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Abstract Let f be an holomorphic endomorphism of P
k and µ be its measure

of maximal entropy. We prove an almost sure invariance principle for the systems
(Pk, f, µ). Our class U of observables includes the Hölder functions and unbounded
ones which present analytic singularities. The proof is based on a geometric construc-
tion of a Bernoulli coding map ω : (�, s, ν) → (Pk, f, µ). We obtain the invariance
principle for an observable ψ on (Pk, f, µ) by applying Philipp–Stout’s theorem for
χ = ψ ◦ ω on (�, s, ν). The invariance principle implies the central limit theorem
as well as several statistical properties for the class U . As an application, we give a
direct proof of the absolute continuity of the measure µ when it satisfies Pesin’s for-
mula. This approach relies on the central limit theorem for the unbounded observable
log Jac f ∈ U .
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principle
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1 Introduction

Let f : P
k → P

k be an holomorphic endomorphism of algebraic degree d ≥ 2. Its
equilibrium measure µ is the limit of the probability measures d−n

t ( f n)∗ηk , where
dt := dk is the topological degree of f and ηk is the standard volume form on P

k . We
refer to the survey article of Sibony [38] for an introduction to the dynamical systems
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338 C. Dupont

(Pk, f, µ). Fornaess–Sibony proved that µ is mixing [22] and Briend–Duval that µ is
the unique measure of maximal entropy [7].

Przytycki et al. [36] introduced coding techniques for (P1, f, µ). This allowed them
to prove the almost sure invariance principle (ASIP) for Hölder and singular observ-
ables, like log | f ′|. In the present article, we extend the coding techniques to (Pk, f, µ)
and obtain the ASIP for observables which allow analytic singularities. As an applica-
tion, we obtain a direct proof of the absolute continuity of µ when it satisfies Pesin’s
formula. We review our results in Sects. 1.1, 1.2, 1.3 and 1.4, Sect.1.5 is devoted to
related results.

1.1 Bernoulli coding maps

Let us endow� := {1, . . . , dt }N with the natural product measure ν := ⊗∞
n=0ν̄, where

ν̄ is equidistributed on {1, . . . , dt }. We denote by α̃ the elements of� and by s the left
shift acting on �. Let J be the support of µ. The following theorem yields coding
maps ω : � → J up to zero measure sets. The set S ⊂ P

k will be defined in Sect. 4,
it has zero Lebesgue measure.

Theorem A Let z ∈ P
k\S. There exist an s-invariant set �′ ⊂ � of full ν-measure

and an f -invariant set J ′ ⊂ J of full µ-measure satisfying the following properties.
For any α̃ ∈ �′, the point ω(α̃) := limn→∞ zn(α̃) ∈ J ′ is well defined. We have
ω∗ν = µ and the following diagram commutes:

�′ s ��

ω

��

�′

ω

��
J ′ f �� J ′

Moreover there exist θ, ε > 0, nz ≥ 1 and ñ : �′ → N larger than nz such that:

1. d(zn(α̃), ω(α̃)) ≤ c̃ε d−εn for every α̃ ∈ �′ and n ≥ ñ(α̃),
2. ν({ñ ≤ q}) ≥ 1 − cθ d−θq for every q ≥ nz.

We note that �′, J ′ and ω depend on z ∈ P
k\S, but ω∗ν = µ holds true for any

such z. Observe also that ω is not necessarily injective. The proof of Theorem A (see
Sect. 4) is based on the construction of a geometric coding tree, following the approach
of Przytycki et al. [36] for (P1, f, µ). The point z is the root of the tree, and the set
{zn(α̃), α̃ ∈ �} is a suitable enumeration of the dn+1

t points of f −(n+1)(z), these are
vertices of the tree. The convergence of (zn(α̃))n for a generic α̃ ∈ � is obtained by
constructing dt good paths joining z to w ∈ f −1(z), whose inverse images decrease
exponentially. In the context of (P1, f, µ), that property was obtained in [36] by using
Koebe distortion theorem. The difficulty in higher dimensions is to substitute this argu-
ment. We establish for that purpose a quantified version of a theorem of Briend–Duval
(see Sect. 3).
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1.2 The class U and approximation by cylinders

Definition An observable ψ : P
k → R ∪ {−∞} belongs to the class U if:

– eψ is h-Hölder for some h > 0,
– Nψ := {ψ = −∞} is a (possibly empty) proper algebraic set of P

k ,
– ψ ≥ log d(·,Nψ)

ρ for some ρ > 0.

For instance, the Hölder functions are in U , as well as the unbounded function
log Jac f . We will show that U ⊂ L p(µ) for any 1 ≤ p < +∞ (see Sect. 2.2).

Theorem B Let ψ ∈ U be a µ-centered observable and ω be a coding map pro-
vided by Theorem A. Let χ := ψ ◦ ω and 1 ≤ p < +∞. We denote by E(χ |Cn) the
conditional expectation of χ with respect to the (n + 1)-cylinders.

1. there exist ĉp, λp > 0 such that ‖χ − E(χ |Cn) ‖p ≤ ĉp e−nλp for every n ≥ 0.
2. R j (χ) := ∫

�
χ · χ ◦ s j dν satisfies |R j (χ)| ≤ 2 ‖χ ‖2 ĉ2 e−( j−1)λ2 for every

j ≥ 1.

The proof occupies Sect. 5, it is based on the regularity properties of ω (namely the
points 1, 2 of Theorem A) and on the fact thatµ is a Monge–Ampère mass with Hölder
potentials. Theorem B allows us to prove Theorem C.

1.3 Almost sure invariance principle

Let ψ ∈ L2(µ) be a µ-centered observable and Sn(ψ) := ∑n−1
j=0 ψ ◦ f j . We say

that ψ satisfies the ASIP if there exist, on an extended probability space, a sequence
of random variables (Sn)n≥0 together with a Brownian motion W such that for some
γ > 0:

– Sn = W(n)+ o(n1/2−γ ) almost everywhere,
– (S0(ψ), . . . , Sn(ψ)) and (S0, . . . ,Sn) have the same distribution for any n ≥ 0.

We shall denote σ -ASIP to specify the variance of Brownian motion.

Theorem C For every µ-centered observable ψ ∈ U , we have:

1. σ := limn→∞ 1√
n

‖ Sn(ψ) ‖2 exists, and σ 2 = ∫
Pk ψ

2 dµ+ 2
∑

j≥1

∫
Pk ψ · ψ ◦

f j dµ.
2. If σ = 0, then ψ = u − u ◦ f holds µ-a.e. for some u ∈ L2(µ).
3. If σ > 0, then ψ satisfies the σ -ASIP.

The ASIP implies classical limit theorems related to Brownian motion: the central
limit theorem (CLT), the Law of Iterated Logarithm, Kolmogorov integral tests (see
[12,35]). The ASIP also implies the almost sure version of the CLT, meaning that

1
log n

∑n
k=1

1
k δ 1√

k
Sk (ψ)(x)

converges µ-a.e. to the normal law N (0, σ 2) (see [10,26]).

Let us outline the proof of Theorem C (see Sect. 6). Let ω : � → P
k be a coding

map provided by Theorem A andψ ∈ U . Sinceω satisfies f ◦ω = ω◦s andω∗ν = µ,
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340 C. Dupont

we are reduced to prove the assertions for χ = ψ ◦ ω on (�, s, ν). The points 1 and
2 follow from Theorem B(2) and classical arguments. The point 3 is a consequence
of Theorem B(1) and Philipp–Stout’s theorem ([35, Sect. 7]). That result relies on
an approximation of the partial sums of (χ ◦ s j ) j≥0 by a sequence of martingale
differences defined with respect to the increasing filtration (Cn)n≥0.

1.4 An application to smooth ergodic theory

Let χ1 ≤ · · · ≤ χk be the Lyapunov exponents of µ. Briend and Duval [6] proved that
they are larger than or equal to log d1/2. Since µ has entropy log dk , Pesin’s formula
h(µ) = 2(χ1 +· · ·+χk) holds if and only if these exponents are minimal. We proved
in a previous article that µ is then absolutely continuous with respect to Lebesgue
measure [21]. We there followed the classical approach of Sinai–Pesin–Ledrappier,
based on the construction of a suitable invariant partition which is dilated and realizes
entropy (see [27,33]). We propose in Sect. 7 a new proof, based on the CLT for the
unbounded µ-centered observable J := log Jac f −2(χ1 +· · ·+χk) ∈ U . We obtain
the following result, where σJ := limn→∞ 1√

n
‖ Sn(J ) ‖2.

Theorem D If the Lyapunov exponents are minimal equal to log d1/2, then σJ = 0,
and µ is absolutely continuous with respect to Lebesgue measure.

A crucial fact for the proof is that for any holomorphic endomorphism of P
k and

any µ-generic point x ∈ P
k , the minimal dilation rate of f n at x (i.e.

∥
∥ (dx f n)−1

∥
∥−1

)
is bounded below by dn/2 up to the multiplicative factor 1/n. In other words, the usual
e−nε-correction, due to the non-uniform hyperbolicity of (Pk, f, µ), can be replaced
here by 1/n. This was proved by Berteloot and Dupont [2], using a pluripotential
result of Briend and Duval [6] and the fact that µ is a Monge–Ampère mass. In par-

ticular, the product of the dilation rates satisfies Jac f n(x) ≥ ∥
∥ (dx f n)−1

∥
∥−2k ≥

(dn/2/n)2k = dkn/n2k . Now if we assume σJ > 0, then the function log Jac f n

would present non-trivial oscillations around its mean value log dkn , due to the CLT.
More precisely, it would imply log Jac f n ≤ log dkn − σJ

√
n on a subset of µ-

measure � ∫ −1
−∞ e−u2/2. That contradicts the preceding estimate, hence σJ = 0.

We deduce the absolute continuity of µ from the cocycle property J = u − u ◦
f µ-a.e. and a linearization property of the dynamics along typical negative
orbits [2].

1.5 Related results

The systems (Pk, f, µ) and (�, s, ν) are actually conjugated by a bimeasurable map
up to zero measure subsets, that property was proved by Briend [5]. However, the
regularity of the conjugacy seems difficult to handle. Let us also mention that finite-
to-one coding maps (Pk, f, µ) → (�, s, ν) were constructed by Buzzi [8] by means
of suitable partitions of P

k .
The ASIP has been proved for many dynamical systems: for piecewise monotonic

maps by Hofbauer and Keller [24], for Anosov maps by Denker and Philipp [13] and
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for partially and non-uniformly hyperbolic systems by Dolgopyat [20] and Melbourne
and Nicol [32]. We refer to the survey articles of Chernov [11] and Denker [12] for
limit theorems and statistical properties concerning dynamical systems.

The ASIP implies the CLT. Nevertheless, the latter can be directly proved via cod-
ing techniques and Ibragimov’s theorem [25]. That method was employed by Sinai
[39] and Ratner [37] for the geodesic flow in negative curvature, and by Bowen [4] for
Anosov maps. In the present article, Ibragimov’s condition is fulfilled by Theorem B.

The Gordin’s theorem provides another method for proving the CLT (see [23,28]).
It relies on an approximation of (ψ ◦ f j ) j≥0 by a sequence of reverse martingale
differences. In our context, this can be done if

∑
n≥0 ‖�nψ ‖2 (denoted (�)) con-

verges, where � denotes the Ruelle–Perron–Frobenius operator (we have �nψ(z) =
1

dn
t

∑
y∈ f −n(z) ψ(y) for every z ∈ P

k). Let us note that the reverse martingale men-

tioned is defined with respect to the decreasing filtration ( f −nB)n≥0, where B is the
Borel σ -algebra of P

k .
The exponential decay of correlations ensures the convergence of (�). This was

proved in the context of (Pk, f, µ) by Fornaess and Sibony [22] for C2 observ-
ables and by Dinh–Sibony for Hölder observables [18]. Dinh–Nguyen–Sibony have
recently extended that property for differences of quasi-plurisubharmonic functions
(the so-called dsh functions) [17]. The proof relies on exponential estimates for plu-
risubharmonic functions with respect to µ. They also obtained in that article a Large
Deviations Theorem for bounded dsh and Hölder observables. In [16], Dinh–Ngu-
yen–Sibony proved the local CLT for (P1, f, µ) by using the theory of perturbed
operators.

Denker et al. [14] employed a geometric method to prove the convergence of (�)
for (P1, f, µ) and Hölder observables. The idea was to compare �nψ(z) to �nψ(z′)
by using the contraction of most of the inverse branches of f n . The cornerstone is a
precise analysis of the dynamics near the critical points in the support of µ. Cantat
and Leborgne [9] extended this approach to (Pk, f, µ). A crucial ingredient was a
polynomial estimate for the µ-measure of postcritical neighbourhoods (lemma 5.7
of [9]). The original proof of that lemma contains a gap, the authors have recently
proposed another one. Cantat–Leborgne also established in [9] a quantified version of
the Briend–Duval theorem. Our version is similar, but we shall give a different proof.

The systems (Pk, f, µ) whose measure µ is absolutely continuous with respect to
Lebesgue measure were characterized by Berteloot, Dupont and Loeb [2,3]. In that
case, f is semi-conjugated to an affine dilation on a complex torus, these maps are
the so-called Lattès examples. We note that Theorem D characterizes these maps by
the minimality of the Lyapunov exponents. Another characterization of Lattès exam-
ples involves the Hausdorff dimension of µ, defined as the infimum of the Hausdorff
dimension of Borel sets with fullµ-measure (see Pesin’s book [34]): Dinh and Dupont
[15] proved that dimH(µ) = 2k if and only if the exponents are minimal. In the con-
text of (P1, f, µ), Mañé [30] proved that log d = dimH(µ) · χ , where χ denotes the
Lyapunov exponent of µ. In particular, the function L := log d − dimH(µ) · log | f ′|
is a µ-centered observable. Zdunik [40] proved that σL = 0 if and only if f is a
Lattès example, a Tchebychev polynomial or a power z±d . The proof relies on the
classification of critically finite fractions with parabolic Thurston’s orbifold.
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342 C. Dupont

2 Generalities

2.1 The holomorphic systems (Pk, f, µ)

We introduce in this section the systems (Pk, f, µ). We refer to the articles [6,7,22,38]
for definitions and properties. Here P

k denotes the complex projective space of dimen-
sion k. We denote by η the Fubini-Study form on P

k . This is a (1, 1)-form defined
in homogeneous coordinates by i

2π ∂∂̄ log ‖ z ‖2. It induces the standard metric on
P

k , the volume of P
k with respect to this metric is equal to 1. The form η induces

on every complex line L ⊂ P
k the spherical metric with area 1. Let f be an holo-

morphic endomorphism of P
k with algebraic degree d ≥ 2. It is defined in homo-

geneous coordinates by [P0 : · · · : Pk] where the Pi are homogeneous polynomials
of degree d (without common zero except the origin). The topological degree of f
is dt := dk . An inverse branch of f n on U ⊂ P

k is an injective holomorphic map
gn satisfying f n ◦ gn = IdU . We let Per f := ∪n≥1{x ∈ P

k, f n(x) = x}, this
set is at most countable. Let C be the critical set of f , V := ∪∞

i=0 f i (C) and Vn :=
∪n

i=1 f i (C). The degree of Vn , denoted τn , is equal to (d +· · ·+dn) deg C counted with
multiplicity.

The equilibrium measureµ is defined as the limit ofµn,z := 1
dn

t

∑
f n(y)=z δy , where

δy denotes the Dirac mass at y. In that definition, z has to be taken outside a totally
invariant algebraic set E ⊂ V , the so-called exceptional set of f . We denote by J the
support of µ. The measure µ is mixing and satisfies µ( f (B)) = dt µ(B) whenever f
is injective on B. It is the unique measure of maximal entropy (equal to log dt ). The
Lyapunov exponents χ1 ≤ · · · ≤ χk of µ are larger than or equal to log d1/2. They
satisfy the classical formula

∫
Pk log Jac f dµ = 2(χ1 +· · ·+χk), where Jac f is the

non-negative C∞ function on P
k satisfying f ∗ηk = Jac f · ηk . The latter is the real

jacobian of f , it vanishes on the critical set C of f .
The measure µ can also be defined via pluripotential theory: we have µ = T k ,

where T is the Green current of f . The latter is a closed positive (1, 1) current on
P

k with Hölder potentials. In particular, for any algebraic subset A ⊂ P
k , there exist

c, γ > 0 such that the r -neighbourhood of A satisfies µ(A[r ]) ≤ c rγ for any r > 0
(see [19, Prop. 2.3.7]). For any δ > 0 and c̃ > 0, we set cδ := (1 − d−δ)−1 and
c̃δ := c̃(1 − d−δ)−1. In the sequel, c > 0 is a constant independent of n, it may differ
from a line to another.

2.2 The class U

Let us recall the definition of the class U (see Sect. 1.2).

Definition 2.1 Let U be the set of functions ψ : P
k → R ∪ {−∞} satisfying:

– eψ is h-Hölder on P
k for some h > 0,

– Nψ := {ψ = −∞} is a (possibly empty) proper algebraic set of P
k ,

– ψ ≥ log d(·,Nψ)
ρ on P

k for some ρ > 0.

The Hölder functions belong to U . Examples of unbounded observables are:
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– the functions ψ = log |Q| − q log ‖ · ‖, where Q is a q-homogeneous polynomial
on C

k+1. Here the algebraic subset Nψ is the zero set of Q.
– the functions ψ = log

∥
∥� j dx f

∥
∥ (1 ≤ j ≤ k), where � j dx f is the j-exterior

power of the differential dx f . In particular, log Jac f ∈ U (take j = k).

The conditions of Definition 2.1 are easy to verify for these functions, the last one is
a consequence of Lojasiewicz’s inequality (see [29], Sect. 4.7). We prove below that
ψ ∈ L p(µ) for any ψ ∈ U and 1 ≤ p < +∞. Actually, we establish an estimate for∫
Nψ [r ] |ψ |p, useful to prove Theorem B. We recall that µ

(
Nψ [r ]) ≤ c rγ for some

c, γ > 0 (see Sect. 2.1).

Proposition 2.2 Let ψ ∈ U and 1 ≤ p < +∞. There exists κ > 0 such that:

∀ 0 < r < 1/2,
∫

Nψ [r ]
|ψ |p dµ ≤ κ rγ /2.

In particular ψ ∈ L p(µ).

Proof Let ψ ∈ U and N := Nψ . We may assume that 0 ≤ eψ ≤ 1 by adding some
constant to ψ . Let r < 1/2 and Q j := N [r/2 j ]\N [r/2 j+1]. Since eψ ≥ (r/2 j+1)ρ

on Q j , we obtain:

∫

N [r ]
|ψ |p dµ =

∑

j≥0

∫

Q j

| log eψ |p dµ ≤
∑

j≥0

∣
∣
∣ ρ log

( r

2 j+1

) ∣
∣
∣

p · µ(Q j ).

The inequalities µ(Q j ) ≤ c(r/2 j )γ and | log r
2 j+1 | = ( j + 1) log 2 + log 1

r ≤ ( j +
2) log 1

r yield:

∫

N [r ]
|ψ |p dµ≤

⎡

⎣c ρ p
∑

j≥0

( j + 2)p

2γ j

⎤

⎦
(

log
1

r

)p

rγ = Mρ,γ ·
(

log
1

r

)p

rγ /2 · rγ /2.

The lemma follows with κ := Mρ,γ · sup0<r<1/2
(
log 1

r

)p
rγ /2. ��

2.3 The Bernoulli space (�, s, ν)

We endow A := {1, . . . , dt } with the equidistributed probability measure ν̄. We set
� := AN, s : � → � the left shift and ν := ⊗∞

n=0ν̄. We denote by α̃ := (αn)n≥0 the
elements of �, by Cn the set of cylinders of length n + 1, and by πn : � → An+1 the
projection πn(α̃) := (α0, . . . , αn). For any α̃ ∈ �, we set Cn(α̃) := π−1

n (α0, . . . , αn).
We denote by E(χ |Cn) the conditional expectation of χ ∈ L2(ν) with respect to Cn .
If L = {A1, . . . , Ap} ⊂ Cn , we set L∗ := ∪1≤ j≤p A j .
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344 C. Dupont

2.4 Almost sure invariance principle

Let (X, g,m) be either (�, s, ν) or (Pk, f, µ). For any observable ϕ ∈ L2(m), we set
Sn(ϕ) := ∑n−1

j=0 ϕ ◦ g j and R j (ϕ) := ∫
X ϕ · ϕ ◦ g j dm. We say that ϕ is m-centered

if
∫

X ϕ dm = 0 and that ϕ is a cocycle if ϕ = u − u ◦ g m-a.e. for some u ∈ L2(m).
An observable ϕ on (X, g,m) satisfies the ASIP if there exist on a probability space

(X̃ , m̃) a sequence of random variables (Sn)n≥0 and a Brownian motion W such that:

– Sn = W(n)+ o(n1/2−γ ) m̃-a.e. for some γ > 0,
– (S0(ψ), . . . , Sn(ψ)) and (S0, . . . ,Sn) have the same distribution for any n ≥ 0.

We denote σ -ASIP to specify the variance of Brownian motion. The σ -ASIP implies
the σ -central limit theorem (σ -CLT), meaning that:

∀t ∈ R, lim
n→∞ m

(
Sn(ϕ)

σ
√

n
≤ t

)

= 1√
2π

t∫

−∞
e−u2/2 du.

Remark 2.3 Suppose that ω : � → P
k is a coding map provided by Theorem A.

Since ω∗ν = µ and f ◦ ω = ω ◦ s, a µ-centered observable ψ ∈ L2(µ) satisfies the
σ -ASIP if and only if the ν-centered observable χ := ψ ◦ ω ∈ L2(ν) satisfies the
σ -ASIP.

We shall use Philipp–Stout’s theorem ([35, Section 7]) to prove the ASIP forχ := ψ◦ω
on the Bernoulli space (�, s, ν). The version below comes from the original one by
using the s-invariance of ν and the independence of the random process (ξn)n≥0 defined
by ξn(α̃) = αn .

Theorem (Philipp–Stout) Let χ be a ν-centered observable on � satisfying:

1. χ ∈ L2+δ(ν) for some δ > 0,
2. ‖χ − E(χ |Cn) ‖2+δ ≤ c βn for some c > 0 and β < 1.

Then the sequence 1√
n

‖ Sn(χ) ‖2 has a limit σ . If σ > 0, then χ satisfies the σ -ASIP.

Let us compare that result with Ibragimov’s theorem (see [25, Theorem 2.1]), which
only requires moments of order 2 and a summability condition:

Theorem (Ibragimov) Let χ be a ν-centered observable on � satisfying:

∑

n≥0

‖χ − E(χ |Cn) ‖2 < ∞.

Then the sequence 1√
n

‖ Sn(χ) ‖2 has a limit σ . If σ > 0, then χ satisfies the σ -CLT.

3 A quantified version of Briend–Duval theorem

This section is devoted to the proof of Theorem 3.2 (see Sect. 3.2). That result will be
crucial to establish Theorem A.
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3.1 Briend–Duval theorem

We recall that Vl = ∪l
i=1 f i (C), V = ∪∞

i=0 f i (C) and that dt = dk is the topological
degree of f (see Sect. 2.1). We set τ∗ := 2 deg V1/(1 − 1/d).

Theorem (Briend and Duval [7]) Let η > 0 and l ≥ 1 be such that τ∗/dl < η. Let L
be a complex line in P

k not contained in V , and� � �̃ be topological discs in L\Vl .
Then, for any n ≥ l, there exist (1 − η)dn

t inverse branches gn on � satisfying:

diam gn(�) ≤ c̃ d−n/2

η1/2 mod (�̃\�)1/2 ,

where c̃ is a universal constant, and mod (�̃\�) is the modulus of the annulus �̃\�.

Let us recall the definition of the modulus (see Ahlfors book [1], chapters 1 and 2).
Let � denote the family of curves joining the boundary components of A := �̃\�.
For any conformal metric ρ on A, we respectively denote by areaρ and by lρ the area
and the length with respect to ρ. We denote by conf (A) the set of conformal metrics
giving finite area to A. The modulus of the annulus A is then defined by:

mod (A) := sup
ρ∈conf (A)

lρ(�)2

areaρ(A)
,

where lρ(�) := infλ∈� lρ(λ).

3.2 Statement of the quantified version

We begin with some notations. Let 0 < θ < 1 and θn := [θn+ log τ∗
log d ]+1. We introduce

this integer in view of applying Briend–Duval theorem with η = d−θn and l = θn

(indeed, τ∗/dθn < d−θn). Since the degree of Vθn = ∪θn
i=1 f i (C) is at most τθn =

(d + · · · + dθn ) deg C, we have τθn < dθn up to a multiplicative constant.
We let 0 < θ < θ ′ < 1 and consider n0 ≥ 1 satisfying:

∀n ≥ n0, θn < θ ′n and τθn < d θ
′n . (1)

Let us recall that Vθn [δ] is the δ-neighbourhood of Vθn in P
k . We fix θ ′/2 < ζ < 1

and define D := lim supn≥n0
Vθn [d−ζn].

Proposition 3.1 The set D satisfies Vol (D) = 0.

The proof is postponed to Sect. 3.5. We now state the quantified version. The constant
c̃ has been introduced in the statement of Briend–Duval’s theorem, and we denote by
L the complex line containing z and w.

Theorem 3.2 There exists ε > 0 such that for every distinct points (z, w) /∈ D ∪ V ,
there exist an injective smooth path γ : [0, 1] → L\V joining z and w, a decreasing
family of topological discs (�n)n ⊂ L and an integer nz,w such that for any n ≥ nz,w:
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1. γ [0, 1] ⊂ �n ⊂ L\Vθn ,
2. there exist (1 − d−θn)dn

t inverse branches of f n on �n,
3. these branches satisfy diam gn(�n) ≤ c̃ d−εn.

We note that θ, ε and c̃ do not depend on (z, w) ∈ P
k\(D ∪ V).

3.3 Construction of good paths in the complex line L ⊂ P
k

Let (z, w) be distinct points in P
k\(D ∪ V). We identify the complex line L contain-

ing z and w with the 2-dimensional sphere. We recall that the Fubini-Study metric
induces on L the standard spherical metric s with area 1. We assume with no loss of
generality that z and w are the North and South pole of L . Let E be the equator of
L . For any y ∈ E , we denote by My the meridian containing y, and by My{δ} the
δ-neighbourhood of My in L for the spherical metric. The constants 0 < θ < θ ′ < 2ζ
have been defined in Sect. 3.2. Now we let 0 < ζ < ζ ′ < ζ ′′ < 1 satisfying:

θ ′ < ζ ′′ − ζ ′ and θ + ζ ′′ < 1. (2)

We may take for (θ, θ ′, ζ, ζ ′, ζ ′′) suitable multiples of a small θ > 0. The second
inequality of (2) will be used in next subsection. The integer n0 has been defined in
Sect. 3.2.

Proposition 3.3 Let (z, w) be distinct points in P
k\(D ∪ V). With the above nota-

tions, there exists a subset F ⊂ E of full Lebesgue measure satisfying the following
properties. For any y ∈ F, there exists nz,w(y) ≥ n0 such that:

1. the meridian My does not intersect V ,
2. the neighbourhood My{d−ζ ′′n} does not intersect Vθn for any n ≥ nz,w(y).

Let us now prove Proposition 3.3. We start with some notations. Let H+ and H−
be the (open) North and South hemispheres of L , these sets induce a partition L =
H+ � E � H−. We denote by Leb the Lebesgue measure on E and by p1 (resp. p2)
the spherical projection from z (resp. w) to E . For any y ∈ E and δ > 0, let I(y, δ)
be the interval in E centered at y with length 2δ. We also denote by D(c, δ) ⊂ L
the disc with center c and radius δ. We define pκ(c) := p1(c) if c ∈ H+ ∪ E and
pκ(c) := p2(c) if c ∈ H−. The same convention holds for the projection of D(c, δ)
to E : we use p1 or p2 depending on c ∈ H+ ∪ E or c ∈ H−.

Let {ci , 1 ≤ i ≤ lθn } := Vθn ∩ L , where lθn ≤ deg (Vθn ) ≤ τθn . Since the

Fubini-Study metric induces s on L , the set Lθn := ∪lθn
i=1 D(ci , d−ζn) is a subset of

Vθn [d−ζn]. We recall that D = lim supn≥n0
Vθn [d−ζn] and that (z, w) /∈ D. Thus there

exists n1 ≥ n0 depending on (z, w) such that:

∀n ≥ n1, (z, w) /∈ Vθn [d−ζn]. (3)

In particular (z, w) /∈ Lθn . Since ζ < ζ ′ < ζ ′′, we may increase n1 so that d−ζ ′n +
d−ζ ′′n < d−ζn for any n ≥ n1. We have therefore, for ρ = z or w:
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∀ 1 ≤ i ≤ lθn , ∀n ≥ n1, D(ρ, d−ζ ′n) ∩ D(ci , d−ζ ′′n) = ∅.

This implies, with ei := pκ(ci ) ∈ E and c a positive constant:

∀ 1 ≤ i ≤ lθn , pκ
(

D(ci , d−ζ ′′n)
)

⊂ Ii := I(ei , c d−ζ ′′n · dζ
′n). (4)

Hence I(θn) := ∪lθn
i=1Ii satisfies Leb I(θn) ≤ τθn · c d−(ζ ′′−ζ ′)n ≤ c d(θ

′−(ζ ′′−ζ ′))n .
Since

∑
n Leb I(θn) < ∞ (see 2), the Borel–Cantelli lemma yields, for every y in a

full Lebesgue measure subset F ′ ⊂ E , an integer nz,w(y) ≥ n1 satisfying:

y /∈
⋃

n≥nz,w(y)

I(θn). (5)

Let us prove the point 2 of Proposition 3.3 (the point 1 will be proved below, F is
a subset of F ′). Let y ∈ F ′ and I := I(y, d−(ζ ′′−ζ ′)n). Since the intervals Ii defin-
ing I(θn) are centered at ei = pκ(ci ), the set p−1

1 (I) does not intersect any point
ci ∈ H+ ∪ E . The same property holds for p−1

2 (I) with the ci ∈ H−. This implies
that My{d−ζ ′′n} does not intersect Vθn ∩ L for any n ≥ nz,w(y), and yields the point 2.

For the point 1, it suffices to verify that pκ(V ∩ L) has zero Lebesgue measure.
Let W := V ∩ L . Since (z, w) ∈ L and (z, w) /∈ V = ∪∞

i=0 f i (C), the complex
line L is not an algebraic subset of the hypersurface f i (C) for any i ≥ 0. In par-
ticular, Wi := f i (C) ∩ L is finite for every i ≥ 0. Hence W = ∪i≥0Wi satisfies
Leb(pκ(W)) = 0. We finally set F := F ′\pκ(W), that completes the proof of
Proposition 3.3.

3.4 Proof of Theorem 3.2

We set ε := 1
2 (1 − (θ + ζ ′′)) > 0 (see 2). Let (z, w) be distinct points in P

k\(D ∪ V)
and consider some y ∈ F provided by Proposition 3.3: the meridian My does not
intersect V and its neighbourhood My{d−ζ ′′n} in L does not intersect Vθn for every
n ≥ nz,w(y).

We set nz,w := nz,w(y) and denote M := My for sake of simplicity. Let γ :
[0, 1] → L be the natural parametrization of M . We define �n := M{d−ζ ′′n/2} and
�̃n := M{d−ζ ′′n}. Let us apply Briend–Duval’s theorem with η = d−θn , l = θn and
�n � �̃n ⊂ L\Vθn . Since n > θ ′n ≥ θn = l and τ∗/dθn < d−θn (see 1), there exist
(1 − d−θn)dn

t inverse branches on the disc �n satisfying:

diam gn(�n) ≤ c̃ d−n/2
(

d−θn mod
[
�̃n\�n

])−1/2
. (6)

It remains to bound the modulus of An := �̃n\�n . Let �n be the set of curves
joining the boundary components of An . We denote by areas and by ls the area
and the length in L with respect to the spherical metric s. The following estimates
hold up to multiplicative constants. We have ls(λ) ≥ d−ζ ′′n for any λ ∈ �n , hence
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ls(�n) = infλ∈�n ls(λ) ≥ d−ζ ′′n . The inequalities areas(An) ≤ areas(�̃n) ≤ d−ζ ′′n

then imply:

mod (An) = sup
ρ∈conf An

lρ(�)2

areaρ(An)
≥ ls(�n)

2

areas(An)
≥ d−2ζ ′′n

d−ζ ′′n = d−ζ ′′n . (7)

From (6), (7) and ε = 1
2 (1 − (θ + ζ ′′)), we deduce that diam gn(�n) ≤ c̃ d−εn . That

completes the proof of Theorem 3.2.

3.5 Volume of neighbourhoods

This subsection is devoted to the proof of Proposition 3.1: we want to show Vol (D) =
0, where D = ⋂

n≥n0

⋃
p≥n Vθp [d−ζ p]. We recall that Vθp [d−ζ p] is the d−ζ p-neigh-

bourhood of ∪θp
i=1 f i (C) and that ζ > θ ′/2. The proof is based on the following lemma

(see [19, lemma 2.3.8]).

Lemma 3.4 Let X ⊂ P
k be an algebraic subvariety of dimension m and degree q.

Then Vol X [δ] ≤ q δ2(k−m) for any δ > 0, up to a multiplicative constant independent
of X.

We deduce Vol (D) = 0 as follows. We set p ≥ n ≥ n0 and apply Lemma 3.4 with
X = Vθp and δ = d−ζ p (here k − m = 1 and q = deg Vθp ≤ τθp ). We obtain with

τθp ≤ dθ
′ p (see 1): Vol Vθp [d−ζ p] ≤ τθp (d

−ζ p)2 ≤ d−(2ζ−θ ′)p. Hence:

∀n ≥ n0, Vol (D) ≤ Vol
⋃

p≥n

Vθp [d−ζ p] ≤ c2ζ−θ ′ d−(2ζ−θ ′)n .

This yields Vol (D) = 0 when n tends to infinity.

Proof of Lemma 3.4 The argument is based on Lelong’s inequality. Let E be a maxi-
mal δ-separated set in X for the ambient metric: this means that d(a, b) ≥ δ for any
pair of distinct elements of E , and that for any x ∈ X there exists a ∈ E satisfying
d(a, x) < δ. Since X [δ] ⊂ ∪a∈E Ba(2δ), we get up to a multiplicative constant:

Vol X [δ] ≤ (2δ)2k Card E . (8)

We now give an upper bound for Card E . Observe that Vol X is equal to the degree
of X , and that the balls (Ba(δ/2))a∈E are mutually disjoint. Thus:

q = Vol X ≥
∑

a∈E
Vol (X ∩ Ba(δ/2)) .

Now Lelong’s inequality asserts that Vol (X ∩ Ba(δ/2)) ≥ δ2m for any a ∈ E , up to a
multiplicative constant. Hence Card E ≤ q δ−2m , as desired. ��
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4 Proof of Theorem A

We set S := V ∪ D ∪ f (D) ∪ Per( f ), where D is defined in Sect. 3.2. We have
Vol (S) = 0 since Vol (D) = 0. Let us recall the statement of Theorem A.

Theorem A Let z ∈ P
k\S. There exist an s-invariant set �′ ⊂ � of full ν-measure

and an f -invariant set J ′ ⊂ J of full µ-measure satisfying the following properties.
For any α̃ ∈ �′, the point ω(α̃) := limn→∞ zn(α̃) ∈ J ′ is well defined. We have
ω∗ν = µ and the following diagram commutes:

�′ s ��

ω

��

�′

ω

��
J ′ f �� J ′

Moreover there exist θ, ε > 0, nz ≥ 1 and ñ : �′ → N larger than nz such that:

1. d(zn(α̃), ω(α̃)) ≤ c̃ε d−εn for every α̃ ∈ �′ and n ≥ ñ(α̃),
2. ν({ñ ≤ q}) ≥ 1 − cθ d−θq for every q ≥ nz.

We shall use Theorem 3.2 and the method of coding trees introduced in [36] for
(P1, f, µ). We recall that A = {1, . . . , dt }. Let z /∈ S and {wα, α ∈ A} := f −1(z).
By the very definition of S, the cardinal of f −1(z) is equal to dt and wα �= z,
wα /∈ V ∪ D for every α ∈ A. We denote by Lα the projective line in P

k containing
(z, wα) and apply Theorem 3.2: let γα be an injective smooth path joining (z, wα)
and (�n(α))n ⊂ Lα be a decreasing sequence of discs containing γα provided by that
theorem. We set nz := max{nz,wα , α ∈ A}.

Let us fix α̃ = (αn)n≥0 ∈ �. We define inductively injective smooth paths γn(α̃) :
[0, 1] → P

k\V and points zn(α̃) ∈ P
k\V . We first set γ0(α̃) := γα0 . This path joins

z = γ0(α̃)(0) and wα0 = γ0(α̃)(1) =: z0(α̃). Assume that the paths γ j (α̃) and the
points z j (α̃) have been defined for 0 ≤ j ≤ n −1. We let γn(α̃) to be the lift of γαn by
f n with starting point γn(α̃)(0) = zn−1(α̃). This path is well defined since γαn does
not intersect V . We finally let zn(α̃) := γn(α̃)(1).

We note that zn−1(α̃) and zn(α̃) are the endpoints of γn(α̃) and that zn(�) =
f −(n+1)(z) has cardinal dn+1

t . The reader will easily check the relation f ◦ zn(α̃) =
zn−1 ◦s(α̃). Observe also that γn(α̃) and zn(α̃) depend only on πn(α̃) = (α0, . . . , αn).
The following lemma is a consequence of Theorem 3.2 and the fact that γα[0, 1] ⊂
�n(α).

Lemma 4.1 For every α ∈ A and n ≥ nz, there exist at least (1 − d−θn)dn
t elements

(α0, . . . , αn−1) ∈ An such that diam γn(α0, . . . , αn−1, α) ≤ c̃ d−εn.

Let �n := {α̃ ∈ �, diam γn(α̃) > c̃ d−εn} and Bn be the collection of (n + 1)-
cylinders {Cn(α̃), α̃ ∈ �n}. We have �n = B∗

n . Let us also define:

�(n) :=
⋃

p≥n

�p =
⋃

p≥n

B∗
p.
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Lemma 4.2 For any n ≥ nz, we have:

1. Card (Bn) ≤ dn+1
t d−θn.

2. ν(�n) ≤ d−θn, hence ν(�(n)) ≤ cθ d−θn.
3. if α̃ /∈ �(n), then d(zm−1(α̃), zm(α̃)) ≤ c̃ d−εm for any m ≥ n.

Proof We have Bn = {Cn(α̃), diam γn(α̃) > c̃ d−εn}. For every α ∈ A, we set
Bn(α) ⊂ Bn to be the collection of (n + 1)-cylinders whose last coordinate is equal
to α. The Lemma 4.1 implies that Card (Bn(α)) ≤ dn

t d−θn and thus Card (Bn) =
∑
α∈A Card (Bn(α)) ≤ dn+1

t d−θn , which is the point 1. The point 2 follows:

ν(�n) = ν(B∗
n) = Card (Bn)/d

n+1
t ≤ d−θn .

For the point 3, observe that d(zm−1(α̃), zm(α̃)) ≤ diam γm(α̃). If α̃ /∈ �(n), then
α̃ /∈ �m for any m ≥ n, hence diam γm(α̃) ≤ c̃ d−εm . ��

Let � := ⋂
n≥nz

�(n) = lim supn≥nz
�n . The set �′′ := �\� has full ν-measure

since ν(�) ≤ ν(�(n)) ≤ cθd−θn for any n ≥ nz . For every α̃ ∈ �′′, we define ñ(α̃)
to be the least integer n ≥ nz satisfying α̃ /∈ �(n). Let �q := {ñ ≤ q}.
Lemma 4.3 1. ω(α̃) = limn→∞ zn(α̃) is well defined for every α̃ ∈ �′′.
2. d(zn(α̃), ω(α̃)) ≤ c̃ε d−εn for every n ≥ ñ(α̃).
3. ω : �′′ → P

k satisfies ω∗ν = µ.
4. ν(�q) ≥ 1 − cθ d−θq for any q ≥ nz.

Proof The points 1, 2 and 4 come from Lemma 4.2(3,2) and the definition of ñ(α̃).
Now we prove the point 3. Let us consider the surjective map zn : �′′ → f −(n+1)(z).
Since zn(α̃) depends only on α := (α0, . . . , αn) ∈ An+1, the measure zn∗ν is equal
to:

zn∗ν =
∑

α∈An+1

ν
(
�′′ ∩ Cn(α)

)
δzn(α) = 1

dn+1
t

∑

f n+1(y)=z

δy = µn+1,z .

Since z /∈ S and E ⊂ V ⊂ S, the sequence of probability measures (µn,z)n con-
verges to µ (see Sect. 2.1). Hence it remains to prove zn∗ν → ω∗ν, meaning that∫
�′′ ϕ ◦ zn dν → ∫

�′′ ϕ ◦ ω dν for every test function ϕ : P
k → R. But this follows

from point 1 and Lebesgue convergence theorem. ��
It remains to define �′,J ′ and to verify the relation f ◦ ω = ω ◦ s on �′. The

Lemma 4.3(3) implies that�∗ := ω(�′′) satisfiesµ(�∗) = ν(ω−1�∗) ≥ ν(�′′) = 1.
We define J ′ := ⋂

n∈Z
f n(J ∩ �∗) and �′ := ⋂

n∈Z
sn(�′′ ∩ ω−1J ′). These are

invariant subsets of full measure. We obtain f ◦ ω = ω ◦ s on �′ by taking limits in
f ◦ zn(α̃) = zn−1 ◦ s(α̃). That completes the proof of Theorem A.

5 Proof of Theorem B

Let us recall the statement.

Theorem B Let ψ ∈ U be a µ-centered observable and ω be a coding map provided
by Theorem A. Let χ := ψ ◦ ω and 1 ≤ p < +∞.
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1. there exist ĉp, λp > 0 such that ‖χ − E(χ |Cn) ‖p ≤ ĉp e−nλp for every n ≥ 0.
2. R j (χ) := ∫

�
χ · χ ◦ s j dν satisfies |R j (χ)| ≤ 2 ‖χ ‖2 ĉ2 e−( j−1)λ2 for every

j ≥ 1.

5.1 Proof of Theorem B(1)

We set χB := χ.1B for any B ⊂ � and use the following estimates provided by
Theorem A. We recall that �n = {ñ(α̃) ≤ n}.

(�) d(zn(α̃), ω(α̃)) ≤ c̃ε d−εn for every α̃ ∈ �n ,
(��) ν(�n) ≥ 1 − cθ d−nθ for every n ≥ nz .

We will need the following lemma, which is a direct consequence of (�).

Lemma 5.1 Let α̃ ∈ �n and β̃ ∈ Cn(α̃) ∩�n. Then d(ω(α̃), ω(β̃)) ≤ 2 c̃ε d−εn.

5.1.1 The Hölder case

Let ψ be an h-Hölder and µ-centered observable on P
k . We set χ := ψ ◦ ω. The

Theorem B(1) is a consequence of the following estimates, which hold for every
n ≥ nz .

Lemma 5.2
∥
∥χ�c

n
− E(χ�c

n
|Cn)

∥
∥

p ≤ 2 ‖χ ‖∞
(
cθ d−nθ

)1/p
.

Proof The left-hand side is less than 2
∥
∥χ�c

n

∥
∥

p by Jensen inequality. Then the con-
clusion follows from (��). ��
Lemma 5.3

∥
∥χ�n − E(χ�n |Cn)

∥
∥

p ≤ c d−nτ for some c, τ > 0.

Proof We denote ϕ := χ�n − E(χ�n |Cn) and estimate
∥
∥ϕ�c

n

∥
∥

p,
∥
∥ϕ�n

∥
∥

p. Since
ϕ�c

n
= −E(χ�n |Cn) · 1�c

n
, we have:

∥
∥ϕ�c

n

∥
∥

p ≤ ∥
∥ E(χ�n |Cn)

∥
∥

2p · ν(�c
n)

1/2p ≤ ‖χ ‖2p · (
cθ d−nθ )1/2p

.

We now deal with
∥
∥ϕ�n

∥
∥

p. For every α̃ ∈ �n , let να̃ be the conditional measure of
ν on the cylinder Cn(α̃). We have for every α̃ ∈ �n :

ϕ�n (α̃) =
∫

Cn(α̃)∩�n

(
χ(α̃)− χ(β̃)

)
dνα̃(β̃)+ χ(α̃) · να̃(Cn(α̃) ∩�c

n). (9)

We deduce from χ = ψ ◦ ω, Lemma 5.1 and the fact that ψ is h-Hölder:

∀α̃ ∈ �n, |ϕ�n (α̃)| ≤ (
2 c̃ε d−nε)h + ∥

∥χ�n

∥
∥∞ · να̃(Cn(α̃) ∩�c

n).

Hence we get for every p ≥ 1 up to a multiplicative constant:

∀α̃ ∈ �n, |ϕ�n (α̃)|p ≤ d−nhpε + ∥
∥χ�n

∥
∥p

∞ · να̃(Cn(α̃) ∩�c
n).
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By integrating over �n and using (��), we deduce:

∥
∥ϕ�n

∥
∥p

p ≤ d−nhpε + ‖χ ‖p∞ · cθd−nθ .

That completes the proof of the lemma. ��

5.1.2 The general case ψ ∈ U

Letψ : P
k → R∪{−∞} be aµ-centered observable in U : the function eψ is h-Hölder

and satisfies ψ ≥ log d(·,Nψ)
ρ on P

k (see Definition 2.1). Observe in particular that
ψ is bounded from above. We recall that Nψ [r ] is the r -neighbourhood of {ψ = −∞}
and that χ = ψ ◦ ω. We consider the following subsets of �:

�n := �c
n\Nn, �n = �n\Nn, Nn := ω−1

(
Nψ [d−n(hε/2ρ)]

)
.

We shall need the following observations. First, we have ν(Nn) = µ(Nψ

[d−n(hε/2ρ)]) ≤ d−nγ (hε/2ρ) up to a multiplicative constant (see Sect. 2.1). We deduce
from (��):

ν(�c
n) = ν(�c

n ∪ Nn) ≤ cθd−nθ + d−nγ (hε/2ρ) ≤ c d−nη (10)

for some c, η > 0. Second, for every α̃ ∈ N c
n = Sn ∪ �n , we have χ(α̃) ≥

log d(ω(α̃),Nψ)
ρ ≥ log d−ρn(hε/2ρ), hence:

∥
∥χSn∪�n

∥
∥∞ ≤ n (hε log d)/2. (11)

The Theorem B(1) is now a consequence of the following estimates.

Lemma 5.4
∥
∥χNn − E(χNn |Cn)

∥
∥

p ≤ (
κ d−n(hε/2ρ)·(γ /2))1/p

.

Proof The left-hand side is less than 2
∥
∥χNn

∥
∥

p. Proposition 2.2 yields
∥
∥χNn

∥
∥

p =
∥
∥ψ ◦ ω · 1Nn

∥
∥

p ≤ (
κ d−n(hε/2ρ)·(γ /2))1/p

for every n such that d−n(hε/2ρ) < 1/2.
��

Lemma 5.5
∥
∥χSn − E(χSn |Cn)

∥
∥

p ≤ n (hε log d) · (
c d−nη

)1/p
.

Proof The left-hand side is less than 2
∥
∥χSn

∥
∥

p. We conclude by using (10) and (11)
(observe that Sn ⊂ �c

n). ��
Lemma 5.6

∥
∥χ�n − E(χ�n |Cn)

∥
∥

p ≤ c d−nτ for some c, τ > 0.

Proof We follow the proof of Lemma 5.3: we set ϕ := χ�n −E(χ�n |Cn) and estimate∥
∥ϕ�c

n

∥
∥

p,
∥
∥ϕ�n

∥
∥

p. The line (10) yields:

∥
∥ϕ�c

n

∥
∥

p ≤ ∥
∥ E(χ�n |Cn)

∥
∥

2p · ν(�c
n)

1/2p ≤ ‖χ ‖2p · (
c d−nη)1/2p

.
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Now we deal with
∥
∥ϕ�n

∥
∥

p. We can write as in (9):

∀α̃ ∈ �n, ϕ(α̃) =
∫

Cn(α̃)∩�n

(
χ(α̃)− χ(β̃)

)
dνα̃(β̃)+ χ(α̃) · να̃(Cn(α̃) ∩ �c

n).

(12)

Let α̃ ∈ �n and β̃ ∈ Cn(α̃) ∩ �n . We deduce from (α̃, β̃) /∈ Nn that eψ ◦ ω(α̃) and
eψ ◦ ω(β̃) are larger than d−nhε/2. This implies:

|χ(α̃)− χ(β̃)| = | log eψ ◦ ω(α̃)− log eψ ◦ ω(β̃)| ≤ dnhε/2|eψ ◦ ω(α̃)− eψ ◦ ω(β̃)|.

Using Lemma 5.1 and the fact that eψ is h-Hölder, the last term is less than dnhε/2 ·
(
2 c̃ε d−nε

)h . Then we deduce from (12), up to a multiplicative constant:

∀α̃ ∈ �n, |ϕ(α̃)| ≤ d−nhε/2 + ∥
∥χ�n

∥
∥∞ · να̃(Cn(α̃) ∩ �c

n).

Taking the pth power, integrating over �n and using (10), (11), we obtain up to a
multiplicative constant:

∥
∥ϕ�n

∥
∥p

p ≤ d−nhpε/2 + (n(hε log d)/2)p · c d−nη.

That completes the proof of the lemma. ��

5.2 Proof of Theorem B(2)

Let ψ ∈ U be a µ-centered observable and χ = ψ ◦ ω. Let j ≥ 1 and n ≥ 0 to be
specified later. We set χn := E(χ |Cn) and write:

χ · χ ◦ s j = (χ − χn) · χ ◦ s j + χn · (χ ◦ s j − χn ◦ s j )+ χn · χn ◦ s j .

By using the s-invariance of ν and Jensen inequality ‖χn ‖2 ≤ ‖χ ‖2, we deduce:

|R j (χ)| =
∣
∣
∣
∣
∣
∣

∫

�

χ · χ ◦ s j dν

∣
∣
∣
∣
∣
∣
≤ 2 ‖χ ‖2 ‖χ − χn ‖2 +

∣
∣
∣
∣
∣
∣

∫

�

χn · χn ◦ s j dν

∣
∣
∣
∣
∣
∣
.

(13)

The variables χn and χn ◦ s j respectively depend on (ξ0, . . . , ξn) and (ξ j , . . . , ξn+ j ),
where ξn : � → A is the projection ξn(α̃) = αn . These are independent variables
when n = j − 1, hence

∫
�
χn · χn ◦ s j dν = ∫

�
χn dν

∫
�
χn ◦ s j dν in that case. But

this product is zero since χ is ν-centered. The conclusion then follows from (13) with
n = j − 1 and Theorem B(1).
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6 Proof of Theorem C

Let us recall the statement.

Theorem C For every µ-centered observable ψ ∈ U , we have:

1. σ := limn→∞ 1√
n

‖ Sn(ψ) ‖2 exists, and σ 2 = ∫
Pk ψ

2 dµ+ 2
∑

j≥1

∫
Pk ψ · ψ ◦

f j dµ.
2. If σ = 0, then ψ = u − u ◦ f µ-a.e. for some u ∈ L2(µ).
3. If σ > 0, then ψ satisfies the σ -ASIP.

The points 1 and 2 are consequences of classical Lemma 6.1 below, whose condi-
tion

∑
j≥1 j |R j (ϕ)| < ∞ is fulfilled by Theorem B(2). The point 3 follows from

Proposition 2.2, Theorem B(1) and Philipp–Stout’s theorem (see Sect. 2.4).

Lemma 6.1 Let (X, g,m) be a dynamical system and ϕ ∈ L2(m) be a m-centered
observable. We denote Sn(ϕ) = ∑n−1

j=0 ϕ ◦ g j and R j (ϕ) = ∫
X ϕ · ϕ ◦ g j dm. Let

σ 2 := R0(ϕ)+2
∑

j≥1 R j (ϕ). If
∑

j≥1 j |R j (ϕ)| < ∞, then σ 2 is finite and we have:

1. ‖ Sn(ϕ) ‖2
2 = nσ 2 + O(1). In particular, limn→∞ 1

n ‖ Sn(ϕ) ‖2
2 = σ 2.

2. σ 2 = 0 if and only if ϕ = u − u ◦ g m-a.e. for some u ∈ L2(m).

Proof Let Sn := Sn(ϕ) and R j := R j (ϕ). Since m is g-invariant, we have ‖ Sn ‖2
2 =

n R0 + 2
∑n−1

j=1 (n − j) R j . We deduce for every n ≥ 1:

‖ Sn ‖2
2 = n

⎛

⎝R0 + 2
∞∑

j=1

R j

⎞

⎠ + (−2)

⎛

⎝
n−1∑

j=1

j R j +
∞∑

j=n

n R j

⎞

⎠ = nσ 2 + An,

(14)

where |An| ≤ 2
∑

j≥1 j |R j |. That proves the point 1. Let us show the point 2. Sup-

pose σ 2 = 0. In view of (14), the function u p := 1
p

∑p
n=1 Sn satisfies

∥
∥ u p

∥
∥

2 ≤
(2

∑
j≥1 j |R j |)1/2 for every p ≥ 1. Let u := lim j→∞ u p j be a weak cluster point in

L2(m) and observe that:

∀ j ≥ 1, u p j − u p j ◦ g = 1

p j

p j −1∑

n=0

(
ϕ − ϕ ◦ gn) = ϕ − 1

p j
Sp j .

We deduce ϕ = u − u ◦ g m-a.e. by taking limits in L2(m) : lim j→∞ u p j ◦ g = u ◦ g

since m is g-invariant, and lim j→∞ 1
p j

Sp j = ∫
X ϕ dm = 0 by Von Neumann theo-

rem. The reverse implication of the point 2 comes from σ 2 = limn→∞ 1
n ‖ Sn(ϕ) ‖2

2 =
limn→∞ 1

n ‖ u − u ◦ gn ‖2
2 = 0. ��
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7 Proof of Theorem D

We recall that J := log Jac f − ∫
Pk log Jac f dµ, this is an unbounded µ-centered

observable in U . We set σJ := limn
1√
n

‖ Sn(J ) ‖2, which is well defined by Theorem
C. We denote by χ1 ≤ · · · ≤ χk the Lyapunov exponent of µ, they are larger than or
equal to log d1/2.

Theorem D If the Lyapunov exponents ofµ are minimal equal to log d1/2, then σJ =0
and µ is absolutely continuous with respect to Lebesgue measure.

The first part σJ = 0 will be proved in Sect. 7.2. The second part is a consequence
of Theorem 7.1 below (that theorem will be proved in Sect. 7.3 by using σJ = 0). In
the sequel, the maps f n and dx f n are implicitely written in some fixed charts of P

k .

Theorem 7.1 Assume that the Lyapunov exponents are minimal. Then for µ almost
every x ∈ P

k , there exists ρ(x) > 0 and a subsequence (n j (x)) j≥1 such that f n j ◦(
x + d−n j /2 · IdCk

) : B(ρ(x)) → P
k is injective.

Proof of the second part of Theorem D (abolute continuity) We use the notations of
Theorem 7.1. Let x ∈ P

k be a µ-generic point and set n j := n j (x). Since f n j is
injective on the ball B j := Bx (ρ(x)d−n j /2) and µ has constant jacobian dk (see
Sect. 2.1), we obtain µ(B j ) = µ( f n j (B j ))d−kn j . Observe also that Leb(B j ) =
ρ(x)2k

(
d−n j /2

)2k = ρ(x)2kd−kn j up to a multiplicative constant. We obtain there-
fore for µ-a.e. x ∈ P

k :

lim inf
r→0

µ(Bx (r))

Leb(Bx (r))
≤ lim inf

j→∞
µ(B j )

Leb(B j )
= lim inf

j→∞
µ( f n j (B j ))

ρ(x)2k
≤ 1

ρ(x)2k
< ∞.

That proves the absolute continuity of µ (see [31], theorem 2.12). ��

7.1 Preliminaries

Observe that J = log Jac f − log dk when the Lyapunov exponents are equal to
log d1/2. Since the jacobian is a multiplicative function, we have in that case:

Sn(J ) =
n−1∑

i=0

J ◦ f i (x) = log Jac f n − log dkn . (15)

The singular values δ1 ≤ · · · ≤ δk of the linear map A := dx f n are defined as
the eigenvalues of

√
AA∗. In particular, there exist unitary matrices (U, V ) such that

dx f n = U Diag(δ1, . . . , δk) V . We have therefore:

δ1 =
∥
∥
∥ (dx f n)−1

∥
∥
∥

−1
and

k∏

i=1

δi
2 = Jac f n(x) ≥ δ2k

1 . (16)
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For any ρ, τ > 0 and n ≥ 1, we define:

Bn(ρ) := {
x ∈ P

k, f n ◦ (x + dx f n)−1 : B(ρ) → P
k is an injective map

}
,

Rn(τ ) :=
{

x ∈ P
k,

∥
∥ (dx f n)−1

∥
∥−1 ≥ dn/2/τ

}
.

The following estimates were proved by Berteloot and Dupont [2]. They hold for every
system (Pk, f, µ) whose Lyapunov exponents satisfy χk < 2χ1.

Theorem 7.2 There exists α : ]0, 1] → R
∗+ satisfying limρ→0 α(ρ) = 1 and for

n ≥ 1:

1. µ(Bn(ρ)) ≥ α(ρ),
2. µ(Bn(ρ) ∩ Rn(τ )

c) ≤ (ρ τ)−2.

That result implies the following lemma.

Lemma 7.3 Let ρ ∈]0, 1]. There exists H ⊂ P
k satisfying µ(H) = 1 and:

∀x ∈ H, ∃n(x) ≥ 1, ∀n ≥ n(x), x /∈ Bn(ρ) or Jac f n(x) ≥ dkn/n2k .

Proof We apply Proposition 7.2(2) with τ = n to get µ(Bn(ρ)∩ Rn(n)c) ≤ (ρ n)−2.
Since

∑
n≥1 µ(Bn(ρ)∩Rn(n)c) < ∞, there exists by Borel–Cantelli lemma a subset

H of full µ-measure satisfying:

∀x ∈ H, ∃n(x) ≥ 1, ∀n ≥ n(x), x /∈ Bn(ρ) or x ∈ Rn(n).

But x ∈ Rn(n) implies by (16): Jac f n(x) ≥ (
dn/2/n

)2k = dkn/n2k . ��

7.2 Proof of the first part of Theorem D (σJ = 0)

Suppose that the exponents are minimal and that σJ = limn
1√
n

‖ Sn(J ) ‖2 > 0. Then

J satisfies the CLT: if V := 1√
2π

∫ −1
−∞ e−u2/2 du, we getµ

(
Gn := { Sn(J )√

n
≤ −σJ }

)
≥

V/2 for n larger than some N (see Sect. 2.4).
Let ρ > 0 be such that µ(Bn(ρ)) > 1 − V/4 for every n ≥ 1. If we set Fn :=

Bn(ρ) ∩ Gn , then F := lim supn≥N Fn satisfies µ(F) ≥ V/4. Let x ∈ F ∩ H,
where H is provided by Lemma 7.3. Let (n j (x)) j≥1 be such that x ∈ Fn j for every
j ≥ 1. The inclusion Fn j ⊂ Gn j yields Sn j (J )(x) ≤ −σJ

√
n j for every j ≥ 1. Since

Sn j (J ) = log Jac f n j − log dkn j (the exponents are indeed minimal, see (15)), we
deduce:

∀ j ≥ 1, Jac f n j (x) ≤ dkn j e−σJ
√

n j . (17)

But Jac f n j (x) ≥ dkn j /n2k
j for every n j ≥ n(x), following from x ∈ Bn j (ρ) ∩ H

and lemma 7.3. That contradicts (17) when j tends to infinity.

123



Bernoulli coding map and almost sure invariance principle for endomorphisms of P
k 357

7.3 Proof of Theorem 7.1

We proved in Sect. 7.2 that σJ = 0. Hence J = u − u ◦ f µ-a.e. for some u ∈ L2(µ)

by Theorem C. We obtain therefore:

u − u ◦ f n(x) =
n−1∑

i=0

J ◦ f i (x) = log Jac f n(x)− log dkn . (18)

Let ε > 0 and m ≥ 1 such that M := {|u| ≤ log m} satisfies µ(M) ≥ (1 − ε)1/2.
Since µ is mixing, Mn := M ∩ f −nM satisfies µ(Mn) ≥ µ(M)2 − ε ≥ 1 − 2ε
for n larger than some N ′. Let ρ be small and τ be large enough such that µ(Bn(ρ)∩
Rn(τ )) ≥ 1 − 2ε for every n ≥ 1. We define Tn := Bn(ρ) ∩ Rn(τ ) ∩ Mn and
T := lim supn≥N ′ Tn . Observe that µ(T ) ≥ 1 − 4ε. Let x ∈ T and (n j ) j (depend-
ing on x) such that x ∈ Tn j for every j ≥ 1. Since x ∈ Tn j ⊂ Bn j (ρ), the map
f n j ◦ (x + (dx f n j )−1) : B(ρ) → P

k is injective.
Let�n = d−n/2 · IdCk . It is enough to prove that dx f n j = (U j Pj Vj )�

−1
n j

, where
(U j , Vj ) are unitary matrices and Pj is a diagonal matrix with entries in [a, b] ⊂ R

∗+
((a, b) being independent of j). Indeed, this implies that f n j ◦ (x +�n j ) is injective
on B(ρ/b), completing the proof of Theorem 7.1. We shall omit the subscript j for
simplification, and denote by δ1 ≤ · · · ≤ δk the singular values of dx f n . Let (U, V )
be unitary matrices such that dx f n = U Diag(δ1, . . . , δk) V (see Sect. 7.1). The fact
that x ∈ Rn(τ ) yields:

δ1 =
∥
∥
∥ (dx f n)−1

∥
∥
∥

−1 ≥ dn/2/τ. (19)

Now we give an upper bound for δk . Since x ∈ Tn ⊂ Mn , we have (x, f n(x)) ∈
M = {|u| ≤ log m}. This implies by (18):

dkn/2/m ≤
k∏

i=1

δi = Jac f n(x)1/2 ≤ dkn/2m.

We deduce from (19):

δk ≤ δ1 . . . δk−1

δk−1
1

δk = Jac f n(x)1/2

δk−1
1

≤ dkn/2m

(dn/2/τ)k−1 = dn/2τ k−1m.

Thus Diag(δ1, . . . , δk) = �−1
n P , where P is diagonal with entries in [1/τ, τ k−1m].

We obtain finally dx f n = U �−1
n P V = (U P V )�−1

n , as desired.
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