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Abstract We estimate a real-valued function f of d variables, subject to addi-
tive Gaussian perturbation at noise level ε > 0, under Lπ -loss, for π ≥ 1. The
main novelty is that f can have an extremely varying local smoothness, exhibiting a
so-called multifractal behaviour. The results of Jaffard on the Frisch–Parisi conjecture
suggest to link the singularity spectrum of f to Besov properties of the signal that can
be handled by wavelet thresholding for denoising purposes. We prove that the optimal
(minimax) rate of estimation of multifractal functions with singularity spectrum d(H)
has explicit representation ε2v(d(•),π), with

v(d(•), π) = min
H

H + (d − d(H)) /π

2H + d
.

The minimum is taken over a specific domain and the rate is corrected by logarithmic
factors in some cases. In particular, the usual rate ε2s/(2s+d) is retrieved for monofractal
functions (with spectrum reduced to a single value s) irrespectively of π . More inter-
estingly, the sparse case of estimation over single Besov balls has a new interpretation
in terms of multifractal analysis.
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156 A. Gloter, M. Hoffmann

1 Introduction

We consider the usual formulation of signal denoising in nonparametric estimation:
we want to recover a real-valued function f defined on a regular bounded domain
D ⊂ R

d . We can make linear measurements, but each measurement is contaminated
by systematic noise: we observe

Yε = f + ε Ẇ , (1.1)

where Ẇ is a Gaussian white noise on L2(D) and ε > 0 a noise level. Asymptotics
are taken as ε → 0. Observable quantities take the form

Yε(ϕ) := 〈ϕ, f 〉 + ε ξ(ϕ),

where ϕ ∈ L2(D) is a test function and 〈•, •〉 denotes the inner product on L2(D). The
random process ξ(ϕ) is centred Gaussian, with covariance E[ξ(ϕ)ξ(ψ)] = 〈ϕ,ψ〉
for ϕ,ψ ∈ L2(D). The symbol E[•] denotes mathematical expectation. This setting
is meaningless without further smoothness properties on the signal f . A commonly
used assumption is that f belongs to a Besov ball

Bs
p,∞(r) :=

{
f ∈ Bs

p,∞, ‖ f ‖Bs
p,∞ ≤ r

}
, (1.2)

for some r > 0, with the additional condition s − d/p > 0 so that the functions in
Bs

p,∞(r) are all continuous. Here, Bs
p,∞ denotes the Besov space on D, appended with

boundary conditions and p ranges in (0,+∞); more in Sect. 3.1 below.
In this paper, we are interested in signals that possess local smoothness in a Hölder

sense that vary extremely from one point to the other and that we shall informally refer
to as multifractal before getting to a rigorous definition. In this context, the classical
approach of single Besov balls (1.2) needs to be generalized.

1.1 Multifractal analysis

Let x0 ∈ D, α > 1. Following Jaffard [25], we say that f : D → R is Cα(x0) if there
exists c > 0 and a polynomial Px0 of degree at most [α] such that in a neighbourhood
of x0:

| f (x)− Px0(x)| ≤ c|x − x0|α.

If α ∈ (0, 1], we simply replace Px0(x) by f (x0). The Hölder exponent of f at x0 is

h f (x0) := sup
{
α > 0, f ∈ Cα(x0)

}
. (1.3)

The level sets

S f (H) := {x ∈ D, h f (x) = H} (1.4)
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Nonparametric reconstruction of a multifractal function from noisy data 157

with maximal Hölder regularity H of the functions we want to consider have typical
Lebesgue measure zero, see [25], and in this setting, it seems more appropriate to
consider the Hausdorff dimension1 of S f (H). The function d(H) := dim S f (H) is
called the Hölder or singularity spectrum of f and is extended to the whole line by
setting dim(H) = −∞ if H is nowhere the Hölder exponent of f .

Definition 1.1 A function f : D → R is multifractal if its spectrum of singularity
d(H) 
= −∞ at least on an interval of nonempty interior.

1.2 Empirical multifractal evidence

Empirical evidence of multifractal behaviour in signal modelling was first obtained
in velocity fields of fully developed turbulent flows [15–18] around 1980, and lays
its roots in the theoretical founding papers of Kolmogorov and Oboukhov [29,34] in
1962. Clearly however, the spectrum of singularity d(H) defined by (1.3) and (1.4) is
an asymptotic notion that cannot be related to quantities that are measured with limited
accuracy or in presence of noise. The link between d(H) and related observable objects
can be given by the Frisch–Parisi conjecture which reads2

d(H) = inf
p

{pH − ps(1/p)+ d} , (1.5)

where the exponent s(•) is defined pointwise by

s(1/p) := sup
{

s ≥ 0, f ∈ Bs
p,∞

}
.

The use of correspondence (1.5) suggests a strategy to define a consistent statistical
setup since Besov norms are tractable functionals that can be estimated in presence
of noise by wavelet thresholding [8,11–14,28]. Of course, the range of H and p for
which (1.5) can be valid must be assessed precisely, see Sect. 3.4. When (1.5) holds, we
informally say that f satisfies a multifractal formalism. It is noteworthy that a Besov-
type related quantity, the so-called structure function, measures statistical evidence of
multifractality. The structure function can be defined as

M j ( f, 1/p) := 2− j
2 j∑

k=1

∣∣∣∣ f (k2− j )− f
(
(k − 1)2− j

) ∣∣∣∣
p

, (1.6)

in dimension d = 1 with D = [0, 1] for notational simplicity. Multifractal empirical
evidence corresponds to a scaling law of the type

M j ( f, 1/p) ≈ 2− j ps(1/p), j → ∞

1 We recall the definition of the Hausdorff dimension in the appendix for sake of completeness.
2 A classical heuristic derivation of (1.5) is proposed in Appendix (The Frisch–Parisi heuristics).
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158 A. Gloter, M. Hoffmann

where the function 1/p � s(1/p) is not constant. Indeed, interpreting the local
fluctuation of f around k2− j as a wavelet coefficient up to rescaling, we have

sup
j

2 js(1/p)M j ( f, 1/p)1/p ≈ ‖ f ‖
Bs(1/p)

p,∞
, (1.7)

so having s(•) not being constant and putting together (1.7)–(1.5) yields the notion of
multifractality of Definition 1.1. The precise meaning of (1.7) together with the link
to Besov norms will become transparent in Sects. 2 and 3 below, at least for small
values of s(•).

1.3 Organisation and results of the paper

In Sect. 2, we define rigorously our statistical setting and the corresponding multi-
fractal formalism by means of so-called Besov domains inspired by Jaffard [25] and
that enables us to consider multifractal signals without loosing the standard minimax
approach of recovering functions in Besov spaces.

An upper bound for estimating signals within a prescribed Besov domain is given
in Lπ -loss error in Theorem 3.4, for π ≥ 1. It is achieved by the wavelet threshold
algorithm, and the proof heavily relies on the modern formulation of wavelet esti-
mation over atomic spaces, as introduced by Cohen et al. [8]. We make a systematic
use of embeddings properties of strong Besov spaces into weak Besov spaces, thanks
to the results of Kerkyacharian and Picard [28], a key reference for the paper. These
powerful analytical tools render the proof of Theorem 3.4 quite simple, yet technical.
This result is optimal by Theorem 3.5, up to logarithmic factors. This is actually the
most delicate part of the paper: in order to prove a lower bound, an appropriate prior
has to be chosen over functions which are genuinely multifractal with a prescribed
singularity spectrum. A nontrivial construction is proposed, using tools developed in
Jaffard [25], another central reference to the paper.

The translation in terms of multifractal analysis and Hölder spectrum whenever the
Frisch–Parisi conjecture holds is given in Theorem 3.8. We show that the minimax
rate of estimation of multifractal functions with singularity spectrum d(H) has explicit
representation ε2v(d(•),π), with

v(d(•), π) = min
H

H + (d − d(H)) /π

2H + d
.

The minimum is taken over a specific domain and the rate is corrected by logarithmic
factors in ε in some cases. As a consequence, the classical rate ε2s/(2s+d) is retrieved
for monofractal functions having singularity spectrum d(s) = d and d(H) = −∞ for
H 
= s, irrespectively of the Lπ -loss. More interestingly, the sparse case of estimation
over single Besov balls has a new interpretation in terms of multifractal analysis,
as well as the critical case that separates dense and sparse regimes. Examples and
applications are derived in Sect. 4. In particular, we revisit and somewhat improve
former results of Hall et al. [22] on estimation of noisy signals exhibiting abberations
of chirp or Doppler type, thanks to the multifractal approach. We also address the case
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Nonparametric reconstruction of a multifractal function from noisy data 159

of recovering genuine multifractal signals such as lacunary wavelet series or cascade
processes. The proofs are delayed until Sect. 5 and auxiliary technical results are given
in an Appendix.

Beyond statistical turbulence, the multifractal approach is now commonly used
in several applied fields: traffic networks [35], coding sequences in genome analysis
[1,36,38], and financial data, following the seminal work of Mandelbrot [30,31], see
[2,3,21] and the references therein. Concerning multifractal analysis and wavelets in
statistics, we mention the Bayesian approach of Gamboa and Loubes [19,20], and the
model of generalized fractional Brownian motion of Wang et al. [5,37].

2 Multifractal formalism and signal estimation

2.1 Besov domains and function classes

We generalize the scale of Besov classes (1.2) of the Introduction by describing the
approach of Besov domains. For f ∈ L2, the minimal assumption so that the statistical
model (1.1) is well defined, we have the following:

Definition 2.1 The scaling function of f is

1/p � s f (1/p) := sup{s ≥ 0, f ∈ Bs
p,∞}.

The function s f (•) is defined pointwise over a domain of 1/p ⊂ [0,+∞) that contains
at least [1/2,+∞) since f ∈ L2 = B0

2,2 ⊂ B0
2,∞. This domain may contain 0 if we

allow for p = ∞. The function s f (•) can take the value +∞, in which case it becomes
trivially equal to +∞ over [0,+∞). This is a consequence of the following simple
lemma:

Lemma 2.2 The function s f (•) is increasing, concave and satisfies s′
f (•) ≤ d.

Here, s′
f (•) denotes the left-derivative of s f (•). We adopt the same convention for

any concave function in the sequel.

Proof Since D is bounded, the spaces Bs
p,∞ are decreasing in p thus 1/p � s f (1/p)

is increasing. If f belongs to Bs1
p1,∞∩ Bs2

p2,∞, then f ∈ Bs3
p3,∞ for s3 = us1 +(1−u)s2

and 1/p3 = u/p1 + (1−u)/p2 for all u ∈ [0, 1] by interpolation hence s f (•)must be
concave. Finally, the Sobolev embedding Bs1

p1,∞ ⊂ Bs2
p2,∞ if s1 − d/p1 = s2 − d/p2,

p2 ≥ p1 yields the bound s′
f (•) ≤ d. ��

Conversely, we adopt the following:

Definition 2.3 A nondecreasing concave function s(•) : [0,+∞) → R such that
s(0) > 0 is called admissible. The Besov domain of an admissible function s(•) is the
set of functions defined by

M (s(•)) :=
{

f ∈ L2, ∀ 1/p ∈ [0,+∞), s f (1/p) ≥ s(1/p)
}
.
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160 A. Gloter, M. Hoffmann

Remark 2.4 The assumption s(0) > 0 guarantees some uniform Hölder regularity
since M (s(•)) ⊂ Bs(0)−ε∞,∞ for all ε > 0. In particular, the functions in M (s(•)) are
continuous over D. This assumption is crucial for the interpretation of Jaffard’s theo-
rem in Sect. 2.2 in terms of multifractal analysis, but not essential as far as statistical
estimation is concerned.

The Besov domain M (s(•)) coincides with the space

⋂
p∈(0,+∞)

⋂
ε>0

Bs(1/p)−ε
p,∞

that consists of functions that saturate their smoothness in L p with the exponent s(1/p)
simultaneously for all p ∈ (0,+∞). In particular, we cover the case of single Besov
spaces in the following sense: let s0, p0 satisfy s0 − d/p0 > 0 and define

ss0,p0(1/p) := s0 + d (1/p − 1/p0) if 0 ≤ 1/p ≤ 1/p0,

and ss0,p0(1/p) := s0 otherwise. Clearly, ss0,p0(•) is admissible and defines the Besov
domain M(

ss0,p0(•)) with the following property

M(
ss0,p0(•)) =

⋂
ε>0

Bs0−ε
p0,∞.

We also introduce the restriction of functions of M (s(•))with prescribed radius in all
Bs

p,∞ (quasi)-norms: for r > 0, the Besov domain with radius r > 0 of an admissible
function s(•) is defined by

M (s(•), r) :=
{

f ∈ M (s(•)) , sup
p∈(0,+∞]

‖ f ‖
Bs(1/p)

p,∞
≤ r

}
.

2.2 Besov domains and multifractal functions

Let us first recall Jaffard’s theorem in our context: if s(•) is admissible, define

1/pc := inf {t > 0, s(t) ≤ dt} , (2.1)

which equals +∞ in the extremal case where s′(•) = d in a neighbourhood of +∞.

Proposition 2.5 (Theorem 1 in [25]). If s(•) is admissible, the spectrum of singularity
of quasi-all function of M (s(•)) is defined on [s(0), d/pc] and is given by

d(H) = inf
p≥pc

{H p − ps(1/p)+ d} . (2.2)
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So we interpret M (s(•)) as containing multifractal functions with spectrum of singu-
larity satisfying (2.2). The class M (s(•)) is however too big and contains functions
g with smoother scaling function, in the sense that

sg(1/p) ≥ s(1/p), p ∈ (0,+∞).

This includes in particular monofractal functions for which sg(•) is constant, see
Sect. 4.1. Nevertheless, the minimax methodology forces optimal rates of convergence
to be governed by multifractal functions that sit at the “boundary” of M (s(•)) and
for which (2.2) holds exactly. This will become transparent in Sect. 3.4 below.

3 Main result

An estimator f̂ of f is a measurable function of the observation Yε defined in (1.1).
We measure its performance in Lπ -loss error simultaneously for all π ≥ 1 over the
class M (s(•), r) by setting

Eπ
(

f̂
) := sup

f ∈M(s(•),r)
E
[‖ f̂ − f ‖πLπ

]1/π
.

We look for an estimator f̂ independent of s(•) and r > 0 with minimal error Eπ (•).

3.1 Wavelet bases and superconcentration

Wavelets are documented in numerous textbooks.3 We use regular wavelet bases (ψλ)λ
adapted to the domain D. The multi-index λ concatenates the spatial index and the
resolution level j = |λ|. We set � j := {λ, |λ| = j} and � := ∪ j≥−1� j . Thus, for
f ∈ L p, we have

f =
∑
j≥−1

∑
λ∈� j

fλψλ =
∑
λ∈�

fλψλ, with fλ := 〈 f, ψλ〉,

where we have set j := −1 in order to incorporate the low frequency part of the
decomposition. From now on the basis (ψλ)λ is fixed. Let c(D) denote a constant such
that Card� j ≤ c(D)d2 jd .

Definition 3.1 For s > 0 and p ∈ (0,∞], f belongs to Bs
p,∞ if the following norm

is finite:

‖ f ‖Bs
p,∞ := c(D)s−d/p sup

j≥−1
2

j
(

s+d
(

1
2 − 1

p

)) ⎛
⎝∑
λ∈� j

|〈 f, ψλ〉|p

⎞
⎠

1/p

(3.1)

with the usual modification if p = ∞.

3 We follow closely the notation of Cohen [7].
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162 A. Gloter, M. Hoffmann

Precise connection between this definition of Besov norm and more standard ones
can be found in [7]. Given a basis (ψλ)λ, there exists σ > 0 such that for p ≥ 1
and s ≤ σ the Besov space defined by (3.1) exactly matches the usual definition in
terms of modulus of smoothness for f . The index σ can be taken arbitrarily large.
Taking (3.1) as a definition is technically convenient in the sequel. In particular, by
incorporating the factor c(D)s−d/p into the definition, the norm ‖ f ‖Bs

p,∞ decreases as
p decreases. Moreover the following Sobolev embedding and interpolation inequalities
hold without inflating the norm:

‖ f ‖B
s2
p2,∞

≤ ‖ f ‖B
s1
p1,∞

for s1 − d/p1 = s2 − d/p2, p2 ≥ p1 (3.2)

‖ f ‖B
s3
p3,∞

≤ ‖ f ‖u
B

s1
p1,∞

‖ f ‖1−u
B

s2
p2,∞

(3.3)

for s3 = us1 + (1 − u)s2, with 1/p3 = u/p1 + (1 − u)/p2, for u ∈ [0, 1]. The
additional properties of the wavelet basis (ψλ)λ that we need are summarized in the
next assumption.

Assumption 3.2 For π ≥ 1:

• We have

‖ψλ‖πLπ ∼ 2|λ|d(π/2−1).

• For some σ > 0 and for all s ≤ σ , j0 ≥ 0, we have

∥∥∥∥ f −
∑
j≤ j0

∑
λ∈� j

fλψλ

∥∥∥∥
Lπ

� 2− j0s‖ f ‖Bs
π,∞ . (3.4)

• For any subset �0 ⊂ �

∫

D

( ∑
λ∈�0

|ψλ(x)|2
)π/2

dx ∼
∑
λ∈�0

‖ψλ‖πLπ . (3.5)

• If π > 1, for any sequence (uλ)λ∈�
∥∥∥∥∥
(∑
λ∈�

|uλψλ|2
)1/2

∥∥∥∥∥
Lπ

∼
∥∥∥∥∥
∑
λ∈�

uλψλ

∥∥∥∥∥
Lπ

. (3.6)

The symbol ∼ means inequality in both ways, up to a constant depending on π and
D only. The property (3.4) reflects that our definition (3.1) of Besov spaces matches
the definition in term of linear approximation.

Property (3.6) reflects an unconditional basis property, see [9,28] and (3.5) is
referred to as a superconcentration inequality, or Temlyakov property [28]. The formu-
lation of (3.5)–(3.6) in the context of statistical estimation is posterior to the original
papers of Donoho and Johnstone [11,12] and Donoho et al. [13,14] and is due to
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Kerkyacharian and Picard [28]. The existence of compactly supported wavelet bases
satisfying Assumption 3.2 is discussed in [32], see also [7].

The threshold algorithm. We consider the classical hard threshold estimator. For
x ∈ R and π ≥ 1, introduce

Tε,π (x) := x 1{
|x |≥κ(π)ε

√
log 1

ε

}, κ(π) := 4
√

max{π, 2}. (3.7)

We consider estimators of the form

f̂ε,π :=
∑

|λ|≤Jε

Tε,π
(

f̂λ
)
ψλ, 2−Jε :=

(
ε

√
log 1

ε

)2/d

.

The empirical wavelet coefficients f̂λ are defined by

f̂λ := Yε(ψλ) = fλ + ε ξ(ψ) (3.8)

with ξ(ψ) a standard normal random variable by (1.1) since ‖ψλ‖L2 = 1. Thus f̂ε,π
is specified by π and the choice of the basis (ψλ)λ only. The choice of κ(π) in (3.7)
is motivated by the following estimates

Lemma 3.3 For all π ≥ 1, we have

E

[
| f̂λ − fλ|π

]
� επ (3.9)

and

P

[
| f̂λ − fλ| ≥ κ(π)

2 ε

√
log 1

ε

]
� ε2 max{π,2}. (3.10)

where � means inequality up to constants depending on π only.

Proof Inequality (3.9) readily follows from (3.8). If ξ is standard normal, we have
P[|ξ | ≥ t] ≤ exp(−t2/2) for t > 0 so the left-hand side in (3.10) is less than
εκ(π)

2/2 = ε2 max{π,2} thanks to the choice of κ(π). ��

3.2 Upper bound

We introduce the fundamental equation

s(1/p) = d

2

(
π

p
− 1

)
. (3.11)

We define p� as the necessarily unique solution of (3.11) if it exists. Notice that the
index s(1/p�) depends on d and π .
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Theorem 3.4 Grant Assumption 3.2 for some σ > 0. Let π ≥ 1 and assume that s(•)
is admissible.

• If s′(∞) < dπ/2 (which is always true if π > 2), the solution p� to (3.11) exists.
• For σ ≥ s(1/π), we have

Eπ
(

f̂ε,π
)

�
(
ε

√
log 1

ε

)2s(1/p�)/(2s(1/p�)+d) (
log

1

ε

)1/π

, (3.12)

where � means up to a constant depending on π , s(•) and r only.
• Extremal case: if s′(•) = 0 in a neighbourhood of 1/p� then we have the refinement

Eπ
(

f̂ε,π
)

�
(
ε

√
log 1

ε

)2s(1/p�)/(2s(1/p�)+d)

.

3.3 Lower bound

The next result states that the rate obtained in (3.12) is the best one, up to a logarithmic
correction.

Theorem 3.5 Let π ≥ 1, assume that s(•) is admissible and s′(∞) < dπ/2.

• If s′(1/p�) > 0 then

inf
f̂

Eπ
(

f̂
)

�
(
ε

√
log 1

ε

)2s(1/p�)/(2s(1/p�)+d)

,

where the infimum is taken over all estimators and � means up to constant depend-
ing on π , s(•) and r only.

• Extremal case: if s′(1/p�) = 0 we have

inf
f̂

Eπ
(

f̂
)

� ε2s(1/p�)/(2s(1/p�)+d).

Remark 3.6 The distinction s′(1/p�) = 0 versus s′(1/p�) > 0 corresponds to the
standard distinction between ’dense’ case and ‘sparse’ case, see Sect. 4.2 below.

Remark 3.7 If s′(∞) ≥ dπ/2, then Eq. (3.11) as no solution. However, it is always
possible to pick some π ′ > π so that Eq. (3.11) has a solution with π ′ in place of
π . The corresponding solution p� = p�(π ′) can be made arbitrarily large by taking
π ′ sufficiently large. Now, applying the upper bound (3.12) with π ′ and using that
the Lπ -error over the bounded domain D is controlled (in order) by the Lπ

′
-error for

π ′ > π , we obtain that the Lπ risk is less (in order) than εγ with γ arbitrarily close
to 1 since necessarily s(∞) = ∞ in that case. In conclusion, when s′(∞) ≥ dπ/2,
the rate of the statistical problem is essentially (in the narrow sense described above)
the parametric rate ε.
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3.4 Minimax rates under the Frisch–Parisi conjecture

We may now interpret Theorems 3.4 and 3.5 in the light of the Frisch–Parisi conjecture,
thanks to Jaffard’s theorem given in Sect. 2.2 above. Let us denote by FP (s(•), r)
the subset of M (s(•), r) consisting of functions satisfying

d(H) = inf
p≥pc

{H p − ps(1/p)+ d} for H ∈ [s(0), d/pc],

recall (2.2) and the definition of pc in (2.1). We interpret FP (s(•), r) as the class of
genuine multifractal functions as soon as s(•) is not constant. A consequence of
Theorems 3.4 and 3.5 is the following expression for the minimax risk over
FP (s(•), r):
Theorem 3.8 In the same setting as Theorems 3.4 and 3.5 and for π ≥ pc + 2, we
have

inf
f̂

sup
f ∈FP(s(•),r)

E
[‖ f̂ − f ‖πLπ

]1/π ≈ ε2v(d(•),π), (3.13)

where the infimum is taken over all estimators and

v(d(•), π) = min
s(0)≤H≤d/pc

H + (d − d(H)) /π

2H + d
, (3.14)

with d(•) given by formula (2.2). The notation ≈ loosely means equivalence up to con-
stants, possibly corrected by logarithmic factors in ε, subject to the same restrictions
as in Theorems 3.4 and 3.5.

Remark 3.9 Formula (3.14) quantifies the connection between the local smoothness
of a signal and its rate of estimation. The effect of points having regularity H is
balanced with their frequency, assessed by d(H). In the ‘dense’ case s′(1/p�) = 0,
the infimum in (3.14) is attained for some H � with maximal dimension, in the sense
that d(H �) = d. This yields the (familiar) rate exponent H �/(2H � + d). However, in
the ‘sparse’ case it is attained for some H with d(H) < d, and the effect of the loss
π comes into play.

Remark 3.10 It is clear by (2.2) that the singularity spectrum d(•) contains no informa-
tion about s(1/p) for p < pc. Thus it is impossible to relate the results of Theorems 3.4
and 3.5 with the spectrum in the case p� < pc. Actually the condition π ≥ pc + 2
ensures that this situation does not happen.

Remark 3.11 By a result of Jaffard [24], if a function f ∈ M(s(•), r) does not satisfy
the Frisch–Parisi conjecture, we still have the following information on its spectrum:
d(H) ≤ inf p≥pc {H p − ps(1/p)+ d}. A careful look at the proof of Theorem 3.8
shows that the right-hand side of (3.14) always provides with an upper bound for
the optimal rate of estimation. However, the violation of the Frisch–Parisi conjecture
might be severe. For instance, Jaffard [24] constructs a function f with a linear scaling
function, and which is infinitely many times differentiable, except at one point. In this
case, d(H) = −∞ for all H , and the right hand side of (3.14) is equal to +∞.
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4 Examples and applications

4.1 Monofractal functions

Monofractal functions satisfy s(1/p) = H0 for all p > 0. A canonical example
is given by the sample paths of a fractional Brownian motion with Hurst parameter
H0 ∈ (0, 1) in dimension d = 1, see for instance [6]. In this case, we find the

minimax rate

(
ε

√
log 1

ε

)2H0/(2H0+d)

for all loss functions π ≥ 1. In particular, the

sample path of a noisy one-dimensional Brownian motion (H0 = 1/2) is recovered

with rate

(
ε

√
log 1

ε

)1/2

, irrespectively of the loss function.

4.2 Besov balls

As already remarked in Sect. 2.1, single Besov spaces are related to a Besov domain
of a certain admissible function ss0,p0(•). Using monotonicity of the Besov norm
with respect to 1/p and (3.2)–(3.3) the relation with Besov balls becomes exact:
Bs0

p0,∞(r) = M(
ss0,p0(•), r). Theorem 1 in Jaffard [25] shows that among functions

f in Bs0
p0,∞(r) that saturate their Besov domain precisely for ss0,p0(•), in other words

that belong to the set:

{
f ∈ Bs0

p0,∞(r), s f (•) = ss0,p0(•)
}
,

then the Frisch–Parisi holds for quasi-all functions. By Theorems 3.4 and 3.5, we
retrieve the classical nonparametric reconstruction results over Besov balls as devel-
oped in the mid-1990 [11–14] and the earlier results of the Russian school [23]. In
light of our result, we can reinterpret the classical theory in terms of the multifractal
approach: for Besov balls, the minimax rates of convergence are governed by extremal
functions f such that s f (•) = ss0,p0(•) and which are generically multifractal. How-
ever, this multifractality is very particular, in the sense that ss0,p0(•) is either constant
or with maximal slope d, except in the viscinity of the so-called critical case where
p� = p0. This point separates the so-called dense and sparse cases (according to the
classical terminology [13,14,28]).

4.3 Intersection of two Besov balls

As an exercice, we can compute the minimax rate of convergence up to logarithmic
factors by Theorem 3.5 over the intersection of two Besov balls

C := Bs1
p1,∞(r) ∩ Bs2

p2,∞(r), p1 > p2, 0 < s1 < s2,
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with s2 − d/p2 + d/p1 < s1, so that no Besov ball is included into the other. It is
easily seen that C = M (s(•), r) where the graph of s(•) is the concave envelope of
the graph of ss1,p1(•) and ss2,p2(•).

In the region for which loss functions π are such that 1/p� ≥ 1/p2 the minimax
rates of convergence are governed by the dense regime of the space Bs2

p2,∞. Likewise,
in the region for which 1/p� ≥ 1/p2, the sparse Bs1

p1,∞ regime dominates. A new
intermediate regime appears for 1/p1 ≤ 1/p� ≤ 1/p2:

Corollary 4.1 In the setting of Theorems 3.4 and 3.5, the minimax rate of convergence
for the class C is given (up to logarithmic factors) by ε2v(s1,s2,p1,p2,π), where

v(s1, s2, p1, p2, π) =

⎧⎪⎪⎨
⎪⎪⎩

s2/(2s2 + d) if dπ ≤ p2(d + 2s2)

s1 + d(1/π − 1/p1)

2(s1 − d/p1)+ d
if dπ ≥ p1(d + 2s1)

in the classical regimes, and

v(s1, s2, p1, p2, π) = (s2 − s1)/π + s1/p2 − s2/p1

2(s1/p2 − s2/p1)+ d(1/p2 − 1/p1)

in the nonclassical regime p2(d + 2s2) ≤ dπ ≤ p1(d + 2s1).

4.4 A multifractal model for chirps and Dopplers

In [22], Hall, Kerkyacharian and Picard (abbreviated by HKP in the following) develop
block threshold methods in the case π = 2 for wavelet estimators which are adaptive
to many variations of signal abberations including those of chirp and Doppler type,
which are of the form x � |x − x0|β cos(|x − x0|−α) for α, β ≥ 0. In dimension 1,
HKP introduce the class H that can be described as follows: g ∈ H if for any j ≥ 0,
there exists a set of integers S j with Card S j � 2 jγ such that:

123



168 A. Gloter, M. Hoffmann

• For each k ∈ S j there exist constants a0 = g(k2− j ), a1, . . . , aN−1 such that

∣∣∣∣∣g(x)−
N−1∑
�=0

a�(x − k2− j )�

∣∣∣∣∣ � 2− js1 for all x ∈ [k2− j , (k + v)2− j ],

where v > 0 is a given constant and
• For each k /∈ S j there exist constants a0, a1, . . . , aN−1 such that

∣∣∣∣∣g(x)−
N−1∑
�=0

a�(x − k2− j )�

∣∣∣∣∣ � 2− js2 for all x ∈ [k2− j , (k + v)2− j ].

The class is parametrized by 0 ≤ γ ≤ 1 and s1 < s2. Proposition 3.2. in [22] shows
that if the analyzing wavelet ψ has compact support included in [0, v], then

|dλ| � 2−|λ|(s1+1/2)1{k∈S j } + 2−|λ|(s2+1/2)1{k /∈S j }. (4.1)

In particular, if s1 > 0, the class H is embedded into continuous functions, a restriction
that HKP do not have, but which is important if we use the interpretation in terms of
multifractal analysis. The characterization (4.1) enables to show easily that if g ∈ H,
then sg(•) ≥ sH(•), with

sH(1/p) :=
⎧⎨
⎩

s1 + (1 − γ )/p for 1/p < (s2 − s1)/(1 − γ )

s2 for 1/p ≥ (s2 − s1)/(1 − γ ).

This reveals the nontrivial Besov domain M (sH(•)) ⊇ H as soon as γ 
= 1. In
particular, HKP show in their Theorem 4.1 that the minimax rate exponent ε2s2/(1+2s2)

is achievable for π = 2 if the following condition4 holds:

0 ≤ γ ≤ 2s1 + 1

2s2 + 1
.

In our formalism, this corresponds exactly to the critical case when the line 1/p �
−d/2+dπ/(2p) (with d = 1 andπ = 2) intersects sH(•) for 1/p ≥ (s2−s1)/(1−γ )
and our approach shows that the result of HKP is sharp. Beyond this critical point, our
Theorems 3.4 and 3.5 completes their result and reveals the following nonclassical
minimax rate of convergence:

ε(2s1+1−γ )/(2s1+1) if γ >
2s1 + 1

2s2 + 1
,

within a logarithmic factor.5

4 The result of HKP is slightly more general, since it allows 2− jγCard S j to grow as ε → 0 at a certain
rate, a situation we discard here for simplicity.
5 Whereas HKP results are sharp up to logarithmic terms.
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4.5 Lacunary wavelet series

An example of multifractal signal f on D = [0, 1]d is provided by the sample path of a
lacunary wavelet series as defined in Jaffard [26]. This random process f is defined by
its wavelet coefficients as follows: let α ∈ (0, d) and for each level j , choose randomly
�c(D)2 j (d−α)� locations among the Card(� j ) ∼ c(D)2 jd locations corresponding to
this level. The chosen coefficients are set to the value 2− j (β+d/2) for some β > 0, all
the other coefficients are set to 0. It is shown in [26] that the scaling function s f (•) of f
has the form s f (1/p) = α/p + β and that almost surely the Frisch–Parisi conjecture
holds with a singularity spectrum given by

d(H) = H(d − α)

β
for H ∈ [β, dβ/(d − α)] .

Applying Theorem 3.4, an upper bound for the rate of estimation of the signal, with
Lπ loss, is (up to a logarithmic factor)

ε(2β+2α/π)/(2β+d)

as soon as 2α/π < d. This rate is increasing with the sparsity of the wavelet series, and
the restriction 2α/π < d corresponds to the condition s′(∞) > dπ/2, see Remark 3.7.
Note that in this example, the infimum in the formula (3.14) is attained at H = s(0) =
β, which is the minimal degree of smoothness for a singularity appearing in the signal.

4.6 Cascade processes

Multiplicative cascade processes were introduced in the initial work by Mandelbrot
[30] and mathematical properties were studied further in Kahane and Peyriere [27]. The
objective was to provide models which describe the statistical behavior of turbulent
flows. More recently, they were applied for modelling many signals which exhibit
high intermittency such as the internet traffic, financial data or DNA sequences, see
the references given in the Introduction.

The law of the cascade process is fully characterized by some non-negative random
variable W , with expectation one, and usually referred to as the cascade generator. This
variable determines the evolution, through change of scales, of the cascade process
(Xt )t∈[0,1], as can be seen in the relation:

Xt/2 − X0
law= (Xt − X0)W/2, for all dyadic t .

A large literature is devoted to the study of the properties of the sample paths of
multiplicative cascades (see references in [4]). For instance, Molchan [33] proves that
the sample paths of these processes are almost surely multifractal and computes the
spectrum of singularities as a function of W . He shows that the Frisch–Parisi conjecture
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holds and essentially relates the scaling exponent sX (•) of the typical sample path to
the generator W by the formula

sX (1/p) =
{

1 − 1
p log2 (E[W p]) for p ≤ pW

1
p + cW for p ≥ pW

where pW and cW are the two unique values that make the function sX (•) continuously
differentiable. (The number pW is thus determined by the condition that s′

X (1/pW ) = 1
in both expressions above, and the value of cW follows by the continuity of sX (•)).
Since the choice of the generator W is almost arbitrary, we see that cascade processes
provide examples of stochastic signals with a large variety of scaling functions s(•).

5 Proofs

5.1 Proof of Theorem 3.4

Preliminaries from [28]. Weak �q,∞(π) sequence spaces are defined by means of
the atomic measure µπ defined over multi-indices λ by setting

µπ({λ}) := ‖ψλ‖πLπ , for 1 ≤ π < ∞.

For 0 < q < π , a function f = ∑
λ fλψλ belongs to �q,∞(π) if

‖ f ‖q
�q,∞(π) := sup

t>0
tqµπ (λ, | fλ| ≥ t) < +∞.

The spaces �q,∞(π) are linked to the choice of the basis (ψλ)λ and related to classical
Besov spaces Bs

p,∞ by the following embedding properties:

Proposition 5.1 (Theorem 6.2 in [28]). Let 1 ≤ π < ∞ and s ≥ 0. Define ps :=
dπ

2s+d .

• If p > ps, then Bs
p,∞ ⊂ �ps ,∞(π).

• If p = ps and f ∈ Bs
p,∞ ∩ Bδπ,∞ for some δ > 0, then for t < 1/2:

µπ (λ, | fλ| ≥ t) � t−p log

(
1

t

)
.

• If p < ps and 2d
2s+d < p < ps, then Bs

p,∞ ⊂ �qs ,∞(π), with qs = d(p/2−1)
s+d(1/2−1/p) .

The following proposition was obtained in [28], but in order to prove Theorem 3.4, we
will actually need a slight extension of it. Therefore and in order to be self-contained,
we give a condensed proof of this proposition.
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Proposition 5.2 (Theorem 5.1 in [28]). In the setting of Theorem 3.4, we have

E
[‖ f̂ε,π − f ‖πLπ

]
�
(
ε

√
log 1

ε

)π−q

‖ f ‖q
�q,∞(π) +

∥∥∥∥∥∥
∑

|λ|>Jε

fλψλ

∥∥∥∥∥∥

π

Lπ

,

for all 0 < q < π such that the right-hand side is meaningful, and where � means
up to a constant depending on π and ‖ f ‖Lπ only.

Proof We have

E
[‖ f̂ε,π − f ‖πLπ

]
� E

⎡
⎣
∥∥∥∥
∑

|λ|≤Jε

(Tε,π ( f̂λ)− fλ)ψλ

∥∥∥∥
π

Lπ

⎤
⎦ +

∥∥∥∥
∑

|λ|>Jε

fλψλ

∥∥∥∥
π

Lπ
,

and in view of the result, only an inspection of the first term in the right-hand side is
needed. Indeed, this first term is, up to a constant, less than I + I I , with

I := E

⎡
⎣
∥∥∥∥
∑

|λ|≤Jε

(
f̂λ − fλ

)
1{

| f̂λ|≥κ(π)ε
√

log 1
ε

}ψλ
∥∥∥∥
π

Lπ

⎤
⎦ ,

and

I I := E

⎡
⎣
∥∥∥∥
∑

|λ|≤Jε

1{
| f̂λ|≤κ(π)ε

√
log 1

ε

} fλψλ

∥∥∥∥
π

Lπ

⎤
⎦ .

A fairly classical concentration argument based on (3.10) enables then to ignore the
random part of f̂λ in the indicator in I and II, up to modifying the threshold level by
a factor 1/2 (see [14,28]). It follows that I and I I can be replaced by

I I I := E

⎡
⎣
∥∥∥∥
∑

|λ|≤Jε

(
f̂λ − fλ

)
1{

2| fλ|≥κ(π)ε
√

log 1
ε

}ψλ
∥∥∥∥
π

Lπ

⎤
⎦

and

I V :=
∥∥∥∥∥∥
∑

|λ|≤Jε

1{
2| fλ|≤κ(π)ε

√
log 1

ε

} fλψλ

∥∥∥∥∥∥

π

Lπ

,

respectively, without affecting the rates of convergence, inflating the error by a mul-
tiplicative factor depending on π and ‖ f ‖Lπ only.
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Step 1: The case π ≤ 2. For any sequence (uλ)λ∈�, we have in that case

∥∥∥∥∥
∑
λ∈�

uλψλ

∥∥∥∥∥
π

Lπ

�
∑
λ∈�

|uλ|π‖ψλ‖πLπ (5.1)

as follows from (3.6) and the comparison between �π -norms in the case π > 1, and
from triangle inequality if π = 1. Applying successively (5.1) and (3.9), we have

I I I �
∑

|λ|≤Jε

E
[| f̂λ − fλ|π

]
1{

2| fλ|≥κ(π)ε
√

log 1
ε

}‖ψλ‖πLπ

� επ
∑

|λ|≤Jε

1{
2| fλ|≥κ(π)ε

√
log 1

ε

}‖ψλ‖πLπ

�
(
ε

√
log 1

ε

)π−q

‖ f ‖q
�q,∞(π) (5.2)

by definition of the weak-�q,∞(π) space. By (5.1) again,

I V �
∑

|λ|≤Jε

1{
2| fλ|≤κ(π)ε

√
log 1

ε

}| fλ|π‖ψλ‖πLπ . (5.3)

Next, we use the fact that for all q < π ,

sup
t>0

tq−π ∑
λ

| fλ|π1| fλ|≤t‖ψ‖πLπ � ‖ f ‖q
�q,∞(π), (5.4)

up to a constant depending on π . The characterization (5.4) of �q,∞(π) spaces relies
on simple calculation (see [28] or Sect. 3 in [8]). So the right-hand side of (5.3) is

further bounded by a constant times

(
ε

√
log 1

ε

)π−q

‖ f ‖q
�q,∞(π) and Proposition 5.2

follows.
Step 2: The case π ≥ 2. Using successively property (3.6) and Minkowski’s general-
ized inequality, we have

I I I � E

⎡
⎣
∫

D

( ∑
|λ|≤Jε

1{
2| fλ|≥κ(π)ε

√
log 1

ε

}| f̂λ − fλ|2|ψλ(x)|2
)π/2

dx

⎤
⎦

�
∫

D

( ∑
|λ|≤Jε

1{
2| fλ|≥κ(π)ε

√
log 1

ε

} (E[| f̂λ − fλ|π ])2/π |ψλ(x)|2
)π/2

dx
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By (3.9), this last quantity is less than

επ
∫

D

( ∑
|λ|≤Jε

1{
2| fλ|≥κ(π)ε

√
log 1

ε

}|ψλ(x)|2
)π/2

dx

� επ
∑

|λ|≤Jε

1{
2| fλ|≥κ(π)ε

√
log 1

ε

}‖ψλ‖πLπ , (5.5)

where we have used (3.5) for the last line. Thus I I I has the right order by the defi-

nition of weak �q,∞(π) spaces as before. Write ρε := 2κ(π)ε
√

log 1
ε

for notational
simplicity. We have

I V �

∥∥∥∥∥∥
∑
k≥1

∑
|λ|≤Jε

1{2−kρε≤| fλ|≤2−k+1ρε} fλ ψλ

∥∥∥∥∥∥

π

Lπ

�

⎛
⎝∑

k≥1

∥∥∥∥∥∥
∑

|λ|≤Jε

1{2−kρε≤| fλ|≤2−k+1ρε} fλ ψλ

∥∥∥∥∥∥
Lπ

⎞
⎠
π

by the triangle inequality. Next, using (3.6) and | fλ|1{2−kρε≤| fλ|≤2−k+1ρε} ≤ 2−k+1

ρε1{| fλ|≥2−kρε}, the above quantity is less than

ρπε

⎛
⎝∑

k≥1

2−k+1

∥∥∥∥∥∥

( ∑
|λ|≤Jε

1{| fλ|≥2−kρε}|ψλ|2
)1/2

∥∥∥∥∥∥
Lπ

⎞
⎠
π

.

By applying first (3.5) and then the definition of weak �q,∞(π) spaces, this quantity
is less than

ρπε

⎛
⎝∑

k≥1

2−k+1
( ∑

|λ|≤Jε

1{| fλ|≥2−kρε}‖ψλ‖πLπ
)1/π

⎞
⎠
π

�
(
ε

√
log 1

ε

)π−q
⎛
⎝∑

k≥1

2−k2(k+1)q/π‖ f ‖q/π
�q,∞(π)

⎞
⎠
π

. (5.6)

Since π > q, the geometric series is convergent which ends the proof. ��
We are now ready to prove Theorem 3.4 in four steps.
Step 1: Definiteness of p�. It suffices to check that the function

t � ϕ(t) := s(t)− d
2 (tπ − 1)

hits 0. We have ϕ(0) > 0 since s(0) > 0 and ϕ′(t) = s′(t) − dπ/2. Moreover, s(•)
is concave so having ϕ′(t) < 0 for some t > 0 is sufficient, but that follows from the
bound s′(∞) < dπ/2.
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Step 2: Linear term. As soon as f ∈ Bδπ,∞ for some δ > 0, we have

∥∥∥∥
∑

|λ|>Jε

fλψλ

∥∥∥∥
π

Lπ
� ‖ f ‖πBδπ,∞2−Jεδπ �

(
ε2 log 1

ε

)δπ/d
.

We now prove that we can take δ = ds(1/p�)/(2s(1/p�)+d),which gives the desired
order. We claim that

s(1/π) ≥ ds(1/p�)

2s(1/p�)+ d
, (5.7)

from which the result simply follows since f ∈ Bs(1/π)
π,∞ and by the embedding Bs

π,∞ ⊂
Bs′
π,∞ if s ≥ s′. By definition of p�, we have p� = πd/(2s(1/p�) + d) so (5.7) is

equivalent to

πs(1/π) ≥ πds(1/p�)

2s(1/p�)+ d
= p�s(1/p�).

It is enough to prove that t � ϕ̃(t) := s(t)/t is decreasing between 1/π and 1/p�

since, by definition of p�, we always have

1

p�
= 2s(1/p�)

πd
+ 1

π
>

1

π
.

Now, ϕ̃′(t) = (
s′(t)t − s(t)

)
/t2 ≤ −s(0)/t2 ≤ 0 since s(•) is concave and s(0) > 0.

Step 3: Nonlinear terms, large p. Proposition 5.1 provides two regions of embedding,
separated by the critical case p = ps . Let us first consider the set (p�,∞), of large
p’s, for which the following condition holds

p >
dπ

2s(1/p)+ d
.

By Proposition 5.1 case 1, we have the embedding

Bs(1/p)
p,∞ ⊂ �dπ/(2s(1/p)+d),∞(π),

therefore the nonlinear term

(
ε

√
log 1

ε

)π−q

‖ f ‖q
�q,∞(π) in Proposition 5.2 is for the

choice q = dπ/(2s(1/p)+ d) of order

(
ε

√
log 1

ε

)π−dπ/(2s(1/p)+d)

=
(
ε

√
log 1

ε

) 2s(1/p)π
2s(1/p)+d

.

If s′(1/p0) = 0 for some 1/p0 < 1/p�, s(•) is constant for 1/p ≥ 1/p0 by concavity
hence s(1/p0) = s(1/p�) and we obtain Theorem 3.4 in that case.
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Step 4: Nonlinear terms, critical p. Let us then turn to the critical case

p� = dπ

2s(1/p�)+ d
.

For this constraint, the decomposition of Proposition 5.2 is of no use since no embed-
ding of Bs(1/p)

p,∞ in any space �q,∞(π) is valid, so we need to refine Proposition 5.2.
By Proposition 5.1 case 2, we have

∀t < 1/2, µπ (λ, | fλ| ≥ t) � t−p� log

(
1

t

)
(5.8)

if, in addition, f ∈ Bδπ,∞ for some δ > 0, a case we always have with δ = s(1/π) for
instance. This enables us to revisit the terms I I I and I V in Proposition 5.2. Inspecting
(5.2), (5.5) in the proof, we readily have, for all π ≥ 1

I I I � επµπ

(
|λ| ≤ Jε, | fλ| ≥ κ(π)

2 ε

√
log 1

ε

)

� επ
(
ε

√
log 1

ε

)−p�

log
1

ε

�
(
ε

√
log 1

ε

)2s(1/p�)π/(2s(1/p�)+d)

log
1

ε

where we have successively used (5.8) and the definition of p�. We now turn to the more

delicate term I V . Define, for notational simplicity ρε := κ(π)
2 ε

√
log 1

ε
. Inspecting the

proof of Proposition 5.2, Eq. (5.6) yields in the case π ≥ 2,

I V � ρπε

⎛
⎝∑

k≥1

2−k+1µπ

(
|λ| ≤ Jε, | fλ| ≥ 2−kρε

)1/π

⎞
⎠
π

.

Using again (5.8), we deduce that I V is of magnitude less than (ρε)π−p� log 1
ρε

and
thus Theorem 3.4 is proved in the case π ≥ 2. For π ∈ [1, 2], the term I V can be
bounded quite similarly by using (5.3), we omit the details here. Theorem 3.4 follows.

Remark 5.3 It is instructive to inspect the behaviour of the threshold algorithm beyond
the critical case, i.e. for p satisfying

p <
dπ

2s(1/p)+ d
.

Proposition 5.1 case 3 tells us that the embedding

Bs(1/p)
p,∞ ⊂ �d(π/2−1)/(s(1/p)+d(1/2−1/p)),∞(π)
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holds, provided further that p > 2d/(2s(1/p) + d) which implies in particular the
restriction π > 2. Moreover, no other inclusion of any Besov space into a weak
�q,∞(π) exists otherwise. In that setting, it is readily checked that the threshold algo-

rithm attains in this region the rate

(
ε

√
log 1

ε

)q�π

, with

q� =
s(1/p)+ d

(
1
π

− 1
p

)

s(1/p)+ d
(

1
2 − 1

p

) ,

but a closer inspection of the properties of s(•), namely the fact that s′(1/p) ≤ d
shows that this rate is suboptimal.

5.2 Proof of Theorem 3.5

The proof is divided into three steps. We first focus on the case of a linear admissible
function s(•) and solve a Bayesian problem instead of the initial minimax problem. In
a second step, we compare the Bayes risk with the minimax risk. Finally, we extend
the result to an arbitrary Besov domain s(•). The extremal case s′(1/p�) = d is more
delicate and requires a separate proof.
Step 1: A Bayes risk. A first delicate issue is to construct a prior on L2 which concen-
trates on functions with exact scaling function s(•). The construction of such functions
is a fairly complex problem solved in [25]. However, there is a simple expression if
the scaling function is linear. Let

s̃(1/p) := β + α/p, 0 < 1/p < +∞

which is admissible for α ∈ [0, d] and β ≥ 0. The following lemma provides a simple
condition that ensures that a function is in M (s̃(•)).

Lemma 5.4 Let g = ∑
λ cλψλ = ∑

j≥0
∑

|λ|= j cλψλ be such that:

|cλ| ≤ c(D)−β2− j (β+d/2)for all λ with |λ| = j ,

and the number of nonzero coefficients on each level satisfies:

Card {λ, |λ| = j and cλ 
= 0} ≤ c(D)d−α2 j (d−α).

Then, ‖g‖
Bs̃(1/p)

p,∞
≤ 1 for all p > 0.

Proof We have
(∑

|λ|= j |cλ|p
)1/p ≤ c(D)−β2 j (d−α)/pc(D)(d−α)/p2− j (β+d/2) hence

the result by (3.1). ��
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Note that a function that saturates the conditions of Lemma 5.4 has scaling function
s̃(•). We now choose a level j and define a prior µ j (d f ) on L2 by picking at random
the wavelet coefficients according to the following distribution: if λ 
= j we set
〈 f, ψλ〉 = 0 and if λ = j , the coefficients 〈 f, ψλ〉 = cλ are independent Bernoulli
variables,

〈 f, ψλ〉 = cλ =
{

rc(D)−β2− j (β+d/2) with probability q
0 with probability 1 − q

,

with q = c(D)−α2− jα−1. We define the associated Bayes Lπ -error for any
estimator f̂ :

EB, j,π
(

f̂
) :=

⎛
⎜⎝
∫

L2

E f
[‖ f̂ − f ‖πLπ

]
µ j (d f )

⎞
⎟⎠

1/π

,

where P f denotes the law of Yε with parameter6 f . The following proposition gives
a lower bound for this Bayes error. Let us stress that the result depends on α which
characterizes in some way the sparsity of the prior. According to the usual terminology,
for α = 0 the prior is dense, whereas it is sparse in the other cases.

Proposition 5.5 • If α 
= 0, choose M with 0 < M < r−2c(D)2β2 log 2 and let
j = j (ε) satisfy

Mα( j − 1)2( j−1)(d+2β) ≤ ε−2 < Mα j2 j (d+2β). (5.9)

Then, we have:

inf
f̂

EB, j (ε),π
(

f̂
)π �

(
ε

√
log 1

ε

)2 α+πβ
d+2β

.

• If α = 0, let j = j (ε) satisfy

2( j−1)(d+2β) ≤ ε−2 < 2 j (d+2β). (5.10)

We have:

inf
f̂

EB, j (ε),π
(

f̂
)π � ε

2 πβ
d+2β .

In both cases, � means up to constant depending on π , r , α, β.

6 We assume that all the probability measures P f are defined simultaneously on the canonical space L2.
Such a construction is always possible.
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Proof If f̂ is an arbitrary estimator, denote by ĉλ = 〈 f̂ , ψλ〉 the associated estimated
wavelet coefficients. Using that the projection on the space generated by (ψλ)|λ|= j is
continuous in Lπ and Bernstein inequality, we have for all function f : ‖ f̂ − f ‖πLπ �
2 jd(π/2−1)∑|λ|= j |̂cλ − 〈 f, ψλ〉|π . We derive:

EB, j,π
(

f̂
)π � 2 jd(π/2−1)

∫

L2

∑
|λ|= j

E f
[|̂cλ − cλ|π

]
µ j (d f ). (5.11)

Let us consider temporarily a multi-index λ0 ∈ � with |λ0| = j . The estimated
coefficient ĉλ0 is some function of (Yε) and thus can be seen as a function of the
collection of all the observable coefficients Yε(ψλ) = cλ + εξ(ψλ) for λ ∈ �. Since
the variables ξ(ψλ) for λ ∈ � are i.i.d. and by our choice of prior, cλ0 and ξ(ψλ0) are
independent of (cλ, ξ(ψλ))λ
=λ0

. Hence, conditioning with respect to (cλ, ξ(ψλ))λ
=λ0
,

for any choice of ĉλ0 , the minimum of
∫

L2

E f
[|̂cλ0 − cλ0 |π

]
µ j (d f ),

is obtained when ĉλ0 is a function of Yε(ψλ0) = cλ0 + εξ(ψλ0) only. We derive from
(5.11):

EB, j,π
(

f̂
)π ≥ 2 jd(π/2−1)2 jdρ j,ε,π = 2 jdπ/2ρ j,ε,π ,

where ρ j,ε,π is the one-dimensional Bayes risk:

ρ j,ε,π = inf
g:R→R

E
[|g(c j + εZ)− c j |π

]

where Z is a standard Gaussian variable and c j is an independent Bernoulli random
variable distributed taking values K = rc(D)−β2− j (β+d/2) and 0 with probability
q and 1 − q, respectively. Similar one-dimensional problems are studied in [10]. In
Lemma 6.1 of the Appendix, we prove that under condition (5.9) ifα 
= 0 (or condition
(5.10) if α = 0), we have ρ j (ε),ε,π � q K π . This implies that

EB, j,π
(

f̂
)π � 2 j (ε)dπ/2q K π

� 2 j (ε)dπ/22− j (ε)α2− j (ε)π(β+d/2) � 2− j (ε)(α+πβ).

Then using again condition (5.9) (or (5.10) if α = 0) we obtain the proposition. ��
Step 2: The minimax risk. The next result shows that if α 
= d then the minimax risk
over M(s̃(•), r) and the Bayes risk with prior µ j are comparable.

Proposition 5.6 If α 
= d, then

inf
f̂

sup
f ∈M(s̃(•),r)

E f
[‖ f̂ − f ‖πLπ

]
� inf

f̂
EB, j (ε),π

(
f̂
)π
,

where j (ε) is defined in Proposition 5.5.
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Proof For j ≥ 0 and f in L2(D), let N j ( f ) := Card{λ, 〈 f, ψλ〉 
= 0, |λ| = j}. By
our choice of prior and Lemma 5.4 we have

µ j ( f ∈ M(s̃(•), r)) ≥ µ j

(
N j ≤ c(D)d−α2 j (d−α)) .

Under µ j , N j is a Binomial random variables with parameters Card{� j } and c(D)−α
2− jα−1. We deduce that its expectation under µ j satisfies

Eµ j [N j ] = Card� j c(D)−α2− jα−1 ≤ 1

2
c(D)d−α2 j (d−α).

Moreover, simple computation on Binomial laws shows that the centred moment of
order κ ≥ 1 satisfies

Eµ j

[|N j − E(N j )|κ
] ≤ c(κ)2 jκ/2(d−α).

By Markov inequality,

µ j
[|N j − E(N j )| ≥ E(N j )/4

] ≤ 4κ Eµ j [N j ]−κ Eµ j [(N j − E(N j ))
κ ]

≤ 4κc(κ)2 j (d−α)κ/2.

Since d − α > 0 and κ is arbitrary, if j = j (ε) is given by either (5.9) or (5.10), we
deduce that µ j (ε)[N j (ε) ≥ c(D)d−α2 j (ε)(d−α)] is negligible versus any power of ε as
ε → 0. We have thus shown at this stage that for any c > 0:

µ j (ε)
[

f /∈ M(s̃(•), r)
] = o(εc). (5.12)

Next, we pick an arbitrary estimator f̂ . Since for any f ∈ M (s̃(•), r) we have
‖ f ‖Lπ ≤ ‖ f ‖

Bs(1/π)
π,∞

≤ r , we can assume that ‖ f̂ ‖Lπ ≤ 2r , say, without increasing

the minimax risk. Now,

sup
f ∈M(s̃(•),r)

E f
[‖ f̂ − f ‖πLπ

] ≥
∫

E f
[‖ f̂ − f ‖πLπ

]
1{ f ∈M(s̃(•),r)}µ j (d f )

µ j
[

f ∈ M(s̃(•), r)
]

= EB, j,π
(

f̂
)π

µ j
[

f ∈ M(s̃(•), r)
] − r j ,

where

r j =
∫

E f
[‖ f̂ − f ‖πLπ

]
1{ f /∈M(s̃(•),r)}µ j (d f )

µ j
[

f ∈ M(s̃(•), r)
] .

Since µ j (ε)
[

f ∈ M(s̃(•), r)
] → 1 as ε → 0 by (5.12), using Proposition 5.5,

the result follows if we show that r j (ε) = o(εc) for c large enough. From the def-
inition of the prior, the wavelet coefficients cλ of f are µ j (d f )-a.s. bounded by
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rc(D)−β2−|λ|(β+d/2). This implies that with full µ j (d f )-probability the function f
is bounded by some constant (independent of f ) in L∞-norm and thus in Lπ -norm

too. Since ‖ f̂ ‖πLπ ≤ 2r , r j (ε) is bounded by some constant times

µ j (ε)
[

f /∈ M(s̃(•), r)
]
/µ j (ε)

[
f ∈ M(s̃(•), r)

]

and is thus of right order by (5.12) again. ��
Step 3: Arbitrary Besov domains. Let s(•) be an admissible function and recall that
p� is the unique solution of (3.11). We choose for s̃(•) any affine function which is
tangent to s(•) at the point (1/p∗, s(1/p∗)). For instance, set s̃(1/p) = β� + α�/p
with α� = s′(1/p�) and β(1/p�) − s′(1/p�)/p�. By the concavity of s(•) we have
s̃(•) ≥ s(•) and thus:

M (s̃(•), r) ⊂ M (s(•), r) ,

so we may prove the lower bound with s̃(•) in place of s(•). We assume first that
s′(1/p�) 
= d. We have

inf
f̂

sup
f ∈M(s̃(•),r)

E f
[‖ f̂ − f ‖πLπ

]
� inf

f̂
EB, j (ε),π

(
f̂
)π

� ε
2 α

�+πβ�
d+2β�

[(
log 1

ε

) α�+πβ�
d+2β� 1α� 
=0 + 1α�=0

]

where we successively applied Proposition 5.6, the fact that α� 
= d and Proposi-
tion 5.5. The conclusion follows from the following identity:

α� + πβ�

d + 2β�
= πs(1/p�)

d + 2s(1/p�)
. (5.13)

Indeed, if α� = s′(1/p�) = 0 this follows from

β� = s(1/p�)− s′(1/p�)/p� = s(1/p�).

In the general case, replacing α� and β� by their value in function of s(•) we have:

α� + πβ�

d + 2β�
= πs(1/p�)+ s′(1/p�)[1 − π

p� ]
d + 2s(1/p�)− s′(1/p�) 2

p�
.

After some computations using (3.11), one checks that the rational function

x �
πs(1/p�)+ x[1 − π

p� ]
d + 2s(1/p�)− x 2

p�
,

is independent of x . We end the proof by noting that the right-hand side of (5.13) is
obtained for x = 0.
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Step 4: The case s′(1/p�) = d. We cannot rely on the comparison between the Bayes
risk and the minimax one given in Proposition 5.6 anymore. Nevertheless we still
consider s̃(1/p) = α�/p + β with α� = s′(1/p�) = d and β = s(1/p�) − d/p�.
Theorem 3.5 is then a consequence of (5.13) with α∗ = d and of the following
proposition.

Proposition 5.7 We have

inf
f̂

sup
f ∈M(s̃(•),r)

E f
[‖ f̂ − f ‖πLπ

]
�
(
ε

√
log 1

ε

)2 d+πβ�
d+2β�

.

Proof For sake of brevity, we only give the mains steps. Define j = j (ε) by

d

16
( j − 1)2( j−1)(d+2β�) ≤ ε−2r2c(D)−2β∗ ≤ d

16
j2 j (d+2β�), (5.14)

and for λ ∈ � j set f (λ) := r2− j (d/2+β�)c(D)−βψλ. By Lemma 5.4 the f (λ) are
elements of M (s̃(•), r). Moreover, the following three classical properties are easily
checked:

• For all λ 
= λ′ ∈ � j , we have ‖ f (λ) − f (λ
′)‖Lπ ≥ rc(D)−β�2− j (d/π+β�).

• For all λ ∈ � j , we have P f (λ) � P0 where P0 is the law of the observation
(1.1) when f = 0 and � means absolute continuity with respect to probability
measures.

• We have a bound control on the Kullback–Leibler divergence K (P f (λ) | P0) ≤
‖ f (λ)‖2

L2ε
−2 = r2c(D)−2β∗

2− j (d+2β�)ε−2. By (5.14) and log(Card{� j }) ∼ d j ,
we readily obtain, for large enough j :

1

Card� j

∑
λ∈� j

K (P f (λ) | P0) ≤ log(Card� j )/8.

Then, standard arguments based on Fano’s lemma, see, e.g. [23], entail:

inf
f̂

sup
λ∈� j

P f (λ)

[
‖ f̂ − f ‖πLπ ≥ rπc(D)πβ�2− j (d+πβ�)] ≥ c > 0, (5.15)

where c is some constant independent of ε. We conclude by (5.15) and (5.14). ��

5.3 Proof of Theorem 3.8

In a first step we show that the exponent s(1/p�)/(d +2s(1/p�)) can be reinterpreted
as the right hand side of (3.14). Then we prove (3.13).
Step 1: A new expression for the minimax rate. For the proof, we use the convenient
notation α ∈ s′(1/p)when α is a real number in the interval [s′

l (1/p), s′
r (1/p)] whose
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endpoints are the, possibly different, left and right derivatives of s(•) at 1/p. Then the
proof of (3.14) is based on the following key identity:

πs(1/p�)

2s(1/p�)+ d
= inf

0≤1/p≤1/pc
α∈s′(1/p)

πs(1/p)+ α[1 − π
p ]

d + 2s(1/p)− 2α
p

, (5.16)

where the infimum is attained for 1/p = 1/p�, with any choice of α ∈ s′(1/p�).
Actually, since π ≥ pc + 2, we must have 1/p� ≤ 1/pc and we have seen in Step
3 of the proof of Theorem 3.5 that, for 1/p = 1/p� the rational function above does
not depend on α and is equal to the left hand side of (5.16). It remains to see that the
infimum in the right hand side of (5.16) is attained for 1/p = 1/p�, this can easily
be checked by standard computations relying on the concavity of s(•). Define the
Legendre transform of s(•) as Ls(α) := infq>0 {qα − s(q)}. If α0 ∈ s′(q0) for some
q0 > 0, we easily see that the infimum in the definition of Ls(α) is attained at q = q0
and we deduce the useful relationship

Ls(α0) = q0α0 − s(q0).

This enables to transform (5.16) into

πs(1/p�)

2s(1/p�)+ d
= inf

0≤1/p≤1/pc
α∈s′(1/p)

α − πLs(α)

d − 2Ls(α)

= inf
s′
r (1/pc)≤α≤s′

r (0)

α − πLs(α)

d − 2Ls(α)
, (5.17)

where s′
r (•) denotes the right derivative of s(•). Now, since by (3.13), d(H) =

inf p≥pc {H p − ps(1/p)+ d}, we can check that if α ∈ s′(q0) for some q0 ≤ 1/pc:

d (−Ls(α)) = d (s(q0)− αq0) = inf
p≥pc

{(s(q0)− αq0)p − ps(1/p)+ d}
= (s(q0)− αq0)/q0 + (1/q0)s(q0)+ d = −α + d.

This identity enables to rewrite (5.17) as:

inf
s′
r (1/pc)≤α≤s′

r (0)

d − d(−Ls(α))− πLs(α)

d − 2Ls(α)
.

The function −Ls(•) maps [s′
r (0), s′

r (1/pc)] onto

[H0, Hc] := [s(0), s(1/pc)− s′
r (1/pc)/pc],

therefore

inf
s′
r (1/pc)≤α≤s′

r (0)

d − d(−Ls(α))− πLs(α)

d − 2Ls(α)
= inf

s(0)≤H≤Hc

d − d(H)+ πH

2H + d
.
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For H ∈ [Hc, d/pc], the representation (2.2) yields d(H) = H pc, and we deduce,
by π ≥ 2 + pc, that the infimum can actually be taken over [s(0), d/pc] which is the
desired result.
Step 2: Proof of (3.13). Since FP (s(•), r) is a subset of M (s(•), r) it is immediate
that the upper bound of Theorem 3.4 holds true over it. To see that the same lower bound
still holds on this subclass, we have to slightly modify the proof of the Theorem 3.5
in the following way. Let g0 be some fixed function in FP (s(•), r) and then modify
the prior µ j introduced in Step 1 of Sect. 5.2 by adding g0 to every realization drawn
under the probability µ j . Denote by µ̃ j the corresponding new prior. It is clear that
the Bayes risk is unchanged. Moreover, µ̃ j (d f )-a.s., the wavelet expansion of f
coincides with the one of g0 on low scales. Thus, µ̃ j (d f )-a.s, the function f has the
same local behavior as f0 and its singularity spectrum is given by (2.2). We then repeat
the arguments of Steps 2 and 3, but now µ̃ j is supported with large probability on
FP (s(•), 2r). If s′(1/p�) = d, we modify Step 4 of Sect. 5.2 by adding g0 to the
f (λ) accordingly.

6 Appendix

6.1 The Frisch–Parisi heuristics

If E ⊂ R
d and η > 0 we let C(E, η) denote the set of countable coverings c of E by

open balls b with diameter at most η. The Hausdorff dimension of E is by definition

dim(E) := inf

{
q ≥ 0, lim

η→0
inf

c∈C(E,η)
∑
b∈c

|b|q = 0

}

= sup

{
q ≥ 0, lim

η→0
inf

c∈C(E,η)
∑
b∈c

|b|q = +∞
}
.

The box-dimension (or Minkowski dimension) of E is defined as follows: let Cexact
(E, η) denote the set of countable coverings of E by open balls with diameter exactly
equal to η. Set

�(E, η) := inf
c∈Cexact(E,η)

Card(c),

i.e. the minimal number of balls with diameter η that are necessary to cover E . The
lower box-dimension of E is defined as

d(E) := lim inf
η

log (�(E, η))

− log η

and likewise, the upper box-dimension of E is

d̄(E) := lim sup
η

log (�(E, η))

− log η
.
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We have the following chain of inequality between the Hausdorff dimension and the
box-dimension:

dim(E) ≤ d(E) ≤ d̄(E).

In practice, the Hausdorff dimension is often approximated by the box-dimension. For
simplicity, we develop the argument in dimension d = 1 and D = [0, 1]. We interpret
a scaling law of the type M j ( f, 1/p) ≈ 2− j ps(1/p) for j → ∞ where M j ( f, 1/p) is
defined in (1.6). The exponent s(1/p) is the value of the Besov domain of f at 1/p.
The contribution of points with maximal regularity H > 0, that is over the set

S f (H) := {x ∈ [0, 1], h f (x) = H}

will be given by

2− j
2 j∑

k2− j ∈S f (H)

∣∣ f (k2− j )− f
(
(k − 1)2− j

) ∣∣p ≈ 2− j(pH−d(H)+1), (6.1)

with d(H) := dimS f (H), using that at most 2 jd(H) boxes are necessary to cover
S f (H). Here, we purposefully make a confusion between the box-dimension of S f (H)
and its Hausdorff dimension. Next, by a geometric series argument, the total contri-
bution in H will be dominated by the maximal exponent in (6.1) so that

M j ( f, 1/p) ≈ sup
H>0

2 j(H p−d(H)+1) ≈ 2− j ps(1/p)

which yields

ps(1/p) = sup
H>0

{H p − d(H)+ 1} .

We recognize the Legendre transfom of H � d(H) − 1 so if the inversion is mean-
ingful, we obtain the Frisch–Parisi conjecture

d(H) = sup
p>0

{pH − ps(1/p)+ 1} . (6.2)

In dimension d ≥ 2, (6.2) reads like (1.5).

6.2 An univariate Bayes risk

Lemma 6.1 Set

ρ j,ε,π := inf
g:R→R

E
[|g(c j + εZ)− c j |π

]
(6.3)
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where Z is a standard Gaussian variable and c j is an independent Bernoulli variable
taking values K = rc(D)−β2− j (β+d/2) and 0, with probability q = c(D)−α2− jα−1

and 1 − q and, respectively. If j = j (ε) and ε are related by (5.9) in the case α 
= 0
(and by (5.10) otherwise) we have:

ρ j,ε,π ≥ c(α, β, π, d, c(D))q K π .

Proof Note first that the infimum in the right-hand side of (6.3) is obtained for ĝ(c) :=
argminx∈R E[|x − c j |π | c̃ j = c] where c̃ j = c j + εZ . The posterior distribution of
c j conditional on c̃ j = c has support {0, K } with:

P[c j = K | c̃ j = c] = q�K (c)

q�K (c)+ (1 − q)�0(c)
,

P[c j = 0 | c̃ j = c] = (1 − q)�0(c)

q�K (c)+ (1 − q)�0(c)
,

where �0 (respectively �K ) is the Gaussian density function with variance ε2 and
mean 0 (respectively K ). Thus ĝ(c) is obtained as the minimizer of

x � |K − x |πq�K (c)+ |x |π (1 − q)�0(c).

It is clear that the minimizer lies in [0, K ]. If π > 1, it is easily checked that ĝ(c) is
the unique solution of the equation of the variable x

(
K − x

x

)π−1

= (1 − q)�0(c)

q�K (c)
,

and if π = 1, ĝ(c) = K 1{ (1−q)�0(c)
q�K (c)

<1
}. In both cases, we see that ĝ(c) lies in the

interval [0, K/2] as soon as

(1 − q)�0(c)

q�K (c)
≥ 1. (6.4)

Using the identity �K (c) = �0(c)e(K c−K 2/2)ε−2
, we can rewrite the condition (6.4)

as c ≤ cε,K ,q with:

cε,K ,q = K/2 − log(q)ε2/K + log(1 − q)ε2/K .
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We have thus shown at this stage that c < cε,K ,q implies ĝ(c) ≤ K/2. This is sufficient
to obtain a lower bound for the Bayes risk. Indeed:

ρ j,ε,π = E
[|̂g(c̃ j )− c j |π

]

≥ E

[
|̂g(c̃ j )− c j |π1{c j =K }1{c̃ j<cε,K ,q }

]

≥ (K/2)π P[c j = K , c̃ j < cε,K ,q ]
= (K/2)πq P[K + εZ < cε,K ,q ] = (K/2)πq P[Z < (cε,K ,q − K )/ε].

The lemma is proved if we can show that the probability above remains bounded away
from zero, or equivalently if

cε,K ,q − K

ε
= − K

2ε
− log q

ε

K
+ log(1 − q)

ε

K
(6.5)

remains bounded away from −∞. In the case α = 0, we have q = 1/2 and if j = j (ε)
is given by the condition (5.10) we get K/ε ∈ [2−d−2βr2c(D)−2β, r2c(D)−2β ]. This
implies that (6.5) remains bounded by below. In the case α > 0, we have log q ∼
− jα log 2 and if j = j (ε) is given by (5.9) with M < r−2c(D)2β2 log 2 one checks
that −K/(2ε) − (log q)ε/K → +∞ as ε → 0. Since log(1 − q)ε/K → 0, the
quantity (6.5) remains bounded away from −∞ and the lemma is proved. ��
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