= c2
t

|x − y|d+α Px

(
Xt/2 ∈ B(x0, κt1/α)

)
.

Applying Lemma 4.5, we arrive at the conclusion of the proposition. ��

Proposition 4.8 Suppose that (t, x, y) ∈ (0, T0] × D × D with

δD(x) ∨ δD(y) ≤ (t/2)1/α ≤ |x − y|.

Then there exists a constant c = c(α, r0,�0) > 0 such that

pD(t, x, y) ≥ c
t

|x − y|d+α

(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

. (4.16)

Proof As in the first paragraph of the proof of Proposition 4.6, let zx ∈ ∂D so that
|x − zx | = δD(x) and set x0 := zx + 3t1/αn(zx ). Let κ := 1 − 2−1/α . Note that
we have δD(z) ≥ 2(t/2)1/α and |y − z| ≥ δD(z) − δD(y) ≥ (t/2)1/α for every
z ∈ B(x0, κt1/α).

On the other hand, for every z ∈ B(x0, κt1/α),

|z − y| ≤ |z − x0| + |x0 − x | + |x − y| ≤ κt1/α + 3t1/α + |x − y|
≤ (

2α(κ + 3)+ 1
) |x − y|.
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Thus, by the semigroup property and Proposition 4.7, there exist positive constants
ci = ci (α, r0,�0), i = 1, 2, such that

pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫

B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1

∫

B(x0,κt1/α)

pD(t/2, x, z)
t

|z − y|d+α

(
δD(y)

t1/α

)α−1

dz

≥ c2
t

|x − y|d+α

(
δD(y)

t1/α

)α−1 ∫

B(x0,κt1/α)

pD(t/2, x, z)dz

= c2
t

|x − y|d+α

(
δD(y)

t1/α

)α−1

Px

(
Xt/2 ∈ B(x0, κt1/α)

)
.

Applying Lemma 4.5, we arrive at the conclusion of the proposition. ��
Now we are ready to prove the main result of this section.

Theorem 4.9 For every T > 0 there exists a positive constant c = c(α, r0,�0, T )
such that for all (t, x, y) ∈ (0, T ] × D × D,

pD(t, x, y) ≥ c

(
1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1 (
t−d/α ∧ t

|x − y|d+α

)
.

(4.17)

Proof Assume first that t ≤ T0.

1. We first consider the case |x − y| ≤ t1/α . We claim that in this case

pD(t, x, y) ≥ ct−d/α
(

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

. (4.18)

This will be proved by considering the following two possibilities.
(a) max{δD(x), δD(y), |x − y|} ≤ t1/α: Proposition 4.6 and symmetric yield

(4.18)
(b) max{δD(x), δD(y)} ≥ t1/α ≥ |x − y|:

If max{δD(x), δD(y)} ≥ t1/α ≥ 2|x − y|, (4.18) follows from Proposi-
tion 4.2.
If min{δD(x), δD(y)} ≥ t1/α and |x − y| ≤ t1/α < 2|x − y|,

t

|x − y|d+α � t−d/α
(

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

.

123



394 Z.-Q. Chen et al.

If max{δD(x), δD(y)} ≥ t1/α , min{δD(x), δD(y)} < t1/α and |x − y| ≤
t1/α < 2|x − y|,

(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

�
(

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

Thus by combining Propositions 4.4 and 4.6, we get (4.18) for the case of
max{δD(x), δD(y)} ≥ t1/α and |x − y| ≤ t1/α < 2|x − y|.

2. Now we consider the case |x − y| ≥ t1/α and claim that

pD(t, x, y) ≥ c

(
1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1 ( t

|x − y|d+α

)
.

(4.19)

(a) min{δD(x), δD(y)} ≤ (t/2)1/α and |x − y| ≥ t1/α: By symmetry we can
assume δD(x) ≤ (t/2)1/α . Thus Combining Propositions 4.7 and 4.8, we
have (4.19) for this case.

(b) min{δD(x), δD(y)} ≥ (t/2)1/α and |x − y| ≥ t1/α . In this case, clearly

(
1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

�
(
δD(x)

t1/α

)α−1 (
δD(y)

t1/α

)α−1

.

Thus Proposition 4.4 yields (4.19).
We have arrived at the conclusion of Theorem 4.9 for t ≤ T0.

We now consider t > T0 case: let

qD(t, x, y) :=
(

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1 (
t−d/α ∧ t

|x − y|d+α

)
.

First we observe that for any t > 0 and x, y ∈ D,

qD(t, x, y) � qD(t/2, x, y). (4.20)

Then by using the semigroup property and (4.20) twice we get, for any (t, x, y) ∈
(0, T0] × D × D,

pD(2t, x, y) =
∫

D

pD(t, x, z)pD(t, z, y)dz

≥ c1

∫

D

qD(t, x, z)qD(t, z, y)dz

≥ c2

∫

D

qD(t/2, x, z)qD(t/2, z, y)dz
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≥ c3

∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

= c3 pD(t, x, y) ≥ c4 qD(t, x, y) ≥ c5 qD(2t, x, y)

for some positive constants ci , i = 1, . . . , 5. Here in the first and fourth inequalities
we used Theorem 4.9 for t ≤ T0 and in the third inequality we used Theorem 3.5. ��

5 Large time heat kernel estimates and Green function estimates

In this section, we present proofs for Theorem 1.1 (ii) and Corollary 1.2. Throughout
this section, we assume that α ∈ (1, 2) and that D is a bounded C1,1 open set in R

d .

Proof of Theorem 1.1 (ii) By Theorem 2.2, the semigroup {P D
t , t > 0} is intrinsically

ultracontractive. It follows from Theorem 4.2.5 of [12] that there exists T1 > 0 such
that for all (t, x, y) ∈ [T1,∞)× D × D,

1

2
e−λ1tφ1(x)φ1(y) ≤ pD(t, x, y) ≤ 3

2
e−λ1tφ1(x)φ1(y).

Since φ1 = eλ1 P1φ1, we have from Theorem 1.1(i) that on D,

φ1(x) �
(

1 ∧ δD(x)
α−1

) ∫

D

(
1 ∧ δD(y)

α−1
)(

1 ∧ 1

|x − y|d+α

)
φ1(y)dy

� δD(x)
α−1. (5.1)

Thus there exist positive constants c6, c7 such that for all (t, x, y) ∈ [T1,∞)× D× D,

c6e−λ1tδD(x)
α−1δD(y)

α−1 ≤ pD(t, x, y) ≤ c7e−λ1tδD(x)
α−1δD(y)

α−1.

If T < T1, by Theorem 1.1(i), there exist positive constants c8, c9 such that for
(t, x, y) ∈ [T, T1] × D × D,

c8δD(x)
α−1δD(y)

α−1 ≤ pD(t, x, y) ≤ c9δD(x)
α−1δD(y)

α−1.

This gives the conclusion of Theorem 1.1(ii). ��

Proof of Corollary 1.2 First note that by Theorem 1.1(i), we have

∞∫

T

pD(t, x, y) � δD(x)
α−1δD(y)

α−1. (5.2)
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Let diam(D) be the diameter of D and T := diam(D)α . By a change of variable
u = |x−y|α

t , we have

T∫

0

t−d/α
(

1 ∧ t1/α

|x − y|
)d+α (

1 ∧ δD(x)

t1/α

)α−1 (
1 ∧ δD(y)

t1/α

)α−1

dt

= 1

|x−y|d−α

∞∫

|x−y|α
T

(
u

d
α
−2 ∧ u−3

)(
1 ∧ u1/αδD(x)

|x−y|
)α−1 (

1 ∧ u1/αδD(y)

|x−y|
)α−1

du.

(5.3)

Note that

1

|x − y|d−α

∞∫

1

(
u

d
α
−2 ∧ u−3

)(
1 ∧ u1/αδD(x)

|x − y|
)α−1 (

1 ∧ u1/αδD(y)

|x − y|
)α−1

du

≥ 1

|x − y|d−α

∞∫

1

u−3
(

1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

du

= 1

2|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

, (5.4)

while

1

|x − y|d−α

∞∫

1

(
u

d
α
−2 ∧ u−3

)(
1 ∧ u1/αδD(x)

|x − y|
)α−1 (

1 ∧ u1/αδD(y)

|x − y|
)α−1

du

= 1

|x − y|d−α

∞∫

1

u−1−2/α
(

u−1/α ∧ δD(x)

|x − y|
)α−1 (

u−1/α ∧ δD(y)

|x − y|
)α−1

du

≤ 1

|x − y|d−α

∞∫

1

u−1−2/α
(

1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

du

= α

2

1

|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

. (5.5)
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(i) Assume that d ≥ 2. Observe that

1

|x − y|d−α

1∫

|x−y|α
T

(
u

d
α
−2 ∧ u−3

)(
1 ∧ u1/αδD(x)

|x − y|
)α−1 (

1 ∧ u1/αδD(y)

|x − y|
)α−1

du

≤ 1

|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1 1∫

0

u
d
α
−2du

≤ α

d − α

1

|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

. (5.6)

So by (5.2)–(5.6), we have

G D(x, y) =
T∫

0

pD(t, x, y)dt +
∞∫

T

pD(t, x, y)dt

� 1

|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

+δD(x)
α−1δD(y)

α−1

� 1

|x − y|d−α

(
1 ∧ δD(x)

|x − y|
)α−1 (

1 ∧ δD(y)

|x − y|
)α−1

.

In the last estimate, we used the fact that D is bounded. Since δD(x) ≤ δD(y)+|x − y|
for every x, y ∈ D, it is easy to see that for every r ∈ (0, 1],

(
1 ∧ rδD(x)

|x − y|
)(

1 ∧ rδD(y)

|x − y|
)

≤ 1 ∧ r2δD(x)δD(y)

|x − y|2

≤ 2

(
1 ∧ rδD(x)

|x − y|
) (

1 ∧ rδD(y)

|x − y|
)
. (5.7)

So on D × D,

G D(x, y) � 1

|x − y|d−α

(
1 ∧ δD(x)δD(y)

|x − y|2
)α−1

.

(ii) Now we consider the case d = 1 < α < 2 and let

u0 := δD(x)δD(y)

|x − y|2 . (5.8)

Clearly

u−α/2
0 ≥ |x − y|α

diam(D)α
= |x − y|α

T
.
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By (5.7) and (5.8),

1

|x − y|d−α

1∫

|x−y|α
T

(
u

d
α
−2 ∧ u−3

)(
1 ∧ u1/αδD(x)

|x − y|
)α−1 (

1 ∧ u1/αδD(y)

|x − y|
)α−1

du

� 1

|x − y|1−α

1∫

|x−y|α
T

u(1/α)−2
(

1 ∧ u2/αδD(x)δD(y)

|x − y|2
)α−1

du

= 1

|x − y|1−α

⎛
⎜⎜⎝

1∫

|x−y|α
T

u(1/α)−21{u≥u−α/2
0 }du +

1∫

|x−y|α
T

uα−1
0 u−1/α1{u<u−α/2

0 }du

⎞
⎟⎟⎠

= 1

|x − y|1−α

(
α

α − 1

(
(uα/20 ∨ 1)1−(1/α) − 1

)

+ α

α − 1
uα−1

0

(
(u0 ∨ 1)−(α−1)/2 −

( |x − y|α
T

)(α−1)/α
))

.

So by (5.2)–(5.5), (5.7) and (5.8) and the last display, we have

G D(x, y)

=
∞∫

T

pD(t, x, y)+
T∫

0

pD(t, x, y)dt

� δD(x)
α−1δD(y)

α−1 + 1

|x − y|1−α (1 ∧ u0)
α−1

+ 1

|x − y|1−α

((
(u0 ∨ 1)(α−1)/2 − 1

)

+ uα−1
0

(
(u0 ∨ 1)−(α−1)/2 −

( |x − y|α
T

)(α−1)/α
))

� δD(x)
α−1δD(y)

α−1 + 1

|x − y|1−α
(

uα−1
0 ∧ u(α−1)/2

0

)

= δD(x)
α−1δD(y)

α−1

+ 1

|x − y|1−α

(
δD(x)α−1δD(y)α−1

|x − y|2α−2 ∧ δD(x)(α−1)/2δD(y)(α−1)/2

|x − y|α−1

)

� (δD(x)δD(y))
(α−1)/2 ∧ δD(x)α−1δD(y)α−1

|x − y|α−1 .

In the last estimate, we used the fact that D is bounded. This proves the corollary. ��
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Remark 5.1 As in [4], estimates of the Green functions can be used to show that
the Martin boundaries and minimal Martin boundaries of a large class of censored
stable-like processes can all be identified with the Euclidean boundary ∂D of D.
Sharp two-sided estimates for the Martin kernel is easy consequence of our estimates
of the Green functions.
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